src/share/vm/memory/collectorPolicy.cpp

Fri, 17 May 2013 06:01:10 +0200

author
jwilhelm
date
Fri, 17 May 2013 06:01:10 +0200
changeset 5125
2958af1d8c5a
parent 5103
f9be75d21404
parent 5119
12f651e29f6b
child 5578
4c84d351cca9
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/vmGCOperations.hpp"
    29 #include "memory/cardTableRS.hpp"
    30 #include "memory/collectorPolicy.hpp"
    31 #include "memory/gcLocker.inline.hpp"
    32 #include "memory/genCollectedHeap.hpp"
    33 #include "memory/generationSpec.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/universe.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/globals_extension.hpp"
    38 #include "runtime/handles.inline.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/thread.inline.hpp"
    41 #include "runtime/vmThread.hpp"
    42 #include "utilities/macros.hpp"
    43 #if INCLUDE_ALL_GCS
    44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    46 #endif // INCLUDE_ALL_GCS
    48 // CollectorPolicy methods.
    50 void CollectorPolicy::initialize_flags() {
    51   assert(max_alignment() >= min_alignment(),
    52       err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
    53           max_alignment(), min_alignment()));
    54   assert(max_alignment() % min_alignment() == 0,
    55       err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
    56           max_alignment(), min_alignment()));
    58   if (MaxHeapSize < InitialHeapSize) {
    59     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
    60   }
    62   if (MetaspaceSize > MaxMetaspaceSize) {
    63     MaxMetaspaceSize = MetaspaceSize;
    64   }
    65   MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
    66   // Don't increase Metaspace size limit above specified.
    67   MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
    68   if (MetaspaceSize > MaxMetaspaceSize) {
    69     MetaspaceSize = MaxMetaspaceSize;
    70   }
    72   MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
    73   MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
    75   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
    77   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
    78   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
    79   if (MetaspaceSize < 256*K) {
    80     vm_exit_during_initialization("Too small initial Metaspace size");
    81   }
    82 }
    84 void CollectorPolicy::initialize_size_info() {
    85   // User inputs from -mx and ms must be aligned
    86   set_min_heap_byte_size(align_size_up(Arguments::min_heap_size(), min_alignment()));
    87   set_initial_heap_byte_size(align_size_up(InitialHeapSize, min_alignment()));
    88   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
    90   // Check heap parameter properties
    91   if (initial_heap_byte_size() < M) {
    92     vm_exit_during_initialization("Too small initial heap");
    93   }
    94   // Check heap parameter properties
    95   if (min_heap_byte_size() < M) {
    96     vm_exit_during_initialization("Too small minimum heap");
    97   }
    98   if (initial_heap_byte_size() <= NewSize) {
    99      // make sure there is at least some room in old space
   100     vm_exit_during_initialization("Too small initial heap for new size specified");
   101   }
   102   if (max_heap_byte_size() < min_heap_byte_size()) {
   103     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
   104   }
   105   if (initial_heap_byte_size() < min_heap_byte_size()) {
   106     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
   107   }
   108   if (max_heap_byte_size() < initial_heap_byte_size()) {
   109     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
   110   }
   112   if (PrintGCDetails && Verbose) {
   113     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
   114       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
   115       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
   116   }
   117 }
   119 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
   120   bool result = _should_clear_all_soft_refs;
   121   set_should_clear_all_soft_refs(false);
   122   return result;
   123 }
   125 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
   126                                            int max_covered_regions) {
   127   switch (rem_set_name()) {
   128   case GenRemSet::CardTable: {
   129     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
   130     return res;
   131   }
   132   default:
   133     guarantee(false, "unrecognized GenRemSet::Name");
   134     return NULL;
   135   }
   136 }
   138 void CollectorPolicy::cleared_all_soft_refs() {
   139   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
   140   // have been cleared in the last collection but if the gc overhear
   141   // limit continues to be near, SoftRefs should still be cleared.
   142   if (size_policy() != NULL) {
   143     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
   144   }
   145   _all_soft_refs_clear = true;
   146 }
   149 // GenCollectorPolicy methods.
   151 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
   152   size_t x = base_size / (NewRatio+1);
   153   size_t new_gen_size = x > min_alignment() ?
   154                      align_size_down(x, min_alignment()) :
   155                      min_alignment();
   156   return new_gen_size;
   157 }
   159 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
   160                                                  size_t maximum_size) {
   161   size_t alignment = min_alignment();
   162   size_t max_minus = maximum_size - alignment;
   163   return desired_size < max_minus ? desired_size : max_minus;
   164 }
   167 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
   168                                                 size_t init_promo_size,
   169                                                 size_t init_survivor_size) {
   170   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   171   _size_policy = new AdaptiveSizePolicy(init_eden_size,
   172                                         init_promo_size,
   173                                         init_survivor_size,
   174                                         max_gc_pause_sec,
   175                                         GCTimeRatio);
   176 }
   178 size_t GenCollectorPolicy::compute_max_alignment() {
   179   // The card marking array and the offset arrays for old generations are
   180   // committed in os pages as well. Make sure they are entirely full (to
   181   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
   182   // byte entry and the os page size is 4096, the maximum heap size should
   183   // be 512*4096 = 2MB aligned.
   184   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
   186   // Parallel GC does its own alignment of the generations to avoid requiring a
   187   // large page (256M on some platforms) for the permanent generation.  The
   188   // other collectors should also be updated to do their own alignment and then
   189   // this use of lcm() should be removed.
   190   if (UseLargePages && !UseParallelGC) {
   191       // in presence of large pages we have to make sure that our
   192       // alignment is large page aware
   193       alignment = lcm(os::large_page_size(), alignment);
   194   }
   196   return alignment;
   197 }
   199 void GenCollectorPolicy::initialize_flags() {
   200   // All sizes must be multiples of the generation granularity.
   201   set_min_alignment((uintx) Generation::GenGrain);
   202   set_max_alignment(compute_max_alignment());
   204   CollectorPolicy::initialize_flags();
   206   // All generational heaps have a youngest gen; handle those flags here.
   208   // Adjust max size parameters
   209   if (NewSize > MaxNewSize) {
   210     MaxNewSize = NewSize;
   211   }
   212   NewSize = align_size_down(NewSize, min_alignment());
   213   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
   215   // Check validity of heap flags
   216   assert(NewSize     % min_alignment() == 0, "eden space alignment");
   217   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
   219   if (NewSize < 3*min_alignment()) {
   220      // make sure there room for eden and two survivor spaces
   221     vm_exit_during_initialization("Too small new size specified");
   222   }
   223   if (SurvivorRatio < 1 || NewRatio < 1) {
   224     vm_exit_during_initialization("Invalid heap ratio specified");
   225   }
   226 }
   228 void TwoGenerationCollectorPolicy::initialize_flags() {
   229   GenCollectorPolicy::initialize_flags();
   231   OldSize = align_size_down(OldSize, min_alignment());
   233   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
   234     // NewRatio will be used later to set the young generation size so we use
   235     // it to calculate how big the heap should be based on the requested OldSize
   236     // and NewRatio.
   237     assert(NewRatio > 0, "NewRatio should have been set up earlier");
   238     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
   240     calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
   241     MaxHeapSize = calculated_heapsize;
   242     InitialHeapSize = calculated_heapsize;
   243   }
   244   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   246   // adjust max heap size if necessary
   247   if (NewSize + OldSize > MaxHeapSize) {
   248     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
   249       // somebody set a maximum heap size with the intention that we should not
   250       // exceed it. Adjust New/OldSize as necessary.
   251       uintx calculated_size = NewSize + OldSize;
   252       double shrink_factor = (double) MaxHeapSize / calculated_size;
   253       // align
   254       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
   255       // OldSize is already aligned because above we aligned MaxHeapSize to
   256       // max_alignment(), and we just made sure that NewSize is aligned to
   257       // min_alignment(). In initialize_flags() we verified that max_alignment()
   258       // is a multiple of min_alignment().
   259       OldSize = MaxHeapSize - NewSize;
   260     } else {
   261       MaxHeapSize = NewSize + OldSize;
   262     }
   263   }
   264   // need to do this again
   265   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   267   // adjust max heap size if necessary
   268   if (NewSize + OldSize > MaxHeapSize) {
   269     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
   270       // somebody set a maximum heap size with the intention that we should not
   271       // exceed it. Adjust New/OldSize as necessary.
   272       uintx calculated_size = NewSize + OldSize;
   273       double shrink_factor = (double) MaxHeapSize / calculated_size;
   274       // align
   275       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
   276       // OldSize is already aligned because above we aligned MaxHeapSize to
   277       // max_alignment(), and we just made sure that NewSize is aligned to
   278       // min_alignment(). In initialize_flags() we verified that max_alignment()
   279       // is a multiple of min_alignment().
   280       OldSize = MaxHeapSize - NewSize;
   281     } else {
   282       MaxHeapSize = NewSize + OldSize;
   283     }
   284   }
   285   // need to do this again
   286   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   288   always_do_update_barrier = UseConcMarkSweepGC;
   290   // Check validity of heap flags
   291   assert(OldSize     % min_alignment() == 0, "old space alignment");
   292   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
   293 }
   295 // Values set on the command line win over any ergonomically
   296 // set command line parameters.
   297 // Ergonomic choice of parameters are done before this
   298 // method is called.  Values for command line parameters such as NewSize
   299 // and MaxNewSize feed those ergonomic choices into this method.
   300 // This method makes the final generation sizings consistent with
   301 // themselves and with overall heap sizings.
   302 // In the absence of explicitly set command line flags, policies
   303 // such as the use of NewRatio are used to size the generation.
   304 void GenCollectorPolicy::initialize_size_info() {
   305   CollectorPolicy::initialize_size_info();
   307   // min_alignment() is used for alignment within a generation.
   308   // There is additional alignment done down stream for some
   309   // collectors that sometimes causes unwanted rounding up of
   310   // generations sizes.
   312   // Determine maximum size of gen0
   314   size_t max_new_size = 0;
   315   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
   316     if (MaxNewSize < min_alignment()) {
   317       max_new_size = min_alignment();
   318     }
   319     if (MaxNewSize >= max_heap_byte_size()) {
   320       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
   321                                      min_alignment());
   322       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
   323         "greater than the entire heap (" SIZE_FORMAT "k).  A "
   324         "new generation size of " SIZE_FORMAT "k will be used.",
   325         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
   326     } else {
   327       max_new_size = align_size_down(MaxNewSize, min_alignment());
   328     }
   330   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
   331   // specially at this point to just use an ergonomically set
   332   // MaxNewSize to set max_new_size.  For cases with small
   333   // heaps such a policy often did not work because the MaxNewSize
   334   // was larger than the entire heap.  The interpretation given
   335   // to ergonomically set flags is that the flags are set
   336   // by different collectors for their own special needs but
   337   // are not allowed to badly shape the heap.  This allows the
   338   // different collectors to decide what's best for themselves
   339   // without having to factor in the overall heap shape.  It
   340   // can be the case in the future that the collectors would
   341   // only make "wise" ergonomics choices and this policy could
   342   // just accept those choices.  The choices currently made are
   343   // not always "wise".
   344   } else {
   345     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
   346     // Bound the maximum size by NewSize below (since it historically
   347     // would have been NewSize and because the NewRatio calculation could
   348     // yield a size that is too small) and bound it by MaxNewSize above.
   349     // Ergonomics plays here by previously calculating the desired
   350     // NewSize and MaxNewSize.
   351     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
   352   }
   353   assert(max_new_size > 0, "All paths should set max_new_size");
   355   // Given the maximum gen0 size, determine the initial and
   356   // minimum gen0 sizes.
   358   if (max_heap_byte_size() == min_heap_byte_size()) {
   359     // The maximum and minimum heap sizes are the same so
   360     // the generations minimum and initial must be the
   361     // same as its maximum.
   362     set_min_gen0_size(max_new_size);
   363     set_initial_gen0_size(max_new_size);
   364     set_max_gen0_size(max_new_size);
   365   } else {
   366     size_t desired_new_size = 0;
   367     if (!FLAG_IS_DEFAULT(NewSize)) {
   368       // If NewSize is set ergonomically (for example by cms), it
   369       // would make sense to use it.  If it is used, also use it
   370       // to set the initial size.  Although there is no reason
   371       // the minimum size and the initial size have to be the same,
   372       // the current implementation gets into trouble during the calculation
   373       // of the tenured generation sizes if they are different.
   374       // Note that this makes the initial size and the minimum size
   375       // generally small compared to the NewRatio calculation.
   376       _min_gen0_size = NewSize;
   377       desired_new_size = NewSize;
   378       max_new_size = MAX2(max_new_size, NewSize);
   379     } else {
   380       // For the case where NewSize is the default, use NewRatio
   381       // to size the minimum and initial generation sizes.
   382       // Use the default NewSize as the floor for these values.  If
   383       // NewRatio is overly large, the resulting sizes can be too
   384       // small.
   385       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
   386                           NewSize);
   387       desired_new_size =
   388         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
   389              NewSize);
   390     }
   392     assert(_min_gen0_size > 0, "Sanity check");
   393     set_initial_gen0_size(desired_new_size);
   394     set_max_gen0_size(max_new_size);
   396     // At this point the desirable initial and minimum sizes have been
   397     // determined without regard to the maximum sizes.
   399     // Bound the sizes by the corresponding overall heap sizes.
   400     set_min_gen0_size(
   401       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
   402     set_initial_gen0_size(
   403       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
   404     set_max_gen0_size(
   405       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
   407     // At this point all three sizes have been checked against the
   408     // maximum sizes but have not been checked for consistency
   409     // among the three.
   411     // Final check min <= initial <= max
   412     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
   413     set_initial_gen0_size(
   414       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
   415     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
   416   }
   418   if (PrintGCDetails && Verbose) {
   419     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   420       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   421       min_gen0_size(), initial_gen0_size(), max_gen0_size());
   422   }
   423 }
   425 // Call this method during the sizing of the gen1 to make
   426 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
   427 // the most freedom in sizing because it is done before the
   428 // policy for gen1 is applied.  Once gen1 policies have been applied,
   429 // there may be conflicts in the shape of the heap and this method
   430 // is used to make the needed adjustments.  The application of the
   431 // policies could be more sophisticated (iterative for example) but
   432 // keeping it simple also seems a worthwhile goal.
   433 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
   434                                                      size_t* gen1_size_ptr,
   435                                                      const size_t heap_size,
   436                                                      const size_t min_gen1_size) {
   437   bool result = false;
   439   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
   440     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
   441         (heap_size >= min_gen1_size + min_alignment())) {
   442       // Adjust gen0 down to accommodate min_gen1_size
   443       *gen0_size_ptr = heap_size - min_gen1_size;
   444       *gen0_size_ptr =
   445         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
   446              min_alignment());
   447       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
   448       result = true;
   449     } else {
   450       *gen1_size_ptr = heap_size - *gen0_size_ptr;
   451       *gen1_size_ptr =
   452         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
   453                        min_alignment());
   454     }
   455   }
   456   return result;
   457 }
   459 // Minimum sizes of the generations may be different than
   460 // the initial sizes.  An inconsistently is permitted here
   461 // in the total size that can be specified explicitly by
   462 // command line specification of OldSize and NewSize and
   463 // also a command line specification of -Xms.  Issue a warning
   464 // but allow the values to pass.
   466 void TwoGenerationCollectorPolicy::initialize_size_info() {
   467   GenCollectorPolicy::initialize_size_info();
   469   // At this point the minimum, initial and maximum sizes
   470   // of the overall heap and of gen0 have been determined.
   471   // The maximum gen1 size can be determined from the maximum gen0
   472   // and maximum heap size since no explicit flags exits
   473   // for setting the gen1 maximum.
   474   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
   475   _max_gen1_size =
   476     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
   477          min_alignment());
   478   // If no explicit command line flag has been set for the
   479   // gen1 size, use what is left for gen1.
   480   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
   481     // The user has not specified any value or ergonomics
   482     // has chosen a value (which may or may not be consistent
   483     // with the overall heap size).  In either case make
   484     // the minimum, maximum and initial sizes consistent
   485     // with the gen0 sizes and the overall heap sizes.
   486     assert(min_heap_byte_size() > _min_gen0_size,
   487       "gen0 has an unexpected minimum size");
   488     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
   489     set_min_gen1_size(
   490       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
   491            min_alignment()));
   492     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
   493     set_initial_gen1_size(
   494       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
   495            min_alignment()));
   497   } else {
   498     // It's been explicitly set on the command line.  Use the
   499     // OldSize and then determine the consequences.
   500     set_min_gen1_size(OldSize);
   501     set_initial_gen1_size(OldSize);
   503     // If the user has explicitly set an OldSize that is inconsistent
   504     // with other command line flags, issue a warning.
   505     // The generation minimums and the overall heap mimimum should
   506     // be within one heap alignment.
   507     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
   508            min_heap_byte_size()) {
   509       warning("Inconsistency between minimum heap size and minimum "
   510           "generation sizes: using minimum heap = " SIZE_FORMAT,
   511           min_heap_byte_size());
   512     }
   513     if ((OldSize > _max_gen1_size)) {
   514       warning("Inconsistency between maximum heap size and maximum "
   515           "generation sizes: using maximum heap = " SIZE_FORMAT
   516           " -XX:OldSize flag is being ignored",
   517           max_heap_byte_size());
   518     }
   519     // If there is an inconsistency between the OldSize and the minimum and/or
   520     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
   521     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
   522                           min_heap_byte_size(), OldSize)) {
   523       if (PrintGCDetails && Verbose) {
   524         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   525               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   526               min_gen0_size(), initial_gen0_size(), max_gen0_size());
   527       }
   528     }
   529     // Initial size
   530     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
   531                          initial_heap_byte_size(), OldSize)) {
   532       if (PrintGCDetails && Verbose) {
   533         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   534           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   535           min_gen0_size(), initial_gen0_size(), max_gen0_size());
   536       }
   537     }
   538   }
   539   // Enforce the maximum gen1 size.
   540   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
   542   // Check that min gen1 <= initial gen1 <= max gen1
   543   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
   544   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
   546   if (PrintGCDetails && Verbose) {
   547     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
   548       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
   549       min_gen1_size(), initial_gen1_size(), max_gen1_size());
   550   }
   551 }
   553 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
   554                                         bool is_tlab,
   555                                         bool* gc_overhead_limit_was_exceeded) {
   556   GenCollectedHeap *gch = GenCollectedHeap::heap();
   558   debug_only(gch->check_for_valid_allocation_state());
   559   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
   561   // In general gc_overhead_limit_was_exceeded should be false so
   562   // set it so here and reset it to true only if the gc time
   563   // limit is being exceeded as checked below.
   564   *gc_overhead_limit_was_exceeded = false;
   566   HeapWord* result = NULL;
   568   // Loop until the allocation is satisified,
   569   // or unsatisfied after GC.
   570   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
   571     HandleMark hm; // discard any handles allocated in each iteration
   573     // First allocation attempt is lock-free.
   574     Generation *gen0 = gch->get_gen(0);
   575     assert(gen0->supports_inline_contig_alloc(),
   576       "Otherwise, must do alloc within heap lock");
   577     if (gen0->should_allocate(size, is_tlab)) {
   578       result = gen0->par_allocate(size, is_tlab);
   579       if (result != NULL) {
   580         assert(gch->is_in_reserved(result), "result not in heap");
   581         return result;
   582       }
   583     }
   584     unsigned int gc_count_before;  // read inside the Heap_lock locked region
   585     {
   586       MutexLocker ml(Heap_lock);
   587       if (PrintGC && Verbose) {
   588         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
   589                       " attempting locked slow path allocation");
   590       }
   591       // Note that only large objects get a shot at being
   592       // allocated in later generations.
   593       bool first_only = ! should_try_older_generation_allocation(size);
   595       result = gch->attempt_allocation(size, is_tlab, first_only);
   596       if (result != NULL) {
   597         assert(gch->is_in_reserved(result), "result not in heap");
   598         return result;
   599       }
   601       if (GC_locker::is_active_and_needs_gc()) {
   602         if (is_tlab) {
   603           return NULL;  // Caller will retry allocating individual object
   604         }
   605         if (!gch->is_maximal_no_gc()) {
   606           // Try and expand heap to satisfy request
   607           result = expand_heap_and_allocate(size, is_tlab);
   608           // result could be null if we are out of space
   609           if (result != NULL) {
   610             return result;
   611           }
   612         }
   614         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
   615           return NULL; // we didn't get to do a GC and we didn't get any memory
   616         }
   618         // If this thread is not in a jni critical section, we stall
   619         // the requestor until the critical section has cleared and
   620         // GC allowed. When the critical section clears, a GC is
   621         // initiated by the last thread exiting the critical section; so
   622         // we retry the allocation sequence from the beginning of the loop,
   623         // rather than causing more, now probably unnecessary, GC attempts.
   624         JavaThread* jthr = JavaThread::current();
   625         if (!jthr->in_critical()) {
   626           MutexUnlocker mul(Heap_lock);
   627           // Wait for JNI critical section to be exited
   628           GC_locker::stall_until_clear();
   629           gclocker_stalled_count += 1;
   630           continue;
   631         } else {
   632           if (CheckJNICalls) {
   633             fatal("Possible deadlock due to allocating while"
   634                   " in jni critical section");
   635           }
   636           return NULL;
   637         }
   638       }
   640       // Read the gc count while the heap lock is held.
   641       gc_count_before = Universe::heap()->total_collections();
   642     }
   644     VM_GenCollectForAllocation op(size,
   645                                   is_tlab,
   646                                   gc_count_before);
   647     VMThread::execute(&op);
   648     if (op.prologue_succeeded()) {
   649       result = op.result();
   650       if (op.gc_locked()) {
   651          assert(result == NULL, "must be NULL if gc_locked() is true");
   652          continue;  // retry and/or stall as necessary
   653       }
   655       // Allocation has failed and a collection
   656       // has been done.  If the gc time limit was exceeded the
   657       // this time, return NULL so that an out-of-memory
   658       // will be thrown.  Clear gc_overhead_limit_exceeded
   659       // so that the overhead exceeded does not persist.
   661       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   662       const bool softrefs_clear = all_soft_refs_clear();
   664       if (limit_exceeded && softrefs_clear) {
   665         *gc_overhead_limit_was_exceeded = true;
   666         size_policy()->set_gc_overhead_limit_exceeded(false);
   667         if (op.result() != NULL) {
   668           CollectedHeap::fill_with_object(op.result(), size);
   669         }
   670         return NULL;
   671       }
   672       assert(result == NULL || gch->is_in_reserved(result),
   673              "result not in heap");
   674       return result;
   675     }
   677     // Give a warning if we seem to be looping forever.
   678     if ((QueuedAllocationWarningCount > 0) &&
   679         (try_count % QueuedAllocationWarningCount == 0)) {
   680           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
   681                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
   682     }
   683   }
   684 }
   686 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
   687                                                        bool   is_tlab) {
   688   GenCollectedHeap *gch = GenCollectedHeap::heap();
   689   HeapWord* result = NULL;
   690   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
   691     Generation *gen = gch->get_gen(i);
   692     if (gen->should_allocate(size, is_tlab)) {
   693       result = gen->expand_and_allocate(size, is_tlab);
   694     }
   695   }
   696   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
   697   return result;
   698 }
   700 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
   701                                                         bool   is_tlab) {
   702   GenCollectedHeap *gch = GenCollectedHeap::heap();
   703   GCCauseSetter x(gch, GCCause::_allocation_failure);
   704   HeapWord* result = NULL;
   706   assert(size != 0, "Precondition violated");
   707   if (GC_locker::is_active_and_needs_gc()) {
   708     // GC locker is active; instead of a collection we will attempt
   709     // to expand the heap, if there's room for expansion.
   710     if (!gch->is_maximal_no_gc()) {
   711       result = expand_heap_and_allocate(size, is_tlab);
   712     }
   713     return result;   // could be null if we are out of space
   714   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
   715     // Do an incremental collection.
   716     gch->do_collection(false            /* full */,
   717                        false            /* clear_all_soft_refs */,
   718                        size             /* size */,
   719                        is_tlab          /* is_tlab */,
   720                        number_of_generations() - 1 /* max_level */);
   721   } else {
   722     if (Verbose && PrintGCDetails) {
   723       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
   724     }
   725     // Try a full collection; see delta for bug id 6266275
   726     // for the original code and why this has been simplified
   727     // with from-space allocation criteria modified and
   728     // such allocation moved out of the safepoint path.
   729     gch->do_collection(true             /* full */,
   730                        false            /* clear_all_soft_refs */,
   731                        size             /* size */,
   732                        is_tlab          /* is_tlab */,
   733                        number_of_generations() - 1 /* max_level */);
   734   }
   736   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
   738   if (result != NULL) {
   739     assert(gch->is_in_reserved(result), "result not in heap");
   740     return result;
   741   }
   743   // OK, collection failed, try expansion.
   744   result = expand_heap_and_allocate(size, is_tlab);
   745   if (result != NULL) {
   746     return result;
   747   }
   749   // If we reach this point, we're really out of memory. Try every trick
   750   // we can to reclaim memory. Force collection of soft references. Force
   751   // a complete compaction of the heap. Any additional methods for finding
   752   // free memory should be here, especially if they are expensive. If this
   753   // attempt fails, an OOM exception will be thrown.
   754   {
   755     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
   757     gch->do_collection(true             /* full */,
   758                        true             /* clear_all_soft_refs */,
   759                        size             /* size */,
   760                        is_tlab          /* is_tlab */,
   761                        number_of_generations() - 1 /* max_level */);
   762   }
   764   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
   765   if (result != NULL) {
   766     assert(gch->is_in_reserved(result), "result not in heap");
   767     return result;
   768   }
   770   assert(!should_clear_all_soft_refs(),
   771     "Flag should have been handled and cleared prior to this point");
   773   // What else?  We might try synchronous finalization later.  If the total
   774   // space available is large enough for the allocation, then a more
   775   // complete compaction phase than we've tried so far might be
   776   // appropriate.
   777   return NULL;
   778 }
   780 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
   781                                                  ClassLoaderData* loader_data,
   782                                                  size_t word_size,
   783                                                  Metaspace::MetadataType mdtype) {
   784   uint loop_count = 0;
   785   uint gc_count = 0;
   786   uint full_gc_count = 0;
   788   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
   790   do {
   791     MetaWord* result = NULL;
   792     if (GC_locker::is_active_and_needs_gc()) {
   793       // If the GC_locker is active, just expand and allocate.
   794       // If that does not succeed, wait if this thread is not
   795       // in a critical section itself.
   796       result =
   797         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
   798                                                                mdtype);
   799       if (result != NULL) {
   800         return result;
   801       }
   802       JavaThread* jthr = JavaThread::current();
   803       if (!jthr->in_critical()) {
   804         // Wait for JNI critical section to be exited
   805         GC_locker::stall_until_clear();
   806         // The GC invoked by the last thread leaving the critical
   807         // section will be a young collection and a full collection
   808         // is (currently) needed for unloading classes so continue
   809         // to the next iteration to get a full GC.
   810         continue;
   811       } else {
   812         if (CheckJNICalls) {
   813           fatal("Possible deadlock due to allocating while"
   814                 " in jni critical section");
   815         }
   816         return NULL;
   817       }
   818     }
   820     {  // Need lock to get self consistent gc_count's
   821       MutexLocker ml(Heap_lock);
   822       gc_count      = Universe::heap()->total_collections();
   823       full_gc_count = Universe::heap()->total_full_collections();
   824     }
   826     // Generate a VM operation
   827     VM_CollectForMetadataAllocation op(loader_data,
   828                                        word_size,
   829                                        mdtype,
   830                                        gc_count,
   831                                        full_gc_count,
   832                                        GCCause::_metadata_GC_threshold);
   833     VMThread::execute(&op);
   835     // If GC was locked out, try again.  Check
   836     // before checking success because the prologue
   837     // could have succeeded and the GC still have
   838     // been locked out.
   839     if (op.gc_locked()) {
   840       continue;
   841     }
   843     if (op.prologue_succeeded()) {
   844       return op.result();
   845     }
   846     loop_count++;
   847     if ((QueuedAllocationWarningCount > 0) &&
   848         (loop_count % QueuedAllocationWarningCount == 0)) {
   849       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
   850               " size=%d", loop_count, word_size);
   851     }
   852   } while (true);  // Until a GC is done
   853 }
   855 // Return true if any of the following is true:
   856 // . the allocation won't fit into the current young gen heap
   857 // . gc locker is occupied (jni critical section)
   858 // . heap memory is tight -- the most recent previous collection
   859 //   was a full collection because a partial collection (would
   860 //   have) failed and is likely to fail again
   861 bool GenCollectorPolicy::should_try_older_generation_allocation(
   862         size_t word_size) const {
   863   GenCollectedHeap* gch = GenCollectedHeap::heap();
   864   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
   865   return    (word_size > heap_word_size(gen0_capacity))
   866          || GC_locker::is_active_and_needs_gc()
   867          || gch->incremental_collection_failed();
   868 }
   871 //
   872 // MarkSweepPolicy methods
   873 //
   875 MarkSweepPolicy::MarkSweepPolicy() {
   876   initialize_all();
   877 }
   879 void MarkSweepPolicy::initialize_generations() {
   880   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
   881   if (_generations == NULL)
   882     vm_exit_during_initialization("Unable to allocate gen spec");
   884   if (UseParNewGC) {
   885     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
   886   } else {
   887     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
   888   }
   889   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
   891   if (_generations[0] == NULL || _generations[1] == NULL)
   892     vm_exit_during_initialization("Unable to allocate gen spec");
   893 }
   895 void MarkSweepPolicy::initialize_gc_policy_counters() {
   896   // initialize the policy counters - 2 collectors, 3 generations
   897   if (UseParNewGC) {
   898     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
   899   } else {
   900     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
   901   }
   902 }

mercurial