src/share/vm/opto/block.hpp

Wed, 28 Aug 2013 11:22:43 +0200

author
kvn
date
Wed, 28 Aug 2013 11:22:43 +0200
changeset 5637
29aa8936f03c
parent 5635
650868c062a9
child 5639
4b078f877b56
permissions
-rw-r--r--

8023597: Optimize G1 barriers code for unsafe load_store
Summary: Avoid loading old values in G1 pre-barriers for inlined unsafe load_store nodes.
Reviewed-by: kvn, tonyp
Contributed-by: Martin Doerr <martin.doerr@sap.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_BLOCK_HPP
    26 #define SHARE_VM_OPTO_BLOCK_HPP
    28 #include "opto/multnode.hpp"
    29 #include "opto/node.hpp"
    30 #include "opto/phase.hpp"
    32 // Optimization - Graph Style
    34 class Block;
    35 class CFGLoop;
    36 class MachCallNode;
    37 class Matcher;
    38 class RootNode;
    39 class VectorSet;
    40 struct Tarjan;
    42 //------------------------------Block_Array------------------------------------
    43 // Map dense integer indices to Blocks.  Uses classic doubling-array trick.
    44 // Abstractly provides an infinite array of Block*'s, initialized to NULL.
    45 // Note that the constructor just zeros things, and since I use Arena
    46 // allocation I do not need a destructor to reclaim storage.
    47 class Block_Array : public ResourceObj {
    48   friend class VMStructs;
    49   uint _size;                   // allocated size, as opposed to formal limit
    50   debug_only(uint _limit;)      // limit to formal domain
    51   Arena *_arena;                // Arena to allocate in
    52 protected:
    53   Block **_blocks;
    54   void grow( uint i );          // Grow array node to fit
    56 public:
    57   Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
    58     debug_only(_limit=0);
    59     _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
    60     for( int i = 0; i < OptoBlockListSize; i++ ) {
    61       _blocks[i] = NULL;
    62     }
    63   }
    64   Block *lookup( uint i ) const // Lookup, or NULL for not mapped
    65   { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
    66   Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
    67   { assert( i < Max(), "oob" ); return _blocks[i]; }
    68   // Extend the mapping: index i maps to Block *n.
    69   void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
    70   uint Max() const { debug_only(return _limit); return _size; }
    71 };
    74 class Block_List : public Block_Array {
    75   friend class VMStructs;
    76 public:
    77   uint _cnt;
    78   Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
    79   void push( Block *b ) {  map(_cnt++,b); }
    80   Block *pop() { return _blocks[--_cnt]; }
    81   Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
    82   void remove( uint i );
    83   void insert( uint i, Block *n );
    84   uint size() const { return _cnt; }
    85   void reset() { _cnt = 0; }
    86   void print();
    87 };
    90 class CFGElement : public ResourceObj {
    91   friend class VMStructs;
    92  public:
    93   float _freq; // Execution frequency (estimate)
    95   CFGElement() : _freq(0.0f) {}
    96   virtual bool is_block() { return false; }
    97   virtual bool is_loop()  { return false; }
    98   Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
    99   CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
   100 };
   102 //------------------------------Block------------------------------------------
   103 // This class defines a Basic Block.
   104 // Basic blocks are used during the output routines, and are not used during
   105 // any optimization pass.  They are created late in the game.
   106 class Block : public CFGElement {
   107   friend class VMStructs;
   109 private:
   110   // Nodes in this block, in order
   111   Node_List _nodes;
   113 public:
   115   // Get the node at index 'at_index', if 'at_index' is out of bounds return NULL
   116   Node* get_node(uint at_index) const {
   117     return _nodes[at_index];
   118   }
   120   // Get the number of nodes in this block
   121   uint number_of_nodes() const {
   122     return _nodes.size();
   123   }
   125   // Map a node 'node' to index 'to_index' in the block, if the index is out of bounds the size of the node list is increased
   126   void map_node(Node* node, uint to_index) {
   127     _nodes.map(to_index, node);
   128   }
   130   // Insert a node 'node' at index 'at_index', moving all nodes that are on a higher index one step, if 'at_index' is out of bounds we crash
   131   void insert_node(Node* node, uint at_index) {
   132     _nodes.insert(at_index, node);
   133   }
   135   // Remove a node at index 'at_index'
   136   void remove_node(uint at_index) {
   137     _nodes.remove(at_index);
   138   }
   140   // Push a node 'node' onto the node list
   141   void push_node(Node* node) {
   142     _nodes.push(node);
   143   }
   145   // Pop the last node off the node list
   146   Node* pop_node() {
   147     return _nodes.pop();
   148   }
   150   // Basic blocks have a Node which defines Control for all Nodes pinned in
   151   // this block.  This Node is a RegionNode.  Exception-causing Nodes
   152   // (division, subroutines) and Phi functions are always pinned.  Later,
   153   // every Node will get pinned to some block.
   154   Node *head() const { return get_node(0); }
   156   // CAUTION: num_preds() is ONE based, so that predecessor numbers match
   157   // input edges to Regions and Phis.
   158   uint num_preds() const { return head()->req(); }
   159   Node *pred(uint i) const { return head()->in(i); }
   161   // Array of successor blocks, same size as projs array
   162   Block_Array _succs;
   164   // Basic blocks have some number of Nodes which split control to all
   165   // following blocks.  These Nodes are always Projections.  The field in
   166   // the Projection and the block-ending Node determine which Block follows.
   167   uint _num_succs;
   169   // Basic blocks also carry all sorts of good old fashioned DFS information
   170   // used to find loops, loop nesting depth, dominators, etc.
   171   uint _pre_order;              // Pre-order DFS number
   173   // Dominator tree
   174   uint _dom_depth;              // Depth in dominator tree for fast LCA
   175   Block* _idom;                 // Immediate dominator block
   177   CFGLoop *_loop;               // Loop to which this block belongs
   178   uint _rpo;                    // Number in reverse post order walk
   180   virtual bool is_block() { return true; }
   181   float succ_prob(uint i);      // return probability of i'th successor
   182   int num_fall_throughs();      // How many fall-through candidate this block has
   183   void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
   184   bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
   185   Block* lone_fall_through();   // Return lone fall-through Block or null
   187   Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
   188 #ifdef ASSERT
   189   bool dominates(Block* that) {
   190     int dom_diff = this->_dom_depth - that->_dom_depth;
   191     if (dom_diff > 0)  return false;
   192     for (; dom_diff < 0; dom_diff++)  that = that->_idom;
   193     return this == that;
   194   }
   195 #endif
   197   // Report the alignment required by this block.  Must be a power of 2.
   198   // The previous block will insert nops to get this alignment.
   199   uint code_alignment();
   200   uint compute_loop_alignment();
   202   // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
   203   // It is currently also used to scale such frequencies relative to
   204   // FreqCountInvocations relative to the old value of 1500.
   205 #define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
   207   // Register Pressure (estimate) for Splitting heuristic
   208   uint _reg_pressure;
   209   uint _ihrp_index;
   210   uint _freg_pressure;
   211   uint _fhrp_index;
   213   // Mark and visited bits for an LCA calculation in insert_anti_dependences.
   214   // Since they hold unique node indexes, they do not need reinitialization.
   215   node_idx_t _raise_LCA_mark;
   216   void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
   217   node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
   218   node_idx_t _raise_LCA_visited;
   219   void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
   220   node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }
   222   // Estimated size in bytes of first instructions in a loop.
   223   uint _first_inst_size;
   224   uint first_inst_size() const     { return _first_inst_size; }
   225   void set_first_inst_size(uint s) { _first_inst_size = s; }
   227   // Compute the size of first instructions in this block.
   228   uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
   230   // Compute alignment padding if the block needs it.
   231   // Align a loop if loop's padding is less or equal to padding limit
   232   // or the size of first instructions in the loop > padding.
   233   uint alignment_padding(int current_offset) {
   234     int block_alignment = code_alignment();
   235     int max_pad = block_alignment-relocInfo::addr_unit();
   236     if( max_pad > 0 ) {
   237       assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
   238       int current_alignment = current_offset & max_pad;
   239       if( current_alignment != 0 ) {
   240         uint padding = (block_alignment-current_alignment) & max_pad;
   241         if( has_loop_alignment() &&
   242             padding > (uint)MaxLoopPad &&
   243             first_inst_size() <= padding ) {
   244           return 0;
   245         }
   246         return padding;
   247       }
   248     }
   249     return 0;
   250   }
   252   // Connector blocks. Connector blocks are basic blocks devoid of
   253   // instructions, but may have relevant non-instruction Nodes, such as
   254   // Phis or MergeMems. Such blocks are discovered and marked during the
   255   // RemoveEmpty phase, and elided during Output.
   256   bool _connector;
   257   void set_connector() { _connector = true; }
   258   bool is_connector() const { return _connector; };
   260   // Loop_alignment will be set for blocks which are at the top of loops.
   261   // The block layout pass may rotate loops such that the loop head may not
   262   // be the sequentially first block of the loop encountered in the linear
   263   // list of blocks.  If the layout pass is not run, loop alignment is set
   264   // for each block which is the head of a loop.
   265   uint _loop_alignment;
   266   void set_loop_alignment(Block *loop_top) {
   267     uint new_alignment = loop_top->compute_loop_alignment();
   268     if (new_alignment > _loop_alignment) {
   269       _loop_alignment = new_alignment;
   270     }
   271   }
   272   uint loop_alignment() const { return _loop_alignment; }
   273   bool has_loop_alignment() const { return loop_alignment() > 0; }
   275   // Create a new Block with given head Node.
   276   // Creates the (empty) predecessor arrays.
   277   Block( Arena *a, Node *headnode )
   278     : CFGElement(),
   279       _nodes(a),
   280       _succs(a),
   281       _num_succs(0),
   282       _pre_order(0),
   283       _idom(0),
   284       _loop(NULL),
   285       _reg_pressure(0),
   286       _ihrp_index(1),
   287       _freg_pressure(0),
   288       _fhrp_index(1),
   289       _raise_LCA_mark(0),
   290       _raise_LCA_visited(0),
   291       _first_inst_size(999999),
   292       _connector(false),
   293       _loop_alignment(0) {
   294     _nodes.push(headnode);
   295   }
   297   // Index of 'end' Node
   298   uint end_idx() const {
   299     // %%%%% add a proj after every goto
   300     // so (last->is_block_proj() != last) always, then simplify this code
   301     // This will not give correct end_idx for block 0 when it only contains root.
   302     int last_idx = _nodes.size() - 1;
   303     Node *last  = _nodes[last_idx];
   304     assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
   305     return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
   306   }
   308   // Basic blocks have a Node which ends them.  This Node determines which
   309   // basic block follows this one in the program flow.  This Node is either an
   310   // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
   311   Node *end() const { return _nodes[end_idx()]; }
   313   // Add an instruction to an existing block.  It must go after the head
   314   // instruction and before the end instruction.
   315   void add_inst( Node *n ) { insert_node(n, end_idx()); }
   316   // Find node in block
   317   uint find_node( const Node *n ) const;
   318   // Find and remove n from block list
   319   void find_remove( const Node *n );
   321   // helper function that adds caller save registers to MachProjNode
   322   void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe);
   323   // Schedule a call next in the block
   324   uint sched_call(Matcher &matcher, PhaseCFG* cfg, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call);
   326   // Perform basic-block local scheduling
   327   Node *select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot);
   328   void set_next_call( Node *n, VectorSet &next_call, PhaseCFG* cfg);
   329   void needed_for_next_call(Node *this_call, VectorSet &next_call, PhaseCFG* cfg);
   330   bool schedule_local(PhaseCFG *cfg, Matcher &m, GrowableArray<int> &ready_cnt, VectorSet &next_call);
   331   // Cleanup if any code lands between a Call and his Catch
   332   void call_catch_cleanup(PhaseCFG* cfg, Compile *C);
   333   // Detect implicit-null-check opportunities.  Basically, find NULL checks
   334   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
   335   // I can generate a memory op if there is not one nearby.
   336   void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
   338   // Return the empty status of a block
   339   enum { not_empty, empty_with_goto, completely_empty };
   340   int is_Empty() const;
   342   // Forward through connectors
   343   Block* non_connector() {
   344     Block* s = this;
   345     while (s->is_connector()) {
   346       s = s->_succs[0];
   347     }
   348     return s;
   349   }
   351   // Return true if b is a successor of this block
   352   bool has_successor(Block* b) const {
   353     for (uint i = 0; i < _num_succs; i++ ) {
   354       if (non_connector_successor(i) == b) {
   355         return true;
   356       }
   357     }
   358     return false;
   359   }
   361   // Successor block, after forwarding through connectors
   362   Block* non_connector_successor(int i) const {
   363     return _succs[i]->non_connector();
   364   }
   366   // Examine block's code shape to predict if it is not commonly executed.
   367   bool has_uncommon_code() const;
   369   // Use frequency calculations and code shape to predict if the block
   370   // is uncommon.
   371   bool is_uncommon(PhaseCFG* cfg) const;
   373 #ifndef PRODUCT
   374   // Debugging print of basic block
   375   void dump_bidx(const Block* orig, outputStream* st = tty) const;
   376   void dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st = tty) const;
   377   void dump_head(const PhaseCFG* cfg, outputStream* st = tty) const;
   378   void dump() const;
   379   void dump(const PhaseCFG* cfg) const;
   380 #endif
   381 };
   384 //------------------------------PhaseCFG---------------------------------------
   385 // Build an array of Basic Block pointers, one per Node.
   386 class PhaseCFG : public Phase {
   387   friend class VMStructs;
   388  private:
   390   // Root of whole program
   391   RootNode* _root;
   393   // The block containing the root node
   394   Block* _root_block;
   396   // List of basic blocks that are created during CFG creation
   397   Block_List _blocks;
   399   // Count of basic blocks
   400   uint _number_of_blocks;
   402   // Arena for the blocks to be stored in
   403   Arena* _block_arena;
   405   // The matcher for this compilation
   406   Matcher& _matcher;
   408   // Map nodes to owning basic block
   409   Block_Array _node_to_block_mapping;
   411   // Loop from the root
   412   CFGLoop* _root_loop;
   414   // Outmost loop frequency
   415   float _outer_loop_frequency;
   417   // Per node latency estimation, valid only during GCM
   418   GrowableArray<uint>* _node_latency;
   420   // Build a proper looking cfg.  Return count of basic blocks
   421   uint build_cfg();
   423   // Build the dominator tree so that we know where we can move instructions
   424   void build_dominator_tree();
   426   // Estimate block frequencies based on IfNode probabilities, so that we know where we want to move instructions
   427   void estimate_block_frequency();
   429   // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
   430   // basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block.
   431   // Move nodes to ensure correctness from GVN and also try to move nodes out of loops.
   432   void global_code_motion();
   434   // Schedule Nodes early in their basic blocks.
   435   bool schedule_early(VectorSet &visited, Node_List &roots);
   437   // For each node, find the latest block it can be scheduled into
   438   // and then select the cheapest block between the latest and earliest
   439   // block to place the node.
   440   void schedule_late(VectorSet &visited, Node_List &stack);
   442   // Compute the (backwards) latency of a node from a single use
   443   int latency_from_use(Node *n, const Node *def, Node *use);
   445   // Compute the (backwards) latency of a node from the uses of this instruction
   446   void partial_latency_of_defs(Node *n);
   448   // Compute the instruction global latency with a backwards walk
   449   void compute_latencies_backwards(VectorSet &visited, Node_List &stack);
   451   // Pick a block between early and late that is a cheaper alternative
   452   // to late. Helper for schedule_late.
   453   Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
   455   // Perform a Depth First Search (DFS).
   456   // Setup 'vertex' as DFS to vertex mapping.
   457   // Setup 'semi' as vertex to DFS mapping.
   458   // Set 'parent' to DFS parent.
   459   uint do_DFS(Tarjan* tarjan, uint rpo_counter);
   461   // Helper function to insert a node into a block
   462   void schedule_node_into_block( Node *n, Block *b );
   464   void replace_block_proj_ctrl( Node *n );
   466   // Set the basic block for pinned Nodes
   467   void schedule_pinned_nodes( VectorSet &visited );
   469   // I'll need a few machine-specific GotoNodes.  Clone from this one.
   470   // Used when building the CFG and creating end nodes for blocks.
   471   MachNode* _goto;
   473   Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
   474   void verify_anti_dependences(Block* LCA, Node* load) {
   475     assert(LCA == get_block_for_node(load), "should already be scheduled");
   476     insert_anti_dependences(LCA, load, true);
   477   }
   479   bool move_to_next(Block* bx, uint b_index);
   480   void move_to_end(Block* bx, uint b_index);
   482   void insert_goto_at(uint block_no, uint succ_no);
   484   // Check for NeverBranch at block end.  This needs to become a GOTO to the
   485   // true target.  NeverBranch are treated as a conditional branch that always
   486   // goes the same direction for most of the optimizer and are used to give a
   487   // fake exit path to infinite loops.  At this late stage they need to turn
   488   // into Goto's so that when you enter the infinite loop you indeed hang.
   489   void convert_NeverBranch_to_Goto(Block *b);
   491   CFGLoop* create_loop_tree();
   493   #ifndef PRODUCT
   494   bool _trace_opto_pipelining;  // tracing flag
   495   #endif
   497  public:
   498   PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher);
   500   void set_latency_for_node(Node* node, int latency) {
   501     _node_latency->at_put_grow(node->_idx, latency);
   502   }
   504   uint get_latency_for_node(Node* node) {
   505     return _node_latency->at_grow(node->_idx);
   506   }
   508   // Get the outer most frequency
   509   float get_outer_loop_frequency() const {
   510     return _outer_loop_frequency;
   511   }
   513   // Get the root node of the CFG
   514   RootNode* get_root_node() const {
   515     return _root;
   516   }
   518   // Get the block of the root node
   519   Block* get_root_block() const {
   520     return _root_block;
   521   }
   523   // Add a block at a position and moves the later ones one step
   524   void add_block_at(uint pos, Block* block) {
   525     _blocks.insert(pos, block);
   526     _number_of_blocks++;
   527   }
   529   // Adds a block to the top of the block list
   530   void add_block(Block* block) {
   531     _blocks.push(block);
   532     _number_of_blocks++;
   533   }
   535   // Clear the list of blocks
   536   void clear_blocks() {
   537     _blocks.reset();
   538     _number_of_blocks = 0;
   539   }
   541   // Get the block at position pos in _blocks
   542   Block* get_block(uint pos) const {
   543     return _blocks[pos];
   544   }
   546   // Number of blocks
   547   uint number_of_blocks() const {
   548     return _number_of_blocks;
   549   }
   551   // set which block this node should reside in
   552   void map_node_to_block(const Node* node, Block* block) {
   553     _node_to_block_mapping.map(node->_idx, block);
   554   }
   556   // removes the mapping from a node to a block
   557   void unmap_node_from_block(const Node* node) {
   558     _node_to_block_mapping.map(node->_idx, NULL);
   559   }
   561   // get the block in which this node resides
   562   Block* get_block_for_node(const Node* node) const {
   563     return _node_to_block_mapping[node->_idx];
   564   }
   566   // does this node reside in a block; return true
   567   bool has_block(const Node* node) const {
   568     return (_node_to_block_mapping.lookup(node->_idx) != NULL);
   569   }
   571 #ifdef ASSERT
   572   Unique_Node_List _raw_oops;
   573 #endif
   575   // Do global code motion by first building dominator tree and estimate block frequency
   576   // Returns true on success
   577   bool do_global_code_motion();
   579   // Compute the (backwards) latency of a node from the uses
   580   void latency_from_uses(Node *n);
   582   // Set loop alignment
   583   void set_loop_alignment();
   585   // Remove empty basic blocks
   586   void remove_empty_blocks();
   587   void fixup_flow();
   589   // Insert a node into a block at index and map the node to the block
   590   void insert(Block *b, uint idx, Node *n) {
   591     b->insert_node(n , idx);
   592     map_node_to_block(n, b);
   593   }
   595 #ifndef PRODUCT
   596   bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
   598   // Debugging print of CFG
   599   void dump( ) const;           // CFG only
   600   void _dump_cfg( const Node *end, VectorSet &visited  ) const;
   601   void verify() const;
   602   void dump_headers();
   603 #else
   604   bool trace_opto_pipelining() const { return false; }
   605 #endif
   606 };
   609 //------------------------------UnionFind--------------------------------------
   610 // Map Block indices to a block-index for a cfg-cover.
   611 // Array lookup in the optimized case.
   612 class UnionFind : public ResourceObj {
   613   uint _cnt, _max;
   614   uint* _indices;
   615   ReallocMark _nesting;  // assertion check for reallocations
   616 public:
   617   UnionFind( uint max );
   618   void reset( uint max );  // Reset to identity map for [0..max]
   620   uint lookup( uint nidx ) const {
   621     return _indices[nidx];
   622   }
   623   uint operator[] (uint nidx) const { return lookup(nidx); }
   625   void map( uint from_idx, uint to_idx ) {
   626     assert( from_idx < _cnt, "oob" );
   627     _indices[from_idx] = to_idx;
   628   }
   629   void extend( uint from_idx, uint to_idx );
   631   uint Size() const { return _cnt; }
   633   uint Find( uint idx ) {
   634     assert( idx < 65536, "Must fit into uint");
   635     uint uf_idx = lookup(idx);
   636     return (uf_idx == idx) ? uf_idx : Find_compress(idx);
   637   }
   638   uint Find_compress( uint idx );
   639   uint Find_const( uint idx ) const;
   640   void Union( uint idx1, uint idx2 );
   642 };
   644 //----------------------------BlockProbPair---------------------------
   645 // Ordered pair of Node*.
   646 class BlockProbPair VALUE_OBJ_CLASS_SPEC {
   647 protected:
   648   Block* _target;      // block target
   649   float  _prob;        // probability of edge to block
   650 public:
   651   BlockProbPair() : _target(NULL), _prob(0.0) {}
   652   BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
   654   Block* get_target() const { return _target; }
   655   float get_prob() const { return _prob; }
   656 };
   658 //------------------------------CFGLoop-------------------------------------------
   659 class CFGLoop : public CFGElement {
   660   friend class VMStructs;
   661   int _id;
   662   int _depth;
   663   CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
   664   CFGLoop *_sibling;     // null terminated list
   665   CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
   666   GrowableArray<CFGElement*> _members; // list of members of loop
   667   GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
   668   float _exit_prob;       // probability any loop exit is taken on a single loop iteration
   669   void update_succ_freq(Block* b, float freq);
   671  public:
   672   CFGLoop(int id) :
   673     CFGElement(),
   674     _id(id),
   675     _depth(0),
   676     _parent(NULL),
   677     _sibling(NULL),
   678     _child(NULL),
   679     _exit_prob(1.0f) {}
   680   CFGLoop* parent() { return _parent; }
   681   void push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg);
   682   void add_member(CFGElement *s) { _members.push(s); }
   683   void add_nested_loop(CFGLoop* cl);
   684   Block* head() {
   685     assert(_members.at(0)->is_block(), "head must be a block");
   686     Block* hd = _members.at(0)->as_Block();
   687     assert(hd->_loop == this, "just checking");
   688     assert(hd->head()->is_Loop(), "must begin with loop head node");
   689     return hd;
   690   }
   691   Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
   692   void compute_loop_depth(int depth);
   693   void compute_freq(); // compute frequency with loop assuming head freq 1.0f
   694   void scale_freq();   // scale frequency by loop trip count (including outer loops)
   695   float outer_loop_freq() const; // frequency of outer loop
   696   bool in_loop_nest(Block* b);
   697   float trip_count() const { return 1.0f / _exit_prob; }
   698   virtual bool is_loop()  { return true; }
   699   int id() { return _id; }
   701 #ifndef PRODUCT
   702   void dump( ) const;
   703   void dump_tree() const;
   704 #endif
   705 };
   708 //----------------------------------CFGEdge------------------------------------
   709 // A edge between two basic blocks that will be embodied by a branch or a
   710 // fall-through.
   711 class CFGEdge : public ResourceObj {
   712   friend class VMStructs;
   713  private:
   714   Block * _from;        // Source basic block
   715   Block * _to;          // Destination basic block
   716   float _freq;          // Execution frequency (estimate)
   717   int   _state;
   718   bool  _infrequent;
   719   int   _from_pct;
   720   int   _to_pct;
   722   // Private accessors
   723   int  from_pct() const { return _from_pct; }
   724   int  to_pct()   const { return _to_pct;   }
   725   int  from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
   726   int  to_infrequent()   const { return to_pct()   < BlockLayoutMinDiamondPercentage; }
   728  public:
   729   enum {
   730     open,               // initial edge state; unprocessed
   731     connected,          // edge used to connect two traces together
   732     interior            // edge is interior to trace (could be backedge)
   733   };
   735   CFGEdge(Block *from, Block *to, float freq, int from_pct, int to_pct) :
   736     _from(from), _to(to), _freq(freq),
   737     _from_pct(from_pct), _to_pct(to_pct), _state(open) {
   738     _infrequent = from_infrequent() || to_infrequent();
   739   }
   741   float  freq() const { return _freq; }
   742   Block* from() const { return _from; }
   743   Block* to  () const { return _to;   }
   744   int  infrequent() const { return _infrequent; }
   745   int state() const { return _state; }
   747   void set_state(int state) { _state = state; }
   749 #ifndef PRODUCT
   750   void dump( ) const;
   751 #endif
   752 };
   755 //-----------------------------------Trace-------------------------------------
   756 // An ordered list of basic blocks.
   757 class Trace : public ResourceObj {
   758  private:
   759   uint _id;             // Unique Trace id (derived from initial block)
   760   Block ** _next_list;  // Array mapping index to next block
   761   Block ** _prev_list;  // Array mapping index to previous block
   762   Block * _first;       // First block in the trace
   763   Block * _last;        // Last block in the trace
   765   // Return the block that follows "b" in the trace.
   766   Block * next(Block *b) const { return _next_list[b->_pre_order]; }
   767   void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
   769   // Return the block that precedes "b" in the trace.
   770   Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
   771   void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
   773   // We've discovered a loop in this trace. Reset last to be "b", and first as
   774   // the block following "b
   775   void break_loop_after(Block *b) {
   776     _last = b;
   777     _first = next(b);
   778     set_prev(_first, NULL);
   779     set_next(_last, NULL);
   780   }
   782  public:
   784   Trace(Block *b, Block **next_list, Block **prev_list) :
   785     _first(b),
   786     _last(b),
   787     _next_list(next_list),
   788     _prev_list(prev_list),
   789     _id(b->_pre_order) {
   790     set_next(b, NULL);
   791     set_prev(b, NULL);
   792   };
   794   // Return the id number
   795   uint id() const { return _id; }
   796   void set_id(uint id) { _id = id; }
   798   // Return the first block in the trace
   799   Block * first_block() const { return _first; }
   801   // Return the last block in the trace
   802   Block * last_block() const { return _last; }
   804   // Insert a trace in the middle of this one after b
   805   void insert_after(Block *b, Trace *tr) {
   806     set_next(tr->last_block(), next(b));
   807     if (next(b) != NULL) {
   808       set_prev(next(b), tr->last_block());
   809     }
   811     set_next(b, tr->first_block());
   812     set_prev(tr->first_block(), b);
   814     if (b == _last) {
   815       _last = tr->last_block();
   816     }
   817   }
   819   void insert_before(Block *b, Trace *tr) {
   820     Block *p = prev(b);
   821     assert(p != NULL, "use append instead");
   822     insert_after(p, tr);
   823   }
   825   // Append another trace to this one.
   826   void append(Trace *tr) {
   827     insert_after(_last, tr);
   828   }
   830   // Append a block at the end of this trace
   831   void append(Block *b) {
   832     set_next(_last, b);
   833     set_prev(b, _last);
   834     _last = b;
   835   }
   837   // Adjust the the blocks in this trace
   838   void fixup_blocks(PhaseCFG &cfg);
   839   bool backedge(CFGEdge *e);
   841 #ifndef PRODUCT
   842   void dump( ) const;
   843 #endif
   844 };
   846 //------------------------------PhaseBlockLayout-------------------------------
   847 // Rearrange blocks into some canonical order, based on edges and their frequencies
   848 class PhaseBlockLayout : public Phase {
   849   friend class VMStructs;
   850   PhaseCFG &_cfg;               // Control flow graph
   852   GrowableArray<CFGEdge *> *edges;
   853   Trace **traces;
   854   Block **next;
   855   Block **prev;
   856   UnionFind *uf;
   858   // Given a block, find its encompassing Trace
   859   Trace * trace(Block *b) {
   860     return traces[uf->Find_compress(b->_pre_order)];
   861   }
   862  public:
   863   PhaseBlockLayout(PhaseCFG &cfg);
   865   void find_edges();
   866   void grow_traces();
   867   void merge_traces(bool loose_connections);
   868   void reorder_traces(int count);
   869   void union_traces(Trace* from, Trace* to);
   870 };
   872 #endif // SHARE_VM_OPTO_BLOCK_HPP

mercurial