src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Fri, 09 Dec 2011 11:29:05 -0800

author
jiangli
date
Fri, 09 Dec 2011 11:29:05 -0800
changeset 3370
2685ea97b89f
parent 3310
6729bbc1fcd6
parent 3368
52b5d32fbfaf
child 3400
22cee0ee8927
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_LIRAssembler.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "c1/c1_ValueStack.hpp"
    31 #include "ci/ciArrayKlass.hpp"
    32 #include "ci/ciInstance.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "memory/barrierSet.hpp"
    35 #include "memory/cardTableModRefBS.hpp"
    36 #include "nativeInst_sparc.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    40 #define __ _masm->
    43 //------------------------------------------------------------
    46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    47   if (opr->is_constant()) {
    48     LIR_Const* constant = opr->as_constant_ptr();
    49     switch (constant->type()) {
    50       case T_INT: {
    51         jint value = constant->as_jint();
    52         return Assembler::is_simm13(value);
    53       }
    55       default:
    56         return false;
    57     }
    58   }
    59   return false;
    60 }
    63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    64   switch (op->code()) {
    65     case lir_null_check:
    66     return true;
    69     case lir_add:
    70     case lir_ushr:
    71     case lir_shr:
    72     case lir_shl:
    73       // integer shifts and adds are always one instruction
    74       return op->result_opr()->is_single_cpu();
    77     case lir_move: {
    78       LIR_Op1* op1 = op->as_Op1();
    79       LIR_Opr src = op1->in_opr();
    80       LIR_Opr dst = op1->result_opr();
    82       if (src == dst) {
    83         NEEDS_CLEANUP;
    84         // this works around a problem where moves with the same src and dst
    85         // end up in the delay slot and then the assembler swallows the mov
    86         // since it has no effect and then it complains because the delay slot
    87         // is empty.  returning false stops the optimizer from putting this in
    88         // the delay slot
    89         return false;
    90       }
    92       // don't put moves involving oops into the delay slot since the VerifyOops code
    93       // will make it much larger than a single instruction.
    94       if (VerifyOops) {
    95         return false;
    96       }
    98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
   100         return false;
   101       }
   103       if (UseCompressedOops) {
   104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
   105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
   106       }
   108       if (dst->is_register()) {
   109         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
   110           return !PatchALot;
   111         } else if (src->is_single_stack()) {
   112           return true;
   113         }
   114       }
   116       if (src->is_register()) {
   117         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   118           return !PatchALot;
   119         } else if (dst->is_single_stack()) {
   120           return true;
   121         }
   122       }
   124       if (dst->is_register() &&
   125           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   126            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   127         return true;
   128       }
   130       return false;
   131     }
   133     default:
   134       return false;
   135   }
   136   ShouldNotReachHere();
   137 }
   140 LIR_Opr LIR_Assembler::receiverOpr() {
   141   return FrameMap::O0_oop_opr;
   142 }
   145 LIR_Opr LIR_Assembler::osrBufferPointer() {
   146   return FrameMap::I0_opr;
   147 }
   150 int LIR_Assembler::initial_frame_size_in_bytes() {
   151   return in_bytes(frame_map()->framesize_in_bytes());
   152 }
   155 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   156 // we fetch the class of the receiver (O0) and compare it with the cached class.
   157 // If they do not match we jump to slow case.
   158 int LIR_Assembler::check_icache() {
   159   int offset = __ offset();
   160   __ inline_cache_check(O0, G5_inline_cache_reg);
   161   return offset;
   162 }
   165 void LIR_Assembler::osr_entry() {
   166   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   167   //
   168   //   1. Create a new compiled activation.
   169   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   170   //      at the osr_bci; it is not initialized.
   171   //   3. Jump to the continuation address in compiled code to resume execution.
   173   // OSR entry point
   174   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   175   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   176   ValueStack* entry_state = osr_entry->end()->state();
   177   int number_of_locks = entry_state->locks_size();
   179   // Create a frame for the compiled activation.
   180   __ build_frame(initial_frame_size_in_bytes());
   182   // OSR buffer is
   183   //
   184   // locals[nlocals-1..0]
   185   // monitors[number_of_locks-1..0]
   186   //
   187   // locals is a direct copy of the interpreter frame so in the osr buffer
   188   // so first slot in the local array is the last local from the interpreter
   189   // and last slot is local[0] (receiver) from the interpreter
   190   //
   191   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   192   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   193   // in the interpreter frame (the method lock if a sync method)
   195   // Initialize monitors in the compiled activation.
   196   //   I0: pointer to osr buffer
   197   //
   198   // All other registers are dead at this point and the locals will be
   199   // copied into place by code emitted in the IR.
   201   Register OSR_buf = osrBufferPointer()->as_register();
   202   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   203     int monitor_offset = BytesPerWord * method()->max_locals() +
   204       (2 * BytesPerWord) * (number_of_locks - 1);
   205     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   206     // the OSR buffer using 2 word entries: first the lock and then
   207     // the oop.
   208     for (int i = 0; i < number_of_locks; i++) {
   209       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   210 #ifdef ASSERT
   211       // verify the interpreter's monitor has a non-null object
   212       {
   213         Label L;
   214         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   215         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
   216         __ stop("locked object is NULL");
   217         __ bind(L);
   218       }
   219 #endif // ASSERT
   220       // Copy the lock field into the compiled activation.
   221       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   222       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   223       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   224       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   225     }
   226   }
   227 }
   230 // Optimized Library calls
   231 // This is the fast version of java.lang.String.compare; it has not
   232 // OSR-entry and therefore, we generate a slow version for OSR's
   233 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   234   Register str0 = left->as_register();
   235   Register str1 = right->as_register();
   237   Label Ldone;
   239   Register result = dst->as_register();
   240   {
   241     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
   242     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
   243     // Also, get string0.count-string1.count in o7 and get the condition code set
   244     // Note: some instructions have been hoisted for better instruction scheduling
   246     Register tmp0 = L0;
   247     Register tmp1 = L1;
   248     Register tmp2 = L2;
   250     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   251     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   252     int  count_offset = java_lang_String:: count_offset_in_bytes();
   254     __ load_heap_oop(str0, value_offset, tmp0);
   255     __ ld(str0, offset_offset, tmp2);
   256     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   257     __ ld(str0, count_offset, str0);
   258     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   260     // str1 may be null
   261     add_debug_info_for_null_check_here(info);
   263     __ load_heap_oop(str1, value_offset, tmp1);
   264     __ add(tmp0, tmp2, tmp0);
   266     __ ld(str1, offset_offset, tmp2);
   267     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   268     __ ld(str1, count_offset, str1);
   269     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   270     __ subcc(str0, str1, O7);
   271     __ add(tmp1, tmp2, tmp1);
   272   }
   274   {
   275     // Compute the minimum of the string lengths, scale it and store it in limit
   276     Register count0 = I0;
   277     Register count1 = I1;
   278     Register limit  = L3;
   280     Label Lskip;
   281     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   282     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   283     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   284     __ bind(Lskip);
   286     // If either string is empty (or both of them) the result is the difference in lengths
   287     __ cmp(limit, 0);
   288     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   289     __ delayed()->mov(O7, result);  // result is difference in lengths
   290   }
   292   {
   293     // Neither string is empty
   294     Label Lloop;
   296     Register base0 = L0;
   297     Register base1 = L1;
   298     Register chr0  = I0;
   299     Register chr1  = I1;
   300     Register limit = L3;
   302     // Shift base0 and base1 to the end of the arrays, negate limit
   303     __ add(base0, limit, base0);
   304     __ add(base1, limit, base1);
   305     __ neg(limit);  // limit = -min{string0.count, strin1.count}
   307     __ lduh(base0, limit, chr0);
   308     __ bind(Lloop);
   309     __ lduh(base1, limit, chr1);
   310     __ subcc(chr0, chr1, chr0);
   311     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   312     assert(chr0 == result, "result must be pre-placed");
   313     __ delayed()->inccc(limit, sizeof(jchar));
   314     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   315     __ delayed()->lduh(base0, limit, chr0);
   316   }
   318   // If strings are equal up to min length, return the length difference.
   319   __ mov(O7, result);
   321   // Otherwise, return the difference between the first mismatched chars.
   322   __ bind(Ldone);
   323 }
   326 // --------------------------------------------------------------------------------------------
   328 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   329   if (!GenerateSynchronizationCode) return;
   331   Register obj_reg = obj_opr->as_register();
   332   Register lock_reg = lock_opr->as_register();
   334   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   335   Register reg = mon_addr.base();
   336   int offset = mon_addr.disp();
   337   // compute pointer to BasicLock
   338   if (mon_addr.is_simm13()) {
   339     __ add(reg, offset, lock_reg);
   340   }
   341   else {
   342     __ set(offset, lock_reg);
   343     __ add(reg, lock_reg, lock_reg);
   344   }
   345   // unlock object
   346   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   347   // _slow_case_stubs->append(slow_case);
   348   // temporary fix: must be created after exceptionhandler, therefore as call stub
   349   _slow_case_stubs->append(slow_case);
   350   if (UseFastLocking) {
   351     // try inlined fast unlocking first, revert to slow locking if it fails
   352     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   353     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   354     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   355   } else {
   356     // always do slow unlocking
   357     // note: the slow unlocking code could be inlined here, however if we use
   358     //       slow unlocking, speed doesn't matter anyway and this solution is
   359     //       simpler and requires less duplicated code - additionally, the
   360     //       slow unlocking code is the same in either case which simplifies
   361     //       debugging
   362     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   363     __ delayed()->nop();
   364   }
   365   // done
   366   __ bind(*slow_case->continuation());
   367 }
   370 int LIR_Assembler::emit_exception_handler() {
   371   // if the last instruction is a call (typically to do a throw which
   372   // is coming at the end after block reordering) the return address
   373   // must still point into the code area in order to avoid assertion
   374   // failures when searching for the corresponding bci => add a nop
   375   // (was bug 5/14/1999 - gri)
   376   __ nop();
   378   // generate code for exception handler
   379   ciMethod* method = compilation()->method();
   381   address handler_base = __ start_a_stub(exception_handler_size);
   383   if (handler_base == NULL) {
   384     // not enough space left for the handler
   385     bailout("exception handler overflow");
   386     return -1;
   387   }
   389   int offset = code_offset();
   391   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
   392   __ delayed()->nop();
   393   __ should_not_reach_here();
   394   assert(code_offset() - offset <= exception_handler_size, "overflow");
   395   __ end_a_stub();
   397   return offset;
   398 }
   401 // Emit the code to remove the frame from the stack in the exception
   402 // unwind path.
   403 int LIR_Assembler::emit_unwind_handler() {
   404 #ifndef PRODUCT
   405   if (CommentedAssembly) {
   406     _masm->block_comment("Unwind handler");
   407   }
   408 #endif
   410   int offset = code_offset();
   412   // Fetch the exception from TLS and clear out exception related thread state
   413   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   414   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   415   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   417   __ bind(_unwind_handler_entry);
   418   __ verify_not_null_oop(O0);
   419   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   420     __ mov(O0, I0);  // Preserve the exception
   421   }
   423   // Preform needed unlocking
   424   MonitorExitStub* stub = NULL;
   425   if (method()->is_synchronized()) {
   426     monitor_address(0, FrameMap::I1_opr);
   427     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   428     __ unlock_object(I3, I2, I1, *stub->entry());
   429     __ bind(*stub->continuation());
   430   }
   432   if (compilation()->env()->dtrace_method_probes()) {
   433     __ mov(G2_thread, O0);
   434     jobject2reg(method()->constant_encoding(), O1);
   435     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   436     __ delayed()->nop();
   437   }
   439   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   440     __ mov(I0, O0);  // Restore the exception
   441   }
   443   // dispatch to the unwind logic
   444   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   445   __ delayed()->nop();
   447   // Emit the slow path assembly
   448   if (stub != NULL) {
   449     stub->emit_code(this);
   450   }
   452   return offset;
   453 }
   456 int LIR_Assembler::emit_deopt_handler() {
   457   // if the last instruction is a call (typically to do a throw which
   458   // is coming at the end after block reordering) the return address
   459   // must still point into the code area in order to avoid assertion
   460   // failures when searching for the corresponding bci => add a nop
   461   // (was bug 5/14/1999 - gri)
   462   __ nop();
   464   // generate code for deopt handler
   465   ciMethod* method = compilation()->method();
   466   address handler_base = __ start_a_stub(deopt_handler_size);
   467   if (handler_base == NULL) {
   468     // not enough space left for the handler
   469     bailout("deopt handler overflow");
   470     return -1;
   471   }
   473   int offset = code_offset();
   474   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   475   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   476   __ delayed()->nop();
   477   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   478   debug_only(__ stop("should have gone to the caller");)
   479   __ end_a_stub();
   481   return offset;
   482 }
   485 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   486   if (o == NULL) {
   487     __ set(NULL_WORD, reg);
   488   } else {
   489     int oop_index = __ oop_recorder()->find_index(o);
   490     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   491     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   492   }
   493 }
   496 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   497   // Allocate a new index in oop table to hold the oop once it's been patched
   498   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
   499   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
   501   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   502   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   503   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   504   // NULL will be dynamically patched later and the patched value may be large.  We must
   505   // therefore generate the sethi/add as a placeholders
   506   __ patchable_set(addrlit, reg);
   508   patching_epilog(patch, lir_patch_normal, reg, info);
   509 }
   512 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   513   Register Rdividend = op->in_opr1()->as_register();
   514   Register Rdivisor  = noreg;
   515   Register Rscratch  = op->in_opr3()->as_register();
   516   Register Rresult   = op->result_opr()->as_register();
   517   int divisor = -1;
   519   if (op->in_opr2()->is_register()) {
   520     Rdivisor = op->in_opr2()->as_register();
   521   } else {
   522     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   523     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   524   }
   526   assert(Rdividend != Rscratch, "");
   527   assert(Rdivisor  != Rscratch, "");
   528   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   530   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   531     // convert division by a power of two into some shifts and logical operations
   532     if (op->code() == lir_idiv) {
   533       if (divisor == 2) {
   534         __ srl(Rdividend, 31, Rscratch);
   535       } else {
   536         __ sra(Rdividend, 31, Rscratch);
   537         __ and3(Rscratch, divisor - 1, Rscratch);
   538       }
   539       __ add(Rdividend, Rscratch, Rscratch);
   540       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   541       return;
   542     } else {
   543       if (divisor == 2) {
   544         __ srl(Rdividend, 31, Rscratch);
   545       } else {
   546         __ sra(Rdividend, 31, Rscratch);
   547         __ and3(Rscratch, divisor - 1,Rscratch);
   548       }
   549       __ add(Rdividend, Rscratch, Rscratch);
   550       __ andn(Rscratch, divisor - 1,Rscratch);
   551       __ sub(Rdividend, Rscratch, Rresult);
   552       return;
   553     }
   554   }
   556   __ sra(Rdividend, 31, Rscratch);
   557   __ wry(Rscratch);
   558   if (!VM_Version::v9_instructions_work()) {
   559     // v9 doesn't require these nops
   560     __ nop();
   561     __ nop();
   562     __ nop();
   563     __ nop();
   564   }
   566   add_debug_info_for_div0_here(op->info());
   568   if (Rdivisor != noreg) {
   569     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   570   } else {
   571     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   572     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   573   }
   575   Label skip;
   576   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   577   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   578   __ bind(skip);
   580   if (op->code() == lir_irem) {
   581     if (Rdivisor != noreg) {
   582       __ smul(Rscratch, Rdivisor, Rscratch);
   583     } else {
   584       __ smul(Rscratch, divisor, Rscratch);
   585     }
   586     __ sub(Rdividend, Rscratch, Rresult);
   587   }
   588 }
   591 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   592 #ifdef ASSERT
   593   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   594   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   595   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   596 #endif
   597   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   599   if (op->cond() == lir_cond_always) {
   600     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   601   } else if (op->code() == lir_cond_float_branch) {
   602     assert(op->ublock() != NULL, "must have unordered successor");
   603     bool is_unordered = (op->ublock() == op->block());
   604     Assembler::Condition acond;
   605     switch (op->cond()) {
   606       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   607       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   608       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   609       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   610       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   611       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   612       default :                         ShouldNotReachHere();
   613     };
   615     if (!VM_Version::v9_instructions_work()) {
   616       __ nop();
   617     }
   618     __ fb( acond, false, Assembler::pn, *(op->label()));
   619   } else {
   620     assert (op->code() == lir_branch, "just checking");
   622     Assembler::Condition acond;
   623     switch (op->cond()) {
   624       case lir_cond_equal:        acond = Assembler::equal;                break;
   625       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   626       case lir_cond_less:         acond = Assembler::less;                 break;
   627       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   628       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   629       case lir_cond_greater:      acond = Assembler::greater;              break;
   630       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   631       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   632       default:                         ShouldNotReachHere();
   633     };
   635     // sparc has different condition codes for testing 32-bit
   636     // vs. 64-bit values.  We could always test xcc is we could
   637     // guarantee that 32-bit loads always sign extended but that isn't
   638     // true and since sign extension isn't free, it would impose a
   639     // slight cost.
   640 #ifdef _LP64
   641     if  (op->type() == T_INT) {
   642       __ br(acond, false, Assembler::pn, *(op->label()));
   643     } else
   644 #endif
   645       __ brx(acond, false, Assembler::pn, *(op->label()));
   646   }
   647   // The peephole pass fills the delay slot
   648 }
   651 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   652   Bytecodes::Code code = op->bytecode();
   653   LIR_Opr dst = op->result_opr();
   655   switch(code) {
   656     case Bytecodes::_i2l: {
   657       Register rlo  = dst->as_register_lo();
   658       Register rhi  = dst->as_register_hi();
   659       Register rval = op->in_opr()->as_register();
   660 #ifdef _LP64
   661       __ sra(rval, 0, rlo);
   662 #else
   663       __ mov(rval, rlo);
   664       __ sra(rval, BitsPerInt-1, rhi);
   665 #endif
   666       break;
   667     }
   668     case Bytecodes::_i2d:
   669     case Bytecodes::_i2f: {
   670       bool is_double = (code == Bytecodes::_i2d);
   671       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   672       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   673       FloatRegister rsrc = op->in_opr()->as_float_reg();
   674       if (rsrc != rdst) {
   675         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   676       }
   677       __ fitof(w, rdst, rdst);
   678       break;
   679     }
   680     case Bytecodes::_f2i:{
   681       FloatRegister rsrc = op->in_opr()->as_float_reg();
   682       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   683       Label L;
   684       // result must be 0 if value is NaN; test by comparing value to itself
   685       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   686       if (!VM_Version::v9_instructions_work()) {
   687         __ nop();
   688       }
   689       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   690       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   691       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   692       // move integer result from float register to int register
   693       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   694       __ bind (L);
   695       break;
   696     }
   697     case Bytecodes::_l2i: {
   698       Register rlo  = op->in_opr()->as_register_lo();
   699       Register rhi  = op->in_opr()->as_register_hi();
   700       Register rdst = dst->as_register();
   701 #ifdef _LP64
   702       __ sra(rlo, 0, rdst);
   703 #else
   704       __ mov(rlo, rdst);
   705 #endif
   706       break;
   707     }
   708     case Bytecodes::_d2f:
   709     case Bytecodes::_f2d: {
   710       bool is_double = (code == Bytecodes::_f2d);
   711       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   712       LIR_Opr val = op->in_opr();
   713       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   714       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   715       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   716       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   717       __ ftof(vw, dw, rval, rdst);
   718       break;
   719     }
   720     case Bytecodes::_i2s:
   721     case Bytecodes::_i2b: {
   722       Register rval = op->in_opr()->as_register();
   723       Register rdst = dst->as_register();
   724       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   725       __ sll (rval, shift, rdst);
   726       __ sra (rdst, shift, rdst);
   727       break;
   728     }
   729     case Bytecodes::_i2c: {
   730       Register rval = op->in_opr()->as_register();
   731       Register rdst = dst->as_register();
   732       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   733       __ sll (rval, shift, rdst);
   734       __ srl (rdst, shift, rdst);
   735       break;
   736     }
   738     default: ShouldNotReachHere();
   739   }
   740 }
   743 void LIR_Assembler::align_call(LIR_Code) {
   744   // do nothing since all instructions are word aligned on sparc
   745 }
   748 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   749   __ call(op->addr(), rtype);
   750   // The peephole pass fills the delay slot, add_call_info is done in
   751   // LIR_Assembler::emit_delay.
   752 }
   755 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   756   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   757   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
   758   __ relocate(rspec);
   759   __ call(op->addr(), relocInfo::none);
   760   // The peephole pass fills the delay slot, add_call_info is done in
   761   // LIR_Assembler::emit_delay.
   762 }
   765 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   766   add_debug_info_for_null_check_here(op->info());
   767   __ load_klass(O0, G3_scratch);
   768   if (Assembler::is_simm13(op->vtable_offset())) {
   769     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   770   } else {
   771     // This will generate 2 instructions
   772     __ set(op->vtable_offset(), G5_method);
   773     // ld_ptr, set_hi, set
   774     __ ld_ptr(G3_scratch, G5_method, G5_method);
   775   }
   776   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
   777   __ callr(G3_scratch, G0);
   778   // the peephole pass fills the delay slot
   779 }
   781 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
   782   int store_offset;
   783   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   784     assert(!unaligned, "can't handle this");
   785     // for offsets larger than a simm13 we setup the offset in O7
   786     __ set(offset, O7);
   787     store_offset = store(from_reg, base, O7, type, wide);
   788   } else {
   789     if (type == T_ARRAY || type == T_OBJECT) {
   790       __ verify_oop(from_reg->as_register());
   791     }
   792     store_offset = code_offset();
   793     switch (type) {
   794       case T_BOOLEAN: // fall through
   795       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   796       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   797       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   798       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   799       case T_LONG  :
   800 #ifdef _LP64
   801         if (unaligned || PatchALot) {
   802           __ srax(from_reg->as_register_lo(), 32, O7);
   803           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   804           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   805         } else {
   806           __ stx(from_reg->as_register_lo(), base, offset);
   807         }
   808 #else
   809         assert(Assembler::is_simm13(offset + 4), "must be");
   810         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   811         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   812 #endif
   813         break;
   814       case T_ADDRESS:
   815         __ st_ptr(from_reg->as_register(), base, offset);
   816         break;
   817       case T_ARRAY : // fall through
   818       case T_OBJECT:
   819         {
   820           if (UseCompressedOops && !wide) {
   821             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   822             store_offset = code_offset();
   823             __ stw(G3_scratch, base, offset);
   824           } else {
   825             __ st_ptr(from_reg->as_register(), base, offset);
   826           }
   827           break;
   828         }
   830       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   831       case T_DOUBLE:
   832         {
   833           FloatRegister reg = from_reg->as_double_reg();
   834           // split unaligned stores
   835           if (unaligned || PatchALot) {
   836             assert(Assembler::is_simm13(offset + 4), "must be");
   837             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   838             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   839           } else {
   840             __ stf(FloatRegisterImpl::D, reg, base, offset);
   841           }
   842           break;
   843         }
   844       default      : ShouldNotReachHere();
   845     }
   846   }
   847   return store_offset;
   848 }
   851 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
   852   if (type == T_ARRAY || type == T_OBJECT) {
   853     __ verify_oop(from_reg->as_register());
   854   }
   855   int store_offset = code_offset();
   856   switch (type) {
   857     case T_BOOLEAN: // fall through
   858     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   859     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   860     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   861     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   862     case T_LONG  :
   863 #ifdef _LP64
   864       __ stx(from_reg->as_register_lo(), base, disp);
   865 #else
   866       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   867       __ std(from_reg->as_register_hi(), base, disp);
   868 #endif
   869       break;
   870     case T_ADDRESS:
   871       __ st_ptr(from_reg->as_register(), base, disp);
   872       break;
   873     case T_ARRAY : // fall through
   874     case T_OBJECT:
   875       {
   876         if (UseCompressedOops && !wide) {
   877           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   878           store_offset = code_offset();
   879           __ stw(G3_scratch, base, disp);
   880         } else {
   881           __ st_ptr(from_reg->as_register(), base, disp);
   882         }
   883         break;
   884       }
   885     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   886     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   887     default      : ShouldNotReachHere();
   888   }
   889   return store_offset;
   890 }
   893 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
   894   int load_offset;
   895   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   896     assert(base != O7, "destroying register");
   897     assert(!unaligned, "can't handle this");
   898     // for offsets larger than a simm13 we setup the offset in O7
   899     __ set(offset, O7);
   900     load_offset = load(base, O7, to_reg, type, wide);
   901   } else {
   902     load_offset = code_offset();
   903     switch(type) {
   904       case T_BOOLEAN: // fall through
   905       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   906       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   907       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   908       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   909       case T_LONG  :
   910         if (!unaligned) {
   911 #ifdef _LP64
   912           __ ldx(base, offset, to_reg->as_register_lo());
   913 #else
   914           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   915                  "must be sequential");
   916           __ ldd(base, offset, to_reg->as_register_hi());
   917 #endif
   918         } else {
   919 #ifdef _LP64
   920           assert(base != to_reg->as_register_lo(), "can't handle this");
   921           assert(O7 != to_reg->as_register_lo(), "can't handle this");
   922           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   923           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   924           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   925           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   926 #else
   927           if (base == to_reg->as_register_lo()) {
   928             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   929             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   930           } else {
   931             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   932             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   933           }
   934 #endif
   935         }
   936         break;
   937       case T_ADDRESS:  __ ld_ptr(base, offset, to_reg->as_register()); break;
   938       case T_ARRAY : // fall through
   939       case T_OBJECT:
   940         {
   941           if (UseCompressedOops && !wide) {
   942             __ lduw(base, offset, to_reg->as_register());
   943             __ decode_heap_oop(to_reg->as_register());
   944           } else {
   945             __ ld_ptr(base, offset, to_reg->as_register());
   946           }
   947           break;
   948         }
   949       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
   950       case T_DOUBLE:
   951         {
   952           FloatRegister reg = to_reg->as_double_reg();
   953           // split unaligned loads
   954           if (unaligned || PatchALot) {
   955             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
   956             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
   957           } else {
   958             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
   959           }
   960           break;
   961         }
   962       default      : ShouldNotReachHere();
   963     }
   964     if (type == T_ARRAY || type == T_OBJECT) {
   965       __ verify_oop(to_reg->as_register());
   966     }
   967   }
   968   return load_offset;
   969 }
   972 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
   973   int load_offset = code_offset();
   974   switch(type) {
   975     case T_BOOLEAN: // fall through
   976     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
   977     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
   978     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
   979     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
   980     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
   981     case T_ARRAY : // fall through
   982     case T_OBJECT:
   983       {
   984           if (UseCompressedOops && !wide) {
   985             __ lduw(base, disp, to_reg->as_register());
   986             __ decode_heap_oop(to_reg->as_register());
   987           } else {
   988             __ ld_ptr(base, disp, to_reg->as_register());
   989           }
   990           break;
   991       }
   992     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
   993     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
   994     case T_LONG  :
   995 #ifdef _LP64
   996       __ ldx(base, disp, to_reg->as_register_lo());
   997 #else
   998       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   999              "must be sequential");
  1000       __ ldd(base, disp, to_reg->as_register_hi());
  1001 #endif
  1002       break;
  1003     default      : ShouldNotReachHere();
  1005   if (type == T_ARRAY || type == T_OBJECT) {
  1006     __ verify_oop(to_reg->as_register());
  1008   return load_offset;
  1011 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1012   LIR_Const* c = src->as_constant_ptr();
  1013   switch (c->type()) {
  1014     case T_INT:
  1015     case T_FLOAT: {
  1016       Register src_reg = O7;
  1017       int value = c->as_jint_bits();
  1018       if (value == 0) {
  1019         src_reg = G0;
  1020       } else {
  1021         __ set(value, O7);
  1023       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1024       __ stw(src_reg, addr.base(), addr.disp());
  1025       break;
  1027     case T_ADDRESS: {
  1028       Register src_reg = O7;
  1029       int value = c->as_jint_bits();
  1030       if (value == 0) {
  1031         src_reg = G0;
  1032       } else {
  1033         __ set(value, O7);
  1035       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1036       __ st_ptr(src_reg, addr.base(), addr.disp());
  1037       break;
  1039     case T_OBJECT: {
  1040       Register src_reg = O7;
  1041       jobject2reg(c->as_jobject(), src_reg);
  1042       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1043       __ st_ptr(src_reg, addr.base(), addr.disp());
  1044       break;
  1046     case T_LONG:
  1047     case T_DOUBLE: {
  1048       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1050       Register tmp = O7;
  1051       int value_lo = c->as_jint_lo_bits();
  1052       if (value_lo == 0) {
  1053         tmp = G0;
  1054       } else {
  1055         __ set(value_lo, O7);
  1057       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1058       int value_hi = c->as_jint_hi_bits();
  1059       if (value_hi == 0) {
  1060         tmp = G0;
  1061       } else {
  1062         __ set(value_hi, O7);
  1064       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1065       break;
  1067     default:
  1068       Unimplemented();
  1073 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
  1074   LIR_Const* c = src->as_constant_ptr();
  1075   LIR_Address* addr     = dest->as_address_ptr();
  1076   Register base = addr->base()->as_pointer_register();
  1077   int offset = -1;
  1079   switch (c->type()) {
  1080     case T_INT:
  1081     case T_FLOAT:
  1082     case T_ADDRESS: {
  1083       LIR_Opr tmp = FrameMap::O7_opr;
  1084       int value = c->as_jint_bits();
  1085       if (value == 0) {
  1086         tmp = FrameMap::G0_opr;
  1087       } else if (Assembler::is_simm13(value)) {
  1088         __ set(value, O7);
  1090       if (addr->index()->is_valid()) {
  1091         assert(addr->disp() == 0, "must be zero");
  1092         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1093       } else {
  1094         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1095         offset = store(tmp, base, addr->disp(), type, wide, false);
  1097       break;
  1099     case T_LONG:
  1100     case T_DOUBLE: {
  1101       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1102       assert(Assembler::is_simm13(addr->disp()) &&
  1103              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1105       LIR_Opr tmp = FrameMap::O7_opr;
  1106       int value_lo = c->as_jint_lo_bits();
  1107       if (value_lo == 0) {
  1108         tmp = FrameMap::G0_opr;
  1109       } else {
  1110         __ set(value_lo, O7);
  1112       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
  1113       int value_hi = c->as_jint_hi_bits();
  1114       if (value_hi == 0) {
  1115         tmp = FrameMap::G0_opr;
  1116       } else {
  1117         __ set(value_hi, O7);
  1119       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
  1120       break;
  1122     case T_OBJECT: {
  1123       jobject obj = c->as_jobject();
  1124       LIR_Opr tmp;
  1125       if (obj == NULL) {
  1126         tmp = FrameMap::G0_opr;
  1127       } else {
  1128         tmp = FrameMap::O7_opr;
  1129         jobject2reg(c->as_jobject(), O7);
  1131       // handle either reg+reg or reg+disp address
  1132       if (addr->index()->is_valid()) {
  1133         assert(addr->disp() == 0, "must be zero");
  1134         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1135       } else {
  1136         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1137         offset = store(tmp, base, addr->disp(), type, wide, false);
  1140       break;
  1142     default:
  1143       Unimplemented();
  1145   if (info != NULL) {
  1146     assert(offset != -1, "offset should've been set");
  1147     add_debug_info_for_null_check(offset, info);
  1152 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1153   LIR_Const* c = src->as_constant_ptr();
  1154   LIR_Opr to_reg = dest;
  1156   switch (c->type()) {
  1157     case T_INT:
  1158     case T_ADDRESS:
  1160         jint con = c->as_jint();
  1161         if (to_reg->is_single_cpu()) {
  1162           assert(patch_code == lir_patch_none, "no patching handled here");
  1163           __ set(con, to_reg->as_register());
  1164         } else {
  1165           ShouldNotReachHere();
  1166           assert(to_reg->is_single_fpu(), "wrong register kind");
  1168           __ set(con, O7);
  1169           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1170           __ st(O7, temp_slot);
  1171           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1174       break;
  1176     case T_LONG:
  1178         jlong con = c->as_jlong();
  1180         if (to_reg->is_double_cpu()) {
  1181 #ifdef _LP64
  1182           __ set(con,  to_reg->as_register_lo());
  1183 #else
  1184           __ set(low(con),  to_reg->as_register_lo());
  1185           __ set(high(con), to_reg->as_register_hi());
  1186 #endif
  1187 #ifdef _LP64
  1188         } else if (to_reg->is_single_cpu()) {
  1189           __ set(con, to_reg->as_register());
  1190 #endif
  1191         } else {
  1192           ShouldNotReachHere();
  1193           assert(to_reg->is_double_fpu(), "wrong register kind");
  1194           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1195           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1196           __ set(low(con),  O7);
  1197           __ st(O7, temp_slot_lo);
  1198           __ set(high(con), O7);
  1199           __ st(O7, temp_slot_hi);
  1200           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1203       break;
  1205     case T_OBJECT:
  1207         if (patch_code == lir_patch_none) {
  1208           jobject2reg(c->as_jobject(), to_reg->as_register());
  1209         } else {
  1210           jobject2reg_with_patching(to_reg->as_register(), info);
  1213       break;
  1215     case T_FLOAT:
  1217         address const_addr = __ float_constant(c->as_jfloat());
  1218         if (const_addr == NULL) {
  1219           bailout("const section overflow");
  1220           break;
  1222         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1223         AddressLiteral const_addrlit(const_addr, rspec);
  1224         if (to_reg->is_single_fpu()) {
  1225           __ patchable_sethi(const_addrlit, O7);
  1226           __ relocate(rspec);
  1227           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1229         } else {
  1230           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1232           __ set(const_addrlit, O7);
  1233           __ ld(O7, 0, to_reg->as_register());
  1236       break;
  1238     case T_DOUBLE:
  1240         address const_addr = __ double_constant(c->as_jdouble());
  1241         if (const_addr == NULL) {
  1242           bailout("const section overflow");
  1243           break;
  1245         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1247         if (to_reg->is_double_fpu()) {
  1248           AddressLiteral const_addrlit(const_addr, rspec);
  1249           __ patchable_sethi(const_addrlit, O7);
  1250           __ relocate(rspec);
  1251           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1252         } else {
  1253           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1254 #ifdef _LP64
  1255           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1256 #else
  1257           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1258           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1259 #endif
  1263       break;
  1265     default:
  1266       ShouldNotReachHere();
  1270 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1271   Register reg = addr->base()->as_register();
  1272   return Address(reg, addr->disp());
  1276 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1277   switch (type) {
  1278     case T_INT:
  1279     case T_FLOAT: {
  1280       Register tmp = O7;
  1281       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1282       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1283       __ lduw(from.base(), from.disp(), tmp);
  1284       __ stw(tmp, to.base(), to.disp());
  1285       break;
  1287     case T_OBJECT: {
  1288       Register tmp = O7;
  1289       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1290       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1291       __ ld_ptr(from.base(), from.disp(), tmp);
  1292       __ st_ptr(tmp, to.base(), to.disp());
  1293       break;
  1295     case T_LONG:
  1296     case T_DOUBLE: {
  1297       Register tmp = O7;
  1298       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1299       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1300       __ lduw(from.base(), from.disp(), tmp);
  1301       __ stw(tmp, to.base(), to.disp());
  1302       __ lduw(from.base(), from.disp() + 4, tmp);
  1303       __ stw(tmp, to.base(), to.disp() + 4);
  1304       break;
  1307     default:
  1308       ShouldNotReachHere();
  1313 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1314   Address base = as_Address(addr);
  1315   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1319 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1320   Address base = as_Address(addr);
  1321   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1325 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1326                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
  1328   LIR_Address* addr = src_opr->as_address_ptr();
  1329   LIR_Opr to_reg = dest;
  1331   Register src = addr->base()->as_pointer_register();
  1332   Register disp_reg = noreg;
  1333   int disp_value = addr->disp();
  1334   bool needs_patching = (patch_code != lir_patch_none);
  1336   if (addr->base()->type() == T_OBJECT) {
  1337     __ verify_oop(src);
  1340   PatchingStub* patch = NULL;
  1341   if (needs_patching) {
  1342     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1343     assert(!to_reg->is_double_cpu() ||
  1344            patch_code == lir_patch_none ||
  1345            patch_code == lir_patch_normal, "patching doesn't match register");
  1348   if (addr->index()->is_illegal()) {
  1349     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1350       if (needs_patching) {
  1351         __ patchable_set(0, O7);
  1352       } else {
  1353         __ set(disp_value, O7);
  1355       disp_reg = O7;
  1357   } else if (unaligned || PatchALot) {
  1358     __ add(src, addr->index()->as_register(), O7);
  1359     src = O7;
  1360   } else {
  1361     disp_reg = addr->index()->as_pointer_register();
  1362     assert(disp_value == 0, "can't handle 3 operand addresses");
  1365   // remember the offset of the load.  The patching_epilog must be done
  1366   // before the call to add_debug_info, otherwise the PcDescs don't get
  1367   // entered in increasing order.
  1368   int offset = code_offset();
  1370   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1371   if (disp_reg == noreg) {
  1372     offset = load(src, disp_value, to_reg, type, wide, unaligned);
  1373   } else {
  1374     assert(!unaligned, "can't handle this");
  1375     offset = load(src, disp_reg, to_reg, type, wide);
  1378   if (patch != NULL) {
  1379     patching_epilog(patch, patch_code, src, info);
  1381   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1385 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1386   LIR_Address* addr = src->as_address_ptr();
  1387   Address from_addr = as_Address(addr);
  1389   if (VM_Version::has_v9()) {
  1390     __ prefetch(from_addr, Assembler::severalReads);
  1395 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1396   LIR_Address* addr = src->as_address_ptr();
  1397   Address from_addr = as_Address(addr);
  1399   if (VM_Version::has_v9()) {
  1400     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1405 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1406   Address addr;
  1407   if (src->is_single_word()) {
  1408     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1409   } else if (src->is_double_word())  {
  1410     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1413   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1414   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
  1418 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1419   Address addr;
  1420   if (dest->is_single_word()) {
  1421     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1422   } else if (dest->is_double_word())  {
  1423     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1425   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1426   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
  1430 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1431   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1432     if (from_reg->is_double_fpu()) {
  1433       // double to double moves
  1434       assert(to_reg->is_double_fpu(), "should match");
  1435       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1436     } else {
  1437       // float to float moves
  1438       assert(to_reg->is_single_fpu(), "should match");
  1439       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1441   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1442     if (from_reg->is_double_cpu()) {
  1443 #ifdef _LP64
  1444       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1445 #else
  1446       assert(to_reg->is_double_cpu() &&
  1447              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1448              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1449              "should both be long and not overlap");
  1450       // long to long moves
  1451       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1452       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1453 #endif
  1454 #ifdef _LP64
  1455     } else if (to_reg->is_double_cpu()) {
  1456       // int to int moves
  1457       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1458 #endif
  1459     } else {
  1460       // int to int moves
  1461       __ mov(from_reg->as_register(), to_reg->as_register());
  1463   } else {
  1464     ShouldNotReachHere();
  1466   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1467     __ verify_oop(to_reg->as_register());
  1472 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1473                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1474                             bool wide, bool unaligned) {
  1475   LIR_Address* addr = dest->as_address_ptr();
  1477   Register src = addr->base()->as_pointer_register();
  1478   Register disp_reg = noreg;
  1479   int disp_value = addr->disp();
  1480   bool needs_patching = (patch_code != lir_patch_none);
  1482   if (addr->base()->is_oop_register()) {
  1483     __ verify_oop(src);
  1486   PatchingStub* patch = NULL;
  1487   if (needs_patching) {
  1488     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1489     assert(!from_reg->is_double_cpu() ||
  1490            patch_code == lir_patch_none ||
  1491            patch_code == lir_patch_normal, "patching doesn't match register");
  1494   if (addr->index()->is_illegal()) {
  1495     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1496       if (needs_patching) {
  1497         __ patchable_set(0, O7);
  1498       } else {
  1499         __ set(disp_value, O7);
  1501       disp_reg = O7;
  1503   } else if (unaligned || PatchALot) {
  1504     __ add(src, addr->index()->as_register(), O7);
  1505     src = O7;
  1506   } else {
  1507     disp_reg = addr->index()->as_pointer_register();
  1508     assert(disp_value == 0, "can't handle 3 operand addresses");
  1511   // remember the offset of the store.  The patching_epilog must be done
  1512   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1513   // entered in increasing order.
  1514   int offset;
  1516   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1517   if (disp_reg == noreg) {
  1518     offset = store(from_reg, src, disp_value, type, wide, unaligned);
  1519   } else {
  1520     assert(!unaligned, "can't handle this");
  1521     offset = store(from_reg, src, disp_reg, type, wide);
  1524   if (patch != NULL) {
  1525     patching_epilog(patch, patch_code, src, info);
  1528   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1532 void LIR_Assembler::return_op(LIR_Opr result) {
  1533   // the poll may need a register so just pick one that isn't the return register
  1534 #if defined(TIERED) && !defined(_LP64)
  1535   if (result->type_field() == LIR_OprDesc::long_type) {
  1536     // Must move the result to G1
  1537     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1538     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1539     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1540     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1541 #ifdef ASSERT
  1542     // mangle it so any problems will show up
  1543     __ set(0xdeadbeef, I0);
  1544     __ set(0xdeadbeef, I1);
  1545 #endif
  1547 #endif // TIERED
  1548   __ set((intptr_t)os::get_polling_page(), L0);
  1549   __ relocate(relocInfo::poll_return_type);
  1550   __ ld_ptr(L0, 0, G0);
  1551   __ ret();
  1552   __ delayed()->restore();
  1556 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1557   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1558   if (info != NULL) {
  1559     add_debug_info_for_branch(info);
  1560   } else {
  1561     __ relocate(relocInfo::poll_type);
  1564   int offset = __ offset();
  1565   __ ld_ptr(tmp->as_register(), 0, G0);
  1567   return offset;
  1571 void LIR_Assembler::emit_static_call_stub() {
  1572   address call_pc = __ pc();
  1573   address stub = __ start_a_stub(call_stub_size);
  1574   if (stub == NULL) {
  1575     bailout("static call stub overflow");
  1576     return;
  1579   int start = __ offset();
  1580   __ relocate(static_stub_Relocation::spec(call_pc));
  1582   __ set_oop(NULL, G5);
  1583   // must be set to -1 at code generation time
  1584   AddressLiteral addrlit(-1);
  1585   __ jump_to(addrlit, G3);
  1586   __ delayed()->nop();
  1588   assert(__ offset() - start <= call_stub_size, "stub too big");
  1589   __ end_a_stub();
  1593 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1594   if (opr1->is_single_fpu()) {
  1595     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1596   } else if (opr1->is_double_fpu()) {
  1597     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1598   } else if (opr1->is_single_cpu()) {
  1599     if (opr2->is_constant()) {
  1600       switch (opr2->as_constant_ptr()->type()) {
  1601         case T_INT:
  1602           { jint con = opr2->as_constant_ptr()->as_jint();
  1603             if (Assembler::is_simm13(con)) {
  1604               __ cmp(opr1->as_register(), con);
  1605             } else {
  1606               __ set(con, O7);
  1607               __ cmp(opr1->as_register(), O7);
  1610           break;
  1612         case T_OBJECT:
  1613           // there are only equal/notequal comparisions on objects
  1614           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1615             if (con == NULL) {
  1616               __ cmp(opr1->as_register(), 0);
  1617             } else {
  1618               jobject2reg(con, O7);
  1619               __ cmp(opr1->as_register(), O7);
  1622           break;
  1624         default:
  1625           ShouldNotReachHere();
  1626           break;
  1628     } else {
  1629       if (opr2->is_address()) {
  1630         LIR_Address * addr = opr2->as_address_ptr();
  1631         BasicType type = addr->type();
  1632         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1633         else                    __ ld(as_Address(addr), O7);
  1634         __ cmp(opr1->as_register(), O7);
  1635       } else {
  1636         __ cmp(opr1->as_register(), opr2->as_register());
  1639   } else if (opr1->is_double_cpu()) {
  1640     Register xlo = opr1->as_register_lo();
  1641     Register xhi = opr1->as_register_hi();
  1642     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1643       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1644 #ifdef _LP64
  1645       __ orcc(xhi, G0, G0);
  1646 #else
  1647       __ orcc(xhi, xlo, G0);
  1648 #endif
  1649     } else if (opr2->is_register()) {
  1650       Register ylo = opr2->as_register_lo();
  1651       Register yhi = opr2->as_register_hi();
  1652 #ifdef _LP64
  1653       __ cmp(xlo, ylo);
  1654 #else
  1655       __ subcc(xlo, ylo, xlo);
  1656       __ subccc(xhi, yhi, xhi);
  1657       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1658         __ orcc(xhi, xlo, G0);
  1660 #endif
  1661     } else {
  1662       ShouldNotReachHere();
  1664   } else if (opr1->is_address()) {
  1665     LIR_Address * addr = opr1->as_address_ptr();
  1666     BasicType type = addr->type();
  1667     assert (opr2->is_constant(), "Checking");
  1668     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1669     else                    __ ld(as_Address(addr), O7);
  1670     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1671   } else {
  1672     ShouldNotReachHere();
  1677 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1678   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1679     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1680     if (left->is_single_fpu()) {
  1681       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1682     } else if (left->is_double_fpu()) {
  1683       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1684     } else {
  1685       ShouldNotReachHere();
  1687   } else if (code == lir_cmp_l2i) {
  1688 #ifdef _LP64
  1689     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1690 #else
  1691     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1692             right->as_register_hi(), right->as_register_lo(),
  1693             dst->as_register());
  1694 #endif
  1695   } else {
  1696     ShouldNotReachHere();
  1701 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  1702   Assembler::Condition acond;
  1703   switch (condition) {
  1704     case lir_cond_equal:        acond = Assembler::equal;        break;
  1705     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1706     case lir_cond_less:         acond = Assembler::less;         break;
  1707     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1708     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1709     case lir_cond_greater:      acond = Assembler::greater;      break;
  1710     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1711     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1712     default:                         ShouldNotReachHere();
  1713   };
  1715   if (opr1->is_constant() && opr1->type() == T_INT) {
  1716     Register dest = result->as_register();
  1717     // load up first part of constant before branch
  1718     // and do the rest in the delay slot.
  1719     if (!Assembler::is_simm13(opr1->as_jint())) {
  1720       __ sethi(opr1->as_jint(), dest);
  1722   } else if (opr1->is_constant()) {
  1723     const2reg(opr1, result, lir_patch_none, NULL);
  1724   } else if (opr1->is_register()) {
  1725     reg2reg(opr1, result);
  1726   } else if (opr1->is_stack()) {
  1727     stack2reg(opr1, result, result->type());
  1728   } else {
  1729     ShouldNotReachHere();
  1731   Label skip;
  1732 #ifdef _LP64
  1733     if  (type == T_INT) {
  1734       __ br(acond, false, Assembler::pt, skip);
  1735     } else
  1736 #endif
  1737       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
  1738   if (opr1->is_constant() && opr1->type() == T_INT) {
  1739     Register dest = result->as_register();
  1740     if (Assembler::is_simm13(opr1->as_jint())) {
  1741       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1742     } else {
  1743       // the sethi has been done above, so just put in the low 10 bits
  1744       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1746   } else {
  1747     // can't do anything useful in the delay slot
  1748     __ delayed()->nop();
  1750   if (opr2->is_constant()) {
  1751     const2reg(opr2, result, lir_patch_none, NULL);
  1752   } else if (opr2->is_register()) {
  1753     reg2reg(opr2, result);
  1754   } else if (opr2->is_stack()) {
  1755     stack2reg(opr2, result, result->type());
  1756   } else {
  1757     ShouldNotReachHere();
  1759   __ bind(skip);
  1763 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1764   assert(info == NULL, "unused on this code path");
  1765   assert(left->is_register(), "wrong items state");
  1766   assert(dest->is_register(), "wrong items state");
  1768   if (right->is_register()) {
  1769     if (dest->is_float_kind()) {
  1771       FloatRegister lreg, rreg, res;
  1772       FloatRegisterImpl::Width w;
  1773       if (right->is_single_fpu()) {
  1774         w = FloatRegisterImpl::S;
  1775         lreg = left->as_float_reg();
  1776         rreg = right->as_float_reg();
  1777         res  = dest->as_float_reg();
  1778       } else {
  1779         w = FloatRegisterImpl::D;
  1780         lreg = left->as_double_reg();
  1781         rreg = right->as_double_reg();
  1782         res  = dest->as_double_reg();
  1785       switch (code) {
  1786         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1787         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1788         case lir_mul: // fall through
  1789         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1790         case lir_div: // fall through
  1791         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1792         default: ShouldNotReachHere();
  1795     } else if (dest->is_double_cpu()) {
  1796 #ifdef _LP64
  1797       Register dst_lo = dest->as_register_lo();
  1798       Register op1_lo = left->as_pointer_register();
  1799       Register op2_lo = right->as_pointer_register();
  1801       switch (code) {
  1802         case lir_add:
  1803           __ add(op1_lo, op2_lo, dst_lo);
  1804           break;
  1806         case lir_sub:
  1807           __ sub(op1_lo, op2_lo, dst_lo);
  1808           break;
  1810         default: ShouldNotReachHere();
  1812 #else
  1813       Register op1_lo = left->as_register_lo();
  1814       Register op1_hi = left->as_register_hi();
  1815       Register op2_lo = right->as_register_lo();
  1816       Register op2_hi = right->as_register_hi();
  1817       Register dst_lo = dest->as_register_lo();
  1818       Register dst_hi = dest->as_register_hi();
  1820       switch (code) {
  1821         case lir_add:
  1822           __ addcc(op1_lo, op2_lo, dst_lo);
  1823           __ addc (op1_hi, op2_hi, dst_hi);
  1824           break;
  1826         case lir_sub:
  1827           __ subcc(op1_lo, op2_lo, dst_lo);
  1828           __ subc (op1_hi, op2_hi, dst_hi);
  1829           break;
  1831         default: ShouldNotReachHere();
  1833 #endif
  1834     } else {
  1835       assert (right->is_single_cpu(), "Just Checking");
  1837       Register lreg = left->as_register();
  1838       Register res  = dest->as_register();
  1839       Register rreg = right->as_register();
  1840       switch (code) {
  1841         case lir_add:  __ add  (lreg, rreg, res); break;
  1842         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1843         case lir_mul:  __ mult (lreg, rreg, res); break;
  1844         default: ShouldNotReachHere();
  1847   } else {
  1848     assert (right->is_constant(), "must be constant");
  1850     if (dest->is_single_cpu()) {
  1851       Register lreg = left->as_register();
  1852       Register res  = dest->as_register();
  1853       int    simm13 = right->as_constant_ptr()->as_jint();
  1855       switch (code) {
  1856         case lir_add:  __ add  (lreg, simm13, res); break;
  1857         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1858         case lir_mul:  __ mult (lreg, simm13, res); break;
  1859         default: ShouldNotReachHere();
  1861     } else {
  1862       Register lreg = left->as_pointer_register();
  1863       Register res  = dest->as_register_lo();
  1864       long con = right->as_constant_ptr()->as_jlong();
  1865       assert(Assembler::is_simm13(con), "must be simm13");
  1867       switch (code) {
  1868         case lir_add:  __ add  (lreg, (int)con, res); break;
  1869         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1870         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1871         default: ShouldNotReachHere();
  1878 void LIR_Assembler::fpop() {
  1879   // do nothing
  1883 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1884   switch (code) {
  1885     case lir_sin:
  1886     case lir_tan:
  1887     case lir_cos: {
  1888       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1889       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1890       break;
  1892     case lir_sqrt: {
  1893       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1894       FloatRegister src_reg = value->as_double_reg();
  1895       FloatRegister dst_reg = dest->as_double_reg();
  1896       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1897       break;
  1899     case lir_abs: {
  1900       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1901       FloatRegister src_reg = value->as_double_reg();
  1902       FloatRegister dst_reg = dest->as_double_reg();
  1903       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1904       break;
  1906     default: {
  1907       ShouldNotReachHere();
  1908       break;
  1914 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1915   if (right->is_constant()) {
  1916     if (dest->is_single_cpu()) {
  1917       int simm13 = right->as_constant_ptr()->as_jint();
  1918       switch (code) {
  1919         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1920         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1921         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1922         default: ShouldNotReachHere();
  1924     } else {
  1925       long c = right->as_constant_ptr()->as_jlong();
  1926       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1927       int simm13 = (int)c;
  1928       switch (code) {
  1929         case lir_logic_and:
  1930 #ifndef _LP64
  1931           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1932 #endif
  1933           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1934           break;
  1936         case lir_logic_or:
  1937 #ifndef _LP64
  1938           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1939 #endif
  1940           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1941           break;
  1943         case lir_logic_xor:
  1944 #ifndef _LP64
  1945           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1946 #endif
  1947           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1948           break;
  1950         default: ShouldNotReachHere();
  1953   } else {
  1954     assert(right->is_register(), "right should be in register");
  1956     if (dest->is_single_cpu()) {
  1957       switch (code) {
  1958         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1959         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  1960         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1961         default: ShouldNotReachHere();
  1963     } else {
  1964 #ifdef _LP64
  1965       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  1966                                                                         left->as_register_lo();
  1967       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  1968                                                                           right->as_register_lo();
  1970       switch (code) {
  1971         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  1972         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  1973         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  1974         default: ShouldNotReachHere();
  1976 #else
  1977       switch (code) {
  1978         case lir_logic_and:
  1979           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  1980           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  1981           break;
  1983         case lir_logic_or:
  1984           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  1985           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  1986           break;
  1988         case lir_logic_xor:
  1989           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  1990           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  1991           break;
  1993         default: ShouldNotReachHere();
  1995 #endif
  2001 int LIR_Assembler::shift_amount(BasicType t) {
  2002   int elem_size = type2aelembytes(t);
  2003   switch (elem_size) {
  2004     case 1 : return 0;
  2005     case 2 : return 1;
  2006     case 4 : return 2;
  2007     case 8 : return 3;
  2009   ShouldNotReachHere();
  2010   return -1;
  2014 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2015   assert(exceptionOop->as_register() == Oexception, "should match");
  2016   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  2018   info->add_register_oop(exceptionOop);
  2020   // reuse the debug info from the safepoint poll for the throw op itself
  2021   address pc_for_athrow  = __ pc();
  2022   int pc_for_athrow_offset = __ offset();
  2023   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2024   __ set(pc_for_athrow, Oissuing_pc, rspec);
  2025   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2027   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2028   __ delayed()->nop();
  2032 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2033   assert(exceptionOop->as_register() == Oexception, "should match");
  2035   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  2036   __ delayed()->nop();
  2040 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2041   Register src = op->src()->as_register();
  2042   Register dst = op->dst()->as_register();
  2043   Register src_pos = op->src_pos()->as_register();
  2044   Register dst_pos = op->dst_pos()->as_register();
  2045   Register length  = op->length()->as_register();
  2046   Register tmp = op->tmp()->as_register();
  2047   Register tmp2 = O7;
  2049   int flags = op->flags();
  2050   ciArrayKlass* default_type = op->expected_type();
  2051   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2052   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2054 #ifdef _LP64
  2055   // higher 32bits must be null
  2056   __ sra(dst_pos, 0, dst_pos);
  2057   __ sra(src_pos, 0, src_pos);
  2058   __ sra(length, 0, length);
  2059 #endif
  2061   // set up the arraycopy stub information
  2062   ArrayCopyStub* stub = op->stub();
  2064   // always do stub if no type information is available.  it's ok if
  2065   // the known type isn't loaded since the code sanity checks
  2066   // in debug mode and the type isn't required when we know the exact type
  2067   // also check that the type is an array type.
  2068   if (op->expected_type() == NULL) {
  2069     __ mov(src,     O0);
  2070     __ mov(src_pos, O1);
  2071     __ mov(dst,     O2);
  2072     __ mov(dst_pos, O3);
  2073     __ mov(length,  O4);
  2074     address copyfunc_addr = StubRoutines::generic_arraycopy();
  2076     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  2077       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2078     } else {
  2079 #ifndef PRODUCT
  2080       if (PrintC1Statistics) {
  2081         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
  2082         __ inc_counter(counter, G1, G3);
  2084 #endif
  2085       __ call_VM_leaf(tmp, copyfunc_addr);
  2088     if (copyfunc_addr != NULL) {
  2089       __ xor3(O0, -1, tmp);
  2090       __ sub(length, tmp, length);
  2091       __ add(src_pos, tmp, src_pos);
  2092       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2093       __ delayed()->add(dst_pos, tmp, dst_pos);
  2094     } else {
  2095       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2096       __ delayed()->nop();
  2098     __ bind(*stub->continuation());
  2099     return;
  2102   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2104   // make sure src and dst are non-null and load array length
  2105   if (flags & LIR_OpArrayCopy::src_null_check) {
  2106     __ tst(src);
  2107     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2108     __ delayed()->nop();
  2111   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2112     __ tst(dst);
  2113     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2114     __ delayed()->nop();
  2117   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2118     // test src_pos register
  2119     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
  2120     __ delayed()->nop();
  2123   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2124     // test dst_pos register
  2125     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
  2126     __ delayed()->nop();
  2129   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2130     // make sure length isn't negative
  2131     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
  2132     __ delayed()->nop();
  2135   if (flags & LIR_OpArrayCopy::src_range_check) {
  2136     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2137     __ add(length, src_pos, tmp);
  2138     __ cmp(tmp2, tmp);
  2139     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2140     __ delayed()->nop();
  2143   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2144     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2145     __ add(length, dst_pos, tmp);
  2146     __ cmp(tmp2, tmp);
  2147     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2148     __ delayed()->nop();
  2151   int shift = shift_amount(basic_type);
  2153   if (flags & LIR_OpArrayCopy::type_check) {
  2154     // We don't know the array types are compatible
  2155     if (basic_type != T_OBJECT) {
  2156       // Simple test for basic type arrays
  2157       if (UseCompressedOops) {
  2158         // We don't need decode because we just need to compare
  2159         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
  2160         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2161         __ cmp(tmp, tmp2);
  2162         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2163       } else {
  2164         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2165         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2166         __ cmp(tmp, tmp2);
  2167         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2169       __ delayed()->nop();
  2170     } else {
  2171       // For object arrays, if src is a sub class of dst then we can
  2172       // safely do the copy.
  2173       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  2175       Label cont, slow;
  2176       assert_different_registers(tmp, tmp2, G3, G1);
  2178       __ load_klass(src, G3);
  2179       __ load_klass(dst, G1);
  2181       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
  2183       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2184       __ delayed()->nop();
  2186       __ cmp(G3, 0);
  2187       if (copyfunc_addr != NULL) { // use stub if available
  2188         // src is not a sub class of dst so we have to do a
  2189         // per-element check.
  2190         __ br(Assembler::notEqual, false, Assembler::pt, cont);
  2191         __ delayed()->nop();
  2193         __ bind(slow);
  2195         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  2196         if ((flags & mask) != mask) {
  2197           // Check that at least both of them object arrays.
  2198           assert(flags & mask, "one of the two should be known to be an object array");
  2200           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  2201             __ load_klass(src, tmp);
  2202           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  2203             __ load_klass(dst, tmp);
  2205           int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  2206             Klass::layout_helper_offset_in_bytes();
  2208           __ lduw(tmp, lh_offset, tmp2);
  2210           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2211           __ set(objArray_lh, tmp);
  2212           __ cmp(tmp, tmp2);
  2213           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
  2214           __ delayed()->nop();
  2217         Register src_ptr = O0;
  2218         Register dst_ptr = O1;
  2219         Register len     = O2;
  2220         Register chk_off = O3;
  2221         Register super_k = O4;
  2223         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2224         if (shift == 0) {
  2225           __ add(src_ptr, src_pos, src_ptr);
  2226         } else {
  2227           __ sll(src_pos, shift, tmp);
  2228           __ add(src_ptr, tmp, src_ptr);
  2231         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2232         if (shift == 0) {
  2233           __ add(dst_ptr, dst_pos, dst_ptr);
  2234         } else {
  2235           __ sll(dst_pos, shift, tmp);
  2236           __ add(dst_ptr, tmp, dst_ptr);
  2238         __ mov(length, len);
  2239         __ load_klass(dst, tmp);
  2241         int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  2242                          objArrayKlass::element_klass_offset_in_bytes());
  2243         __ ld_ptr(tmp, ek_offset, super_k);
  2245         int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2246                           Klass::super_check_offset_offset_in_bytes());
  2247         __ lduw(super_k, sco_offset, chk_off);
  2249         __ call_VM_leaf(tmp, copyfunc_addr);
  2251 #ifndef PRODUCT
  2252         if (PrintC1Statistics) {
  2253           Label failed;
  2254           __ br_notnull_short(O0, Assembler::pn, failed);
  2255           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
  2256           __ bind(failed);
  2258 #endif
  2260         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
  2261         __ delayed()->xor3(O0, -1, tmp);
  2263 #ifndef PRODUCT
  2264         if (PrintC1Statistics) {
  2265           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
  2267 #endif
  2269         __ sub(length, tmp, length);
  2270         __ add(src_pos, tmp, src_pos);
  2271         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
  2272         __ delayed()->add(dst_pos, tmp, dst_pos);
  2274         __ bind(cont);
  2275       } else {
  2276         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2277         __ delayed()->nop();
  2278         __ bind(cont);
  2283 #ifdef ASSERT
  2284   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2285     // Sanity check the known type with the incoming class.  For the
  2286     // primitive case the types must match exactly with src.klass and
  2287     // dst.klass each exactly matching the default type.  For the
  2288     // object array case, if no type check is needed then either the
  2289     // dst type is exactly the expected type and the src type is a
  2290     // subtype which we can't check or src is the same array as dst
  2291     // but not necessarily exactly of type default_type.
  2292     Label known_ok, halt;
  2293     jobject2reg(op->expected_type()->constant_encoding(), tmp);
  2294     if (UseCompressedOops) {
  2295       // tmp holds the default type. It currently comes uncompressed after the
  2296       // load of a constant, so encode it.
  2297       __ encode_heap_oop(tmp);
  2298       // load the raw value of the dst klass, since we will be comparing
  2299       // uncompressed values directly.
  2300       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2301       if (basic_type != T_OBJECT) {
  2302         __ cmp(tmp, tmp2);
  2303         __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2304         // load the raw value of the src klass.
  2305         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2306         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2307       } else {
  2308         __ cmp(tmp, tmp2);
  2309         __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2310         __ delayed()->cmp(src, dst);
  2311         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2312         __ delayed()->nop();
  2314     } else {
  2315       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2316       if (basic_type != T_OBJECT) {
  2317         __ cmp(tmp, tmp2);
  2318         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
  2319         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2320         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2321       } else {
  2322         __ cmp(tmp, tmp2);
  2323         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2324         __ delayed()->cmp(src, dst);
  2325         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2326         __ delayed()->nop();
  2329     __ bind(halt);
  2330     __ stop("incorrect type information in arraycopy");
  2331     __ bind(known_ok);
  2333 #endif
  2335 #ifndef PRODUCT
  2336   if (PrintC1Statistics) {
  2337     address counter = Runtime1::arraycopy_count_address(basic_type);
  2338     __ inc_counter(counter, G1, G3);
  2340 #endif
  2342   Register src_ptr = O0;
  2343   Register dst_ptr = O1;
  2344   Register len     = O2;
  2346   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2347   if (shift == 0) {
  2348     __ add(src_ptr, src_pos, src_ptr);
  2349   } else {
  2350     __ sll(src_pos, shift, tmp);
  2351     __ add(src_ptr, tmp, src_ptr);
  2354   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2355   if (shift == 0) {
  2356     __ add(dst_ptr, dst_pos, dst_ptr);
  2357   } else {
  2358     __ sll(dst_pos, shift, tmp);
  2359     __ add(dst_ptr, tmp, dst_ptr);
  2362   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  2363   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  2364   const char *name;
  2365   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  2367   // arraycopy stubs takes a length in number of elements, so don't scale it.
  2368   __ mov(length, len);
  2369   __ call_VM_leaf(tmp, entry);
  2371   __ bind(*stub->continuation());
  2375 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2376   if (dest->is_single_cpu()) {
  2377 #ifdef _LP64
  2378     if (left->type() == T_OBJECT) {
  2379       switch (code) {
  2380         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2381         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2382         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2383         default: ShouldNotReachHere();
  2385     } else
  2386 #endif
  2387       switch (code) {
  2388         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2389         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2390         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2391         default: ShouldNotReachHere();
  2393   } else {
  2394 #ifdef _LP64
  2395     switch (code) {
  2396       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2397       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2398       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2399       default: ShouldNotReachHere();
  2401 #else
  2402     switch (code) {
  2403       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2404       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2405       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2406       default: ShouldNotReachHere();
  2408 #endif
  2413 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2414 #ifdef _LP64
  2415   if (left->type() == T_OBJECT) {
  2416     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2417     Register l = left->as_register();
  2418     Register d = dest->as_register_lo();
  2419     switch (code) {
  2420       case lir_shl:  __ sllx  (l, count, d); break;
  2421       case lir_shr:  __ srax  (l, count, d); break;
  2422       case lir_ushr: __ srlx  (l, count, d); break;
  2423       default: ShouldNotReachHere();
  2425     return;
  2427 #endif
  2429   if (dest->is_single_cpu()) {
  2430     count = count & 0x1F; // Java spec
  2431     switch (code) {
  2432       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2433       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2434       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2435       default: ShouldNotReachHere();
  2437   } else if (dest->is_double_cpu()) {
  2438     count = count & 63; // Java spec
  2439     switch (code) {
  2440       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2441       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2442       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2443       default: ShouldNotReachHere();
  2445   } else {
  2446     ShouldNotReachHere();
  2451 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2452   assert(op->tmp1()->as_register()  == G1 &&
  2453          op->tmp2()->as_register()  == G3 &&
  2454          op->tmp3()->as_register()  == G4 &&
  2455          op->obj()->as_register()   == O0 &&
  2456          op->klass()->as_register() == G5, "must be");
  2457   if (op->init_check()) {
  2458     __ ldub(op->klass()->as_register(),
  2459           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
  2460           op->tmp1()->as_register());
  2461     add_debug_info_for_null_check_here(op->stub()->info());
  2462     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
  2463     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2464     __ delayed()->nop();
  2466   __ allocate_object(op->obj()->as_register(),
  2467                      op->tmp1()->as_register(),
  2468                      op->tmp2()->as_register(),
  2469                      op->tmp3()->as_register(),
  2470                      op->header_size(),
  2471                      op->object_size(),
  2472                      op->klass()->as_register(),
  2473                      *op->stub()->entry());
  2474   __ bind(*op->stub()->continuation());
  2475   __ verify_oop(op->obj()->as_register());
  2479 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2480   assert(op->tmp1()->as_register()  == G1 &&
  2481          op->tmp2()->as_register()  == G3 &&
  2482          op->tmp3()->as_register()  == G4 &&
  2483          op->tmp4()->as_register()  == O1 &&
  2484          op->klass()->as_register() == G5, "must be");
  2486   LP64_ONLY( __ signx(op->len()->as_register()); )
  2487   if (UseSlowPath ||
  2488       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2489       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2490     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2491     __ delayed()->nop();
  2492   } else {
  2493     __ allocate_array(op->obj()->as_register(),
  2494                       op->len()->as_register(),
  2495                       op->tmp1()->as_register(),
  2496                       op->tmp2()->as_register(),
  2497                       op->tmp3()->as_register(),
  2498                       arrayOopDesc::header_size(op->type()),
  2499                       type2aelembytes(op->type()),
  2500                       op->klass()->as_register(),
  2501                       *op->stub()->entry());
  2503   __ bind(*op->stub()->continuation());
  2507 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
  2508                                         ciMethodData *md, ciProfileData *data,
  2509                                         Register recv, Register tmp1, Label* update_done) {
  2510   uint i;
  2511   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2512     Label next_test;
  2513     // See if the receiver is receiver[n].
  2514     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2515                           mdo_offset_bias);
  2516     __ ld_ptr(receiver_addr, tmp1);
  2517     __ verify_oop(tmp1);
  2518     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
  2519     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2520                       mdo_offset_bias);
  2521     __ ld_ptr(data_addr, tmp1);
  2522     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2523     __ st_ptr(tmp1, data_addr);
  2524     __ ba(*update_done);
  2525     __ delayed()->nop();
  2526     __ bind(next_test);
  2529   // Didn't find receiver; find next empty slot and fill it in
  2530   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2531     Label next_test;
  2532     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2533                       mdo_offset_bias);
  2534     __ ld_ptr(recv_addr, tmp1);
  2535     __ br_notnull_short(tmp1, Assembler::pt, next_test);
  2536     __ st_ptr(recv, recv_addr);
  2537     __ set(DataLayout::counter_increment, tmp1);
  2538     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2539               mdo_offset_bias);
  2540     __ ba(*update_done);
  2541     __ delayed()->nop();
  2542     __ bind(next_test);
  2547 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
  2548                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
  2549   md = method->method_data_or_null();
  2550   assert(md != NULL, "Sanity");
  2551   data = md->bci_to_data(bci);
  2552   assert(data != NULL,       "need data for checkcast");
  2553   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  2554   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2555     // The offset is large so bias the mdo by the base of the slot so
  2556     // that the ld can use simm13s to reference the slots of the data
  2557     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2561 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  2562   // we always need a stub for the failure case.
  2563   CodeStub* stub = op->stub();
  2564   Register obj = op->object()->as_register();
  2565   Register k_RInfo = op->tmp1()->as_register();
  2566   Register klass_RInfo = op->tmp2()->as_register();
  2567   Register dst = op->result_opr()->as_register();
  2568   Register Rtmp1 = op->tmp3()->as_register();
  2569   ciKlass* k = op->klass();
  2572   if (obj == k_RInfo) {
  2573     k_RInfo = klass_RInfo;
  2574     klass_RInfo = obj;
  2577   ciMethodData* md;
  2578   ciProfileData* data;
  2579   int mdo_offset_bias = 0;
  2580   if (op->should_profile()) {
  2581     ciMethod* method = op->profiled_method();
  2582     assert(method != NULL, "Should have method");
  2583     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2585     Label not_null;
  2586     __ br_notnull_short(obj, Assembler::pn, not_null);
  2587     Register mdo      = k_RInfo;
  2588     Register data_val = Rtmp1;
  2589     jobject2reg(md->constant_encoding(), mdo);
  2590     if (mdo_offset_bias > 0) {
  2591       __ set(mdo_offset_bias, data_val);
  2592       __ add(mdo, data_val, mdo);
  2594     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2595     __ ldub(flags_addr, data_val);
  2596     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2597     __ stb(data_val, flags_addr);
  2598     __ ba(*obj_is_null);
  2599     __ delayed()->nop();
  2600     __ bind(not_null);
  2601   } else {
  2602     __ br_null(obj, false, Assembler::pn, *obj_is_null);
  2603     __ delayed()->nop();
  2606   Label profile_cast_failure, profile_cast_success;
  2607   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  2608   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  2610   // patching may screw with our temporaries on sparc,
  2611   // so let's do it before loading the class
  2612   if (k->is_loaded()) {
  2613     jobject2reg(k->constant_encoding(), k_RInfo);
  2614   } else {
  2615     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2617   assert(obj != k_RInfo, "must be different");
  2619   // get object class
  2620   // not a safepoint as obj null check happens earlier
  2621   __ load_klass(obj, klass_RInfo);
  2622   if (op->fast_check()) {
  2623     assert_different_registers(klass_RInfo, k_RInfo);
  2624     __ cmp(k_RInfo, klass_RInfo);
  2625     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
  2626     __ delayed()->nop();
  2627   } else {
  2628     bool need_slow_path = true;
  2629     if (k->is_loaded()) {
  2630       if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2631         need_slow_path = false;
  2632       // perform the fast part of the checking logic
  2633       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2634                                        (need_slow_path ? success_target : NULL),
  2635                                        failure_target, NULL,
  2636                                        RegisterOrConstant(k->super_check_offset()));
  2637     } else {
  2638       // perform the fast part of the checking logic
  2639       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
  2640                                        failure_target, NULL);
  2642     if (need_slow_path) {
  2643       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2644       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2645       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2646       __ delayed()->nop();
  2647       __ cmp(G3, 0);
  2648       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2649       __ delayed()->nop();
  2650       // Fall through to success case
  2654   if (op->should_profile()) {
  2655     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2656     assert_different_registers(obj, mdo, recv, tmp1);
  2657     __ bind(profile_cast_success);
  2658     jobject2reg(md->constant_encoding(), mdo);
  2659     if (mdo_offset_bias > 0) {
  2660       __ set(mdo_offset_bias, tmp1);
  2661       __ add(mdo, tmp1, mdo);
  2663     __ load_klass(obj, recv);
  2664     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
  2665     // Jump over the failure case
  2666     __ ba(*success);
  2667     __ delayed()->nop();
  2668     // Cast failure case
  2669     __ bind(profile_cast_failure);
  2670     jobject2reg(md->constant_encoding(), mdo);
  2671     if (mdo_offset_bias > 0) {
  2672       __ set(mdo_offset_bias, tmp1);
  2673       __ add(mdo, tmp1, mdo);
  2675     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2676     __ ld_ptr(data_addr, tmp1);
  2677     __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2678     __ st_ptr(tmp1, data_addr);
  2679     __ ba(*failure);
  2680     __ delayed()->nop();
  2682   __ ba(*success);
  2683   __ delayed()->nop();
  2686 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2687   LIR_Code code = op->code();
  2688   if (code == lir_store_check) {
  2689     Register value = op->object()->as_register();
  2690     Register array = op->array()->as_register();
  2691     Register k_RInfo = op->tmp1()->as_register();
  2692     Register klass_RInfo = op->tmp2()->as_register();
  2693     Register Rtmp1 = op->tmp3()->as_register();
  2695     __ verify_oop(value);
  2696     CodeStub* stub = op->stub();
  2697     // check if it needs to be profiled
  2698     ciMethodData* md;
  2699     ciProfileData* data;
  2700     int mdo_offset_bias = 0;
  2701     if (op->should_profile()) {
  2702       ciMethod* method = op->profiled_method();
  2703       assert(method != NULL, "Should have method");
  2704       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2706     Label profile_cast_success, profile_cast_failure, done;
  2707     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  2708     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  2710     if (op->should_profile()) {
  2711       Label not_null;
  2712       __ br_notnull_short(value, Assembler::pn, not_null);
  2713       Register mdo      = k_RInfo;
  2714       Register data_val = Rtmp1;
  2715       jobject2reg(md->constant_encoding(), mdo);
  2716       if (mdo_offset_bias > 0) {
  2717         __ set(mdo_offset_bias, data_val);
  2718         __ add(mdo, data_val, mdo);
  2720       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2721       __ ldub(flags_addr, data_val);
  2722       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2723       __ stb(data_val, flags_addr);
  2724       __ ba_short(done);
  2725       __ bind(not_null);
  2726     } else {
  2727       __ br_null_short(value, Assembler::pn, done);
  2729     add_debug_info_for_null_check_here(op->info_for_exception());
  2730     __ load_klass(array, k_RInfo);
  2731     __ load_klass(value, klass_RInfo);
  2733     // get instance klass
  2734     __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)), k_RInfo);
  2735     // perform the fast part of the checking logic
  2736     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
  2738     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2739     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2740     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2741     __ delayed()->nop();
  2742     __ cmp(G3, 0);
  2743     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2744     __ delayed()->nop();
  2745     // fall through to the success case
  2747     if (op->should_profile()) {
  2748       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2749       assert_different_registers(value, mdo, recv, tmp1);
  2750       __ bind(profile_cast_success);
  2751       jobject2reg(md->constant_encoding(), mdo);
  2752       if (mdo_offset_bias > 0) {
  2753         __ set(mdo_offset_bias, tmp1);
  2754         __ add(mdo, tmp1, mdo);
  2756       __ load_klass(value, recv);
  2757       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
  2758       __ ba_short(done);
  2759       // Cast failure case
  2760       __ bind(profile_cast_failure);
  2761       jobject2reg(md->constant_encoding(), mdo);
  2762       if (mdo_offset_bias > 0) {
  2763         __ set(mdo_offset_bias, tmp1);
  2764         __ add(mdo, tmp1, mdo);
  2766       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2767       __ ld_ptr(data_addr, tmp1);
  2768       __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2769       __ st_ptr(tmp1, data_addr);
  2770       __ ba(*stub->entry());
  2771       __ delayed()->nop();
  2773     __ bind(done);
  2774   } else if (code == lir_checkcast) {
  2775     Register obj = op->object()->as_register();
  2776     Register dst = op->result_opr()->as_register();
  2777     Label success;
  2778     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  2779     __ bind(success);
  2780     __ mov(obj, dst);
  2781   } else if (code == lir_instanceof) {
  2782     Register obj = op->object()->as_register();
  2783     Register dst = op->result_opr()->as_register();
  2784     Label success, failure, done;
  2785     emit_typecheck_helper(op, &success, &failure, &failure);
  2786     __ bind(failure);
  2787     __ set(0, dst);
  2788     __ ba_short(done);
  2789     __ bind(success);
  2790     __ set(1, dst);
  2791     __ bind(done);
  2792   } else {
  2793     ShouldNotReachHere();
  2799 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2800   if (op->code() == lir_cas_long) {
  2801     assert(VM_Version::supports_cx8(), "wrong machine");
  2802     Register addr = op->addr()->as_pointer_register();
  2803     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2804     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2805     Register new_value_lo = op->new_value()->as_register_lo();
  2806     Register new_value_hi = op->new_value()->as_register_hi();
  2807     Register t1 = op->tmp1()->as_register();
  2808     Register t2 = op->tmp2()->as_register();
  2809 #ifdef _LP64
  2810     __ mov(cmp_value_lo, t1);
  2811     __ mov(new_value_lo, t2);
  2812     // perform the compare and swap operation
  2813     __ casx(addr, t1, t2);
  2814     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2815     // overwritten with the original value in "addr" and will be equal to t1.
  2816     __ cmp(t1, t2);
  2817 #else
  2818     // move high and low halves of long values into single registers
  2819     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2820     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2821     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2822     __ sllx(new_value_hi, 32, t2);
  2823     __ srl(new_value_lo, 0, new_value_lo);
  2824     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2825     // perform the compare and swap operation
  2826     __ casx(addr, t1, t2);
  2827     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2828     // overwritten with the original value in "addr" and will be equal to t1.
  2829     // Produce icc flag for 32bit.
  2830     __ sub(t1, t2, t2);
  2831     __ srlx(t2, 32, t1);
  2832     __ orcc(t2, t1, G0);
  2833 #endif
  2834   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2835     Register addr = op->addr()->as_pointer_register();
  2836     Register cmp_value = op->cmp_value()->as_register();
  2837     Register new_value = op->new_value()->as_register();
  2838     Register t1 = op->tmp1()->as_register();
  2839     Register t2 = op->tmp2()->as_register();
  2840     __ mov(cmp_value, t1);
  2841     __ mov(new_value, t2);
  2842     if (op->code() == lir_cas_obj) {
  2843       if (UseCompressedOops) {
  2844         __ encode_heap_oop(t1);
  2845         __ encode_heap_oop(t2);
  2846         __ cas(addr, t1, t2);
  2847       } else {
  2848         __ cas_ptr(addr, t1, t2);
  2850     } else {
  2851       __ cas(addr, t1, t2);
  2853     __ cmp(t1, t2);
  2854   } else {
  2855     Unimplemented();
  2859 void LIR_Assembler::set_24bit_FPU() {
  2860   Unimplemented();
  2864 void LIR_Assembler::reset_FPU() {
  2865   Unimplemented();
  2869 void LIR_Assembler::breakpoint() {
  2870   __ breakpoint_trap();
  2874 void LIR_Assembler::push(LIR_Opr opr) {
  2875   Unimplemented();
  2879 void LIR_Assembler::pop(LIR_Opr opr) {
  2880   Unimplemented();
  2884 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2885   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2886   Register dst = dst_opr->as_register();
  2887   Register reg = mon_addr.base();
  2888   int offset = mon_addr.disp();
  2889   // compute pointer to BasicLock
  2890   if (mon_addr.is_simm13()) {
  2891     __ add(reg, offset, dst);
  2892   } else {
  2893     __ set(offset, dst);
  2894     __ add(dst, reg, dst);
  2899 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2900   Register obj = op->obj_opr()->as_register();
  2901   Register hdr = op->hdr_opr()->as_register();
  2902   Register lock = op->lock_opr()->as_register();
  2904   // obj may not be an oop
  2905   if (op->code() == lir_lock) {
  2906     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2907     if (UseFastLocking) {
  2908       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2909       // add debug info for NullPointerException only if one is possible
  2910       if (op->info() != NULL) {
  2911         add_debug_info_for_null_check_here(op->info());
  2913       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2914     } else {
  2915       // always do slow locking
  2916       // note: the slow locking code could be inlined here, however if we use
  2917       //       slow locking, speed doesn't matter anyway and this solution is
  2918       //       simpler and requires less duplicated code - additionally, the
  2919       //       slow locking code is the same in either case which simplifies
  2920       //       debugging
  2921       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2922       __ delayed()->nop();
  2924   } else {
  2925     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2926     if (UseFastLocking) {
  2927       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2928       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2929     } else {
  2930       // always do slow unlocking
  2931       // note: the slow unlocking code could be inlined here, however if we use
  2932       //       slow unlocking, speed doesn't matter anyway and this solution is
  2933       //       simpler and requires less duplicated code - additionally, the
  2934       //       slow unlocking code is the same in either case which simplifies
  2935       //       debugging
  2936       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2937       __ delayed()->nop();
  2940   __ bind(*op->stub()->continuation());
  2944 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2945   ciMethod* method = op->profiled_method();
  2946   int bci          = op->profiled_bci();
  2948   // Update counter for all call types
  2949   ciMethodData* md = method->method_data_or_null();
  2950   assert(md != NULL, "Sanity");
  2951   ciProfileData* data = md->bci_to_data(bci);
  2952   assert(data->is_CounterData(), "need CounterData for calls");
  2953   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  2954   Register mdo  = op->mdo()->as_register();
  2955 #ifdef _LP64
  2956   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
  2957   Register tmp1 = op->tmp1()->as_register_lo();
  2958 #else
  2959   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  2960   Register tmp1 = op->tmp1()->as_register();
  2961 #endif
  2962   jobject2reg(md->constant_encoding(), mdo);
  2963   int mdo_offset_bias = 0;
  2964   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  2965                             data->size_in_bytes())) {
  2966     // The offset is large so bias the mdo by the base of the slot so
  2967     // that the ld can use simm13s to reference the slots of the data
  2968     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  2969     __ set(mdo_offset_bias, O7);
  2970     __ add(mdo, O7, mdo);
  2973   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2974   Bytecodes::Code bc = method->java_code_at_bci(bci);
  2975   // Perform additional virtual call profiling for invokevirtual and
  2976   // invokeinterface bytecodes
  2977   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  2978       C1ProfileVirtualCalls) {
  2979     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  2980     Register recv = op->recv()->as_register();
  2981     assert_different_registers(mdo, tmp1, recv);
  2982     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  2983     ciKlass* known_klass = op->known_holder();
  2984     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  2985       // We know the type that will be seen at this call site; we can
  2986       // statically update the methodDataOop rather than needing to do
  2987       // dynamic tests on the receiver type
  2989       // NOTE: we should probably put a lock around this search to
  2990       // avoid collisions by concurrent compilations
  2991       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  2992       uint i;
  2993       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2994         ciKlass* receiver = vc_data->receiver(i);
  2995         if (known_klass->equals(receiver)) {
  2996           Address data_addr(mdo, md->byte_offset_of_slot(data,
  2997                                                          VirtualCallData::receiver_count_offset(i)) -
  2998                             mdo_offset_bias);
  2999           __ ld_ptr(data_addr, tmp1);
  3000           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3001           __ st_ptr(tmp1, data_addr);
  3002           return;
  3006       // Receiver type not found in profile data; select an empty slot
  3008       // Note that this is less efficient than it should be because it
  3009       // always does a write to the receiver part of the
  3010       // VirtualCallData rather than just the first time
  3011       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3012         ciKlass* receiver = vc_data->receiver(i);
  3013         if (receiver == NULL) {
  3014           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  3015                             mdo_offset_bias);
  3016           jobject2reg(known_klass->constant_encoding(), tmp1);
  3017           __ st_ptr(tmp1, recv_addr);
  3018           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  3019                             mdo_offset_bias);
  3020           __ ld_ptr(data_addr, tmp1);
  3021           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3022           __ st_ptr(tmp1, data_addr);
  3023           return;
  3026     } else {
  3027       __ load_klass(recv, recv);
  3028       Label update_done;
  3029       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
  3030       // Receiver did not match any saved receiver and there is no empty row for it.
  3031       // Increment total counter to indicate polymorphic case.
  3032       __ ld_ptr(counter_addr, tmp1);
  3033       __ add(tmp1, DataLayout::counter_increment, tmp1);
  3034       __ st_ptr(tmp1, counter_addr);
  3036       __ bind(update_done);
  3038   } else {
  3039     // Static call
  3040     __ ld_ptr(counter_addr, tmp1);
  3041     __ add(tmp1, DataLayout::counter_increment, tmp1);
  3042     __ st_ptr(tmp1, counter_addr);
  3046 void LIR_Assembler::align_backward_branch_target() {
  3047   __ align(OptoLoopAlignment);
  3051 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  3052   // make sure we are expecting a delay
  3053   // this has the side effect of clearing the delay state
  3054   // so we can use _masm instead of _masm->delayed() to do the
  3055   // code generation.
  3056   __ delayed();
  3058   // make sure we only emit one instruction
  3059   int offset = code_offset();
  3060   op->delay_op()->emit_code(this);
  3061 #ifdef ASSERT
  3062   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  3063     op->delay_op()->print();
  3065   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  3066          "only one instruction can go in a delay slot");
  3067 #endif
  3069   // we may also be emitting the call info for the instruction
  3070   // which we are the delay slot of.
  3071   CodeEmitInfo* call_info = op->call_info();
  3072   if (call_info) {
  3073     add_call_info(code_offset(), call_info);
  3076   if (VerifyStackAtCalls) {
  3077     _masm->sub(FP, SP, O7);
  3078     _masm->cmp(O7, initial_frame_size_in_bytes());
  3079     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  3084 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3085   assert(left->is_register(), "can only handle registers");
  3087   if (left->is_single_cpu()) {
  3088     __ neg(left->as_register(), dest->as_register());
  3089   } else if (left->is_single_fpu()) {
  3090     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  3091   } else if (left->is_double_fpu()) {
  3092     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  3093   } else {
  3094     assert (left->is_double_cpu(), "Must be a long");
  3095     Register Rlow = left->as_register_lo();
  3096     Register Rhi = left->as_register_hi();
  3097 #ifdef _LP64
  3098     __ sub(G0, Rlow, dest->as_register_lo());
  3099 #else
  3100     __ subcc(G0, Rlow, dest->as_register_lo());
  3101     __ subc (G0, Rhi,  dest->as_register_hi());
  3102 #endif
  3107 void LIR_Assembler::fxch(int i) {
  3108   Unimplemented();
  3111 void LIR_Assembler::fld(int i) {
  3112   Unimplemented();
  3115 void LIR_Assembler::ffree(int i) {
  3116   Unimplemented();
  3119 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  3120                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3122   // if tmp is invalid, then the function being called doesn't destroy the thread
  3123   if (tmp->is_valid()) {
  3124     __ save_thread(tmp->as_register());
  3126   __ call(dest, relocInfo::runtime_call_type);
  3127   __ delayed()->nop();
  3128   if (info != NULL) {
  3129     add_call_info_here(info);
  3131   if (tmp->is_valid()) {
  3132     __ restore_thread(tmp->as_register());
  3135 #ifdef ASSERT
  3136   __ verify_thread();
  3137 #endif // ASSERT
  3141 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3142 #ifdef _LP64
  3143   ShouldNotReachHere();
  3144 #endif
  3146   NEEDS_CLEANUP;
  3147   if (type == T_LONG) {
  3148     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  3150     // (extended to allow indexed as well as constant displaced for JSR-166)
  3151     Register idx = noreg; // contains either constant offset or index
  3153     int disp = mem_addr->disp();
  3154     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  3155       if (!Assembler::is_simm13(disp)) {
  3156         idx = O7;
  3157         __ set(disp, idx);
  3159     } else {
  3160       assert(disp == 0, "not both indexed and disp");
  3161       idx = mem_addr->index()->as_register();
  3164     int null_check_offset = -1;
  3166     Register base = mem_addr->base()->as_register();
  3167     if (src->is_register() && dest->is_address()) {
  3168       // G4 is high half, G5 is low half
  3169       if (VM_Version::v9_instructions_work()) {
  3170         // clear the top bits of G5, and scale up G4
  3171         __ srl (src->as_register_lo(),  0, G5);
  3172         __ sllx(src->as_register_hi(), 32, G4);
  3173         // combine the two halves into the 64 bits of G4
  3174         __ or3(G4, G5, G4);
  3175         null_check_offset = __ offset();
  3176         if (idx == noreg) {
  3177           __ stx(G4, base, disp);
  3178         } else {
  3179           __ stx(G4, base, idx);
  3181       } else {
  3182         __ mov (src->as_register_hi(), G4);
  3183         __ mov (src->as_register_lo(), G5);
  3184         null_check_offset = __ offset();
  3185         if (idx == noreg) {
  3186           __ std(G4, base, disp);
  3187         } else {
  3188           __ std(G4, base, idx);
  3191     } else if (src->is_address() && dest->is_register()) {
  3192       null_check_offset = __ offset();
  3193       if (VM_Version::v9_instructions_work()) {
  3194         if (idx == noreg) {
  3195           __ ldx(base, disp, G5);
  3196         } else {
  3197           __ ldx(base, idx, G5);
  3199         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3200         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3201       } else {
  3202         if (idx == noreg) {
  3203           __ ldd(base, disp, G4);
  3204         } else {
  3205           __ ldd(base, idx, G4);
  3207         // G4 is high half, G5 is low half
  3208         __ mov (G4, dest->as_register_hi());
  3209         __ mov (G5, dest->as_register_lo());
  3211     } else {
  3212       Unimplemented();
  3214     if (info != NULL) {
  3215       add_debug_info_for_null_check(null_check_offset, info);
  3218   } else {
  3219     // use normal move for all other volatiles since they don't need
  3220     // special handling to remain atomic.
  3221     move_op(src, dest, type, lir_patch_none, info, false, false, false);
  3225 void LIR_Assembler::membar() {
  3226   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3227   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3230 void LIR_Assembler::membar_acquire() {
  3231   // no-op on TSO
  3234 void LIR_Assembler::membar_release() {
  3235   // no-op on TSO
  3238 // Pack two sequential registers containing 32 bit values
  3239 // into a single 64 bit register.
  3240 // src and src->successor() are packed into dst
  3241 // src and dst may be the same register.
  3242 // Note: src is destroyed
  3243 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
  3244   Register rs = src->as_register();
  3245   Register rd = dst->as_register_lo();
  3246   __ sllx(rs, 32, rs);
  3247   __ srl(rs->successor(), 0, rs->successor());
  3248   __ or3(rs, rs->successor(), rd);
  3251 // Unpack a 64 bit value in a register into
  3252 // two sequential registers.
  3253 // src is unpacked into dst and dst->successor()
  3254 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
  3255   Register rs = src->as_register_lo();
  3256   Register rd = dst->as_register_hi();
  3257   assert_different_registers(rs, rd, rd->successor());
  3258   __ srlx(rs, 32, rd);
  3259   __ srl (rs,  0, rd->successor());
  3263 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3264   LIR_Address* addr = addr_opr->as_address_ptr();
  3265   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3267   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
  3271 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3272   assert(result_reg->is_register(), "check");
  3273   __ mov(G2_thread, result_reg->as_register());
  3277 void LIR_Assembler::peephole(LIR_List* lir) {
  3278   LIR_OpList* inst = lir->instructions_list();
  3279   for (int i = 0; i < inst->length(); i++) {
  3280     LIR_Op* op = inst->at(i);
  3281     switch (op->code()) {
  3282       case lir_cond_float_branch:
  3283       case lir_branch: {
  3284         LIR_OpBranch* branch = op->as_OpBranch();
  3285         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3286         LIR_Op* delay_op = NULL;
  3287         // we'd like to be able to pull following instructions into
  3288         // this slot but we don't know enough to do it safely yet so
  3289         // only optimize block to block control flow.
  3290         if (LIRFillDelaySlots && branch->block()) {
  3291           LIR_Op* prev = inst->at(i - 1);
  3292           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3293             // swap previous instruction into delay slot
  3294             inst->at_put(i - 1, op);
  3295             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3296 #ifndef PRODUCT
  3297             if (LIRTracePeephole) {
  3298               tty->print_cr("delayed");
  3299               inst->at(i - 1)->print();
  3300               inst->at(i)->print();
  3301               tty->cr();
  3303 #endif
  3304             continue;
  3308         if (!delay_op) {
  3309           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3311         inst->insert_before(i + 1, delay_op);
  3312         break;
  3314       case lir_static_call:
  3315       case lir_virtual_call:
  3316       case lir_icvirtual_call:
  3317       case lir_optvirtual_call:
  3318       case lir_dynamic_call: {
  3319         LIR_Op* prev = inst->at(i - 1);
  3320         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3321             (op->code() != lir_virtual_call ||
  3322              !prev->result_opr()->is_single_cpu() ||
  3323              prev->result_opr()->as_register() != O0) &&
  3324             LIR_Assembler::is_single_instruction(prev)) {
  3325           // Only moves without info can be put into the delay slot.
  3326           // Also don't allow the setup of the receiver in the delay
  3327           // slot for vtable calls.
  3328           inst->at_put(i - 1, op);
  3329           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3330 #ifndef PRODUCT
  3331           if (LIRTracePeephole) {
  3332             tty->print_cr("delayed");
  3333             inst->at(i - 1)->print();
  3334             inst->at(i)->print();
  3335             tty->cr();
  3337 #endif
  3338         } else {
  3339           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3340           inst->insert_before(i + 1, delay_op);
  3341           i++;
  3344 #if defined(TIERED) && !defined(_LP64)
  3345         // fixup the return value from G1 to O0/O1 for long returns.
  3346         // It's done here instead of in LIRGenerator because there's
  3347         // such a mismatch between the single reg and double reg
  3348         // calling convention.
  3349         LIR_OpJavaCall* callop = op->as_OpJavaCall();
  3350         if (callop->result_opr() == FrameMap::out_long_opr) {
  3351           LIR_OpJavaCall* call;
  3352           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
  3353           for (int a = 0; a < arguments->length(); a++) {
  3354             arguments[a] = callop->arguments()[a];
  3356           if (op->code() == lir_virtual_call) {
  3357             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3358                                       callop->vtable_offset(), arguments, callop->info());
  3359           } else {
  3360             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3361                                       callop->addr(), arguments, callop->info());
  3363           inst->at_put(i - 1, call);
  3364           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
  3365                                                  T_LONG, lir_patch_none, NULL));
  3367 #endif
  3368         break;
  3377 #undef __

mercurial