src/share/vm/memory/referenceProcessor.cpp

Mon, 01 Dec 2008 23:25:24 -0800

author
ysr
date
Mon, 01 Dec 2008 23:25:24 -0800
changeset 892
27a80744a83b
parent 888
c96030fff130
child 969
5cfd8d19e546
permissions
-rw-r--r--

6778647: snap(), snap_policy() should be renamed setup(), setup_policy()
Summary: Renamed Reference{Policy,Pocessor} methods from snap{,_policy}() to setup{,_policy}()
Reviewed-by: apetrusenko

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_referenceProcessor.cpp.incl"
    28 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
    29 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
    30 oop              ReferenceProcessor::_sentinelRef = NULL;
    31 const int        subclasses_of_ref                = REF_PHANTOM - REF_OTHER;
    33 // List of discovered references.
    34 class DiscoveredList {
    35 public:
    36   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
    37   oop head() const     {
    38      return UseCompressedOops ?  oopDesc::decode_heap_oop_not_null(_compressed_head) :
    39                                 _oop_head;
    40   }
    41   HeapWord* adr_head() {
    42     return UseCompressedOops ? (HeapWord*)&_compressed_head :
    43                                (HeapWord*)&_oop_head;
    44   }
    45   void   set_head(oop o) {
    46     if (UseCompressedOops) {
    47       // Must compress the head ptr.
    48       _compressed_head = oopDesc::encode_heap_oop_not_null(o);
    49     } else {
    50       _oop_head = o;
    51     }
    52   }
    53   bool   empty() const          { return head() == ReferenceProcessor::sentinel_ref(); }
    54   size_t length()               { return _len; }
    55   void   set_length(size_t len) { _len = len;  }
    56   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
    57   void   dec_length(size_t dec) { _len -= dec; }
    58 private:
    59   // Set value depending on UseCompressedOops. This could be a template class
    60   // but then we have to fix all the instantiations and declarations that use this class.
    61   oop       _oop_head;
    62   narrowOop _compressed_head;
    63   size_t _len;
    64 };
    66 void referenceProcessor_init() {
    67   ReferenceProcessor::init_statics();
    68 }
    70 void ReferenceProcessor::init_statics() {
    71   assert(_sentinelRef == NULL, "should be initialized precisely once");
    72   EXCEPTION_MARK;
    73   _sentinelRef = instanceKlass::cast(
    74                     SystemDictionary::reference_klass())->
    75                       allocate_permanent_instance(THREAD);
    77   // Initialize the master soft ref clock.
    78   java_lang_ref_SoftReference::set_clock(os::javaTimeMillis());
    80   if (HAS_PENDING_EXCEPTION) {
    81       Handle ex(THREAD, PENDING_EXCEPTION);
    82       vm_exit_during_initialization(ex);
    83   }
    84   assert(_sentinelRef != NULL && _sentinelRef->is_oop(),
    85          "Just constructed it!");
    86   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
    87   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
    88                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
    89   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
    90     vm_exit_during_initialization("Could not allocate reference policy object");
    91   }
    92   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
    93             RefDiscoveryPolicy == ReferentBasedDiscovery,
    94             "Unrecongnized RefDiscoveryPolicy");
    95 }
    97 ReferenceProcessor*
    98 ReferenceProcessor::create_ref_processor(MemRegion          span,
    99                                          bool               atomic_discovery,
   100                                          bool               mt_discovery,
   101                                          BoolObjectClosure* is_alive_non_header,
   102                                          int                parallel_gc_threads,
   103                                          bool               mt_processing,
   104                                          bool               dl_needs_barrier) {
   105   int mt_degree = 1;
   106   if (parallel_gc_threads > 1) {
   107     mt_degree = parallel_gc_threads;
   108   }
   109   ReferenceProcessor* rp =
   110     new ReferenceProcessor(span, atomic_discovery,
   111                            mt_discovery, mt_degree,
   112                            mt_processing && (parallel_gc_threads > 0),
   113                            dl_needs_barrier);
   114   if (rp == NULL) {
   115     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
   116   }
   117   rp->set_is_alive_non_header(is_alive_non_header);
   118   rp->setup_policy(false /* default soft ref policy */);
   119   return rp;
   120 }
   122 ReferenceProcessor::ReferenceProcessor(MemRegion span,
   123                                        bool      atomic_discovery,
   124                                        bool      mt_discovery,
   125                                        int       mt_degree,
   126                                        bool      mt_processing,
   127                                        bool      discovered_list_needs_barrier)  :
   128   _discovering_refs(false),
   129   _enqueuing_is_done(false),
   130   _is_alive_non_header(NULL),
   131   _discovered_list_needs_barrier(discovered_list_needs_barrier),
   132   _bs(NULL),
   133   _processing_is_mt(mt_processing),
   134   _next_id(0)
   135 {
   136   _span = span;
   137   _discovery_is_atomic = atomic_discovery;
   138   _discovery_is_mt     = mt_discovery;
   139   _num_q               = mt_degree;
   140   _discoveredSoftRefs  = NEW_C_HEAP_ARRAY(DiscoveredList, _num_q * subclasses_of_ref);
   141   if (_discoveredSoftRefs == NULL) {
   142     vm_exit_during_initialization("Could not allocated RefProc Array");
   143   }
   144   _discoveredWeakRefs    = &_discoveredSoftRefs[_num_q];
   145   _discoveredFinalRefs   = &_discoveredWeakRefs[_num_q];
   146   _discoveredPhantomRefs = &_discoveredFinalRefs[_num_q];
   147   assert(sentinel_ref() != NULL, "_sentinelRef is NULL");
   148   // Initialized all entries to _sentinelRef
   149   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
   150         _discoveredSoftRefs[i].set_head(sentinel_ref());
   151     _discoveredSoftRefs[i].set_length(0);
   152   }
   153   // If we do barreirs, cache a copy of the barrier set.
   154   if (discovered_list_needs_barrier) {
   155     _bs = Universe::heap()->barrier_set();
   156   }
   157 }
   159 #ifndef PRODUCT
   160 void ReferenceProcessor::verify_no_references_recorded() {
   161   guarantee(!_discovering_refs, "Discovering refs?");
   162   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
   163     guarantee(_discoveredSoftRefs[i].empty(),
   164               "Found non-empty discovered list");
   165   }
   166 }
   167 #endif
   169 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   170   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
   171     if (UseCompressedOops) {
   172       f->do_oop((narrowOop*)_discoveredSoftRefs[i].adr_head());
   173     } else {
   174       f->do_oop((oop*)_discoveredSoftRefs[i].adr_head());
   175     }
   176   }
   177 }
   179 void ReferenceProcessor::oops_do(OopClosure* f) {
   180   f->do_oop(adr_sentinel_ref());
   181 }
   183 void ReferenceProcessor::update_soft_ref_master_clock() {
   184   // Update (advance) the soft ref master clock field. This must be done
   185   // after processing the soft ref list.
   186   jlong now = os::javaTimeMillis();
   187   jlong clock = java_lang_ref_SoftReference::clock();
   188   NOT_PRODUCT(
   189   if (now < clock) {
   190     warning("time warp: %d to %d", clock, now);
   191   }
   192   )
   193   // In product mode, protect ourselves from system time being adjusted
   194   // externally and going backward; see note in the implementation of
   195   // GenCollectedHeap::time_since_last_gc() for the right way to fix
   196   // this uniformly throughout the VM; see bug-id 4741166. XXX
   197   if (now > clock) {
   198     java_lang_ref_SoftReference::set_clock(now);
   199   }
   200   // Else leave clock stalled at its old value until time progresses
   201   // past clock value.
   202 }
   204 void ReferenceProcessor::process_discovered_references(
   205   BoolObjectClosure*           is_alive,
   206   OopClosure*                  keep_alive,
   207   VoidClosure*                 complete_gc,
   208   AbstractRefProcTaskExecutor* task_executor) {
   209   NOT_PRODUCT(verify_ok_to_handle_reflists());
   211   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   212   // Stop treating discovered references specially.
   213   disable_discovery();
   215   bool trace_time = PrintGCDetails && PrintReferenceGC;
   216   // Soft references
   217   {
   218     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
   219     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
   220                                is_alive, keep_alive, complete_gc, task_executor);
   221   }
   223   update_soft_ref_master_clock();
   225   // Weak references
   226   {
   227     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
   228     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   229                                is_alive, keep_alive, complete_gc, task_executor);
   230   }
   232   // Final references
   233   {
   234     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
   235     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   236                                is_alive, keep_alive, complete_gc, task_executor);
   237   }
   239   // Phantom references
   240   {
   241     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
   242     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   243                                is_alive, keep_alive, complete_gc, task_executor);
   244   }
   246   // Weak global JNI references. It would make more sense (semantically) to
   247   // traverse these simultaneously with the regular weak references above, but
   248   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   249   // thus use JNI weak references to circumvent the phantom references and
   250   // resurrect a "post-mortem" object.
   251   {
   252     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
   253     if (task_executor != NULL) {
   254       task_executor->set_single_threaded_mode();
   255     }
   256     process_phaseJNI(is_alive, keep_alive, complete_gc);
   257   }
   258 }
   260 #ifndef PRODUCT
   261 // Calculate the number of jni handles.
   262 uint ReferenceProcessor::count_jni_refs() {
   263   class AlwaysAliveClosure: public BoolObjectClosure {
   264   public:
   265     virtual bool do_object_b(oop obj) { return true; }
   266     virtual void do_object(oop obj) { assert(false, "Don't call"); }
   267   };
   269   class CountHandleClosure: public OopClosure {
   270   private:
   271     int _count;
   272   public:
   273     CountHandleClosure(): _count(0) {}
   274     void do_oop(oop* unused)       { _count++; }
   275     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   276     int count() { return _count; }
   277   };
   278   CountHandleClosure global_handle_count;
   279   AlwaysAliveClosure always_alive;
   280   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
   281   return global_handle_count.count();
   282 }
   283 #endif
   285 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   286                                           OopClosure*        keep_alive,
   287                                           VoidClosure*       complete_gc) {
   288 #ifndef PRODUCT
   289   if (PrintGCDetails && PrintReferenceGC) {
   290     unsigned int count = count_jni_refs();
   291     gclog_or_tty->print(", %u refs", count);
   292   }
   293 #endif
   294   JNIHandles::weak_oops_do(is_alive, keep_alive);
   295   // Finally remember to keep sentinel around
   296   keep_alive->do_oop(adr_sentinel_ref());
   297   complete_gc->do_void();
   298 }
   301 template <class T>
   302 static bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   303                                           AbstractRefProcTaskExecutor* task_executor) {
   305   // Remember old value of pending references list
   306   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   307   T old_pending_list_value = *pending_list_addr;
   309   // Enqueue references that are not made active again, and
   310   // clear the decks for the next collection (cycle).
   311   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   312   // Do the oop-check on pending_list_addr missed in
   313   // enqueue_discovered_reflist. We should probably
   314   // do a raw oop_check so that future such idempotent
   315   // oop_stores relying on the oop-check side-effect
   316   // may be elided automatically and safely without
   317   // affecting correctness.
   318   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   320   // Stop treating discovered references specially.
   321   ref->disable_discovery();
   323   // Return true if new pending references were added
   324   return old_pending_list_value != *pending_list_addr;
   325 }
   327 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   328   NOT_PRODUCT(verify_ok_to_handle_reflists());
   329   if (UseCompressedOops) {
   330     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   331   } else {
   332     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   333   }
   334 }
   336 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   337                                                     HeapWord* pending_list_addr) {
   338   // Given a list of refs linked through the "discovered" field
   339   // (java.lang.ref.Reference.discovered) chain them through the
   340   // "next" field (java.lang.ref.Reference.next) and prepend
   341   // to the pending list.
   342   if (TraceReferenceGC && PrintGCDetails) {
   343     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   344                            INTPTR_FORMAT, (address)refs_list.head());
   345   }
   346   oop obj = refs_list.head();
   347   // Walk down the list, copying the discovered field into
   348   // the next field and clearing it (except for the last
   349   // non-sentinel object which is treated specially to avoid
   350   // confusion with an active reference).
   351   while (obj != sentinel_ref()) {
   352     assert(obj->is_instanceRef(), "should be reference object");
   353     oop next = java_lang_ref_Reference::discovered(obj);
   354     if (TraceReferenceGC && PrintGCDetails) {
   355       gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next " INTPTR_FORMAT,
   356                              obj, next);
   357     }
   358     assert(java_lang_ref_Reference::next(obj) == NULL,
   359            "The reference should not be enqueued");
   360     if (next == sentinel_ref()) {  // obj is last
   361       // Swap refs_list into pendling_list_addr and
   362       // set obj's next to what we read from pending_list_addr.
   363       oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   364       // Need oop_check on pending_list_addr above;
   365       // see special oop-check code at the end of
   366       // enqueue_discovered_reflists() further below.
   367       if (old == NULL) {
   368         // obj should be made to point to itself, since
   369         // pending list was empty.
   370         java_lang_ref_Reference::set_next(obj, obj);
   371       } else {
   372         java_lang_ref_Reference::set_next(obj, old);
   373       }
   374     } else {
   375       java_lang_ref_Reference::set_next(obj, next);
   376     }
   377     java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   378     obj = next;
   379   }
   380 }
   382 // Parallel enqueue task
   383 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   384 public:
   385   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   386                      DiscoveredList      discovered_refs[],
   387                      HeapWord*           pending_list_addr,
   388                      oop                 sentinel_ref,
   389                      int                 n_queues)
   390     : EnqueueTask(ref_processor, discovered_refs,
   391                   pending_list_addr, sentinel_ref, n_queues)
   392   { }
   394   virtual void work(unsigned int work_id) {
   395     assert(work_id < (unsigned int)_ref_processor.num_q(), "Index out-of-bounds");
   396     // Simplest first cut: static partitioning.
   397     int index = work_id;
   398     for (int j = 0; j < subclasses_of_ref; j++, index += _n_queues) {
   399       _ref_processor.enqueue_discovered_reflist(
   400         _refs_lists[index], _pending_list_addr);
   401       _refs_lists[index].set_head(_sentinel_ref);
   402       _refs_lists[index].set_length(0);
   403     }
   404   }
   405 };
   407 // Enqueue references that are not made active again
   408 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   409   AbstractRefProcTaskExecutor* task_executor) {
   410   if (_processing_is_mt && task_executor != NULL) {
   411     // Parallel code
   412     RefProcEnqueueTask tsk(*this, _discoveredSoftRefs,
   413                            pending_list_addr, sentinel_ref(), _num_q);
   414     task_executor->execute(tsk);
   415   } else {
   416     // Serial code: call the parent class's implementation
   417     for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
   418       enqueue_discovered_reflist(_discoveredSoftRefs[i], pending_list_addr);
   419       _discoveredSoftRefs[i].set_head(sentinel_ref());
   420       _discoveredSoftRefs[i].set_length(0);
   421     }
   422   }
   423 }
   425 // Iterator for the list of discovered references.
   426 class DiscoveredListIterator {
   427 public:
   428   inline DiscoveredListIterator(DiscoveredList&    refs_list,
   429                                 OopClosure*        keep_alive,
   430                                 BoolObjectClosure* is_alive);
   432   // End Of List.
   433   inline bool has_next() const { return _next != ReferenceProcessor::sentinel_ref(); }
   435   // Get oop to the Reference object.
   436   inline oop obj() const { return _ref; }
   438   // Get oop to the referent object.
   439   inline oop referent() const { return _referent; }
   441   // Returns true if referent is alive.
   442   inline bool is_referent_alive() const;
   444   // Loads data for the current reference.
   445   // The "allow_null_referent" argument tells us to allow for the possibility
   446   // of a NULL referent in the discovered Reference object. This typically
   447   // happens in the case of concurrent collectors that may have done the
   448   // discovery concurrently, or interleaved, with mutator execution.
   449   inline void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
   451   // Move to the next discovered reference.
   452   inline void next();
   454   // Remove the current reference from the list
   455   inline void remove();
   457   // Make the Reference object active again.
   458   inline void make_active() { java_lang_ref_Reference::set_next(_ref, NULL); }
   460   // Make the referent alive.
   461   inline void make_referent_alive() {
   462     if (UseCompressedOops) {
   463       _keep_alive->do_oop((narrowOop*)_referent_addr);
   464     } else {
   465       _keep_alive->do_oop((oop*)_referent_addr);
   466     }
   467   }
   469   // Update the discovered field.
   470   inline void update_discovered() {
   471     // First _prev_next ref actually points into DiscoveredList (gross).
   472     if (UseCompressedOops) {
   473       _keep_alive->do_oop((narrowOop*)_prev_next);
   474     } else {
   475       _keep_alive->do_oop((oop*)_prev_next);
   476     }
   477   }
   479   // NULL out referent pointer.
   480   inline void clear_referent() { oop_store_raw(_referent_addr, NULL); }
   482   // Statistics
   483   NOT_PRODUCT(
   484   inline size_t processed() const { return _processed; }
   485   inline size_t removed() const   { return _removed; }
   486   )
   488   inline void move_to_next();
   490 private:
   491   DiscoveredList&    _refs_list;
   492   HeapWord*          _prev_next;
   493   oop                _ref;
   494   HeapWord*          _discovered_addr;
   495   oop                _next;
   496   HeapWord*          _referent_addr;
   497   oop                _referent;
   498   OopClosure*        _keep_alive;
   499   BoolObjectClosure* _is_alive;
   500   DEBUG_ONLY(
   501   oop                _first_seen; // cyclic linked list check
   502   )
   503   NOT_PRODUCT(
   504   size_t             _processed;
   505   size_t             _removed;
   506   )
   507 };
   509 inline DiscoveredListIterator::DiscoveredListIterator(DiscoveredList&    refs_list,
   510                                                       OopClosure*        keep_alive,
   511                                                       BoolObjectClosure* is_alive)
   512   : _refs_list(refs_list),
   513     _prev_next(refs_list.adr_head()),
   514     _ref(refs_list.head()),
   515 #ifdef ASSERT
   516     _first_seen(refs_list.head()),
   517 #endif
   518 #ifndef PRODUCT
   519     _processed(0),
   520     _removed(0),
   521 #endif
   522     _next(refs_list.head()),
   523     _keep_alive(keep_alive),
   524     _is_alive(is_alive)
   525 { }
   527 inline bool DiscoveredListIterator::is_referent_alive() const {
   528   return _is_alive->do_object_b(_referent);
   529 }
   531 inline void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   532   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   533   oop discovered = java_lang_ref_Reference::discovered(_ref);
   534   assert(_discovered_addr && discovered->is_oop_or_null(),
   535          "discovered field is bad");
   536   _next = discovered;
   537   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   538   _referent = java_lang_ref_Reference::referent(_ref);
   539   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   540          "Wrong oop found in java.lang.Reference object");
   541   assert(allow_null_referent ?
   542              _referent->is_oop_or_null()
   543            : _referent->is_oop(),
   544          "bad referent");
   545 }
   547 inline void DiscoveredListIterator::next() {
   548   _prev_next = _discovered_addr;
   549   move_to_next();
   550 }
   552 inline void DiscoveredListIterator::remove() {
   553   assert(_ref->is_oop(), "Dropping a bad reference");
   554   oop_store_raw(_discovered_addr, NULL);
   555   // First _prev_next ref actually points into DiscoveredList (gross).
   556   if (UseCompressedOops) {
   557     // Remove Reference object from list.
   558     oopDesc::encode_store_heap_oop_not_null((narrowOop*)_prev_next, _next);
   559   } else {
   560     // Remove Reference object from list.
   561     oopDesc::store_heap_oop((oop*)_prev_next, _next);
   562   }
   563   NOT_PRODUCT(_removed++);
   564   _refs_list.dec_length(1);
   565 }
   567 inline void DiscoveredListIterator::move_to_next() {
   568   _ref = _next;
   569   assert(_ref != _first_seen, "cyclic ref_list found");
   570   NOT_PRODUCT(_processed++);
   571 }
   573 // NOTE: process_phase*() are largely similar, and at a high level
   574 // merely iterate over the extant list applying a predicate to
   575 // each of its elements and possibly removing that element from the
   576 // list and applying some further closures to that element.
   577 // We should consider the possibility of replacing these
   578 // process_phase*() methods by abstracting them into
   579 // a single general iterator invocation that receives appropriate
   580 // closures that accomplish this work.
   582 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   583 // referents are not alive, but that should be kept alive for policy reasons.
   584 // Keep alive the transitive closure of all such referents.
   585 void
   586 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   587                                    ReferencePolicy*   policy,
   588                                    BoolObjectClosure* is_alive,
   589                                    OopClosure*        keep_alive,
   590                                    VoidClosure*       complete_gc) {
   591   assert(policy != NULL, "Must have a non-NULL policy");
   592   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   593   // Decide which softly reachable refs should be kept alive.
   594   while (iter.has_next()) {
   595     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   596     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   597     if (referent_is_dead && !policy->should_clear_reference(iter.obj())) {
   598       if (TraceReferenceGC) {
   599         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   600                                iter.obj(), iter.obj()->blueprint()->internal_name());
   601       }
   602       // Remove Reference object from list
   603       iter.remove();
   604       // Make the Reference object active again
   605       iter.make_active();
   606       // keep the referent around
   607       iter.make_referent_alive();
   608       iter.move_to_next();
   609     } else {
   610       iter.next();
   611     }
   612   }
   613   // Close the reachable set
   614   complete_gc->do_void();
   615   NOT_PRODUCT(
   616     if (PrintGCDetails && TraceReferenceGC) {
   617       gclog_or_tty->print(" Dropped %d dead Refs out of %d "
   618         "discovered Refs by policy ", iter.removed(), iter.processed());
   619     }
   620   )
   621 }
   623 // Traverse the list and remove any Refs that are not active, or
   624 // whose referents are either alive or NULL.
   625 void
   626 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   627                              BoolObjectClosure* is_alive,
   628                              OopClosure*        keep_alive) {
   629   assert(discovery_is_atomic(), "Error");
   630   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   631   while (iter.has_next()) {
   632     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   633     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   634     assert(next == NULL, "Should not discover inactive Reference");
   635     if (iter.is_referent_alive()) {
   636       if (TraceReferenceGC) {
   637         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   638                                iter.obj(), iter.obj()->blueprint()->internal_name());
   639       }
   640       // The referent is reachable after all.
   641       // Remove Reference object from list.
   642       iter.remove();
   643       // Update the referent pointer as necessary: Note that this
   644       // should not entail any recursive marking because the
   645       // referent must already have been traversed.
   646       iter.make_referent_alive();
   647       iter.move_to_next();
   648     } else {
   649       iter.next();
   650     }
   651   }
   652   NOT_PRODUCT(
   653     if (PrintGCDetails && TraceReferenceGC) {
   654       gclog_or_tty->print(" Dropped %d active Refs out of %d "
   655         "Refs in discovered list ", iter.removed(), iter.processed());
   656     }
   657   )
   658 }
   660 void
   661 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   662                                                   BoolObjectClosure* is_alive,
   663                                                   OopClosure*        keep_alive,
   664                                                   VoidClosure*       complete_gc) {
   665   assert(!discovery_is_atomic(), "Error");
   666   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   667   while (iter.has_next()) {
   668     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   669     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   670     oop next = java_lang_ref_Reference::next(iter.obj());
   671     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   672          next != NULL)) {
   673       assert(next->is_oop_or_null(), "bad next field");
   674       // Remove Reference object from list
   675       iter.remove();
   676       // Trace the cohorts
   677       iter.make_referent_alive();
   678       if (UseCompressedOops) {
   679         keep_alive->do_oop((narrowOop*)next_addr);
   680       } else {
   681         keep_alive->do_oop((oop*)next_addr);
   682       }
   683       iter.move_to_next();
   684     } else {
   685       iter.next();
   686     }
   687   }
   688   // Now close the newly reachable set
   689   complete_gc->do_void();
   690   NOT_PRODUCT(
   691     if (PrintGCDetails && TraceReferenceGC) {
   692       gclog_or_tty->print(" Dropped %d active Refs out of %d "
   693         "Refs in discovered list ", iter.removed(), iter.processed());
   694     }
   695   )
   696 }
   698 // Traverse the list and process the referents, by either
   699 // clearing them or keeping them (and their reachable
   700 // closure) alive.
   701 void
   702 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   703                                    bool               clear_referent,
   704                                    BoolObjectClosure* is_alive,
   705                                    OopClosure*        keep_alive,
   706                                    VoidClosure*       complete_gc) {
   707   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   708   while (iter.has_next()) {
   709     iter.update_discovered();
   710     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   711     if (clear_referent) {
   712       // NULL out referent pointer
   713       iter.clear_referent();
   714     } else {
   715       // keep the referent around
   716       iter.make_referent_alive();
   717     }
   718     if (TraceReferenceGC) {
   719       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   720                              clear_referent ? "cleared " : "",
   721                              iter.obj(), iter.obj()->blueprint()->internal_name());
   722     }
   723     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   724     // If discovery is concurrent, we may have objects with null referents,
   725     // being those that were concurrently cleared after they were discovered
   726     // (and not subsequently precleaned).
   727     assert(   (discovery_is_atomic() && iter.referent()->is_oop())
   728            || (!discovery_is_atomic() && iter.referent()->is_oop_or_null(UseConcMarkSweepGC)),
   729            "Adding a bad referent");
   730     iter.next();
   731   }
   732   // Remember to keep sentinel pointer around
   733   iter.update_discovered();
   734   // Close the reachable set
   735   complete_gc->do_void();
   736 }
   738 void
   739 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   740   oop obj = refs_list.head();
   741   while (obj != sentinel_ref()) {
   742     oop discovered = java_lang_ref_Reference::discovered(obj);
   743     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   744     obj = discovered;
   745   }
   746   refs_list.set_head(sentinel_ref());
   747   refs_list.set_length(0);
   748 }
   750 void ReferenceProcessor::abandon_partial_discovery() {
   751   // loop over the lists
   752   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
   753     if (TraceReferenceGC && PrintGCDetails && ((i % _num_q) == 0)) {
   754       gclog_or_tty->print_cr(
   755         "\nAbandoning %s discovered list",
   756         list_name(i));
   757     }
   758     abandon_partial_discovered_list(_discoveredSoftRefs[i]);
   759   }
   760 }
   762 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   763 public:
   764   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   765                     DiscoveredList      refs_lists[],
   766                     ReferencePolicy*    policy,
   767                     bool                marks_oops_alive)
   768     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   769       _policy(policy)
   770   { }
   771   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   772                     OopClosure& keep_alive,
   773                     VoidClosure& complete_gc)
   774   {
   775     _ref_processor.process_phase1(_refs_lists[i], _policy,
   776                                   &is_alive, &keep_alive, &complete_gc);
   777   }
   778 private:
   779   ReferencePolicy* _policy;
   780 };
   782 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   783 public:
   784   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   785                     DiscoveredList      refs_lists[],
   786                     bool                marks_oops_alive)
   787     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   788   { }
   789   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   790                     OopClosure& keep_alive,
   791                     VoidClosure& complete_gc)
   792   {
   793     _ref_processor.process_phase2(_refs_lists[i],
   794                                   &is_alive, &keep_alive, &complete_gc);
   795   }
   796 };
   798 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   799 public:
   800   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   801                     DiscoveredList      refs_lists[],
   802                     bool                clear_referent,
   803                     bool                marks_oops_alive)
   804     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   805       _clear_referent(clear_referent)
   806   { }
   807   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   808                     OopClosure& keep_alive,
   809                     VoidClosure& complete_gc)
   810   {
   811     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   812                                   &is_alive, &keep_alive, &complete_gc);
   813   }
   814 private:
   815   bool _clear_referent;
   816 };
   818 // Balances reference queues.
   819 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   820 {
   821   // calculate total length
   822   size_t total_refs = 0;
   823   for (int i = 0; i < _num_q; ++i) {
   824     total_refs += ref_lists[i].length();
   825   }
   826   size_t avg_refs = total_refs / _num_q + 1;
   827   int to_idx = 0;
   828   for (int from_idx = 0; from_idx < _num_q; from_idx++) {
   829     while (ref_lists[from_idx].length() > avg_refs) {
   830       assert(to_idx < _num_q, "Sanity Check!");
   831       if (ref_lists[to_idx].length() < avg_refs) {
   832         // move superfluous refs
   833         size_t refs_to_move =
   834           MIN2(ref_lists[from_idx].length() - avg_refs,
   835                avg_refs - ref_lists[to_idx].length());
   836         oop move_head = ref_lists[from_idx].head();
   837         oop move_tail = move_head;
   838         oop new_head  = move_head;
   839         // find an element to split the list on
   840         for (size_t j = 0; j < refs_to_move; ++j) {
   841           move_tail = new_head;
   842           new_head = java_lang_ref_Reference::discovered(new_head);
   843         }
   844         java_lang_ref_Reference::set_discovered(move_tail, ref_lists[to_idx].head());
   845         ref_lists[to_idx].set_head(move_head);
   846         ref_lists[to_idx].inc_length(refs_to_move);
   847         ref_lists[from_idx].set_head(new_head);
   848         ref_lists[from_idx].dec_length(refs_to_move);
   849       } else {
   850         ++to_idx;
   851       }
   852     }
   853   }
   854 }
   856 void
   857 ReferenceProcessor::process_discovered_reflist(
   858   DiscoveredList               refs_lists[],
   859   ReferencePolicy*             policy,
   860   bool                         clear_referent,
   861   BoolObjectClosure*           is_alive,
   862   OopClosure*                  keep_alive,
   863   VoidClosure*                 complete_gc,
   864   AbstractRefProcTaskExecutor* task_executor)
   865 {
   866   bool mt = task_executor != NULL && _processing_is_mt;
   867   if (mt && ParallelRefProcBalancingEnabled) {
   868     balance_queues(refs_lists);
   869   }
   870   if (PrintReferenceGC && PrintGCDetails) {
   871     size_t total = 0;
   872     for (int i = 0; i < _num_q; ++i) {
   873       total += refs_lists[i].length();
   874     }
   875     gclog_or_tty->print(", %u refs", total);
   876   }
   878   // Phase 1 (soft refs only):
   879   // . Traverse the list and remove any SoftReferences whose
   880   //   referents are not alive, but that should be kept alive for
   881   //   policy reasons. Keep alive the transitive closure of all
   882   //   such referents.
   883   if (policy != NULL) {
   884     if (mt) {
   885       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   886       task_executor->execute(phase1);
   887     } else {
   888       for (int i = 0; i < _num_q; i++) {
   889         process_phase1(refs_lists[i], policy,
   890                        is_alive, keep_alive, complete_gc);
   891       }
   892     }
   893   } else { // policy == NULL
   894     assert(refs_lists != _discoveredSoftRefs,
   895            "Policy must be specified for soft references.");
   896   }
   898   // Phase 2:
   899   // . Traverse the list and remove any refs whose referents are alive.
   900   if (mt) {
   901     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   902     task_executor->execute(phase2);
   903   } else {
   904     for (int i = 0; i < _num_q; i++) {
   905       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   906     }
   907   }
   909   // Phase 3:
   910   // . Traverse the list and process referents as appropriate.
   911   if (mt) {
   912     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   913     task_executor->execute(phase3);
   914   } else {
   915     for (int i = 0; i < _num_q; i++) {
   916       process_phase3(refs_lists[i], clear_referent,
   917                      is_alive, keep_alive, complete_gc);
   918     }
   919   }
   920 }
   922 void ReferenceProcessor::clean_up_discovered_references() {
   923   // loop over the lists
   924   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
   925     if (TraceReferenceGC && PrintGCDetails && ((i % _num_q) == 0)) {
   926       gclog_or_tty->print_cr(
   927         "\nScrubbing %s discovered list of Null referents",
   928         list_name(i));
   929     }
   930     clean_up_discovered_reflist(_discoveredSoftRefs[i]);
   931   }
   932 }
   934 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
   935   assert(!discovery_is_atomic(), "Else why call this method?");
   936   DiscoveredListIterator iter(refs_list, NULL, NULL);
   937   while (iter.has_next()) {
   938     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   939     oop next = java_lang_ref_Reference::next(iter.obj());
   940     assert(next->is_oop_or_null(), "bad next field");
   941     // If referent has been cleared or Reference is not active,
   942     // drop it.
   943     if (iter.referent() == NULL || next != NULL) {
   944       debug_only(
   945         if (PrintGCDetails && TraceReferenceGC) {
   946           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
   947             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
   948             " and referent: " INTPTR_FORMAT,
   949             iter.obj(), next, iter.referent());
   950         }
   951       )
   952       // Remove Reference object from list
   953       iter.remove();
   954       iter.move_to_next();
   955     } else {
   956       iter.next();
   957     }
   958   }
   959   NOT_PRODUCT(
   960     if (PrintGCDetails && TraceReferenceGC) {
   961       gclog_or_tty->print(
   962         " Removed %d Refs with NULL referents out of %d discovered Refs",
   963         iter.removed(), iter.processed());
   964     }
   965   )
   966 }
   968 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
   969   int id = 0;
   970   // Determine the queue index to use for this object.
   971   if (_discovery_is_mt) {
   972     // During a multi-threaded discovery phase,
   973     // each thread saves to its "own" list.
   974     Thread* thr = Thread::current();
   975     assert(thr->is_GC_task_thread(),
   976            "Dubious cast from Thread* to WorkerThread*?");
   977     id = ((WorkerThread*)thr)->id();
   978   } else {
   979     // single-threaded discovery, we save in round-robin
   980     // fashion to each of the lists.
   981     if (_processing_is_mt) {
   982       id = next_id();
   983     }
   984   }
   985   assert(0 <= id && id < _num_q, "Id is out-of-bounds (call Freud?)");
   987   // Get the discovered queue to which we will add
   988   DiscoveredList* list = NULL;
   989   switch (rt) {
   990     case REF_OTHER:
   991       // Unknown reference type, no special treatment
   992       break;
   993     case REF_SOFT:
   994       list = &_discoveredSoftRefs[id];
   995       break;
   996     case REF_WEAK:
   997       list = &_discoveredWeakRefs[id];
   998       break;
   999     case REF_FINAL:
  1000       list = &_discoveredFinalRefs[id];
  1001       break;
  1002     case REF_PHANTOM:
  1003       list = &_discoveredPhantomRefs[id];
  1004       break;
  1005     case REF_NONE:
  1006       // we should not reach here if we are an instanceRefKlass
  1007     default:
  1008       ShouldNotReachHere();
  1010   return list;
  1013 inline void
  1014 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1015                                               oop             obj,
  1016                                               HeapWord*       discovered_addr) {
  1017   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1018   // First we must make sure this object is only enqueued once. CAS in a non null
  1019   // discovered_addr.
  1020   oop current_head = refs_list.head();
  1022   // Note: In the case of G1, this pre-barrier is strictly
  1023   // not necessary because the only case we are interested in
  1024   // here is when *discovered_addr is NULL, so this will expand to
  1025   // nothing. As a result, I am just manually eliding this out for G1.
  1026   if (_discovered_list_needs_barrier && !UseG1GC) {
  1027     _bs->write_ref_field_pre((void*)discovered_addr, current_head); guarantee(false, "Needs to be fixed: YSR");
  1029   oop retest = oopDesc::atomic_compare_exchange_oop(current_head, discovered_addr,
  1030                                                     NULL);
  1031   if (retest == NULL) {
  1032     // This thread just won the right to enqueue the object.
  1033     // We have separate lists for enqueueing so no synchronization
  1034     // is necessary.
  1035     refs_list.set_head(obj);
  1036     refs_list.inc_length(1);
  1037     if (_discovered_list_needs_barrier) {
  1038       _bs->write_ref_field((void*)discovered_addr, current_head); guarantee(false, "Needs to be fixed: YSR");
  1041   } else {
  1042     // If retest was non NULL, another thread beat us to it:
  1043     // The reference has already been discovered...
  1044     if (TraceReferenceGC) {
  1045       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
  1046                              obj, obj->blueprint()->internal_name());
  1051 // We mention two of several possible choices here:
  1052 // #0: if the reference object is not in the "originating generation"
  1053 //     (or part of the heap being collected, indicated by our "span"
  1054 //     we don't treat it specially (i.e. we scan it as we would
  1055 //     a normal oop, treating its references as strong references).
  1056 //     This means that references can't be enqueued unless their
  1057 //     referent is also in the same span. This is the simplest,
  1058 //     most "local" and most conservative approach, albeit one
  1059 //     that may cause weak references to be enqueued least promptly.
  1060 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1061 // #1: the reference object may be in any generation (span), but if
  1062 //     the referent is in the generation (span) being currently collected
  1063 //     then we can discover the reference object, provided
  1064 //     the object has not already been discovered by
  1065 //     a different concurrently running collector (as may be the
  1066 //     case, for instance, if the reference object is in CMS and
  1067 //     the referent in DefNewGeneration), and provided the processing
  1068 //     of this reference object by the current collector will
  1069 //     appear atomic to every other collector in the system.
  1070 //     (Thus, for instance, a concurrent collector may not
  1071 //     discover references in other generations even if the
  1072 //     referent is in its own generation). This policy may,
  1073 //     in certain cases, enqueue references somewhat sooner than
  1074 //     might Policy #0 above, but at marginally increased cost
  1075 //     and complexity in processing these references.
  1076 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1077 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1078   // We enqueue references only if we are discovering refs
  1079   // (rather than processing discovered refs).
  1080   if (!_discovering_refs || !RegisterReferences) {
  1081     return false;
  1083   // We only enqueue active references.
  1084   oop next = java_lang_ref_Reference::next(obj);
  1085   if (next != NULL) {
  1086     return false;
  1089   HeapWord* obj_addr = (HeapWord*)obj;
  1090   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1091       !_span.contains(obj_addr)) {
  1092     // Reference is not in the originating generation;
  1093     // don't treat it specially (i.e. we want to scan it as a normal
  1094     // object with strong references).
  1095     return false;
  1098   // We only enqueue references whose referents are not (yet) strongly
  1099   // reachable.
  1100   if (is_alive_non_header() != NULL) {
  1101     oop referent = java_lang_ref_Reference::referent(obj);
  1102     // In the case of non-concurrent discovery, the last
  1103     // disjunct below should hold. It may not hold in the
  1104     // case of concurrent discovery because mutators may
  1105     // concurrently clear() a Reference.
  1106     assert(UseConcMarkSweepGC || UseG1GC || referent != NULL,
  1107            "Refs with null referents already filtered");
  1108     if (is_alive_non_header()->do_object_b(referent)) {
  1109       return false;  // referent is reachable
  1112   if (rt == REF_SOFT) {
  1113     // For soft refs we can decide now if these are not
  1114     // current candidates for clearing, in which case we
  1115     // can mark through them now, rather than delaying that
  1116     // to the reference-processing phase. Since all current
  1117     // time-stamp policies advance the soft-ref clock only
  1118     // at a major collection cycle, this is always currently
  1119     // accurate.
  1120     if (!_current_soft_ref_policy->should_clear_reference(obj)) {
  1121       return false;
  1125   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1126   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1127   assert(discovered->is_oop_or_null(), "bad discovered field");
  1128   if (discovered != NULL) {
  1129     // The reference has already been discovered...
  1130     if (TraceReferenceGC) {
  1131       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
  1132                              obj, obj->blueprint()->internal_name());
  1134     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1135       // assumes that an object is not processed twice;
  1136       // if it's been already discovered it must be on another
  1137       // generation's discovered list; so we won't discover it.
  1138       return false;
  1139     } else {
  1140       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1141              "Unrecognized policy");
  1142       // Check assumption that an object is not potentially
  1143       // discovered twice except by concurrent collectors that potentially
  1144       // trace the same Reference object twice.
  1145       assert(UseConcMarkSweepGC,
  1146              "Only possible with an incremental-update concurrent collector");
  1147       return true;
  1151   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1152     oop referent = java_lang_ref_Reference::referent(obj);
  1153     assert(referent->is_oop(), "bad referent");
  1154     // enqueue if and only if either:
  1155     // reference is in our span or
  1156     // we are an atomic collector and referent is in our span
  1157     if (_span.contains(obj_addr) ||
  1158         (discovery_is_atomic() && _span.contains(referent))) {
  1159       // should_enqueue = true;
  1160     } else {
  1161       return false;
  1163   } else {
  1164     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1165            _span.contains(obj_addr), "code inconsistency");
  1168   // Get the right type of discovered queue head.
  1169   DiscoveredList* list = get_discovered_list(rt);
  1170   if (list == NULL) {
  1171     return false;   // nothing special needs to be done
  1174   if (_discovery_is_mt) {
  1175     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1176   } else {
  1177     // If "_discovered_list_needs_barrier", we do write barriers when
  1178     // updating the discovered reference list.  Otherwise, we do a raw store
  1179     // here: the field will be visited later when processing the discovered
  1180     // references.
  1181     oop current_head = list->head();
  1182     // As in the case further above, since we are over-writing a NULL
  1183     // pre-value, we can safely elide the pre-barrier here for the case of G1.
  1184     assert(discovered == NULL, "control point invariant");
  1185     if (_discovered_list_needs_barrier && !UseG1GC) { // safe to elide for G1
  1186       _bs->write_ref_field_pre((oop*)discovered_addr, current_head);
  1188     oop_store_raw(discovered_addr, current_head);
  1189     if (_discovered_list_needs_barrier) {
  1190       _bs->write_ref_field((oop*)discovered_addr, current_head);
  1192     list->set_head(obj);
  1193     list->inc_length(1);
  1196   // In the MT discovery case, it is currently possible to see
  1197   // the following message multiple times if several threads
  1198   // discover a reference about the same time. Only one will
  1199   // however have actually added it to the disocvered queue.
  1200   // One could let add_to_discovered_list_mt() return an
  1201   // indication for success in queueing (by 1 thread) or
  1202   // failure (by all other threads), but I decided the extra
  1203   // code was not worth the effort for something that is
  1204   // only used for debugging support.
  1205   if (TraceReferenceGC) {
  1206     oop referent = java_lang_ref_Reference::referent(obj);
  1207     if (PrintGCDetails) {
  1208       gclog_or_tty->print_cr("Enqueued reference (" INTPTR_FORMAT ": %s)",
  1209                              obj, obj->blueprint()->internal_name());
  1211     assert(referent->is_oop(), "Enqueued a bad referent");
  1213   assert(obj->is_oop(), "Enqueued a bad reference");
  1214   return true;
  1217 // Preclean the discovered references by removing those
  1218 // whose referents are alive, and by marking from those that
  1219 // are not active. These lists can be handled here
  1220 // in any order and, indeed, concurrently.
  1221 void ReferenceProcessor::preclean_discovered_references(
  1222   BoolObjectClosure* is_alive,
  1223   OopClosure* keep_alive,
  1224   VoidClosure* complete_gc,
  1225   YieldClosure* yield) {
  1227   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1229   // Soft references
  1231     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1232               false, gclog_or_tty);
  1233     for (int i = 0; i < _num_q; i++) {
  1234       if (yield->should_return()) {
  1235         return;
  1237       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1238                                   keep_alive, complete_gc, yield);
  1242   // Weak references
  1244     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1245               false, gclog_or_tty);
  1246     for (int i = 0; i < _num_q; i++) {
  1247       if (yield->should_return()) {
  1248         return;
  1250       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1251                                   keep_alive, complete_gc, yield);
  1255   // Final references
  1257     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1258               false, gclog_or_tty);
  1259     for (int i = 0; i < _num_q; i++) {
  1260       if (yield->should_return()) {
  1261         return;
  1263       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1264                                   keep_alive, complete_gc, yield);
  1268   // Phantom references
  1270     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1271               false, gclog_or_tty);
  1272     for (int i = 0; i < _num_q; i++) {
  1273       if (yield->should_return()) {
  1274         return;
  1276       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1277                                   keep_alive, complete_gc, yield);
  1282 // Walk the given discovered ref list, and remove all reference objects
  1283 // whose referents are still alive, whose referents are NULL or which
  1284 // are not active (have a non-NULL next field). NOTE: When we are
  1285 // thus precleaning the ref lists (which happens single-threaded today),
  1286 // we do not disable refs discovery to honour the correct semantics of
  1287 // java.lang.Reference. As a result, we need to be careful below
  1288 // that ref removal steps interleave safely with ref discovery steps
  1289 // (in this thread).
  1290 void
  1291 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1292                                                 BoolObjectClosure* is_alive,
  1293                                                 OopClosure*        keep_alive,
  1294                                                 VoidClosure*       complete_gc,
  1295                                                 YieldClosure*      yield) {
  1296   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1297   while (iter.has_next()) {
  1298     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1299     oop obj = iter.obj();
  1300     oop next = java_lang_ref_Reference::next(obj);
  1301     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1302         next != NULL) {
  1303       // The referent has been cleared, or is alive, or the Reference is not
  1304       // active; we need to trace and mark its cohort.
  1305       if (TraceReferenceGC) {
  1306         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1307                                iter.obj(), iter.obj()->blueprint()->internal_name());
  1309       // Remove Reference object from list
  1310       iter.remove();
  1311       // Keep alive its cohort.
  1312       iter.make_referent_alive();
  1313       if (UseCompressedOops) {
  1314         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1315         keep_alive->do_oop(next_addr);
  1316       } else {
  1317         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1318         keep_alive->do_oop(next_addr);
  1320       iter.move_to_next();
  1321     } else {
  1322       iter.next();
  1325   // Close the reachable set
  1326   complete_gc->do_void();
  1328   NOT_PRODUCT(
  1329     if (PrintGCDetails && PrintReferenceGC) {
  1330       gclog_or_tty->print(" Dropped %d Refs out of %d "
  1331         "Refs in discovered list ", iter.removed(), iter.processed());
  1336 const char* ReferenceProcessor::list_name(int i) {
  1337    assert(i >= 0 && i <= _num_q * subclasses_of_ref, "Out of bounds index");
  1338    int j = i / _num_q;
  1339    switch (j) {
  1340      case 0: return "SoftRef";
  1341      case 1: return "WeakRef";
  1342      case 2: return "FinalRef";
  1343      case 3: return "PhantomRef";
  1345    ShouldNotReachHere();
  1346    return NULL;
  1349 #ifndef PRODUCT
  1350 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1351   // empty for now
  1353 #endif
  1355 void ReferenceProcessor::verify() {
  1356   guarantee(sentinel_ref() != NULL && sentinel_ref()->is_oop(), "Lost _sentinelRef");
  1359 #ifndef PRODUCT
  1360 void ReferenceProcessor::clear_discovered_references() {
  1361   guarantee(!_discovering_refs, "Discovering refs?");
  1362   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
  1363     oop obj = _discoveredSoftRefs[i].head();
  1364     while (obj != sentinel_ref()) {
  1365       oop next = java_lang_ref_Reference::discovered(obj);
  1366       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
  1367       obj = next;
  1369     _discoveredSoftRefs[i].set_head(sentinel_ref());
  1370     _discoveredSoftRefs[i].set_length(0);
  1373 #endif // PRODUCT

mercurial