src/cpu/x86/vm/assembler_x86.hpp

Mon, 14 Feb 2011 03:21:18 -0800

author
twisti
date
Mon, 14 Feb 2011 03:21:18 -0800
changeset 2565
28bf941f445e
parent 2423
b1a2afa37ec4
child 2569
6bbaedb03534
permissions
-rw-r--r--

7018378: JSR 292: _bound_int_mh produces wrong result on 64-bit SPARC
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
    26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
    28 class BiasedLockingCounters;
    30 // Contains all the definitions needed for x86 assembly code generation.
    32 // Calling convention
    33 class Argument VALUE_OBJ_CLASS_SPEC {
    34  public:
    35   enum {
    36 #ifdef _LP64
    37 #ifdef _WIN64
    38     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    39     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
    40 #else
    41     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    42     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
    43 #endif // _WIN64
    44     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    45     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
    46 #else
    47     n_register_parameters = 0   // 0 registers used to pass arguments
    48 #endif // _LP64
    49   };
    50 };
    53 #ifdef _LP64
    54 // Symbolically name the register arguments used by the c calling convention.
    55 // Windows is different from linux/solaris. So much for standards...
    57 #ifdef _WIN64
    59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
    60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
    61 REGISTER_DECLARATION(Register, c_rarg2, r8);
    62 REGISTER_DECLARATION(Register, c_rarg3, r9);
    64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    69 #else
    71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
    72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
    73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
    74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
    75 REGISTER_DECLARATION(Register, c_rarg4, r8);
    76 REGISTER_DECLARATION(Register, c_rarg5, r9);
    78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
    83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
    84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
    85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
    87 #endif // _WIN64
    89 // Symbolically name the register arguments used by the Java calling convention.
    90 // We have control over the convention for java so we can do what we please.
    91 // What pleases us is to offset the java calling convention so that when
    92 // we call a suitable jni method the arguments are lined up and we don't
    93 // have to do little shuffling. A suitable jni method is non-static and a
    94 // small number of arguments (two fewer args on windows)
    95 //
    96 //        |-------------------------------------------------------|
    97 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
    98 //        |-------------------------------------------------------|
    99 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
   100 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
   101 //        |-------------------------------------------------------|
   102 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
   103 //        |-------------------------------------------------------|
   105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
   106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
   107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
   108 // Windows runs out of register args here
   109 #ifdef _WIN64
   110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
   111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
   112 #else
   113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
   114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
   115 #endif /* _WIN64 */
   116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
   118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
   119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
   120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
   121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
   122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
   123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
   124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
   125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
   127 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
   128 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
   130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
   131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
   133 #else
   134 // rscratch1 will apear in 32bit code that is dead but of course must compile
   135 // Using noreg ensures if the dead code is incorrectly live and executed it
   136 // will cause an assertion failure
   137 #define rscratch1 noreg
   138 #define rscratch2 noreg
   140 #endif // _LP64
   142 // JSR 292 fixed register usages:
   143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
   145 // Address is an abstraction used to represent a memory location
   146 // using any of the amd64 addressing modes with one object.
   147 //
   148 // Note: A register location is represented via a Register, not
   149 //       via an address for efficiency & simplicity reasons.
   151 class ArrayAddress;
   153 class Address VALUE_OBJ_CLASS_SPEC {
   154  public:
   155   enum ScaleFactor {
   156     no_scale = -1,
   157     times_1  =  0,
   158     times_2  =  1,
   159     times_4  =  2,
   160     times_8  =  3,
   161     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
   162   };
   163   static ScaleFactor times(int size) {
   164     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
   165     if (size == 8)  return times_8;
   166     if (size == 4)  return times_4;
   167     if (size == 2)  return times_2;
   168     return times_1;
   169   }
   170   static int scale_size(ScaleFactor scale) {
   171     assert(scale != no_scale, "");
   172     assert(((1 << (int)times_1) == 1 &&
   173             (1 << (int)times_2) == 2 &&
   174             (1 << (int)times_4) == 4 &&
   175             (1 << (int)times_8) == 8), "");
   176     return (1 << (int)scale);
   177   }
   179  private:
   180   Register         _base;
   181   Register         _index;
   182   ScaleFactor      _scale;
   183   int              _disp;
   184   RelocationHolder _rspec;
   186   // Easily misused constructors make them private
   187   // %%% can we make these go away?
   188   NOT_LP64(Address(address loc, RelocationHolder spec);)
   189   Address(int disp, address loc, relocInfo::relocType rtype);
   190   Address(int disp, address loc, RelocationHolder spec);
   192  public:
   194  int disp() { return _disp; }
   195   // creation
   196   Address()
   197     : _base(noreg),
   198       _index(noreg),
   199       _scale(no_scale),
   200       _disp(0) {
   201   }
   203   // No default displacement otherwise Register can be implicitly
   204   // converted to 0(Register) which is quite a different animal.
   206   Address(Register base, int disp)
   207     : _base(base),
   208       _index(noreg),
   209       _scale(no_scale),
   210       _disp(disp) {
   211   }
   213   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
   214     : _base (base),
   215       _index(index),
   216       _scale(scale),
   217       _disp (disp) {
   218     assert(!index->is_valid() == (scale == Address::no_scale),
   219            "inconsistent address");
   220   }
   222   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
   223     : _base (base),
   224       _index(index.register_or_noreg()),
   225       _scale(scale),
   226       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
   227     if (!index.is_register())  scale = Address::no_scale;
   228     assert(!_index->is_valid() == (scale == Address::no_scale),
   229            "inconsistent address");
   230   }
   232   Address plus_disp(int disp) const {
   233     Address a = (*this);
   234     a._disp += disp;
   235     return a;
   236   }
   238   // The following two overloads are used in connection with the
   239   // ByteSize type (see sizes.hpp).  They simplify the use of
   240   // ByteSize'd arguments in assembly code. Note that their equivalent
   241   // for the optimized build are the member functions with int disp
   242   // argument since ByteSize is mapped to an int type in that case.
   243   //
   244   // Note: DO NOT introduce similar overloaded functions for WordSize
   245   // arguments as in the optimized mode, both ByteSize and WordSize
   246   // are mapped to the same type and thus the compiler cannot make a
   247   // distinction anymore (=> compiler errors).
   249 #ifdef ASSERT
   250   Address(Register base, ByteSize disp)
   251     : _base(base),
   252       _index(noreg),
   253       _scale(no_scale),
   254       _disp(in_bytes(disp)) {
   255   }
   257   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
   258     : _base(base),
   259       _index(index),
   260       _scale(scale),
   261       _disp(in_bytes(disp)) {
   262     assert(!index->is_valid() == (scale == Address::no_scale),
   263            "inconsistent address");
   264   }
   266   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
   267     : _base (base),
   268       _index(index.register_or_noreg()),
   269       _scale(scale),
   270       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
   271     if (!index.is_register())  scale = Address::no_scale;
   272     assert(!_index->is_valid() == (scale == Address::no_scale),
   273            "inconsistent address");
   274   }
   276 #endif // ASSERT
   278   // accessors
   279   bool        uses(Register reg) const { return _base == reg || _index == reg; }
   280   Register    base()             const { return _base;  }
   281   Register    index()            const { return _index; }
   282   ScaleFactor scale()            const { return _scale; }
   283   int         disp()             const { return _disp;  }
   285   // Convert the raw encoding form into the form expected by the constructor for
   286   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   287   // that to noreg for the Address constructor.
   288   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
   290   static Address make_array(ArrayAddress);
   292  private:
   293   bool base_needs_rex() const {
   294     return _base != noreg && _base->encoding() >= 8;
   295   }
   297   bool index_needs_rex() const {
   298     return _index != noreg &&_index->encoding() >= 8;
   299   }
   301   relocInfo::relocType reloc() const { return _rspec.type(); }
   303   friend class Assembler;
   304   friend class MacroAssembler;
   305   friend class LIR_Assembler; // base/index/scale/disp
   306 };
   308 //
   309 // AddressLiteral has been split out from Address because operands of this type
   310 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
   311 // the few instructions that need to deal with address literals are unique and the
   312 // MacroAssembler does not have to implement every instruction in the Assembler
   313 // in order to search for address literals that may need special handling depending
   314 // on the instruction and the platform. As small step on the way to merging i486/amd64
   315 // directories.
   316 //
   317 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   318   friend class ArrayAddress;
   319   RelocationHolder _rspec;
   320   // Typically we use AddressLiterals we want to use their rval
   321   // However in some situations we want the lval (effect address) of the item.
   322   // We provide a special factory for making those lvals.
   323   bool _is_lval;
   325   // If the target is far we'll need to load the ea of this to
   326   // a register to reach it. Otherwise if near we can do rip
   327   // relative addressing.
   329   address          _target;
   331  protected:
   332   // creation
   333   AddressLiteral()
   334     : _is_lval(false),
   335       _target(NULL)
   336   {}
   338   public:
   341   AddressLiteral(address target, relocInfo::relocType rtype);
   343   AddressLiteral(address target, RelocationHolder const& rspec)
   344     : _rspec(rspec),
   345       _is_lval(false),
   346       _target(target)
   347   {}
   349   AddressLiteral addr() {
   350     AddressLiteral ret = *this;
   351     ret._is_lval = true;
   352     return ret;
   353   }
   356  private:
   358   address target() { return _target; }
   359   bool is_lval() { return _is_lval; }
   361   relocInfo::relocType reloc() const { return _rspec.type(); }
   362   const RelocationHolder& rspec() const { return _rspec; }
   364   friend class Assembler;
   365   friend class MacroAssembler;
   366   friend class Address;
   367   friend class LIR_Assembler;
   368 };
   370 // Convience classes
   371 class RuntimeAddress: public AddressLiteral {
   373   public:
   375   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
   377 };
   379 class OopAddress: public AddressLiteral {
   381   public:
   383   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
   385 };
   387 class ExternalAddress: public AddressLiteral {
   389   public:
   391   ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
   393 };
   395 class InternalAddress: public AddressLiteral {
   397   public:
   399   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
   401 };
   403 // x86 can do array addressing as a single operation since disp can be an absolute
   404 // address amd64 can't. We create a class that expresses the concept but does extra
   405 // magic on amd64 to get the final result
   407 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
   408   private:
   410   AddressLiteral _base;
   411   Address        _index;
   413   public:
   415   ArrayAddress() {};
   416   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
   417   AddressLiteral base() { return _base; }
   418   Address index() { return _index; }
   420 };
   422 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
   424 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
   425 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
   426 // is what you get. The Assembler is generating code into a CodeBuffer.
   428 class Assembler : public AbstractAssembler  {
   429   friend class AbstractAssembler; // for the non-virtual hack
   430   friend class LIR_Assembler; // as_Address()
   431   friend class StubGenerator;
   433  public:
   434   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
   435     zero          = 0x4,
   436     notZero       = 0x5,
   437     equal         = 0x4,
   438     notEqual      = 0x5,
   439     less          = 0xc,
   440     lessEqual     = 0xe,
   441     greater       = 0xf,
   442     greaterEqual  = 0xd,
   443     below         = 0x2,
   444     belowEqual    = 0x6,
   445     above         = 0x7,
   446     aboveEqual    = 0x3,
   447     overflow      = 0x0,
   448     noOverflow    = 0x1,
   449     carrySet      = 0x2,
   450     carryClear    = 0x3,
   451     negative      = 0x8,
   452     positive      = 0x9,
   453     parity        = 0xa,
   454     noParity      = 0xb
   455   };
   457   enum Prefix {
   458     // segment overrides
   459     CS_segment = 0x2e,
   460     SS_segment = 0x36,
   461     DS_segment = 0x3e,
   462     ES_segment = 0x26,
   463     FS_segment = 0x64,
   464     GS_segment = 0x65,
   466     REX        = 0x40,
   468     REX_B      = 0x41,
   469     REX_X      = 0x42,
   470     REX_XB     = 0x43,
   471     REX_R      = 0x44,
   472     REX_RB     = 0x45,
   473     REX_RX     = 0x46,
   474     REX_RXB    = 0x47,
   476     REX_W      = 0x48,
   478     REX_WB     = 0x49,
   479     REX_WX     = 0x4A,
   480     REX_WXB    = 0x4B,
   481     REX_WR     = 0x4C,
   482     REX_WRB    = 0x4D,
   483     REX_WRX    = 0x4E,
   484     REX_WRXB   = 0x4F
   485   };
   487   enum WhichOperand {
   488     // input to locate_operand, and format code for relocations
   489     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
   490     disp32_operand = 1,          // embedded 32-bit displacement or address
   491     call32_operand = 2,          // embedded 32-bit self-relative displacement
   492 #ifndef _LP64
   493     _WhichOperand_limit = 3
   494 #else
   495      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
   496     _WhichOperand_limit = 4
   497 #endif
   498   };
   502   // NOTE: The general philopsophy of the declarations here is that 64bit versions
   503   // of instructions are freely declared without the need for wrapping them an ifdef.
   504   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
   505   // In the .cpp file the implementations are wrapped so that they are dropped out
   506   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
   507   // to the size it was prior to merging up the 32bit and 64bit assemblers.
   508   //
   509   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
   510   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
   512 private:
   515   // 64bit prefixes
   516   int prefix_and_encode(int reg_enc, bool byteinst = false);
   517   int prefixq_and_encode(int reg_enc);
   519   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
   520   int prefixq_and_encode(int dst_enc, int src_enc);
   522   void prefix(Register reg);
   523   void prefix(Address adr);
   524   void prefixq(Address adr);
   526   void prefix(Address adr, Register reg,  bool byteinst = false);
   527   void prefixq(Address adr, Register reg);
   529   void prefix(Address adr, XMMRegister reg);
   531   void prefetch_prefix(Address src);
   533   // Helper functions for groups of instructions
   534   void emit_arith_b(int op1, int op2, Register dst, int imm8);
   536   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
   537   // only 32bit??
   538   void emit_arith(int op1, int op2, Register dst, jobject obj);
   539   void emit_arith(int op1, int op2, Register dst, Register src);
   541   void emit_operand(Register reg,
   542                     Register base, Register index, Address::ScaleFactor scale,
   543                     int disp,
   544                     RelocationHolder const& rspec,
   545                     int rip_relative_correction = 0);
   547   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
   549   // operands that only take the original 32bit registers
   550   void emit_operand32(Register reg, Address adr);
   552   void emit_operand(XMMRegister reg,
   553                     Register base, Register index, Address::ScaleFactor scale,
   554                     int disp,
   555                     RelocationHolder const& rspec);
   557   void emit_operand(XMMRegister reg, Address adr);
   559   void emit_operand(MMXRegister reg, Address adr);
   561   // workaround gcc (3.2.1-7) bug
   562   void emit_operand(Address adr, MMXRegister reg);
   565   // Immediate-to-memory forms
   566   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
   568   void emit_farith(int b1, int b2, int i);
   571  protected:
   572   #ifdef ASSERT
   573   void check_relocation(RelocationHolder const& rspec, int format);
   574   #endif
   576   inline void emit_long64(jlong x);
   578   void emit_data(jint data, relocInfo::relocType    rtype, int format);
   579   void emit_data(jint data, RelocationHolder const& rspec, int format);
   580   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
   581   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
   584   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
   586   // These are all easily abused and hence protected
   588   // 32BIT ONLY SECTION
   589 #ifndef _LP64
   590   // Make these disappear in 64bit mode since they would never be correct
   591   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
   592   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   594   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   595   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
   597   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
   598 #else
   599   // 64BIT ONLY SECTION
   600   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
   602   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
   603   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
   605   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
   606   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
   607 #endif // _LP64
   609   // These are unique in that we are ensured by the caller that the 32bit
   610   // relative in these instructions will always be able to reach the potentially
   611   // 64bit address described by entry. Since they can take a 64bit address they
   612   // don't have the 32 suffix like the other instructions in this class.
   614   void call_literal(address entry, RelocationHolder const& rspec);
   615   void jmp_literal(address entry, RelocationHolder const& rspec);
   617   // Avoid using directly section
   618   // Instructions in this section are actually usable by anyone without danger
   619   // of failure but have performance issues that are addressed my enhanced
   620   // instructions which will do the proper thing base on the particular cpu.
   621   // We protect them because we don't trust you...
   623   // Don't use next inc() and dec() methods directly. INC & DEC instructions
   624   // could cause a partial flag stall since they don't set CF flag.
   625   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
   626   // which call inc() & dec() or add() & sub() in accordance with
   627   // the product flag UseIncDec value.
   629   void decl(Register dst);
   630   void decl(Address dst);
   631   void decq(Register dst);
   632   void decq(Address dst);
   634   void incl(Register dst);
   635   void incl(Address dst);
   636   void incq(Register dst);
   637   void incq(Address dst);
   639   // New cpus require use of movsd and movss to avoid partial register stall
   640   // when loading from memory. But for old Opteron use movlpd instead of movsd.
   641   // The selection is done in MacroAssembler::movdbl() and movflt().
   643   // Move Scalar Single-Precision Floating-Point Values
   644   void movss(XMMRegister dst, Address src);
   645   void movss(XMMRegister dst, XMMRegister src);
   646   void movss(Address dst, XMMRegister src);
   648   // Move Scalar Double-Precision Floating-Point Values
   649   void movsd(XMMRegister dst, Address src);
   650   void movsd(XMMRegister dst, XMMRegister src);
   651   void movsd(Address dst, XMMRegister src);
   652   void movlpd(XMMRegister dst, Address src);
   654   // New cpus require use of movaps and movapd to avoid partial register stall
   655   // when moving between registers.
   656   void movaps(XMMRegister dst, XMMRegister src);
   657   void movapd(XMMRegister dst, XMMRegister src);
   659   // End avoid using directly
   662   // Instruction prefixes
   663   void prefix(Prefix p);
   665   public:
   667   // Creation
   668   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
   670   // Decoding
   671   static address locate_operand(address inst, WhichOperand which);
   672   static address locate_next_instruction(address inst);
   674   // Utilities
   676 #ifdef _LP64
   677  static bool is_simm(int64_t x, int nbits) { return -(CONST64(1) << (nbits-1)) <= x &&
   678                                                     x < (CONST64(1) << (nbits-1)); }
   679  static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
   680 #else
   681  static bool is_simm(int32_t x, int nbits) { return -(1 << (nbits-1)) <= x &&
   682                                                     x < (1 << (nbits-1)); }
   683  static bool is_simm32(int32_t x) { return true; }
   684 #endif // _LP64
   686   // Generic instructions
   687   // Does 32bit or 64bit as needed for the platform. In some sense these
   688   // belong in macro assembler but there is no need for both varieties to exist
   690   void lea(Register dst, Address src);
   692   void mov(Register dst, Register src);
   694   void pusha();
   695   void popa();
   697   void pushf();
   698   void popf();
   700   void push(int32_t imm32);
   702   void push(Register src);
   704   void pop(Register dst);
   706   // These are dummies to prevent surprise implicit conversions to Register
   707   void push(void* v);
   708   void pop(void* v);
   710   // These do register sized moves/scans
   711   void rep_mov();
   712   void rep_set();
   713   void repne_scan();
   714 #ifdef _LP64
   715   void repne_scanl();
   716 #endif
   718   // Vanilla instructions in lexical order
   720   void adcl(Address dst, int32_t imm32);
   721   void adcl(Address dst, Register src);
   722   void adcl(Register dst, int32_t imm32);
   723   void adcl(Register dst, Address src);
   724   void adcl(Register dst, Register src);
   726   void adcq(Register dst, int32_t imm32);
   727   void adcq(Register dst, Address src);
   728   void adcq(Register dst, Register src);
   730   void addl(Address dst, int32_t imm32);
   731   void addl(Address dst, Register src);
   732   void addl(Register dst, int32_t imm32);
   733   void addl(Register dst, Address src);
   734   void addl(Register dst, Register src);
   736   void addq(Address dst, int32_t imm32);
   737   void addq(Address dst, Register src);
   738   void addq(Register dst, int32_t imm32);
   739   void addq(Register dst, Address src);
   740   void addq(Register dst, Register src);
   742   void addr_nop_4();
   743   void addr_nop_5();
   744   void addr_nop_7();
   745   void addr_nop_8();
   747   // Add Scalar Double-Precision Floating-Point Values
   748   void addsd(XMMRegister dst, Address src);
   749   void addsd(XMMRegister dst, XMMRegister src);
   751   // Add Scalar Single-Precision Floating-Point Values
   752   void addss(XMMRegister dst, Address src);
   753   void addss(XMMRegister dst, XMMRegister src);
   755   void andl(Register dst, int32_t imm32);
   756   void andl(Register dst, Address src);
   757   void andl(Register dst, Register src);
   759   void andq(Register dst, int32_t imm32);
   760   void andq(Register dst, Address src);
   761   void andq(Register dst, Register src);
   763   // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
   764   void andpd(XMMRegister dst, Address src);
   765   void andpd(XMMRegister dst, XMMRegister src);
   767   void bsfl(Register dst, Register src);
   768   void bsrl(Register dst, Register src);
   770 #ifdef _LP64
   771   void bsfq(Register dst, Register src);
   772   void bsrq(Register dst, Register src);
   773 #endif
   775   void bswapl(Register reg);
   777   void bswapq(Register reg);
   779   void call(Label& L, relocInfo::relocType rtype);
   780   void call(Register reg);  // push pc; pc <- reg
   781   void call(Address adr);   // push pc; pc <- adr
   783   void cdql();
   785   void cdqq();
   787   void cld() { emit_byte(0xfc); }
   789   void clflush(Address adr);
   791   void cmovl(Condition cc, Register dst, Register src);
   792   void cmovl(Condition cc, Register dst, Address src);
   794   void cmovq(Condition cc, Register dst, Register src);
   795   void cmovq(Condition cc, Register dst, Address src);
   798   void cmpb(Address dst, int imm8);
   800   void cmpl(Address dst, int32_t imm32);
   802   void cmpl(Register dst, int32_t imm32);
   803   void cmpl(Register dst, Register src);
   804   void cmpl(Register dst, Address src);
   806   void cmpq(Address dst, int32_t imm32);
   807   void cmpq(Address dst, Register src);
   809   void cmpq(Register dst, int32_t imm32);
   810   void cmpq(Register dst, Register src);
   811   void cmpq(Register dst, Address src);
   813   // these are dummies used to catch attempting to convert NULL to Register
   814   void cmpl(Register dst, void* junk); // dummy
   815   void cmpq(Register dst, void* junk); // dummy
   817   void cmpw(Address dst, int imm16);
   819   void cmpxchg8 (Address adr);
   821   void cmpxchgl(Register reg, Address adr);
   823   void cmpxchgq(Register reg, Address adr);
   825   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
   826   void comisd(XMMRegister dst, Address src);
   828   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
   829   void comiss(XMMRegister dst, Address src);
   831   // Identify processor type and features
   832   void cpuid() {
   833     emit_byte(0x0F);
   834     emit_byte(0xA2);
   835   }
   837   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
   838   void cvtsd2ss(XMMRegister dst, XMMRegister src);
   840   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
   841   void cvtsi2sdl(XMMRegister dst, Register src);
   842   void cvtsi2sdq(XMMRegister dst, Register src);
   844   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
   845   void cvtsi2ssl(XMMRegister dst, Register src);
   846   void cvtsi2ssq(XMMRegister dst, Register src);
   848   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
   849   void cvtdq2pd(XMMRegister dst, XMMRegister src);
   851   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
   852   void cvtdq2ps(XMMRegister dst, XMMRegister src);
   854   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
   855   void cvtss2sd(XMMRegister dst, XMMRegister src);
   857   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
   858   void cvttsd2sil(Register dst, Address src);
   859   void cvttsd2sil(Register dst, XMMRegister src);
   860   void cvttsd2siq(Register dst, XMMRegister src);
   862   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
   863   void cvttss2sil(Register dst, XMMRegister src);
   864   void cvttss2siq(Register dst, XMMRegister src);
   866   // Divide Scalar Double-Precision Floating-Point Values
   867   void divsd(XMMRegister dst, Address src);
   868   void divsd(XMMRegister dst, XMMRegister src);
   870   // Divide Scalar Single-Precision Floating-Point Values
   871   void divss(XMMRegister dst, Address src);
   872   void divss(XMMRegister dst, XMMRegister src);
   874   void emms();
   876   void fabs();
   878   void fadd(int i);
   880   void fadd_d(Address src);
   881   void fadd_s(Address src);
   883   // "Alternate" versions of x87 instructions place result down in FPU
   884   // stack instead of on TOS
   886   void fadda(int i); // "alternate" fadd
   887   void faddp(int i = 1);
   889   void fchs();
   891   void fcom(int i);
   893   void fcomp(int i = 1);
   894   void fcomp_d(Address src);
   895   void fcomp_s(Address src);
   897   void fcompp();
   899   void fcos();
   901   void fdecstp();
   903   void fdiv(int i);
   904   void fdiv_d(Address src);
   905   void fdivr_s(Address src);
   906   void fdiva(int i);  // "alternate" fdiv
   907   void fdivp(int i = 1);
   909   void fdivr(int i);
   910   void fdivr_d(Address src);
   911   void fdiv_s(Address src);
   913   void fdivra(int i); // "alternate" reversed fdiv
   915   void fdivrp(int i = 1);
   917   void ffree(int i = 0);
   919   void fild_d(Address adr);
   920   void fild_s(Address adr);
   922   void fincstp();
   924   void finit();
   926   void fist_s (Address adr);
   927   void fistp_d(Address adr);
   928   void fistp_s(Address adr);
   930   void fld1();
   932   void fld_d(Address adr);
   933   void fld_s(Address adr);
   934   void fld_s(int index);
   935   void fld_x(Address adr);  // extended-precision (80-bit) format
   937   void fldcw(Address src);
   939   void fldenv(Address src);
   941   void fldlg2();
   943   void fldln2();
   945   void fldz();
   947   void flog();
   948   void flog10();
   950   void fmul(int i);
   952   void fmul_d(Address src);
   953   void fmul_s(Address src);
   955   void fmula(int i);  // "alternate" fmul
   957   void fmulp(int i = 1);
   959   void fnsave(Address dst);
   961   void fnstcw(Address src);
   963   void fnstsw_ax();
   965   void fprem();
   966   void fprem1();
   968   void frstor(Address src);
   970   void fsin();
   972   void fsqrt();
   974   void fst_d(Address adr);
   975   void fst_s(Address adr);
   977   void fstp_d(Address adr);
   978   void fstp_d(int index);
   979   void fstp_s(Address adr);
   980   void fstp_x(Address adr); // extended-precision (80-bit) format
   982   void fsub(int i);
   983   void fsub_d(Address src);
   984   void fsub_s(Address src);
   986   void fsuba(int i);  // "alternate" fsub
   988   void fsubp(int i = 1);
   990   void fsubr(int i);
   991   void fsubr_d(Address src);
   992   void fsubr_s(Address src);
   994   void fsubra(int i); // "alternate" reversed fsub
   996   void fsubrp(int i = 1);
   998   void ftan();
  1000   void ftst();
  1002   void fucomi(int i = 1);
  1003   void fucomip(int i = 1);
  1005   void fwait();
  1007   void fxch(int i = 1);
  1009   void fxrstor(Address src);
  1011   void fxsave(Address dst);
  1013   void fyl2x();
  1015   void hlt();
  1017   void idivl(Register src);
  1018   void divl(Register src); // Unsigned division
  1020   void idivq(Register src);
  1022   void imull(Register dst, Register src);
  1023   void imull(Register dst, Register src, int value);
  1025   void imulq(Register dst, Register src);
  1026   void imulq(Register dst, Register src, int value);
  1029   // jcc is the generic conditional branch generator to run-
  1030   // time routines, jcc is used for branches to labels. jcc
  1031   // takes a branch opcode (cc) and a label (L) and generates
  1032   // either a backward branch or a forward branch and links it
  1033   // to the label fixup chain. Usage:
  1034   //
  1035   // Label L;      // unbound label
  1036   // jcc(cc, L);   // forward branch to unbound label
  1037   // bind(L);      // bind label to the current pc
  1038   // jcc(cc, L);   // backward branch to bound label
  1039   // bind(L);      // illegal: a label may be bound only once
  1040   //
  1041   // Note: The same Label can be used for forward and backward branches
  1042   // but it may be bound only once.
  1044   void jcc(Condition cc, Label& L,
  1045            relocInfo::relocType rtype = relocInfo::none);
  1047   // Conditional jump to a 8-bit offset to L.
  1048   // WARNING: be very careful using this for forward jumps.  If the label is
  1049   // not bound within an 8-bit offset of this instruction, a run-time error
  1050   // will occur.
  1051   void jccb(Condition cc, Label& L);
  1053   void jmp(Address entry);    // pc <- entry
  1055   // Label operations & relative jumps (PPUM Appendix D)
  1056   void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
  1058   void jmp(Register entry); // pc <- entry
  1060   // Unconditional 8-bit offset jump to L.
  1061   // WARNING: be very careful using this for forward jumps.  If the label is
  1062   // not bound within an 8-bit offset of this instruction, a run-time error
  1063   // will occur.
  1064   void jmpb(Label& L);
  1066   void ldmxcsr( Address src );
  1068   void leal(Register dst, Address src);
  1070   void leaq(Register dst, Address src);
  1072   void lfence() {
  1073     emit_byte(0x0F);
  1074     emit_byte(0xAE);
  1075     emit_byte(0xE8);
  1078   void lock();
  1080   void lzcntl(Register dst, Register src);
  1082 #ifdef _LP64
  1083   void lzcntq(Register dst, Register src);
  1084 #endif
  1086   enum Membar_mask_bits {
  1087     StoreStore = 1 << 3,
  1088     LoadStore  = 1 << 2,
  1089     StoreLoad  = 1 << 1,
  1090     LoadLoad   = 1 << 0
  1091   };
  1093   // Serializes memory and blows flags
  1094   void membar(Membar_mask_bits order_constraint) {
  1095     if (os::is_MP()) {
  1096       // We only have to handle StoreLoad
  1097       if (order_constraint & StoreLoad) {
  1098         // All usable chips support "locked" instructions which suffice
  1099         // as barriers, and are much faster than the alternative of
  1100         // using cpuid instruction. We use here a locked add [esp],0.
  1101         // This is conveniently otherwise a no-op except for blowing
  1102         // flags.
  1103         // Any change to this code may need to revisit other places in
  1104         // the code where this idiom is used, in particular the
  1105         // orderAccess code.
  1106         lock();
  1107         addl(Address(rsp, 0), 0);// Assert the lock# signal here
  1112   void mfence();
  1114   // Moves
  1116   void mov64(Register dst, int64_t imm64);
  1118   void movb(Address dst, Register src);
  1119   void movb(Address dst, int imm8);
  1120   void movb(Register dst, Address src);
  1122   void movdl(XMMRegister dst, Register src);
  1123   void movdl(Register dst, XMMRegister src);
  1125   // Move Double Quadword
  1126   void movdq(XMMRegister dst, Register src);
  1127   void movdq(Register dst, XMMRegister src);
  1129   // Move Aligned Double Quadword
  1130   void movdqa(Address     dst, XMMRegister src);
  1131   void movdqa(XMMRegister dst, Address src);
  1132   void movdqa(XMMRegister dst, XMMRegister src);
  1134   // Move Unaligned Double Quadword
  1135   void movdqu(Address     dst, XMMRegister src);
  1136   void movdqu(XMMRegister dst, Address src);
  1137   void movdqu(XMMRegister dst, XMMRegister src);
  1139   void movl(Register dst, int32_t imm32);
  1140   void movl(Address dst, int32_t imm32);
  1141   void movl(Register dst, Register src);
  1142   void movl(Register dst, Address src);
  1143   void movl(Address dst, Register src);
  1145   // These dummies prevent using movl from converting a zero (like NULL) into Register
  1146   // by giving the compiler two choices it can't resolve
  1148   void movl(Address  dst, void* junk);
  1149   void movl(Register dst, void* junk);
  1151 #ifdef _LP64
  1152   void movq(Register dst, Register src);
  1153   void movq(Register dst, Address src);
  1154   void movq(Address  dst, Register src);
  1155 #endif
  1157   void movq(Address     dst, MMXRegister src );
  1158   void movq(MMXRegister dst, Address src );
  1160 #ifdef _LP64
  1161   // These dummies prevent using movq from converting a zero (like NULL) into Register
  1162   // by giving the compiler two choices it can't resolve
  1164   void movq(Address  dst, void* dummy);
  1165   void movq(Register dst, void* dummy);
  1166 #endif
  1168   // Move Quadword
  1169   void movq(Address     dst, XMMRegister src);
  1170   void movq(XMMRegister dst, Address src);
  1172   void movsbl(Register dst, Address src);
  1173   void movsbl(Register dst, Register src);
  1175 #ifdef _LP64
  1176   void movsbq(Register dst, Address src);
  1177   void movsbq(Register dst, Register src);
  1179   // Move signed 32bit immediate to 64bit extending sign
  1180   void movslq(Address  dst, int32_t imm64);
  1181   void movslq(Register dst, int32_t imm64);
  1183   void movslq(Register dst, Address src);
  1184   void movslq(Register dst, Register src);
  1185   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
  1186 #endif
  1188   void movswl(Register dst, Address src);
  1189   void movswl(Register dst, Register src);
  1191 #ifdef _LP64
  1192   void movswq(Register dst, Address src);
  1193   void movswq(Register dst, Register src);
  1194 #endif
  1196   void movw(Address dst, int imm16);
  1197   void movw(Register dst, Address src);
  1198   void movw(Address dst, Register src);
  1200   void movzbl(Register dst, Address src);
  1201   void movzbl(Register dst, Register src);
  1203 #ifdef _LP64
  1204   void movzbq(Register dst, Address src);
  1205   void movzbq(Register dst, Register src);
  1206 #endif
  1208   void movzwl(Register dst, Address src);
  1209   void movzwl(Register dst, Register src);
  1211 #ifdef _LP64
  1212   void movzwq(Register dst, Address src);
  1213   void movzwq(Register dst, Register src);
  1214 #endif
  1216   void mull(Address src);
  1217   void mull(Register src);
  1219   // Multiply Scalar Double-Precision Floating-Point Values
  1220   void mulsd(XMMRegister dst, Address src);
  1221   void mulsd(XMMRegister dst, XMMRegister src);
  1223   // Multiply Scalar Single-Precision Floating-Point Values
  1224   void mulss(XMMRegister dst, Address src);
  1225   void mulss(XMMRegister dst, XMMRegister src);
  1227   void negl(Register dst);
  1229 #ifdef _LP64
  1230   void negq(Register dst);
  1231 #endif
  1233   void nop(int i = 1);
  1235   void notl(Register dst);
  1237 #ifdef _LP64
  1238   void notq(Register dst);
  1239 #endif
  1241   void orl(Address dst, int32_t imm32);
  1242   void orl(Register dst, int32_t imm32);
  1243   void orl(Register dst, Address src);
  1244   void orl(Register dst, Register src);
  1246   void orq(Address dst, int32_t imm32);
  1247   void orq(Register dst, int32_t imm32);
  1248   void orq(Register dst, Address src);
  1249   void orq(Register dst, Register src);
  1251   // SSE4.2 string instructions
  1252   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
  1253   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
  1255 #ifndef _LP64 // no 32bit push/pop on amd64
  1256   void popl(Address dst);
  1257 #endif
  1259 #ifdef _LP64
  1260   void popq(Address dst);
  1261 #endif
  1263   void popcntl(Register dst, Address src);
  1264   void popcntl(Register dst, Register src);
  1266 #ifdef _LP64
  1267   void popcntq(Register dst, Address src);
  1268   void popcntq(Register dst, Register src);
  1269 #endif
  1271   // Prefetches (SSE, SSE2, 3DNOW only)
  1273   void prefetchnta(Address src);
  1274   void prefetchr(Address src);
  1275   void prefetcht0(Address src);
  1276   void prefetcht1(Address src);
  1277   void prefetcht2(Address src);
  1278   void prefetchw(Address src);
  1280   // Shuffle Packed Doublewords
  1281   void pshufd(XMMRegister dst, XMMRegister src, int mode);
  1282   void pshufd(XMMRegister dst, Address src,     int mode);
  1284   // Shuffle Packed Low Words
  1285   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  1286   void pshuflw(XMMRegister dst, Address src,     int mode);
  1288   // Shift Right Logical Quadword Immediate
  1289   void psrlq(XMMRegister dst, int shift);
  1291   // Logical Compare Double Quadword
  1292   void ptest(XMMRegister dst, XMMRegister src);
  1293   void ptest(XMMRegister dst, Address src);
  1295   // Interleave Low Bytes
  1296   void punpcklbw(XMMRegister dst, XMMRegister src);
  1298 #ifndef _LP64 // no 32bit push/pop on amd64
  1299   void pushl(Address src);
  1300 #endif
  1302   void pushq(Address src);
  1304   // Xor Packed Byte Integer Values
  1305   void pxor(XMMRegister dst, Address src);
  1306   void pxor(XMMRegister dst, XMMRegister src);
  1308   void rcll(Register dst, int imm8);
  1310   void rclq(Register dst, int imm8);
  1312   void ret(int imm16);
  1314   void sahf();
  1316   void sarl(Register dst, int imm8);
  1317   void sarl(Register dst);
  1319   void sarq(Register dst, int imm8);
  1320   void sarq(Register dst);
  1322   void sbbl(Address dst, int32_t imm32);
  1323   void sbbl(Register dst, int32_t imm32);
  1324   void sbbl(Register dst, Address src);
  1325   void sbbl(Register dst, Register src);
  1327   void sbbq(Address dst, int32_t imm32);
  1328   void sbbq(Register dst, int32_t imm32);
  1329   void sbbq(Register dst, Address src);
  1330   void sbbq(Register dst, Register src);
  1332   void setb(Condition cc, Register dst);
  1334   void shldl(Register dst, Register src);
  1336   void shll(Register dst, int imm8);
  1337   void shll(Register dst);
  1339   void shlq(Register dst, int imm8);
  1340   void shlq(Register dst);
  1342   void shrdl(Register dst, Register src);
  1344   void shrl(Register dst, int imm8);
  1345   void shrl(Register dst);
  1347   void shrq(Register dst, int imm8);
  1348   void shrq(Register dst);
  1350   void smovl(); // QQQ generic?
  1352   // Compute Square Root of Scalar Double-Precision Floating-Point Value
  1353   void sqrtsd(XMMRegister dst, Address src);
  1354   void sqrtsd(XMMRegister dst, XMMRegister src);
  1356   // Compute Square Root of Scalar Single-Precision Floating-Point Value
  1357   void sqrtss(XMMRegister dst, Address src);
  1358   void sqrtss(XMMRegister dst, XMMRegister src);
  1360   void std() { emit_byte(0xfd); }
  1362   void stmxcsr( Address dst );
  1364   void subl(Address dst, int32_t imm32);
  1365   void subl(Address dst, Register src);
  1366   void subl(Register dst, int32_t imm32);
  1367   void subl(Register dst, Address src);
  1368   void subl(Register dst, Register src);
  1370   void subq(Address dst, int32_t imm32);
  1371   void subq(Address dst, Register src);
  1372   void subq(Register dst, int32_t imm32);
  1373   void subq(Register dst, Address src);
  1374   void subq(Register dst, Register src);
  1377   // Subtract Scalar Double-Precision Floating-Point Values
  1378   void subsd(XMMRegister dst, Address src);
  1379   void subsd(XMMRegister dst, XMMRegister src);
  1381   // Subtract Scalar Single-Precision Floating-Point Values
  1382   void subss(XMMRegister dst, Address src);
  1383   void subss(XMMRegister dst, XMMRegister src);
  1385   void testb(Register dst, int imm8);
  1387   void testl(Register dst, int32_t imm32);
  1388   void testl(Register dst, Register src);
  1389   void testl(Register dst, Address src);
  1391   void testq(Register dst, int32_t imm32);
  1392   void testq(Register dst, Register src);
  1395   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  1396   void ucomisd(XMMRegister dst, Address src);
  1397   void ucomisd(XMMRegister dst, XMMRegister src);
  1399   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  1400   void ucomiss(XMMRegister dst, Address src);
  1401   void ucomiss(XMMRegister dst, XMMRegister src);
  1403   void xaddl(Address dst, Register src);
  1405   void xaddq(Address dst, Register src);
  1407   void xchgl(Register reg, Address adr);
  1408   void xchgl(Register dst, Register src);
  1410   void xchgq(Register reg, Address adr);
  1411   void xchgq(Register dst, Register src);
  1413   void xorl(Register dst, int32_t imm32);
  1414   void xorl(Register dst, Address src);
  1415   void xorl(Register dst, Register src);
  1417   void xorq(Register dst, Address src);
  1418   void xorq(Register dst, Register src);
  1420   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  1421   void xorpd(XMMRegister dst, Address src);
  1422   void xorpd(XMMRegister dst, XMMRegister src);
  1424   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  1425   void xorps(XMMRegister dst, Address src);
  1426   void xorps(XMMRegister dst, XMMRegister src);
  1428   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
  1429 };
  1432 // MacroAssembler extends Assembler by frequently used macros.
  1433 //
  1434 // Instructions for which a 'better' code sequence exists depending
  1435 // on arguments should also go in here.
  1437 class MacroAssembler: public Assembler {
  1438   friend class LIR_Assembler;
  1439   friend class Runtime1;      // as_Address()
  1440  protected:
  1442   Address as_Address(AddressLiteral adr);
  1443   Address as_Address(ArrayAddress adr);
  1445   // Support for VM calls
  1446   //
  1447   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  1448   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1449   // additional registers when doing a VM call).
  1450 #ifdef CC_INTERP
  1451   // c++ interpreter never wants to use interp_masm version of call_VM
  1452   #define VIRTUAL
  1453 #else
  1454   #define VIRTUAL virtual
  1455 #endif
  1457   VIRTUAL void call_VM_leaf_base(
  1458     address entry_point,               // the entry point
  1459     int     number_of_arguments        // the number of arguments to pop after the call
  1460   );
  1462   // This is the base routine called by the different versions of call_VM. The interpreter
  1463   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1464   // additional registers when doing a VM call).
  1465   //
  1466   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  1467   // returns the register which contains the thread upon return. If a thread register has been
  1468   // specified, the return value will correspond to that register. If no last_java_sp is specified
  1469   // (noreg) than rsp will be used instead.
  1470   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  1471     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  1472     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  1473     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  1474     address  entry_point,              // the entry point
  1475     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  1476     bool     check_exceptions          // whether to check for pending exceptions after return
  1477   );
  1479   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  1480   // The implementation is only non-empty for the InterpreterMacroAssembler,
  1481   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  1482   virtual void check_and_handle_popframe(Register java_thread);
  1483   virtual void check_and_handle_earlyret(Register java_thread);
  1485   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  1487   // helpers for FPU flag access
  1488   // tmp is a temporary register, if none is available use noreg
  1489   void save_rax   (Register tmp);
  1490   void restore_rax(Register tmp);
  1492  public:
  1493   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1495   // Support for NULL-checks
  1496   //
  1497   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  1498   // If the accessed location is M[reg + offset] and the offset is known, provide the
  1499   // offset. No explicit code generation is needed if the offset is within a certain
  1500   // range (0 <= offset <= page_size).
  1502   void null_check(Register reg, int offset = -1);
  1503   static bool needs_explicit_null_check(intptr_t offset);
  1505   // Required platform-specific helpers for Label::patch_instructions.
  1506   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1507   void pd_patch_instruction(address branch, address target);
  1508 #ifndef PRODUCT
  1509   static void pd_print_patched_instruction(address branch);
  1510 #endif
  1512   // The following 4 methods return the offset of the appropriate move instruction
  1514   // Support for fast byte/short loading with zero extension (depending on particular CPU)
  1515   int load_unsigned_byte(Register dst, Address src);
  1516   int load_unsigned_short(Register dst, Address src);
  1518   // Support for fast byte/short loading with sign extension (depending on particular CPU)
  1519   int load_signed_byte(Register dst, Address src);
  1520   int load_signed_short(Register dst, Address src);
  1522   // Support for sign-extension (hi:lo = extend_sign(lo))
  1523   void extend_sign(Register hi, Register lo);
  1525   // Load and store values by size and signed-ness
  1526   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
  1527   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
  1529   // Support for inc/dec with optimal instruction selection depending on value
  1531   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  1532   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
  1534   void decrementl(Address dst, int value = 1);
  1535   void decrementl(Register reg, int value = 1);
  1537   void decrementq(Register reg, int value = 1);
  1538   void decrementq(Address dst, int value = 1);
  1540   void incrementl(Address dst, int value = 1);
  1541   void incrementl(Register reg, int value = 1);
  1543   void incrementq(Register reg, int value = 1);
  1544   void incrementq(Address dst, int value = 1);
  1547   // Support optimal SSE move instructions.
  1548   void movflt(XMMRegister dst, XMMRegister src) {
  1549     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
  1550     else                       { movss (dst, src); return; }
  1552   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  1553   void movflt(XMMRegister dst, AddressLiteral src);
  1554   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
  1556   void movdbl(XMMRegister dst, XMMRegister src) {
  1557     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
  1558     else                       { movsd (dst, src); return; }
  1561   void movdbl(XMMRegister dst, AddressLiteral src);
  1563   void movdbl(XMMRegister dst, Address src) {
  1564     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
  1565     else                         { movlpd(dst, src); return; }
  1567   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
  1569   void incrementl(AddressLiteral dst);
  1570   void incrementl(ArrayAddress dst);
  1572   // Alignment
  1573   void align(int modulus);
  1575   // Misc
  1576   void fat_nop(); // 5 byte nop
  1578   // Stack frame creation/removal
  1579   void enter();
  1580   void leave();
  1582   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  1583   // The pointer will be loaded into the thread register.
  1584   void get_thread(Register thread);
  1587   // Support for VM calls
  1588   //
  1589   // It is imperative that all calls into the VM are handled via the call_VM macros.
  1590   // They make sure that the stack linkage is setup correctly. call_VM's correspond
  1591   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  1594   void call_VM(Register oop_result,
  1595                address entry_point,
  1596                bool check_exceptions = true);
  1597   void call_VM(Register oop_result,
  1598                address entry_point,
  1599                Register arg_1,
  1600                bool check_exceptions = true);
  1601   void call_VM(Register oop_result,
  1602                address entry_point,
  1603                Register arg_1, Register arg_2,
  1604                bool check_exceptions = true);
  1605   void call_VM(Register oop_result,
  1606                address entry_point,
  1607                Register arg_1, Register arg_2, Register arg_3,
  1608                bool check_exceptions = true);
  1610   // Overloadings with last_Java_sp
  1611   void call_VM(Register oop_result,
  1612                Register last_java_sp,
  1613                address entry_point,
  1614                int number_of_arguments = 0,
  1615                bool check_exceptions = true);
  1616   void call_VM(Register oop_result,
  1617                Register last_java_sp,
  1618                address entry_point,
  1619                Register arg_1, bool
  1620                check_exceptions = true);
  1621   void call_VM(Register oop_result,
  1622                Register last_java_sp,
  1623                address entry_point,
  1624                Register arg_1, Register arg_2,
  1625                bool check_exceptions = true);
  1626   void call_VM(Register oop_result,
  1627                Register last_java_sp,
  1628                address entry_point,
  1629                Register arg_1, Register arg_2, Register arg_3,
  1630                bool check_exceptions = true);
  1632   void call_VM_leaf(address entry_point,
  1633                     int number_of_arguments = 0);
  1634   void call_VM_leaf(address entry_point,
  1635                     Register arg_1);
  1636   void call_VM_leaf(address entry_point,
  1637                     Register arg_1, Register arg_2);
  1638   void call_VM_leaf(address entry_point,
  1639                     Register arg_1, Register arg_2, Register arg_3);
  1641   // last Java Frame (fills frame anchor)
  1642   void set_last_Java_frame(Register thread,
  1643                            Register last_java_sp,
  1644                            Register last_java_fp,
  1645                            address last_java_pc);
  1647   // thread in the default location (r15_thread on 64bit)
  1648   void set_last_Java_frame(Register last_java_sp,
  1649                            Register last_java_fp,
  1650                            address last_java_pc);
  1652   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
  1654   // thread in the default location (r15_thread on 64bit)
  1655   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
  1657   // Stores
  1658   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  1659   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
  1661   void g1_write_barrier_pre(Register obj,
  1662 #ifndef _LP64
  1663                             Register thread,
  1664 #endif
  1665                             Register tmp,
  1666                             Register tmp2,
  1667                             bool     tosca_live);
  1668   void g1_write_barrier_post(Register store_addr,
  1669                              Register new_val,
  1670 #ifndef _LP64
  1671                              Register thread,
  1672 #endif
  1673                              Register tmp,
  1674                              Register tmp2);
  1677   // split store_check(Register obj) to enhance instruction interleaving
  1678   void store_check_part_1(Register obj);
  1679   void store_check_part_2(Register obj);
  1681   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  1682   void c2bool(Register x);
  1684   // C++ bool manipulation
  1686   void movbool(Register dst, Address src);
  1687   void movbool(Address dst, bool boolconst);
  1688   void movbool(Address dst, Register src);
  1689   void testbool(Register dst);
  1691   // oop manipulations
  1692   void load_klass(Register dst, Register src);
  1693   void store_klass(Register dst, Register src);
  1695   void load_heap_oop(Register dst, Address src);
  1696   void store_heap_oop(Address dst, Register src);
  1698   // Used for storing NULL. All other oop constants should be
  1699   // stored using routines that take a jobject.
  1700   void store_heap_oop_null(Address dst);
  1702   void load_prototype_header(Register dst, Register src);
  1704 #ifdef _LP64
  1705   void store_klass_gap(Register dst, Register src);
  1707   // This dummy is to prevent a call to store_heap_oop from
  1708   // converting a zero (like NULL) into a Register by giving
  1709   // the compiler two choices it can't resolve
  1711   void store_heap_oop(Address dst, void* dummy);
  1713   void encode_heap_oop(Register r);
  1714   void decode_heap_oop(Register r);
  1715   void encode_heap_oop_not_null(Register r);
  1716   void decode_heap_oop_not_null(Register r);
  1717   void encode_heap_oop_not_null(Register dst, Register src);
  1718   void decode_heap_oop_not_null(Register dst, Register src);
  1720   void set_narrow_oop(Register dst, jobject obj);
  1721   void set_narrow_oop(Address dst, jobject obj);
  1722   void cmp_narrow_oop(Register dst, jobject obj);
  1723   void cmp_narrow_oop(Address dst, jobject obj);
  1725   // if heap base register is used - reinit it with the correct value
  1726   void reinit_heapbase();
  1728   DEBUG_ONLY(void verify_heapbase(const char* msg);)
  1730 #endif // _LP64
  1732   // Int division/remainder for Java
  1733   // (as idivl, but checks for special case as described in JVM spec.)
  1734   // returns idivl instruction offset for implicit exception handling
  1735   int corrected_idivl(Register reg);
  1737   // Long division/remainder for Java
  1738   // (as idivq, but checks for special case as described in JVM spec.)
  1739   // returns idivq instruction offset for implicit exception handling
  1740   int corrected_idivq(Register reg);
  1742   void int3();
  1744   // Long operation macros for a 32bit cpu
  1745   // Long negation for Java
  1746   void lneg(Register hi, Register lo);
  1748   // Long multiplication for Java
  1749   // (destroys contents of eax, ebx, ecx and edx)
  1750   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
  1752   // Long shifts for Java
  1753   // (semantics as described in JVM spec.)
  1754   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  1755   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
  1757   // Long compare for Java
  1758   // (semantics as described in JVM spec.)
  1759   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
  1762   // misc
  1764   // Sign extension
  1765   void sign_extend_short(Register reg);
  1766   void sign_extend_byte(Register reg);
  1768   // Division by power of 2, rounding towards 0
  1769   void division_with_shift(Register reg, int shift_value);
  1771   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  1772   //
  1773   // CF (corresponds to C0) if x < y
  1774   // PF (corresponds to C2) if unordered
  1775   // ZF (corresponds to C3) if x = y
  1776   //
  1777   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1778   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  1779   void fcmp(Register tmp);
  1780   // Variant of the above which allows y to be further down the stack
  1781   // and which only pops x and y if specified. If pop_right is
  1782   // specified then pop_left must also be specified.
  1783   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
  1785   // Floating-point comparison for Java
  1786   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  1787   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1788   // (semantics as described in JVM spec.)
  1789   void fcmp2int(Register dst, bool unordered_is_less);
  1790   // Variant of the above which allows y to be further down the stack
  1791   // and which only pops x and y if specified. If pop_right is
  1792   // specified then pop_left must also be specified.
  1793   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
  1795   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  1796   // tmp is a temporary register, if none is available use noreg
  1797   void fremr(Register tmp);
  1800   // same as fcmp2int, but using SSE2
  1801   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1802   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1804   // Inlined sin/cos generator for Java; must not use CPU instruction
  1805   // directly on Intel as it does not have high enough precision
  1806   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  1807   // number of FPU stack slots in use; all but the topmost will
  1808   // require saving if a slow case is necessary. Assumes argument is
  1809   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  1810   // this code.
  1811   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
  1813   // branch to L if FPU flag C2 is set/not set
  1814   // tmp is a temporary register, if none is available use noreg
  1815   void jC2 (Register tmp, Label& L);
  1816   void jnC2(Register tmp, Label& L);
  1818   // Pop ST (ffree & fincstp combined)
  1819   void fpop();
  1821   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1822   void push_fTOS();
  1824   // pops double TOS element from CPU stack and pushes on FPU stack
  1825   void pop_fTOS();
  1827   void empty_FPU_stack();
  1829   void push_IU_state();
  1830   void pop_IU_state();
  1832   void push_FPU_state();
  1833   void pop_FPU_state();
  1835   void push_CPU_state();
  1836   void pop_CPU_state();
  1838   // Round up to a power of two
  1839   void round_to(Register reg, int modulus);
  1841   // Callee saved registers handling
  1842   void push_callee_saved_registers();
  1843   void pop_callee_saved_registers();
  1845   // allocation
  1846   void eden_allocate(
  1847     Register obj,                      // result: pointer to object after successful allocation
  1848     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1849     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1850     Register t1,                       // temp register
  1851     Label&   slow_case                 // continuation point if fast allocation fails
  1852   );
  1853   void tlab_allocate(
  1854     Register obj,                      // result: pointer to object after successful allocation
  1855     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1856     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1857     Register t1,                       // temp register
  1858     Register t2,                       // temp register
  1859     Label&   slow_case                 // continuation point if fast allocation fails
  1860   );
  1861   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
  1862   void incr_allocated_bytes(Register thread,
  1863                             Register var_size_in_bytes, int con_size_in_bytes,
  1864                             Register t1 = noreg);
  1866   // interface method calling
  1867   void lookup_interface_method(Register recv_klass,
  1868                                Register intf_klass,
  1869                                RegisterOrConstant itable_index,
  1870                                Register method_result,
  1871                                Register scan_temp,
  1872                                Label& no_such_interface);
  1874   // Test sub_klass against super_klass, with fast and slow paths.
  1876   // The fast path produces a tri-state answer: yes / no / maybe-slow.
  1877   // One of the three labels can be NULL, meaning take the fall-through.
  1878   // If super_check_offset is -1, the value is loaded up from super_klass.
  1879   // No registers are killed, except temp_reg.
  1880   void check_klass_subtype_fast_path(Register sub_klass,
  1881                                      Register super_klass,
  1882                                      Register temp_reg,
  1883                                      Label* L_success,
  1884                                      Label* L_failure,
  1885                                      Label* L_slow_path,
  1886                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
  1888   // The rest of the type check; must be wired to a corresponding fast path.
  1889   // It does not repeat the fast path logic, so don't use it standalone.
  1890   // The temp_reg and temp2_reg can be noreg, if no temps are available.
  1891   // Updates the sub's secondary super cache as necessary.
  1892   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
  1893   void check_klass_subtype_slow_path(Register sub_klass,
  1894                                      Register super_klass,
  1895                                      Register temp_reg,
  1896                                      Register temp2_reg,
  1897                                      Label* L_success,
  1898                                      Label* L_failure,
  1899                                      bool set_cond_codes = false);
  1901   // Simplified, combined version, good for typical uses.
  1902   // Falls through on failure.
  1903   void check_klass_subtype(Register sub_klass,
  1904                            Register super_klass,
  1905                            Register temp_reg,
  1906                            Label& L_success);
  1908   // method handles (JSR 292)
  1909   void check_method_handle_type(Register mtype_reg, Register mh_reg,
  1910                                 Register temp_reg,
  1911                                 Label& wrong_method_type);
  1912   void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  1913                                   Register temp_reg);
  1914   void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
  1915   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
  1918   //----
  1919   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
  1921   // Debugging
  1923   // only if +VerifyOops
  1924   void verify_oop(Register reg, const char* s = "broken oop");
  1925   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
  1927   // only if +VerifyFPU
  1928   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  1930   // prints msg, dumps registers and stops execution
  1931   void stop(const char* msg);
  1933   // prints msg and continues
  1934   void warn(const char* msg);
  1936   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  1937   static void debug64(char* msg, int64_t pc, int64_t regs[]);
  1939   void os_breakpoint();
  1941   void untested()                                { stop("untested"); }
  1943   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
  1945   void should_not_reach_here()                   { stop("should not reach here"); }
  1947   void print_CPU_state();
  1949   // Stack overflow checking
  1950   void bang_stack_with_offset(int offset) {
  1951     // stack grows down, caller passes positive offset
  1952     assert(offset > 0, "must bang with negative offset");
  1953     movl(Address(rsp, (-offset)), rax);
  1956   // Writes to stack successive pages until offset reached to check for
  1957   // stack overflow + shadow pages.  Also, clobbers tmp
  1958   void bang_stack_size(Register size, Register tmp);
  1960   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
  1961                                                 Register tmp,
  1962                                                 int offset);
  1964   // Support for serializing memory accesses between threads
  1965   void serialize_memory(Register thread, Register tmp);
  1967   void verify_tlab();
  1969   // Biased locking support
  1970   // lock_reg and obj_reg must be loaded up with the appropriate values.
  1971   // swap_reg must be rax, and is killed.
  1972   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  1973   // be killed; if not supplied, push/pop will be used internally to
  1974   // allocate a temporary (inefficient, avoid if possible).
  1975   // Optional slow case is for implementations (interpreter and C1) which branch to
  1976   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  1977   // Returns offset of first potentially-faulting instruction for null
  1978   // check info (currently consumed only by C1). If
  1979   // swap_reg_contains_mark is true then returns -1 as it is assumed
  1980   // the calling code has already passed any potential faults.
  1981   int biased_locking_enter(Register lock_reg, Register obj_reg,
  1982                            Register swap_reg, Register tmp_reg,
  1983                            bool swap_reg_contains_mark,
  1984                            Label& done, Label* slow_case = NULL,
  1985                            BiasedLockingCounters* counters = NULL);
  1986   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
  1989   Condition negate_condition(Condition cond);
  1991   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  1992   // operands. In general the names are modified to avoid hiding the instruction in Assembler
  1993   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  1994   // here in MacroAssembler. The major exception to this rule is call
  1996   // Arithmetics
  1999   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  2000   void addptr(Address dst, Register src);
  2002   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  2003   void addptr(Register dst, int32_t src);
  2004   void addptr(Register dst, Register src);
  2006   void andptr(Register dst, int32_t src);
  2007   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
  2009   void cmp8(AddressLiteral src1, int imm);
  2011   // renamed to drag out the casting of address to int32_t/intptr_t
  2012   void cmp32(Register src1, int32_t imm);
  2014   void cmp32(AddressLiteral src1, int32_t imm);
  2015   // compare reg - mem, or reg - &mem
  2016   void cmp32(Register src1, AddressLiteral src2);
  2018   void cmp32(Register src1, Address src2);
  2020 #ifndef _LP64
  2021   void cmpoop(Address dst, jobject obj);
  2022   void cmpoop(Register dst, jobject obj);
  2023 #endif // _LP64
  2025   // NOTE src2 must be the lval. This is NOT an mem-mem compare
  2026   void cmpptr(Address src1, AddressLiteral src2);
  2028   void cmpptr(Register src1, AddressLiteral src2);
  2030   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2031   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2032   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2034   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2035   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2037   // cmp64 to avoild hiding cmpq
  2038   void cmp64(Register src1, AddressLiteral src);
  2040   void cmpxchgptr(Register reg, Address adr);
  2042   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
  2045   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
  2048   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
  2050   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
  2052   void shlptr(Register dst, int32_t shift);
  2053   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
  2055   void shrptr(Register dst, int32_t shift);
  2056   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
  2058   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  2059   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
  2061   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  2063   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  2064   void subptr(Register dst, int32_t src);
  2065   void subptr(Register dst, Register src);
  2068   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  2069   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  2071   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  2072   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  2074   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
  2078   // Helper functions for statistics gathering.
  2079   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  2080   void cond_inc32(Condition cond, AddressLiteral counter_addr);
  2081   // Unconditional atomic increment.
  2082   void atomic_incl(AddressLiteral counter_addr);
  2084   void lea(Register dst, AddressLiteral adr);
  2085   void lea(Address dst, AddressLiteral adr);
  2086   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
  2088   void leal32(Register dst, Address src) { leal(dst, src); }
  2090   void test32(Register src1, AddressLiteral src2);
  2092   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2093   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2094   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2096   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  2097   void testptr(Register src1, Register src2);
  2099   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  2100   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  2102   // Calls
  2104   void call(Label& L, relocInfo::relocType rtype);
  2105   void call(Register entry);
  2107   // NOTE: this call tranfers to the effective address of entry NOT
  2108   // the address contained by entry. This is because this is more natural
  2109   // for jumps/calls.
  2110   void call(AddressLiteral entry);
  2112   // Jumps
  2114   // NOTE: these jumps tranfer to the effective address of dst NOT
  2115   // the address contained by dst. This is because this is more natural
  2116   // for jumps/calls.
  2117   void jump(AddressLiteral dst);
  2118   void jump_cc(Condition cc, AddressLiteral dst);
  2120   // 32bit can do a case table jump in one instruction but we no longer allow the base
  2121   // to be installed in the Address class. This jump will tranfers to the address
  2122   // contained in the location described by entry (not the address of entry)
  2123   void jump(ArrayAddress entry);
  2125   // Floating
  2127   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  2128   void andpd(XMMRegister dst, AddressLiteral src);
  2130   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  2131   void comiss(XMMRegister dst, AddressLiteral src);
  2133   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  2134   void comisd(XMMRegister dst, AddressLiteral src);
  2136   void fadd_s(Address src)        { Assembler::fadd_s(src); }
  2137   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
  2139   void fldcw(Address src) { Assembler::fldcw(src); }
  2140   void fldcw(AddressLiteral src);
  2142   void fld_s(int index)   { Assembler::fld_s(index); }
  2143   void fld_s(Address src) { Assembler::fld_s(src); }
  2144   void fld_s(AddressLiteral src);
  2146   void fld_d(Address src) { Assembler::fld_d(src); }
  2147   void fld_d(AddressLiteral src);
  2149   void fld_x(Address src) { Assembler::fld_x(src); }
  2150   void fld_x(AddressLiteral src);
  2152   void fmul_s(Address src)        { Assembler::fmul_s(src); }
  2153   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
  2155   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  2156   void ldmxcsr(AddressLiteral src);
  2158 private:
  2159   // these are private because users should be doing movflt/movdbl
  2161   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  2162   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  2163   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  2164   void movss(XMMRegister dst, AddressLiteral src);
  2166   void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
  2167   void movlpd(XMMRegister dst, AddressLiteral src);
  2169 public:
  2171   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
  2172   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
  2173   void addsd(XMMRegister dst, AddressLiteral src) { Assembler::addsd(dst, as_Address(src)); }
  2175   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
  2176   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
  2177   void addss(XMMRegister dst, AddressLiteral src) { Assembler::addss(dst, as_Address(src)); }
  2179   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
  2180   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
  2181   void divsd(XMMRegister dst, AddressLiteral src) { Assembler::divsd(dst, as_Address(src)); }
  2183   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
  2184   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
  2185   void divss(XMMRegister dst, AddressLiteral src) { Assembler::divss(dst, as_Address(src)); }
  2187   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  2188   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  2189   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
  2190   void movsd(XMMRegister dst, AddressLiteral src) { Assembler::movsd(dst, as_Address(src)); }
  2192   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
  2193   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
  2194   void mulsd(XMMRegister dst, AddressLiteral src) { Assembler::mulsd(dst, as_Address(src)); }
  2196   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
  2197   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
  2198   void mulss(XMMRegister dst, AddressLiteral src) { Assembler::mulss(dst, as_Address(src)); }
  2200   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
  2201   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
  2202   void sqrtsd(XMMRegister dst, AddressLiteral src) { Assembler::sqrtsd(dst, as_Address(src)); }
  2204   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
  2205   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
  2206   void sqrtss(XMMRegister dst, AddressLiteral src) { Assembler::sqrtss(dst, as_Address(src)); }
  2208   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
  2209   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
  2210   void subsd(XMMRegister dst, AddressLiteral src) { Assembler::subsd(dst, as_Address(src)); }
  2212   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
  2213   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
  2214   void subss(XMMRegister dst, AddressLiteral src) { Assembler::subss(dst, as_Address(src)); }
  2216   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  2217   void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
  2218   void ucomiss(XMMRegister dst, AddressLiteral src);
  2220   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  2221   void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
  2222   void ucomisd(XMMRegister dst, AddressLiteral src);
  2224   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  2225   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  2226   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  2227   void xorpd(XMMRegister dst, AddressLiteral src);
  2229   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  2230   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  2231   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  2232   void xorps(XMMRegister dst, AddressLiteral src);
  2234   // Data
  2236   void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2238   void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2239   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2241   void movoop(Register dst, jobject obj);
  2242   void movoop(Address dst, jobject obj);
  2244   void movptr(ArrayAddress dst, Register src);
  2245   // can this do an lea?
  2246   void movptr(Register dst, ArrayAddress src);
  2248   void movptr(Register dst, Address src);
  2250   void movptr(Register dst, AddressLiteral src);
  2252   void movptr(Register dst, intptr_t src);
  2253   void movptr(Register dst, Register src);
  2254   void movptr(Address dst, intptr_t src);
  2256   void movptr(Address dst, Register src);
  2258 #ifdef _LP64
  2259   // Generally the next two are only used for moving NULL
  2260   // Although there are situations in initializing the mark word where
  2261   // they could be used. They are dangerous.
  2263   // They only exist on LP64 so that int32_t and intptr_t are not the same
  2264   // and we have ambiguous declarations.
  2266   void movptr(Address dst, int32_t imm32);
  2267   void movptr(Register dst, int32_t imm32);
  2268 #endif // _LP64
  2270   // to avoid hiding movl
  2271   void mov32(AddressLiteral dst, Register src);
  2272   void mov32(Register dst, AddressLiteral src);
  2274   // to avoid hiding movb
  2275   void movbyte(ArrayAddress dst, int src);
  2277   // Can push value or effective address
  2278   void pushptr(AddressLiteral src);
  2280   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  2281   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  2283   void pushoop(jobject obj);
  2285   // sign extend as need a l to ptr sized element
  2286   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  2287   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  2289   // IndexOf strings.
  2290   void string_indexof(Register str1, Register str2,
  2291                       Register cnt1, Register cnt2, Register result,
  2292                       XMMRegister vec, Register tmp);
  2294   // Compare strings.
  2295   void string_compare(Register str1, Register str2,
  2296                       Register cnt1, Register cnt2, Register result,
  2297                       XMMRegister vec1, XMMRegister vec2);
  2299   // Compare char[] arrays.
  2300   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  2301                           Register limit, Register result, Register chr,
  2302                           XMMRegister vec1, XMMRegister vec2);
  2304   // Fill primitive arrays
  2305   void generate_fill(BasicType t, bool aligned,
  2306                      Register to, Register value, Register count,
  2307                      Register rtmp, XMMRegister xtmp);
  2309 #undef VIRTUAL
  2311 };
  2313 /**
  2314  * class SkipIfEqual:
  2316  * Instantiating this class will result in assembly code being output that will
  2317  * jump around any code emitted between the creation of the instance and it's
  2318  * automatic destruction at the end of a scope block, depending on the value of
  2319  * the flag passed to the constructor, which will be checked at run-time.
  2320  */
  2321 class SkipIfEqual {
  2322  private:
  2323   MacroAssembler* _masm;
  2324   Label _label;
  2326  public:
  2327    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  2328    ~SkipIfEqual();
  2329 };
  2331 #ifdef ASSERT
  2332 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  2333 #endif
  2335 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP

mercurial