src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

Mon, 01 Dec 2008 23:25:24 -0800

author
ysr
date
Mon, 01 Dec 2008 23:25:24 -0800
changeset 892
27a80744a83b
parent 888
c96030fff130
child 952
e9be0e04635a
permissions
-rw-r--r--

6778647: snap(), snap_policy() should be renamed setup(), setup_policy()
Summary: Renamed Reference{Policy,Pocessor} methods from snap{,_policy}() to setup{,_policy}()
Reviewed-by: apetrusenko

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_concurrentMarkSweepGeneration.cpp.incl"
    28 // statics
    29 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
    30 bool          CMSCollector::_full_gc_requested          = false;
    32 //////////////////////////////////////////////////////////////////
    33 // In support of CMS/VM thread synchronization
    34 //////////////////////////////////////////////////////////////////
    35 // We split use of the CGC_lock into 2 "levels".
    36 // The low-level locking is of the usual CGC_lock monitor. We introduce
    37 // a higher level "token" (hereafter "CMS token") built on top of the
    38 // low level monitor (hereafter "CGC lock").
    39 // The token-passing protocol gives priority to the VM thread. The
    40 // CMS-lock doesn't provide any fairness guarantees, but clients
    41 // should ensure that it is only held for very short, bounded
    42 // durations.
    43 //
    44 // When either of the CMS thread or the VM thread is involved in
    45 // collection operations during which it does not want the other
    46 // thread to interfere, it obtains the CMS token.
    47 //
    48 // If either thread tries to get the token while the other has
    49 // it, that thread waits. However, if the VM thread and CMS thread
    50 // both want the token, then the VM thread gets priority while the
    51 // CMS thread waits. This ensures, for instance, that the "concurrent"
    52 // phases of the CMS thread's work do not block out the VM thread
    53 // for long periods of time as the CMS thread continues to hog
    54 // the token. (See bug 4616232).
    55 //
    56 // The baton-passing functions are, however, controlled by the
    57 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
    58 // and here the low-level CMS lock, not the high level token,
    59 // ensures mutual exclusion.
    60 //
    61 // Two important conditions that we have to satisfy:
    62 // 1. if a thread does a low-level wait on the CMS lock, then it
    63 //    relinquishes the CMS token if it were holding that token
    64 //    when it acquired the low-level CMS lock.
    65 // 2. any low-level notifications on the low-level lock
    66 //    should only be sent when a thread has relinquished the token.
    67 //
    68 // In the absence of either property, we'd have potential deadlock.
    69 //
    70 // We protect each of the CMS (concurrent and sequential) phases
    71 // with the CMS _token_, not the CMS _lock_.
    72 //
    73 // The only code protected by CMS lock is the token acquisition code
    74 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
    75 // baton-passing code.
    76 //
    77 // Unfortunately, i couldn't come up with a good abstraction to factor and
    78 // hide the naked CGC_lock manipulation in the baton-passing code
    79 // further below. That's something we should try to do. Also, the proof
    80 // of correctness of this 2-level locking scheme is far from obvious,
    81 // and potentially quite slippery. We have an uneasy supsicion, for instance,
    82 // that there may be a theoretical possibility of delay/starvation in the
    83 // low-level lock/wait/notify scheme used for the baton-passing because of
    84 // potential intereference with the priority scheme embodied in the
    85 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
    86 // invocation further below and marked with "XXX 20011219YSR".
    87 // Indeed, as we note elsewhere, this may become yet more slippery
    88 // in the presence of multiple CMS and/or multiple VM threads. XXX
    90 class CMSTokenSync: public StackObj {
    91  private:
    92   bool _is_cms_thread;
    93  public:
    94   CMSTokenSync(bool is_cms_thread):
    95     _is_cms_thread(is_cms_thread) {
    96     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
    97            "Incorrect argument to constructor");
    98     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
    99   }
   101   ~CMSTokenSync() {
   102     assert(_is_cms_thread ?
   103              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
   104              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
   105           "Incorrect state");
   106     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
   107   }
   108 };
   110 // Convenience class that does a CMSTokenSync, and then acquires
   111 // upto three locks.
   112 class CMSTokenSyncWithLocks: public CMSTokenSync {
   113  private:
   114   // Note: locks are acquired in textual declaration order
   115   // and released in the opposite order
   116   MutexLockerEx _locker1, _locker2, _locker3;
   117  public:
   118   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
   119                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
   120     CMSTokenSync(is_cms_thread),
   121     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
   122     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
   123     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
   124   { }
   125 };
   128 // Wrapper class to temporarily disable icms during a foreground cms collection.
   129 class ICMSDisabler: public StackObj {
   130  public:
   131   // The ctor disables icms and wakes up the thread so it notices the change;
   132   // the dtor re-enables icms.  Note that the CMSCollector methods will check
   133   // CMSIncrementalMode.
   134   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
   135   ~ICMSDisabler() { CMSCollector::enable_icms(); }
   136 };
   138 //////////////////////////////////////////////////////////////////
   139 //  Concurrent Mark-Sweep Generation /////////////////////////////
   140 //////////////////////////////////////////////////////////////////
   142 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
   144 // This struct contains per-thread things necessary to support parallel
   145 // young-gen collection.
   146 class CMSParGCThreadState: public CHeapObj {
   147  public:
   148   CFLS_LAB lab;
   149   PromotionInfo promo;
   151   // Constructor.
   152   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
   153     promo.setSpace(cfls);
   154   }
   155 };
   157 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
   158      ReservedSpace rs, size_t initial_byte_size, int level,
   159      CardTableRS* ct, bool use_adaptive_freelists,
   160      FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
   161   CardGeneration(rs, initial_byte_size, level, ct),
   162   _dilatation_factor(((double)MinChunkSize)/((double)(oopDesc::header_size()))),
   163   _debug_collection_type(Concurrent_collection_type)
   164 {
   165   HeapWord* bottom = (HeapWord*) _virtual_space.low();
   166   HeapWord* end    = (HeapWord*) _virtual_space.high();
   168   _direct_allocated_words = 0;
   169   NOT_PRODUCT(
   170     _numObjectsPromoted = 0;
   171     _numWordsPromoted = 0;
   172     _numObjectsAllocated = 0;
   173     _numWordsAllocated = 0;
   174   )
   176   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
   177                                            use_adaptive_freelists,
   178                                            dictionaryChoice);
   179   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
   180   if (_cmsSpace == NULL) {
   181     vm_exit_during_initialization(
   182       "CompactibleFreeListSpace allocation failure");
   183   }
   184   _cmsSpace->_gen = this;
   186   _gc_stats = new CMSGCStats();
   188   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
   189   // offsets match. The ability to tell free chunks from objects
   190   // depends on this property.
   191   debug_only(
   192     FreeChunk* junk = NULL;
   193     assert(UseCompressedOops ||
   194            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
   195            "Offset of FreeChunk::_prev within FreeChunk must match"
   196            "  that of OopDesc::_klass within OopDesc");
   197   )
   198   if (ParallelGCThreads > 0) {
   199     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
   200     _par_gc_thread_states =
   201       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
   202     if (_par_gc_thread_states == NULL) {
   203       vm_exit_during_initialization("Could not allocate par gc structs");
   204     }
   205     for (uint i = 0; i < ParallelGCThreads; i++) {
   206       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
   207       if (_par_gc_thread_states[i] == NULL) {
   208         vm_exit_during_initialization("Could not allocate par gc structs");
   209       }
   210     }
   211   } else {
   212     _par_gc_thread_states = NULL;
   213   }
   214   _incremental_collection_failed = false;
   215   // The "dilatation_factor" is the expansion that can occur on
   216   // account of the fact that the minimum object size in the CMS
   217   // generation may be larger than that in, say, a contiguous young
   218   //  generation.
   219   // Ideally, in the calculation below, we'd compute the dilatation
   220   // factor as: MinChunkSize/(promoting_gen's min object size)
   221   // Since we do not have such a general query interface for the
   222   // promoting generation, we'll instead just use the mimimum
   223   // object size (which today is a header's worth of space);
   224   // note that all arithmetic is in units of HeapWords.
   225   assert(MinChunkSize >= oopDesc::header_size(), "just checking");
   226   assert(_dilatation_factor >= 1.0, "from previous assert");
   227 }
   230 // The field "_initiating_occupancy" represents the occupancy percentage
   231 // at which we trigger a new collection cycle.  Unless explicitly specified
   232 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
   233 // is calculated by:
   234 //
   235 //   Let "f" be MinHeapFreeRatio in
   236 //
   237 //    _intiating_occupancy = 100-f +
   238 //                           f * (CMSTrigger[Perm]Ratio/100)
   239 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
   240 //
   241 // That is, if we assume the heap is at its desired maximum occupancy at the
   242 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
   243 // space be allocated before initiating a new collection cycle.
   244 //
   245 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
   246   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
   247   if (io >= 0) {
   248     _initiating_occupancy = (double)io / 100.0;
   249   } else {
   250     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
   251                              (double)(tr * MinHeapFreeRatio) / 100.0)
   252                             / 100.0;
   253   }
   254 }
   257 void ConcurrentMarkSweepGeneration::ref_processor_init() {
   258   assert(collector() != NULL, "no collector");
   259   collector()->ref_processor_init();
   260 }
   262 void CMSCollector::ref_processor_init() {
   263   if (_ref_processor == NULL) {
   264     // Allocate and initialize a reference processor
   265     _ref_processor = ReferenceProcessor::create_ref_processor(
   266         _span,                               // span
   267         _cmsGen->refs_discovery_is_atomic(), // atomic_discovery
   268         _cmsGen->refs_discovery_is_mt(),     // mt_discovery
   269         &_is_alive_closure,
   270         ParallelGCThreads,
   271         ParallelRefProcEnabled);
   272     // Initialize the _ref_processor field of CMSGen
   273     _cmsGen->set_ref_processor(_ref_processor);
   275     // Allocate a dummy ref processor for perm gen.
   276     ReferenceProcessor* rp2 = new ReferenceProcessor();
   277     if (rp2 == NULL) {
   278       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
   279     }
   280     _permGen->set_ref_processor(rp2);
   281   }
   282 }
   284 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
   285   GenCollectedHeap* gch = GenCollectedHeap::heap();
   286   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   287     "Wrong type of heap");
   288   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
   289     gch->gen_policy()->size_policy();
   290   assert(sp->is_gc_cms_adaptive_size_policy(),
   291     "Wrong type of size policy");
   292   return sp;
   293 }
   295 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
   296   CMSGCAdaptivePolicyCounters* results =
   297     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
   298   assert(
   299     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
   300     "Wrong gc policy counter kind");
   301   return results;
   302 }
   305 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
   307   const char* gen_name = "old";
   309   // Generation Counters - generation 1, 1 subspace
   310   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
   312   _space_counters = new GSpaceCounters(gen_name, 0,
   313                                        _virtual_space.reserved_size(),
   314                                        this, _gen_counters);
   315 }
   317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
   318   _cms_gen(cms_gen)
   319 {
   320   assert(alpha <= 100, "bad value");
   321   _saved_alpha = alpha;
   323   // Initialize the alphas to the bootstrap value of 100.
   324   _gc0_alpha = _cms_alpha = 100;
   326   _cms_begin_time.update();
   327   _cms_end_time.update();
   329   _gc0_duration = 0.0;
   330   _gc0_period = 0.0;
   331   _gc0_promoted = 0;
   333   _cms_duration = 0.0;
   334   _cms_period = 0.0;
   335   _cms_allocated = 0;
   337   _cms_used_at_gc0_begin = 0;
   338   _cms_used_at_gc0_end = 0;
   339   _allow_duty_cycle_reduction = false;
   340   _valid_bits = 0;
   341   _icms_duty_cycle = CMSIncrementalDutyCycle;
   342 }
   344 // If promotion failure handling is on use
   345 // the padded average size of the promotion for each
   346 // young generation collection.
   347 double CMSStats::time_until_cms_gen_full() const {
   348   size_t cms_free = _cms_gen->cmsSpace()->free();
   349   GenCollectedHeap* gch = GenCollectedHeap::heap();
   350   size_t expected_promotion = gch->get_gen(0)->capacity();
   351   if (HandlePromotionFailure) {
   352     expected_promotion = MIN2(
   353         (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average(),
   354         expected_promotion);
   355   }
   356   if (cms_free > expected_promotion) {
   357     // Start a cms collection if there isn't enough space to promote
   358     // for the next minor collection.  Use the padded average as
   359     // a safety factor.
   360     cms_free -= expected_promotion;
   362     // Adjust by the safety factor.
   363     double cms_free_dbl = (double)cms_free;
   364     cms_free_dbl = cms_free_dbl * (100.0 - CMSIncrementalSafetyFactor) / 100.0;
   366     if (PrintGCDetails && Verbose) {
   367       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
   368         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
   369         cms_free, expected_promotion);
   370       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
   371         cms_free_dbl, cms_consumption_rate() + 1.0);
   372     }
   373     // Add 1 in case the consumption rate goes to zero.
   374     return cms_free_dbl / (cms_consumption_rate() + 1.0);
   375   }
   376   return 0.0;
   377 }
   379 // Compare the duration of the cms collection to the
   380 // time remaining before the cms generation is empty.
   381 // Note that the time from the start of the cms collection
   382 // to the start of the cms sweep (less than the total
   383 // duration of the cms collection) can be used.  This
   384 // has been tried and some applications experienced
   385 // promotion failures early in execution.  This was
   386 // possibly because the averages were not accurate
   387 // enough at the beginning.
   388 double CMSStats::time_until_cms_start() const {
   389   // We add "gc0_period" to the "work" calculation
   390   // below because this query is done (mostly) at the
   391   // end of a scavenge, so we need to conservatively
   392   // account for that much possible delay
   393   // in the query so as to avoid concurrent mode failures
   394   // due to starting the collection just a wee bit too
   395   // late.
   396   double work = cms_duration() + gc0_period();
   397   double deadline = time_until_cms_gen_full();
   398   if (work > deadline) {
   399     if (Verbose && PrintGCDetails) {
   400       gclog_or_tty->print(
   401         " CMSCollector: collect because of anticipated promotion "
   402         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
   403         gc0_period(), time_until_cms_gen_full());
   404     }
   405     return 0.0;
   406   }
   407   return work - deadline;
   408 }
   410 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
   411 // amount of change to prevent wild oscillation.
   412 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
   413                                               unsigned int new_duty_cycle) {
   414   assert(old_duty_cycle <= 100, "bad input value");
   415   assert(new_duty_cycle <= 100, "bad input value");
   417   // Note:  use subtraction with caution since it may underflow (values are
   418   // unsigned).  Addition is safe since we're in the range 0-100.
   419   unsigned int damped_duty_cycle = new_duty_cycle;
   420   if (new_duty_cycle < old_duty_cycle) {
   421     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
   422     if (new_duty_cycle + largest_delta < old_duty_cycle) {
   423       damped_duty_cycle = old_duty_cycle - largest_delta;
   424     }
   425   } else if (new_duty_cycle > old_duty_cycle) {
   426     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
   427     if (new_duty_cycle > old_duty_cycle + largest_delta) {
   428       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
   429     }
   430   }
   431   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
   433   if (CMSTraceIncrementalPacing) {
   434     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
   435                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
   436   }
   437   return damped_duty_cycle;
   438 }
   440 unsigned int CMSStats::icms_update_duty_cycle_impl() {
   441   assert(CMSIncrementalPacing && valid(),
   442          "should be handled in icms_update_duty_cycle()");
   444   double cms_time_so_far = cms_timer().seconds();
   445   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
   446   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
   448   // Avoid division by 0.
   449   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
   450   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
   452   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
   453   if (new_duty_cycle > _icms_duty_cycle) {
   454     // Avoid very small duty cycles (1 or 2); 0 is allowed.
   455     if (new_duty_cycle > 2) {
   456       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
   457                                                 new_duty_cycle);
   458     }
   459   } else if (_allow_duty_cycle_reduction) {
   460     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
   461     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
   462     // Respect the minimum duty cycle.
   463     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
   464     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
   465   }
   467   if (PrintGCDetails || CMSTraceIncrementalPacing) {
   468     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
   469   }
   471   _allow_duty_cycle_reduction = false;
   472   return _icms_duty_cycle;
   473 }
   475 #ifndef PRODUCT
   476 void CMSStats::print_on(outputStream *st) const {
   477   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
   478   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
   479                gc0_duration(), gc0_period(), gc0_promoted());
   480   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
   481             cms_duration(), cms_duration_per_mb(),
   482             cms_period(), cms_allocated());
   483   st->print(",cms_since_beg=%g,cms_since_end=%g",
   484             cms_time_since_begin(), cms_time_since_end());
   485   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
   486             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
   487   if (CMSIncrementalMode) {
   488     st->print(",dc=%d", icms_duty_cycle());
   489   }
   491   if (valid()) {
   492     st->print(",promo_rate=%g,cms_alloc_rate=%g",
   493               promotion_rate(), cms_allocation_rate());
   494     st->print(",cms_consumption_rate=%g,time_until_full=%g",
   495               cms_consumption_rate(), time_until_cms_gen_full());
   496   }
   497   st->print(" ");
   498 }
   499 #endif // #ifndef PRODUCT
   501 CMSCollector::CollectorState CMSCollector::_collectorState =
   502                              CMSCollector::Idling;
   503 bool CMSCollector::_foregroundGCIsActive = false;
   504 bool CMSCollector::_foregroundGCShouldWait = false;
   506 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   507                            ConcurrentMarkSweepGeneration* permGen,
   508                            CardTableRS*                   ct,
   509                            ConcurrentMarkSweepPolicy*     cp):
   510   _cmsGen(cmsGen),
   511   _permGen(permGen),
   512   _ct(ct),
   513   _ref_processor(NULL),    // will be set later
   514   _conc_workers(NULL),     // may be set later
   515   _abort_preclean(false),
   516   _start_sampling(false),
   517   _between_prologue_and_epilogue(false),
   518   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
   519   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
   520   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
   521                  -1 /* lock-free */, "No_lock" /* dummy */),
   522   _modUnionClosure(&_modUnionTable),
   523   _modUnionClosurePar(&_modUnionTable),
   524   // Adjust my span to cover old (cms) gen and perm gen
   525   _span(cmsGen->reserved()._union(permGen->reserved())),
   526   // Construct the is_alive_closure with _span & markBitMap
   527   _is_alive_closure(_span, &_markBitMap),
   528   _restart_addr(NULL),
   529   _overflow_list(NULL),
   530   _preserved_oop_stack(NULL),
   531   _preserved_mark_stack(NULL),
   532   _stats(cmsGen),
   533   _eden_chunk_array(NULL),     // may be set in ctor body
   534   _eden_chunk_capacity(0),     // -- ditto --
   535   _eden_chunk_index(0),        // -- ditto --
   536   _survivor_plab_array(NULL),  // -- ditto --
   537   _survivor_chunk_array(NULL), // -- ditto --
   538   _survivor_chunk_capacity(0), // -- ditto --
   539   _survivor_chunk_index(0),    // -- ditto --
   540   _ser_pmc_preclean_ovflw(0),
   541   _ser_kac_preclean_ovflw(0),
   542   _ser_pmc_remark_ovflw(0),
   543   _par_pmc_remark_ovflw(0),
   544   _ser_kac_ovflw(0),
   545   _par_kac_ovflw(0),
   546 #ifndef PRODUCT
   547   _num_par_pushes(0),
   548 #endif
   549   _collection_count_start(0),
   550   _verifying(false),
   551   _icms_start_limit(NULL),
   552   _icms_stop_limit(NULL),
   553   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
   554   _completed_initialization(false),
   555   _collector_policy(cp),
   556   _should_unload_classes(false),
   557   _concurrent_cycles_since_last_unload(0),
   558   _sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
   559 {
   560   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
   561     ExplicitGCInvokesConcurrent = true;
   562   }
   563   // Now expand the span and allocate the collection support structures
   564   // (MUT, marking bit map etc.) to cover both generations subject to
   565   // collection.
   567   // First check that _permGen is adjacent to _cmsGen and above it.
   568   assert(   _cmsGen->reserved().word_size()  > 0
   569          && _permGen->reserved().word_size() > 0,
   570          "generations should not be of zero size");
   571   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
   572          "_cmsGen and _permGen should not overlap");
   573   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
   574          "_cmsGen->end() different from _permGen->start()");
   576   // For use by dirty card to oop closures.
   577   _cmsGen->cmsSpace()->set_collector(this);
   578   _permGen->cmsSpace()->set_collector(this);
   580   // Allocate MUT and marking bit map
   581   {
   582     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
   583     if (!_markBitMap.allocate(_span)) {
   584       warning("Failed to allocate CMS Bit Map");
   585       return;
   586     }
   587     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
   588   }
   589   {
   590     _modUnionTable.allocate(_span);
   591     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
   592   }
   594   if (!_markStack.allocate(CMSMarkStackSize)) {
   595     warning("Failed to allocate CMS Marking Stack");
   596     return;
   597   }
   598   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
   599     warning("Failed to allocate CMS Revisit Stack");
   600     return;
   601   }
   603   // Support for multi-threaded concurrent phases
   604   if (ParallelGCThreads > 0 && CMSConcurrentMTEnabled) {
   605     if (FLAG_IS_DEFAULT(ParallelCMSThreads)) {
   606       // just for now
   607       FLAG_SET_DEFAULT(ParallelCMSThreads, (ParallelGCThreads + 3)/4);
   608     }
   609     if (ParallelCMSThreads > 1) {
   610       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
   611                                  ParallelCMSThreads, true);
   612       if (_conc_workers == NULL) {
   613         warning("GC/CMS: _conc_workers allocation failure: "
   614               "forcing -CMSConcurrentMTEnabled");
   615         CMSConcurrentMTEnabled = false;
   616       }
   617     } else {
   618       CMSConcurrentMTEnabled = false;
   619     }
   620   }
   621   if (!CMSConcurrentMTEnabled) {
   622     ParallelCMSThreads = 0;
   623   } else {
   624     // Turn off CMSCleanOnEnter optimization temporarily for
   625     // the MT case where it's not fixed yet; see 6178663.
   626     CMSCleanOnEnter = false;
   627   }
   628   assert((_conc_workers != NULL) == (ParallelCMSThreads > 1),
   629          "Inconsistency");
   631   // Parallel task queues; these are shared for the
   632   // concurrent and stop-world phases of CMS, but
   633   // are not shared with parallel scavenge (ParNew).
   634   {
   635     uint i;
   636     uint num_queues = (uint) MAX2(ParallelGCThreads, ParallelCMSThreads);
   638     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
   639          || ParallelRefProcEnabled)
   640         && num_queues > 0) {
   641       _task_queues = new OopTaskQueueSet(num_queues);
   642       if (_task_queues == NULL) {
   643         warning("task_queues allocation failure.");
   644         return;
   645       }
   646       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
   647       if (_hash_seed == NULL) {
   648         warning("_hash_seed array allocation failure");
   649         return;
   650       }
   652       // XXX use a global constant instead of 64!
   653       typedef struct OopTaskQueuePadded {
   654         OopTaskQueue work_queue;
   655         char pad[64 - sizeof(OopTaskQueue)];  // prevent false sharing
   656       } OopTaskQueuePadded;
   658       for (i = 0; i < num_queues; i++) {
   659         OopTaskQueuePadded *q_padded = new OopTaskQueuePadded();
   660         if (q_padded == NULL) {
   661           warning("work_queue allocation failure.");
   662           return;
   663         }
   664         _task_queues->register_queue(i, &q_padded->work_queue);
   665       }
   666       for (i = 0; i < num_queues; i++) {
   667         _task_queues->queue(i)->initialize();
   668         _hash_seed[i] = 17;  // copied from ParNew
   669       }
   670     }
   671   }
   673   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
   674   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
   676   // Clip CMSBootstrapOccupancy between 0 and 100.
   677   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
   678                          /(double)100;
   680   _full_gcs_since_conc_gc = 0;
   682   // Now tell CMS generations the identity of their collector
   683   ConcurrentMarkSweepGeneration::set_collector(this);
   685   // Create & start a CMS thread for this CMS collector
   686   _cmsThread = ConcurrentMarkSweepThread::start(this);
   687   assert(cmsThread() != NULL, "CMS Thread should have been created");
   688   assert(cmsThread()->collector() == this,
   689          "CMS Thread should refer to this gen");
   690   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   692   // Support for parallelizing young gen rescan
   693   GenCollectedHeap* gch = GenCollectedHeap::heap();
   694   _young_gen = gch->prev_gen(_cmsGen);
   695   if (gch->supports_inline_contig_alloc()) {
   696     _top_addr = gch->top_addr();
   697     _end_addr = gch->end_addr();
   698     assert(_young_gen != NULL, "no _young_gen");
   699     _eden_chunk_index = 0;
   700     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
   701     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
   702     if (_eden_chunk_array == NULL) {
   703       _eden_chunk_capacity = 0;
   704       warning("GC/CMS: _eden_chunk_array allocation failure");
   705     }
   706   }
   707   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
   709   // Support for parallelizing survivor space rescan
   710   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
   711     size_t max_plab_samples = MaxNewSize/((SurvivorRatio+2)*MinTLABSize);
   712     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
   713     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
   714     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
   715     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
   716         || _cursor == NULL) {
   717       warning("Failed to allocate survivor plab/chunk array");
   718       if (_survivor_plab_array  != NULL) {
   719         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   720         _survivor_plab_array = NULL;
   721       }
   722       if (_survivor_chunk_array != NULL) {
   723         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   724         _survivor_chunk_array = NULL;
   725       }
   726       if (_cursor != NULL) {
   727         FREE_C_HEAP_ARRAY(size_t, _cursor);
   728         _cursor = NULL;
   729       }
   730     } else {
   731       _survivor_chunk_capacity = 2*max_plab_samples;
   732       for (uint i = 0; i < ParallelGCThreads; i++) {
   733         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
   734         if (vec == NULL) {
   735           warning("Failed to allocate survivor plab array");
   736           for (int j = i; j > 0; j--) {
   737             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
   738           }
   739           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   740           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   741           _survivor_plab_array = NULL;
   742           _survivor_chunk_array = NULL;
   743           _survivor_chunk_capacity = 0;
   744           break;
   745         } else {
   746           ChunkArray* cur =
   747             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
   748                                                         max_plab_samples);
   749           assert(cur->end() == 0, "Should be 0");
   750           assert(cur->array() == vec, "Should be vec");
   751           assert(cur->capacity() == max_plab_samples, "Error");
   752         }
   753       }
   754     }
   755   }
   756   assert(   (   _survivor_plab_array  != NULL
   757              && _survivor_chunk_array != NULL)
   758          || (   _survivor_chunk_capacity == 0
   759              && _survivor_chunk_index == 0),
   760          "Error");
   762   // Choose what strong roots should be scanned depending on verification options
   763   // and perm gen collection mode.
   764   if (!CMSClassUnloadingEnabled) {
   765     // If class unloading is disabled we want to include all classes into the root set.
   766     add_root_scanning_option(SharedHeap::SO_AllClasses);
   767   } else {
   768     add_root_scanning_option(SharedHeap::SO_SystemClasses);
   769   }
   771   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
   772   _gc_counters = new CollectorCounters("CMS", 1);
   773   _completed_initialization = true;
   774   _sweep_timer.start();  // start of time
   775 }
   777 const char* ConcurrentMarkSweepGeneration::name() const {
   778   return "concurrent mark-sweep generation";
   779 }
   780 void ConcurrentMarkSweepGeneration::update_counters() {
   781   if (UsePerfData) {
   782     _space_counters->update_all();
   783     _gen_counters->update_all();
   784   }
   785 }
   787 // this is an optimized version of update_counters(). it takes the
   788 // used value as a parameter rather than computing it.
   789 //
   790 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
   791   if (UsePerfData) {
   792     _space_counters->update_used(used);
   793     _space_counters->update_capacity();
   794     _gen_counters->update_all();
   795   }
   796 }
   798 void ConcurrentMarkSweepGeneration::print() const {
   799   Generation::print();
   800   cmsSpace()->print();
   801 }
   803 #ifndef PRODUCT
   804 void ConcurrentMarkSweepGeneration::print_statistics() {
   805   cmsSpace()->printFLCensus(0);
   806 }
   807 #endif
   809 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
   810   GenCollectedHeap* gch = GenCollectedHeap::heap();
   811   if (PrintGCDetails) {
   812     if (Verbose) {
   813       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
   814         level(), short_name(), s, used(), capacity());
   815     } else {
   816       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
   817         level(), short_name(), s, used() / K, capacity() / K);
   818     }
   819   }
   820   if (Verbose) {
   821     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
   822               gch->used(), gch->capacity());
   823   } else {
   824     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
   825               gch->used() / K, gch->capacity() / K);
   826   }
   827 }
   829 size_t
   830 ConcurrentMarkSweepGeneration::contiguous_available() const {
   831   // dld proposes an improvement in precision here. If the committed
   832   // part of the space ends in a free block we should add that to
   833   // uncommitted size in the calculation below. Will make this
   834   // change later, staying with the approximation below for the
   835   // time being. -- ysr.
   836   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
   837 }
   839 size_t
   840 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
   841   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
   842 }
   844 size_t ConcurrentMarkSweepGeneration::max_available() const {
   845   return free() + _virtual_space.uncommitted_size();
   846 }
   848 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(
   849     size_t max_promotion_in_bytes,
   850     bool younger_handles_promotion_failure) const {
   852   // This is the most conservative test.  Full promotion is
   853   // guaranteed if this is used. The multiplicative factor is to
   854   // account for the worst case "dilatation".
   855   double adjusted_max_promo_bytes = _dilatation_factor * max_promotion_in_bytes;
   856   if (adjusted_max_promo_bytes > (double)max_uintx) { // larger than size_t
   857     adjusted_max_promo_bytes = (double)max_uintx;
   858   }
   859   bool result = (max_contiguous_available() >= (size_t)adjusted_max_promo_bytes);
   861   if (younger_handles_promotion_failure && !result) {
   862     // Full promotion is not guaranteed because fragmentation
   863     // of the cms generation can prevent the full promotion.
   864     result = (max_available() >= (size_t)adjusted_max_promo_bytes);
   866     if (!result) {
   867       // With promotion failure handling the test for the ability
   868       // to support the promotion does not have to be guaranteed.
   869       // Use an average of the amount promoted.
   870       result = max_available() >= (size_t)
   871         gc_stats()->avg_promoted()->padded_average();
   872       if (PrintGC && Verbose && result) {
   873         gclog_or_tty->print_cr(
   874           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   875           " max_available: " SIZE_FORMAT
   876           " avg_promoted: " SIZE_FORMAT,
   877           max_available(), (size_t)
   878           gc_stats()->avg_promoted()->padded_average());
   879       }
   880     } else {
   881       if (PrintGC && Verbose) {
   882         gclog_or_tty->print_cr(
   883           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   884           " max_available: " SIZE_FORMAT
   885           " adj_max_promo_bytes: " SIZE_FORMAT,
   886           max_available(), (size_t)adjusted_max_promo_bytes);
   887       }
   888     }
   889   } else {
   890     if (PrintGC && Verbose) {
   891       gclog_or_tty->print_cr(
   892         "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   893         " contiguous_available: " SIZE_FORMAT
   894         " adj_max_promo_bytes: " SIZE_FORMAT,
   895         max_contiguous_available(), (size_t)adjusted_max_promo_bytes);
   896     }
   897   }
   898   return result;
   899 }
   901 CompactibleSpace*
   902 ConcurrentMarkSweepGeneration::first_compaction_space() const {
   903   return _cmsSpace;
   904 }
   906 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
   907   // Clear the promotion information.  These pointers can be adjusted
   908   // along with all the other pointers into the heap but
   909   // compaction is expected to be a rare event with
   910   // a heap using cms so don't do it without seeing the need.
   911   if (ParallelGCThreads > 0) {
   912     for (uint i = 0; i < ParallelGCThreads; i++) {
   913       _par_gc_thread_states[i]->promo.reset();
   914     }
   915   }
   916 }
   918 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
   919   blk->do_space(_cmsSpace);
   920 }
   922 void ConcurrentMarkSweepGeneration::compute_new_size() {
   923   assert_locked_or_safepoint(Heap_lock);
   925   // If incremental collection failed, we just want to expand
   926   // to the limit.
   927   if (incremental_collection_failed()) {
   928     clear_incremental_collection_failed();
   929     grow_to_reserved();
   930     return;
   931   }
   933   size_t expand_bytes = 0;
   934   double free_percentage = ((double) free()) / capacity();
   935   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
   936   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
   938   // compute expansion delta needed for reaching desired free percentage
   939   if (free_percentage < desired_free_percentage) {
   940     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   941     assert(desired_capacity >= capacity(), "invalid expansion size");
   942     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
   943   }
   944   if (expand_bytes > 0) {
   945     if (PrintGCDetails && Verbose) {
   946       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   947       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
   948       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
   949       gclog_or_tty->print_cr("  Desired free fraction %f",
   950         desired_free_percentage);
   951       gclog_or_tty->print_cr("  Maximum free fraction %f",
   952         maximum_free_percentage);
   953       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
   954       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
   955         desired_capacity/1000);
   956       int prev_level = level() - 1;
   957       if (prev_level >= 0) {
   958         size_t prev_size = 0;
   959         GenCollectedHeap* gch = GenCollectedHeap::heap();
   960         Generation* prev_gen = gch->_gens[prev_level];
   961         prev_size = prev_gen->capacity();
   962           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
   963                                  prev_size/1000);
   964       }
   965       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
   966         unsafe_max_alloc_nogc()/1000);
   967       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
   968         contiguous_available()/1000);
   969       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
   970         expand_bytes);
   971     }
   972     // safe if expansion fails
   973     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
   974     if (PrintGCDetails && Verbose) {
   975       gclog_or_tty->print_cr("  Expanded free fraction %f",
   976         ((double) free()) / capacity());
   977     }
   978   }
   979 }
   981 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
   982   return cmsSpace()->freelistLock();
   983 }
   985 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
   986                                                   bool   tlab) {
   987   CMSSynchronousYieldRequest yr;
   988   MutexLockerEx x(freelistLock(),
   989                   Mutex::_no_safepoint_check_flag);
   990   return have_lock_and_allocate(size, tlab);
   991 }
   993 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
   994                                                   bool   tlab) {
   995   assert_lock_strong(freelistLock());
   996   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
   997   HeapWord* res = cmsSpace()->allocate(adjustedSize);
   998   // Allocate the object live (grey) if the background collector has
   999   // started marking. This is necessary because the marker may
  1000   // have passed this address and consequently this object will
  1001   // not otherwise be greyed and would be incorrectly swept up.
  1002   // Note that if this object contains references, the writing
  1003   // of those references will dirty the card containing this object
  1004   // allowing the object to be blackened (and its references scanned)
  1005   // either during a preclean phase or at the final checkpoint.
  1006   if (res != NULL) {
  1007     collector()->direct_allocated(res, adjustedSize);
  1008     _direct_allocated_words += adjustedSize;
  1009     // allocation counters
  1010     NOT_PRODUCT(
  1011       _numObjectsAllocated++;
  1012       _numWordsAllocated += (int)adjustedSize;
  1015   return res;
  1018 // In the case of direct allocation by mutators in a generation that
  1019 // is being concurrently collected, the object must be allocated
  1020 // live (grey) if the background collector has started marking.
  1021 // This is necessary because the marker may
  1022 // have passed this address and consequently this object will
  1023 // not otherwise be greyed and would be incorrectly swept up.
  1024 // Note that if this object contains references, the writing
  1025 // of those references will dirty the card containing this object
  1026 // allowing the object to be blackened (and its references scanned)
  1027 // either during a preclean phase or at the final checkpoint.
  1028 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
  1029   assert(_markBitMap.covers(start, size), "Out of bounds");
  1030   if (_collectorState >= Marking) {
  1031     MutexLockerEx y(_markBitMap.lock(),
  1032                     Mutex::_no_safepoint_check_flag);
  1033     // [see comments preceding SweepClosure::do_blk() below for details]
  1034     // 1. need to mark the object as live so it isn't collected
  1035     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
  1036     // 3. need to mark the end of the object so sweeper can skip over it
  1037     //    if it's uninitialized when the sweeper reaches it.
  1038     _markBitMap.mark(start);          // object is live
  1039     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
  1040     _markBitMap.mark(start + size - 1);
  1041                                       // mark end of object
  1043   // check that oop looks uninitialized
  1044   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
  1047 void CMSCollector::promoted(bool par, HeapWord* start,
  1048                             bool is_obj_array, size_t obj_size) {
  1049   assert(_markBitMap.covers(start), "Out of bounds");
  1050   // See comment in direct_allocated() about when objects should
  1051   // be allocated live.
  1052   if (_collectorState >= Marking) {
  1053     // we already hold the marking bit map lock, taken in
  1054     // the prologue
  1055     if (par) {
  1056       _markBitMap.par_mark(start);
  1057     } else {
  1058       _markBitMap.mark(start);
  1060     // We don't need to mark the object as uninitialized (as
  1061     // in direct_allocated above) because this is being done with the
  1062     // world stopped and the object will be initialized by the
  1063     // time the sweeper gets to look at it.
  1064     assert(SafepointSynchronize::is_at_safepoint(),
  1065            "expect promotion only at safepoints");
  1067     if (_collectorState < Sweeping) {
  1068       // Mark the appropriate cards in the modUnionTable, so that
  1069       // this object gets scanned before the sweep. If this is
  1070       // not done, CMS generation references in the object might
  1071       // not get marked.
  1072       // For the case of arrays, which are otherwise precisely
  1073       // marked, we need to dirty the entire array, not just its head.
  1074       if (is_obj_array) {
  1075         // The [par_]mark_range() method expects mr.end() below to
  1076         // be aligned to the granularity of a bit's representation
  1077         // in the heap. In the case of the MUT below, that's a
  1078         // card size.
  1079         MemRegion mr(start,
  1080                      (HeapWord*)round_to((intptr_t)(start + obj_size),
  1081                         CardTableModRefBS::card_size /* bytes */));
  1082         if (par) {
  1083           _modUnionTable.par_mark_range(mr);
  1084         } else {
  1085           _modUnionTable.mark_range(mr);
  1087       } else {  // not an obj array; we can just mark the head
  1088         if (par) {
  1089           _modUnionTable.par_mark(start);
  1090         } else {
  1091           _modUnionTable.mark(start);
  1098 static inline size_t percent_of_space(Space* space, HeapWord* addr)
  1100   size_t delta = pointer_delta(addr, space->bottom());
  1101   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
  1104 void CMSCollector::icms_update_allocation_limits()
  1106   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
  1107   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
  1109   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
  1110   if (CMSTraceIncrementalPacing) {
  1111     stats().print();
  1114   assert(duty_cycle <= 100, "invalid duty cycle");
  1115   if (duty_cycle != 0) {
  1116     // The duty_cycle is a percentage between 0 and 100; convert to words and
  1117     // then compute the offset from the endpoints of the space.
  1118     size_t free_words = eden->free() / HeapWordSize;
  1119     double free_words_dbl = (double)free_words;
  1120     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
  1121     size_t offset_words = (free_words - duty_cycle_words) / 2;
  1123     _icms_start_limit = eden->top() + offset_words;
  1124     _icms_stop_limit = eden->end() - offset_words;
  1126     // The limits may be adjusted (shifted to the right) by
  1127     // CMSIncrementalOffset, to allow the application more mutator time after a
  1128     // young gen gc (when all mutators were stopped) and before CMS starts and
  1129     // takes away one or more cpus.
  1130     if (CMSIncrementalOffset != 0) {
  1131       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
  1132       size_t adjustment = (size_t)adjustment_dbl;
  1133       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
  1134       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
  1135         _icms_start_limit += adjustment;
  1136         _icms_stop_limit = tmp_stop;
  1140   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
  1141     _icms_start_limit = _icms_stop_limit = eden->end();
  1144   // Install the new start limit.
  1145   eden->set_soft_end(_icms_start_limit);
  1147   if (CMSTraceIncrementalMode) {
  1148     gclog_or_tty->print(" icms alloc limits:  "
  1149                            PTR_FORMAT "," PTR_FORMAT
  1150                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
  1151                            _icms_start_limit, _icms_stop_limit,
  1152                            percent_of_space(eden, _icms_start_limit),
  1153                            percent_of_space(eden, _icms_stop_limit));
  1154     if (Verbose) {
  1155       gclog_or_tty->print("eden:  ");
  1156       eden->print_on(gclog_or_tty);
  1161 // Any changes here should try to maintain the invariant
  1162 // that if this method is called with _icms_start_limit
  1163 // and _icms_stop_limit both NULL, then it should return NULL
  1164 // and not notify the icms thread.
  1165 HeapWord*
  1166 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
  1167                                        size_t word_size)
  1169   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
  1170   // nop.
  1171   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
  1172     if (top <= _icms_start_limit) {
  1173       if (CMSTraceIncrementalMode) {
  1174         space->print_on(gclog_or_tty);
  1175         gclog_or_tty->stamp();
  1176         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
  1177                                ", new limit=" PTR_FORMAT
  1178                                " (" SIZE_FORMAT "%%)",
  1179                                top, _icms_stop_limit,
  1180                                percent_of_space(space, _icms_stop_limit));
  1182       ConcurrentMarkSweepThread::start_icms();
  1183       assert(top < _icms_stop_limit, "Tautology");
  1184       if (word_size < pointer_delta(_icms_stop_limit, top)) {
  1185         return _icms_stop_limit;
  1188       // The allocation will cross both the _start and _stop limits, so do the
  1189       // stop notification also and return end().
  1190       if (CMSTraceIncrementalMode) {
  1191         space->print_on(gclog_or_tty);
  1192         gclog_or_tty->stamp();
  1193         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
  1194                                ", new limit=" PTR_FORMAT
  1195                                " (" SIZE_FORMAT "%%)",
  1196                                top, space->end(),
  1197                                percent_of_space(space, space->end()));
  1199       ConcurrentMarkSweepThread::stop_icms();
  1200       return space->end();
  1203     if (top <= _icms_stop_limit) {
  1204       if (CMSTraceIncrementalMode) {
  1205         space->print_on(gclog_or_tty);
  1206         gclog_or_tty->stamp();
  1207         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
  1208                                ", new limit=" PTR_FORMAT
  1209                                " (" SIZE_FORMAT "%%)",
  1210                                top, space->end(),
  1211                                percent_of_space(space, space->end()));
  1213       ConcurrentMarkSweepThread::stop_icms();
  1214       return space->end();
  1217     if (CMSTraceIncrementalMode) {
  1218       space->print_on(gclog_or_tty);
  1219       gclog_or_tty->stamp();
  1220       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
  1221                              ", new limit=" PTR_FORMAT,
  1222                              top, NULL);
  1226   return NULL;
  1229 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
  1230   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1231   // allocate, copy and if necessary update promoinfo --
  1232   // delegate to underlying space.
  1233   assert_lock_strong(freelistLock());
  1235 #ifndef PRODUCT
  1236   if (Universe::heap()->promotion_should_fail()) {
  1237     return NULL;
  1239 #endif  // #ifndef PRODUCT
  1241   oop res = _cmsSpace->promote(obj, obj_size);
  1242   if (res == NULL) {
  1243     // expand and retry
  1244     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
  1245     expand(s*HeapWordSize, MinHeapDeltaBytes,
  1246       CMSExpansionCause::_satisfy_promotion);
  1247     // Since there's currently no next generation, we don't try to promote
  1248     // into a more senior generation.
  1249     assert(next_gen() == NULL, "assumption, based upon which no attempt "
  1250                                "is made to pass on a possibly failing "
  1251                                "promotion to next generation");
  1252     res = _cmsSpace->promote(obj, obj_size);
  1254   if (res != NULL) {
  1255     // See comment in allocate() about when objects should
  1256     // be allocated live.
  1257     assert(obj->is_oop(), "Will dereference klass pointer below");
  1258     collector()->promoted(false,           // Not parallel
  1259                           (HeapWord*)res, obj->is_objArray(), obj_size);
  1260     // promotion counters
  1261     NOT_PRODUCT(
  1262       _numObjectsPromoted++;
  1263       _numWordsPromoted +=
  1264         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
  1267   return res;
  1271 HeapWord*
  1272 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
  1273                                              HeapWord* top,
  1274                                              size_t word_sz)
  1276   return collector()->allocation_limit_reached(space, top, word_sz);
  1279 // Things to support parallel young-gen collection.
  1280 oop
  1281 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
  1282                                            oop old, markOop m,
  1283                                            size_t word_sz) {
  1284 #ifndef PRODUCT
  1285   if (Universe::heap()->promotion_should_fail()) {
  1286     return NULL;
  1288 #endif  // #ifndef PRODUCT
  1290   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1291   PromotionInfo* promoInfo = &ps->promo;
  1292   // if we are tracking promotions, then first ensure space for
  1293   // promotion (including spooling space for saving header if necessary).
  1294   // then allocate and copy, then track promoted info if needed.
  1295   // When tracking (see PromotionInfo::track()), the mark word may
  1296   // be displaced and in this case restoration of the mark word
  1297   // occurs in the (oop_since_save_marks_)iterate phase.
  1298   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
  1299     // Out of space for allocating spooling buffers;
  1300     // try expanding and allocating spooling buffers.
  1301     if (!expand_and_ensure_spooling_space(promoInfo)) {
  1302       return NULL;
  1305   assert(promoInfo->has_spooling_space(), "Control point invariant");
  1306   HeapWord* obj_ptr = ps->lab.alloc(word_sz);
  1307   if (obj_ptr == NULL) {
  1308      obj_ptr = expand_and_par_lab_allocate(ps, word_sz);
  1309      if (obj_ptr == NULL) {
  1310        return NULL;
  1313   oop obj = oop(obj_ptr);
  1314   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1315   // Otherwise, copy the object.  Here we must be careful to insert the
  1316   // klass pointer last, since this marks the block as an allocated object.
  1317   // Except with compressed oops it's the mark word.
  1318   HeapWord* old_ptr = (HeapWord*)old;
  1319   if (word_sz > (size_t)oopDesc::header_size()) {
  1320     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
  1321                                  obj_ptr + oopDesc::header_size(),
  1322                                  word_sz - oopDesc::header_size());
  1325   if (UseCompressedOops) {
  1326     // Copy gap missed by (aligned) header size calculation above
  1327     obj->set_klass_gap(old->klass_gap());
  1330   // Restore the mark word copied above.
  1331   obj->set_mark(m);
  1333   // Now we can track the promoted object, if necessary.  We take care
  1334   // To delay the transition from uninitialized to full object
  1335   // (i.e., insertion of klass pointer) until after, so that it
  1336   // atomically becomes a promoted object.
  1337   if (promoInfo->tracking()) {
  1338     promoInfo->track((PromotedObject*)obj, old->klass());
  1341   // Finally, install the klass pointer (this should be volatile).
  1342   obj->set_klass(old->klass());
  1344   assert(old->is_oop(), "Will dereference klass ptr below");
  1345   collector()->promoted(true,          // parallel
  1346                         obj_ptr, old->is_objArray(), word_sz);
  1348   NOT_PRODUCT(
  1349     Atomic::inc(&_numObjectsPromoted);
  1350     Atomic::add((jint)CompactibleFreeListSpace::adjustObjectSize(obj->size()),
  1351                 &_numWordsPromoted);
  1354   return obj;
  1357 void
  1358 ConcurrentMarkSweepGeneration::
  1359 par_promote_alloc_undo(int thread_num,
  1360                        HeapWord* obj, size_t word_sz) {
  1361   // CMS does not support promotion undo.
  1362   ShouldNotReachHere();
  1365 void
  1366 ConcurrentMarkSweepGeneration::
  1367 par_promote_alloc_done(int thread_num) {
  1368   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1369   ps->lab.retire();
  1370 #if CFLS_LAB_REFILL_STATS
  1371   if (thread_num == 0) {
  1372     _cmsSpace->print_par_alloc_stats();
  1374 #endif
  1377 void
  1378 ConcurrentMarkSweepGeneration::
  1379 par_oop_since_save_marks_iterate_done(int thread_num) {
  1380   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1381   ParScanWithoutBarrierClosure* dummy_cl = NULL;
  1382   ps->promo.promoted_oops_iterate_nv(dummy_cl);
  1385 // XXXPERM
  1386 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
  1387                                                    size_t size,
  1388                                                    bool   tlab)
  1390   // We allow a STW collection only if a full
  1391   // collection was requested.
  1392   return full || should_allocate(size, tlab); // FIX ME !!!
  1393   // This and promotion failure handling are connected at the
  1394   // hip and should be fixed by untying them.
  1397 bool CMSCollector::shouldConcurrentCollect() {
  1398   if (_full_gc_requested) {
  1399     assert(ExplicitGCInvokesConcurrent, "Unexpected state");
  1400     if (Verbose && PrintGCDetails) {
  1401       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
  1402                              " gc request");
  1404     return true;
  1407   // For debugging purposes, change the type of collection.
  1408   // If the rotation is not on the concurrent collection
  1409   // type, don't start a concurrent collection.
  1410   NOT_PRODUCT(
  1411     if (RotateCMSCollectionTypes &&
  1412         (_cmsGen->debug_collection_type() !=
  1413           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
  1414       assert(_cmsGen->debug_collection_type() !=
  1415         ConcurrentMarkSweepGeneration::Unknown_collection_type,
  1416         "Bad cms collection type");
  1417       return false;
  1421   FreelistLocker x(this);
  1422   // ------------------------------------------------------------------
  1423   // Print out lots of information which affects the initiation of
  1424   // a collection.
  1425   if (PrintCMSInitiationStatistics && stats().valid()) {
  1426     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
  1427     gclog_or_tty->stamp();
  1428     gclog_or_tty->print_cr("");
  1429     stats().print_on(gclog_or_tty);
  1430     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
  1431       stats().time_until_cms_gen_full());
  1432     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
  1433     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
  1434                            _cmsGen->contiguous_available());
  1435     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
  1436     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
  1437     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
  1438     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
  1439     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
  1441   // ------------------------------------------------------------------
  1443   // If the estimated time to complete a cms collection (cms_duration())
  1444   // is less than the estimated time remaining until the cms generation
  1445   // is full, start a collection.
  1446   if (!UseCMSInitiatingOccupancyOnly) {
  1447     if (stats().valid()) {
  1448       if (stats().time_until_cms_start() == 0.0) {
  1449         return true;
  1451     } else {
  1452       // We want to conservatively collect somewhat early in order
  1453       // to try and "bootstrap" our CMS/promotion statistics;
  1454       // this branch will not fire after the first successful CMS
  1455       // collection because the stats should then be valid.
  1456       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
  1457         if (Verbose && PrintGCDetails) {
  1458           gclog_or_tty->print_cr(
  1459             " CMSCollector: collect for bootstrapping statistics:"
  1460             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
  1461             _bootstrap_occupancy);
  1463         return true;
  1468   // Otherwise, we start a collection cycle if either the perm gen or
  1469   // old gen want a collection cycle started. Each may use
  1470   // an appropriate criterion for making this decision.
  1471   // XXX We need to make sure that the gen expansion
  1472   // criterion dovetails well with this. XXX NEED TO FIX THIS
  1473   if (_cmsGen->should_concurrent_collect()) {
  1474     if (Verbose && PrintGCDetails) {
  1475       gclog_or_tty->print_cr("CMS old gen initiated");
  1477     return true;
  1480   // We start a collection if we believe an incremental collection may fail;
  1481   // this is not likely to be productive in practice because it's probably too
  1482   // late anyway.
  1483   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1484   assert(gch->collector_policy()->is_two_generation_policy(),
  1485          "You may want to check the correctness of the following");
  1486   if (gch->incremental_collection_will_fail()) {
  1487     if (PrintGCDetails && Verbose) {
  1488       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
  1490     return true;
  1493   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
  1494     bool res = update_should_unload_classes();
  1495     if (res) {
  1496       if (Verbose && PrintGCDetails) {
  1497         gclog_or_tty->print_cr("CMS perm gen initiated");
  1499       return true;
  1502   return false;
  1505 // Clear _expansion_cause fields of constituent generations
  1506 void CMSCollector::clear_expansion_cause() {
  1507   _cmsGen->clear_expansion_cause();
  1508   _permGen->clear_expansion_cause();
  1511 // We should be conservative in starting a collection cycle.  To
  1512 // start too eagerly runs the risk of collecting too often in the
  1513 // extreme.  To collect too rarely falls back on full collections,
  1514 // which works, even if not optimum in terms of concurrent work.
  1515 // As a work around for too eagerly collecting, use the flag
  1516 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
  1517 // giving the user an easily understandable way of controlling the
  1518 // collections.
  1519 // We want to start a new collection cycle if any of the following
  1520 // conditions hold:
  1521 // . our current occupancy exceeds the configured initiating occupancy
  1522 //   for this generation, or
  1523 // . we recently needed to expand this space and have not, since that
  1524 //   expansion, done a collection of this generation, or
  1525 // . the underlying space believes that it may be a good idea to initiate
  1526 //   a concurrent collection (this may be based on criteria such as the
  1527 //   following: the space uses linear allocation and linear allocation is
  1528 //   going to fail, or there is believed to be excessive fragmentation in
  1529 //   the generation, etc... or ...
  1530 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
  1531 //   the case of the old generation, not the perm generation; see CR 6543076):
  1532 //   we may be approaching a point at which allocation requests may fail because
  1533 //   we will be out of sufficient free space given allocation rate estimates.]
  1534 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
  1536   assert_lock_strong(freelistLock());
  1537   if (occupancy() > initiating_occupancy()) {
  1538     if (PrintGCDetails && Verbose) {
  1539       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
  1540         short_name(), occupancy(), initiating_occupancy());
  1542     return true;
  1544   if (UseCMSInitiatingOccupancyOnly) {
  1545     return false;
  1547   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
  1548     if (PrintGCDetails && Verbose) {
  1549       gclog_or_tty->print(" %s: collect because expanded for allocation ",
  1550         short_name());
  1552     return true;
  1554   if (_cmsSpace->should_concurrent_collect()) {
  1555     if (PrintGCDetails && Verbose) {
  1556       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
  1557         short_name());
  1559     return true;
  1561   return false;
  1564 void ConcurrentMarkSweepGeneration::collect(bool   full,
  1565                                             bool   clear_all_soft_refs,
  1566                                             size_t size,
  1567                                             bool   tlab)
  1569   collector()->collect(full, clear_all_soft_refs, size, tlab);
  1572 void CMSCollector::collect(bool   full,
  1573                            bool   clear_all_soft_refs,
  1574                            size_t size,
  1575                            bool   tlab)
  1577   if (!UseCMSCollectionPassing && _collectorState > Idling) {
  1578     // For debugging purposes skip the collection if the state
  1579     // is not currently idle
  1580     if (TraceCMSState) {
  1581       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
  1582         Thread::current(), full, _collectorState);
  1584     return;
  1587   // The following "if" branch is present for defensive reasons.
  1588   // In the current uses of this interface, it can be replaced with:
  1589   // assert(!GC_locker.is_active(), "Can't be called otherwise");
  1590   // But I am not placing that assert here to allow future
  1591   // generality in invoking this interface.
  1592   if (GC_locker::is_active()) {
  1593     // A consistency test for GC_locker
  1594     assert(GC_locker::needs_gc(), "Should have been set already");
  1595     // Skip this foreground collection, instead
  1596     // expanding the heap if necessary.
  1597     // Need the free list locks for the call to free() in compute_new_size()
  1598     compute_new_size();
  1599     return;
  1601   acquire_control_and_collect(full, clear_all_soft_refs);
  1602   _full_gcs_since_conc_gc++;
  1606 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
  1607   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1608   unsigned int gc_count = gch->total_full_collections();
  1609   if (gc_count == full_gc_count) {
  1610     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
  1611     _full_gc_requested = true;
  1612     CGC_lock->notify();   // nudge CMS thread
  1617 // The foreground and background collectors need to coordinate in order
  1618 // to make sure that they do not mutually interfere with CMS collections.
  1619 // When a background collection is active,
  1620 // the foreground collector may need to take over (preempt) and
  1621 // synchronously complete an ongoing collection. Depending on the
  1622 // frequency of the background collections and the heap usage
  1623 // of the application, this preemption can be seldom or frequent.
  1624 // There are only certain
  1625 // points in the background collection that the "collection-baton"
  1626 // can be passed to the foreground collector.
  1627 //
  1628 // The foreground collector will wait for the baton before
  1629 // starting any part of the collection.  The foreground collector
  1630 // will only wait at one location.
  1631 //
  1632 // The background collector will yield the baton before starting a new
  1633 // phase of the collection (e.g., before initial marking, marking from roots,
  1634 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
  1635 // of the loop which switches the phases. The background collector does some
  1636 // of the phases (initial mark, final re-mark) with the world stopped.
  1637 // Because of locking involved in stopping the world,
  1638 // the foreground collector should not block waiting for the background
  1639 // collector when it is doing a stop-the-world phase.  The background
  1640 // collector will yield the baton at an additional point just before
  1641 // it enters a stop-the-world phase.  Once the world is stopped, the
  1642 // background collector checks the phase of the collection.  If the
  1643 // phase has not changed, it proceeds with the collection.  If the
  1644 // phase has changed, it skips that phase of the collection.  See
  1645 // the comments on the use of the Heap_lock in collect_in_background().
  1646 //
  1647 // Variable used in baton passing.
  1648 //   _foregroundGCIsActive - Set to true by the foreground collector when
  1649 //      it wants the baton.  The foreground clears it when it has finished
  1650 //      the collection.
  1651 //   _foregroundGCShouldWait - Set to true by the background collector
  1652 //        when it is running.  The foreground collector waits while
  1653 //      _foregroundGCShouldWait is true.
  1654 //  CGC_lock - monitor used to protect access to the above variables
  1655 //      and to notify the foreground and background collectors.
  1656 //  _collectorState - current state of the CMS collection.
  1657 //
  1658 // The foreground collector
  1659 //   acquires the CGC_lock
  1660 //   sets _foregroundGCIsActive
  1661 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
  1662 //     various locks acquired in preparation for the collection
  1663 //     are released so as not to block the background collector
  1664 //     that is in the midst of a collection
  1665 //   proceeds with the collection
  1666 //   clears _foregroundGCIsActive
  1667 //   returns
  1668 //
  1669 // The background collector in a loop iterating on the phases of the
  1670 //      collection
  1671 //   acquires the CGC_lock
  1672 //   sets _foregroundGCShouldWait
  1673 //   if _foregroundGCIsActive is set
  1674 //     clears _foregroundGCShouldWait, notifies _CGC_lock
  1675 //     waits on _CGC_lock for _foregroundGCIsActive to become false
  1676 //     and exits the loop.
  1677 //   otherwise
  1678 //     proceed with that phase of the collection
  1679 //     if the phase is a stop-the-world phase,
  1680 //       yield the baton once more just before enqueueing
  1681 //       the stop-world CMS operation (executed by the VM thread).
  1682 //   returns after all phases of the collection are done
  1683 //
  1685 void CMSCollector::acquire_control_and_collect(bool full,
  1686         bool clear_all_soft_refs) {
  1687   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1688   assert(!Thread::current()->is_ConcurrentGC_thread(),
  1689          "shouldn't try to acquire control from self!");
  1691   // Start the protocol for acquiring control of the
  1692   // collection from the background collector (aka CMS thread).
  1693   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1694          "VM thread should have CMS token");
  1695   // Remember the possibly interrupted state of an ongoing
  1696   // concurrent collection
  1697   CollectorState first_state = _collectorState;
  1699   // Signal to a possibly ongoing concurrent collection that
  1700   // we want to do a foreground collection.
  1701   _foregroundGCIsActive = true;
  1703   // Disable incremental mode during a foreground collection.
  1704   ICMSDisabler icms_disabler;
  1706   // release locks and wait for a notify from the background collector
  1707   // releasing the locks in only necessary for phases which
  1708   // do yields to improve the granularity of the collection.
  1709   assert_lock_strong(bitMapLock());
  1710   // We need to lock the Free list lock for the space that we are
  1711   // currently collecting.
  1712   assert(haveFreelistLocks(), "Must be holding free list locks");
  1713   bitMapLock()->unlock();
  1714   releaseFreelistLocks();
  1716     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1717     if (_foregroundGCShouldWait) {
  1718       // We are going to be waiting for action for the CMS thread;
  1719       // it had better not be gone (for instance at shutdown)!
  1720       assert(ConcurrentMarkSweepThread::cmst() != NULL,
  1721              "CMS thread must be running");
  1722       // Wait here until the background collector gives us the go-ahead
  1723       ConcurrentMarkSweepThread::clear_CMS_flag(
  1724         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
  1725       // Get a possibly blocked CMS thread going:
  1726       //   Note that we set _foregroundGCIsActive true above,
  1727       //   without protection of the CGC_lock.
  1728       CGC_lock->notify();
  1729       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
  1730              "Possible deadlock");
  1731       while (_foregroundGCShouldWait) {
  1732         // wait for notification
  1733         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1734         // Possibility of delay/starvation here, since CMS token does
  1735         // not know to give priority to VM thread? Actually, i think
  1736         // there wouldn't be any delay/starvation, but the proof of
  1737         // that "fact" (?) appears non-trivial. XXX 20011219YSR
  1739       ConcurrentMarkSweepThread::set_CMS_flag(
  1740         ConcurrentMarkSweepThread::CMS_vm_has_token);
  1743   // The CMS_token is already held.  Get back the other locks.
  1744   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1745          "VM thread should have CMS token");
  1746   getFreelistLocks();
  1747   bitMapLock()->lock_without_safepoint_check();
  1748   if (TraceCMSState) {
  1749     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
  1750       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
  1751     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
  1754   // Check if we need to do a compaction, or if not, whether
  1755   // we need to start the mark-sweep from scratch.
  1756   bool should_compact    = false;
  1757   bool should_start_over = false;
  1758   decide_foreground_collection_type(clear_all_soft_refs,
  1759     &should_compact, &should_start_over);
  1761 NOT_PRODUCT(
  1762   if (RotateCMSCollectionTypes) {
  1763     if (_cmsGen->debug_collection_type() ==
  1764         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
  1765       should_compact = true;
  1766     } else if (_cmsGen->debug_collection_type() ==
  1767                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
  1768       should_compact = false;
  1773   if (PrintGCDetails && first_state > Idling) {
  1774     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
  1775     if (GCCause::is_user_requested_gc(cause) ||
  1776         GCCause::is_serviceability_requested_gc(cause)) {
  1777       gclog_or_tty->print(" (concurrent mode interrupted)");
  1778     } else {
  1779       gclog_or_tty->print(" (concurrent mode failure)");
  1783   if (should_compact) {
  1784     // If the collection is being acquired from the background
  1785     // collector, there may be references on the discovered
  1786     // references lists that have NULL referents (being those
  1787     // that were concurrently cleared by a mutator) or
  1788     // that are no longer active (having been enqueued concurrently
  1789     // by the mutator).
  1790     // Scrub the list of those references because Mark-Sweep-Compact
  1791     // code assumes referents are not NULL and that all discovered
  1792     // Reference objects are active.
  1793     ref_processor()->clean_up_discovered_references();
  1795     do_compaction_work(clear_all_soft_refs);
  1797     // Has the GC time limit been exceeded?
  1798     check_gc_time_limit();
  1800   } else {
  1801     do_mark_sweep_work(clear_all_soft_refs, first_state,
  1802       should_start_over);
  1804   // Reset the expansion cause, now that we just completed
  1805   // a collection cycle.
  1806   clear_expansion_cause();
  1807   _foregroundGCIsActive = false;
  1808   return;
  1811 void CMSCollector::check_gc_time_limit() {
  1813   // Ignore explicit GC's.  Exiting here does not set the flag and
  1814   // does not reset the count.  Updating of the averages for system
  1815   // GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
  1816   GCCause::Cause gc_cause = GenCollectedHeap::heap()->gc_cause();
  1817   if (GCCause::is_user_requested_gc(gc_cause) ||
  1818       GCCause::is_serviceability_requested_gc(gc_cause)) {
  1819     return;
  1822   // Calculate the fraction of the CMS generation was freed during
  1823   // the last collection.
  1824   // Only consider the STW compacting cost for now.
  1825   //
  1826   // Note that the gc time limit test only works for the collections
  1827   // of the young gen + tenured gen and not for collections of the
  1828   // permanent gen.  That is because the calculation of the space
  1829   // freed by the collection is the free space in the young gen +
  1830   // tenured gen.
  1832   double fraction_free =
  1833     ((double)_cmsGen->free())/((double)_cmsGen->max_capacity());
  1834   if ((100.0 * size_policy()->compacting_gc_cost()) >
  1835          ((double) GCTimeLimit) &&
  1836         ((fraction_free * 100) < GCHeapFreeLimit)) {
  1837     size_policy()->inc_gc_time_limit_count();
  1838     if (UseGCOverheadLimit &&
  1839         (size_policy()->gc_time_limit_count() >
  1840          AdaptiveSizePolicyGCTimeLimitThreshold)) {
  1841       size_policy()->set_gc_time_limit_exceeded(true);
  1842       // Avoid consecutive OOM due to the gc time limit by resetting
  1843       // the counter.
  1844       size_policy()->reset_gc_time_limit_count();
  1845       if (PrintGCDetails) {
  1846         gclog_or_tty->print_cr("      GC is exceeding overhead limit "
  1847           "of %d%%", GCTimeLimit);
  1849     } else {
  1850       if (PrintGCDetails) {
  1851         gclog_or_tty->print_cr("      GC would exceed overhead limit "
  1852           "of %d%%", GCTimeLimit);
  1855   } else {
  1856     size_policy()->reset_gc_time_limit_count();
  1860 // Resize the perm generation and the tenured generation
  1861 // after obtaining the free list locks for the
  1862 // two generations.
  1863 void CMSCollector::compute_new_size() {
  1864   assert_locked_or_safepoint(Heap_lock);
  1865   FreelistLocker z(this);
  1866   _permGen->compute_new_size();
  1867   _cmsGen->compute_new_size();
  1870 // A work method used by foreground collection to determine
  1871 // what type of collection (compacting or not, continuing or fresh)
  1872 // it should do.
  1873 // NOTE: the intent is to make UseCMSCompactAtFullCollection
  1874 // and CMSCompactWhenClearAllSoftRefs the default in the future
  1875 // and do away with the flags after a suitable period.
  1876 void CMSCollector::decide_foreground_collection_type(
  1877   bool clear_all_soft_refs, bool* should_compact,
  1878   bool* should_start_over) {
  1879   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
  1880   // flag is set, and we have either requested a System.gc() or
  1881   // the number of full gc's since the last concurrent cycle
  1882   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
  1883   // or if an incremental collection has failed
  1884   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1885   assert(gch->collector_policy()->is_two_generation_policy(),
  1886          "You may want to check the correctness of the following");
  1887   // Inform cms gen if this was due to partial collection failing.
  1888   // The CMS gen may use this fact to determine its expansion policy.
  1889   if (gch->incremental_collection_will_fail()) {
  1890     assert(!_cmsGen->incremental_collection_failed(),
  1891            "Should have been noticed, reacted to and cleared");
  1892     _cmsGen->set_incremental_collection_failed();
  1894   *should_compact =
  1895     UseCMSCompactAtFullCollection &&
  1896     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
  1897      GCCause::is_user_requested_gc(gch->gc_cause()) ||
  1898      gch->incremental_collection_will_fail());
  1899   *should_start_over = false;
  1900   if (clear_all_soft_refs && !*should_compact) {
  1901     // We are about to do a last ditch collection attempt
  1902     // so it would normally make sense to do a compaction
  1903     // to reclaim as much space as possible.
  1904     if (CMSCompactWhenClearAllSoftRefs) {
  1905       // Default: The rationale is that in this case either
  1906       // we are past the final marking phase, in which case
  1907       // we'd have to start over, or so little has been done
  1908       // that there's little point in saving that work. Compaction
  1909       // appears to be the sensible choice in either case.
  1910       *should_compact = true;
  1911     } else {
  1912       // We have been asked to clear all soft refs, but not to
  1913       // compact. Make sure that we aren't past the final checkpoint
  1914       // phase, for that is where we process soft refs. If we are already
  1915       // past that phase, we'll need to redo the refs discovery phase and
  1916       // if necessary clear soft refs that weren't previously
  1917       // cleared. We do so by remembering the phase in which
  1918       // we came in, and if we are past the refs processing
  1919       // phase, we'll choose to just redo the mark-sweep
  1920       // collection from scratch.
  1921       if (_collectorState > FinalMarking) {
  1922         // We are past the refs processing phase;
  1923         // start over and do a fresh synchronous CMS cycle
  1924         _collectorState = Resetting; // skip to reset to start new cycle
  1925         reset(false /* == !asynch */);
  1926         *should_start_over = true;
  1927       } // else we can continue a possibly ongoing current cycle
  1932 // A work method used by the foreground collector to do
  1933 // a mark-sweep-compact.
  1934 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
  1935   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1936   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
  1937   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
  1938     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
  1939       "collections passed to foreground collector", _full_gcs_since_conc_gc);
  1942   // Sample collection interval time and reset for collection pause.
  1943   if (UseAdaptiveSizePolicy) {
  1944     size_policy()->msc_collection_begin();
  1947   // Temporarily widen the span of the weak reference processing to
  1948   // the entire heap.
  1949   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
  1950   ReferenceProcessorSpanMutator x(ref_processor(), new_span);
  1952   // Temporarily, clear the "is_alive_non_header" field of the
  1953   // reference processor.
  1954   ReferenceProcessorIsAliveMutator y(ref_processor(), NULL);
  1956   // Temporarily make reference _processing_ single threaded (non-MT).
  1957   ReferenceProcessorMTProcMutator z(ref_processor(), false);
  1959   // Temporarily make refs discovery atomic
  1960   ReferenceProcessorAtomicMutator w(ref_processor(), true);
  1962   ref_processor()->set_enqueuing_is_done(false);
  1963   ref_processor()->enable_discovery();
  1964   ref_processor()->setup_policy(clear_all_soft_refs);
  1965   // If an asynchronous collection finishes, the _modUnionTable is
  1966   // all clear.  If we are assuming the collection from an asynchronous
  1967   // collection, clear the _modUnionTable.
  1968   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
  1969     "_modUnionTable should be clear if the baton was not passed");
  1970   _modUnionTable.clear_all();
  1972   // We must adjust the allocation statistics being maintained
  1973   // in the free list space. We do so by reading and clearing
  1974   // the sweep timer and updating the block flux rate estimates below.
  1975   assert(_sweep_timer.is_active(), "We should never see the timer inactive");
  1976   _sweep_timer.stop();
  1977   // Note that we do not use this sample to update the _sweep_estimate.
  1978   _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  1979                                           _sweep_estimate.padded_average());
  1981   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
  1982     ref_processor(), clear_all_soft_refs);
  1983   #ifdef ASSERT
  1984     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
  1985     size_t free_size = cms_space->free();
  1986     assert(free_size ==
  1987            pointer_delta(cms_space->end(), cms_space->compaction_top())
  1988            * HeapWordSize,
  1989       "All the free space should be compacted into one chunk at top");
  1990     assert(cms_space->dictionary()->totalChunkSize(
  1991                                       debug_only(cms_space->freelistLock())) == 0 ||
  1992            cms_space->totalSizeInIndexedFreeLists() == 0,
  1993       "All the free space should be in a single chunk");
  1994     size_t num = cms_space->totalCount();
  1995     assert((free_size == 0 && num == 0) ||
  1996            (free_size > 0  && (num == 1 || num == 2)),
  1997          "There should be at most 2 free chunks after compaction");
  1998   #endif // ASSERT
  1999   _collectorState = Resetting;
  2000   assert(_restart_addr == NULL,
  2001          "Should have been NULL'd before baton was passed");
  2002   reset(false /* == !asynch */);
  2003   _cmsGen->reset_after_compaction();
  2004   _concurrent_cycles_since_last_unload = 0;
  2006   if (verifying() && !should_unload_classes()) {
  2007     perm_gen_verify_bit_map()->clear_all();
  2010   // Clear any data recorded in the PLAB chunk arrays.
  2011   if (_survivor_plab_array != NULL) {
  2012     reset_survivor_plab_arrays();
  2015   // Adjust the per-size allocation stats for the next epoch.
  2016   _cmsGen->cmsSpace()->endSweepFLCensus(sweepCount() /* fake */);
  2017   // Restart the "sweep timer" for next epoch.
  2018   _sweep_timer.reset();
  2019   _sweep_timer.start();
  2021   // Sample collection pause time and reset for collection interval.
  2022   if (UseAdaptiveSizePolicy) {
  2023     size_policy()->msc_collection_end(gch->gc_cause());
  2026   // For a mark-sweep-compact, compute_new_size() will be called
  2027   // in the heap's do_collection() method.
  2030 // A work method used by the foreground collector to do
  2031 // a mark-sweep, after taking over from a possibly on-going
  2032 // concurrent mark-sweep collection.
  2033 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
  2034   CollectorState first_state, bool should_start_over) {
  2035   if (PrintGC && Verbose) {
  2036     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
  2037       "collector with count %d",
  2038       _full_gcs_since_conc_gc);
  2040   switch (_collectorState) {
  2041     case Idling:
  2042       if (first_state == Idling || should_start_over) {
  2043         // The background GC was not active, or should
  2044         // restarted from scratch;  start the cycle.
  2045         _collectorState = InitialMarking;
  2047       // If first_state was not Idling, then a background GC
  2048       // was in progress and has now finished.  No need to do it
  2049       // again.  Leave the state as Idling.
  2050       break;
  2051     case Precleaning:
  2052       // In the foreground case don't do the precleaning since
  2053       // it is not done concurrently and there is extra work
  2054       // required.
  2055       _collectorState = FinalMarking;
  2057   if (PrintGCDetails &&
  2058       (_collectorState > Idling ||
  2059        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
  2060     gclog_or_tty->print(" (concurrent mode failure)");
  2062   collect_in_foreground(clear_all_soft_refs);
  2064   // For a mark-sweep, compute_new_size() will be called
  2065   // in the heap's do_collection() method.
  2069 void CMSCollector::getFreelistLocks() const {
  2070   // Get locks for all free lists in all generations that this
  2071   // collector is responsible for
  2072   _cmsGen->freelistLock()->lock_without_safepoint_check();
  2073   _permGen->freelistLock()->lock_without_safepoint_check();
  2076 void CMSCollector::releaseFreelistLocks() const {
  2077   // Release locks for all free lists in all generations that this
  2078   // collector is responsible for
  2079   _cmsGen->freelistLock()->unlock();
  2080   _permGen->freelistLock()->unlock();
  2083 bool CMSCollector::haveFreelistLocks() const {
  2084   // Check locks for all free lists in all generations that this
  2085   // collector is responsible for
  2086   assert_lock_strong(_cmsGen->freelistLock());
  2087   assert_lock_strong(_permGen->freelistLock());
  2088   PRODUCT_ONLY(ShouldNotReachHere());
  2089   return true;
  2092 // A utility class that is used by the CMS collector to
  2093 // temporarily "release" the foreground collector from its
  2094 // usual obligation to wait for the background collector to
  2095 // complete an ongoing phase before proceeding.
  2096 class ReleaseForegroundGC: public StackObj {
  2097  private:
  2098   CMSCollector* _c;
  2099  public:
  2100   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
  2101     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
  2102     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2103     // allow a potentially blocked foreground collector to proceed
  2104     _c->_foregroundGCShouldWait = false;
  2105     if (_c->_foregroundGCIsActive) {
  2106       CGC_lock->notify();
  2108     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2109            "Possible deadlock");
  2112   ~ReleaseForegroundGC() {
  2113     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
  2114     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2115     _c->_foregroundGCShouldWait = true;
  2117 };
  2119 // There are separate collect_in_background and collect_in_foreground because of
  2120 // the different locking requirements of the background collector and the
  2121 // foreground collector.  There was originally an attempt to share
  2122 // one "collect" method between the background collector and the foreground
  2123 // collector but the if-then-else required made it cleaner to have
  2124 // separate methods.
  2125 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
  2126   assert(Thread::current()->is_ConcurrentGC_thread(),
  2127     "A CMS asynchronous collection is only allowed on a CMS thread.");
  2129   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2131     bool safepoint_check = Mutex::_no_safepoint_check_flag;
  2132     MutexLockerEx hl(Heap_lock, safepoint_check);
  2133     FreelistLocker fll(this);
  2134     MutexLockerEx x(CGC_lock, safepoint_check);
  2135     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
  2136       // The foreground collector is active or we're
  2137       // not using asynchronous collections.  Skip this
  2138       // background collection.
  2139       assert(!_foregroundGCShouldWait, "Should be clear");
  2140       return;
  2141     } else {
  2142       assert(_collectorState == Idling, "Should be idling before start.");
  2143       _collectorState = InitialMarking;
  2144       // Reset the expansion cause, now that we are about to begin
  2145       // a new cycle.
  2146       clear_expansion_cause();
  2148     // Decide if we want to enable class unloading as part of the
  2149     // ensuing concurrent GC cycle.
  2150     update_should_unload_classes();
  2151     _full_gc_requested = false;           // acks all outstanding full gc requests
  2152     // Signal that we are about to start a collection
  2153     gch->increment_total_full_collections();  // ... starting a collection cycle
  2154     _collection_count_start = gch->total_full_collections();
  2157   // Used for PrintGC
  2158   size_t prev_used;
  2159   if (PrintGC && Verbose) {
  2160     prev_used = _cmsGen->used(); // XXXPERM
  2163   // The change of the collection state is normally done at this level;
  2164   // the exceptions are phases that are executed while the world is
  2165   // stopped.  For those phases the change of state is done while the
  2166   // world is stopped.  For baton passing purposes this allows the
  2167   // background collector to finish the phase and change state atomically.
  2168   // The foreground collector cannot wait on a phase that is done
  2169   // while the world is stopped because the foreground collector already
  2170   // has the world stopped and would deadlock.
  2171   while (_collectorState != Idling) {
  2172     if (TraceCMSState) {
  2173       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2174         Thread::current(), _collectorState);
  2176     // The foreground collector
  2177     //   holds the Heap_lock throughout its collection.
  2178     //   holds the CMS token (but not the lock)
  2179     //     except while it is waiting for the background collector to yield.
  2180     //
  2181     // The foreground collector should be blocked (not for long)
  2182     //   if the background collector is about to start a phase
  2183     //   executed with world stopped.  If the background
  2184     //   collector has already started such a phase, the
  2185     //   foreground collector is blocked waiting for the
  2186     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
  2187     //   are executed in the VM thread.
  2188     //
  2189     // The locking order is
  2190     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
  2191     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
  2192     //   CMS token  (claimed in
  2193     //                stop_world_and_do() -->
  2194     //                  safepoint_synchronize() -->
  2195     //                    CMSThread::synchronize())
  2198       // Check if the FG collector wants us to yield.
  2199       CMSTokenSync x(true); // is cms thread
  2200       if (waitForForegroundGC()) {
  2201         // We yielded to a foreground GC, nothing more to be
  2202         // done this round.
  2203         assert(_foregroundGCShouldWait == false, "We set it to false in "
  2204                "waitForForegroundGC()");
  2205         if (TraceCMSState) {
  2206           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2207             " exiting collection CMS state %d",
  2208             Thread::current(), _collectorState);
  2210         return;
  2211       } else {
  2212         // The background collector can run but check to see if the
  2213         // foreground collector has done a collection while the
  2214         // background collector was waiting to get the CGC_lock
  2215         // above.  If yes, break so that _foregroundGCShouldWait
  2216         // is cleared before returning.
  2217         if (_collectorState == Idling) {
  2218           break;
  2223     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
  2224       "should be waiting");
  2226     switch (_collectorState) {
  2227       case InitialMarking:
  2229           ReleaseForegroundGC x(this);
  2230           stats().record_cms_begin();
  2232           VM_CMS_Initial_Mark initial_mark_op(this);
  2233           VMThread::execute(&initial_mark_op);
  2235         // The collector state may be any legal state at this point
  2236         // since the background collector may have yielded to the
  2237         // foreground collector.
  2238         break;
  2239       case Marking:
  2240         // initial marking in checkpointRootsInitialWork has been completed
  2241         if (markFromRoots(true)) { // we were successful
  2242           assert(_collectorState == Precleaning, "Collector state should "
  2243             "have changed");
  2244         } else {
  2245           assert(_foregroundGCIsActive, "Internal state inconsistency");
  2247         break;
  2248       case Precleaning:
  2249         if (UseAdaptiveSizePolicy) {
  2250           size_policy()->concurrent_precleaning_begin();
  2252         // marking from roots in markFromRoots has been completed
  2253         preclean();
  2254         if (UseAdaptiveSizePolicy) {
  2255           size_policy()->concurrent_precleaning_end();
  2257         assert(_collectorState == AbortablePreclean ||
  2258                _collectorState == FinalMarking,
  2259                "Collector state should have changed");
  2260         break;
  2261       case AbortablePreclean:
  2262         if (UseAdaptiveSizePolicy) {
  2263         size_policy()->concurrent_phases_resume();
  2265         abortable_preclean();
  2266         if (UseAdaptiveSizePolicy) {
  2267           size_policy()->concurrent_precleaning_end();
  2269         assert(_collectorState == FinalMarking, "Collector state should "
  2270           "have changed");
  2271         break;
  2272       case FinalMarking:
  2274           ReleaseForegroundGC x(this);
  2276           VM_CMS_Final_Remark final_remark_op(this);
  2277           VMThread::execute(&final_remark_op);
  2279         assert(_foregroundGCShouldWait, "block post-condition");
  2280         break;
  2281       case Sweeping:
  2282         if (UseAdaptiveSizePolicy) {
  2283           size_policy()->concurrent_sweeping_begin();
  2285         // final marking in checkpointRootsFinal has been completed
  2286         sweep(true);
  2287         assert(_collectorState == Resizing, "Collector state change "
  2288           "to Resizing must be done under the free_list_lock");
  2289         _full_gcs_since_conc_gc = 0;
  2291         // Stop the timers for adaptive size policy for the concurrent phases
  2292         if (UseAdaptiveSizePolicy) {
  2293           size_policy()->concurrent_sweeping_end();
  2294           size_policy()->concurrent_phases_end(gch->gc_cause(),
  2295                                              gch->prev_gen(_cmsGen)->capacity(),
  2296                                              _cmsGen->free());
  2299       case Resizing: {
  2300         // Sweeping has been completed...
  2301         // At this point the background collection has completed.
  2302         // Don't move the call to compute_new_size() down
  2303         // into code that might be executed if the background
  2304         // collection was preempted.
  2306           ReleaseForegroundGC x(this);   // unblock FG collection
  2307           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
  2308           CMSTokenSync        z(true);   // not strictly needed.
  2309           if (_collectorState == Resizing) {
  2310             compute_new_size();
  2311             _collectorState = Resetting;
  2312           } else {
  2313             assert(_collectorState == Idling, "The state should only change"
  2314                    " because the foreground collector has finished the collection");
  2317         break;
  2319       case Resetting:
  2320         // CMS heap resizing has been completed
  2321         reset(true);
  2322         assert(_collectorState == Idling, "Collector state should "
  2323           "have changed");
  2324         stats().record_cms_end();
  2325         // Don't move the concurrent_phases_end() and compute_new_size()
  2326         // calls to here because a preempted background collection
  2327         // has it's state set to "Resetting".
  2328         break;
  2329       case Idling:
  2330       default:
  2331         ShouldNotReachHere();
  2332         break;
  2334     if (TraceCMSState) {
  2335       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2336         Thread::current(), _collectorState);
  2338     assert(_foregroundGCShouldWait, "block post-condition");
  2341   // Should this be in gc_epilogue?
  2342   collector_policy()->counters()->update_counters();
  2345     // Clear _foregroundGCShouldWait and, in the event that the
  2346     // foreground collector is waiting, notify it, before
  2347     // returning.
  2348     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2349     _foregroundGCShouldWait = false;
  2350     if (_foregroundGCIsActive) {
  2351       CGC_lock->notify();
  2353     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2354            "Possible deadlock");
  2356   if (TraceCMSState) {
  2357     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2358       " exiting collection CMS state %d",
  2359       Thread::current(), _collectorState);
  2361   if (PrintGC && Verbose) {
  2362     _cmsGen->print_heap_change(prev_used);
  2366 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
  2367   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
  2368          "Foreground collector should be waiting, not executing");
  2369   assert(Thread::current()->is_VM_thread(), "A foreground collection"
  2370     "may only be done by the VM Thread with the world stopped");
  2371   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  2372          "VM thread should have CMS token");
  2374   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
  2375     true, gclog_or_tty);)
  2376   if (UseAdaptiveSizePolicy) {
  2377     size_policy()->ms_collection_begin();
  2379   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
  2381   HandleMark hm;  // Discard invalid handles created during verification
  2383   if (VerifyBeforeGC &&
  2384       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2385     Universe::verify(true);
  2388   // Snapshot the soft reference policy to be used in this collection cycle.
  2389   ref_processor()->setup_policy(clear_all_soft_refs);
  2391   bool init_mark_was_synchronous = false; // until proven otherwise
  2392   while (_collectorState != Idling) {
  2393     if (TraceCMSState) {
  2394       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2395         Thread::current(), _collectorState);
  2397     switch (_collectorState) {
  2398       case InitialMarking:
  2399         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
  2400         checkpointRootsInitial(false);
  2401         assert(_collectorState == Marking, "Collector state should have changed"
  2402           " within checkpointRootsInitial()");
  2403         break;
  2404       case Marking:
  2405         // initial marking in checkpointRootsInitialWork has been completed
  2406         if (VerifyDuringGC &&
  2407             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2408           gclog_or_tty->print("Verify before initial mark: ");
  2409           Universe::verify(true);
  2412           bool res = markFromRoots(false);
  2413           assert(res && _collectorState == FinalMarking, "Collector state should "
  2414             "have changed");
  2415           break;
  2417       case FinalMarking:
  2418         if (VerifyDuringGC &&
  2419             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2420           gclog_or_tty->print("Verify before re-mark: ");
  2421           Universe::verify(true);
  2423         checkpointRootsFinal(false, clear_all_soft_refs,
  2424                              init_mark_was_synchronous);
  2425         assert(_collectorState == Sweeping, "Collector state should not "
  2426           "have changed within checkpointRootsFinal()");
  2427         break;
  2428       case Sweeping:
  2429         // final marking in checkpointRootsFinal has been completed
  2430         if (VerifyDuringGC &&
  2431             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2432           gclog_or_tty->print("Verify before sweep: ");
  2433           Universe::verify(true);
  2435         sweep(false);
  2436         assert(_collectorState == Resizing, "Incorrect state");
  2437         break;
  2438       case Resizing: {
  2439         // Sweeping has been completed; the actual resize in this case
  2440         // is done separately; nothing to be done in this state.
  2441         _collectorState = Resetting;
  2442         break;
  2444       case Resetting:
  2445         // The heap has been resized.
  2446         if (VerifyDuringGC &&
  2447             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2448           gclog_or_tty->print("Verify before reset: ");
  2449           Universe::verify(true);
  2451         reset(false);
  2452         assert(_collectorState == Idling, "Collector state should "
  2453           "have changed");
  2454         break;
  2455       case Precleaning:
  2456       case AbortablePreclean:
  2457         // Elide the preclean phase
  2458         _collectorState = FinalMarking;
  2459         break;
  2460       default:
  2461         ShouldNotReachHere();
  2463     if (TraceCMSState) {
  2464       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2465         Thread::current(), _collectorState);
  2469   if (UseAdaptiveSizePolicy) {
  2470     GenCollectedHeap* gch = GenCollectedHeap::heap();
  2471     size_policy()->ms_collection_end(gch->gc_cause());
  2474   if (VerifyAfterGC &&
  2475       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2476     Universe::verify(true);
  2478   if (TraceCMSState) {
  2479     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2480       " exiting collection CMS state %d",
  2481       Thread::current(), _collectorState);
  2485 bool CMSCollector::waitForForegroundGC() {
  2486   bool res = false;
  2487   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2488          "CMS thread should have CMS token");
  2489   // Block the foreground collector until the
  2490   // background collectors decides whether to
  2491   // yield.
  2492   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2493   _foregroundGCShouldWait = true;
  2494   if (_foregroundGCIsActive) {
  2495     // The background collector yields to the
  2496     // foreground collector and returns a value
  2497     // indicating that it has yielded.  The foreground
  2498     // collector can proceed.
  2499     res = true;
  2500     _foregroundGCShouldWait = false;
  2501     ConcurrentMarkSweepThread::clear_CMS_flag(
  2502       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2503     ConcurrentMarkSweepThread::set_CMS_flag(
  2504       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2505     // Get a possibly blocked foreground thread going
  2506     CGC_lock->notify();
  2507     if (TraceCMSState) {
  2508       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
  2509         Thread::current(), _collectorState);
  2511     while (_foregroundGCIsActive) {
  2512       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  2514     ConcurrentMarkSweepThread::set_CMS_flag(
  2515       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2516     ConcurrentMarkSweepThread::clear_CMS_flag(
  2517       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2519   if (TraceCMSState) {
  2520     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
  2521       Thread::current(), _collectorState);
  2523   return res;
  2526 // Because of the need to lock the free lists and other structures in
  2527 // the collector, common to all the generations that the collector is
  2528 // collecting, we need the gc_prologues of individual CMS generations
  2529 // delegate to their collector. It may have been simpler had the
  2530 // current infrastructure allowed one to call a prologue on a
  2531 // collector. In the absence of that we have the generation's
  2532 // prologue delegate to the collector, which delegates back
  2533 // some "local" work to a worker method in the individual generations
  2534 // that it's responsible for collecting, while itself doing any
  2535 // work common to all generations it's responsible for. A similar
  2536 // comment applies to the  gc_epilogue()'s.
  2537 // The role of the varaible _between_prologue_and_epilogue is to
  2538 // enforce the invocation protocol.
  2539 void CMSCollector::gc_prologue(bool full) {
  2540   // Call gc_prologue_work() for each CMSGen and PermGen that
  2541   // we are responsible for.
  2543   // The following locking discipline assumes that we are only called
  2544   // when the world is stopped.
  2545   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
  2547   // The CMSCollector prologue must call the gc_prologues for the
  2548   // "generations" (including PermGen if any) that it's responsible
  2549   // for.
  2551   assert(   Thread::current()->is_VM_thread()
  2552          || (   CMSScavengeBeforeRemark
  2553              && Thread::current()->is_ConcurrentGC_thread()),
  2554          "Incorrect thread type for prologue execution");
  2556   if (_between_prologue_and_epilogue) {
  2557     // We have already been invoked; this is a gc_prologue delegation
  2558     // from yet another CMS generation that we are responsible for, just
  2559     // ignore it since all relevant work has already been done.
  2560     return;
  2563   // set a bit saying prologue has been called; cleared in epilogue
  2564   _between_prologue_and_epilogue = true;
  2565   // Claim locks for common data structures, then call gc_prologue_work()
  2566   // for each CMSGen and PermGen that we are responsible for.
  2568   getFreelistLocks();   // gets free list locks on constituent spaces
  2569   bitMapLock()->lock_without_safepoint_check();
  2571   // Should call gc_prologue_work() for all cms gens we are responsible for
  2572   bool registerClosure =    _collectorState >= Marking
  2573                          && _collectorState < Sweeping;
  2574   ModUnionClosure* muc = ParallelGCThreads > 0 ? &_modUnionClosurePar
  2575                                                : &_modUnionClosure;
  2576   _cmsGen->gc_prologue_work(full, registerClosure, muc);
  2577   _permGen->gc_prologue_work(full, registerClosure, muc);
  2579   if (!full) {
  2580     stats().record_gc0_begin();
  2584 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
  2585   // Delegate to CMScollector which knows how to coordinate between
  2586   // this and any other CMS generations that it is responsible for
  2587   // collecting.
  2588   collector()->gc_prologue(full);
  2591 // This is a "private" interface for use by this generation's CMSCollector.
  2592 // Not to be called directly by any other entity (for instance,
  2593 // GenCollectedHeap, which calls the "public" gc_prologue method above).
  2594 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
  2595   bool registerClosure, ModUnionClosure* modUnionClosure) {
  2596   assert(!incremental_collection_failed(), "Shouldn't be set yet");
  2597   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
  2598     "Should be NULL");
  2599   if (registerClosure) {
  2600     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
  2602   cmsSpace()->gc_prologue();
  2603   // Clear stat counters
  2604   NOT_PRODUCT(
  2605     assert(_numObjectsPromoted == 0, "check");
  2606     assert(_numWordsPromoted   == 0, "check");
  2607     if (Verbose && PrintGC) {
  2608       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
  2609                           SIZE_FORMAT" bytes concurrently",
  2610       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
  2612     _numObjectsAllocated = 0;
  2613     _numWordsAllocated   = 0;
  2617 void CMSCollector::gc_epilogue(bool full) {
  2618   // The following locking discipline assumes that we are only called
  2619   // when the world is stopped.
  2620   assert(SafepointSynchronize::is_at_safepoint(),
  2621          "world is stopped assumption");
  2623   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
  2624   // if linear allocation blocks need to be appropriately marked to allow the
  2625   // the blocks to be parsable. We also check here whether we need to nudge the
  2626   // CMS collector thread to start a new cycle (if it's not already active).
  2627   assert(   Thread::current()->is_VM_thread()
  2628          || (   CMSScavengeBeforeRemark
  2629              && Thread::current()->is_ConcurrentGC_thread()),
  2630          "Incorrect thread type for epilogue execution");
  2632   if (!_between_prologue_and_epilogue) {
  2633     // We have already been invoked; this is a gc_epilogue delegation
  2634     // from yet another CMS generation that we are responsible for, just
  2635     // ignore it since all relevant work has already been done.
  2636     return;
  2638   assert(haveFreelistLocks(), "must have freelist locks");
  2639   assert_lock_strong(bitMapLock());
  2641   _cmsGen->gc_epilogue_work(full);
  2642   _permGen->gc_epilogue_work(full);
  2644   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
  2645     // in case sampling was not already enabled, enable it
  2646     _start_sampling = true;
  2648   // reset _eden_chunk_array so sampling starts afresh
  2649   _eden_chunk_index = 0;
  2651   size_t cms_used   = _cmsGen->cmsSpace()->used();
  2652   size_t perm_used  = _permGen->cmsSpace()->used();
  2654   // update performance counters - this uses a special version of
  2655   // update_counters() that allows the utilization to be passed as a
  2656   // parameter, avoiding multiple calls to used().
  2657   //
  2658   _cmsGen->update_counters(cms_used);
  2659   _permGen->update_counters(perm_used);
  2661   if (CMSIncrementalMode) {
  2662     icms_update_allocation_limits();
  2665   bitMapLock()->unlock();
  2666   releaseFreelistLocks();
  2668   _between_prologue_and_epilogue = false;  // ready for next cycle
  2671 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
  2672   collector()->gc_epilogue(full);
  2674   // Also reset promotion tracking in par gc thread states.
  2675   if (ParallelGCThreads > 0) {
  2676     for (uint i = 0; i < ParallelGCThreads; i++) {
  2677       _par_gc_thread_states[i]->promo.stopTrackingPromotions();
  2682 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
  2683   assert(!incremental_collection_failed(), "Should have been cleared");
  2684   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
  2685   cmsSpace()->gc_epilogue();
  2686     // Print stat counters
  2687   NOT_PRODUCT(
  2688     assert(_numObjectsAllocated == 0, "check");
  2689     assert(_numWordsAllocated == 0, "check");
  2690     if (Verbose && PrintGC) {
  2691       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
  2692                           SIZE_FORMAT" bytes",
  2693                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
  2695     _numObjectsPromoted = 0;
  2696     _numWordsPromoted   = 0;
  2699   if (PrintGC && Verbose) {
  2700     // Call down the chain in contiguous_available needs the freelistLock
  2701     // so print this out before releasing the freeListLock.
  2702     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
  2703                         contiguous_available());
  2707 #ifndef PRODUCT
  2708 bool CMSCollector::have_cms_token() {
  2709   Thread* thr = Thread::current();
  2710   if (thr->is_VM_thread()) {
  2711     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
  2712   } else if (thr->is_ConcurrentGC_thread()) {
  2713     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
  2714   } else if (thr->is_GC_task_thread()) {
  2715     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
  2716            ParGCRareEvent_lock->owned_by_self();
  2718   return false;
  2720 #endif
  2722 // Check reachability of the given heap address in CMS generation,
  2723 // treating all other generations as roots.
  2724 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
  2725   // We could "guarantee" below, rather than assert, but i'll
  2726   // leave these as "asserts" so that an adventurous debugger
  2727   // could try this in the product build provided some subset of
  2728   // the conditions were met, provided they were intersted in the
  2729   // results and knew that the computation below wouldn't interfere
  2730   // with other concurrent computations mutating the structures
  2731   // being read or written.
  2732   assert(SafepointSynchronize::is_at_safepoint(),
  2733          "Else mutations in object graph will make answer suspect");
  2734   assert(have_cms_token(), "Should hold cms token");
  2735   assert(haveFreelistLocks(), "must hold free list locks");
  2736   assert_lock_strong(bitMapLock());
  2738   // Clear the marking bit map array before starting, but, just
  2739   // for kicks, first report if the given address is already marked
  2740   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
  2741                 _markBitMap.isMarked(addr) ? "" : " not");
  2743   if (verify_after_remark()) {
  2744     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2745     bool result = verification_mark_bm()->isMarked(addr);
  2746     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
  2747                            result ? "IS" : "is NOT");
  2748     return result;
  2749   } else {
  2750     gclog_or_tty->print_cr("Could not compute result");
  2751     return false;
  2755 ////////////////////////////////////////////////////////
  2756 // CMS Verification Support
  2757 ////////////////////////////////////////////////////////
  2758 // Following the remark phase, the following invariant
  2759 // should hold -- each object in the CMS heap which is
  2760 // marked in markBitMap() should be marked in the verification_mark_bm().
  2762 class VerifyMarkedClosure: public BitMapClosure {
  2763   CMSBitMap* _marks;
  2764   bool       _failed;
  2766  public:
  2767   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
  2769   bool do_bit(size_t offset) {
  2770     HeapWord* addr = _marks->offsetToHeapWord(offset);
  2771     if (!_marks->isMarked(addr)) {
  2772       oop(addr)->print();
  2773       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  2774       _failed = true;
  2776     return true;
  2779   bool failed() { return _failed; }
  2780 };
  2782 bool CMSCollector::verify_after_remark() {
  2783   gclog_or_tty->print(" [Verifying CMS Marking... ");
  2784   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2785   static bool init = false;
  2787   assert(SafepointSynchronize::is_at_safepoint(),
  2788          "Else mutations in object graph will make answer suspect");
  2789   assert(have_cms_token(),
  2790          "Else there may be mutual interference in use of "
  2791          " verification data structures");
  2792   assert(_collectorState > Marking && _collectorState <= Sweeping,
  2793          "Else marking info checked here may be obsolete");
  2794   assert(haveFreelistLocks(), "must hold free list locks");
  2795   assert_lock_strong(bitMapLock());
  2798   // Allocate marking bit map if not already allocated
  2799   if (!init) { // first time
  2800     if (!verification_mark_bm()->allocate(_span)) {
  2801       return false;
  2803     init = true;
  2806   assert(verification_mark_stack()->isEmpty(), "Should be empty");
  2808   // Turn off refs discovery -- so we will be tracing through refs.
  2809   // This is as intended, because by this time
  2810   // GC must already have cleared any refs that need to be cleared,
  2811   // and traced those that need to be marked; moreover,
  2812   // the marking done here is not going to intefere in any
  2813   // way with the marking information used by GC.
  2814   NoRefDiscovery no_discovery(ref_processor());
  2816   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  2818   // Clear any marks from a previous round
  2819   verification_mark_bm()->clear_all();
  2820   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
  2821   assert(overflow_list_is_empty(), "overflow list should be empty");
  2823   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2824   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  2825   // Update the saved marks which may affect the root scans.
  2826   gch->save_marks();
  2828   if (CMSRemarkVerifyVariant == 1) {
  2829     // In this first variant of verification, we complete
  2830     // all marking, then check if the new marks-verctor is
  2831     // a subset of the CMS marks-vector.
  2832     verify_after_remark_work_1();
  2833   } else if (CMSRemarkVerifyVariant == 2) {
  2834     // In this second variant of verification, we flag an error
  2835     // (i.e. an object reachable in the new marks-vector not reachable
  2836     // in the CMS marks-vector) immediately, also indicating the
  2837     // identify of an object (A) that references the unmarked object (B) --
  2838     // presumably, a mutation to A failed to be picked up by preclean/remark?
  2839     verify_after_remark_work_2();
  2840   } else {
  2841     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
  2842             CMSRemarkVerifyVariant);
  2844   gclog_or_tty->print(" done] ");
  2845   return true;
  2848 void CMSCollector::verify_after_remark_work_1() {
  2849   ResourceMark rm;
  2850   HandleMark  hm;
  2851   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2853   // Mark from roots one level into CMS
  2854   MarkRefsIntoClosure notOlder(_span, verification_mark_bm(), true /* nmethods */);
  2855   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2857   gch->gen_process_strong_roots(_cmsGen->level(),
  2858                                 true,   // younger gens are roots
  2859                                 true,   // collecting perm gen
  2860                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2861                                 NULL, &notOlder);
  2863   // Now mark from the roots
  2864   assert(_revisitStack.isEmpty(), "Should be empty");
  2865   MarkFromRootsClosure markFromRootsClosure(this, _span,
  2866     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
  2867     false /* don't yield */, true /* verifying */);
  2868   assert(_restart_addr == NULL, "Expected pre-condition");
  2869   verification_mark_bm()->iterate(&markFromRootsClosure);
  2870   while (_restart_addr != NULL) {
  2871     // Deal with stack overflow: by restarting at the indicated
  2872     // address.
  2873     HeapWord* ra = _restart_addr;
  2874     markFromRootsClosure.reset(ra);
  2875     _restart_addr = NULL;
  2876     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2878   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2879   verify_work_stacks_empty();
  2880   // Should reset the revisit stack above, since no class tree
  2881   // surgery is forthcoming.
  2882   _revisitStack.reset(); // throwing away all contents
  2884   // Marking completed -- now verify that each bit marked in
  2885   // verification_mark_bm() is also marked in markBitMap(); flag all
  2886   // errors by printing corresponding objects.
  2887   VerifyMarkedClosure vcl(markBitMap());
  2888   verification_mark_bm()->iterate(&vcl);
  2889   if (vcl.failed()) {
  2890     gclog_or_tty->print("Verification failed");
  2891     Universe::heap()->print();
  2892     fatal(" ... aborting");
  2896 void CMSCollector::verify_after_remark_work_2() {
  2897   ResourceMark rm;
  2898   HandleMark  hm;
  2899   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2901   // Mark from roots one level into CMS
  2902   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
  2903                                      markBitMap(), true /* nmethods */);
  2904   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2905   gch->gen_process_strong_roots(_cmsGen->level(),
  2906                                 true,   // younger gens are roots
  2907                                 true,   // collecting perm gen
  2908                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2909                                 NULL, &notOlder);
  2911   // Now mark from the roots
  2912   assert(_revisitStack.isEmpty(), "Should be empty");
  2913   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
  2914     verification_mark_bm(), markBitMap(), verification_mark_stack());
  2915   assert(_restart_addr == NULL, "Expected pre-condition");
  2916   verification_mark_bm()->iterate(&markFromRootsClosure);
  2917   while (_restart_addr != NULL) {
  2918     // Deal with stack overflow: by restarting at the indicated
  2919     // address.
  2920     HeapWord* ra = _restart_addr;
  2921     markFromRootsClosure.reset(ra);
  2922     _restart_addr = NULL;
  2923     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2925   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2926   verify_work_stacks_empty();
  2927   // Should reset the revisit stack above, since no class tree
  2928   // surgery is forthcoming.
  2929   _revisitStack.reset(); // throwing away all contents
  2931   // Marking completed -- now verify that each bit marked in
  2932   // verification_mark_bm() is also marked in markBitMap(); flag all
  2933   // errors by printing corresponding objects.
  2934   VerifyMarkedClosure vcl(markBitMap());
  2935   verification_mark_bm()->iterate(&vcl);
  2936   assert(!vcl.failed(), "Else verification above should not have succeeded");
  2939 void ConcurrentMarkSweepGeneration::save_marks() {
  2940   // delegate to CMS space
  2941   cmsSpace()->save_marks();
  2942   for (uint i = 0; i < ParallelGCThreads; i++) {
  2943     _par_gc_thread_states[i]->promo.startTrackingPromotions();
  2947 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
  2948   return cmsSpace()->no_allocs_since_save_marks();
  2951 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
  2953 void ConcurrentMarkSweepGeneration::                            \
  2954 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
  2955   cl->set_generation(this);                                     \
  2956   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
  2957   cl->reset_generation();                                       \
  2958   save_marks();                                                 \
  2961 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
  2963 void
  2964 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
  2966   // Not currently implemented; need to do the following. -- ysr.
  2967   // dld -- I think that is used for some sort of allocation profiler.  So it
  2968   // really means the objects allocated by the mutator since the last
  2969   // GC.  We could potentially implement this cheaply by recording only
  2970   // the direct allocations in a side data structure.
  2971   //
  2972   // I think we probably ought not to be required to support these
  2973   // iterations at any arbitrary point; I think there ought to be some
  2974   // call to enable/disable allocation profiling in a generation/space,
  2975   // and the iterator ought to return the objects allocated in the
  2976   // gen/space since the enable call, or the last iterator call (which
  2977   // will probably be at a GC.)  That way, for gens like CM&S that would
  2978   // require some extra data structure to support this, we only pay the
  2979   // cost when it's in use...
  2980   cmsSpace()->object_iterate_since_last_GC(blk);
  2983 void
  2984 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
  2985   cl->set_generation(this);
  2986   younger_refs_in_space_iterate(_cmsSpace, cl);
  2987   cl->reset_generation();
  2990 void
  2991 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
  2992   if (freelistLock()->owned_by_self()) {
  2993     Generation::oop_iterate(mr, cl);
  2994   } else {
  2995     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  2996     Generation::oop_iterate(mr, cl);
  3000 void
  3001 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
  3002   if (freelistLock()->owned_by_self()) {
  3003     Generation::oop_iterate(cl);
  3004   } else {
  3005     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3006     Generation::oop_iterate(cl);
  3010 void
  3011 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
  3012   if (freelistLock()->owned_by_self()) {
  3013     Generation::object_iterate(cl);
  3014   } else {
  3015     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3016     Generation::object_iterate(cl);
  3020 void
  3021 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
  3024 void
  3025 ConcurrentMarkSweepGeneration::post_compact() {
  3028 void
  3029 ConcurrentMarkSweepGeneration::prepare_for_verify() {
  3030   // Fix the linear allocation blocks to look like free blocks.
  3032   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3033   // are not called when the heap is verified during universe initialization and
  3034   // at vm shutdown.
  3035   if (freelistLock()->owned_by_self()) {
  3036     cmsSpace()->prepare_for_verify();
  3037   } else {
  3038     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3039     cmsSpace()->prepare_for_verify();
  3043 void
  3044 ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
  3045   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3046   // are not called when the heap is verified during universe initialization and
  3047   // at vm shutdown.
  3048   if (freelistLock()->owned_by_self()) {
  3049     cmsSpace()->verify(false /* ignored */);
  3050   } else {
  3051     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3052     cmsSpace()->verify(false /* ignored */);
  3056 void CMSCollector::verify(bool allow_dirty /* ignored */) {
  3057   _cmsGen->verify(allow_dirty);
  3058   _permGen->verify(allow_dirty);
  3061 #ifndef PRODUCT
  3062 bool CMSCollector::overflow_list_is_empty() const {
  3063   assert(_num_par_pushes >= 0, "Inconsistency");
  3064   if (_overflow_list == NULL) {
  3065     assert(_num_par_pushes == 0, "Inconsistency");
  3067   return _overflow_list == NULL;
  3070 // The methods verify_work_stacks_empty() and verify_overflow_empty()
  3071 // merely consolidate assertion checks that appear to occur together frequently.
  3072 void CMSCollector::verify_work_stacks_empty() const {
  3073   assert(_markStack.isEmpty(), "Marking stack should be empty");
  3074   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3077 void CMSCollector::verify_overflow_empty() const {
  3078   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3079   assert(no_preserved_marks(), "No preserved marks");
  3081 #endif // PRODUCT
  3083 // Decide if we want to enable class unloading as part of the
  3084 // ensuing concurrent GC cycle. We will collect the perm gen and
  3085 // unload classes if it's the case that:
  3086 // (1) an explicit gc request has been made and the flag
  3087 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
  3088 // (2) (a) class unloading is enabled at the command line, and
  3089 //     (b) (i)   perm gen threshold has been crossed, or
  3090 //         (ii)  old gen is getting really full, or
  3091 //         (iii) the previous N CMS collections did not collect the
  3092 //               perm gen
  3093 // NOTE: Provided there is no change in the state of the heap between
  3094 // calls to this method, it should have idempotent results. Moreover,
  3095 // its results should be monotonically increasing (i.e. going from 0 to 1,
  3096 // but not 1 to 0) between successive calls between which the heap was
  3097 // not collected. For the implementation below, it must thus rely on
  3098 // the property that concurrent_cycles_since_last_unload()
  3099 // will not decrease unless a collection cycle happened and that
  3100 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
  3101 // themselves also monotonic in that sense. See check_monotonicity()
  3102 // below.
  3103 bool CMSCollector::update_should_unload_classes() {
  3104   _should_unload_classes = false;
  3105   // Condition 1 above
  3106   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
  3107     _should_unload_classes = true;
  3108   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
  3109     // Disjuncts 2.b.(i,ii,iii) above
  3110     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
  3111                               CMSClassUnloadingMaxInterval)
  3112                            || _permGen->should_concurrent_collect()
  3113                            || _cmsGen->is_too_full();
  3115   return _should_unload_classes;
  3118 bool ConcurrentMarkSweepGeneration::is_too_full() const {
  3119   bool res = should_concurrent_collect();
  3120   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
  3121   return res;
  3124 void CMSCollector::setup_cms_unloading_and_verification_state() {
  3125   const  bool should_verify =    VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
  3126                              || VerifyBeforeExit;
  3127   const  int  rso           =    SharedHeap::SO_Symbols | SharedHeap::SO_Strings
  3128                              |   SharedHeap::SO_CodeCache;
  3130   if (should_unload_classes()) {   // Should unload classes this cycle
  3131     remove_root_scanning_option(rso);  // Shrink the root set appropriately
  3132     set_verifying(should_verify);    // Set verification state for this cycle
  3133     return;                            // Nothing else needs to be done at this time
  3136   // Not unloading classes this cycle
  3137   assert(!should_unload_classes(), "Inconsitency!");
  3138   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
  3139     // We were not verifying, or we _were_ unloading classes in the last cycle,
  3140     // AND some verification options are enabled this cycle; in this case,
  3141     // we must make sure that the deadness map is allocated if not already so,
  3142     // and cleared (if already allocated previously --
  3143     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
  3144     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
  3145       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
  3146         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
  3147                 "permanent generation verification disabled");
  3148         return;  // Note that we leave verification disabled, so we'll retry this
  3149                  // allocation next cycle. We _could_ remember this failure
  3150                  // and skip further attempts and permanently disable verification
  3151                  // attempts if that is considered more desirable.
  3153       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
  3154               "_perm_gen_ver_bit_map inconsistency?");
  3155     } else {
  3156       perm_gen_verify_bit_map()->clear_all();
  3158     // Include symbols, strings and code cache elements to prevent their resurrection.
  3159     add_root_scanning_option(rso);
  3160     set_verifying(true);
  3161   } else if (verifying() && !should_verify) {
  3162     // We were verifying, but some verification flags got disabled.
  3163     set_verifying(false);
  3164     // Exclude symbols, strings and code cache elements from root scanning to
  3165     // reduce IM and RM pauses.
  3166     remove_root_scanning_option(rso);
  3171 #ifndef PRODUCT
  3172 HeapWord* CMSCollector::block_start(const void* p) const {
  3173   const HeapWord* addr = (HeapWord*)p;
  3174   if (_span.contains(p)) {
  3175     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
  3176       return _cmsGen->cmsSpace()->block_start(p);
  3177     } else {
  3178       assert(_permGen->cmsSpace()->is_in_reserved(addr),
  3179              "Inconsistent _span?");
  3180       return _permGen->cmsSpace()->block_start(p);
  3183   return NULL;
  3185 #endif
  3187 HeapWord*
  3188 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
  3189                                                    bool   tlab,
  3190                                                    bool   parallel) {
  3191   assert(!tlab, "Can't deal with TLAB allocation");
  3192   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3193   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
  3194     CMSExpansionCause::_satisfy_allocation);
  3195   if (GCExpandToAllocateDelayMillis > 0) {
  3196     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3198   return have_lock_and_allocate(word_size, tlab);
  3201 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
  3202 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
  3203 // to CardGeneration and share it...
  3204 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
  3205   return CardGeneration::expand(bytes, expand_bytes);
  3208 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
  3209   CMSExpansionCause::Cause cause)
  3212   bool success = expand(bytes, expand_bytes);
  3214   // remember why we expanded; this information is used
  3215   // by shouldConcurrentCollect() when making decisions on whether to start
  3216   // a new CMS cycle.
  3217   if (success) {
  3218     set_expansion_cause(cause);
  3219     if (PrintGCDetails && Verbose) {
  3220       gclog_or_tty->print_cr("Expanded CMS gen for %s",
  3221         CMSExpansionCause::to_string(cause));
  3226 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
  3227   HeapWord* res = NULL;
  3228   MutexLocker x(ParGCRareEvent_lock);
  3229   while (true) {
  3230     // Expansion by some other thread might make alloc OK now:
  3231     res = ps->lab.alloc(word_sz);
  3232     if (res != NULL) return res;
  3233     // If there's not enough expansion space available, give up.
  3234     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
  3235       return NULL;
  3237     // Otherwise, we try expansion.
  3238     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
  3239       CMSExpansionCause::_allocate_par_lab);
  3240     // Now go around the loop and try alloc again;
  3241     // A competing par_promote might beat us to the expansion space,
  3242     // so we may go around the loop again if promotion fails agaion.
  3243     if (GCExpandToAllocateDelayMillis > 0) {
  3244       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3250 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
  3251   PromotionInfo* promo) {
  3252   MutexLocker x(ParGCRareEvent_lock);
  3253   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
  3254   while (true) {
  3255     // Expansion by some other thread might make alloc OK now:
  3256     if (promo->ensure_spooling_space()) {
  3257       assert(promo->has_spooling_space(),
  3258              "Post-condition of successful ensure_spooling_space()");
  3259       return true;
  3261     // If there's not enough expansion space available, give up.
  3262     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
  3263       return false;
  3265     // Otherwise, we try expansion.
  3266     expand(refill_size_bytes, MinHeapDeltaBytes,
  3267       CMSExpansionCause::_allocate_par_spooling_space);
  3268     // Now go around the loop and try alloc again;
  3269     // A competing allocation might beat us to the expansion space,
  3270     // so we may go around the loop again if allocation fails again.
  3271     if (GCExpandToAllocateDelayMillis > 0) {
  3272       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3279 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
  3280   assert_locked_or_safepoint(Heap_lock);
  3281   size_t size = ReservedSpace::page_align_size_down(bytes);
  3282   if (size > 0) {
  3283     shrink_by(size);
  3287 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
  3288   assert_locked_or_safepoint(Heap_lock);
  3289   bool result = _virtual_space.expand_by(bytes);
  3290   if (result) {
  3291     HeapWord* old_end = _cmsSpace->end();
  3292     size_t new_word_size =
  3293       heap_word_size(_virtual_space.committed_size());
  3294     MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3295     _bts->resize(new_word_size);  // resize the block offset shared array
  3296     Universe::heap()->barrier_set()->resize_covered_region(mr);
  3297     // Hmmmm... why doesn't CFLS::set_end verify locking?
  3298     // This is quite ugly; FIX ME XXX
  3299     _cmsSpace->assert_locked();
  3300     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  3302     // update the space and generation capacity counters
  3303     if (UsePerfData) {
  3304       _space_counters->update_capacity();
  3305       _gen_counters->update_all();
  3308     if (Verbose && PrintGC) {
  3309       size_t new_mem_size = _virtual_space.committed_size();
  3310       size_t old_mem_size = new_mem_size - bytes;
  3311       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
  3312                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
  3315   return result;
  3318 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
  3319   assert_locked_or_safepoint(Heap_lock);
  3320   bool success = true;
  3321   const size_t remaining_bytes = _virtual_space.uncommitted_size();
  3322   if (remaining_bytes > 0) {
  3323     success = grow_by(remaining_bytes);
  3324     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
  3326   return success;
  3329 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
  3330   assert_locked_or_safepoint(Heap_lock);
  3331   assert_lock_strong(freelistLock());
  3332   // XXX Fix when compaction is implemented.
  3333   warning("Shrinking of CMS not yet implemented");
  3334   return;
  3338 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
  3339 // phases.
  3340 class CMSPhaseAccounting: public StackObj {
  3341  public:
  3342   CMSPhaseAccounting(CMSCollector *collector,
  3343                      const char *phase,
  3344                      bool print_cr = true);
  3345   ~CMSPhaseAccounting();
  3347  private:
  3348   CMSCollector *_collector;
  3349   const char *_phase;
  3350   elapsedTimer _wallclock;
  3351   bool _print_cr;
  3353  public:
  3354   // Not MT-safe; so do not pass around these StackObj's
  3355   // where they may be accessed by other threads.
  3356   jlong wallclock_millis() {
  3357     assert(_wallclock.is_active(), "Wall clock should not stop");
  3358     _wallclock.stop();  // to record time
  3359     jlong ret = _wallclock.milliseconds();
  3360     _wallclock.start(); // restart
  3361     return ret;
  3363 };
  3365 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
  3366                                        const char *phase,
  3367                                        bool print_cr) :
  3368   _collector(collector), _phase(phase), _print_cr(print_cr) {
  3370   if (PrintCMSStatistics != 0) {
  3371     _collector->resetYields();
  3373   if (PrintGCDetails && PrintGCTimeStamps) {
  3374     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3375     gclog_or_tty->stamp();
  3376     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
  3377       _collector->cmsGen()->short_name(), _phase);
  3379   _collector->resetTimer();
  3380   _wallclock.start();
  3381   _collector->startTimer();
  3384 CMSPhaseAccounting::~CMSPhaseAccounting() {
  3385   assert(_wallclock.is_active(), "Wall clock should not have stopped");
  3386   _collector->stopTimer();
  3387   _wallclock.stop();
  3388   if (PrintGCDetails) {
  3389     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3390     if (PrintGCTimeStamps) {
  3391       gclog_or_tty->stamp();
  3392       gclog_or_tty->print(": ");
  3394     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
  3395                  _collector->cmsGen()->short_name(),
  3396                  _phase, _collector->timerValue(), _wallclock.seconds());
  3397     if (_print_cr) {
  3398       gclog_or_tty->print_cr("");
  3400     if (PrintCMSStatistics != 0) {
  3401       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
  3402                     _collector->yields());
  3407 // CMS work
  3409 // Checkpoint the roots into this generation from outside
  3410 // this generation. [Note this initial checkpoint need only
  3411 // be approximate -- we'll do a catch up phase subsequently.]
  3412 void CMSCollector::checkpointRootsInitial(bool asynch) {
  3413   assert(_collectorState == InitialMarking, "Wrong collector state");
  3414   check_correct_thread_executing();
  3415   ReferenceProcessor* rp = ref_processor();
  3416   SpecializationStats::clear();
  3417   assert(_restart_addr == NULL, "Control point invariant");
  3418   if (asynch) {
  3419     // acquire locks for subsequent manipulations
  3420     MutexLockerEx x(bitMapLock(),
  3421                     Mutex::_no_safepoint_check_flag);
  3422     checkpointRootsInitialWork(asynch);
  3423     rp->verify_no_references_recorded();
  3424     rp->enable_discovery(); // enable ("weak") refs discovery
  3425     _collectorState = Marking;
  3426   } else {
  3427     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
  3428     // which recognizes if we are a CMS generation, and doesn't try to turn on
  3429     // discovery; verify that they aren't meddling.
  3430     assert(!rp->discovery_is_atomic(),
  3431            "incorrect setting of discovery predicate");
  3432     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
  3433            "ref discovery for this generation kind");
  3434     // already have locks
  3435     checkpointRootsInitialWork(asynch);
  3436     rp->enable_discovery(); // now enable ("weak") refs discovery
  3437     _collectorState = Marking;
  3439   SpecializationStats::print();
  3442 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
  3443   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  3444   assert(_collectorState == InitialMarking, "just checking");
  3446   // If there has not been a GC[n-1] since last GC[n] cycle completed,
  3447   // precede our marking with a collection of all
  3448   // younger generations to keep floating garbage to a minimum.
  3449   // XXX: we won't do this for now -- it's an optimization to be done later.
  3451   // already have locks
  3452   assert_lock_strong(bitMapLock());
  3453   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
  3455   // Setup the verification and class unloading state for this
  3456   // CMS collection cycle.
  3457   setup_cms_unloading_and_verification_state();
  3459   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
  3460     PrintGCDetails && Verbose, true, gclog_or_tty);)
  3461   if (UseAdaptiveSizePolicy) {
  3462     size_policy()->checkpoint_roots_initial_begin();
  3465   // Reset all the PLAB chunk arrays if necessary.
  3466   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
  3467     reset_survivor_plab_arrays();
  3470   ResourceMark rm;
  3471   HandleMark  hm;
  3473   FalseClosure falseClosure;
  3474   // In the case of a synchronous collection, we will elide the
  3475   // remark step, so it's important to catch all the nmethod oops
  3476   // in this step; hence the last argument to the constrcutor below.
  3477   MarkRefsIntoClosure notOlder(_span, &_markBitMap, !asynch /* nmethods */);
  3478   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3480   verify_work_stacks_empty();
  3481   verify_overflow_empty();
  3483   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  3484   // Update the saved marks which may affect the root scans.
  3485   gch->save_marks();
  3487   // weak reference processing has not started yet.
  3488   ref_processor()->set_enqueuing_is_done(false);
  3491     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  3492     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3493     gch->gen_process_strong_roots(_cmsGen->level(),
  3494                                   true,   // younger gens are roots
  3495                                   true,   // collecting perm gen
  3496                                   SharedHeap::ScanningOption(roots_scanning_options()),
  3497                                   NULL, &notOlder);
  3500   // Clear mod-union table; it will be dirtied in the prologue of
  3501   // CMS generation per each younger generation collection.
  3503   assert(_modUnionTable.isAllClear(),
  3504        "Was cleared in most recent final checkpoint phase"
  3505        " or no bits are set in the gc_prologue before the start of the next "
  3506        "subsequent marking phase.");
  3508   // Temporarily disabled, since pre/post-consumption closures don't
  3509   // care about precleaned cards
  3510   #if 0
  3512     MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
  3513                              (HeapWord*)_virtual_space.high());
  3514     _ct->ct_bs()->preclean_dirty_cards(mr);
  3516   #endif
  3518   // Save the end of the used_region of the constituent generations
  3519   // to be used to limit the extent of sweep in each generation.
  3520   save_sweep_limits();
  3521   if (UseAdaptiveSizePolicy) {
  3522     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
  3524   verify_overflow_empty();
  3527 bool CMSCollector::markFromRoots(bool asynch) {
  3528   // we might be tempted to assert that:
  3529   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  3530   //        "inconsistent argument?");
  3531   // However that wouldn't be right, because it's possible that
  3532   // a safepoint is indeed in progress as a younger generation
  3533   // stop-the-world GC happens even as we mark in this generation.
  3534   assert(_collectorState == Marking, "inconsistent state?");
  3535   check_correct_thread_executing();
  3536   verify_overflow_empty();
  3538   bool res;
  3539   if (asynch) {
  3541     // Start the timers for adaptive size policy for the concurrent phases
  3542     // Do it here so that the foreground MS can use the concurrent
  3543     // timer since a foreground MS might has the sweep done concurrently
  3544     // or STW.
  3545     if (UseAdaptiveSizePolicy) {
  3546       size_policy()->concurrent_marking_begin();
  3549     // Weak ref discovery note: We may be discovering weak
  3550     // refs in this generation concurrent (but interleaved) with
  3551     // weak ref discovery by a younger generation collector.
  3553     CMSTokenSyncWithLocks ts(true, bitMapLock());
  3554     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3555     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
  3556     res = markFromRootsWork(asynch);
  3557     if (res) {
  3558       _collectorState = Precleaning;
  3559     } else { // We failed and a foreground collection wants to take over
  3560       assert(_foregroundGCIsActive, "internal state inconsistency");
  3561       assert(_restart_addr == NULL,  "foreground will restart from scratch");
  3562       if (PrintGCDetails) {
  3563         gclog_or_tty->print_cr("bailing out to foreground collection");
  3566     if (UseAdaptiveSizePolicy) {
  3567       size_policy()->concurrent_marking_end();
  3569   } else {
  3570     assert(SafepointSynchronize::is_at_safepoint(),
  3571            "inconsistent with asynch == false");
  3572     if (UseAdaptiveSizePolicy) {
  3573       size_policy()->ms_collection_marking_begin();
  3575     // already have locks
  3576     res = markFromRootsWork(asynch);
  3577     _collectorState = FinalMarking;
  3578     if (UseAdaptiveSizePolicy) {
  3579       GenCollectedHeap* gch = GenCollectedHeap::heap();
  3580       size_policy()->ms_collection_marking_end(gch->gc_cause());
  3583   verify_overflow_empty();
  3584   return res;
  3587 bool CMSCollector::markFromRootsWork(bool asynch) {
  3588   // iterate over marked bits in bit map, doing a full scan and mark
  3589   // from these roots using the following algorithm:
  3590   // . if oop is to the right of the current scan pointer,
  3591   //   mark corresponding bit (we'll process it later)
  3592   // . else (oop is to left of current scan pointer)
  3593   //   push oop on marking stack
  3594   // . drain the marking stack
  3596   // Note that when we do a marking step we need to hold the
  3597   // bit map lock -- recall that direct allocation (by mutators)
  3598   // and promotion (by younger generation collectors) is also
  3599   // marking the bit map. [the so-called allocate live policy.]
  3600   // Because the implementation of bit map marking is not
  3601   // robust wrt simultaneous marking of bits in the same word,
  3602   // we need to make sure that there is no such interference
  3603   // between concurrent such updates.
  3605   // already have locks
  3606   assert_lock_strong(bitMapLock());
  3608   // Clear the revisit stack, just in case there are any
  3609   // obsolete contents from a short-circuited previous CMS cycle.
  3610   _revisitStack.reset();
  3611   verify_work_stacks_empty();
  3612   verify_overflow_empty();
  3613   assert(_revisitStack.isEmpty(), "tabula rasa");
  3615   bool result = false;
  3616   if (CMSConcurrentMTEnabled && ParallelCMSThreads > 0) {
  3617     result = do_marking_mt(asynch);
  3618   } else {
  3619     result = do_marking_st(asynch);
  3621   return result;
  3624 // Forward decl
  3625 class CMSConcMarkingTask;
  3627 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
  3628   CMSCollector*       _collector;
  3629   CMSConcMarkingTask* _task;
  3630   bool _yield;
  3631  protected:
  3632   virtual void yield();
  3633  public:
  3634   // "n_threads" is the number of threads to be terminated.
  3635   // "queue_set" is a set of work queues of other threads.
  3636   // "collector" is the CMS collector associated with this task terminator.
  3637   // "yield" indicates whether we need the gang as a whole to yield.
  3638   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set,
  3639                            CMSCollector* collector, bool yield) :
  3640     ParallelTaskTerminator(n_threads, queue_set),
  3641     _collector(collector),
  3642     _yield(yield) { }
  3644   void set_task(CMSConcMarkingTask* task) {
  3645     _task = task;
  3647 };
  3649 // MT Concurrent Marking Task
  3650 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
  3651   CMSCollector* _collector;
  3652   YieldingFlexibleWorkGang* _workers;        // the whole gang
  3653   int           _n_workers;                  // requested/desired # workers
  3654   bool          _asynch;
  3655   bool          _result;
  3656   CompactibleFreeListSpace*  _cms_space;
  3657   CompactibleFreeListSpace* _perm_space;
  3658   HeapWord*     _global_finger;
  3659   HeapWord*     _restart_addr;
  3661   //  Exposed here for yielding support
  3662   Mutex* const _bit_map_lock;
  3664   // The per thread work queues, available here for stealing
  3665   OopTaskQueueSet*  _task_queues;
  3666   CMSConcMarkingTerminator _term;
  3668  public:
  3669   CMSConcMarkingTask(CMSCollector* collector,
  3670                  CompactibleFreeListSpace* cms_space,
  3671                  CompactibleFreeListSpace* perm_space,
  3672                  bool asynch, int n_workers,
  3673                  YieldingFlexibleWorkGang* workers,
  3674                  OopTaskQueueSet* task_queues):
  3675     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
  3676     _collector(collector),
  3677     _cms_space(cms_space),
  3678     _perm_space(perm_space),
  3679     _asynch(asynch), _n_workers(n_workers), _result(true),
  3680     _workers(workers), _task_queues(task_queues),
  3681     _term(n_workers, task_queues, _collector, asynch),
  3682     _bit_map_lock(collector->bitMapLock())
  3684     assert(n_workers <= workers->total_workers(),
  3685            "Else termination won't work correctly today"); // XXX FIX ME!
  3686     _requested_size = n_workers;
  3687     _term.set_task(this);
  3688     assert(_cms_space->bottom() < _perm_space->bottom(),
  3689            "Finger incorrectly initialized below");
  3690     _restart_addr = _global_finger = _cms_space->bottom();
  3694   OopTaskQueueSet* task_queues()  { return _task_queues; }
  3696   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  3698   HeapWord** global_finger_addr() { return &_global_finger; }
  3700   CMSConcMarkingTerminator* terminator() { return &_term; }
  3702   void work(int i);
  3704   virtual void coordinator_yield();  // stuff done by coordinator
  3705   bool result() { return _result; }
  3707   void reset(HeapWord* ra) {
  3708     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
  3709     assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)");
  3710     assert(ra             <  _perm_space->end(), "ra too large");
  3711     _restart_addr = _global_finger = ra;
  3712     _term.reset_for_reuse();
  3715   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3716                                            OopTaskQueue* work_q);
  3718  private:
  3719   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
  3720   void do_work_steal(int i);
  3721   void bump_global_finger(HeapWord* f);
  3722 };
  3724 void CMSConcMarkingTerminator::yield() {
  3725   if (ConcurrentMarkSweepThread::should_yield() &&
  3726       !_collector->foregroundGCIsActive() &&
  3727       _yield) {
  3728     _task->yield();
  3729   } else {
  3730     ParallelTaskTerminator::yield();
  3734 ////////////////////////////////////////////////////////////////
  3735 // Concurrent Marking Algorithm Sketch
  3736 ////////////////////////////////////////////////////////////////
  3737 // Until all tasks exhausted (both spaces):
  3738 // -- claim next available chunk
  3739 // -- bump global finger via CAS
  3740 // -- find first object that starts in this chunk
  3741 //    and start scanning bitmap from that position
  3742 // -- scan marked objects for oops
  3743 // -- CAS-mark target, and if successful:
  3744 //    . if target oop is above global finger (volatile read)
  3745 //      nothing to do
  3746 //    . if target oop is in chunk and above local finger
  3747 //        then nothing to do
  3748 //    . else push on work-queue
  3749 // -- Deal with possible overflow issues:
  3750 //    . local work-queue overflow causes stuff to be pushed on
  3751 //      global (common) overflow queue
  3752 //    . always first empty local work queue
  3753 //    . then get a batch of oops from global work queue if any
  3754 //    . then do work stealing
  3755 // -- When all tasks claimed (both spaces)
  3756 //    and local work queue empty,
  3757 //    then in a loop do:
  3758 //    . check global overflow stack; steal a batch of oops and trace
  3759 //    . try to steal from other threads oif GOS is empty
  3760 //    . if neither is available, offer termination
  3761 // -- Terminate and return result
  3762 //
  3763 void CMSConcMarkingTask::work(int i) {
  3764   elapsedTimer _timer;
  3765   ResourceMark rm;
  3766   HandleMark hm;
  3768   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3770   // Before we begin work, our work queue should be empty
  3771   assert(work_queue(i)->size() == 0, "Expected to be empty");
  3772   // Scan the bitmap covering _cms_space, tracing through grey objects.
  3773   _timer.start();
  3774   do_scan_and_mark(i, _cms_space);
  3775   _timer.stop();
  3776   if (PrintCMSStatistics != 0) {
  3777     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
  3778       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3781   // ... do the same for the _perm_space
  3782   _timer.reset();
  3783   _timer.start();
  3784   do_scan_and_mark(i, _perm_space);
  3785   _timer.stop();
  3786   if (PrintCMSStatistics != 0) {
  3787     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
  3788       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3791   // ... do work stealing
  3792   _timer.reset();
  3793   _timer.start();
  3794   do_work_steal(i);
  3795   _timer.stop();
  3796   if (PrintCMSStatistics != 0) {
  3797     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
  3798       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3800   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
  3801   assert(work_queue(i)->size() == 0, "Should have been emptied");
  3802   // Note that under the current task protocol, the
  3803   // following assertion is true even of the spaces
  3804   // expanded since the completion of the concurrent
  3805   // marking. XXX This will likely change under a strict
  3806   // ABORT semantics.
  3807   assert(_global_finger >  _cms_space->end() &&
  3808          _global_finger >= _perm_space->end(),
  3809          "All tasks have been completed");
  3810   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3813 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
  3814   HeapWord* read = _global_finger;
  3815   HeapWord* cur  = read;
  3816   while (f > read) {
  3817     cur = read;
  3818     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
  3819     if (cur == read) {
  3820       // our cas succeeded
  3821       assert(_global_finger >= f, "protocol consistency");
  3822       break;
  3827 // This is really inefficient, and should be redone by
  3828 // using (not yet available) block-read and -write interfaces to the
  3829 // stack and the work_queue. XXX FIX ME !!!
  3830 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3831                                                       OopTaskQueue* work_q) {
  3832   // Fast lock-free check
  3833   if (ovflw_stk->length() == 0) {
  3834     return false;
  3836   assert(work_q->size() == 0, "Shouldn't steal");
  3837   MutexLockerEx ml(ovflw_stk->par_lock(),
  3838                    Mutex::_no_safepoint_check_flag);
  3839   // Grab up to 1/4 the size of the work queue
  3840   size_t num = MIN2((size_t)work_q->max_elems()/4,
  3841                     (size_t)ParGCDesiredObjsFromOverflowList);
  3842   num = MIN2(num, ovflw_stk->length());
  3843   for (int i = (int) num; i > 0; i--) {
  3844     oop cur = ovflw_stk->pop();
  3845     assert(cur != NULL, "Counted wrong?");
  3846     work_q->push(cur);
  3848   return num > 0;
  3851 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
  3852   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  3853   int n_tasks = pst->n_tasks();
  3854   // We allow that there may be no tasks to do here because
  3855   // we are restarting after a stack overflow.
  3856   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
  3857   int nth_task = 0;
  3859   HeapWord* aligned_start = sp->bottom();
  3860   if (sp->used_region().contains(_restart_addr)) {
  3861     // Align down to a card boundary for the start of 0th task
  3862     // for this space.
  3863     aligned_start =
  3864       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
  3865                                  CardTableModRefBS::card_size);
  3868   size_t chunk_size = sp->marking_task_size();
  3869   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  3870     // Having claimed the nth task in this space,
  3871     // compute the chunk that it corresponds to:
  3872     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
  3873                                aligned_start + (nth_task+1)*chunk_size);
  3874     // Try and bump the global finger via a CAS;
  3875     // note that we need to do the global finger bump
  3876     // _before_ taking the intersection below, because
  3877     // the task corresponding to that region will be
  3878     // deemed done even if the used_region() expands
  3879     // because of allocation -- as it almost certainly will
  3880     // during start-up while the threads yield in the
  3881     // closure below.
  3882     HeapWord* finger = span.end();
  3883     bump_global_finger(finger);   // atomically
  3884     // There are null tasks here corresponding to chunks
  3885     // beyond the "top" address of the space.
  3886     span = span.intersection(sp->used_region());
  3887     if (!span.is_empty()) {  // Non-null task
  3888       HeapWord* prev_obj;
  3889       assert(!span.contains(_restart_addr) || nth_task == 0,
  3890              "Inconsistency");
  3891       if (nth_task == 0) {
  3892         // For the 0th task, we'll not need to compute a block_start.
  3893         if (span.contains(_restart_addr)) {
  3894           // In the case of a restart because of stack overflow,
  3895           // we might additionally skip a chunk prefix.
  3896           prev_obj = _restart_addr;
  3897         } else {
  3898           prev_obj = span.start();
  3900       } else {
  3901         // We want to skip the first object because
  3902         // the protocol is to scan any object in its entirety
  3903         // that _starts_ in this span; a fortiori, any
  3904         // object starting in an earlier span is scanned
  3905         // as part of an earlier claimed task.
  3906         // Below we use the "careful" version of block_start
  3907         // so we do not try to navigate uninitialized objects.
  3908         prev_obj = sp->block_start_careful(span.start());
  3909         // Below we use a variant of block_size that uses the
  3910         // Printezis bits to avoid waiting for allocated
  3911         // objects to become initialized/parsable.
  3912         while (prev_obj < span.start()) {
  3913           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
  3914           if (sz > 0) {
  3915             prev_obj += sz;
  3916           } else {
  3917             // In this case we may end up doing a bit of redundant
  3918             // scanning, but that appears unavoidable, short of
  3919             // locking the free list locks; see bug 6324141.
  3920             break;
  3924       if (prev_obj < span.end()) {
  3925         MemRegion my_span = MemRegion(prev_obj, span.end());
  3926         // Do the marking work within a non-empty span --
  3927         // the last argument to the constructor indicates whether the
  3928         // iteration should be incremental with periodic yields.
  3929         Par_MarkFromRootsClosure cl(this, _collector, my_span,
  3930                                     &_collector->_markBitMap,
  3931                                     work_queue(i),
  3932                                     &_collector->_markStack,
  3933                                     &_collector->_revisitStack,
  3934                                     _asynch);
  3935         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
  3936       } // else nothing to do for this task
  3937     }   // else nothing to do for this task
  3939   // We'd be tempted to assert here that since there are no
  3940   // more tasks left to claim in this space, the global_finger
  3941   // must exceed space->top() and a fortiori space->end(). However,
  3942   // that would not quite be correct because the bumping of
  3943   // global_finger occurs strictly after the claiming of a task,
  3944   // so by the time we reach here the global finger may not yet
  3945   // have been bumped up by the thread that claimed the last
  3946   // task.
  3947   pst->all_tasks_completed();
  3950 class Par_ConcMarkingClosure: public OopClosure {
  3951  private:
  3952   CMSCollector* _collector;
  3953   MemRegion     _span;
  3954   CMSBitMap*    _bit_map;
  3955   CMSMarkStack* _overflow_stack;
  3956   CMSMarkStack* _revisit_stack;     // XXXXXX Check proper use
  3957   OopTaskQueue* _work_queue;
  3958  protected:
  3959   DO_OOP_WORK_DEFN
  3960  public:
  3961   Par_ConcMarkingClosure(CMSCollector* collector, OopTaskQueue* work_queue,
  3962                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
  3963     _collector(collector),
  3964     _span(_collector->_span),
  3965     _work_queue(work_queue),
  3966     _bit_map(bit_map),
  3967     _overflow_stack(overflow_stack) { }   // need to initialize revisit stack etc.
  3968   virtual void do_oop(oop* p);
  3969   virtual void do_oop(narrowOop* p);
  3970   void trim_queue(size_t max);
  3971   void handle_stack_overflow(HeapWord* lost);
  3972 };
  3974 // Grey object scanning during work stealing phase --
  3975 // the salient assumption here is that any references
  3976 // that are in these stolen objects being scanned must
  3977 // already have been initialized (else they would not have
  3978 // been published), so we do not need to check for
  3979 // uninitialized objects before pushing here.
  3980 void Par_ConcMarkingClosure::do_oop(oop obj) {
  3981   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  3982   HeapWord* addr = (HeapWord*)obj;
  3983   // Check if oop points into the CMS generation
  3984   // and is not marked
  3985   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  3986     // a white object ...
  3987     // If we manage to "claim" the object, by being the
  3988     // first thread to mark it, then we push it on our
  3989     // marking stack
  3990     if (_bit_map->par_mark(addr)) {     // ... now grey
  3991       // push on work queue (grey set)
  3992       bool simulate_overflow = false;
  3993       NOT_PRODUCT(
  3994         if (CMSMarkStackOverflowALot &&
  3995             _collector->simulate_overflow()) {
  3996           // simulate a stack overflow
  3997           simulate_overflow = true;
  4000       if (simulate_overflow ||
  4001           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  4002         // stack overflow
  4003         if (PrintCMSStatistics != 0) {
  4004           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  4005                                  SIZE_FORMAT, _overflow_stack->capacity());
  4007         // We cannot assert that the overflow stack is full because
  4008         // it may have been emptied since.
  4009         assert(simulate_overflow ||
  4010                _work_queue->size() == _work_queue->max_elems(),
  4011               "Else push should have succeeded");
  4012         handle_stack_overflow(addr);
  4014     } // Else, some other thread got there first
  4018 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
  4019 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
  4021 void Par_ConcMarkingClosure::trim_queue(size_t max) {
  4022   while (_work_queue->size() > max) {
  4023     oop new_oop;
  4024     if (_work_queue->pop_local(new_oop)) {
  4025       assert(new_oop->is_oop(), "Should be an oop");
  4026       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
  4027       assert(_span.contains((HeapWord*)new_oop), "Not in span");
  4028       assert(new_oop->is_parsable(), "Should be parsable");
  4029       new_oop->oop_iterate(this);  // do_oop() above
  4034 // Upon stack overflow, we discard (part of) the stack,
  4035 // remembering the least address amongst those discarded
  4036 // in CMSCollector's _restart_address.
  4037 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
  4038   // We need to do this under a mutex to prevent other
  4039   // workers from interfering with the work done below.
  4040   MutexLockerEx ml(_overflow_stack->par_lock(),
  4041                    Mutex::_no_safepoint_check_flag);
  4042   // Remember the least grey address discarded
  4043   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  4044   _collector->lower_restart_addr(ra);
  4045   _overflow_stack->reset();  // discard stack contents
  4046   _overflow_stack->expand(); // expand the stack if possible
  4050 void CMSConcMarkingTask::do_work_steal(int i) {
  4051   OopTaskQueue* work_q = work_queue(i);
  4052   oop obj_to_scan;
  4053   CMSBitMap* bm = &(_collector->_markBitMap);
  4054   CMSMarkStack* ovflw = &(_collector->_markStack);
  4055   int* seed = _collector->hash_seed(i);
  4056   Par_ConcMarkingClosure cl(_collector, work_q, bm, ovflw);
  4057   while (true) {
  4058     cl.trim_queue(0);
  4059     assert(work_q->size() == 0, "Should have been emptied above");
  4060     if (get_work_from_overflow_stack(ovflw, work_q)) {
  4061       // Can't assert below because the work obtained from the
  4062       // overflow stack may already have been stolen from us.
  4063       // assert(work_q->size() > 0, "Work from overflow stack");
  4064       continue;
  4065     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  4066       assert(obj_to_scan->is_oop(), "Should be an oop");
  4067       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
  4068       obj_to_scan->oop_iterate(&cl);
  4069     } else if (terminator()->offer_termination()) {
  4070       assert(work_q->size() == 0, "Impossible!");
  4071       break;
  4076 // This is run by the CMS (coordinator) thread.
  4077 void CMSConcMarkingTask::coordinator_yield() {
  4078   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4079          "CMS thread should hold CMS token");
  4081   // First give up the locks, then yield, then re-lock
  4082   // We should probably use a constructor/destructor idiom to
  4083   // do this unlock/lock or modify the MutexUnlocker class to
  4084   // serve our purpose. XXX
  4085   assert_lock_strong(_bit_map_lock);
  4086   _bit_map_lock->unlock();
  4087   ConcurrentMarkSweepThread::desynchronize(true);
  4088   ConcurrentMarkSweepThread::acknowledge_yield_request();
  4089   _collector->stopTimer();
  4090   if (PrintCMSStatistics != 0) {
  4091     _collector->incrementYields();
  4093   _collector->icms_wait();
  4095   // It is possible for whichever thread initiated the yield request
  4096   // not to get a chance to wake up and take the bitmap lock between
  4097   // this thread releasing it and reacquiring it. So, while the
  4098   // should_yield() flag is on, let's sleep for a bit to give the
  4099   // other thread a chance to wake up. The limit imposed on the number
  4100   // of iterations is defensive, to avoid any unforseen circumstances
  4101   // putting us into an infinite loop. Since it's always been this
  4102   // (coordinator_yield()) method that was observed to cause the
  4103   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
  4104   // which is by default non-zero. For the other seven methods that
  4105   // also perform the yield operation, as are using a different
  4106   // parameter (CMSYieldSleepCount) which is by default zero. This way we
  4107   // can enable the sleeping for those methods too, if necessary.
  4108   // See 6442774.
  4109   //
  4110   // We really need to reconsider the synchronization between the GC
  4111   // thread and the yield-requesting threads in the future and we
  4112   // should really use wait/notify, which is the recommended
  4113   // way of doing this type of interaction. Additionally, we should
  4114   // consolidate the eight methods that do the yield operation and they
  4115   // are almost identical into one for better maintenability and
  4116   // readability. See 6445193.
  4117   //
  4118   // Tony 2006.06.29
  4119   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
  4120                    ConcurrentMarkSweepThread::should_yield() &&
  4121                    !CMSCollector::foregroundGCIsActive(); ++i) {
  4122     os::sleep(Thread::current(), 1, false);
  4123     ConcurrentMarkSweepThread::acknowledge_yield_request();
  4126   ConcurrentMarkSweepThread::synchronize(true);
  4127   _bit_map_lock->lock_without_safepoint_check();
  4128   _collector->startTimer();
  4131 bool CMSCollector::do_marking_mt(bool asynch) {
  4132   assert(ParallelCMSThreads > 0 && conc_workers() != NULL, "precondition");
  4133   // In the future this would be determined ergonomically, based
  4134   // on #cpu's, # active mutator threads (and load), and mutation rate.
  4135   int num_workers = ParallelCMSThreads;
  4137   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  4138   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  4140   CMSConcMarkingTask tsk(this, cms_space, perm_space,
  4141                          asynch, num_workers /* number requested XXX */,
  4142                          conc_workers(), task_queues());
  4144   // Since the actual number of workers we get may be different
  4145   // from the number we requested above, do we need to do anything different
  4146   // below? In particular, may be we need to subclass the SequantialSubTasksDone
  4147   // class?? XXX
  4148   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
  4149   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
  4151   // Refs discovery is already non-atomic.
  4152   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
  4153   // Mutate the Refs discovery so it is MT during the
  4154   // multi-threaded marking phase.
  4155   ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
  4157   conc_workers()->start_task(&tsk);
  4158   while (tsk.yielded()) {
  4159     tsk.coordinator_yield();
  4160     conc_workers()->continue_task(&tsk);
  4162   // If the task was aborted, _restart_addr will be non-NULL
  4163   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
  4164   while (_restart_addr != NULL) {
  4165     // XXX For now we do not make use of ABORTED state and have not
  4166     // yet implemented the right abort semantics (even in the original
  4167     // single-threaded CMS case). That needs some more investigation
  4168     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
  4169     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
  4170     // If _restart_addr is non-NULL, a marking stack overflow
  4171     // occured; we need to do a fresh marking iteration from the
  4172     // indicated restart address.
  4173     if (_foregroundGCIsActive && asynch) {
  4174       // We may be running into repeated stack overflows, having
  4175       // reached the limit of the stack size, while making very
  4176       // slow forward progress. It may be best to bail out and
  4177       // let the foreground collector do its job.
  4178       // Clear _restart_addr, so that foreground GC
  4179       // works from scratch. This avoids the headache of
  4180       // a "rescan" which would otherwise be needed because
  4181       // of the dirty mod union table & card table.
  4182       _restart_addr = NULL;
  4183       return false;
  4185     // Adjust the task to restart from _restart_addr
  4186     tsk.reset(_restart_addr);
  4187     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
  4188                   _restart_addr);
  4189     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
  4190                   _restart_addr);
  4191     _restart_addr = NULL;
  4192     // Get the workers going again
  4193     conc_workers()->start_task(&tsk);
  4194     while (tsk.yielded()) {
  4195       tsk.coordinator_yield();
  4196       conc_workers()->continue_task(&tsk);
  4199   assert(tsk.completed(), "Inconsistency");
  4200   assert(tsk.result() == true, "Inconsistency");
  4201   return true;
  4204 bool CMSCollector::do_marking_st(bool asynch) {
  4205   ResourceMark rm;
  4206   HandleMark   hm;
  4208   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
  4209     &_markStack, &_revisitStack, CMSYield && asynch);
  4210   // the last argument to iterate indicates whether the iteration
  4211   // should be incremental with periodic yields.
  4212   _markBitMap.iterate(&markFromRootsClosure);
  4213   // If _restart_addr is non-NULL, a marking stack overflow
  4214   // occured; we need to do a fresh iteration from the
  4215   // indicated restart address.
  4216   while (_restart_addr != NULL) {
  4217     if (_foregroundGCIsActive && asynch) {
  4218       // We may be running into repeated stack overflows, having
  4219       // reached the limit of the stack size, while making very
  4220       // slow forward progress. It may be best to bail out and
  4221       // let the foreground collector do its job.
  4222       // Clear _restart_addr, so that foreground GC
  4223       // works from scratch. This avoids the headache of
  4224       // a "rescan" which would otherwise be needed because
  4225       // of the dirty mod union table & card table.
  4226       _restart_addr = NULL;
  4227       return false;  // indicating failure to complete marking
  4229     // Deal with stack overflow:
  4230     // we restart marking from _restart_addr
  4231     HeapWord* ra = _restart_addr;
  4232     markFromRootsClosure.reset(ra);
  4233     _restart_addr = NULL;
  4234     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
  4236   return true;
  4239 void CMSCollector::preclean() {
  4240   check_correct_thread_executing();
  4241   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
  4242   verify_work_stacks_empty();
  4243   verify_overflow_empty();
  4244   _abort_preclean = false;
  4245   if (CMSPrecleaningEnabled) {
  4246     _eden_chunk_index = 0;
  4247     size_t used = get_eden_used();
  4248     size_t capacity = get_eden_capacity();
  4249     // Don't start sampling unless we will get sufficiently
  4250     // many samples.
  4251     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
  4252                 * CMSScheduleRemarkEdenPenetration)) {
  4253       _start_sampling = true;
  4254     } else {
  4255       _start_sampling = false;
  4257     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4258     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
  4259     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
  4261   CMSTokenSync x(true); // is cms thread
  4262   if (CMSPrecleaningEnabled) {
  4263     sample_eden();
  4264     _collectorState = AbortablePreclean;
  4265   } else {
  4266     _collectorState = FinalMarking;
  4268   verify_work_stacks_empty();
  4269   verify_overflow_empty();
  4272 // Try and schedule the remark such that young gen
  4273 // occupancy is CMSScheduleRemarkEdenPenetration %.
  4274 void CMSCollector::abortable_preclean() {
  4275   check_correct_thread_executing();
  4276   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
  4277   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
  4279   // If Eden's current occupancy is below this threshold,
  4280   // immediately schedule the remark; else preclean
  4281   // past the next scavenge in an effort to
  4282   // schedule the pause as described avove. By choosing
  4283   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
  4284   // we will never do an actual abortable preclean cycle.
  4285   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
  4286     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4287     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
  4288     // We need more smarts in the abortable preclean
  4289     // loop below to deal with cases where allocation
  4290     // in young gen is very very slow, and our precleaning
  4291     // is running a losing race against a horde of
  4292     // mutators intent on flooding us with CMS updates
  4293     // (dirty cards).
  4294     // One, admittedly dumb, strategy is to give up
  4295     // after a certain number of abortable precleaning loops
  4296     // or after a certain maximum time. We want to make
  4297     // this smarter in the next iteration.
  4298     // XXX FIX ME!!! YSR
  4299     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
  4300     while (!(should_abort_preclean() ||
  4301              ConcurrentMarkSweepThread::should_terminate())) {
  4302       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
  4303       cumworkdone += workdone;
  4304       loops++;
  4305       // Voluntarily terminate abortable preclean phase if we have
  4306       // been at it for too long.
  4307       if ((CMSMaxAbortablePrecleanLoops != 0) &&
  4308           loops >= CMSMaxAbortablePrecleanLoops) {
  4309         if (PrintGCDetails) {
  4310           gclog_or_tty->print(" CMS: abort preclean due to loops ");
  4312         break;
  4314       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
  4315         if (PrintGCDetails) {
  4316           gclog_or_tty->print(" CMS: abort preclean due to time ");
  4318         break;
  4320       // If we are doing little work each iteration, we should
  4321       // take a short break.
  4322       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
  4323         // Sleep for some time, waiting for work to accumulate
  4324         stopTimer();
  4325         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
  4326         startTimer();
  4327         waited++;
  4330     if (PrintCMSStatistics > 0) {
  4331       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
  4332                           loops, waited, cumworkdone);
  4335   CMSTokenSync x(true); // is cms thread
  4336   if (_collectorState != Idling) {
  4337     assert(_collectorState == AbortablePreclean,
  4338            "Spontaneous state transition?");
  4339     _collectorState = FinalMarking;
  4340   } // Else, a foreground collection completed this CMS cycle.
  4341   return;
  4344 // Respond to an Eden sampling opportunity
  4345 void CMSCollector::sample_eden() {
  4346   // Make sure a young gc cannot sneak in between our
  4347   // reading and recording of a sample.
  4348   assert(Thread::current()->is_ConcurrentGC_thread(),
  4349          "Only the cms thread may collect Eden samples");
  4350   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4351          "Should collect samples while holding CMS token");
  4352   if (!_start_sampling) {
  4353     return;
  4355   if (_eden_chunk_array) {
  4356     if (_eden_chunk_index < _eden_chunk_capacity) {
  4357       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
  4358       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  4359              "Unexpected state of Eden");
  4360       // We'd like to check that what we just sampled is an oop-start address;
  4361       // however, we cannot do that here since the object may not yet have been
  4362       // initialized. So we'll instead do the check when we _use_ this sample
  4363       // later.
  4364       if (_eden_chunk_index == 0 ||
  4365           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  4366                          _eden_chunk_array[_eden_chunk_index-1])
  4367            >= CMSSamplingGrain)) {
  4368         _eden_chunk_index++;  // commit sample
  4372   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
  4373     size_t used = get_eden_used();
  4374     size_t capacity = get_eden_capacity();
  4375     assert(used <= capacity, "Unexpected state of Eden");
  4376     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
  4377       _abort_preclean = true;
  4383 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
  4384   assert(_collectorState == Precleaning ||
  4385          _collectorState == AbortablePreclean, "incorrect state");
  4386   ResourceMark rm;
  4387   HandleMark   hm;
  4388   // Do one pass of scrubbing the discovered reference lists
  4389   // to remove any reference objects with strongly-reachable
  4390   // referents.
  4391   if (clean_refs) {
  4392     ReferenceProcessor* rp = ref_processor();
  4393     CMSPrecleanRefsYieldClosure yield_cl(this);
  4394     assert(rp->span().equals(_span), "Spans should be equal");
  4395     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
  4396                                    &_markStack, true /* preclean */);
  4397     CMSDrainMarkingStackClosure complete_trace(this,
  4398                                    _span, &_markBitMap, &_markStack,
  4399                                    &keep_alive, true /* preclean */);
  4401     // We don't want this step to interfere with a young
  4402     // collection because we don't want to take CPU
  4403     // or memory bandwidth away from the young GC threads
  4404     // (which may be as many as there are CPUs).
  4405     // Note that we don't need to protect ourselves from
  4406     // interference with mutators because they can't
  4407     // manipulate the discovered reference lists nor affect
  4408     // the computed reachability of the referents, the
  4409     // only properties manipulated by the precleaning
  4410     // of these reference lists.
  4411     stopTimer();
  4412     CMSTokenSyncWithLocks x(true /* is cms thread */,
  4413                             bitMapLock());
  4414     startTimer();
  4415     sample_eden();
  4416     // The following will yield to allow foreground
  4417     // collection to proceed promptly. XXX YSR:
  4418     // The code in this method may need further
  4419     // tweaking for better performance and some restructuring
  4420     // for cleaner interfaces.
  4421     rp->preclean_discovered_references(
  4422           rp->is_alive_non_header(), &keep_alive, &complete_trace,
  4423           &yield_cl);
  4426   if (clean_survivor) {  // preclean the active survivor space(s)
  4427     assert(_young_gen->kind() == Generation::DefNew ||
  4428            _young_gen->kind() == Generation::ParNew ||
  4429            _young_gen->kind() == Generation::ASParNew,
  4430          "incorrect type for cast");
  4431     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  4432     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
  4433                              &_markBitMap, &_modUnionTable,
  4434                              &_markStack, &_revisitStack,
  4435                              true /* precleaning phase */);
  4436     stopTimer();
  4437     CMSTokenSyncWithLocks ts(true /* is cms thread */,
  4438                              bitMapLock());
  4439     startTimer();
  4440     unsigned int before_count =
  4441       GenCollectedHeap::heap()->total_collections();
  4442     SurvivorSpacePrecleanClosure
  4443       sss_cl(this, _span, &_markBitMap, &_markStack,
  4444              &pam_cl, before_count, CMSYield);
  4445     dng->from()->object_iterate_careful(&sss_cl);
  4446     dng->to()->object_iterate_careful(&sss_cl);
  4448   MarkRefsIntoAndScanClosure
  4449     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  4450              &_markStack, &_revisitStack, this, CMSYield,
  4451              true /* precleaning phase */);
  4452   // CAUTION: The following closure has persistent state that may need to
  4453   // be reset upon a decrease in the sequence of addresses it
  4454   // processes.
  4455   ScanMarkedObjectsAgainCarefullyClosure
  4456     smoac_cl(this, _span,
  4457       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
  4459   // Preclean dirty cards in ModUnionTable and CardTable using
  4460   // appropriate convergence criterion;
  4461   // repeat CMSPrecleanIter times unless we find that
  4462   // we are losing.
  4463   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
  4464   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
  4465          "Bad convergence multiplier");
  4466   assert(CMSPrecleanThreshold >= 100,
  4467          "Unreasonably low CMSPrecleanThreshold");
  4469   size_t numIter, cumNumCards, lastNumCards, curNumCards;
  4470   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
  4471        numIter < CMSPrecleanIter;
  4472        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
  4473     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
  4474     if (CMSPermGenPrecleaningEnabled) {
  4475       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
  4477     if (Verbose && PrintGCDetails) {
  4478       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
  4480     // Either there are very few dirty cards, so re-mark
  4481     // pause will be small anyway, or our pre-cleaning isn't
  4482     // that much faster than the rate at which cards are being
  4483     // dirtied, so we might as well stop and re-mark since
  4484     // precleaning won't improve our re-mark time by much.
  4485     if (curNumCards <= CMSPrecleanThreshold ||
  4486         (numIter > 0 &&
  4487          (curNumCards * CMSPrecleanDenominator >
  4488          lastNumCards * CMSPrecleanNumerator))) {
  4489       numIter++;
  4490       cumNumCards += curNumCards;
  4491       break;
  4494   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
  4495   if (CMSPermGenPrecleaningEnabled) {
  4496     curNumCards += preclean_card_table(_permGen, &smoac_cl);
  4498   cumNumCards += curNumCards;
  4499   if (PrintGCDetails && PrintCMSStatistics != 0) {
  4500     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
  4501                   curNumCards, cumNumCards, numIter);
  4503   return cumNumCards;   // as a measure of useful work done
  4506 // PRECLEANING NOTES:
  4507 // Precleaning involves:
  4508 // . reading the bits of the modUnionTable and clearing the set bits.
  4509 // . For the cards corresponding to the set bits, we scan the
  4510 //   objects on those cards. This means we need the free_list_lock
  4511 //   so that we can safely iterate over the CMS space when scanning
  4512 //   for oops.
  4513 // . When we scan the objects, we'll be both reading and setting
  4514 //   marks in the marking bit map, so we'll need the marking bit map.
  4515 // . For protecting _collector_state transitions, we take the CGC_lock.
  4516 //   Note that any races in the reading of of card table entries by the
  4517 //   CMS thread on the one hand and the clearing of those entries by the
  4518 //   VM thread or the setting of those entries by the mutator threads on the
  4519 //   other are quite benign. However, for efficiency it makes sense to keep
  4520 //   the VM thread from racing with the CMS thread while the latter is
  4521 //   dirty card info to the modUnionTable. We therefore also use the
  4522 //   CGC_lock to protect the reading of the card table and the mod union
  4523 //   table by the CM thread.
  4524 // . We run concurrently with mutator updates, so scanning
  4525 //   needs to be done carefully  -- we should not try to scan
  4526 //   potentially uninitialized objects.
  4527 //
  4528 // Locking strategy: While holding the CGC_lock, we scan over and
  4529 // reset a maximal dirty range of the mod union / card tables, then lock
  4530 // the free_list_lock and bitmap lock to do a full marking, then
  4531 // release these locks; and repeat the cycle. This allows for a
  4532 // certain amount of fairness in the sharing of these locks between
  4533 // the CMS collector on the one hand, and the VM thread and the
  4534 // mutators on the other.
  4536 // NOTE: preclean_mod_union_table() and preclean_card_table()
  4537 // further below are largely identical; if you need to modify
  4538 // one of these methods, please check the other method too.
  4540 size_t CMSCollector::preclean_mod_union_table(
  4541   ConcurrentMarkSweepGeneration* gen,
  4542   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4543   verify_work_stacks_empty();
  4544   verify_overflow_empty();
  4546   // strategy: starting with the first card, accumulate contiguous
  4547   // ranges of dirty cards; clear these cards, then scan the region
  4548   // covered by these cards.
  4550   // Since all of the MUT is committed ahead, we can just use
  4551   // that, in case the generations expand while we are precleaning.
  4552   // It might also be fine to just use the committed part of the
  4553   // generation, but we might potentially miss cards when the
  4554   // generation is rapidly expanding while we are in the midst
  4555   // of precleaning.
  4556   HeapWord* startAddr = gen->reserved().start();
  4557   HeapWord* endAddr   = gen->reserved().end();
  4559   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4561   size_t numDirtyCards, cumNumDirtyCards;
  4562   HeapWord *nextAddr, *lastAddr;
  4563   for (cumNumDirtyCards = numDirtyCards = 0,
  4564        nextAddr = lastAddr = startAddr;
  4565        nextAddr < endAddr;
  4566        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4568     ResourceMark rm;
  4569     HandleMark   hm;
  4571     MemRegion dirtyRegion;
  4573       stopTimer();
  4574       CMSTokenSync ts(true);
  4575       startTimer();
  4576       sample_eden();
  4577       // Get dirty region starting at nextOffset (inclusive),
  4578       // simultaneously clearing it.
  4579       dirtyRegion =
  4580         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
  4581       assert(dirtyRegion.start() >= nextAddr,
  4582              "returned region inconsistent?");
  4584     // Remember where the next search should begin.
  4585     // The returned region (if non-empty) is a right open interval,
  4586     // so lastOffset is obtained from the right end of that
  4587     // interval.
  4588     lastAddr = dirtyRegion.end();
  4589     // Should do something more transparent and less hacky XXX
  4590     numDirtyCards =
  4591       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
  4593     // We'll scan the cards in the dirty region (with periodic
  4594     // yields for foreground GC as needed).
  4595     if (!dirtyRegion.is_empty()) {
  4596       assert(numDirtyCards > 0, "consistency check");
  4597       HeapWord* stop_point = NULL;
  4598       stopTimer();
  4599       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
  4600                                bitMapLock());
  4601       startTimer();
  4603         verify_work_stacks_empty();
  4604         verify_overflow_empty();
  4605         sample_eden();
  4606         stop_point =
  4607           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4609       if (stop_point != NULL) {
  4610         // The careful iteration stopped early either because it found an
  4611         // uninitialized object, or because we were in the midst of an
  4612         // "abortable preclean", which should now be aborted. Redirty
  4613         // the bits corresponding to the partially-scanned or unscanned
  4614         // cards. We'll either restart at the next block boundary or
  4615         // abort the preclean.
  4616         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
  4617                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4618                "Unparsable objects should only be in perm gen.");
  4619         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
  4620         if (should_abort_preclean()) {
  4621           break; // out of preclean loop
  4622         } else {
  4623           // Compute the next address at which preclean should pick up;
  4624           // might need bitMapLock in order to read P-bits.
  4625           lastAddr = next_card_start_after_block(stop_point);
  4628     } else {
  4629       assert(lastAddr == endAddr, "consistency check");
  4630       assert(numDirtyCards == 0, "consistency check");
  4631       break;
  4634   verify_work_stacks_empty();
  4635   verify_overflow_empty();
  4636   return cumNumDirtyCards;
  4639 // NOTE: preclean_mod_union_table() above and preclean_card_table()
  4640 // below are largely identical; if you need to modify
  4641 // one of these methods, please check the other method too.
  4643 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
  4644   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4645   // strategy: it's similar to precleamModUnionTable above, in that
  4646   // we accumulate contiguous ranges of dirty cards, mark these cards
  4647   // precleaned, then scan the region covered by these cards.
  4648   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
  4649   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
  4651   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4653   size_t numDirtyCards, cumNumDirtyCards;
  4654   HeapWord *lastAddr, *nextAddr;
  4656   for (cumNumDirtyCards = numDirtyCards = 0,
  4657        nextAddr = lastAddr = startAddr;
  4658        nextAddr < endAddr;
  4659        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4661     ResourceMark rm;
  4662     HandleMark   hm;
  4664     MemRegion dirtyRegion;
  4666       // See comments in "Precleaning notes" above on why we
  4667       // do this locking. XXX Could the locking overheads be
  4668       // too high when dirty cards are sparse? [I don't think so.]
  4669       stopTimer();
  4670       CMSTokenSync x(true); // is cms thread
  4671       startTimer();
  4672       sample_eden();
  4673       // Get and clear dirty region from card table
  4674       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
  4675                                     MemRegion(nextAddr, endAddr),
  4676                                     true,
  4677                                     CardTableModRefBS::precleaned_card_val());
  4679       assert(dirtyRegion.start() >= nextAddr,
  4680              "returned region inconsistent?");
  4682     lastAddr = dirtyRegion.end();
  4683     numDirtyCards =
  4684       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
  4686     if (!dirtyRegion.is_empty()) {
  4687       stopTimer();
  4688       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
  4689       startTimer();
  4690       sample_eden();
  4691       verify_work_stacks_empty();
  4692       verify_overflow_empty();
  4693       HeapWord* stop_point =
  4694         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4695       if (stop_point != NULL) {
  4696         // The careful iteration stopped early because it found an
  4697         // uninitialized object.  Redirty the bits corresponding to the
  4698         // partially-scanned or unscanned cards, and start again at the
  4699         // next block boundary.
  4700         assert(CMSPermGenPrecleaningEnabled ||
  4701                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4702                "Unparsable objects should only be in perm gen.");
  4703         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
  4704         if (should_abort_preclean()) {
  4705           break; // out of preclean loop
  4706         } else {
  4707           // Compute the next address at which preclean should pick up.
  4708           lastAddr = next_card_start_after_block(stop_point);
  4711     } else {
  4712       break;
  4715   verify_work_stacks_empty();
  4716   verify_overflow_empty();
  4717   return cumNumDirtyCards;
  4720 void CMSCollector::checkpointRootsFinal(bool asynch,
  4721   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4722   assert(_collectorState == FinalMarking, "incorrect state transition?");
  4723   check_correct_thread_executing();
  4724   // world is stopped at this checkpoint
  4725   assert(SafepointSynchronize::is_at_safepoint(),
  4726          "world should be stopped");
  4727   verify_work_stacks_empty();
  4728   verify_overflow_empty();
  4730   SpecializationStats::clear();
  4731   if (PrintGCDetails) {
  4732     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
  4733                         _young_gen->used() / K,
  4734                         _young_gen->capacity() / K);
  4736   if (asynch) {
  4737     if (CMSScavengeBeforeRemark) {
  4738       GenCollectedHeap* gch = GenCollectedHeap::heap();
  4739       // Temporarily set flag to false, GCH->do_collection will
  4740       // expect it to be false and set to true
  4741       FlagSetting fl(gch->_is_gc_active, false);
  4742       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
  4743         PrintGCDetails && Verbose, true, gclog_or_tty);)
  4744       int level = _cmsGen->level() - 1;
  4745       if (level >= 0) {
  4746         gch->do_collection(true,        // full (i.e. force, see below)
  4747                            false,       // !clear_all_soft_refs
  4748                            0,           // size
  4749                            false,       // is_tlab
  4750                            level        // max_level
  4751                           );
  4754     FreelistLocker x(this);
  4755     MutexLockerEx y(bitMapLock(),
  4756                     Mutex::_no_safepoint_check_flag);
  4757     assert(!init_mark_was_synchronous, "but that's impossible!");
  4758     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
  4759   } else {
  4760     // already have all the locks
  4761     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
  4762                              init_mark_was_synchronous);
  4764   verify_work_stacks_empty();
  4765   verify_overflow_empty();
  4766   SpecializationStats::print();
  4769 void CMSCollector::checkpointRootsFinalWork(bool asynch,
  4770   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4772   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
  4774   assert(haveFreelistLocks(), "must have free list locks");
  4775   assert_lock_strong(bitMapLock());
  4777   if (UseAdaptiveSizePolicy) {
  4778     size_policy()->checkpoint_roots_final_begin();
  4781   ResourceMark rm;
  4782   HandleMark   hm;
  4784   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4786   if (should_unload_classes()) {
  4787     CodeCache::gc_prologue();
  4789   assert(haveFreelistLocks(), "must have free list locks");
  4790   assert_lock_strong(bitMapLock());
  4792   if (!init_mark_was_synchronous) {
  4793     // We might assume that we need not fill TLAB's when
  4794     // CMSScavengeBeforeRemark is set, because we may have just done
  4795     // a scavenge which would have filled all TLAB's -- and besides
  4796     // Eden would be empty. This however may not always be the case --
  4797     // for instance although we asked for a scavenge, it may not have
  4798     // happened because of a JNI critical section. We probably need
  4799     // a policy for deciding whether we can in that case wait until
  4800     // the critical section releases and then do the remark following
  4801     // the scavenge, and skip it here. In the absence of that policy,
  4802     // or of an indication of whether the scavenge did indeed occur,
  4803     // we cannot rely on TLAB's having been filled and must do
  4804     // so here just in case a scavenge did not happen.
  4805     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
  4806     // Update the saved marks which may affect the root scans.
  4807     gch->save_marks();
  4810       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  4812       // Note on the role of the mod union table:
  4813       // Since the marker in "markFromRoots" marks concurrently with
  4814       // mutators, it is possible for some reachable objects not to have been
  4815       // scanned. For instance, an only reference to an object A was
  4816       // placed in object B after the marker scanned B. Unless B is rescanned,
  4817       // A would be collected. Such updates to references in marked objects
  4818       // are detected via the mod union table which is the set of all cards
  4819       // dirtied since the first checkpoint in this GC cycle and prior to
  4820       // the most recent young generation GC, minus those cleaned up by the
  4821       // concurrent precleaning.
  4822       if (CMSParallelRemarkEnabled && ParallelGCThreads > 0) {
  4823         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
  4824         do_remark_parallel();
  4825       } else {
  4826         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
  4827                     gclog_or_tty);
  4828         do_remark_non_parallel();
  4831   } else {
  4832     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
  4833     // The initial mark was stop-world, so there's no rescanning to
  4834     // do; go straight on to the next step below.
  4836   verify_work_stacks_empty();
  4837   verify_overflow_empty();
  4840     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
  4841     refProcessingWork(asynch, clear_all_soft_refs);
  4843   verify_work_stacks_empty();
  4844   verify_overflow_empty();
  4846   if (should_unload_classes()) {
  4847     CodeCache::gc_epilogue();
  4850   // If we encountered any (marking stack / work queue) overflow
  4851   // events during the current CMS cycle, take appropriate
  4852   // remedial measures, where possible, so as to try and avoid
  4853   // recurrence of that condition.
  4854   assert(_markStack.isEmpty(), "No grey objects");
  4855   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
  4856                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
  4857   if (ser_ovflw > 0) {
  4858     if (PrintCMSStatistics != 0) {
  4859       gclog_or_tty->print_cr("Marking stack overflow (benign) "
  4860         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
  4861         ", kac_preclean="SIZE_FORMAT")",
  4862         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
  4863         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
  4865     _markStack.expand();
  4866     _ser_pmc_remark_ovflw = 0;
  4867     _ser_pmc_preclean_ovflw = 0;
  4868     _ser_kac_preclean_ovflw = 0;
  4869     _ser_kac_ovflw = 0;
  4871   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
  4872     if (PrintCMSStatistics != 0) {
  4873       gclog_or_tty->print_cr("Work queue overflow (benign) "
  4874         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  4875         _par_pmc_remark_ovflw, _par_kac_ovflw);
  4877     _par_pmc_remark_ovflw = 0;
  4878     _par_kac_ovflw = 0;
  4880   if (PrintCMSStatistics != 0) {
  4881      if (_markStack._hit_limit > 0) {
  4882        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
  4883                               _markStack._hit_limit);
  4885      if (_markStack._failed_double > 0) {
  4886        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
  4887                               " current capacity "SIZE_FORMAT,
  4888                               _markStack._failed_double,
  4889                               _markStack.capacity());
  4892   _markStack._hit_limit = 0;
  4893   _markStack._failed_double = 0;
  4895   if ((VerifyAfterGC || VerifyDuringGC) &&
  4896       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  4897     verify_after_remark();
  4900   // Change under the freelistLocks.
  4901   _collectorState = Sweeping;
  4902   // Call isAllClear() under bitMapLock
  4903   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
  4904     " final marking");
  4905   if (UseAdaptiveSizePolicy) {
  4906     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
  4910 // Parallel remark task
  4911 class CMSParRemarkTask: public AbstractGangTask {
  4912   CMSCollector* _collector;
  4913   WorkGang*     _workers;
  4914   int           _n_workers;
  4915   CompactibleFreeListSpace* _cms_space;
  4916   CompactibleFreeListSpace* _perm_space;
  4918   // The per-thread work queues, available here for stealing.
  4919   OopTaskQueueSet*       _task_queues;
  4920   ParallelTaskTerminator _term;
  4922  public:
  4923   CMSParRemarkTask(CMSCollector* collector,
  4924                    CompactibleFreeListSpace* cms_space,
  4925                    CompactibleFreeListSpace* perm_space,
  4926                    int n_workers, WorkGang* workers,
  4927                    OopTaskQueueSet* task_queues):
  4928     AbstractGangTask("Rescan roots and grey objects in parallel"),
  4929     _collector(collector),
  4930     _cms_space(cms_space), _perm_space(perm_space),
  4931     _n_workers(n_workers),
  4932     _workers(workers),
  4933     _task_queues(task_queues),
  4934     _term(workers->total_workers(), task_queues) { }
  4936   OopTaskQueueSet* task_queues() { return _task_queues; }
  4938   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  4940   ParallelTaskTerminator* terminator() { return &_term; }
  4942   void work(int i);
  4944  private:
  4945   // Work method in support of parallel rescan ... of young gen spaces
  4946   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
  4947                              ContiguousSpace* space,
  4948                              HeapWord** chunk_array, size_t chunk_top);
  4950   // ... of  dirty cards in old space
  4951   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
  4952                                   Par_MarkRefsIntoAndScanClosure* cl);
  4954   // ... work stealing for the above
  4955   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
  4956 };
  4958 void CMSParRemarkTask::work(int i) {
  4959   elapsedTimer _timer;
  4960   ResourceMark rm;
  4961   HandleMark   hm;
  4963   // ---------- rescan from roots --------------
  4964   _timer.start();
  4965   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4966   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
  4967     _collector->_span, _collector->ref_processor(),
  4968     &(_collector->_markBitMap),
  4969     work_queue(i), &(_collector->_revisitStack));
  4971   // Rescan young gen roots first since these are likely
  4972   // coarsely partitioned and may, on that account, constitute
  4973   // the critical path; thus, it's best to start off that
  4974   // work first.
  4975   // ---------- young gen roots --------------
  4977     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
  4978     EdenSpace* eden_space = dng->eden();
  4979     ContiguousSpace* from_space = dng->from();
  4980     ContiguousSpace* to_space   = dng->to();
  4982     HeapWord** eca = _collector->_eden_chunk_array;
  4983     size_t     ect = _collector->_eden_chunk_index;
  4984     HeapWord** sca = _collector->_survivor_chunk_array;
  4985     size_t     sct = _collector->_survivor_chunk_index;
  4987     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
  4988     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
  4990     do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
  4991     do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
  4992     do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
  4994     _timer.stop();
  4995     if (PrintCMSStatistics != 0) {
  4996       gclog_or_tty->print_cr(
  4997         "Finished young gen rescan work in %dth thread: %3.3f sec",
  4998         i, _timer.seconds());
  5002   // ---------- remaining roots --------------
  5003   _timer.reset();
  5004   _timer.start();
  5005   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
  5006                                 false,     // yg was scanned above
  5007                                 true,      // collecting perm gen
  5008                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  5009                                 NULL, &par_mrias_cl);
  5010   _timer.stop();
  5011   if (PrintCMSStatistics != 0) {
  5012     gclog_or_tty->print_cr(
  5013       "Finished remaining root rescan work in %dth thread: %3.3f sec",
  5014       i, _timer.seconds());
  5017   // ---------- rescan dirty cards ------------
  5018   _timer.reset();
  5019   _timer.start();
  5021   // Do the rescan tasks for each of the two spaces
  5022   // (cms_space and perm_space) in turn.
  5023   do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
  5024   do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
  5025   _timer.stop();
  5026   if (PrintCMSStatistics != 0) {
  5027     gclog_or_tty->print_cr(
  5028       "Finished dirty card rescan work in %dth thread: %3.3f sec",
  5029       i, _timer.seconds());
  5032   // ---------- steal work from other threads ...
  5033   // ---------- ... and drain overflow list.
  5034   _timer.reset();
  5035   _timer.start();
  5036   do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
  5037   _timer.stop();
  5038   if (PrintCMSStatistics != 0) {
  5039     gclog_or_tty->print_cr(
  5040       "Finished work stealing in %dth thread: %3.3f sec",
  5041       i, _timer.seconds());
  5045 void
  5046 CMSParRemarkTask::do_young_space_rescan(int i,
  5047   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
  5048   HeapWord** chunk_array, size_t chunk_top) {
  5049   // Until all tasks completed:
  5050   // . claim an unclaimed task
  5051   // . compute region boundaries corresponding to task claimed
  5052   //   using chunk_array
  5053   // . par_oop_iterate(cl) over that region
  5055   ResourceMark rm;
  5056   HandleMark   hm;
  5058   SequentialSubTasksDone* pst = space->par_seq_tasks();
  5059   assert(pst->valid(), "Uninitialized use?");
  5061   int nth_task = 0;
  5062   int n_tasks  = pst->n_tasks();
  5064   HeapWord *start, *end;
  5065   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5066     // We claimed task # nth_task; compute its boundaries.
  5067     if (chunk_top == 0) {  // no samples were taken
  5068       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
  5069       start = space->bottom();
  5070       end   = space->top();
  5071     } else if (nth_task == 0) {
  5072       start = space->bottom();
  5073       end   = chunk_array[nth_task];
  5074     } else if (nth_task < (jint)chunk_top) {
  5075       assert(nth_task >= 1, "Control point invariant");
  5076       start = chunk_array[nth_task - 1];
  5077       end   = chunk_array[nth_task];
  5078     } else {
  5079       assert(nth_task == (jint)chunk_top, "Control point invariant");
  5080       start = chunk_array[chunk_top - 1];
  5081       end   = space->top();
  5083     MemRegion mr(start, end);
  5084     // Verify that mr is in space
  5085     assert(mr.is_empty() || space->used_region().contains(mr),
  5086            "Should be in space");
  5087     // Verify that "start" is an object boundary
  5088     assert(mr.is_empty() || oop(mr.start())->is_oop(),
  5089            "Should be an oop");
  5090     space->par_oop_iterate(mr, cl);
  5092   pst->all_tasks_completed();
  5095 void
  5096 CMSParRemarkTask::do_dirty_card_rescan_tasks(
  5097   CompactibleFreeListSpace* sp, int i,
  5098   Par_MarkRefsIntoAndScanClosure* cl) {
  5099   // Until all tasks completed:
  5100   // . claim an unclaimed task
  5101   // . compute region boundaries corresponding to task claimed
  5102   // . transfer dirty bits ct->mut for that region
  5103   // . apply rescanclosure to dirty mut bits for that region
  5105   ResourceMark rm;
  5106   HandleMark   hm;
  5108   OopTaskQueue* work_q = work_queue(i);
  5109   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
  5110   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
  5111   // CAUTION: This closure has state that persists across calls to
  5112   // the work method dirty_range_iterate_clear() in that it has
  5113   // imbedded in it a (subtype of) UpwardsObjectClosure. The
  5114   // use of that state in the imbedded UpwardsObjectClosure instance
  5115   // assumes that the cards are always iterated (even if in parallel
  5116   // by several threads) in monotonically increasing order per each
  5117   // thread. This is true of the implementation below which picks
  5118   // card ranges (chunks) in monotonically increasing order globally
  5119   // and, a-fortiori, in monotonically increasing order per thread
  5120   // (the latter order being a subsequence of the former).
  5121   // If the work code below is ever reorganized into a more chaotic
  5122   // work-partitioning form than the current "sequential tasks"
  5123   // paradigm, the use of that persistent state will have to be
  5124   // revisited and modified appropriately. See also related
  5125   // bug 4756801 work on which should examine this code to make
  5126   // sure that the changes there do not run counter to the
  5127   // assumptions made here and necessary for correctness and
  5128   // efficiency. Note also that this code might yield inefficient
  5129   // behaviour in the case of very large objects that span one or
  5130   // more work chunks. Such objects would potentially be scanned
  5131   // several times redundantly. Work on 4756801 should try and
  5132   // address that performance anomaly if at all possible. XXX
  5133   MemRegion  full_span  = _collector->_span;
  5134   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
  5135   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
  5136   MarkFromDirtyCardsClosure
  5137     greyRescanClosure(_collector, full_span, // entire span of interest
  5138                       sp, bm, work_q, rs, cl);
  5140   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  5141   assert(pst->valid(), "Uninitialized use?");
  5142   int nth_task = 0;
  5143   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
  5144   MemRegion span = sp->used_region();
  5145   HeapWord* start_addr = span.start();
  5146   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
  5147                                            alignment);
  5148   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
  5149   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
  5150          start_addr, "Check alignment");
  5151   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
  5152          chunk_size, "Check alignment");
  5154   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5155     // Having claimed the nth_task, compute corresponding mem-region,
  5156     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
  5157     // The alignment restriction ensures that we do not need any
  5158     // synchronization with other gang-workers while setting or
  5159     // clearing bits in thus chunk of the MUT.
  5160     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
  5161                                     start_addr + (nth_task+1)*chunk_size);
  5162     // The last chunk's end might be way beyond end of the
  5163     // used region. In that case pull back appropriately.
  5164     if (this_span.end() > end_addr) {
  5165       this_span.set_end(end_addr);
  5166       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
  5168     // Iterate over the dirty cards covering this chunk, marking them
  5169     // precleaned, and setting the corresponding bits in the mod union
  5170     // table. Since we have been careful to partition at Card and MUT-word
  5171     // boundaries no synchronization is needed between parallel threads.
  5172     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
  5173                                                  &modUnionClosure);
  5175     // Having transferred these marks into the modUnionTable,
  5176     // rescan the marked objects on the dirty cards in the modUnionTable.
  5177     // Even if this is at a synchronous collection, the initial marking
  5178     // may have been done during an asynchronous collection so there
  5179     // may be dirty bits in the mod-union table.
  5180     _collector->_modUnionTable.dirty_range_iterate_clear(
  5181                   this_span, &greyRescanClosure);
  5182     _collector->_modUnionTable.verifyNoOneBitsInRange(
  5183                                  this_span.start(),
  5184                                  this_span.end());
  5186   pst->all_tasks_completed();  // declare that i am done
  5189 // . see if we can share work_queues with ParNew? XXX
  5190 void
  5191 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5192                                 int* seed) {
  5193   OopTaskQueue* work_q = work_queue(i);
  5194   NOT_PRODUCT(int num_steals = 0;)
  5195   oop obj_to_scan;
  5196   CMSBitMap* bm = &(_collector->_markBitMap);
  5197   size_t num_from_overflow_list =
  5198            MIN2((size_t)work_q->max_elems()/4,
  5199                 (size_t)ParGCDesiredObjsFromOverflowList);
  5201   while (true) {
  5202     // Completely finish any left over work from (an) earlier round(s)
  5203     cl->trim_queue(0);
  5204     // Now check if there's any work in the overflow list
  5205     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5206                                                 work_q)) {
  5207       // found something in global overflow list;
  5208       // not yet ready to go stealing work from others.
  5209       // We'd like to assert(work_q->size() != 0, ...)
  5210       // because we just took work from the overflow list,
  5211       // but of course we can't since all of that could have
  5212       // been already stolen from us.
  5213       // "He giveth and He taketh away."
  5214       continue;
  5216     // Verify that we have no work before we resort to stealing
  5217     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5218     // Try to steal from other queues that have work
  5219     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5220       NOT_PRODUCT(num_steals++;)
  5221       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5222       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5223       // Do scanning work
  5224       obj_to_scan->oop_iterate(cl);
  5225       // Loop around, finish this work, and try to steal some more
  5226     } else if (terminator()->offer_termination()) {
  5227         break;  // nirvana from the infinite cycle
  5230   NOT_PRODUCT(
  5231     if (PrintCMSStatistics != 0) {
  5232       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5235   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
  5236          "Else our work is not yet done");
  5239 // Return a thread-local PLAB recording array, as appropriate.
  5240 void* CMSCollector::get_data_recorder(int thr_num) {
  5241   if (_survivor_plab_array != NULL &&
  5242       (CMSPLABRecordAlways ||
  5243        (_collectorState > Marking && _collectorState < FinalMarking))) {
  5244     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
  5245     ChunkArray* ca = &_survivor_plab_array[thr_num];
  5246     ca->reset();   // clear it so that fresh data is recorded
  5247     return (void*) ca;
  5248   } else {
  5249     return NULL;
  5253 // Reset all the thread-local PLAB recording arrays
  5254 void CMSCollector::reset_survivor_plab_arrays() {
  5255   for (uint i = 0; i < ParallelGCThreads; i++) {
  5256     _survivor_plab_array[i].reset();
  5260 // Merge the per-thread plab arrays into the global survivor chunk
  5261 // array which will provide the partitioning of the survivor space
  5262 // for CMS rescan.
  5263 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv) {
  5264   assert(_survivor_plab_array  != NULL, "Error");
  5265   assert(_survivor_chunk_array != NULL, "Error");
  5266   assert(_collectorState == FinalMarking, "Error");
  5267   for (uint j = 0; j < ParallelGCThreads; j++) {
  5268     _cursor[j] = 0;
  5270   HeapWord* top = surv->top();
  5271   size_t i;
  5272   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
  5273     HeapWord* min_val = top;          // Higher than any PLAB address
  5274     uint      min_tid = 0;            // position of min_val this round
  5275     for (uint j = 0; j < ParallelGCThreads; j++) {
  5276       ChunkArray* cur_sca = &_survivor_plab_array[j];
  5277       if (_cursor[j] == cur_sca->end()) {
  5278         continue;
  5280       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
  5281       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
  5282       assert(surv->used_region().contains(cur_val), "Out of bounds value");
  5283       if (cur_val < min_val) {
  5284         min_tid = j;
  5285         min_val = cur_val;
  5286       } else {
  5287         assert(cur_val < top, "All recorded addresses should be less");
  5290     // At this point min_val and min_tid are respectively
  5291     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
  5292     // and the thread (j) that witnesses that address.
  5293     // We record this address in the _survivor_chunk_array[i]
  5294     // and increment _cursor[min_tid] prior to the next round i.
  5295     if (min_val == top) {
  5296       break;
  5298     _survivor_chunk_array[i] = min_val;
  5299     _cursor[min_tid]++;
  5301   // We are all done; record the size of the _survivor_chunk_array
  5302   _survivor_chunk_index = i; // exclusive: [0, i)
  5303   if (PrintCMSStatistics > 0) {
  5304     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
  5306   // Verify that we used up all the recorded entries
  5307   #ifdef ASSERT
  5308     size_t total = 0;
  5309     for (uint j = 0; j < ParallelGCThreads; j++) {
  5310       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
  5311       total += _cursor[j];
  5313     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
  5314     // Check that the merged array is in sorted order
  5315     if (total > 0) {
  5316       for (size_t i = 0; i < total - 1; i++) {
  5317         if (PrintCMSStatistics > 0) {
  5318           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
  5319                               i, _survivor_chunk_array[i]);
  5321         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
  5322                "Not sorted");
  5325   #endif // ASSERT
  5328 // Set up the space's par_seq_tasks structure for work claiming
  5329 // for parallel rescan of young gen.
  5330 // See ParRescanTask where this is currently used.
  5331 void
  5332 CMSCollector::
  5333 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
  5334   assert(n_threads > 0, "Unexpected n_threads argument");
  5335   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  5337   // Eden space
  5339     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
  5340     assert(!pst->valid(), "Clobbering existing data?");
  5341     // Each valid entry in [0, _eden_chunk_index) represents a task.
  5342     size_t n_tasks = _eden_chunk_index + 1;
  5343     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
  5344     pst->set_par_threads(n_threads);
  5345     pst->set_n_tasks((int)n_tasks);
  5348   // Merge the survivor plab arrays into _survivor_chunk_array
  5349   if (_survivor_plab_array != NULL) {
  5350     merge_survivor_plab_arrays(dng->from());
  5351   } else {
  5352     assert(_survivor_chunk_index == 0, "Error");
  5355   // To space
  5357     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
  5358     assert(!pst->valid(), "Clobbering existing data?");
  5359     pst->set_par_threads(n_threads);
  5360     pst->set_n_tasks(1);
  5361     assert(pst->valid(), "Error");
  5364   // From space
  5366     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
  5367     assert(!pst->valid(), "Clobbering existing data?");
  5368     size_t n_tasks = _survivor_chunk_index + 1;
  5369     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
  5370     pst->set_par_threads(n_threads);
  5371     pst->set_n_tasks((int)n_tasks);
  5372     assert(pst->valid(), "Error");
  5376 // Parallel version of remark
  5377 void CMSCollector::do_remark_parallel() {
  5378   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5379   WorkGang* workers = gch->workers();
  5380   assert(workers != NULL, "Need parallel worker threads.");
  5381   int n_workers = workers->total_workers();
  5382   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  5383   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  5385   CMSParRemarkTask tsk(this,
  5386     cms_space, perm_space,
  5387     n_workers, workers, task_queues());
  5389   // Set up for parallel process_strong_roots work.
  5390   gch->set_par_threads(n_workers);
  5391   gch->change_strong_roots_parity();
  5392   // We won't be iterating over the cards in the card table updating
  5393   // the younger_gen cards, so we shouldn't call the following else
  5394   // the verification code as well as subsequent younger_refs_iterate
  5395   // code would get confused. XXX
  5396   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
  5398   // The young gen rescan work will not be done as part of
  5399   // process_strong_roots (which currently doesn't knw how to
  5400   // parallelize such a scan), but rather will be broken up into
  5401   // a set of parallel tasks (via the sampling that the [abortable]
  5402   // preclean phase did of EdenSpace, plus the [two] tasks of
  5403   // scanning the [two] survivor spaces. Further fine-grain
  5404   // parallelization of the scanning of the survivor spaces
  5405   // themselves, and of precleaning of the younger gen itself
  5406   // is deferred to the future.
  5407   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  5409   // The dirty card rescan work is broken up into a "sequence"
  5410   // of parallel tasks (per constituent space) that are dynamically
  5411   // claimed by the parallel threads.
  5412   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5413   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5415   // It turns out that even when we're using 1 thread, doing the work in a
  5416   // separate thread causes wide variance in run times.  We can't help this
  5417   // in the multi-threaded case, but we special-case n=1 here to get
  5418   // repeatable measurements of the 1-thread overhead of the parallel code.
  5419   if (n_workers > 1) {
  5420     // Make refs discovery MT-safe
  5421     ReferenceProcessorMTMutator mt(ref_processor(), true);
  5422     workers->run_task(&tsk);
  5423   } else {
  5424     tsk.work(0);
  5426   gch->set_par_threads(0);  // 0 ==> non-parallel.
  5427   // restore, single-threaded for now, any preserved marks
  5428   // as a result of work_q overflow
  5429   restore_preserved_marks_if_any();
  5432 // Non-parallel version of remark
  5433 void CMSCollector::do_remark_non_parallel() {
  5434   ResourceMark rm;
  5435   HandleMark   hm;
  5436   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5437   MarkRefsIntoAndScanClosure
  5438     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  5439              &_markStack, &_revisitStack, this,
  5440              false /* should_yield */, false /* not precleaning */);
  5441   MarkFromDirtyCardsClosure
  5442     markFromDirtyCardsClosure(this, _span,
  5443                               NULL,  // space is set further below
  5444                               &_markBitMap, &_markStack, &_revisitStack,
  5445                               &mrias_cl);
  5447     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
  5448     // Iterate over the dirty cards, setting the corresponding bits in the
  5449     // mod union table.
  5451       ModUnionClosure modUnionClosure(&_modUnionTable);
  5452       _ct->ct_bs()->dirty_card_iterate(
  5453                       _cmsGen->used_region(),
  5454                       &modUnionClosure);
  5455       _ct->ct_bs()->dirty_card_iterate(
  5456                       _permGen->used_region(),
  5457                       &modUnionClosure);
  5459     // Having transferred these marks into the modUnionTable, we just need
  5460     // to rescan the marked objects on the dirty cards in the modUnionTable.
  5461     // The initial marking may have been done during an asynchronous
  5462     // collection so there may be dirty bits in the mod-union table.
  5463     const int alignment =
  5464       CardTableModRefBS::card_size * BitsPerWord;
  5466       // ... First handle dirty cards in CMS gen
  5467       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
  5468       MemRegion ur = _cmsGen->used_region();
  5469       HeapWord* lb = ur.start();
  5470       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5471       MemRegion cms_span(lb, ub);
  5472       _modUnionTable.dirty_range_iterate_clear(cms_span,
  5473                                                &markFromDirtyCardsClosure);
  5474       verify_work_stacks_empty();
  5475       if (PrintCMSStatistics != 0) {
  5476         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
  5477           markFromDirtyCardsClosure.num_dirty_cards());
  5481       // .. and then repeat for dirty cards in perm gen
  5482       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
  5483       MemRegion ur = _permGen->used_region();
  5484       HeapWord* lb = ur.start();
  5485       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5486       MemRegion perm_span(lb, ub);
  5487       _modUnionTable.dirty_range_iterate_clear(perm_span,
  5488                                                &markFromDirtyCardsClosure);
  5489       verify_work_stacks_empty();
  5490       if (PrintCMSStatistics != 0) {
  5491         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
  5492           markFromDirtyCardsClosure.num_dirty_cards());
  5496   if (VerifyDuringGC &&
  5497       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5498     HandleMark hm;  // Discard invalid handles created during verification
  5499     Universe::verify(true);
  5502     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
  5504     verify_work_stacks_empty();
  5506     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  5507     gch->gen_process_strong_roots(_cmsGen->level(),
  5508                                   true,  // younger gens as roots
  5509                                   true,  // collecting perm gen
  5510                                   SharedHeap::ScanningOption(roots_scanning_options()),
  5511                                   NULL, &mrias_cl);
  5513   verify_work_stacks_empty();
  5514   // Restore evacuated mark words, if any, used for overflow list links
  5515   if (!CMSOverflowEarlyRestoration) {
  5516     restore_preserved_marks_if_any();
  5518   verify_overflow_empty();
  5521 ////////////////////////////////////////////////////////
  5522 // Parallel Reference Processing Task Proxy Class
  5523 ////////////////////////////////////////////////////////
  5524 class CMSRefProcTaskProxy: public AbstractGangTask {
  5525   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5526   CMSCollector*          _collector;
  5527   CMSBitMap*             _mark_bit_map;
  5528   const MemRegion        _span;
  5529   OopTaskQueueSet*       _task_queues;
  5530   ParallelTaskTerminator _term;
  5531   ProcessTask&           _task;
  5533 public:
  5534   CMSRefProcTaskProxy(ProcessTask&     task,
  5535                       CMSCollector*    collector,
  5536                       const MemRegion& span,
  5537                       CMSBitMap*       mark_bit_map,
  5538                       int              total_workers,
  5539                       OopTaskQueueSet* task_queues):
  5540     AbstractGangTask("Process referents by policy in parallel"),
  5541     _task(task),
  5542     _collector(collector), _span(span), _mark_bit_map(mark_bit_map),
  5543     _task_queues(task_queues),
  5544     _term(total_workers, task_queues)
  5546       assert(_collector->_span.equals(_span) && !_span.is_empty(),
  5547              "Inconsistency in _span");
  5550   OopTaskQueueSet* task_queues() { return _task_queues; }
  5552   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5554   ParallelTaskTerminator* terminator() { return &_term; }
  5556   void do_work_steal(int i,
  5557                      CMSParDrainMarkingStackClosure* drain,
  5558                      CMSParKeepAliveClosure* keep_alive,
  5559                      int* seed);
  5561   virtual void work(int i);
  5562 };
  5564 void CMSRefProcTaskProxy::work(int i) {
  5565   assert(_collector->_span.equals(_span), "Inconsistency in _span");
  5566   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
  5567                                         _mark_bit_map, work_queue(i));
  5568   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
  5569                                                  _mark_bit_map, work_queue(i));
  5570   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
  5571   _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
  5572   if (_task.marks_oops_alive()) {
  5573     do_work_steal(i, &par_drain_stack, &par_keep_alive,
  5574                   _collector->hash_seed(i));
  5576   assert(work_queue(i)->size() == 0, "work_queue should be empty");
  5577   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
  5580 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
  5581   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5582   EnqueueTask& _task;
  5584 public:
  5585   CMSRefEnqueueTaskProxy(EnqueueTask& task)
  5586     : AbstractGangTask("Enqueue reference objects in parallel"),
  5587       _task(task)
  5588   { }
  5590   virtual void work(int i)
  5592     _task.work(i);
  5594 };
  5596 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
  5597   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
  5598    _collector(collector),
  5599    _span(span),
  5600    _bit_map(bit_map),
  5601    _work_queue(work_queue),
  5602    _mark_and_push(collector, span, bit_map, work_queue),
  5603    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  5604                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
  5605 { }
  5607 // . see if we can share work_queues with ParNew? XXX
  5608 void CMSRefProcTaskProxy::do_work_steal(int i,
  5609   CMSParDrainMarkingStackClosure* drain,
  5610   CMSParKeepAliveClosure* keep_alive,
  5611   int* seed) {
  5612   OopTaskQueue* work_q = work_queue(i);
  5613   NOT_PRODUCT(int num_steals = 0;)
  5614   oop obj_to_scan;
  5615   size_t num_from_overflow_list =
  5616            MIN2((size_t)work_q->max_elems()/4,
  5617                 (size_t)ParGCDesiredObjsFromOverflowList);
  5619   while (true) {
  5620     // Completely finish any left over work from (an) earlier round(s)
  5621     drain->trim_queue(0);
  5622     // Now check if there's any work in the overflow list
  5623     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5624                                                 work_q)) {
  5625       // Found something in global overflow list;
  5626       // not yet ready to go stealing work from others.
  5627       // We'd like to assert(work_q->size() != 0, ...)
  5628       // because we just took work from the overflow list,
  5629       // but of course we can't, since all of that might have
  5630       // been already stolen from us.
  5631       continue;
  5633     // Verify that we have no work before we resort to stealing
  5634     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5635     // Try to steal from other queues that have work
  5636     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5637       NOT_PRODUCT(num_steals++;)
  5638       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5639       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5640       // Do scanning work
  5641       obj_to_scan->oop_iterate(keep_alive);
  5642       // Loop around, finish this work, and try to steal some more
  5643     } else if (terminator()->offer_termination()) {
  5644       break;  // nirvana from the infinite cycle
  5647   NOT_PRODUCT(
  5648     if (PrintCMSStatistics != 0) {
  5649       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5654 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
  5656   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5657   WorkGang* workers = gch->workers();
  5658   assert(workers != NULL, "Need parallel worker threads.");
  5659   int n_workers = workers->total_workers();
  5660   CMSRefProcTaskProxy rp_task(task, &_collector,
  5661                               _collector.ref_processor()->span(),
  5662                               _collector.markBitMap(),
  5663                               n_workers, _collector.task_queues());
  5664   workers->run_task(&rp_task);
  5667 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
  5670   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5671   WorkGang* workers = gch->workers();
  5672   assert(workers != NULL, "Need parallel worker threads.");
  5673   CMSRefEnqueueTaskProxy enq_task(task);
  5674   workers->run_task(&enq_task);
  5677 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
  5679   ResourceMark rm;
  5680   HandleMark   hm;
  5682   ReferenceProcessor* rp = ref_processor();
  5683   assert(rp->span().equals(_span), "Spans should be equal");
  5684   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
  5685   // Process weak references.
  5686   rp->setup_policy(clear_all_soft_refs);
  5687   verify_work_stacks_empty();
  5689   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
  5690                                           &_markStack, false /* !preclean */);
  5691   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
  5692                                 _span, &_markBitMap, &_markStack,
  5693                                 &cmsKeepAliveClosure, false /* !preclean */);
  5695     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
  5696     if (rp->processing_is_mt()) {
  5697       CMSRefProcTaskExecutor task_executor(*this);
  5698       rp->process_discovered_references(&_is_alive_closure,
  5699                                         &cmsKeepAliveClosure,
  5700                                         &cmsDrainMarkingStackClosure,
  5701                                         &task_executor);
  5702     } else {
  5703       rp->process_discovered_references(&_is_alive_closure,
  5704                                         &cmsKeepAliveClosure,
  5705                                         &cmsDrainMarkingStackClosure,
  5706                                         NULL);
  5708     verify_work_stacks_empty();
  5711   if (should_unload_classes()) {
  5713       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
  5715       // Follow SystemDictionary roots and unload classes
  5716       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
  5718       // Follow CodeCache roots and unload any methods marked for unloading
  5719       CodeCache::do_unloading(&_is_alive_closure,
  5720                               &cmsKeepAliveClosure,
  5721                               purged_class);
  5723       cmsDrainMarkingStackClosure.do_void();
  5724       verify_work_stacks_empty();
  5726       // Update subklass/sibling/implementor links in KlassKlass descendants
  5727       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
  5728       oop k;
  5729       while ((k = _revisitStack.pop()) != NULL) {
  5730         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
  5731                        &_is_alive_closure,
  5732                        &cmsKeepAliveClosure);
  5734       assert(!ClassUnloading ||
  5735              (_markStack.isEmpty() && overflow_list_is_empty()),
  5736              "Should not have found new reachable objects");
  5737       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
  5738       cmsDrainMarkingStackClosure.do_void();
  5739       verify_work_stacks_empty();
  5743       TraceTime t("scrub symbol & string tables", PrintGCDetails, false, gclog_or_tty);
  5744       // Now clean up stale oops in SymbolTable and StringTable
  5745       SymbolTable::unlink(&_is_alive_closure);
  5746       StringTable::unlink(&_is_alive_closure);
  5750   verify_work_stacks_empty();
  5751   // Restore any preserved marks as a result of mark stack or
  5752   // work queue overflow
  5753   restore_preserved_marks_if_any();  // done single-threaded for now
  5755   rp->set_enqueuing_is_done(true);
  5756   if (rp->processing_is_mt()) {
  5757     CMSRefProcTaskExecutor task_executor(*this);
  5758     rp->enqueue_discovered_references(&task_executor);
  5759   } else {
  5760     rp->enqueue_discovered_references(NULL);
  5762   rp->verify_no_references_recorded();
  5763   assert(!rp->discovery_enabled(), "should have been disabled");
  5765   // JVMTI object tagging is based on JNI weak refs. If any of these
  5766   // refs were cleared then JVMTI needs to update its maps and
  5767   // maybe post ObjectFrees to agents.
  5768   JvmtiExport::cms_ref_processing_epilogue();
  5771 #ifndef PRODUCT
  5772 void CMSCollector::check_correct_thread_executing() {
  5773   Thread* t = Thread::current();
  5774   // Only the VM thread or the CMS thread should be here.
  5775   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
  5776          "Unexpected thread type");
  5777   // If this is the vm thread, the foreground process
  5778   // should not be waiting.  Note that _foregroundGCIsActive is
  5779   // true while the foreground collector is waiting.
  5780   if (_foregroundGCShouldWait) {
  5781     // We cannot be the VM thread
  5782     assert(t->is_ConcurrentGC_thread(),
  5783            "Should be CMS thread");
  5784   } else {
  5785     // We can be the CMS thread only if we are in a stop-world
  5786     // phase of CMS collection.
  5787     if (t->is_ConcurrentGC_thread()) {
  5788       assert(_collectorState == InitialMarking ||
  5789              _collectorState == FinalMarking,
  5790              "Should be a stop-world phase");
  5791       // The CMS thread should be holding the CMS_token.
  5792       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  5793              "Potential interference with concurrently "
  5794              "executing VM thread");
  5798 #endif
  5800 void CMSCollector::sweep(bool asynch) {
  5801   assert(_collectorState == Sweeping, "just checking");
  5802   check_correct_thread_executing();
  5803   verify_work_stacks_empty();
  5804   verify_overflow_empty();
  5805   incrementSweepCount();
  5806   _sweep_timer.stop();
  5807   _sweep_estimate.sample(_sweep_timer.seconds());
  5808   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
  5810   // PermGen verification support: If perm gen sweeping is disabled in
  5811   // this cycle, we preserve the perm gen object "deadness" information
  5812   // in the perm_gen_verify_bit_map. In order to do that we traverse
  5813   // all blocks in perm gen and mark all dead objects.
  5814   if (verifying() && !should_unload_classes()) {
  5815     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
  5816            "Should have already been allocated");
  5817     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
  5818                                markBitMap(), perm_gen_verify_bit_map());
  5819     if (asynch) {
  5820       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5821                                bitMapLock());
  5822       _permGen->cmsSpace()->blk_iterate(&mdo);
  5823     } else {
  5824       // In the case of synchronous sweep, we already have
  5825       // the requisite locks/tokens.
  5826       _permGen->cmsSpace()->blk_iterate(&mdo);
  5830   if (asynch) {
  5831     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  5832     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
  5833     // First sweep the old gen then the perm gen
  5835       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5836                                bitMapLock());
  5837       sweepWork(_cmsGen, asynch);
  5840     // Now repeat for perm gen
  5841     if (should_unload_classes()) {
  5842       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5843                              bitMapLock());
  5844       sweepWork(_permGen, asynch);
  5847     // Update Universe::_heap_*_at_gc figures.
  5848     // We need all the free list locks to make the abstract state
  5849     // transition from Sweeping to Resetting. See detailed note
  5850     // further below.
  5852       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5853                                _permGen->freelistLock());
  5854       // Update heap occupancy information which is used as
  5855       // input to soft ref clearing policy at the next gc.
  5856       Universe::update_heap_info_at_gc();
  5857       _collectorState = Resizing;
  5859   } else {
  5860     // already have needed locks
  5861     sweepWork(_cmsGen,  asynch);
  5863     if (should_unload_classes()) {
  5864       sweepWork(_permGen, asynch);
  5866     // Update heap occupancy information which is used as
  5867     // input to soft ref clearing policy at the next gc.
  5868     Universe::update_heap_info_at_gc();
  5869     _collectorState = Resizing;
  5871   verify_work_stacks_empty();
  5872   verify_overflow_empty();
  5874   _sweep_timer.reset();
  5875   _sweep_timer.start();
  5877   update_time_of_last_gc(os::javaTimeMillis());
  5879   // NOTE on abstract state transitions:
  5880   // Mutators allocate-live and/or mark the mod-union table dirty
  5881   // based on the state of the collection.  The former is done in
  5882   // the interval [Marking, Sweeping] and the latter in the interval
  5883   // [Marking, Sweeping).  Thus the transitions into the Marking state
  5884   // and out of the Sweeping state must be synchronously visible
  5885   // globally to the mutators.
  5886   // The transition into the Marking state happens with the world
  5887   // stopped so the mutators will globally see it.  Sweeping is
  5888   // done asynchronously by the background collector so the transition
  5889   // from the Sweeping state to the Resizing state must be done
  5890   // under the freelistLock (as is the check for whether to
  5891   // allocate-live and whether to dirty the mod-union table).
  5892   assert(_collectorState == Resizing, "Change of collector state to"
  5893     " Resizing must be done under the freelistLocks (plural)");
  5895   // Now that sweeping has been completed, if the GCH's
  5896   // incremental_collection_will_fail flag is set, clear it,
  5897   // thus inviting a younger gen collection to promote into
  5898   // this generation. If such a promotion may still fail,
  5899   // the flag will be set again when a young collection is
  5900   // attempted.
  5901   // I think the incremental_collection_will_fail flag's use
  5902   // is specific to a 2 generation collection policy, so i'll
  5903   // assert that that's the configuration we are operating within.
  5904   // The use of the flag can and should be generalized appropriately
  5905   // in the future to deal with a general n-generation system.
  5907   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5908   assert(gch->collector_policy()->is_two_generation_policy(),
  5909          "Resetting of incremental_collection_will_fail flag"
  5910          " may be incorrect otherwise");
  5911   gch->clear_incremental_collection_will_fail();
  5912   gch->update_full_collections_completed(_collection_count_start);
  5915 // FIX ME!!! Looks like this belongs in CFLSpace, with
  5916 // CMSGen merely delegating to it.
  5917 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
  5918   double nearLargestPercent = 0.999;
  5919   HeapWord*  minAddr        = _cmsSpace->bottom();
  5920   HeapWord*  largestAddr    =
  5921     (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
  5922   if (largestAddr == 0) {
  5923     // The dictionary appears to be empty.  In this case
  5924     // try to coalesce at the end of the heap.
  5925     largestAddr = _cmsSpace->end();
  5927   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
  5928   size_t nearLargestOffset =
  5929     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
  5930   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
  5933 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
  5934   return addr >= _cmsSpace->nearLargestChunk();
  5937 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
  5938   return _cmsSpace->find_chunk_at_end();
  5941 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
  5942                                                     bool full) {
  5943   // The next lower level has been collected.  Gather any statistics
  5944   // that are of interest at this point.
  5945   if (!full && (current_level + 1) == level()) {
  5946     // Gather statistics on the young generation collection.
  5947     collector()->stats().record_gc0_end(used());
  5951 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
  5952   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5953   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  5954     "Wrong type of heap");
  5955   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
  5956     gch->gen_policy()->size_policy();
  5957   assert(sp->is_gc_cms_adaptive_size_policy(),
  5958     "Wrong type of size policy");
  5959   return sp;
  5962 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
  5963   if (PrintGCDetails && Verbose) {
  5964     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
  5966   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
  5967   _debug_collection_type =
  5968     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
  5969   if (PrintGCDetails && Verbose) {
  5970     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
  5974 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
  5975   bool asynch) {
  5976   // We iterate over the space(s) underlying this generation,
  5977   // checking the mark bit map to see if the bits corresponding
  5978   // to specific blocks are marked or not. Blocks that are
  5979   // marked are live and are not swept up. All remaining blocks
  5980   // are swept up, with coalescing on-the-fly as we sweep up
  5981   // contiguous free and/or garbage blocks:
  5982   // We need to ensure that the sweeper synchronizes with allocators
  5983   // and stop-the-world collectors. In particular, the following
  5984   // locks are used:
  5985   // . CMS token: if this is held, a stop the world collection cannot occur
  5986   // . freelistLock: if this is held no allocation can occur from this
  5987   //                 generation by another thread
  5988   // . bitMapLock: if this is held, no other thread can access or update
  5989   //
  5991   // Note that we need to hold the freelistLock if we use
  5992   // block iterate below; else the iterator might go awry if
  5993   // a mutator (or promotion) causes block contents to change
  5994   // (for instance if the allocator divvies up a block).
  5995   // If we hold the free list lock, for all practical purposes
  5996   // young generation GC's can't occur (they'll usually need to
  5997   // promote), so we might as well prevent all young generation
  5998   // GC's while we do a sweeping step. For the same reason, we might
  5999   // as well take the bit map lock for the entire duration
  6001   // check that we hold the requisite locks
  6002   assert(have_cms_token(), "Should hold cms token");
  6003   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
  6004          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
  6005         "Should possess CMS token to sweep");
  6006   assert_lock_strong(gen->freelistLock());
  6007   assert_lock_strong(bitMapLock());
  6009   assert(!_sweep_timer.is_active(), "Was switched off in an outer context");
  6010   gen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  6011                                       _sweep_estimate.padded_average());
  6012   gen->setNearLargestChunk();
  6015     SweepClosure sweepClosure(this, gen, &_markBitMap,
  6016                             CMSYield && asynch);
  6017     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
  6018     // We need to free-up/coalesce garbage/blocks from a
  6019     // co-terminal free run. This is done in the SweepClosure
  6020     // destructor; so, do not remove this scope, else the
  6021     // end-of-sweep-census below will be off by a little bit.
  6023   gen->cmsSpace()->sweep_completed();
  6024   gen->cmsSpace()->endSweepFLCensus(sweepCount());
  6025   if (should_unload_classes()) {                // unloaded classes this cycle,
  6026     _concurrent_cycles_since_last_unload = 0;   // ... reset count
  6027   } else {                                      // did not unload classes,
  6028     _concurrent_cycles_since_last_unload++;     // ... increment count
  6032 // Reset CMS data structures (for now just the marking bit map)
  6033 // preparatory for the next cycle.
  6034 void CMSCollector::reset(bool asynch) {
  6035   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6036   CMSAdaptiveSizePolicy* sp = size_policy();
  6037   AdaptiveSizePolicyOutput(sp, gch->total_collections());
  6038   if (asynch) {
  6039     CMSTokenSyncWithLocks ts(true, bitMapLock());
  6041     // If the state is not "Resetting", the foreground  thread
  6042     // has done a collection and the resetting.
  6043     if (_collectorState != Resetting) {
  6044       assert(_collectorState == Idling, "The state should only change"
  6045         " because the foreground collector has finished the collection");
  6046       return;
  6049     // Clear the mark bitmap (no grey objects to start with)
  6050     // for the next cycle.
  6051     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6052     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
  6054     HeapWord* curAddr = _markBitMap.startWord();
  6055     while (curAddr < _markBitMap.endWord()) {
  6056       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
  6057       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
  6058       _markBitMap.clear_large_range(chunk);
  6059       if (ConcurrentMarkSweepThread::should_yield() &&
  6060           !foregroundGCIsActive() &&
  6061           CMSYield) {
  6062         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6063                "CMS thread should hold CMS token");
  6064         assert_lock_strong(bitMapLock());
  6065         bitMapLock()->unlock();
  6066         ConcurrentMarkSweepThread::desynchronize(true);
  6067         ConcurrentMarkSweepThread::acknowledge_yield_request();
  6068         stopTimer();
  6069         if (PrintCMSStatistics != 0) {
  6070           incrementYields();
  6072         icms_wait();
  6074         // See the comment in coordinator_yield()
  6075         for (unsigned i = 0; i < CMSYieldSleepCount &&
  6076                          ConcurrentMarkSweepThread::should_yield() &&
  6077                          !CMSCollector::foregroundGCIsActive(); ++i) {
  6078           os::sleep(Thread::current(), 1, false);
  6079           ConcurrentMarkSweepThread::acknowledge_yield_request();
  6082         ConcurrentMarkSweepThread::synchronize(true);
  6083         bitMapLock()->lock_without_safepoint_check();
  6084         startTimer();
  6086       curAddr = chunk.end();
  6088     _collectorState = Idling;
  6089   } else {
  6090     // already have the lock
  6091     assert(_collectorState == Resetting, "just checking");
  6092     assert_lock_strong(bitMapLock());
  6093     _markBitMap.clear_all();
  6094     _collectorState = Idling;
  6097   // Stop incremental mode after a cycle completes, so that any future cycles
  6098   // are triggered by allocation.
  6099   stop_icms();
  6101   NOT_PRODUCT(
  6102     if (RotateCMSCollectionTypes) {
  6103       _cmsGen->rotate_debug_collection_type();
  6108 void CMSCollector::do_CMS_operation(CMS_op_type op) {
  6109   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  6110   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6111   TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
  6112   TraceCollectorStats tcs(counters());
  6114   switch (op) {
  6115     case CMS_op_checkpointRootsInitial: {
  6116       checkpointRootsInitial(true);       // asynch
  6117       if (PrintGC) {
  6118         _cmsGen->printOccupancy("initial-mark");
  6120       break;
  6122     case CMS_op_checkpointRootsFinal: {
  6123       checkpointRootsFinal(true,    // asynch
  6124                            false,   // !clear_all_soft_refs
  6125                            false);  // !init_mark_was_synchronous
  6126       if (PrintGC) {
  6127         _cmsGen->printOccupancy("remark");
  6129       break;
  6131     default:
  6132       fatal("No such CMS_op");
  6136 #ifndef PRODUCT
  6137 size_t const CMSCollector::skip_header_HeapWords() {
  6138   return FreeChunk::header_size();
  6141 // Try and collect here conditions that should hold when
  6142 // CMS thread is exiting. The idea is that the foreground GC
  6143 // thread should not be blocked if it wants to terminate
  6144 // the CMS thread and yet continue to run the VM for a while
  6145 // after that.
  6146 void CMSCollector::verify_ok_to_terminate() const {
  6147   assert(Thread::current()->is_ConcurrentGC_thread(),
  6148          "should be called by CMS thread");
  6149   assert(!_foregroundGCShouldWait, "should be false");
  6150   // We could check here that all the various low-level locks
  6151   // are not held by the CMS thread, but that is overkill; see
  6152   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
  6153   // is checked.
  6155 #endif
  6157 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
  6158    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
  6159           "missing Printezis mark?");
  6160   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6161   size_t size = pointer_delta(nextOneAddr + 1, addr);
  6162   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6163          "alignment problem");
  6164   assert(size >= 3, "Necessary for Printezis marks to work");
  6165   return size;
  6168 // A variant of the above (block_size_using_printezis_bits()) except
  6169 // that we return 0 if the P-bits are not yet set.
  6170 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
  6171   if (_markBitMap.isMarked(addr)) {
  6172     assert(_markBitMap.isMarked(addr + 1), "Missing Printezis bit?");
  6173     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6174     size_t size = pointer_delta(nextOneAddr + 1, addr);
  6175     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6176            "alignment problem");
  6177     assert(size >= 3, "Necessary for Printezis marks to work");
  6178     return size;
  6179   } else {
  6180     assert(!_markBitMap.isMarked(addr + 1), "Bit map inconsistency?");
  6181     return 0;
  6185 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
  6186   size_t sz = 0;
  6187   oop p = (oop)addr;
  6188   if (p->klass_or_null() != NULL && p->is_parsable()) {
  6189     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6190   } else {
  6191     sz = block_size_using_printezis_bits(addr);
  6193   assert(sz > 0, "size must be nonzero");
  6194   HeapWord* next_block = addr + sz;
  6195   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
  6196                                              CardTableModRefBS::card_size);
  6197   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
  6198          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
  6199          "must be different cards");
  6200   return next_card;
  6204 // CMS Bit Map Wrapper /////////////////////////////////////////
  6206 // Construct a CMS bit map infrastructure, but don't create the
  6207 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
  6208 // further below.
  6209 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
  6210   _bm(),
  6211   _shifter(shifter),
  6212   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
  6214   _bmStartWord = 0;
  6215   _bmWordSize  = 0;
  6218 bool CMSBitMap::allocate(MemRegion mr) {
  6219   _bmStartWord = mr.start();
  6220   _bmWordSize  = mr.word_size();
  6221   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  6222                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  6223   if (!brs.is_reserved()) {
  6224     warning("CMS bit map allocation failure");
  6225     return false;
  6227   // For now we'll just commit all of the bit map up fromt.
  6228   // Later on we'll try to be more parsimonious with swap.
  6229   if (!_virtual_space.initialize(brs, brs.size())) {
  6230     warning("CMS bit map backing store failure");
  6231     return false;
  6233   assert(_virtual_space.committed_size() == brs.size(),
  6234          "didn't reserve backing store for all of CMS bit map?");
  6235   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
  6236   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  6237          _bmWordSize, "inconsistency in bit map sizing");
  6238   _bm.set_size(_bmWordSize >> _shifter);
  6240   // bm.clear(); // can we rely on getting zero'd memory? verify below
  6241   assert(isAllClear(),
  6242          "Expected zero'd memory from ReservedSpace constructor");
  6243   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
  6244          "consistency check");
  6245   return true;
  6248 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
  6249   HeapWord *next_addr, *end_addr, *last_addr;
  6250   assert_locked();
  6251   assert(covers(mr), "out-of-range error");
  6252   // XXX assert that start and end are appropriately aligned
  6253   for (next_addr = mr.start(), end_addr = mr.end();
  6254        next_addr < end_addr; next_addr = last_addr) {
  6255     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
  6256     last_addr = dirty_region.end();
  6257     if (!dirty_region.is_empty()) {
  6258       cl->do_MemRegion(dirty_region);
  6259     } else {
  6260       assert(last_addr == end_addr, "program logic");
  6261       return;
  6266 #ifndef PRODUCT
  6267 void CMSBitMap::assert_locked() const {
  6268   CMSLockVerifier::assert_locked(lock());
  6271 bool CMSBitMap::covers(MemRegion mr) const {
  6272   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  6273   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
  6274          "size inconsistency");
  6275   return (mr.start() >= _bmStartWord) &&
  6276          (mr.end()   <= endWord());
  6279 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
  6280     return (start >= _bmStartWord && (start + size) <= endWord());
  6283 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
  6284   // verify that there are no 1 bits in the interval [left, right)
  6285   FalseBitMapClosure falseBitMapClosure;
  6286   iterate(&falseBitMapClosure, left, right);
  6289 void CMSBitMap::region_invariant(MemRegion mr)
  6291   assert_locked();
  6292   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  6293   assert(!mr.is_empty(), "unexpected empty region");
  6294   assert(covers(mr), "mr should be covered by bit map");
  6295   // convert address range into offset range
  6296   size_t start_ofs = heapWordToOffset(mr.start());
  6297   // Make sure that end() is appropriately aligned
  6298   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
  6299                         (1 << (_shifter+LogHeapWordSize))),
  6300          "Misaligned mr.end()");
  6301   size_t end_ofs   = heapWordToOffset(mr.end());
  6302   assert(end_ofs > start_ofs, "Should mark at least one bit");
  6305 #endif
  6307 bool CMSMarkStack::allocate(size_t size) {
  6308   // allocate a stack of the requisite depth
  6309   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6310                    size * sizeof(oop)));
  6311   if (!rs.is_reserved()) {
  6312     warning("CMSMarkStack allocation failure");
  6313     return false;
  6315   if (!_virtual_space.initialize(rs, rs.size())) {
  6316     warning("CMSMarkStack backing store failure");
  6317     return false;
  6319   assert(_virtual_space.committed_size() == rs.size(),
  6320          "didn't reserve backing store for all of CMS stack?");
  6321   _base = (oop*)(_virtual_space.low());
  6322   _index = 0;
  6323   _capacity = size;
  6324   NOT_PRODUCT(_max_depth = 0);
  6325   return true;
  6328 // XXX FIX ME !!! In the MT case we come in here holding a
  6329 // leaf lock. For printing we need to take a further lock
  6330 // which has lower rank. We need to recallibrate the two
  6331 // lock-ranks involved in order to be able to rpint the
  6332 // messages below. (Or defer the printing to the caller.
  6333 // For now we take the expedient path of just disabling the
  6334 // messages for the problematic case.)
  6335 void CMSMarkStack::expand() {
  6336   assert(_capacity <= CMSMarkStackSizeMax, "stack bigger than permitted");
  6337   if (_capacity == CMSMarkStackSizeMax) {
  6338     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6339       // We print a warning message only once per CMS cycle.
  6340       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
  6342     return;
  6344   // Double capacity if possible
  6345   size_t new_capacity = MIN2(_capacity*2, CMSMarkStackSizeMax);
  6346   // Do not give up existing stack until we have managed to
  6347   // get the double capacity that we desired.
  6348   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6349                    new_capacity * sizeof(oop)));
  6350   if (rs.is_reserved()) {
  6351     // Release the backing store associated with old stack
  6352     _virtual_space.release();
  6353     // Reinitialize virtual space for new stack
  6354     if (!_virtual_space.initialize(rs, rs.size())) {
  6355       fatal("Not enough swap for expanded marking stack");
  6357     _base = (oop*)(_virtual_space.low());
  6358     _index = 0;
  6359     _capacity = new_capacity;
  6360   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6361     // Failed to double capacity, continue;
  6362     // we print a detail message only once per CMS cycle.
  6363     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
  6364             SIZE_FORMAT"K",
  6365             _capacity / K, new_capacity / K);
  6370 // Closures
  6371 // XXX: there seems to be a lot of code  duplication here;
  6372 // should refactor and consolidate common code.
  6374 // This closure is used to mark refs into the CMS generation in
  6375 // the CMS bit map. Called at the first checkpoint. This closure
  6376 // assumes that we do not need to re-mark dirty cards; if the CMS
  6377 // generation on which this is used is not an oldest (modulo perm gen)
  6378 // generation then this will lose younger_gen cards!
  6380 MarkRefsIntoClosure::MarkRefsIntoClosure(
  6381   MemRegion span, CMSBitMap* bitMap, bool should_do_nmethods):
  6382     _span(span),
  6383     _bitMap(bitMap),
  6384     _should_do_nmethods(should_do_nmethods)
  6386     assert(_ref_processor == NULL, "deliberately left NULL");
  6387     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6390 void MarkRefsIntoClosure::do_oop(oop obj) {
  6391   // if p points into _span, then mark corresponding bit in _markBitMap
  6392   assert(obj->is_oop(), "expected an oop");
  6393   HeapWord* addr = (HeapWord*)obj;
  6394   if (_span.contains(addr)) {
  6395     // this should be made more efficient
  6396     _bitMap->mark(addr);
  6400 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
  6401 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
  6403 // A variant of the above, used for CMS marking verification.
  6404 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
  6405   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  6406   bool should_do_nmethods):
  6407     _span(span),
  6408     _verification_bm(verification_bm),
  6409     _cms_bm(cms_bm),
  6410     _should_do_nmethods(should_do_nmethods) {
  6411     assert(_ref_processor == NULL, "deliberately left NULL");
  6412     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
  6415 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
  6416   // if p points into _span, then mark corresponding bit in _markBitMap
  6417   assert(obj->is_oop(), "expected an oop");
  6418   HeapWord* addr = (HeapWord*)obj;
  6419   if (_span.contains(addr)) {
  6420     _verification_bm->mark(addr);
  6421     if (!_cms_bm->isMarked(addr)) {
  6422       oop(addr)->print();
  6423       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
  6424       fatal("... aborting");
  6429 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6430 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6432 //////////////////////////////////////////////////
  6433 // MarkRefsIntoAndScanClosure
  6434 //////////////////////////////////////////////////
  6436 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
  6437                                                        ReferenceProcessor* rp,
  6438                                                        CMSBitMap* bit_map,
  6439                                                        CMSBitMap* mod_union_table,
  6440                                                        CMSMarkStack*  mark_stack,
  6441                                                        CMSMarkStack*  revisit_stack,
  6442                                                        CMSCollector* collector,
  6443                                                        bool should_yield,
  6444                                                        bool concurrent_precleaning):
  6445   _collector(collector),
  6446   _span(span),
  6447   _bit_map(bit_map),
  6448   _mark_stack(mark_stack),
  6449   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
  6450                       mark_stack, revisit_stack, concurrent_precleaning),
  6451   _yield(should_yield),
  6452   _concurrent_precleaning(concurrent_precleaning),
  6453   _freelistLock(NULL)
  6455   _ref_processor = rp;
  6456   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6459 // This closure is used to mark refs into the CMS generation at the
  6460 // second (final) checkpoint, and to scan and transitively follow
  6461 // the unmarked oops. It is also used during the concurrent precleaning
  6462 // phase while scanning objects on dirty cards in the CMS generation.
  6463 // The marks are made in the marking bit map and the marking stack is
  6464 // used for keeping the (newly) grey objects during the scan.
  6465 // The parallel version (Par_...) appears further below.
  6466 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6467   if (obj != NULL) {
  6468     assert(obj->is_oop(), "expected an oop");
  6469     HeapWord* addr = (HeapWord*)obj;
  6470     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6471     assert(_collector->overflow_list_is_empty(),
  6472            "overflow list should be empty");
  6473     if (_span.contains(addr) &&
  6474         !_bit_map->isMarked(addr)) {
  6475       // mark bit map (object is now grey)
  6476       _bit_map->mark(addr);
  6477       // push on marking stack (stack should be empty), and drain the
  6478       // stack by applying this closure to the oops in the oops popped
  6479       // from the stack (i.e. blacken the grey objects)
  6480       bool res = _mark_stack->push(obj);
  6481       assert(res, "Should have space to push on empty stack");
  6482       do {
  6483         oop new_oop = _mark_stack->pop();
  6484         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6485         assert(new_oop->is_parsable(), "Found unparsable oop");
  6486         assert(_bit_map->isMarked((HeapWord*)new_oop),
  6487                "only grey objects on this stack");
  6488         // iterate over the oops in this oop, marking and pushing
  6489         // the ones in CMS heap (i.e. in _span).
  6490         new_oop->oop_iterate(&_pushAndMarkClosure);
  6491         // check if it's time to yield
  6492         do_yield_check();
  6493       } while (!_mark_stack->isEmpty() ||
  6494                (!_concurrent_precleaning && take_from_overflow_list()));
  6495         // if marking stack is empty, and we are not doing this
  6496         // during precleaning, then check the overflow list
  6498     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6499     assert(_collector->overflow_list_is_empty(),
  6500            "overflow list was drained above");
  6501     // We could restore evacuated mark words, if any, used for
  6502     // overflow list links here because the overflow list is
  6503     // provably empty here. That would reduce the maximum
  6504     // size requirements for preserved_{oop,mark}_stack.
  6505     // But we'll just postpone it until we are all done
  6506     // so we can just stream through.
  6507     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
  6508       _collector->restore_preserved_marks_if_any();
  6509       assert(_collector->no_preserved_marks(), "No preserved marks");
  6511     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
  6512            "All preserved marks should have been restored above");
  6516 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6517 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6519 void MarkRefsIntoAndScanClosure::do_yield_work() {
  6520   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6521          "CMS thread should hold CMS token");
  6522   assert_lock_strong(_freelistLock);
  6523   assert_lock_strong(_bit_map->lock());
  6524   // relinquish the free_list_lock and bitMaplock()
  6525   _bit_map->lock()->unlock();
  6526   _freelistLock->unlock();
  6527   ConcurrentMarkSweepThread::desynchronize(true);
  6528   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6529   _collector->stopTimer();
  6530   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6531   if (PrintCMSStatistics != 0) {
  6532     _collector->incrementYields();
  6534   _collector->icms_wait();
  6536   // See the comment in coordinator_yield()
  6537   for (unsigned i = 0;
  6538        i < CMSYieldSleepCount &&
  6539        ConcurrentMarkSweepThread::should_yield() &&
  6540        !CMSCollector::foregroundGCIsActive();
  6541        ++i) {
  6542     os::sleep(Thread::current(), 1, false);
  6543     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6546   ConcurrentMarkSweepThread::synchronize(true);
  6547   _freelistLock->lock_without_safepoint_check();
  6548   _bit_map->lock()->lock_without_safepoint_check();
  6549   _collector->startTimer();
  6552 ///////////////////////////////////////////////////////////
  6553 // Par_MarkRefsIntoAndScanClosure: a parallel version of
  6554 //                                 MarkRefsIntoAndScanClosure
  6555 ///////////////////////////////////////////////////////////
  6556 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
  6557   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
  6558   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
  6559   _span(span),
  6560   _bit_map(bit_map),
  6561   _work_queue(work_queue),
  6562   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  6563                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
  6564   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
  6565                           revisit_stack)
  6567   _ref_processor = rp;
  6568   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6571 // This closure is used to mark refs into the CMS generation at the
  6572 // second (final) checkpoint, and to scan and transitively follow
  6573 // the unmarked oops. The marks are made in the marking bit map and
  6574 // the work_queue is used for keeping the (newly) grey objects during
  6575 // the scan phase whence they are also available for stealing by parallel
  6576 // threads. Since the marking bit map is shared, updates are
  6577 // synchronized (via CAS).
  6578 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6579   if (obj != NULL) {
  6580     // Ignore mark word because this could be an already marked oop
  6581     // that may be chained at the end of the overflow list.
  6582     assert(obj->is_oop(true), "expected an oop");
  6583     HeapWord* addr = (HeapWord*)obj;
  6584     if (_span.contains(addr) &&
  6585         !_bit_map->isMarked(addr)) {
  6586       // mark bit map (object will become grey):
  6587       // It is possible for several threads to be
  6588       // trying to "claim" this object concurrently;
  6589       // the unique thread that succeeds in marking the
  6590       // object first will do the subsequent push on
  6591       // to the work queue (or overflow list).
  6592       if (_bit_map->par_mark(addr)) {
  6593         // push on work_queue (which may not be empty), and trim the
  6594         // queue to an appropriate length by applying this closure to
  6595         // the oops in the oops popped from the stack (i.e. blacken the
  6596         // grey objects)
  6597         bool res = _work_queue->push(obj);
  6598         assert(res, "Low water mark should be less than capacity?");
  6599         trim_queue(_low_water_mark);
  6600       } // Else, another thread claimed the object
  6605 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6606 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6608 // This closure is used to rescan the marked objects on the dirty cards
  6609 // in the mod union table and the card table proper.
  6610 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
  6611   oop p, MemRegion mr) {
  6613   size_t size = 0;
  6614   HeapWord* addr = (HeapWord*)p;
  6615   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6616   assert(_span.contains(addr), "we are scanning the CMS generation");
  6617   // check if it's time to yield
  6618   if (do_yield_check()) {
  6619     // We yielded for some foreground stop-world work,
  6620     // and we have been asked to abort this ongoing preclean cycle.
  6621     return 0;
  6623   if (_bitMap->isMarked(addr)) {
  6624     // it's marked; is it potentially uninitialized?
  6625     if (p->klass_or_null() != NULL) {
  6626       if (CMSPermGenPrecleaningEnabled && !p->is_parsable()) {
  6627         // Signal precleaning to redirty the card since
  6628         // the klass pointer is already installed.
  6629         assert(size == 0, "Initial value");
  6630       } else {
  6631         assert(p->is_parsable(), "must be parsable.");
  6632         // an initialized object; ignore mark word in verification below
  6633         // since we are running concurrent with mutators
  6634         assert(p->is_oop(true), "should be an oop");
  6635         if (p->is_objArray()) {
  6636           // objArrays are precisely marked; restrict scanning
  6637           // to dirty cards only.
  6638           size = CompactibleFreeListSpace::adjustObjectSize(
  6639                    p->oop_iterate(_scanningClosure, mr));
  6640         } else {
  6641           // A non-array may have been imprecisely marked; we need
  6642           // to scan object in its entirety.
  6643           size = CompactibleFreeListSpace::adjustObjectSize(
  6644                    p->oop_iterate(_scanningClosure));
  6646         #ifdef DEBUG
  6647           size_t direct_size =
  6648             CompactibleFreeListSpace::adjustObjectSize(p->size());
  6649           assert(size == direct_size, "Inconsistency in size");
  6650           assert(size >= 3, "Necessary for Printezis marks to work");
  6651           if (!_bitMap->isMarked(addr+1)) {
  6652             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
  6653           } else {
  6654             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
  6655             assert(_bitMap->isMarked(addr+size-1),
  6656                    "inconsistent Printezis mark");
  6658         #endif // DEBUG
  6660     } else {
  6661       // an unitialized object
  6662       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
  6663       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  6664       size = pointer_delta(nextOneAddr + 1, addr);
  6665       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6666              "alignment problem");
  6667       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
  6668       // will dirty the card when the klass pointer is installed in the
  6669       // object (signalling the completion of initialization).
  6671   } else {
  6672     // Either a not yet marked object or an uninitialized object
  6673     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  6674       // An uninitialized object, skip to the next card, since
  6675       // we may not be able to read its P-bits yet.
  6676       assert(size == 0, "Initial value");
  6677     } else {
  6678       // An object not (yet) reached by marking: we merely need to
  6679       // compute its size so as to go look at the next block.
  6680       assert(p->is_oop(true), "should be an oop");
  6681       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6684   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6685   return size;
  6688 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
  6689   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6690          "CMS thread should hold CMS token");
  6691   assert_lock_strong(_freelistLock);
  6692   assert_lock_strong(_bitMap->lock());
  6693   // relinquish the free_list_lock and bitMaplock()
  6694   _bitMap->lock()->unlock();
  6695   _freelistLock->unlock();
  6696   ConcurrentMarkSweepThread::desynchronize(true);
  6697   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6698   _collector->stopTimer();
  6699   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6700   if (PrintCMSStatistics != 0) {
  6701     _collector->incrementYields();
  6703   _collector->icms_wait();
  6705   // See the comment in coordinator_yield()
  6706   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6707                    ConcurrentMarkSweepThread::should_yield() &&
  6708                    !CMSCollector::foregroundGCIsActive(); ++i) {
  6709     os::sleep(Thread::current(), 1, false);
  6710     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6713   ConcurrentMarkSweepThread::synchronize(true);
  6714   _freelistLock->lock_without_safepoint_check();
  6715   _bitMap->lock()->lock_without_safepoint_check();
  6716   _collector->startTimer();
  6720 //////////////////////////////////////////////////////////////////
  6721 // SurvivorSpacePrecleanClosure
  6722 //////////////////////////////////////////////////////////////////
  6723 // This (single-threaded) closure is used to preclean the oops in
  6724 // the survivor spaces.
  6725 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
  6727   HeapWord* addr = (HeapWord*)p;
  6728   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6729   assert(!_span.contains(addr), "we are scanning the survivor spaces");
  6730   assert(p->klass_or_null() != NULL, "object should be initializd");
  6731   assert(p->is_parsable(), "must be parsable.");
  6732   // an initialized object; ignore mark word in verification below
  6733   // since we are running concurrent with mutators
  6734   assert(p->is_oop(true), "should be an oop");
  6735   // Note that we do not yield while we iterate over
  6736   // the interior oops of p, pushing the relevant ones
  6737   // on our marking stack.
  6738   size_t size = p->oop_iterate(_scanning_closure);
  6739   do_yield_check();
  6740   // Observe that below, we do not abandon the preclean
  6741   // phase as soon as we should; rather we empty the
  6742   // marking stack before returning. This is to satisfy
  6743   // some existing assertions. In general, it may be a
  6744   // good idea to abort immediately and complete the marking
  6745   // from the grey objects at a later time.
  6746   while (!_mark_stack->isEmpty()) {
  6747     oop new_oop = _mark_stack->pop();
  6748     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6749     assert(new_oop->is_parsable(), "Found unparsable oop");
  6750     assert(_bit_map->isMarked((HeapWord*)new_oop),
  6751            "only grey objects on this stack");
  6752     // iterate over the oops in this oop, marking and pushing
  6753     // the ones in CMS heap (i.e. in _span).
  6754     new_oop->oop_iterate(_scanning_closure);
  6755     // check if it's time to yield
  6756     do_yield_check();
  6758   unsigned int after_count =
  6759     GenCollectedHeap::heap()->total_collections();
  6760   bool abort = (_before_count != after_count) ||
  6761                _collector->should_abort_preclean();
  6762   return abort ? 0 : size;
  6765 void SurvivorSpacePrecleanClosure::do_yield_work() {
  6766   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6767          "CMS thread should hold CMS token");
  6768   assert_lock_strong(_bit_map->lock());
  6769   // Relinquish the bit map lock
  6770   _bit_map->lock()->unlock();
  6771   ConcurrentMarkSweepThread::desynchronize(true);
  6772   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6773   _collector->stopTimer();
  6774   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6775   if (PrintCMSStatistics != 0) {
  6776     _collector->incrementYields();
  6778   _collector->icms_wait();
  6780   // See the comment in coordinator_yield()
  6781   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6782                        ConcurrentMarkSweepThread::should_yield() &&
  6783                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6784     os::sleep(Thread::current(), 1, false);
  6785     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6788   ConcurrentMarkSweepThread::synchronize(true);
  6789   _bit_map->lock()->lock_without_safepoint_check();
  6790   _collector->startTimer();
  6793 // This closure is used to rescan the marked objects on the dirty cards
  6794 // in the mod union table and the card table proper. In the parallel
  6795 // case, although the bitMap is shared, we do a single read so the
  6796 // isMarked() query is "safe".
  6797 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
  6798   // Ignore mark word because we are running concurrent with mutators
  6799   assert(p->is_oop_or_null(true), "expected an oop or null");
  6800   HeapWord* addr = (HeapWord*)p;
  6801   assert(_span.contains(addr), "we are scanning the CMS generation");
  6802   bool is_obj_array = false;
  6803   #ifdef DEBUG
  6804     if (!_parallel) {
  6805       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6806       assert(_collector->overflow_list_is_empty(),
  6807              "overflow list should be empty");
  6810   #endif // DEBUG
  6811   if (_bit_map->isMarked(addr)) {
  6812     // Obj arrays are precisely marked, non-arrays are not;
  6813     // so we scan objArrays precisely and non-arrays in their
  6814     // entirety.
  6815     if (p->is_objArray()) {
  6816       is_obj_array = true;
  6817       if (_parallel) {
  6818         p->oop_iterate(_par_scan_closure, mr);
  6819       } else {
  6820         p->oop_iterate(_scan_closure, mr);
  6822     } else {
  6823       if (_parallel) {
  6824         p->oop_iterate(_par_scan_closure);
  6825       } else {
  6826         p->oop_iterate(_scan_closure);
  6830   #ifdef DEBUG
  6831     if (!_parallel) {
  6832       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6833       assert(_collector->overflow_list_is_empty(),
  6834              "overflow list should be empty");
  6837   #endif // DEBUG
  6838   return is_obj_array;
  6841 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
  6842                         MemRegion span,
  6843                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
  6844                         CMSMarkStack*  revisitStack,
  6845                         bool should_yield, bool verifying):
  6846   _collector(collector),
  6847   _span(span),
  6848   _bitMap(bitMap),
  6849   _mut(&collector->_modUnionTable),
  6850   _markStack(markStack),
  6851   _revisitStack(revisitStack),
  6852   _yield(should_yield),
  6853   _skipBits(0)
  6855   assert(_markStack->isEmpty(), "stack should be empty");
  6856   _finger = _bitMap->startWord();
  6857   _threshold = _finger;
  6858   assert(_collector->_restart_addr == NULL, "Sanity check");
  6859   assert(_span.contains(_finger), "Out of bounds _finger?");
  6860   DEBUG_ONLY(_verifying = verifying;)
  6863 void MarkFromRootsClosure::reset(HeapWord* addr) {
  6864   assert(_markStack->isEmpty(), "would cause duplicates on stack");
  6865   assert(_span.contains(addr), "Out of bounds _finger?");
  6866   _finger = addr;
  6867   _threshold = (HeapWord*)round_to(
  6868                  (intptr_t)_finger, CardTableModRefBS::card_size);
  6871 // Should revisit to see if this should be restructured for
  6872 // greater efficiency.
  6873 bool MarkFromRootsClosure::do_bit(size_t offset) {
  6874   if (_skipBits > 0) {
  6875     _skipBits--;
  6876     return true;
  6878   // convert offset into a HeapWord*
  6879   HeapWord* addr = _bitMap->startWord() + offset;
  6880   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  6881          "address out of range");
  6882   assert(_bitMap->isMarked(addr), "tautology");
  6883   if (_bitMap->isMarked(addr+1)) {
  6884     // this is an allocated but not yet initialized object
  6885     assert(_skipBits == 0, "tautology");
  6886     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
  6887     oop p = oop(addr);
  6888     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  6889       DEBUG_ONLY(if (!_verifying) {)
  6890         // We re-dirty the cards on which this object lies and increase
  6891         // the _threshold so that we'll come back to scan this object
  6892         // during the preclean or remark phase. (CMSCleanOnEnter)
  6893         if (CMSCleanOnEnter) {
  6894           size_t sz = _collector->block_size_using_printezis_bits(addr);
  6895           HeapWord* end_card_addr   = (HeapWord*)round_to(
  6896                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  6897           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  6898           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  6899           // Bump _threshold to end_card_addr; note that
  6900           // _threshold cannot possibly exceed end_card_addr, anyhow.
  6901           // This prevents future clearing of the card as the scan proceeds
  6902           // to the right.
  6903           assert(_threshold <= end_card_addr,
  6904                  "Because we are just scanning into this object");
  6905           if (_threshold < end_card_addr) {
  6906             _threshold = end_card_addr;
  6908           if (p->klass_or_null() != NULL) {
  6909             // Redirty the range of cards...
  6910             _mut->mark_range(redirty_range);
  6911           } // ...else the setting of klass will dirty the card anyway.
  6913       DEBUG_ONLY(})
  6914       return true;
  6917   scanOopsInOop(addr);
  6918   return true;
  6921 // We take a break if we've been at this for a while,
  6922 // so as to avoid monopolizing the locks involved.
  6923 void MarkFromRootsClosure::do_yield_work() {
  6924   // First give up the locks, then yield, then re-lock
  6925   // We should probably use a constructor/destructor idiom to
  6926   // do this unlock/lock or modify the MutexUnlocker class to
  6927   // serve our purpose. XXX
  6928   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6929          "CMS thread should hold CMS token");
  6930   assert_lock_strong(_bitMap->lock());
  6931   _bitMap->lock()->unlock();
  6932   ConcurrentMarkSweepThread::desynchronize(true);
  6933   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6934   _collector->stopTimer();
  6935   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6936   if (PrintCMSStatistics != 0) {
  6937     _collector->incrementYields();
  6939   _collector->icms_wait();
  6941   // See the comment in coordinator_yield()
  6942   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6943                        ConcurrentMarkSweepThread::should_yield() &&
  6944                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6945     os::sleep(Thread::current(), 1, false);
  6946     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6949   ConcurrentMarkSweepThread::synchronize(true);
  6950   _bitMap->lock()->lock_without_safepoint_check();
  6951   _collector->startTimer();
  6954 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
  6955   assert(_bitMap->isMarked(ptr), "expected bit to be set");
  6956   assert(_markStack->isEmpty(),
  6957          "should drain stack to limit stack usage");
  6958   // convert ptr to an oop preparatory to scanning
  6959   oop obj = oop(ptr);
  6960   // Ignore mark word in verification below, since we
  6961   // may be running concurrent with mutators.
  6962   assert(obj->is_oop(true), "should be an oop");
  6963   assert(_finger <= ptr, "_finger runneth ahead");
  6964   // advance the finger to right end of this object
  6965   _finger = ptr + obj->size();
  6966   assert(_finger > ptr, "we just incremented it above");
  6967   // On large heaps, it may take us some time to get through
  6968   // the marking phase (especially if running iCMS). During
  6969   // this time it's possible that a lot of mutations have
  6970   // accumulated in the card table and the mod union table --
  6971   // these mutation records are redundant until we have
  6972   // actually traced into the corresponding card.
  6973   // Here, we check whether advancing the finger would make
  6974   // us cross into a new card, and if so clear corresponding
  6975   // cards in the MUT (preclean them in the card-table in the
  6976   // future).
  6978   DEBUG_ONLY(if (!_verifying) {)
  6979     // The clean-on-enter optimization is disabled by default,
  6980     // until we fix 6178663.
  6981     if (CMSCleanOnEnter && (_finger > _threshold)) {
  6982       // [_threshold, _finger) represents the interval
  6983       // of cards to be cleared  in MUT (or precleaned in card table).
  6984       // The set of cards to be cleared is all those that overlap
  6985       // with the interval [_threshold, _finger); note that
  6986       // _threshold is always kept card-aligned but _finger isn't
  6987       // always card-aligned.
  6988       HeapWord* old_threshold = _threshold;
  6989       assert(old_threshold == (HeapWord*)round_to(
  6990               (intptr_t)old_threshold, CardTableModRefBS::card_size),
  6991              "_threshold should always be card-aligned");
  6992       _threshold = (HeapWord*)round_to(
  6993                      (intptr_t)_finger, CardTableModRefBS::card_size);
  6994       MemRegion mr(old_threshold, _threshold);
  6995       assert(!mr.is_empty(), "Control point invariant");
  6996       assert(_span.contains(mr), "Should clear within span");
  6997       // XXX When _finger crosses from old gen into perm gen
  6998       // we may be doing unnecessary cleaning; do better in the
  6999       // future by detecting that condition and clearing fewer
  7000       // MUT/CT entries.
  7001       _mut->clear_range(mr);
  7003   DEBUG_ONLY(})
  7005   // Note: the finger doesn't advance while we drain
  7006   // the stack below.
  7007   PushOrMarkClosure pushOrMarkClosure(_collector,
  7008                                       _span, _bitMap, _markStack,
  7009                                       _revisitStack,
  7010                                       _finger, this);
  7011   bool res = _markStack->push(obj);
  7012   assert(res, "Empty non-zero size stack should have space for single push");
  7013   while (!_markStack->isEmpty()) {
  7014     oop new_oop = _markStack->pop();
  7015     // Skip verifying header mark word below because we are
  7016     // running concurrent with mutators.
  7017     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7018     // now scan this oop's oops
  7019     new_oop->oop_iterate(&pushOrMarkClosure);
  7020     do_yield_check();
  7022   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
  7025 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
  7026                        CMSCollector* collector, MemRegion span,
  7027                        CMSBitMap* bit_map,
  7028                        OopTaskQueue* work_queue,
  7029                        CMSMarkStack*  overflow_stack,
  7030                        CMSMarkStack*  revisit_stack,
  7031                        bool should_yield):
  7032   _collector(collector),
  7033   _whole_span(collector->_span),
  7034   _span(span),
  7035   _bit_map(bit_map),
  7036   _mut(&collector->_modUnionTable),
  7037   _work_queue(work_queue),
  7038   _overflow_stack(overflow_stack),
  7039   _revisit_stack(revisit_stack),
  7040   _yield(should_yield),
  7041   _skip_bits(0),
  7042   _task(task)
  7044   assert(_work_queue->size() == 0, "work_queue should be empty");
  7045   _finger = span.start();
  7046   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
  7047   assert(_span.contains(_finger), "Out of bounds _finger?");
  7050 // Should revisit to see if this should be restructured for
  7051 // greater efficiency.
  7052 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
  7053   if (_skip_bits > 0) {
  7054     _skip_bits--;
  7055     return true;
  7057   // convert offset into a HeapWord*
  7058   HeapWord* addr = _bit_map->startWord() + offset;
  7059   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
  7060          "address out of range");
  7061   assert(_bit_map->isMarked(addr), "tautology");
  7062   if (_bit_map->isMarked(addr+1)) {
  7063     // this is an allocated object that might not yet be initialized
  7064     assert(_skip_bits == 0, "tautology");
  7065     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
  7066     oop p = oop(addr);
  7067     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  7068       // in the case of Clean-on-Enter optimization, redirty card
  7069       // and avoid clearing card by increasing  the threshold.
  7070       return true;
  7073   scan_oops_in_oop(addr);
  7074   return true;
  7077 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
  7078   assert(_bit_map->isMarked(ptr), "expected bit to be set");
  7079   // Should we assert that our work queue is empty or
  7080   // below some drain limit?
  7081   assert(_work_queue->size() == 0,
  7082          "should drain stack to limit stack usage");
  7083   // convert ptr to an oop preparatory to scanning
  7084   oop obj = oop(ptr);
  7085   // Ignore mark word in verification below, since we
  7086   // may be running concurrent with mutators.
  7087   assert(obj->is_oop(true), "should be an oop");
  7088   assert(_finger <= ptr, "_finger runneth ahead");
  7089   // advance the finger to right end of this object
  7090   _finger = ptr + obj->size();
  7091   assert(_finger > ptr, "we just incremented it above");
  7092   // On large heaps, it may take us some time to get through
  7093   // the marking phase (especially if running iCMS). During
  7094   // this time it's possible that a lot of mutations have
  7095   // accumulated in the card table and the mod union table --
  7096   // these mutation records are redundant until we have
  7097   // actually traced into the corresponding card.
  7098   // Here, we check whether advancing the finger would make
  7099   // us cross into a new card, and if so clear corresponding
  7100   // cards in the MUT (preclean them in the card-table in the
  7101   // future).
  7103   // The clean-on-enter optimization is disabled by default,
  7104   // until we fix 6178663.
  7105   if (CMSCleanOnEnter && (_finger > _threshold)) {
  7106     // [_threshold, _finger) represents the interval
  7107     // of cards to be cleared  in MUT (or precleaned in card table).
  7108     // The set of cards to be cleared is all those that overlap
  7109     // with the interval [_threshold, _finger); note that
  7110     // _threshold is always kept card-aligned but _finger isn't
  7111     // always card-aligned.
  7112     HeapWord* old_threshold = _threshold;
  7113     assert(old_threshold == (HeapWord*)round_to(
  7114             (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7115            "_threshold should always be card-aligned");
  7116     _threshold = (HeapWord*)round_to(
  7117                    (intptr_t)_finger, CardTableModRefBS::card_size);
  7118     MemRegion mr(old_threshold, _threshold);
  7119     assert(!mr.is_empty(), "Control point invariant");
  7120     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
  7121     // XXX When _finger crosses from old gen into perm gen
  7122     // we may be doing unnecessary cleaning; do better in the
  7123     // future by detecting that condition and clearing fewer
  7124     // MUT/CT entries.
  7125     _mut->clear_range(mr);
  7128   // Note: the local finger doesn't advance while we drain
  7129   // the stack below, but the global finger sure can and will.
  7130   HeapWord** gfa = _task->global_finger_addr();
  7131   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
  7132                                       _span, _bit_map,
  7133                                       _work_queue,
  7134                                       _overflow_stack,
  7135                                       _revisit_stack,
  7136                                       _finger,
  7137                                       gfa, this);
  7138   bool res = _work_queue->push(obj);   // overflow could occur here
  7139   assert(res, "Will hold once we use workqueues");
  7140   while (true) {
  7141     oop new_oop;
  7142     if (!_work_queue->pop_local(new_oop)) {
  7143       // We emptied our work_queue; check if there's stuff that can
  7144       // be gotten from the overflow stack.
  7145       if (CMSConcMarkingTask::get_work_from_overflow_stack(
  7146             _overflow_stack, _work_queue)) {
  7147         do_yield_check();
  7148         continue;
  7149       } else {  // done
  7150         break;
  7153     // Skip verifying header mark word below because we are
  7154     // running concurrent with mutators.
  7155     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7156     // now scan this oop's oops
  7157     new_oop->oop_iterate(&pushOrMarkClosure);
  7158     do_yield_check();
  7160   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
  7163 // Yield in response to a request from VM Thread or
  7164 // from mutators.
  7165 void Par_MarkFromRootsClosure::do_yield_work() {
  7166   assert(_task != NULL, "sanity");
  7167   _task->yield();
  7170 // A variant of the above used for verifying CMS marking work.
  7171 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
  7172                         MemRegion span,
  7173                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7174                         CMSMarkStack*  mark_stack):
  7175   _collector(collector),
  7176   _span(span),
  7177   _verification_bm(verification_bm),
  7178   _cms_bm(cms_bm),
  7179   _mark_stack(mark_stack),
  7180   _pam_verify_closure(collector, span, verification_bm, cms_bm,
  7181                       mark_stack)
  7183   assert(_mark_stack->isEmpty(), "stack should be empty");
  7184   _finger = _verification_bm->startWord();
  7185   assert(_collector->_restart_addr == NULL, "Sanity check");
  7186   assert(_span.contains(_finger), "Out of bounds _finger?");
  7189 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
  7190   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
  7191   assert(_span.contains(addr), "Out of bounds _finger?");
  7192   _finger = addr;
  7195 // Should revisit to see if this should be restructured for
  7196 // greater efficiency.
  7197 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
  7198   // convert offset into a HeapWord*
  7199   HeapWord* addr = _verification_bm->startWord() + offset;
  7200   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
  7201          "address out of range");
  7202   assert(_verification_bm->isMarked(addr), "tautology");
  7203   assert(_cms_bm->isMarked(addr), "tautology");
  7205   assert(_mark_stack->isEmpty(),
  7206          "should drain stack to limit stack usage");
  7207   // convert addr to an oop preparatory to scanning
  7208   oop obj = oop(addr);
  7209   assert(obj->is_oop(), "should be an oop");
  7210   assert(_finger <= addr, "_finger runneth ahead");
  7211   // advance the finger to right end of this object
  7212   _finger = addr + obj->size();
  7213   assert(_finger > addr, "we just incremented it above");
  7214   // Note: the finger doesn't advance while we drain
  7215   // the stack below.
  7216   bool res = _mark_stack->push(obj);
  7217   assert(res, "Empty non-zero size stack should have space for single push");
  7218   while (!_mark_stack->isEmpty()) {
  7219     oop new_oop = _mark_stack->pop();
  7220     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
  7221     // now scan this oop's oops
  7222     new_oop->oop_iterate(&_pam_verify_closure);
  7224   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
  7225   return true;
  7228 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
  7229   CMSCollector* collector, MemRegion span,
  7230   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7231   CMSMarkStack*  mark_stack):
  7232   OopClosure(collector->ref_processor()),
  7233   _collector(collector),
  7234   _span(span),
  7235   _verification_bm(verification_bm),
  7236   _cms_bm(cms_bm),
  7237   _mark_stack(mark_stack)
  7238 { }
  7240 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
  7241 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
  7243 // Upon stack overflow, we discard (part of) the stack,
  7244 // remembering the least address amongst those discarded
  7245 // in CMSCollector's _restart_address.
  7246 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
  7247   // Remember the least grey address discarded
  7248   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
  7249   _collector->lower_restart_addr(ra);
  7250   _mark_stack->reset();  // discard stack contents
  7251   _mark_stack->expand(); // expand the stack if possible
  7254 void PushAndMarkVerifyClosure::do_oop(oop obj) {
  7255   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  7256   HeapWord* addr = (HeapWord*)obj;
  7257   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
  7258     // Oop lies in _span and isn't yet grey or black
  7259     _verification_bm->mark(addr);            // now grey
  7260     if (!_cms_bm->isMarked(addr)) {
  7261       oop(addr)->print();
  7262       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
  7263                              addr);
  7264       fatal("... aborting");
  7267     if (!_mark_stack->push(obj)) { // stack overflow
  7268       if (PrintCMSStatistics != 0) {
  7269         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7270                                SIZE_FORMAT, _mark_stack->capacity());
  7272       assert(_mark_stack->isFull(), "Else push should have succeeded");
  7273       handle_stack_overflow(addr);
  7275     // anything including and to the right of _finger
  7276     // will be scanned as we iterate over the remainder of the
  7277     // bit map
  7281 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
  7282                      MemRegion span,
  7283                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7284                      CMSMarkStack*  revisitStack,
  7285                      HeapWord* finger, MarkFromRootsClosure* parent) :
  7286   OopClosure(collector->ref_processor()),
  7287   _collector(collector),
  7288   _span(span),
  7289   _bitMap(bitMap),
  7290   _markStack(markStack),
  7291   _revisitStack(revisitStack),
  7292   _finger(finger),
  7293   _parent(parent),
  7294   _should_remember_klasses(collector->should_unload_classes())
  7295 { }
  7297 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
  7298                      MemRegion span,
  7299                      CMSBitMap* bit_map,
  7300                      OopTaskQueue* work_queue,
  7301                      CMSMarkStack*  overflow_stack,
  7302                      CMSMarkStack*  revisit_stack,
  7303                      HeapWord* finger,
  7304                      HeapWord** global_finger_addr,
  7305                      Par_MarkFromRootsClosure* parent) :
  7306   OopClosure(collector->ref_processor()),
  7307   _collector(collector),
  7308   _whole_span(collector->_span),
  7309   _span(span),
  7310   _bit_map(bit_map),
  7311   _work_queue(work_queue),
  7312   _overflow_stack(overflow_stack),
  7313   _revisit_stack(revisit_stack),
  7314   _finger(finger),
  7315   _global_finger_addr(global_finger_addr),
  7316   _parent(parent),
  7317   _should_remember_klasses(collector->should_unload_classes())
  7318 { }
  7320 // Assumes thread-safe access by callers, who are
  7321 // responsible for mutual exclusion.
  7322 void CMSCollector::lower_restart_addr(HeapWord* low) {
  7323   assert(_span.contains(low), "Out of bounds addr");
  7324   if (_restart_addr == NULL) {
  7325     _restart_addr = low;
  7326   } else {
  7327     _restart_addr = MIN2(_restart_addr, low);
  7331 // Upon stack overflow, we discard (part of) the stack,
  7332 // remembering the least address amongst those discarded
  7333 // in CMSCollector's _restart_address.
  7334 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7335   // Remember the least grey address discarded
  7336   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
  7337   _collector->lower_restart_addr(ra);
  7338   _markStack->reset();  // discard stack contents
  7339   _markStack->expand(); // expand the stack if possible
  7342 // Upon stack overflow, we discard (part of) the stack,
  7343 // remembering the least address amongst those discarded
  7344 // in CMSCollector's _restart_address.
  7345 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7346   // We need to do this under a mutex to prevent other
  7347   // workers from interfering with the work done below.
  7348   MutexLockerEx ml(_overflow_stack->par_lock(),
  7349                    Mutex::_no_safepoint_check_flag);
  7350   // Remember the least grey address discarded
  7351   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  7352   _collector->lower_restart_addr(ra);
  7353   _overflow_stack->reset();  // discard stack contents
  7354   _overflow_stack->expand(); // expand the stack if possible
  7357 void PushOrMarkClosure::do_oop(oop obj) {
  7358   // Ignore mark word because we are running concurrent with mutators.
  7359   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7360   HeapWord* addr = (HeapWord*)obj;
  7361   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
  7362     // Oop lies in _span and isn't yet grey or black
  7363     _bitMap->mark(addr);            // now grey
  7364     if (addr < _finger) {
  7365       // the bit map iteration has already either passed, or
  7366       // sampled, this bit in the bit map; we'll need to
  7367       // use the marking stack to scan this oop's oops.
  7368       bool simulate_overflow = false;
  7369       NOT_PRODUCT(
  7370         if (CMSMarkStackOverflowALot &&
  7371             _collector->simulate_overflow()) {
  7372           // simulate a stack overflow
  7373           simulate_overflow = true;
  7376       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
  7377         if (PrintCMSStatistics != 0) {
  7378           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7379                                  SIZE_FORMAT, _markStack->capacity());
  7381         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
  7382         handle_stack_overflow(addr);
  7385     // anything including and to the right of _finger
  7386     // will be scanned as we iterate over the remainder of the
  7387     // bit map
  7388     do_yield_check();
  7392 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
  7393 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
  7395 void Par_PushOrMarkClosure::do_oop(oop obj) {
  7396   // Ignore mark word because we are running concurrent with mutators.
  7397   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7398   HeapWord* addr = (HeapWord*)obj;
  7399   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7400     // Oop lies in _span and isn't yet grey or black
  7401     // We read the global_finger (volatile read) strictly after marking oop
  7402     bool res = _bit_map->par_mark(addr);    // now grey
  7403     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
  7404     // Should we push this marked oop on our stack?
  7405     // -- if someone else marked it, nothing to do
  7406     // -- if target oop is above global finger nothing to do
  7407     // -- if target oop is in chunk and above local finger
  7408     //      then nothing to do
  7409     // -- else push on work queue
  7410     if (   !res       // someone else marked it, they will deal with it
  7411         || (addr >= *gfa)  // will be scanned in a later task
  7412         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
  7413       return;
  7415     // the bit map iteration has already either passed, or
  7416     // sampled, this bit in the bit map; we'll need to
  7417     // use the marking stack to scan this oop's oops.
  7418     bool simulate_overflow = false;
  7419     NOT_PRODUCT(
  7420       if (CMSMarkStackOverflowALot &&
  7421           _collector->simulate_overflow()) {
  7422         // simulate a stack overflow
  7423         simulate_overflow = true;
  7426     if (simulate_overflow ||
  7427         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  7428       // stack overflow
  7429       if (PrintCMSStatistics != 0) {
  7430         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7431                                SIZE_FORMAT, _overflow_stack->capacity());
  7433       // We cannot assert that the overflow stack is full because
  7434       // it may have been emptied since.
  7435       assert(simulate_overflow ||
  7436              _work_queue->size() == _work_queue->max_elems(),
  7437             "Else push should have succeeded");
  7438       handle_stack_overflow(addr);
  7440     do_yield_check();
  7444 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
  7445 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
  7447 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
  7448                                        MemRegion span,
  7449                                        ReferenceProcessor* rp,
  7450                                        CMSBitMap* bit_map,
  7451                                        CMSBitMap* mod_union_table,
  7452                                        CMSMarkStack*  mark_stack,
  7453                                        CMSMarkStack*  revisit_stack,
  7454                                        bool           concurrent_precleaning):
  7455   OopClosure(rp),
  7456   _collector(collector),
  7457   _span(span),
  7458   _bit_map(bit_map),
  7459   _mod_union_table(mod_union_table),
  7460   _mark_stack(mark_stack),
  7461   _revisit_stack(revisit_stack),
  7462   _concurrent_precleaning(concurrent_precleaning),
  7463   _should_remember_klasses(collector->should_unload_classes())
  7465   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7468 // Grey object rescan during pre-cleaning and second checkpoint phases --
  7469 // the non-parallel version (the parallel version appears further below.)
  7470 void PushAndMarkClosure::do_oop(oop obj) {
  7471   // Ignore mark word verification. If during concurrent precleaning,
  7472   // the object monitor may be locked. If during the checkpoint
  7473   // phases, the object may already have been reached by a  different
  7474   // path and may be at the end of the global overflow list (so
  7475   // the mark word may be NULL).
  7476   assert(obj->is_oop_or_null(true /* ignore mark word */),
  7477          "expected an oop or NULL");
  7478   HeapWord* addr = (HeapWord*)obj;
  7479   // Check if oop points into the CMS generation
  7480   // and is not marked
  7481   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7482     // a white object ...
  7483     _bit_map->mark(addr);         // ... now grey
  7484     // push on the marking stack (grey set)
  7485     bool simulate_overflow = false;
  7486     NOT_PRODUCT(
  7487       if (CMSMarkStackOverflowALot &&
  7488           _collector->simulate_overflow()) {
  7489         // simulate a stack overflow
  7490         simulate_overflow = true;
  7493     if (simulate_overflow || !_mark_stack->push(obj)) {
  7494       if (_concurrent_precleaning) {
  7495          // During precleaning we can just dirty the appropriate card(s)
  7496          // in the mod union table, thus ensuring that the object remains
  7497          // in the grey set  and continue. In the case of object arrays
  7498          // we need to dirty all of the cards that the object spans,
  7499          // since the rescan of object arrays will be limited to the
  7500          // dirty cards.
  7501          // Note that no one can be intefering with us in this action
  7502          // of dirtying the mod union table, so no locking or atomics
  7503          // are required.
  7504          if (obj->is_objArray()) {
  7505            size_t sz = obj->size();
  7506            HeapWord* end_card_addr = (HeapWord*)round_to(
  7507                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  7508            MemRegion redirty_range = MemRegion(addr, end_card_addr);
  7509            assert(!redirty_range.is_empty(), "Arithmetical tautology");
  7510            _mod_union_table->mark_range(redirty_range);
  7511          } else {
  7512            _mod_union_table->mark(addr);
  7514          _collector->_ser_pmc_preclean_ovflw++;
  7515       } else {
  7516          // During the remark phase, we need to remember this oop
  7517          // in the overflow list.
  7518          _collector->push_on_overflow_list(obj);
  7519          _collector->_ser_pmc_remark_ovflw++;
  7525 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
  7526                                                MemRegion span,
  7527                                                ReferenceProcessor* rp,
  7528                                                CMSBitMap* bit_map,
  7529                                                OopTaskQueue* work_queue,
  7530                                                CMSMarkStack* revisit_stack):
  7531   OopClosure(rp),
  7532   _collector(collector),
  7533   _span(span),
  7534   _bit_map(bit_map),
  7535   _work_queue(work_queue),
  7536   _revisit_stack(revisit_stack),
  7537   _should_remember_klasses(collector->should_unload_classes())
  7539   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7542 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
  7543 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
  7545 // Grey object rescan during second checkpoint phase --
  7546 // the parallel version.
  7547 void Par_PushAndMarkClosure::do_oop(oop obj) {
  7548   // In the assert below, we ignore the mark word because
  7549   // this oop may point to an already visited object that is
  7550   // on the overflow stack (in which case the mark word has
  7551   // been hijacked for chaining into the overflow stack --
  7552   // if this is the last object in the overflow stack then
  7553   // its mark word will be NULL). Because this object may
  7554   // have been subsequently popped off the global overflow
  7555   // stack, and the mark word possibly restored to the prototypical
  7556   // value, by the time we get to examined this failing assert in
  7557   // the debugger, is_oop_or_null(false) may subsequently start
  7558   // to hold.
  7559   assert(obj->is_oop_or_null(true),
  7560          "expected an oop or NULL");
  7561   HeapWord* addr = (HeapWord*)obj;
  7562   // Check if oop points into the CMS generation
  7563   // and is not marked
  7564   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7565     // a white object ...
  7566     // If we manage to "claim" the object, by being the
  7567     // first thread to mark it, then we push it on our
  7568     // marking stack
  7569     if (_bit_map->par_mark(addr)) {     // ... now grey
  7570       // push on work queue (grey set)
  7571       bool simulate_overflow = false;
  7572       NOT_PRODUCT(
  7573         if (CMSMarkStackOverflowALot &&
  7574             _collector->par_simulate_overflow()) {
  7575           // simulate a stack overflow
  7576           simulate_overflow = true;
  7579       if (simulate_overflow || !_work_queue->push(obj)) {
  7580         _collector->par_push_on_overflow_list(obj);
  7581         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
  7583     } // Else, some other thread got there first
  7587 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
  7588 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
  7590 void PushAndMarkClosure::remember_klass(Klass* k) {
  7591   if (!_revisit_stack->push(oop(k))) {
  7592     fatal("Revisit stack overflowed in PushAndMarkClosure");
  7596 void Par_PushAndMarkClosure::remember_klass(Klass* k) {
  7597   if (!_revisit_stack->par_push(oop(k))) {
  7598     fatal("Revist stack overflowed in Par_PushAndMarkClosure");
  7602 void CMSPrecleanRefsYieldClosure::do_yield_work() {
  7603   Mutex* bml = _collector->bitMapLock();
  7604   assert_lock_strong(bml);
  7605   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7606          "CMS thread should hold CMS token");
  7608   bml->unlock();
  7609   ConcurrentMarkSweepThread::desynchronize(true);
  7611   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7613   _collector->stopTimer();
  7614   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7615   if (PrintCMSStatistics != 0) {
  7616     _collector->incrementYields();
  7618   _collector->icms_wait();
  7620   // See the comment in coordinator_yield()
  7621   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7622                        ConcurrentMarkSweepThread::should_yield() &&
  7623                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7624     os::sleep(Thread::current(), 1, false);
  7625     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7628   ConcurrentMarkSweepThread::synchronize(true);
  7629   bml->lock();
  7631   _collector->startTimer();
  7634 bool CMSPrecleanRefsYieldClosure::should_return() {
  7635   if (ConcurrentMarkSweepThread::should_yield()) {
  7636     do_yield_work();
  7638   return _collector->foregroundGCIsActive();
  7641 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
  7642   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
  7643          "mr should be aligned to start at a card boundary");
  7644   // We'd like to assert:
  7645   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
  7646   //        "mr should be a range of cards");
  7647   // However, that would be too strong in one case -- the last
  7648   // partition ends at _unallocated_block which, in general, can be
  7649   // an arbitrary boundary, not necessarily card aligned.
  7650   if (PrintCMSStatistics != 0) {
  7651     _num_dirty_cards +=
  7652          mr.word_size()/CardTableModRefBS::card_size_in_words;
  7654   _space->object_iterate_mem(mr, &_scan_cl);
  7657 SweepClosure::SweepClosure(CMSCollector* collector,
  7658                            ConcurrentMarkSweepGeneration* g,
  7659                            CMSBitMap* bitMap, bool should_yield) :
  7660   _collector(collector),
  7661   _g(g),
  7662   _sp(g->cmsSpace()),
  7663   _limit(_sp->sweep_limit()),
  7664   _freelistLock(_sp->freelistLock()),
  7665   _bitMap(bitMap),
  7666   _yield(should_yield),
  7667   _inFreeRange(false),           // No free range at beginning of sweep
  7668   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
  7669   _lastFreeRangeCoalesced(false),
  7670   _freeFinger(g->used_region().start())
  7672   NOT_PRODUCT(
  7673     _numObjectsFreed = 0;
  7674     _numWordsFreed   = 0;
  7675     _numObjectsLive = 0;
  7676     _numWordsLive = 0;
  7677     _numObjectsAlreadyFree = 0;
  7678     _numWordsAlreadyFree = 0;
  7679     _last_fc = NULL;
  7681     _sp->initializeIndexedFreeListArrayReturnedBytes();
  7682     _sp->dictionary()->initializeDictReturnedBytes();
  7684   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7685          "sweep _limit out of bounds");
  7686   if (CMSTraceSweeper) {
  7687     gclog_or_tty->print("\n====================\nStarting new sweep\n");
  7691 // We need this destructor to reclaim any space at the end
  7692 // of the space, which do_blk below may not have added back to
  7693 // the free lists. [basically dealing with the "fringe effect"]
  7694 SweepClosure::~SweepClosure() {
  7695   assert_lock_strong(_freelistLock);
  7696   // this should be treated as the end of a free run if any
  7697   // The current free range should be returned to the free lists
  7698   // as one coalesced chunk.
  7699   if (inFreeRange()) {
  7700     flushCurFreeChunk(freeFinger(),
  7701       pointer_delta(_limit, freeFinger()));
  7702     assert(freeFinger() < _limit, "the finger pointeth off base");
  7703     if (CMSTraceSweeper) {
  7704       gclog_or_tty->print("destructor:");
  7705       gclog_or_tty->print("Sweep:put_free_blk 0x%x ("SIZE_FORMAT") "
  7706                  "[coalesced:"SIZE_FORMAT"]\n",
  7707                  freeFinger(), pointer_delta(_limit, freeFinger()),
  7708                  lastFreeRangeCoalesced());
  7711   NOT_PRODUCT(
  7712     if (Verbose && PrintGC) {
  7713       gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
  7714                           SIZE_FORMAT " bytes",
  7715                  _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
  7716       gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
  7717                              SIZE_FORMAT" bytes  "
  7718         "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
  7719         _numObjectsLive, _numWordsLive*sizeof(HeapWord),
  7720         _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
  7721       size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) *
  7722         sizeof(HeapWord);
  7723       gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
  7725       if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
  7726         size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
  7727         size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
  7728         size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
  7729         gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
  7730         gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
  7731           indexListReturnedBytes);
  7732         gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
  7733           dictReturnedBytes);
  7737   // Now, in debug mode, just null out the sweep_limit
  7738   NOT_PRODUCT(_sp->clear_sweep_limit();)
  7739   if (CMSTraceSweeper) {
  7740     gclog_or_tty->print("end of sweep\n================\n");
  7744 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
  7745     bool freeRangeInFreeLists) {
  7746   if (CMSTraceSweeper) {
  7747     gclog_or_tty->print("---- Start free range 0x%x with free block [%d] (%d)\n",
  7748                freeFinger, _sp->block_size(freeFinger),
  7749                freeRangeInFreeLists);
  7751   assert(!inFreeRange(), "Trampling existing free range");
  7752   set_inFreeRange(true);
  7753   set_lastFreeRangeCoalesced(false);
  7755   set_freeFinger(freeFinger);
  7756   set_freeRangeInFreeLists(freeRangeInFreeLists);
  7757   if (CMSTestInFreeList) {
  7758     if (freeRangeInFreeLists) {
  7759       FreeChunk* fc = (FreeChunk*) freeFinger;
  7760       assert(fc->isFree(), "A chunk on the free list should be free.");
  7761       assert(fc->size() > 0, "Free range should have a size");
  7762       assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
  7767 // Note that the sweeper runs concurrently with mutators. Thus,
  7768 // it is possible for direct allocation in this generation to happen
  7769 // in the middle of the sweep. Note that the sweeper also coalesces
  7770 // contiguous free blocks. Thus, unless the sweeper and the allocator
  7771 // synchronize appropriately freshly allocated blocks may get swept up.
  7772 // This is accomplished by the sweeper locking the free lists while
  7773 // it is sweeping. Thus blocks that are determined to be free are
  7774 // indeed free. There is however one additional complication:
  7775 // blocks that have been allocated since the final checkpoint and
  7776 // mark, will not have been marked and so would be treated as
  7777 // unreachable and swept up. To prevent this, the allocator marks
  7778 // the bit map when allocating during the sweep phase. This leads,
  7779 // however, to a further complication -- objects may have been allocated
  7780 // but not yet initialized -- in the sense that the header isn't yet
  7781 // installed. The sweeper can not then determine the size of the block
  7782 // in order to skip over it. To deal with this case, we use a technique
  7783 // (due to Printezis) to encode such uninitialized block sizes in the
  7784 // bit map. Since the bit map uses a bit per every HeapWord, but the
  7785 // CMS generation has a minimum object size of 3 HeapWords, it follows
  7786 // that "normal marks" won't be adjacent in the bit map (there will
  7787 // always be at least two 0 bits between successive 1 bits). We make use
  7788 // of these "unused" bits to represent uninitialized blocks -- the bit
  7789 // corresponding to the start of the uninitialized object and the next
  7790 // bit are both set. Finally, a 1 bit marks the end of the object that
  7791 // started with the two consecutive 1 bits to indicate its potentially
  7792 // uninitialized state.
  7794 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
  7795   FreeChunk* fc = (FreeChunk*)addr;
  7796   size_t res;
  7798   // check if we are done sweepinrg
  7799   if (addr == _limit) { // we have swept up to the limit, do nothing more
  7800     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7801            "sweep _limit out of bounds");
  7802     // help the closure application finish
  7803     return pointer_delta(_sp->end(), _limit);
  7805   assert(addr <= _limit, "sweep invariant");
  7807   // check if we should yield
  7808   do_yield_check(addr);
  7809   if (fc->isFree()) {
  7810     // Chunk that is already free
  7811     res = fc->size();
  7812     doAlreadyFreeChunk(fc);
  7813     debug_only(_sp->verifyFreeLists());
  7814     assert(res == fc->size(), "Don't expect the size to change");
  7815     NOT_PRODUCT(
  7816       _numObjectsAlreadyFree++;
  7817       _numWordsAlreadyFree += res;
  7819     NOT_PRODUCT(_last_fc = fc;)
  7820   } else if (!_bitMap->isMarked(addr)) {
  7821     // Chunk is fresh garbage
  7822     res = doGarbageChunk(fc);
  7823     debug_only(_sp->verifyFreeLists());
  7824     NOT_PRODUCT(
  7825       _numObjectsFreed++;
  7826       _numWordsFreed += res;
  7828   } else {
  7829     // Chunk that is alive.
  7830     res = doLiveChunk(fc);
  7831     debug_only(_sp->verifyFreeLists());
  7832     NOT_PRODUCT(
  7833         _numObjectsLive++;
  7834         _numWordsLive += res;
  7837   return res;
  7840 // For the smart allocation, record following
  7841 //  split deaths - a free chunk is removed from its free list because
  7842 //      it is being split into two or more chunks.
  7843 //  split birth - a free chunk is being added to its free list because
  7844 //      a larger free chunk has been split and resulted in this free chunk.
  7845 //  coal death - a free chunk is being removed from its free list because
  7846 //      it is being coalesced into a large free chunk.
  7847 //  coal birth - a free chunk is being added to its free list because
  7848 //      it was created when two or more free chunks where coalesced into
  7849 //      this free chunk.
  7850 //
  7851 // These statistics are used to determine the desired number of free
  7852 // chunks of a given size.  The desired number is chosen to be relative
  7853 // to the end of a CMS sweep.  The desired number at the end of a sweep
  7854 // is the
  7855 //      count-at-end-of-previous-sweep (an amount that was enough)
  7856 //              - count-at-beginning-of-current-sweep  (the excess)
  7857 //              + split-births  (gains in this size during interval)
  7858 //              - split-deaths  (demands on this size during interval)
  7859 // where the interval is from the end of one sweep to the end of the
  7860 // next.
  7861 //
  7862 // When sweeping the sweeper maintains an accumulated chunk which is
  7863 // the chunk that is made up of chunks that have been coalesced.  That
  7864 // will be termed the left-hand chunk.  A new chunk of garbage that
  7865 // is being considered for coalescing will be referred to as the
  7866 // right-hand chunk.
  7867 //
  7868 // When making a decision on whether to coalesce a right-hand chunk with
  7869 // the current left-hand chunk, the current count vs. the desired count
  7870 // of the left-hand chunk is considered.  Also if the right-hand chunk
  7871 // is near the large chunk at the end of the heap (see
  7872 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
  7873 // left-hand chunk is coalesced.
  7874 //
  7875 // When making a decision about whether to split a chunk, the desired count
  7876 // vs. the current count of the candidate to be split is also considered.
  7877 // If the candidate is underpopulated (currently fewer chunks than desired)
  7878 // a chunk of an overpopulated (currently more chunks than desired) size may
  7879 // be chosen.  The "hint" associated with a free list, if non-null, points
  7880 // to a free list which may be overpopulated.
  7881 //
  7883 void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
  7884   size_t size = fc->size();
  7885   // Chunks that cannot be coalesced are not in the
  7886   // free lists.
  7887   if (CMSTestInFreeList && !fc->cantCoalesce()) {
  7888     assert(_sp->verifyChunkInFreeLists(fc),
  7889       "free chunk should be in free lists");
  7891   // a chunk that is already free, should not have been
  7892   // marked in the bit map
  7893   HeapWord* addr = (HeapWord*) fc;
  7894   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
  7895   // Verify that the bit map has no bits marked between
  7896   // addr and purported end of this block.
  7897   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7899   // Some chunks cannot be coalesced in under any circumstances.
  7900   // See the definition of cantCoalesce().
  7901   if (!fc->cantCoalesce()) {
  7902     // This chunk can potentially be coalesced.
  7903     if (_sp->adaptive_freelists()) {
  7904       // All the work is done in
  7905       doPostIsFreeOrGarbageChunk(fc, size);
  7906     } else {  // Not adaptive free lists
  7907       // this is a free chunk that can potentially be coalesced by the sweeper;
  7908       if (!inFreeRange()) {
  7909         // if the next chunk is a free block that can't be coalesced
  7910         // it doesn't make sense to remove this chunk from the free lists
  7911         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
  7912         assert((HeapWord*)nextChunk <= _limit, "sweep invariant");
  7913         if ((HeapWord*)nextChunk < _limit  &&    // there's a next chunk...
  7914             nextChunk->isFree()    &&            // which is free...
  7915             nextChunk->cantCoalesce()) {         // ... but cant be coalesced
  7916           // nothing to do
  7917         } else {
  7918           // Potentially the start of a new free range:
  7919           // Don't eagerly remove it from the free lists.
  7920           // No need to remove it if it will just be put
  7921           // back again.  (Also from a pragmatic point of view
  7922           // if it is a free block in a region that is beyond
  7923           // any allocated blocks, an assertion will fail)
  7924           // Remember the start of a free run.
  7925           initialize_free_range(addr, true);
  7926           // end - can coalesce with next chunk
  7928       } else {
  7929         // the midst of a free range, we are coalescing
  7930         debug_only(record_free_block_coalesced(fc);)
  7931         if (CMSTraceSweeper) {
  7932           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
  7934         // remove it from the free lists
  7935         _sp->removeFreeChunkFromFreeLists(fc);
  7936         set_lastFreeRangeCoalesced(true);
  7937         // If the chunk is being coalesced and the current free range is
  7938         // in the free lists, remove the current free range so that it
  7939         // will be returned to the free lists in its entirety - all
  7940         // the coalesced pieces included.
  7941         if (freeRangeInFreeLists()) {
  7942           FreeChunk* ffc = (FreeChunk*) freeFinger();
  7943           assert(ffc->size() == pointer_delta(addr, freeFinger()),
  7944             "Size of free range is inconsistent with chunk size.");
  7945           if (CMSTestInFreeList) {
  7946             assert(_sp->verifyChunkInFreeLists(ffc),
  7947               "free range is not in free lists");
  7949           _sp->removeFreeChunkFromFreeLists(ffc);
  7950           set_freeRangeInFreeLists(false);
  7954   } else {
  7955     // Code path common to both original and adaptive free lists.
  7957     // cant coalesce with previous block; this should be treated
  7958     // as the end of a free run if any
  7959     if (inFreeRange()) {
  7960       // we kicked some butt; time to pick up the garbage
  7961       assert(freeFinger() < addr, "the finger pointeth off base");
  7962       flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  7964     // else, nothing to do, just continue
  7968 size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
  7969   // This is a chunk of garbage.  It is not in any free list.
  7970   // Add it to a free list or let it possibly be coalesced into
  7971   // a larger chunk.
  7972   HeapWord* addr = (HeapWord*) fc;
  7973   size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  7975   if (_sp->adaptive_freelists()) {
  7976     // Verify that the bit map has no bits marked between
  7977     // addr and purported end of just dead object.
  7978     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7980     doPostIsFreeOrGarbageChunk(fc, size);
  7981   } else {
  7982     if (!inFreeRange()) {
  7983       // start of a new free range
  7984       assert(size > 0, "A free range should have a size");
  7985       initialize_free_range(addr, false);
  7987     } else {
  7988       // this will be swept up when we hit the end of the
  7989       // free range
  7990       if (CMSTraceSweeper) {
  7991         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
  7993       // If the chunk is being coalesced and the current free range is
  7994       // in the free lists, remove the current free range so that it
  7995       // will be returned to the free lists in its entirety - all
  7996       // the coalesced pieces included.
  7997       if (freeRangeInFreeLists()) {
  7998         FreeChunk* ffc = (FreeChunk*)freeFinger();
  7999         assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8000           "Size of free range is inconsistent with chunk size.");
  8001         if (CMSTestInFreeList) {
  8002           assert(_sp->verifyChunkInFreeLists(ffc),
  8003             "free range is not in free lists");
  8005         _sp->removeFreeChunkFromFreeLists(ffc);
  8006         set_freeRangeInFreeLists(false);
  8008       set_lastFreeRangeCoalesced(true);
  8010     // this will be swept up when we hit the end of the free range
  8012     // Verify that the bit map has no bits marked between
  8013     // addr and purported end of just dead object.
  8014     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8016   return size;
  8019 size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
  8020   HeapWord* addr = (HeapWord*) fc;
  8021   // The sweeper has just found a live object. Return any accumulated
  8022   // left hand chunk to the free lists.
  8023   if (inFreeRange()) {
  8024     if (_sp->adaptive_freelists()) {
  8025       flushCurFreeChunk(freeFinger(),
  8026                         pointer_delta(addr, freeFinger()));
  8027     } else { // not adaptive freelists
  8028       set_inFreeRange(false);
  8029       // Add the free range back to the free list if it is not already
  8030       // there.
  8031       if (!freeRangeInFreeLists()) {
  8032         assert(freeFinger() < addr, "the finger pointeth off base");
  8033         if (CMSTraceSweeper) {
  8034           gclog_or_tty->print("Sweep:put_free_blk 0x%x (%d) "
  8035             "[coalesced:%d]\n",
  8036             freeFinger(), pointer_delta(addr, freeFinger()),
  8037             lastFreeRangeCoalesced());
  8039         _sp->addChunkAndRepairOffsetTable(freeFinger(),
  8040           pointer_delta(addr, freeFinger()), lastFreeRangeCoalesced());
  8045   // Common code path for original and adaptive free lists.
  8047   // this object is live: we'd normally expect this to be
  8048   // an oop, and like to assert the following:
  8049   // assert(oop(addr)->is_oop(), "live block should be an oop");
  8050   // However, as we commented above, this may be an object whose
  8051   // header hasn't yet been initialized.
  8052   size_t size;
  8053   assert(_bitMap->isMarked(addr), "Tautology for this control point");
  8054   if (_bitMap->isMarked(addr + 1)) {
  8055     // Determine the size from the bit map, rather than trying to
  8056     // compute it from the object header.
  8057     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  8058     size = pointer_delta(nextOneAddr + 1, addr);
  8059     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  8060            "alignment problem");
  8062     #ifdef DEBUG
  8063       if (oop(addr)->klass_or_null() != NULL &&
  8064           (   !_collector->should_unload_classes()
  8065            || oop(addr)->is_parsable())) {
  8066         // Ignore mark word because we are running concurrent with mutators
  8067         assert(oop(addr)->is_oop(true), "live block should be an oop");
  8068         assert(size ==
  8069                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
  8070                "P-mark and computed size do not agree");
  8072     #endif
  8074   } else {
  8075     // This should be an initialized object that's alive.
  8076     assert(oop(addr)->klass_or_null() != NULL &&
  8077            (!_collector->should_unload_classes()
  8078             || oop(addr)->is_parsable()),
  8079            "Should be an initialized object");
  8080     // Ignore mark word because we are running concurrent with mutators
  8081     assert(oop(addr)->is_oop(true), "live block should be an oop");
  8082     // Verify that the bit map has no bits marked between
  8083     // addr and purported end of this block.
  8084     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8085     assert(size >= 3, "Necessary for Printezis marks to work");
  8086     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
  8087     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
  8089   return size;
  8092 void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
  8093                                             size_t chunkSize) {
  8094   // doPostIsFreeOrGarbageChunk() should only be called in the smart allocation
  8095   // scheme.
  8096   bool fcInFreeLists = fc->isFree();
  8097   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
  8098   assert((HeapWord*)fc <= _limit, "sweep invariant");
  8099   if (CMSTestInFreeList && fcInFreeLists) {
  8100     assert(_sp->verifyChunkInFreeLists(fc),
  8101       "free chunk is not in free lists");
  8105   if (CMSTraceSweeper) {
  8106     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
  8109   HeapWord* addr = (HeapWord*) fc;
  8111   bool coalesce;
  8112   size_t left  = pointer_delta(addr, freeFinger());
  8113   size_t right = chunkSize;
  8114   switch (FLSCoalescePolicy) {
  8115     // numeric value forms a coalition aggressiveness metric
  8116     case 0:  { // never coalesce
  8117       coalesce = false;
  8118       break;
  8120     case 1: { // coalesce if left & right chunks on overpopulated lists
  8121       coalesce = _sp->coalOverPopulated(left) &&
  8122                  _sp->coalOverPopulated(right);
  8123       break;
  8125     case 2: { // coalesce if left chunk on overpopulated list (default)
  8126       coalesce = _sp->coalOverPopulated(left);
  8127       break;
  8129     case 3: { // coalesce if left OR right chunk on overpopulated list
  8130       coalesce = _sp->coalOverPopulated(left) ||
  8131                  _sp->coalOverPopulated(right);
  8132       break;
  8134     case 4: { // always coalesce
  8135       coalesce = true;
  8136       break;
  8138     default:
  8139      ShouldNotReachHere();
  8142   // Should the current free range be coalesced?
  8143   // If the chunk is in a free range and either we decided to coalesce above
  8144   // or the chunk is near the large block at the end of the heap
  8145   // (isNearLargestChunk() returns true), then coalesce this chunk.
  8146   bool doCoalesce = inFreeRange() &&
  8147     (coalesce || _g->isNearLargestChunk((HeapWord*)fc));
  8148   if (doCoalesce) {
  8149     // Coalesce the current free range on the left with the new
  8150     // chunk on the right.  If either is on a free list,
  8151     // it must be removed from the list and stashed in the closure.
  8152     if (freeRangeInFreeLists()) {
  8153       FreeChunk* ffc = (FreeChunk*)freeFinger();
  8154       assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8155         "Size of free range is inconsistent with chunk size.");
  8156       if (CMSTestInFreeList) {
  8157         assert(_sp->verifyChunkInFreeLists(ffc),
  8158           "Chunk is not in free lists");
  8160       _sp->coalDeath(ffc->size());
  8161       _sp->removeFreeChunkFromFreeLists(ffc);
  8162       set_freeRangeInFreeLists(false);
  8164     if (fcInFreeLists) {
  8165       _sp->coalDeath(chunkSize);
  8166       assert(fc->size() == chunkSize,
  8167         "The chunk has the wrong size or is not in the free lists");
  8168       _sp->removeFreeChunkFromFreeLists(fc);
  8170     set_lastFreeRangeCoalesced(true);
  8171   } else {  // not in a free range and/or should not coalesce
  8172     // Return the current free range and start a new one.
  8173     if (inFreeRange()) {
  8174       // In a free range but cannot coalesce with the right hand chunk.
  8175       // Put the current free range into the free lists.
  8176       flushCurFreeChunk(freeFinger(),
  8177         pointer_delta(addr, freeFinger()));
  8179     // Set up for new free range.  Pass along whether the right hand
  8180     // chunk is in the free lists.
  8181     initialize_free_range((HeapWord*)fc, fcInFreeLists);
  8184 void SweepClosure::flushCurFreeChunk(HeapWord* chunk, size_t size) {
  8185   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8186   assert(size > 0,
  8187     "A zero sized chunk cannot be added to the free lists.");
  8188   if (!freeRangeInFreeLists()) {
  8189     if(CMSTestInFreeList) {
  8190       FreeChunk* fc = (FreeChunk*) chunk;
  8191       fc->setSize(size);
  8192       assert(!_sp->verifyChunkInFreeLists(fc),
  8193         "chunk should not be in free lists yet");
  8195     if (CMSTraceSweeper) {
  8196       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
  8197                     chunk, size);
  8199     // A new free range is going to be starting.  The current
  8200     // free range has not been added to the free lists yet or
  8201     // was removed so add it back.
  8202     // If the current free range was coalesced, then the death
  8203     // of the free range was recorded.  Record a birth now.
  8204     if (lastFreeRangeCoalesced()) {
  8205       _sp->coalBirth(size);
  8207     _sp->addChunkAndRepairOffsetTable(chunk, size,
  8208             lastFreeRangeCoalesced());
  8210   set_inFreeRange(false);
  8211   set_freeRangeInFreeLists(false);
  8214 // We take a break if we've been at this for a while,
  8215 // so as to avoid monopolizing the locks involved.
  8216 void SweepClosure::do_yield_work(HeapWord* addr) {
  8217   // Return current free chunk being used for coalescing (if any)
  8218   // to the appropriate freelist.  After yielding, the next
  8219   // free block encountered will start a coalescing range of
  8220   // free blocks.  If the next free block is adjacent to the
  8221   // chunk just flushed, they will need to wait for the next
  8222   // sweep to be coalesced.
  8223   if (inFreeRange()) {
  8224     flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8227   // First give up the locks, then yield, then re-lock.
  8228   // We should probably use a constructor/destructor idiom to
  8229   // do this unlock/lock or modify the MutexUnlocker class to
  8230   // serve our purpose. XXX
  8231   assert_lock_strong(_bitMap->lock());
  8232   assert_lock_strong(_freelistLock);
  8233   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8234          "CMS thread should hold CMS token");
  8235   _bitMap->lock()->unlock();
  8236   _freelistLock->unlock();
  8237   ConcurrentMarkSweepThread::desynchronize(true);
  8238   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8239   _collector->stopTimer();
  8240   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8241   if (PrintCMSStatistics != 0) {
  8242     _collector->incrementYields();
  8244   _collector->icms_wait();
  8246   // See the comment in coordinator_yield()
  8247   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8248                        ConcurrentMarkSweepThread::should_yield() &&
  8249                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8250     os::sleep(Thread::current(), 1, false);
  8251     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8254   ConcurrentMarkSweepThread::synchronize(true);
  8255   _freelistLock->lock();
  8256   _bitMap->lock()->lock_without_safepoint_check();
  8257   _collector->startTimer();
  8260 #ifndef PRODUCT
  8261 // This is actually very useful in a product build if it can
  8262 // be called from the debugger.  Compile it into the product
  8263 // as needed.
  8264 bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
  8265   return debug_cms_space->verifyChunkInFreeLists(fc);
  8268 void SweepClosure::record_free_block_coalesced(FreeChunk* fc) const {
  8269   if (CMSTraceSweeper) {
  8270     gclog_or_tty->print("Sweep:coal_free_blk 0x%x (%d)\n", fc, fc->size());
  8273 #endif
  8275 // CMSIsAliveClosure
  8276 bool CMSIsAliveClosure::do_object_b(oop obj) {
  8277   HeapWord* addr = (HeapWord*)obj;
  8278   return addr != NULL &&
  8279          (!_span.contains(addr) || _bit_map->isMarked(addr));
  8282 // CMSKeepAliveClosure: the serial version
  8283 void CMSKeepAliveClosure::do_oop(oop obj) {
  8284   HeapWord* addr = (HeapWord*)obj;
  8285   if (_span.contains(addr) &&
  8286       !_bit_map->isMarked(addr)) {
  8287     _bit_map->mark(addr);
  8288     bool simulate_overflow = false;
  8289     NOT_PRODUCT(
  8290       if (CMSMarkStackOverflowALot &&
  8291           _collector->simulate_overflow()) {
  8292         // simulate a stack overflow
  8293         simulate_overflow = true;
  8296     if (simulate_overflow || !_mark_stack->push(obj)) {
  8297       if (_concurrent_precleaning) {
  8298         // We dirty the overflown object and let the remark
  8299         // phase deal with it.
  8300         assert(_collector->overflow_list_is_empty(), "Error");
  8301         // In the case of object arrays, we need to dirty all of
  8302         // the cards that the object spans. No locking or atomics
  8303         // are needed since no one else can be mutating the mod union
  8304         // table.
  8305         if (obj->is_objArray()) {
  8306           size_t sz = obj->size();
  8307           HeapWord* end_card_addr =
  8308             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
  8309           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  8310           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  8311           _collector->_modUnionTable.mark_range(redirty_range);
  8312         } else {
  8313           _collector->_modUnionTable.mark(addr);
  8315         _collector->_ser_kac_preclean_ovflw++;
  8316       } else {
  8317         _collector->push_on_overflow_list(obj);
  8318         _collector->_ser_kac_ovflw++;
  8324 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
  8325 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
  8327 // CMSParKeepAliveClosure: a parallel version of the above.
  8328 // The work queues are private to each closure (thread),
  8329 // but (may be) available for stealing by other threads.
  8330 void CMSParKeepAliveClosure::do_oop(oop obj) {
  8331   HeapWord* addr = (HeapWord*)obj;
  8332   if (_span.contains(addr) &&
  8333       !_bit_map->isMarked(addr)) {
  8334     // In general, during recursive tracing, several threads
  8335     // may be concurrently getting here; the first one to
  8336     // "tag" it, claims it.
  8337     if (_bit_map->par_mark(addr)) {
  8338       bool res = _work_queue->push(obj);
  8339       assert(res, "Low water mark should be much less than capacity");
  8340       // Do a recursive trim in the hope that this will keep
  8341       // stack usage lower, but leave some oops for potential stealers
  8342       trim_queue(_low_water_mark);
  8343     } // Else, another thread got there first
  8347 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
  8348 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
  8350 void CMSParKeepAliveClosure::trim_queue(uint max) {
  8351   while (_work_queue->size() > max) {
  8352     oop new_oop;
  8353     if (_work_queue->pop_local(new_oop)) {
  8354       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  8355       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8356              "no white objects on this stack!");
  8357       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8358       // iterate over the oops in this oop, marking and pushing
  8359       // the ones in CMS heap (i.e. in _span).
  8360       new_oop->oop_iterate(&_mark_and_push);
  8365 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
  8366   HeapWord* addr = (HeapWord*)obj;
  8367   if (_span.contains(addr) &&
  8368       !_bit_map->isMarked(addr)) {
  8369     if (_bit_map->par_mark(addr)) {
  8370       bool simulate_overflow = false;
  8371       NOT_PRODUCT(
  8372         if (CMSMarkStackOverflowALot &&
  8373             _collector->par_simulate_overflow()) {
  8374           // simulate a stack overflow
  8375           simulate_overflow = true;
  8378       if (simulate_overflow || !_work_queue->push(obj)) {
  8379         _collector->par_push_on_overflow_list(obj);
  8380         _collector->_par_kac_ovflw++;
  8382     } // Else another thread got there already
  8386 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8387 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8389 //////////////////////////////////////////////////////////////////
  8390 //  CMSExpansionCause                /////////////////////////////
  8391 //////////////////////////////////////////////////////////////////
  8392 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
  8393   switch (cause) {
  8394     case _no_expansion:
  8395       return "No expansion";
  8396     case _satisfy_free_ratio:
  8397       return "Free ratio";
  8398     case _satisfy_promotion:
  8399       return "Satisfy promotion";
  8400     case _satisfy_allocation:
  8401       return "allocation";
  8402     case _allocate_par_lab:
  8403       return "Par LAB";
  8404     case _allocate_par_spooling_space:
  8405       return "Par Spooling Space";
  8406     case _adaptive_size_policy:
  8407       return "Ergonomics";
  8408     default:
  8409       return "unknown";
  8413 void CMSDrainMarkingStackClosure::do_void() {
  8414   // the max number to take from overflow list at a time
  8415   const size_t num = _mark_stack->capacity()/4;
  8416   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
  8417          "Overflow list should be NULL during concurrent phases");
  8418   while (!_mark_stack->isEmpty() ||
  8419          // if stack is empty, check the overflow list
  8420          _collector->take_from_overflow_list(num, _mark_stack)) {
  8421     oop obj = _mark_stack->pop();
  8422     HeapWord* addr = (HeapWord*)obj;
  8423     assert(_span.contains(addr), "Should be within span");
  8424     assert(_bit_map->isMarked(addr), "Should be marked");
  8425     assert(obj->is_oop(), "Should be an oop");
  8426     obj->oop_iterate(_keep_alive);
  8430 void CMSParDrainMarkingStackClosure::do_void() {
  8431   // drain queue
  8432   trim_queue(0);
  8435 // Trim our work_queue so its length is below max at return
  8436 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
  8437   while (_work_queue->size() > max) {
  8438     oop new_oop;
  8439     if (_work_queue->pop_local(new_oop)) {
  8440       assert(new_oop->is_oop(), "Expected an oop");
  8441       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8442              "no white objects on this stack!");
  8443       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8444       // iterate over the oops in this oop, marking and pushing
  8445       // the ones in CMS heap (i.e. in _span).
  8446       new_oop->oop_iterate(&_mark_and_push);
  8451 ////////////////////////////////////////////////////////////////////
  8452 // Support for Marking Stack Overflow list handling and related code
  8453 ////////////////////////////////////////////////////////////////////
  8454 // Much of the following code is similar in shape and spirit to the
  8455 // code used in ParNewGC. We should try and share that code
  8456 // as much as possible in the future.
  8458 #ifndef PRODUCT
  8459 // Debugging support for CMSStackOverflowALot
  8461 // It's OK to call this multi-threaded;  the worst thing
  8462 // that can happen is that we'll get a bunch of closely
  8463 // spaced simulated oveflows, but that's OK, in fact
  8464 // probably good as it would exercise the overflow code
  8465 // under contention.
  8466 bool CMSCollector::simulate_overflow() {
  8467   if (_overflow_counter-- <= 0) { // just being defensive
  8468     _overflow_counter = CMSMarkStackOverflowInterval;
  8469     return true;
  8470   } else {
  8471     return false;
  8475 bool CMSCollector::par_simulate_overflow() {
  8476   return simulate_overflow();
  8478 #endif
  8480 // Single-threaded
  8481 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
  8482   assert(stack->isEmpty(), "Expected precondition");
  8483   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
  8484   size_t i = num;
  8485   oop  cur = _overflow_list;
  8486   const markOop proto = markOopDesc::prototype();
  8487   NOT_PRODUCT(size_t n = 0;)
  8488   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
  8489     next = oop(cur->mark());
  8490     cur->set_mark(proto);   // until proven otherwise
  8491     assert(cur->is_oop(), "Should be an oop");
  8492     bool res = stack->push(cur);
  8493     assert(res, "Bit off more than can chew?");
  8494     NOT_PRODUCT(n++;)
  8496   _overflow_list = cur;
  8497 #ifndef PRODUCT
  8498   assert(_num_par_pushes >= n, "Too many pops?");
  8499   _num_par_pushes -=n;
  8500 #endif
  8501   return !stack->isEmpty();
  8504 // Multi-threaded; use CAS to break off a prefix
  8505 bool CMSCollector::par_take_from_overflow_list(size_t num,
  8506                                                OopTaskQueue* work_q) {
  8507   assert(work_q->size() == 0, "That's the current policy");
  8508   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
  8509   if (_overflow_list == NULL) {
  8510     return false;
  8512   // Grab the entire list; we'll put back a suffix
  8513   oop prefix = (oop)Atomic::xchg_ptr(NULL, &_overflow_list);
  8514   if (prefix == NULL) {  // someone grabbed it before we did ...
  8515     // ... we could spin for a short while, but for now we don't
  8516     return false;
  8518   size_t i = num;
  8519   oop cur = prefix;
  8520   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
  8521   if (cur->mark() != NULL) {
  8522     oop suffix_head = cur->mark(); // suffix will be put back on global list
  8523     cur->set_mark(NULL);           // break off suffix
  8524     // Find tail of suffix so we can prepend suffix to global list
  8525     for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
  8526     oop suffix_tail = cur;
  8527     assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
  8528            "Tautology");
  8529     oop observed_overflow_list = _overflow_list;
  8530     do {
  8531       cur = observed_overflow_list;
  8532       suffix_tail->set_mark(markOop(cur));
  8533       observed_overflow_list =
  8534         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur);
  8535     } while (cur != observed_overflow_list);
  8538   // Push the prefix elements on work_q
  8539   assert(prefix != NULL, "control point invariant");
  8540   const markOop proto = markOopDesc::prototype();
  8541   oop next;
  8542   NOT_PRODUCT(size_t n = 0;)
  8543   for (cur = prefix; cur != NULL; cur = next) {
  8544     next = oop(cur->mark());
  8545     cur->set_mark(proto);   // until proven otherwise
  8546     assert(cur->is_oop(), "Should be an oop");
  8547     bool res = work_q->push(cur);
  8548     assert(res, "Bit off more than we can chew?");
  8549     NOT_PRODUCT(n++;)
  8551 #ifndef PRODUCT
  8552   assert(_num_par_pushes >= n, "Too many pops?");
  8553   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  8554 #endif
  8555   return true;
  8558 // Single-threaded
  8559 void CMSCollector::push_on_overflow_list(oop p) {
  8560   NOT_PRODUCT(_num_par_pushes++;)
  8561   assert(p->is_oop(), "Not an oop");
  8562   preserve_mark_if_necessary(p);
  8563   p->set_mark((markOop)_overflow_list);
  8564   _overflow_list = p;
  8567 // Multi-threaded; use CAS to prepend to overflow list
  8568 void CMSCollector::par_push_on_overflow_list(oop p) {
  8569   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
  8570   assert(p->is_oop(), "Not an oop");
  8571   par_preserve_mark_if_necessary(p);
  8572   oop observed_overflow_list = _overflow_list;
  8573   oop cur_overflow_list;
  8574   do {
  8575     cur_overflow_list = observed_overflow_list;
  8576     p->set_mark(markOop(cur_overflow_list));
  8577     observed_overflow_list =
  8578       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
  8579   } while (cur_overflow_list != observed_overflow_list);
  8582 // Single threaded
  8583 // General Note on GrowableArray: pushes may silently fail
  8584 // because we are (temporarily) out of C-heap for expanding
  8585 // the stack. The problem is quite ubiquitous and affects
  8586 // a lot of code in the JVM. The prudent thing for GrowableArray
  8587 // to do (for now) is to exit with an error. However, that may
  8588 // be too draconian in some cases because the caller may be
  8589 // able to recover without much harm. For suych cases, we
  8590 // should probably introduce a "soft_push" method which returns
  8591 // an indication of success or failure with the assumption that
  8592 // the caller may be able to recover from a failure; code in
  8593 // the VM can then be changed, incrementally, to deal with such
  8594 // failures where possible, thus, incrementally hardening the VM
  8595 // in such low resource situations.
  8596 void CMSCollector::preserve_mark_work(oop p, markOop m) {
  8597   int PreserveMarkStackSize = 128;
  8599   if (_preserved_oop_stack == NULL) {
  8600     assert(_preserved_mark_stack == NULL,
  8601            "bijection with preserved_oop_stack");
  8602     // Allocate the stacks
  8603     _preserved_oop_stack  = new (ResourceObj::C_HEAP)
  8604       GrowableArray<oop>(PreserveMarkStackSize, true);
  8605     _preserved_mark_stack = new (ResourceObj::C_HEAP)
  8606       GrowableArray<markOop>(PreserveMarkStackSize, true);
  8607     if (_preserved_oop_stack == NULL || _preserved_mark_stack == NULL) {
  8608       vm_exit_out_of_memory(2* PreserveMarkStackSize * sizeof(oop) /* punt */,
  8609                             "Preserved Mark/Oop Stack for CMS (C-heap)");
  8612   _preserved_oop_stack->push(p);
  8613   _preserved_mark_stack->push(m);
  8614   assert(m == p->mark(), "Mark word changed");
  8615   assert(_preserved_oop_stack->length() == _preserved_mark_stack->length(),
  8616          "bijection");
  8619 // Single threaded
  8620 void CMSCollector::preserve_mark_if_necessary(oop p) {
  8621   markOop m = p->mark();
  8622   if (m->must_be_preserved(p)) {
  8623     preserve_mark_work(p, m);
  8627 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
  8628   markOop m = p->mark();
  8629   if (m->must_be_preserved(p)) {
  8630     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  8631     // Even though we read the mark word without holding
  8632     // the lock, we are assured that it will not change
  8633     // because we "own" this oop, so no other thread can
  8634     // be trying to push it on the overflow list; see
  8635     // the assertion in preserve_mark_work() that checks
  8636     // that m == p->mark().
  8637     preserve_mark_work(p, m);
  8641 // We should be able to do this multi-threaded,
  8642 // a chunk of stack being a task (this is
  8643 // correct because each oop only ever appears
  8644 // once in the overflow list. However, it's
  8645 // not very easy to completely overlap this with
  8646 // other operations, so will generally not be done
  8647 // until all work's been completed. Because we
  8648 // expect the preserved oop stack (set) to be small,
  8649 // it's probably fine to do this single-threaded.
  8650 // We can explore cleverer concurrent/overlapped/parallel
  8651 // processing of preserved marks if we feel the
  8652 // need for this in the future. Stack overflow should
  8653 // be so rare in practice and, when it happens, its
  8654 // effect on performance so great that this will
  8655 // likely just be in the noise anyway.
  8656 void CMSCollector::restore_preserved_marks_if_any() {
  8657   if (_preserved_oop_stack == NULL) {
  8658     assert(_preserved_mark_stack == NULL,
  8659            "bijection with preserved_oop_stack");
  8660     return;
  8663   assert(SafepointSynchronize::is_at_safepoint(),
  8664          "world should be stopped");
  8665   assert(Thread::current()->is_ConcurrentGC_thread() ||
  8666          Thread::current()->is_VM_thread(),
  8667          "should be single-threaded");
  8669   int length = _preserved_oop_stack->length();
  8670   assert(_preserved_mark_stack->length() == length, "bijection");
  8671   for (int i = 0; i < length; i++) {
  8672     oop p = _preserved_oop_stack->at(i);
  8673     assert(p->is_oop(), "Should be an oop");
  8674     assert(_span.contains(p), "oop should be in _span");
  8675     assert(p->mark() == markOopDesc::prototype(),
  8676            "Set when taken from overflow list");
  8677     markOop m = _preserved_mark_stack->at(i);
  8678     p->set_mark(m);
  8680   _preserved_mark_stack->clear();
  8681   _preserved_oop_stack->clear();
  8682   assert(_preserved_mark_stack->is_empty() &&
  8683          _preserved_oop_stack->is_empty(),
  8684          "stacks were cleared above");
  8687 #ifndef PRODUCT
  8688 bool CMSCollector::no_preserved_marks() const {
  8689   return (   (   _preserved_mark_stack == NULL
  8690               && _preserved_oop_stack == NULL)
  8691           || (   _preserved_mark_stack->is_empty()
  8692               && _preserved_oop_stack->is_empty()));
  8694 #endif
  8696 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
  8698   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8699   CMSAdaptiveSizePolicy* size_policy =
  8700     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
  8701   assert(size_policy->is_gc_cms_adaptive_size_policy(),
  8702     "Wrong type for size policy");
  8703   return size_policy;
  8706 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
  8707                                            size_t desired_promo_size) {
  8708   if (cur_promo_size < desired_promo_size) {
  8709     size_t expand_bytes = desired_promo_size - cur_promo_size;
  8710     if (PrintAdaptiveSizePolicy && Verbose) {
  8711       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8712         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
  8713         expand_bytes);
  8715     expand(expand_bytes,
  8716            MinHeapDeltaBytes,
  8717            CMSExpansionCause::_adaptive_size_policy);
  8718   } else if (desired_promo_size < cur_promo_size) {
  8719     size_t shrink_bytes = cur_promo_size - desired_promo_size;
  8720     if (PrintAdaptiveSizePolicy && Verbose) {
  8721       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8722         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
  8723         shrink_bytes);
  8725     shrink(shrink_bytes);
  8729 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
  8730   GenCollectedHeap* gch = GenCollectedHeap::heap();
  8731   CMSGCAdaptivePolicyCounters* counters =
  8732     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
  8733   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
  8734     "Wrong kind of counters");
  8735   return counters;
  8739 void ASConcurrentMarkSweepGeneration::update_counters() {
  8740   if (UsePerfData) {
  8741     _space_counters->update_all();
  8742     _gen_counters->update_all();
  8743     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8744     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8745     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8746     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8747       "Wrong gc statistics type");
  8748     counters->update_counters(gc_stats_l);
  8752 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
  8753   if (UsePerfData) {
  8754     _space_counters->update_used(used);
  8755     _space_counters->update_capacity();
  8756     _gen_counters->update_all();
  8758     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8759     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8760     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8761     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8762       "Wrong gc statistics type");
  8763     counters->update_counters(gc_stats_l);
  8767 // The desired expansion delta is computed so that:
  8768 // . desired free percentage or greater is used
  8769 void ASConcurrentMarkSweepGeneration::compute_new_size() {
  8770   assert_locked_or_safepoint(Heap_lock);
  8772   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8774   // If incremental collection failed, we just want to expand
  8775   // to the limit.
  8776   if (incremental_collection_failed()) {
  8777     clear_incremental_collection_failed();
  8778     grow_to_reserved();
  8779     return;
  8782   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
  8784   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  8785     "Wrong type of heap");
  8786   int prev_level = level() - 1;
  8787   assert(prev_level >= 0, "The cms generation is the lowest generation");
  8788   Generation* prev_gen = gch->get_gen(prev_level);
  8789   assert(prev_gen->kind() == Generation::ASParNew,
  8790     "Wrong type of young generation");
  8791   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
  8792   size_t cur_eden = younger_gen->eden()->capacity();
  8793   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
  8794   size_t cur_promo = free();
  8795   size_policy->compute_tenured_generation_free_space(cur_promo,
  8796                                                        max_available(),
  8797                                                        cur_eden);
  8798   resize(cur_promo, size_policy->promo_size());
  8800   // Record the new size of the space in the cms generation
  8801   // that is available for promotions.  This is temporary.
  8802   // It should be the desired promo size.
  8803   size_policy->avg_cms_promo()->sample(free());
  8804   size_policy->avg_old_live()->sample(used());
  8806   if (UsePerfData) {
  8807     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8808     counters->update_cms_capacity_counter(capacity());
  8812 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
  8813   assert_locked_or_safepoint(Heap_lock);
  8814   assert_lock_strong(freelistLock());
  8815   HeapWord* old_end = _cmsSpace->end();
  8816   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
  8817   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
  8818   FreeChunk* chunk_at_end = find_chunk_at_end();
  8819   if (chunk_at_end == NULL) {
  8820     // No room to shrink
  8821     if (PrintGCDetails && Verbose) {
  8822       gclog_or_tty->print_cr("No room to shrink: old_end  "
  8823         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
  8824         " chunk_at_end  " PTR_FORMAT,
  8825         old_end, unallocated_start, chunk_at_end);
  8827     return;
  8828   } else {
  8830     // Find the chunk at the end of the space and determine
  8831     // how much it can be shrunk.
  8832     size_t shrinkable_size_in_bytes = chunk_at_end->size();
  8833     size_t aligned_shrinkable_size_in_bytes =
  8834       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
  8835     assert(unallocated_start <= chunk_at_end->end(),
  8836       "Inconsistent chunk at end of space");
  8837     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
  8838     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
  8840     // Shrink the underlying space
  8841     _virtual_space.shrink_by(bytes);
  8842     if (PrintGCDetails && Verbose) {
  8843       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
  8844         " desired_bytes " SIZE_FORMAT
  8845         " shrinkable_size_in_bytes " SIZE_FORMAT
  8846         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
  8847         "  bytes  " SIZE_FORMAT,
  8848         desired_bytes, shrinkable_size_in_bytes,
  8849         aligned_shrinkable_size_in_bytes, bytes);
  8850       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
  8851         "  unallocated_start  " SIZE_FORMAT,
  8852         old_end, unallocated_start);
  8855     // If the space did shrink (shrinking is not guaranteed),
  8856     // shrink the chunk at the end by the appropriate amount.
  8857     if (((HeapWord*)_virtual_space.high()) < old_end) {
  8858       size_t new_word_size =
  8859         heap_word_size(_virtual_space.committed_size());
  8861       // Have to remove the chunk from the dictionary because it is changing
  8862       // size and might be someplace elsewhere in the dictionary.
  8864       // Get the chunk at end, shrink it, and put it
  8865       // back.
  8866       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
  8867       size_t word_size_change = word_size_before - new_word_size;
  8868       size_t chunk_at_end_old_size = chunk_at_end->size();
  8869       assert(chunk_at_end_old_size >= word_size_change,
  8870         "Shrink is too large");
  8871       chunk_at_end->setSize(chunk_at_end_old_size -
  8872                           word_size_change);
  8873       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
  8874         word_size_change);
  8876       _cmsSpace->returnChunkToDictionary(chunk_at_end);
  8878       MemRegion mr(_cmsSpace->bottom(), new_word_size);
  8879       _bts->resize(new_word_size);  // resize the block offset shared array
  8880       Universe::heap()->barrier_set()->resize_covered_region(mr);
  8881       _cmsSpace->assert_locked();
  8882       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  8884       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
  8886       // update the space and generation capacity counters
  8887       if (UsePerfData) {
  8888         _space_counters->update_capacity();
  8889         _gen_counters->update_all();
  8892       if (Verbose && PrintGCDetails) {
  8893         size_t new_mem_size = _virtual_space.committed_size();
  8894         size_t old_mem_size = new_mem_size + bytes;
  8895         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
  8896                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
  8900     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
  8901       "Inconsistency at end of space");
  8902     assert(chunk_at_end->end() == _cmsSpace->end(),
  8903       "Shrinking is inconsistent");
  8904     return;
  8908 // Transfer some number of overflown objects to usual marking
  8909 // stack. Return true if some objects were transferred.
  8910 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
  8911   size_t num = MIN2((size_t)_mark_stack->capacity()/4,
  8912                     (size_t)ParGCDesiredObjsFromOverflowList);
  8914   bool res = _collector->take_from_overflow_list(num, _mark_stack);
  8915   assert(_collector->overflow_list_is_empty() || res,
  8916          "If list is not empty, we should have taken something");
  8917   assert(!res || !_mark_stack->isEmpty(),
  8918          "If we took something, it should now be on our stack");
  8919   return res;
  8922 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
  8923   size_t res = _sp->block_size_no_stall(addr, _collector);
  8924   assert(res != 0, "Should always be able to compute a size");
  8925   if (_sp->block_is_obj(addr)) {
  8926     if (_live_bit_map->isMarked(addr)) {
  8927       // It can't have been dead in a previous cycle
  8928       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
  8929     } else {
  8930       _dead_bit_map->mark(addr);      // mark the dead object
  8933   return res;

mercurial