src/share/vm/memory/generation.cpp

Mon, 01 Dec 2008 23:25:24 -0800

author
ysr
date
Mon, 01 Dec 2008 23:25:24 -0800
changeset 892
27a80744a83b
parent 706
818a18cd69a8
child 952
e9be0e04635a
permissions
-rw-r--r--

6778647: snap(), snap_policy() should be renamed setup(), setup_policy()
Summary: Renamed Reference{Policy,Pocessor} methods from snap{,_policy}() to setup{,_policy}()
Reviewed-by: apetrusenko

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_generation.cpp.incl"
    28 Generation::Generation(ReservedSpace rs, size_t initial_size, int level) :
    29   _level(level),
    30   _ref_processor(NULL) {
    31   if (!_virtual_space.initialize(rs, initial_size)) {
    32     vm_exit_during_initialization("Could not reserve enough space for "
    33                     "object heap");
    34   }
    35   // Mangle all of the the initial generation.
    36   if (ZapUnusedHeapArea) {
    37     MemRegion mangle_region((HeapWord*)_virtual_space.low(),
    38       (HeapWord*)_virtual_space.high());
    39     SpaceMangler::mangle_region(mangle_region);
    40   }
    41   _reserved = MemRegion((HeapWord*)_virtual_space.low_boundary(),
    42           (HeapWord*)_virtual_space.high_boundary());
    43 }
    45 GenerationSpec* Generation::spec() {
    46   GenCollectedHeap* gch = GenCollectedHeap::heap();
    47   assert(0 <= level() && level() < gch->_n_gens, "Bad gen level");
    48   return gch->_gen_specs[level()];
    49 }
    51 size_t Generation::max_capacity() const {
    52   return reserved().byte_size();
    53 }
    55 void Generation::print_heap_change(size_t prev_used) const {
    56   if (PrintGCDetails && Verbose) {
    57     gclog_or_tty->print(" "  SIZE_FORMAT
    58                         "->" SIZE_FORMAT
    59                         "("  SIZE_FORMAT ")",
    60                         prev_used, used(), capacity());
    61   } else {
    62     gclog_or_tty->print(" "  SIZE_FORMAT "K"
    63                         "->" SIZE_FORMAT "K"
    64                         "("  SIZE_FORMAT "K)",
    65                         prev_used / K, used() / K, capacity() / K);
    66   }
    67 }
    69 // By default we get a single threaded default reference processor;
    70 // generations needing multi-threaded refs discovery override this method.
    71 void Generation::ref_processor_init() {
    72   assert(_ref_processor == NULL, "a reference processor already exists");
    73   assert(!_reserved.is_empty(), "empty generation?");
    74   _ref_processor =
    75     new ReferenceProcessor(_reserved,                  // span
    76                            refs_discovery_is_atomic(), // atomic_discovery
    77                            refs_discovery_is_mt());    // mt_discovery
    78   if (_ref_processor == NULL) {
    79     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
    80   }
    81 }
    83 void Generation::print() const { print_on(tty); }
    85 void Generation::print_on(outputStream* st)  const {
    86   st->print(" %-20s", name());
    87   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
    88              capacity()/K, used()/K);
    89   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
    90               _virtual_space.low_boundary(),
    91               _virtual_space.high(),
    92               _virtual_space.high_boundary());
    93 }
    95 void Generation::print_summary_info() { print_summary_info_on(tty); }
    97 void Generation::print_summary_info_on(outputStream* st) {
    98   StatRecord* sr = stat_record();
    99   double time = sr->accumulated_time.seconds();
   100   st->print_cr("[Accumulated GC generation %d time %3.7f secs, "
   101                "%d GC's, avg GC time %3.7f]",
   102                level(), time, sr->invocations,
   103                sr->invocations > 0 ? time / sr->invocations : 0.0);
   104 }
   106 // Utility iterator classes
   108 class GenerationIsInReservedClosure : public SpaceClosure {
   109  public:
   110   const void* _p;
   111   Space* sp;
   112   virtual void do_space(Space* s) {
   113     if (sp == NULL) {
   114       if (s->is_in_reserved(_p)) sp = s;
   115     }
   116   }
   117   GenerationIsInReservedClosure(const void* p) : _p(p), sp(NULL) {}
   118 };
   120 class GenerationIsInClosure : public SpaceClosure {
   121  public:
   122   const void* _p;
   123   Space* sp;
   124   virtual void do_space(Space* s) {
   125     if (sp == NULL) {
   126       if (s->is_in(_p)) sp = s;
   127     }
   128   }
   129   GenerationIsInClosure(const void* p) : _p(p), sp(NULL) {}
   130 };
   132 bool Generation::is_in(const void* p) const {
   133   GenerationIsInClosure blk(p);
   134   ((Generation*)this)->space_iterate(&blk);
   135   return blk.sp != NULL;
   136 }
   138 DefNewGeneration* Generation::as_DefNewGeneration() {
   139   assert((kind() == Generation::DefNew) ||
   140          (kind() == Generation::ParNew) ||
   141          (kind() == Generation::ASParNew),
   142     "Wrong youngest generation type");
   143   return (DefNewGeneration*) this;
   144 }
   146 Generation* Generation::next_gen() const {
   147   GenCollectedHeap* gch = GenCollectedHeap::heap();
   148   int next = level() + 1;
   149   if (next < gch->_n_gens) {
   150     return gch->_gens[next];
   151   } else {
   152     return NULL;
   153   }
   154 }
   156 size_t Generation::max_contiguous_available() const {
   157   // The largest number of contiguous free words in this or any higher generation.
   158   size_t max = 0;
   159   for (const Generation* gen = this; gen != NULL; gen = gen->next_gen()) {
   160     size_t avail = gen->contiguous_available();
   161     if (avail > max) {
   162       max = avail;
   163     }
   164   }
   165   return max;
   166 }
   168 bool Generation::promotion_attempt_is_safe(size_t promotion_in_bytes,
   169                                            bool not_used) const {
   170   if (PrintGC && Verbose) {
   171     gclog_or_tty->print_cr("Generation::promotion_attempt_is_safe"
   172                 " contiguous_available: " SIZE_FORMAT
   173                 " promotion_in_bytes: " SIZE_FORMAT,
   174                 max_contiguous_available(), promotion_in_bytes);
   175   }
   176   return max_contiguous_available() >= promotion_in_bytes;
   177 }
   179 // Ignores "ref" and calls allocate().
   180 oop Generation::promote(oop obj, size_t obj_size) {
   181   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
   183 #ifndef PRODUCT
   184   if (Universe::heap()->promotion_should_fail()) {
   185     return NULL;
   186   }
   187 #endif  // #ifndef PRODUCT
   189   HeapWord* result = allocate(obj_size, false);
   190   if (result != NULL) {
   191     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
   192     return oop(result);
   193   } else {
   194     GenCollectedHeap* gch = GenCollectedHeap::heap();
   195     return gch->handle_failed_promotion(this, obj, obj_size);
   196   }
   197 }
   199 oop Generation::par_promote(int thread_num,
   200                             oop obj, markOop m, size_t word_sz) {
   201   // Could do a bad general impl here that gets a lock.  But no.
   202   ShouldNotCallThis();
   203   return NULL;
   204 }
   206 void Generation::par_promote_alloc_undo(int thread_num,
   207                                         HeapWord* obj, size_t word_sz) {
   208   // Could do a bad general impl here that gets a lock.  But no.
   209   guarantee(false, "No good general implementation.");
   210 }
   212 Space* Generation::space_containing(const void* p) const {
   213   GenerationIsInReservedClosure blk(p);
   214   // Cast away const
   215   ((Generation*)this)->space_iterate(&blk);
   216   return blk.sp;
   217 }
   219 // Some of these are mediocre general implementations.  Should be
   220 // overridden to get better performance.
   222 class GenerationBlockStartClosure : public SpaceClosure {
   223  public:
   224   const void* _p;
   225   HeapWord* _start;
   226   virtual void do_space(Space* s) {
   227     if (_start == NULL && s->is_in_reserved(_p)) {
   228       _start = s->block_start(_p);
   229     }
   230   }
   231   GenerationBlockStartClosure(const void* p) { _p = p; _start = NULL; }
   232 };
   234 HeapWord* Generation::block_start(const void* p) const {
   235   GenerationBlockStartClosure blk(p);
   236   // Cast away const
   237   ((Generation*)this)->space_iterate(&blk);
   238   return blk._start;
   239 }
   241 class GenerationBlockSizeClosure : public SpaceClosure {
   242  public:
   243   const HeapWord* _p;
   244   size_t size;
   245   virtual void do_space(Space* s) {
   246     if (size == 0 && s->is_in_reserved(_p)) {
   247       size = s->block_size(_p);
   248     }
   249   }
   250   GenerationBlockSizeClosure(const HeapWord* p) { _p = p; size = 0; }
   251 };
   253 size_t Generation::block_size(const HeapWord* p) const {
   254   GenerationBlockSizeClosure blk(p);
   255   // Cast away const
   256   ((Generation*)this)->space_iterate(&blk);
   257   assert(blk.size > 0, "seems reasonable");
   258   return blk.size;
   259 }
   261 class GenerationBlockIsObjClosure : public SpaceClosure {
   262  public:
   263   const HeapWord* _p;
   264   bool is_obj;
   265   virtual void do_space(Space* s) {
   266     if (!is_obj && s->is_in_reserved(_p)) {
   267       is_obj |= s->block_is_obj(_p);
   268     }
   269   }
   270   GenerationBlockIsObjClosure(const HeapWord* p) { _p = p; is_obj = false; }
   271 };
   273 bool Generation::block_is_obj(const HeapWord* p) const {
   274   GenerationBlockIsObjClosure blk(p);
   275   // Cast away const
   276   ((Generation*)this)->space_iterate(&blk);
   277   return blk.is_obj;
   278 }
   280 class GenerationOopIterateClosure : public SpaceClosure {
   281  public:
   282   OopClosure* cl;
   283   MemRegion mr;
   284   virtual void do_space(Space* s) {
   285     s->oop_iterate(mr, cl);
   286   }
   287   GenerationOopIterateClosure(OopClosure* _cl, MemRegion _mr) :
   288     cl(_cl), mr(_mr) {}
   289 };
   291 void Generation::oop_iterate(OopClosure* cl) {
   292   GenerationOopIterateClosure blk(cl, _reserved);
   293   space_iterate(&blk);
   294 }
   296 void Generation::oop_iterate(MemRegion mr, OopClosure* cl) {
   297   GenerationOopIterateClosure blk(cl, mr);
   298   space_iterate(&blk);
   299 }
   301 void Generation::younger_refs_in_space_iterate(Space* sp,
   302                                                OopsInGenClosure* cl) {
   303   GenRemSet* rs = SharedHeap::heap()->rem_set();
   304   rs->younger_refs_in_space_iterate(sp, cl);
   305 }
   307 class GenerationObjIterateClosure : public SpaceClosure {
   308  private:
   309   ObjectClosure* _cl;
   310  public:
   311   virtual void do_space(Space* s) {
   312     s->object_iterate(_cl);
   313   }
   314   GenerationObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
   315 };
   317 void Generation::object_iterate(ObjectClosure* cl) {
   318   GenerationObjIterateClosure blk(cl);
   319   space_iterate(&blk);
   320 }
   322 void Generation::prepare_for_compaction(CompactPoint* cp) {
   323   // Generic implementation, can be specialized
   324   CompactibleSpace* space = first_compaction_space();
   325   while (space != NULL) {
   326     space->prepare_for_compaction(cp);
   327     space = space->next_compaction_space();
   328   }
   329 }
   331 class AdjustPointersClosure: public SpaceClosure {
   332  public:
   333   void do_space(Space* sp) {
   334     sp->adjust_pointers();
   335   }
   336 };
   338 void Generation::adjust_pointers() {
   339   // Note that this is done over all spaces, not just the compactible
   340   // ones.
   341   AdjustPointersClosure blk;
   342   space_iterate(&blk, true);
   343 }
   345 void Generation::compact() {
   346   CompactibleSpace* sp = first_compaction_space();
   347   while (sp != NULL) {
   348     sp->compact();
   349     sp = sp->next_compaction_space();
   350   }
   351 }
   353 CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size,
   354                                int level,
   355                                GenRemSet* remset) :
   356   Generation(rs, initial_byte_size, level), _rs(remset)
   357 {
   358   HeapWord* start = (HeapWord*)rs.base();
   359   size_t reserved_byte_size = rs.size();
   360   assert((uintptr_t(start) & 3) == 0, "bad alignment");
   361   assert((reserved_byte_size & 3) == 0, "bad alignment");
   362   MemRegion reserved_mr(start, heap_word_size(reserved_byte_size));
   363   _bts = new BlockOffsetSharedArray(reserved_mr,
   364                                     heap_word_size(initial_byte_size));
   365   MemRegion committed_mr(start, heap_word_size(initial_byte_size));
   366   _rs->resize_covered_region(committed_mr);
   367   if (_bts == NULL)
   368     vm_exit_during_initialization("Could not allocate a BlockOffsetArray");
   370   // Verify that the start and end of this generation is the start of a card.
   371   // If this wasn't true, a single card could span more than on generation,
   372   // which would cause problems when we commit/uncommit memory, and when we
   373   // clear and dirty cards.
   374   guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned");
   375   if (reserved_mr.end() != Universe::heap()->reserved_region().end()) {
   376     // Don't check at the very end of the heap as we'll assert that we're probing off
   377     // the end if we try.
   378     guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned");
   379   }
   380 }
   382 bool CardGeneration::expand(size_t bytes, size_t expand_bytes) {
   383   assert_locked_or_safepoint(Heap_lock);
   384   if (bytes == 0) {
   385     return true;  // That's what grow_by(0) would return
   386   }
   387   size_t aligned_bytes  = ReservedSpace::page_align_size_up(bytes);
   388   if (aligned_bytes == 0){
   389     // The alignment caused the number of bytes to wrap.  An expand_by(0) will
   390     // return true with the implication that an expansion was done when it
   391     // was not.  A call to expand implies a best effort to expand by "bytes"
   392     // but not a guarantee.  Align down to give a best effort.  This is likely
   393     // the most that the generation can expand since it has some capacity to
   394     // start with.
   395     aligned_bytes = ReservedSpace::page_align_size_down(bytes);
   396   }
   397   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
   398   bool success = false;
   399   if (aligned_expand_bytes > aligned_bytes) {
   400     success = grow_by(aligned_expand_bytes);
   401   }
   402   if (!success) {
   403     success = grow_by(aligned_bytes);
   404   }
   405   if (!success) {
   406     success = grow_to_reserved();
   407   }
   408   if (PrintGC && Verbose) {
   409     if (success && GC_locker::is_active()) {
   410       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
   411     }
   412   }
   414   return success;
   415 }
   418 // No young generation references, clear this generation's cards.
   419 void CardGeneration::clear_remembered_set() {
   420   _rs->clear(reserved());
   421 }
   424 // Objects in this generation may have moved, invalidate this
   425 // generation's cards.
   426 void CardGeneration::invalidate_remembered_set() {
   427   _rs->invalidate(used_region());
   428 }
   431 // Currently nothing to do.
   432 void CardGeneration::prepare_for_verify() {}
   435 void OneContigSpaceCardGeneration::collect(bool   full,
   436                                            bool   clear_all_soft_refs,
   437                                            size_t size,
   438                                            bool   is_tlab) {
   439   SpecializationStats::clear();
   440   // Temporarily expand the span of our ref processor, so
   441   // refs discovery is over the entire heap, not just this generation
   442   ReferenceProcessorSpanMutator
   443     x(ref_processor(), GenCollectedHeap::heap()->reserved_region());
   444   GenMarkSweep::invoke_at_safepoint(_level, ref_processor(), clear_all_soft_refs);
   445   SpecializationStats::print();
   446 }
   448 HeapWord*
   449 OneContigSpaceCardGeneration::expand_and_allocate(size_t word_size,
   450                                                   bool is_tlab,
   451                                                   bool parallel) {
   452   assert(!is_tlab, "OneContigSpaceCardGeneration does not support TLAB allocation");
   453   if (parallel) {
   454     MutexLocker x(ParGCRareEvent_lock);
   455     HeapWord* result = NULL;
   456     size_t byte_size = word_size * HeapWordSize;
   457     while (true) {
   458       expand(byte_size, _min_heap_delta_bytes);
   459       if (GCExpandToAllocateDelayMillis > 0) {
   460         os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
   461       }
   462       result = _the_space->par_allocate(word_size);
   463       if ( result != NULL) {
   464         return result;
   465       } else {
   466         // If there's not enough expansion space available, give up.
   467         if (_virtual_space.uncommitted_size() < byte_size) {
   468           return NULL;
   469         }
   470         // else try again
   471       }
   472     }
   473   } else {
   474     expand(word_size*HeapWordSize, _min_heap_delta_bytes);
   475     return _the_space->allocate(word_size);
   476   }
   477 }
   479 bool OneContigSpaceCardGeneration::expand(size_t bytes, size_t expand_bytes) {
   480   GCMutexLocker x(ExpandHeap_lock);
   481   return CardGeneration::expand(bytes, expand_bytes);
   482 }
   485 void OneContigSpaceCardGeneration::shrink(size_t bytes) {
   486   assert_locked_or_safepoint(ExpandHeap_lock);
   487   size_t size = ReservedSpace::page_align_size_down(bytes);
   488   if (size > 0) {
   489     shrink_by(size);
   490   }
   491 }
   494 size_t OneContigSpaceCardGeneration::capacity() const {
   495   return _the_space->capacity();
   496 }
   499 size_t OneContigSpaceCardGeneration::used() const {
   500   return _the_space->used();
   501 }
   504 size_t OneContigSpaceCardGeneration::free() const {
   505   return _the_space->free();
   506 }
   508 MemRegion OneContigSpaceCardGeneration::used_region() const {
   509   return the_space()->used_region();
   510 }
   512 size_t OneContigSpaceCardGeneration::unsafe_max_alloc_nogc() const {
   513   return _the_space->free();
   514 }
   516 size_t OneContigSpaceCardGeneration::contiguous_available() const {
   517   return _the_space->free() + _virtual_space.uncommitted_size();
   518 }
   520 bool OneContigSpaceCardGeneration::grow_by(size_t bytes) {
   521   assert_locked_or_safepoint(ExpandHeap_lock);
   522   bool result = _virtual_space.expand_by(bytes);
   523   if (result) {
   524     size_t new_word_size =
   525        heap_word_size(_virtual_space.committed_size());
   526     MemRegion mr(_the_space->bottom(), new_word_size);
   527     // Expand card table
   528     Universe::heap()->barrier_set()->resize_covered_region(mr);
   529     // Expand shared block offset array
   530     _bts->resize(new_word_size);
   532     // Fix for bug #4668531
   533     if (ZapUnusedHeapArea) {
   534       MemRegion mangle_region(_the_space->end(),
   535       (HeapWord*)_virtual_space.high());
   536       SpaceMangler::mangle_region(mangle_region);
   537     }
   539     // Expand space -- also expands space's BOT
   540     // (which uses (part of) shared array above)
   541     _the_space->set_end((HeapWord*)_virtual_space.high());
   543     // update the space and generation capacity counters
   544     update_counters();
   546     if (Verbose && PrintGC) {
   547       size_t new_mem_size = _virtual_space.committed_size();
   548       size_t old_mem_size = new_mem_size - bytes;
   549       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
   550                       SIZE_FORMAT "K to " SIZE_FORMAT "K",
   551                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
   552     }
   553   }
   554   return result;
   555 }
   558 bool OneContigSpaceCardGeneration::grow_to_reserved() {
   559   assert_locked_or_safepoint(ExpandHeap_lock);
   560   bool success = true;
   561   const size_t remaining_bytes = _virtual_space.uncommitted_size();
   562   if (remaining_bytes > 0) {
   563     success = grow_by(remaining_bytes);
   564     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
   565   }
   566   return success;
   567 }
   569 void OneContigSpaceCardGeneration::shrink_by(size_t bytes) {
   570   assert_locked_or_safepoint(ExpandHeap_lock);
   571   // Shrink committed space
   572   _virtual_space.shrink_by(bytes);
   573   // Shrink space; this also shrinks the space's BOT
   574   _the_space->set_end((HeapWord*) _virtual_space.high());
   575   size_t new_word_size = heap_word_size(_the_space->capacity());
   576   // Shrink the shared block offset array
   577   _bts->resize(new_word_size);
   578   MemRegion mr(_the_space->bottom(), new_word_size);
   579   // Shrink the card table
   580   Universe::heap()->barrier_set()->resize_covered_region(mr);
   582   if (Verbose && PrintGC) {
   583     size_t new_mem_size = _virtual_space.committed_size();
   584     size_t old_mem_size = new_mem_size + bytes;
   585     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
   586                   name(), old_mem_size/K, new_mem_size/K);
   587   }
   588 }
   590 // Currently nothing to do.
   591 void OneContigSpaceCardGeneration::prepare_for_verify() {}
   594 void OneContigSpaceCardGeneration::object_iterate(ObjectClosure* blk) {
   595   _the_space->object_iterate(blk);
   596 }
   598 void OneContigSpaceCardGeneration::space_iterate(SpaceClosure* blk,
   599                                                  bool usedOnly) {
   600   blk->do_space(_the_space);
   601 }
   603 void OneContigSpaceCardGeneration::object_iterate_since_last_GC(ObjectClosure* blk) {
   604   // Deal with delayed initialization of _the_space,
   605   // and lack of initialization of _last_gc.
   606   if (_last_gc.space() == NULL) {
   607     assert(the_space() != NULL, "shouldn't be NULL");
   608     _last_gc = the_space()->bottom_mark();
   609   }
   610   the_space()->object_iterate_from(_last_gc, blk);
   611 }
   613 void OneContigSpaceCardGeneration::younger_refs_iterate(OopsInGenClosure* blk) {
   614   blk->set_generation(this);
   615   younger_refs_in_space_iterate(_the_space, blk);
   616   blk->reset_generation();
   617 }
   619 void OneContigSpaceCardGeneration::save_marks() {
   620   _the_space->set_saved_mark();
   621 }
   624 void OneContigSpaceCardGeneration::reset_saved_marks() {
   625   _the_space->reset_saved_mark();
   626 }
   629 bool OneContigSpaceCardGeneration::no_allocs_since_save_marks() {
   630   return _the_space->saved_mark_at_top();
   631 }
   633 #define OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)      \
   634                                                                                 \
   635 void OneContigSpaceCardGeneration::                                             \
   636 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {                  \
   637   blk->set_generation(this);                                                    \
   638   _the_space->oop_since_save_marks_iterate##nv_suffix(blk);                     \
   639   blk->reset_generation();                                                      \
   640   save_marks();                                                                 \
   641 }
   643 ALL_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN)
   645 #undef OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN
   648 void OneContigSpaceCardGeneration::gc_epilogue(bool full) {
   649   _last_gc = WaterMark(the_space(), the_space()->top());
   651   // update the generation and space performance counters
   652   update_counters();
   653   if (ZapUnusedHeapArea) {
   654     the_space()->check_mangled_unused_area_complete();
   655   }
   656 }
   658 void OneContigSpaceCardGeneration::record_spaces_top() {
   659   assert(ZapUnusedHeapArea, "Not mangling unused space");
   660   the_space()->set_top_for_allocations();
   661 }
   663 void OneContigSpaceCardGeneration::verify(bool allow_dirty) {
   664   the_space()->verify(allow_dirty);
   665 }
   667 void OneContigSpaceCardGeneration::print_on(outputStream* st)  const {
   668   Generation::print_on(st);
   669   st->print("   the");
   670   the_space()->print_on(st);
   671 }

mercurial