src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Tue, 14 Oct 2008 15:10:26 -0700

author
kvn
date
Tue, 14 Oct 2008 15:10:26 -0700
changeset 840
2649e5276dd7
parent 739
dc7f315e41f7
child 947
db4caa99ef11
child 1045
70998f2e05ef
permissions
-rw-r--r--

6532536: Optimize arraycopy stubs for Intel cpus
Summary: Use SSE2 movdqu in arraycopy stubs on newest Intel's cpus
Reviewed-by: rasbold

     1 /*
     2  * Copyright 2003-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_sharedRuntime_x86_32.cpp.incl"
    28 #define __ masm->
    29 #ifdef COMPILER2
    30 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
    31 #endif // COMPILER2
    33 DeoptimizationBlob *SharedRuntime::_deopt_blob;
    34 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
    35 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
    36 RuntimeStub*       SharedRuntime::_wrong_method_blob;
    37 RuntimeStub*       SharedRuntime::_ic_miss_blob;
    38 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
    39 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
    40 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
    42 class RegisterSaver {
    43   enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
    44   // Capture info about frame layout
    45   enum layout {
    46                 fpu_state_off = 0,
    47                 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
    48                 st0_off, st0H_off,
    49                 st1_off, st1H_off,
    50                 st2_off, st2H_off,
    51                 st3_off, st3H_off,
    52                 st4_off, st4H_off,
    53                 st5_off, st5H_off,
    54                 st6_off, st6H_off,
    55                 st7_off, st7H_off,
    57                 xmm0_off, xmm0H_off,
    58                 xmm1_off, xmm1H_off,
    59                 xmm2_off, xmm2H_off,
    60                 xmm3_off, xmm3H_off,
    61                 xmm4_off, xmm4H_off,
    62                 xmm5_off, xmm5H_off,
    63                 xmm6_off, xmm6H_off,
    64                 xmm7_off, xmm7H_off,
    65                 flags_off,
    66                 rdi_off,
    67                 rsi_off,
    68                 ignore_off,  // extra copy of rbp,
    69                 rsp_off,
    70                 rbx_off,
    71                 rdx_off,
    72                 rcx_off,
    73                 rax_off,
    74                 // The frame sender code expects that rbp will be in the "natural" place and
    75                 // will override any oopMap setting for it. We must therefore force the layout
    76                 // so that it agrees with the frame sender code.
    77                 rbp_off,
    78                 return_off,      // slot for return address
    79                 reg_save_size };
    82   public:
    84   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
    85                                      int* total_frame_words, bool verify_fpu = true);
    86   static void restore_live_registers(MacroAssembler* masm);
    88   static int rax_offset() { return rax_off; }
    89   static int rbx_offset() { return rbx_off; }
    91   // Offsets into the register save area
    92   // Used by deoptimization when it is managing result register
    93   // values on its own
    95   static int raxOffset(void) { return rax_off; }
    96   static int rdxOffset(void) { return rdx_off; }
    97   static int rbxOffset(void) { return rbx_off; }
    98   static int xmm0Offset(void) { return xmm0_off; }
    99   // This really returns a slot in the fp save area, which one is not important
   100   static int fpResultOffset(void) { return st0_off; }
   102   // During deoptimization only the result register need to be restored
   103   // all the other values have already been extracted.
   105   static void restore_result_registers(MacroAssembler* masm);
   107 };
   109 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
   110                                            int* total_frame_words, bool verify_fpu) {
   112   int frame_size_in_bytes =  (reg_save_size + additional_frame_words) * wordSize;
   113   int frame_words = frame_size_in_bytes / wordSize;
   114   *total_frame_words = frame_words;
   116   assert(FPUStateSizeInWords == 27, "update stack layout");
   118   // save registers, fpu state, and flags
   119   // We assume caller has already has return address slot on the stack
   120   // We push epb twice in this sequence because we want the real rbp,
   121   // to be under the return like a normal enter and we want to use pusha
   122   // We push by hand instead of pusing push
   123   __ enter();
   124   __ pusha();
   125   __ pushf();
   126   __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
   127   __ push_FPU_state();          // Save FPU state & init
   129   if (verify_fpu) {
   130     // Some stubs may have non standard FPU control word settings so
   131     // only check and reset the value when it required to be the
   132     // standard value.  The safepoint blob in particular can be used
   133     // in methods which are using the 24 bit control word for
   134     // optimized float math.
   136 #ifdef ASSERT
   137     // Make sure the control word has the expected value
   138     Label ok;
   139     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   140     __ jccb(Assembler::equal, ok);
   141     __ stop("corrupted control word detected");
   142     __ bind(ok);
   143 #endif
   145     // Reset the control word to guard against exceptions being unmasked
   146     // since fstp_d can cause FPU stack underflow exceptions.  Write it
   147     // into the on stack copy and then reload that to make sure that the
   148     // current and future values are correct.
   149     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   150   }
   152   __ frstor(Address(rsp, 0));
   153   if (!verify_fpu) {
   154     // Set the control word so that exceptions are masked for the
   155     // following code.
   156     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   157   }
   159   // Save the FPU registers in de-opt-able form
   161   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
   162   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
   163   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
   164   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
   165   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
   166   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
   167   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
   168   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
   170   if( UseSSE == 1 ) {           // Save the XMM state
   171     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
   172     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
   173     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
   174     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
   175     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
   176     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
   177     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
   178     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
   179   } else if( UseSSE >= 2 ) {
   180     __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
   181     __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
   182     __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
   183     __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
   184     __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
   185     __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
   186     __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
   187     __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
   188   }
   190   // Set an oopmap for the call site.  This oopmap will map all
   191   // oop-registers and debug-info registers as callee-saved.  This
   192   // will allow deoptimization at this safepoint to find all possible
   193   // debug-info recordings, as well as let GC find all oops.
   195   OopMapSet *oop_maps = new OopMapSet();
   196   OopMap* map =  new OopMap( frame_words, 0 );
   198 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
   200   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
   201   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
   202   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
   203   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
   204   // rbp, location is known implicitly, no oopMap
   205   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
   206   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
   207   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
   208   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
   209   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
   210   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
   211   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
   212   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
   213   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
   214   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
   215   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
   216   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
   217   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
   218   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
   219   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
   220   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
   221   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
   222   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
   223   // %%% This is really a waste but we'll keep things as they were for now
   224   if (true) {
   225 #define NEXTREG(x) (x)->as_VMReg()->next()
   226     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
   227     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
   228     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
   229     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
   230     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
   231     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
   232     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
   233     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
   234     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
   235     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
   236     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
   237     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
   238     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
   239     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
   240     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
   241     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
   242 #undef NEXTREG
   243 #undef STACK_OFFSET
   244   }
   246   return map;
   248 }
   250 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   252   // Recover XMM & FPU state
   253   if( UseSSE == 1 ) {
   254     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
   255     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
   256     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
   257     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
   258     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
   259     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
   260     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
   261     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
   262   } else if( UseSSE >= 2 ) {
   263     __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
   264     __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
   265     __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
   266     __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
   267     __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
   268     __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
   269     __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
   270     __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
   271   }
   272   __ pop_FPU_state();
   273   __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
   275   __ popf();
   276   __ popa();
   277   // Get the rbp, described implicitly by the frame sender code (no oopMap)
   278   __ pop(rbp);
   280 }
   282 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   284   // Just restore result register. Only used by deoptimization. By
   285   // now any callee save register that needs to be restore to a c2
   286   // caller of the deoptee has been extracted into the vframeArray
   287   // and will be stuffed into the c2i adapter we create for later
   288   // restoration so only result registers need to be restored here.
   289   //
   291   __ frstor(Address(rsp, 0));      // Restore fpu state
   293   // Recover XMM & FPU state
   294   if( UseSSE == 1 ) {
   295     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
   296   } else if( UseSSE >= 2 ) {
   297     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
   298   }
   299   __ movptr(rax, Address(rsp, rax_off*wordSize));
   300   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
   301   // Pop all of the register save are off the stack except the return address
   302   __ addptr(rsp, return_off * wordSize);
   303 }
   305 // The java_calling_convention describes stack locations as ideal slots on
   306 // a frame with no abi restrictions. Since we must observe abi restrictions
   307 // (like the placement of the register window) the slots must be biased by
   308 // the following value.
   309 static int reg2offset_in(VMReg r) {
   310   // Account for saved rbp, and return address
   311   // This should really be in_preserve_stack_slots
   312   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
   313 }
   315 static int reg2offset_out(VMReg r) {
   316   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   317 }
   319 // ---------------------------------------------------------------------------
   320 // Read the array of BasicTypes from a signature, and compute where the
   321 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   322 // quantities.  Values less than SharedInfo::stack0 are registers, those above
   323 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   324 // as framesizes are fixed.
   325 // VMRegImpl::stack0 refers to the first slot 0(sp).
   326 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   327 // up to RegisterImpl::number_of_registers) are the 32-bit
   328 // integer registers.
   330 // Pass first two oop/int args in registers ECX and EDX.
   331 // Pass first two float/double args in registers XMM0 and XMM1.
   332 // Doubles have precedence, so if you pass a mix of floats and doubles
   333 // the doubles will grab the registers before the floats will.
   335 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   336 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   337 // units regardless of build. Of course for i486 there is no 64 bit build
   340 // ---------------------------------------------------------------------------
   341 // The compiled Java calling convention.
   342 // Pass first two oop/int args in registers ECX and EDX.
   343 // Pass first two float/double args in registers XMM0 and XMM1.
   344 // Doubles have precedence, so if you pass a mix of floats and doubles
   345 // the doubles will grab the registers before the floats will.
   346 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   347                                            VMRegPair *regs,
   348                                            int total_args_passed,
   349                                            int is_outgoing) {
   350   uint    stack = 0;          // Starting stack position for args on stack
   353   // Pass first two oop/int args in registers ECX and EDX.
   354   uint reg_arg0 = 9999;
   355   uint reg_arg1 = 9999;
   357   // Pass first two float/double args in registers XMM0 and XMM1.
   358   // Doubles have precedence, so if you pass a mix of floats and doubles
   359   // the doubles will grab the registers before the floats will.
   360   // CNC - TURNED OFF FOR non-SSE.
   361   //       On Intel we have to round all doubles (and most floats) at
   362   //       call sites by storing to the stack in any case.
   363   // UseSSE=0 ==> Don't Use ==> 9999+0
   364   // UseSSE=1 ==> Floats only ==> 9999+1
   365   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
   366   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
   367   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
   368   uint freg_arg0 = 9999+fargs;
   369   uint freg_arg1 = 9999+fargs;
   371   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
   372   int i;
   373   for( i = 0; i < total_args_passed; i++) {
   374     if( sig_bt[i] == T_DOUBLE ) {
   375       // first 2 doubles go in registers
   376       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
   377       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
   378       else // Else double is passed low on the stack to be aligned.
   379         stack += 2;
   380     } else if( sig_bt[i] == T_LONG ) {
   381       stack += 2;
   382     }
   383   }
   384   int dstack = 0;             // Separate counter for placing doubles
   386   // Now pick where all else goes.
   387   for( i = 0; i < total_args_passed; i++) {
   388     // From the type and the argument number (count) compute the location
   389     switch( sig_bt[i] ) {
   390     case T_SHORT:
   391     case T_CHAR:
   392     case T_BYTE:
   393     case T_BOOLEAN:
   394     case T_INT:
   395     case T_ARRAY:
   396     case T_OBJECT:
   397     case T_ADDRESS:
   398       if( reg_arg0 == 9999 )  {
   399         reg_arg0 = i;
   400         regs[i].set1(rcx->as_VMReg());
   401       } else if( reg_arg1 == 9999 )  {
   402         reg_arg1 = i;
   403         regs[i].set1(rdx->as_VMReg());
   404       } else {
   405         regs[i].set1(VMRegImpl::stack2reg(stack++));
   406       }
   407       break;
   408     case T_FLOAT:
   409       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
   410         freg_arg0 = i;
   411         regs[i].set1(xmm0->as_VMReg());
   412       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
   413         freg_arg1 = i;
   414         regs[i].set1(xmm1->as_VMReg());
   415       } else {
   416         regs[i].set1(VMRegImpl::stack2reg(stack++));
   417       }
   418       break;
   419     case T_LONG:
   420       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   421       regs[i].set2(VMRegImpl::stack2reg(dstack));
   422       dstack += 2;
   423       break;
   424     case T_DOUBLE:
   425       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   426       if( freg_arg0 == (uint)i ) {
   427         regs[i].set2(xmm0->as_VMReg());
   428       } else if( freg_arg1 == (uint)i ) {
   429         regs[i].set2(xmm1->as_VMReg());
   430       } else {
   431         regs[i].set2(VMRegImpl::stack2reg(dstack));
   432         dstack += 2;
   433       }
   434       break;
   435     case T_VOID: regs[i].set_bad(); break;
   436       break;
   437     default:
   438       ShouldNotReachHere();
   439       break;
   440     }
   441   }
   443   // return value can be odd number of VMRegImpl stack slots make multiple of 2
   444   return round_to(stack, 2);
   445 }
   447 // Patch the callers callsite with entry to compiled code if it exists.
   448 static void patch_callers_callsite(MacroAssembler *masm) {
   449   Label L;
   450   __ verify_oop(rbx);
   451   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   452   __ jcc(Assembler::equal, L);
   453   // Schedule the branch target address early.
   454   // Call into the VM to patch the caller, then jump to compiled callee
   455   // rax, isn't live so capture return address while we easily can
   456   __ movptr(rax, Address(rsp, 0));
   457   __ pusha();
   458   __ pushf();
   460   if (UseSSE == 1) {
   461     __ subptr(rsp, 2*wordSize);
   462     __ movflt(Address(rsp, 0), xmm0);
   463     __ movflt(Address(rsp, wordSize), xmm1);
   464   }
   465   if (UseSSE >= 2) {
   466     __ subptr(rsp, 4*wordSize);
   467     __ movdbl(Address(rsp, 0), xmm0);
   468     __ movdbl(Address(rsp, 2*wordSize), xmm1);
   469   }
   470 #ifdef COMPILER2
   471   // C2 may leave the stack dirty if not in SSE2+ mode
   472   if (UseSSE >= 2) {
   473     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   474   } else {
   475     __ empty_FPU_stack();
   476   }
   477 #endif /* COMPILER2 */
   479   // VM needs caller's callsite
   480   __ push(rax);
   481   // VM needs target method
   482   __ push(rbx);
   483   __ verify_oop(rbx);
   484   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   485   __ addptr(rsp, 2*wordSize);
   487   if (UseSSE == 1) {
   488     __ movflt(xmm0, Address(rsp, 0));
   489     __ movflt(xmm1, Address(rsp, wordSize));
   490     __ addptr(rsp, 2*wordSize);
   491   }
   492   if (UseSSE >= 2) {
   493     __ movdbl(xmm0, Address(rsp, 0));
   494     __ movdbl(xmm1, Address(rsp, 2*wordSize));
   495     __ addptr(rsp, 4*wordSize);
   496   }
   498   __ popf();
   499   __ popa();
   500   __ bind(L);
   501 }
   504 // Helper function to put tags in interpreter stack.
   505 static void  tag_stack(MacroAssembler *masm, const BasicType sig, int st_off) {
   506   if (TaggedStackInterpreter) {
   507     int tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(0);
   508     if (sig == T_OBJECT || sig == T_ARRAY) {
   509       __ movptr(Address(rsp, tag_offset), frame::TagReference);
   510     } else if (sig == T_LONG || sig == T_DOUBLE) {
   511       int next_tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(1);
   512       __ movptr(Address(rsp, next_tag_offset), frame::TagValue);
   513       __ movptr(Address(rsp, tag_offset), frame::TagValue);
   514     } else {
   515       __ movptr(Address(rsp, tag_offset), frame::TagValue);
   516     }
   517   }
   518 }
   520 // Double and long values with Tagged stacks are not contiguous.
   521 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
   522   int next_off = st_off - Interpreter::stackElementSize();
   523   if (TaggedStackInterpreter) {
   524    __ movdbl(Address(rsp, next_off), r);
   525    // Move top half up and put tag in the middle.
   526    __ movl(rdi, Address(rsp, next_off+wordSize));
   527    __ movl(Address(rsp, st_off), rdi);
   528    tag_stack(masm, T_DOUBLE, next_off);
   529   } else {
   530    __ movdbl(Address(rsp, next_off), r);
   531   }
   532 }
   534 static void gen_c2i_adapter(MacroAssembler *masm,
   535                             int total_args_passed,
   536                             int comp_args_on_stack,
   537                             const BasicType *sig_bt,
   538                             const VMRegPair *regs,
   539                             Label& skip_fixup) {
   540   // Before we get into the guts of the C2I adapter, see if we should be here
   541   // at all.  We've come from compiled code and are attempting to jump to the
   542   // interpreter, which means the caller made a static call to get here
   543   // (vcalls always get a compiled target if there is one).  Check for a
   544   // compiled target.  If there is one, we need to patch the caller's call.
   545   patch_callers_callsite(masm);
   547   __ bind(skip_fixup);
   549 #ifdef COMPILER2
   550   // C2 may leave the stack dirty if not in SSE2+ mode
   551   if (UseSSE >= 2) {
   552     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   553   } else {
   554     __ empty_FPU_stack();
   555   }
   556 #endif /* COMPILER2 */
   558   // Since all args are passed on the stack, total_args_passed * interpreter_
   559   // stack_element_size  is the
   560   // space we need.
   561   int extraspace = total_args_passed * Interpreter::stackElementSize();
   563   // Get return address
   564   __ pop(rax);
   566   // set senderSP value
   567   __ movptr(rsi, rsp);
   569   __ subptr(rsp, extraspace);
   571   // Now write the args into the outgoing interpreter space
   572   for (int i = 0; i < total_args_passed; i++) {
   573     if (sig_bt[i] == T_VOID) {
   574       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   575       continue;
   576     }
   578     // st_off points to lowest address on stack.
   579     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize();
   580     int next_off = st_off - Interpreter::stackElementSize();
   582     // Say 4 args:
   583     // i   st_off
   584     // 0   12 T_LONG
   585     // 1    8 T_VOID
   586     // 2    4 T_OBJECT
   587     // 3    0 T_BOOL
   588     VMReg r_1 = regs[i].first();
   589     VMReg r_2 = regs[i].second();
   590     if (!r_1->is_valid()) {
   591       assert(!r_2->is_valid(), "");
   592       continue;
   593     }
   595     if (r_1->is_stack()) {
   596       // memory to memory use fpu stack top
   597       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   599       if (!r_2->is_valid()) {
   600         __ movl(rdi, Address(rsp, ld_off));
   601         __ movptr(Address(rsp, st_off), rdi);
   602         tag_stack(masm, sig_bt[i], st_off);
   603       } else {
   605         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
   606         // st_off == MSW, st_off-wordSize == LSW
   608         __ movptr(rdi, Address(rsp, ld_off));
   609         __ movptr(Address(rsp, next_off), rdi);
   610 #ifndef _LP64
   611         __ movptr(rdi, Address(rsp, ld_off + wordSize));
   612         __ movptr(Address(rsp, st_off), rdi);
   613 #else
   614 #ifdef ASSERT
   615         // Overwrite the unused slot with known junk
   616         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   617         __ movptr(Address(rsp, st_off), rax);
   618 #endif /* ASSERT */
   619 #endif // _LP64
   620         tag_stack(masm, sig_bt[i], next_off);
   621       }
   622     } else if (r_1->is_Register()) {
   623       Register r = r_1->as_Register();
   624       if (!r_2->is_valid()) {
   625         __ movl(Address(rsp, st_off), r);
   626         tag_stack(masm, sig_bt[i], st_off);
   627       } else {
   628         // long/double in gpr
   629         NOT_LP64(ShouldNotReachHere());
   630         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   631         // T_DOUBLE and T_LONG use two slots in the interpreter
   632         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   633           // long/double in gpr
   634 #ifdef ASSERT
   635           // Overwrite the unused slot with known junk
   636           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
   637           __ movptr(Address(rsp, st_off), rax);
   638 #endif /* ASSERT */
   639           __ movptr(Address(rsp, next_off), r);
   640           tag_stack(masm, sig_bt[i], next_off);
   641         } else {
   642           __ movptr(Address(rsp, st_off), r);
   643           tag_stack(masm, sig_bt[i], st_off);
   644         }
   645       }
   646     } else {
   647       assert(r_1->is_XMMRegister(), "");
   648       if (!r_2->is_valid()) {
   649         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   650         tag_stack(masm, sig_bt[i], st_off);
   651       } else {
   652         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
   653         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
   654       }
   655     }
   656   }
   658   // Schedule the branch target address early.
   659   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
   660   // And repush original return address
   661   __ push(rax);
   662   __ jmp(rcx);
   663 }
   666 // For tagged stacks, double or long value aren't contiguous on the stack
   667 // so get them contiguous for the xmm load
   668 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
   669   int next_val_off = ld_off - Interpreter::stackElementSize();
   670   if (TaggedStackInterpreter) {
   671     // use tag slot temporarily for MSW
   672     __ movptr(rsi, Address(saved_sp, ld_off));
   673     __ movptr(Address(saved_sp, next_val_off+wordSize), rsi);
   674     __ movdbl(r, Address(saved_sp, next_val_off));
   675     // restore tag
   676     __ movptr(Address(saved_sp, next_val_off+wordSize), frame::TagValue);
   677   } else {
   678     __ movdbl(r, Address(saved_sp, next_val_off));
   679   }
   680 }
   682 static void gen_i2c_adapter(MacroAssembler *masm,
   683                             int total_args_passed,
   684                             int comp_args_on_stack,
   685                             const BasicType *sig_bt,
   686                             const VMRegPair *regs) {
   687   // we're being called from the interpreter but need to find the
   688   // compiled return entry point.  The return address on the stack
   689   // should point at it and we just need to pull the old value out.
   690   // load up the pointer to the compiled return entry point and
   691   // rewrite our return pc. The code is arranged like so:
   692   //
   693   // .word Interpreter::return_sentinel
   694   // .word address_of_compiled_return_point
   695   // return_entry_point: blah_blah_blah
   696   //
   697   // So we can find the appropriate return point by loading up the word
   698   // just prior to the current return address we have on the stack.
   699   //
   700   // We will only enter here from an interpreted frame and never from after
   701   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   702   // race and use a c2i we will remain interpreted for the race loser(s).
   703   // This removes all sorts of headaches on the x86 side and also eliminates
   704   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   707   // Note: rsi contains the senderSP on entry. We must preserve it since
   708   // we may do a i2c -> c2i transition if we lose a race where compiled
   709   // code goes non-entrant while we get args ready.
   711   // Pick up the return address
   712   __ movptr(rax, Address(rsp, 0));
   714   // If UseSSE >= 2 then no cleanup is needed on the return to the
   715   // interpreter so skip fixing up the return entry point unless
   716   // VerifyFPU is enabled.
   717   if (UseSSE < 2 || VerifyFPU) {
   718     Label skip, chk_int;
   719     // If we were called from the call stub we need to do a little bit different
   720     // cleanup than if the interpreter returned to the call stub.
   722     ExternalAddress stub_return_address(StubRoutines::_call_stub_return_address);
   723     __ cmpptr(rax, stub_return_address.addr());
   724     __ jcc(Assembler::notEqual, chk_int);
   725     assert(StubRoutines::x86::get_call_stub_compiled_return() != NULL, "must be set");
   726     __ lea(rax, ExternalAddress(StubRoutines::x86::get_call_stub_compiled_return()));
   727     __ jmp(skip);
   729     // It must be the interpreter since we never get here via a c2i (unlike Azul)
   731     __ bind(chk_int);
   732 #ifdef ASSERT
   733     {
   734       Label ok;
   735       __ cmpl(Address(rax, -2*wordSize), Interpreter::return_sentinel);
   736       __ jcc(Assembler::equal, ok);
   737       __ int3();
   738       __ bind(ok);
   739     }
   740 #endif // ASSERT
   741     __ movptr(rax, Address(rax, -wordSize));
   742     __ bind(skip);
   743   }
   745   // rax, now contains the compiled return entry point which will do an
   746   // cleanup needed for the return from compiled to interpreted.
   748   // Must preserve original SP for loading incoming arguments because
   749   // we need to align the outgoing SP for compiled code.
   750   __ movptr(rdi, rsp);
   752   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   753   // in registers, we will occasionally have no stack args.
   754   int comp_words_on_stack = 0;
   755   if (comp_args_on_stack) {
   756     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   757     // registers are below.  By subtracting stack0, we either get a negative
   758     // number (all values in registers) or the maximum stack slot accessed.
   759     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
   760     // Convert 4-byte stack slots to words.
   761     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
   762     // Round up to miminum stack alignment, in wordSize
   763     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   764     __ subptr(rsp, comp_words_on_stack * wordSize);
   765   }
   767   // Align the outgoing SP
   768   __ andptr(rsp, -(StackAlignmentInBytes));
   770   // push the return address on the stack (note that pushing, rather
   771   // than storing it, yields the correct frame alignment for the callee)
   772   __ push(rax);
   774   // Put saved SP in another register
   775   const Register saved_sp = rax;
   776   __ movptr(saved_sp, rdi);
   779   // Will jump to the compiled code just as if compiled code was doing it.
   780   // Pre-load the register-jump target early, to schedule it better.
   781   __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
   783   // Now generate the shuffle code.  Pick up all register args and move the
   784   // rest through the floating point stack top.
   785   for (int i = 0; i < total_args_passed; i++) {
   786     if (sig_bt[i] == T_VOID) {
   787       // Longs and doubles are passed in native word order, but misaligned
   788       // in the 32-bit build.
   789       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   790       continue;
   791     }
   793     // Pick up 0, 1 or 2 words from SP+offset.
   795     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   796             "scrambled load targets?");
   797     // Load in argument order going down.
   798     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
   799     // Point to interpreter value (vs. tag)
   800     int next_off = ld_off - Interpreter::stackElementSize();
   801     //
   802     //
   803     //
   804     VMReg r_1 = regs[i].first();
   805     VMReg r_2 = regs[i].second();
   806     if (!r_1->is_valid()) {
   807       assert(!r_2->is_valid(), "");
   808       continue;
   809     }
   810     if (r_1->is_stack()) {
   811       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   812       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   814       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
   815       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
   816       // we be generated.
   817       if (!r_2->is_valid()) {
   818         // __ fld_s(Address(saved_sp, ld_off));
   819         // __ fstp_s(Address(rsp, st_off));
   820         __ movl(rsi, Address(saved_sp, ld_off));
   821         __ movptr(Address(rsp, st_off), rsi);
   822       } else {
   823         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   824         // are accessed as negative so LSW is at LOW address
   826         // ld_off is MSW so get LSW
   827         // st_off is LSW (i.e. reg.first())
   828         // __ fld_d(Address(saved_sp, next_off));
   829         // __ fstp_d(Address(rsp, st_off));
   830         //
   831         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   832         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   833         // So we must adjust where to pick up the data to match the interpreter.
   834         //
   835         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   836         // are accessed as negative so LSW is at LOW address
   838         // ld_off is MSW so get LSW
   839         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   840                            next_off : ld_off;
   841         __ movptr(rsi, Address(saved_sp, offset));
   842         __ movptr(Address(rsp, st_off), rsi);
   843 #ifndef _LP64
   844         __ movptr(rsi, Address(saved_sp, ld_off));
   845         __ movptr(Address(rsp, st_off + wordSize), rsi);
   846 #endif // _LP64
   847       }
   848     } else if (r_1->is_Register()) {  // Register argument
   849       Register r = r_1->as_Register();
   850       assert(r != rax, "must be different");
   851       if (r_2->is_valid()) {
   852         //
   853         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   854         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   855         // So we must adjust where to pick up the data to match the interpreter.
   857         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   858                            next_off : ld_off;
   860         // this can be a misaligned move
   861         __ movptr(r, Address(saved_sp, offset));
   862 #ifndef _LP64
   863         assert(r_2->as_Register() != rax, "need another temporary register");
   864         // Remember r_1 is low address (and LSB on x86)
   865         // So r_2 gets loaded from high address regardless of the platform
   866         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
   867 #endif // _LP64
   868       } else {
   869         __ movl(r, Address(saved_sp, ld_off));
   870       }
   871     } else {
   872       assert(r_1->is_XMMRegister(), "");
   873       if (!r_2->is_valid()) {
   874         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   875       } else {
   876         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
   877       }
   878     }
   879   }
   881   // 6243940 We might end up in handle_wrong_method if
   882   // the callee is deoptimized as we race thru here. If that
   883   // happens we don't want to take a safepoint because the
   884   // caller frame will look interpreted and arguments are now
   885   // "compiled" so it is much better to make this transition
   886   // invisible to the stack walking code. Unfortunately if
   887   // we try and find the callee by normal means a safepoint
   888   // is possible. So we stash the desired callee in the thread
   889   // and the vm will find there should this case occur.
   891   __ get_thread(rax);
   892   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
   894   // move methodOop to rax, in case we end up in an c2i adapter.
   895   // the c2i adapters expect methodOop in rax, (c2) because c2's
   896   // resolve stubs return the result (the method) in rax,.
   897   // I'd love to fix this.
   898   __ mov(rax, rbx);
   900   __ jmp(rdi);
   901 }
   903 // ---------------------------------------------------------------
   904 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   905                                                             int total_args_passed,
   906                                                             int comp_args_on_stack,
   907                                                             const BasicType *sig_bt,
   908                                                             const VMRegPair *regs) {
   909   address i2c_entry = __ pc();
   911   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   913   // -------------------------------------------------------------------------
   914   // Generate a C2I adapter.  On entry we know rbx, holds the methodOop during calls
   915   // to the interpreter.  The args start out packed in the compiled layout.  They
   916   // need to be unpacked into the interpreter layout.  This will almost always
   917   // require some stack space.  We grow the current (compiled) stack, then repack
   918   // the args.  We  finally end in a jump to the generic interpreter entry point.
   919   // On exit from the interpreter, the interpreter will restore our SP (lest the
   920   // compiled code, which relys solely on SP and not EBP, get sick).
   922   address c2i_unverified_entry = __ pc();
   923   Label skip_fixup;
   925   Register holder = rax;
   926   Register receiver = rcx;
   927   Register temp = rbx;
   929   {
   931     Label missed;
   933     __ verify_oop(holder);
   934     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
   935     __ verify_oop(temp);
   937     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
   938     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
   939     __ jcc(Assembler::notEqual, missed);
   940     // Method might have been compiled since the call site was patched to
   941     // interpreted if that is the case treat it as a miss so we can get
   942     // the call site corrected.
   943     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   944     __ jcc(Assembler::equal, skip_fixup);
   946     __ bind(missed);
   947     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   948   }
   950   address c2i_entry = __ pc();
   952   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   954   __ flush();
   955   return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
   956 }
   958 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   959                                          VMRegPair *regs,
   960                                          int total_args_passed) {
   961 // We return the amount of VMRegImpl stack slots we need to reserve for all
   962 // the arguments NOT counting out_preserve_stack_slots.
   964   uint    stack = 0;        // All arguments on stack
   966   for( int i = 0; i < total_args_passed; i++) {
   967     // From the type and the argument number (count) compute the location
   968     switch( sig_bt[i] ) {
   969     case T_BOOLEAN:
   970     case T_CHAR:
   971     case T_FLOAT:
   972     case T_BYTE:
   973     case T_SHORT:
   974     case T_INT:
   975     case T_OBJECT:
   976     case T_ARRAY:
   977     case T_ADDRESS:
   978       regs[i].set1(VMRegImpl::stack2reg(stack++));
   979       break;
   980     case T_LONG:
   981     case T_DOUBLE: // The stack numbering is reversed from Java
   982       // Since C arguments do not get reversed, the ordering for
   983       // doubles on the stack must be opposite the Java convention
   984       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   985       regs[i].set2(VMRegImpl::stack2reg(stack));
   986       stack += 2;
   987       break;
   988     case T_VOID: regs[i].set_bad(); break;
   989     default:
   990       ShouldNotReachHere();
   991       break;
   992     }
   993   }
   994   return stack;
   995 }
   997 // A simple move of integer like type
   998 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   999   if (src.first()->is_stack()) {
  1000     if (dst.first()->is_stack()) {
  1001       // stack to stack
  1002       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1003       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1004       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
  1005       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1006     } else {
  1007       // stack to reg
  1008       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
  1010   } else if (dst.first()->is_stack()) {
  1011     // reg to stack
  1012     // no need to sign extend on 64bit
  1013     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1014   } else {
  1015     if (dst.first() != src.first()) {
  1016       __ mov(dst.first()->as_Register(), src.first()->as_Register());
  1021 // An oop arg. Must pass a handle not the oop itself
  1022 static void object_move(MacroAssembler* masm,
  1023                         OopMap* map,
  1024                         int oop_handle_offset,
  1025                         int framesize_in_slots,
  1026                         VMRegPair src,
  1027                         VMRegPair dst,
  1028                         bool is_receiver,
  1029                         int* receiver_offset) {
  1031   // Because of the calling conventions we know that src can be a
  1032   // register or a stack location. dst can only be a stack location.
  1034   assert(dst.first()->is_stack(), "must be stack");
  1035   // must pass a handle. First figure out the location we use as a handle
  1037   if (src.first()->is_stack()) {
  1038     // Oop is already on the stack as an argument
  1039     Register rHandle = rax;
  1040     Label nil;
  1041     __ xorptr(rHandle, rHandle);
  1042     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
  1043     __ jcc(Assembler::equal, nil);
  1044     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
  1045     __ bind(nil);
  1046     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1048     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1049     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1050     if (is_receiver) {
  1051       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1053   } else {
  1054     // Oop is in an a register we must store it to the space we reserve
  1055     // on the stack for oop_handles
  1056     const Register rOop = src.first()->as_Register();
  1057     const Register rHandle = rax;
  1058     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
  1059     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1060     Label skip;
  1061     __ movptr(Address(rsp, offset), rOop);
  1062     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1063     __ xorptr(rHandle, rHandle);
  1064     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1065     __ jcc(Assembler::equal, skip);
  1066     __ lea(rHandle, Address(rsp, offset));
  1067     __ bind(skip);
  1068     // Store the handle parameter
  1069     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1070     if (is_receiver) {
  1071       *receiver_offset = offset;
  1076 // A float arg may have to do float reg int reg conversion
  1077 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1078   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1080   // Because of the calling convention we know that src is either a stack location
  1081   // or an xmm register. dst can only be a stack location.
  1083   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
  1085   if (src.first()->is_stack()) {
  1086     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1087     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1088   } else {
  1089     // reg to stack
  1090     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1094 // A long move
  1095 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1097   // The only legal possibility for a long_move VMRegPair is:
  1098   // 1: two stack slots (possibly unaligned)
  1099   // as neither the java  or C calling convention will use registers
  1100   // for longs.
  1102   if (src.first()->is_stack() && dst.first()->is_stack()) {
  1103     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
  1104     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1105     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1106     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1107     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1108   } else {
  1109     ShouldNotReachHere();
  1113 // A double move
  1114 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1116   // The only legal possibilities for a double_move VMRegPair are:
  1117   // The painful thing here is that like long_move a VMRegPair might be
  1119   // Because of the calling convention we know that src is either
  1120   //   1: a single physical register (xmm registers only)
  1121   //   2: two stack slots (possibly unaligned)
  1122   // dst can only be a pair of stack slots.
  1124   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
  1126   if (src.first()->is_stack()) {
  1127     // source is all stack
  1128     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1129     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1130     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1131     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1132   } else {
  1133     // reg to stack
  1134     // No worries about stack alignment
  1135     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1140 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1141   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1142   // which by this time is free to use
  1143   switch (ret_type) {
  1144   case T_FLOAT:
  1145     __ fstp_s(Address(rbp, -wordSize));
  1146     break;
  1147   case T_DOUBLE:
  1148     __ fstp_d(Address(rbp, -2*wordSize));
  1149     break;
  1150   case T_VOID:  break;
  1151   case T_LONG:
  1152     __ movptr(Address(rbp, -wordSize), rax);
  1153     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
  1154     break;
  1155   default: {
  1156     __ movptr(Address(rbp, -wordSize), rax);
  1161 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1162   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1163   // which by this time is free to use
  1164   switch (ret_type) {
  1165   case T_FLOAT:
  1166     __ fld_s(Address(rbp, -wordSize));
  1167     break;
  1168   case T_DOUBLE:
  1169     __ fld_d(Address(rbp, -2*wordSize));
  1170     break;
  1171   case T_LONG:
  1172     __ movptr(rax, Address(rbp, -wordSize));
  1173     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
  1174     break;
  1175   case T_VOID:  break;
  1176   default: {
  1177     __ movptr(rax, Address(rbp, -wordSize));
  1182 // ---------------------------------------------------------------------------
  1183 // Generate a native wrapper for a given method.  The method takes arguments
  1184 // in the Java compiled code convention, marshals them to the native
  1185 // convention (handlizes oops, etc), transitions to native, makes the call,
  1186 // returns to java state (possibly blocking), unhandlizes any result and
  1187 // returns.
  1188 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
  1189                                                 methodHandle method,
  1190                                                 int total_in_args,
  1191                                                 int comp_args_on_stack,
  1192                                                 BasicType *in_sig_bt,
  1193                                                 VMRegPair *in_regs,
  1194                                                 BasicType ret_type) {
  1196   // An OopMap for lock (and class if static)
  1197   OopMapSet *oop_maps = new OopMapSet();
  1199   // We have received a description of where all the java arg are located
  1200   // on entry to the wrapper. We need to convert these args to where
  1201   // the jni function will expect them. To figure out where they go
  1202   // we convert the java signature to a C signature by inserting
  1203   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1205   int total_c_args = total_in_args + 1;
  1206   if (method->is_static()) {
  1207     total_c_args++;
  1210   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1211   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
  1213   int argc = 0;
  1214   out_sig_bt[argc++] = T_ADDRESS;
  1215   if (method->is_static()) {
  1216     out_sig_bt[argc++] = T_OBJECT;
  1219   int i;
  1220   for (i = 0; i < total_in_args ; i++ ) {
  1221     out_sig_bt[argc++] = in_sig_bt[i];
  1225   // Now figure out where the args must be stored and how much stack space
  1226   // they require (neglecting out_preserve_stack_slots but space for storing
  1227   // the 1st six register arguments). It's weird see int_stk_helper.
  1228   //
  1229   int out_arg_slots;
  1230   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1232   // Compute framesize for the wrapper.  We need to handlize all oops in
  1233   // registers a max of 2 on x86.
  1235   // Calculate the total number of stack slots we will need.
  1237   // First count the abi requirement plus all of the outgoing args
  1238   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1240   // Now the space for the inbound oop handle area
  1242   int oop_handle_offset = stack_slots;
  1243   stack_slots += 2*VMRegImpl::slots_per_word;
  1245   // Now any space we need for handlizing a klass if static method
  1247   int klass_slot_offset = 0;
  1248   int klass_offset = -1;
  1249   int lock_slot_offset = 0;
  1250   bool is_static = false;
  1251   int oop_temp_slot_offset = 0;
  1253   if (method->is_static()) {
  1254     klass_slot_offset = stack_slots;
  1255     stack_slots += VMRegImpl::slots_per_word;
  1256     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1257     is_static = true;
  1260   // Plus a lock if needed
  1262   if (method->is_synchronized()) {
  1263     lock_slot_offset = stack_slots;
  1264     stack_slots += VMRegImpl::slots_per_word;
  1267   // Now a place (+2) to save return values or temp during shuffling
  1268   // + 2 for return address (which we own) and saved rbp,
  1269   stack_slots += 4;
  1271   // Ok The space we have allocated will look like:
  1272   //
  1273   //
  1274   // FP-> |                     |
  1275   //      |---------------------|
  1276   //      | 2 slots for moves   |
  1277   //      |---------------------|
  1278   //      | lock box (if sync)  |
  1279   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
  1280   //      | klass (if static)   |
  1281   //      |---------------------| <- klass_slot_offset
  1282   //      | oopHandle area      |
  1283   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
  1284   //      | outbound memory     |
  1285   //      | based arguments     |
  1286   //      |                     |
  1287   //      |---------------------|
  1288   //      |                     |
  1289   // SP-> | out_preserved_slots |
  1290   //
  1291   //
  1292   // ****************************************************************************
  1293   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1294   // arguments off of the stack after the jni call. Before the call we can use
  1295   // instructions that are SP relative. After the jni call we switch to FP
  1296   // relative instructions instead of re-adjusting the stack on windows.
  1297   // ****************************************************************************
  1300   // Now compute actual number of stack words we need rounding to make
  1301   // stack properly aligned.
  1302   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  1304   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1306   intptr_t start = (intptr_t)__ pc();
  1308   // First thing make an ic check to see if we should even be here
  1310   // We are free to use all registers as temps without saving them and
  1311   // restoring them except rbp,. rbp, is the only callee save register
  1312   // as far as the interpreter and the compiler(s) are concerned.
  1315   const Register ic_reg = rax;
  1316   const Register receiver = rcx;
  1317   Label hit;
  1318   Label exception_pending;
  1321   __ verify_oop(receiver);
  1322   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  1323   __ jcc(Assembler::equal, hit);
  1325   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1327   // verified entry must be aligned for code patching.
  1328   // and the first 5 bytes must be in the same cache line
  1329   // if we align at 8 then we will be sure 5 bytes are in the same line
  1330   __ align(8);
  1332   __ bind(hit);
  1334   int vep_offset = ((intptr_t)__ pc()) - start;
  1336 #ifdef COMPILER1
  1337   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1338     // Object.hashCode can pull the hashCode from the header word
  1339     // instead of doing a full VM transition once it's been computed.
  1340     // Since hashCode is usually polymorphic at call sites we can't do
  1341     // this optimization at the call site without a lot of work.
  1342     Label slowCase;
  1343     Register receiver = rcx;
  1344     Register result = rax;
  1345     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
  1347     // check if locked
  1348     __ testptr(result, markOopDesc::unlocked_value);
  1349     __ jcc (Assembler::zero, slowCase);
  1351     if (UseBiasedLocking) {
  1352       // Check if biased and fall through to runtime if so
  1353       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
  1354       __ jcc (Assembler::notZero, slowCase);
  1357     // get hash
  1358     __ andptr(result, markOopDesc::hash_mask_in_place);
  1359     // test if hashCode exists
  1360     __ jcc  (Assembler::zero, slowCase);
  1361     __ shrptr(result, markOopDesc::hash_shift);
  1362     __ ret(0);
  1363     __ bind (slowCase);
  1365 #endif // COMPILER1
  1367   // The instruction at the verified entry point must be 5 bytes or longer
  1368   // because it can be patched on the fly by make_non_entrant. The stack bang
  1369   // instruction fits that requirement.
  1371   // Generate stack overflow check
  1373   if (UseStackBanging) {
  1374     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1375   } else {
  1376     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1377     __ fat_nop();
  1380   // Generate a new frame for the wrapper.
  1381   __ enter();
  1382   // -2 because return address is already present and so is saved rbp,
  1383   __ subptr(rsp, stack_size - 2*wordSize);
  1385   // Frame is now completed as far a size and linkage.
  1387   int frame_complete = ((intptr_t)__ pc()) - start;
  1389   // Calculate the difference between rsp and rbp,. We need to know it
  1390   // after the native call because on windows Java Natives will pop
  1391   // the arguments and it is painful to do rsp relative addressing
  1392   // in a platform independent way. So after the call we switch to
  1393   // rbp, relative addressing.
  1395   int fp_adjustment = stack_size - 2*wordSize;
  1397 #ifdef COMPILER2
  1398   // C2 may leave the stack dirty if not in SSE2+ mode
  1399   if (UseSSE >= 2) {
  1400     __ verify_FPU(0, "c2i transition should have clean FPU stack");
  1401   } else {
  1402     __ empty_FPU_stack();
  1404 #endif /* COMPILER2 */
  1406   // Compute the rbp, offset for any slots used after the jni call
  1408   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
  1409   int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
  1411   // We use rdi as a thread pointer because it is callee save and
  1412   // if we load it once it is usable thru the entire wrapper
  1413   const Register thread = rdi;
  1415   // We use rsi as the oop handle for the receiver/klass
  1416   // It is callee save so it survives the call to native
  1418   const Register oop_handle_reg = rsi;
  1420   __ get_thread(thread);
  1423   //
  1424   // We immediately shuffle the arguments so that any vm call we have to
  1425   // make from here on out (sync slow path, jvmti, etc.) we will have
  1426   // captured the oops from our caller and have a valid oopMap for
  1427   // them.
  1429   // -----------------
  1430   // The Grand Shuffle
  1431   //
  1432   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  1433   // and, if static, the class mirror instead of a receiver.  This pretty much
  1434   // guarantees that register layout will not match (and x86 doesn't use reg
  1435   // parms though amd does).  Since the native abi doesn't use register args
  1436   // and the java conventions does we don't have to worry about collisions.
  1437   // All of our moved are reg->stack or stack->stack.
  1438   // We ignore the extra arguments during the shuffle and handle them at the
  1439   // last moment. The shuffle is described by the two calling convention
  1440   // vectors we have in our possession. We simply walk the java vector to
  1441   // get the source locations and the c vector to get the destinations.
  1443   int c_arg = method->is_static() ? 2 : 1 ;
  1445   // Record rsp-based slot for receiver on stack for non-static methods
  1446   int receiver_offset = -1;
  1448   // This is a trick. We double the stack slots so we can claim
  1449   // the oops in the caller's frame. Since we are sure to have
  1450   // more args than the caller doubling is enough to make
  1451   // sure we can capture all the incoming oop args from the
  1452   // caller.
  1453   //
  1454   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1456   // Mark location of rbp,
  1457   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
  1459   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
  1460   // Are free to temporaries if we have to do  stack to steck moves.
  1461   // All inbound args are referenced based on rbp, and all outbound args via rsp.
  1463   for (i = 0; i < total_in_args ; i++, c_arg++ ) {
  1464     switch (in_sig_bt[i]) {
  1465       case T_ARRAY:
  1466       case T_OBJECT:
  1467         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  1468                     ((i == 0) && (!is_static)),
  1469                     &receiver_offset);
  1470         break;
  1471       case T_VOID:
  1472         break;
  1474       case T_FLOAT:
  1475         float_move(masm, in_regs[i], out_regs[c_arg]);
  1476           break;
  1478       case T_DOUBLE:
  1479         assert( i + 1 < total_in_args &&
  1480                 in_sig_bt[i + 1] == T_VOID &&
  1481                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  1482         double_move(masm, in_regs[i], out_regs[c_arg]);
  1483         break;
  1485       case T_LONG :
  1486         long_move(masm, in_regs[i], out_regs[c_arg]);
  1487         break;
  1489       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  1491       default:
  1492         simple_move32(masm, in_regs[i], out_regs[c_arg]);
  1496   // Pre-load a static method's oop into rsi.  Used both by locking code and
  1497   // the normal JNI call code.
  1498   if (method->is_static()) {
  1500     //  load opp into a register
  1501     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
  1503     // Now handlize the static class mirror it's known not-null.
  1504     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  1505     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  1507     // Now get the handle
  1508     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  1509     // store the klass handle as second argument
  1510     __ movptr(Address(rsp, wordSize), oop_handle_reg);
  1513   // Change state to native (we save the return address in the thread, since it might not
  1514   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1515   // points into the right code segment. It does not have to be the correct return pc.
  1516   // We use the same pc/oopMap repeatedly when we call out
  1518   intptr_t the_pc = (intptr_t) __ pc();
  1519   oop_maps->add_gc_map(the_pc - start, map);
  1521   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
  1524   // We have all of the arguments setup at this point. We must not touch any register
  1525   // argument registers at this point (what if we save/restore them there are no oop?
  1528     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  1529     __ movoop(rax, JNIHandles::make_local(method()));
  1530     __ call_VM_leaf(
  1531          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1532          thread, rax);
  1536   // These are register definitions we need for locking/unlocking
  1537   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
  1538   const Register obj_reg  = rcx;  // Will contain the oop
  1539   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
  1541   Label slow_path_lock;
  1542   Label lock_done;
  1544   // Lock a synchronized method
  1545   if (method->is_synchronized()) {
  1548     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  1550     // Get the handle (the 2nd argument)
  1551     __ movptr(oop_handle_reg, Address(rsp, wordSize));
  1553     // Get address of the box
  1555     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
  1557     // Load the oop from the handle
  1558     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1560     if (UseBiasedLocking) {
  1561       // Note that oop_handle_reg is trashed during this call
  1562       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
  1565     // Load immediate 1 into swap_reg %rax,
  1566     __ movptr(swap_reg, 1);
  1568     // Load (object->mark() | 1) into swap_reg %rax,
  1569     __ orptr(swap_reg, Address(obj_reg, 0));
  1571     // Save (object->mark() | 1) into BasicLock's displaced header
  1572     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1574     if (os::is_MP()) {
  1575       __ lock();
  1578     // src -> dest iff dest == rax, else rax, <- dest
  1579     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
  1580     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  1581     __ jcc(Assembler::equal, lock_done);
  1583     // Test if the oopMark is an obvious stack pointer, i.e.,
  1584     //  1) (mark & 3) == 0, and
  1585     //  2) rsp <= mark < mark + os::pagesize()
  1586     // These 3 tests can be done by evaluating the following
  1587     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  1588     // assuming both stack pointer and pagesize have their
  1589     // least significant 2 bits clear.
  1590     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
  1592     __ subptr(swap_reg, rsp);
  1593     __ andptr(swap_reg, 3 - os::vm_page_size());
  1595     // Save the test result, for recursive case, the result is zero
  1596     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1597     __ jcc(Assembler::notEqual, slow_path_lock);
  1598     // Slow path will re-enter here
  1599     __ bind(lock_done);
  1601     if (UseBiasedLocking) {
  1602       // Re-fetch oop_handle_reg as we trashed it above
  1603       __ movptr(oop_handle_reg, Address(rsp, wordSize));
  1608   // Finally just about ready to make the JNI call
  1611   // get JNIEnv* which is first argument to native
  1613   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
  1614   __ movptr(Address(rsp, 0), rdx);
  1616   // Now set thread in native
  1617   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1619   __ call(RuntimeAddress(method->native_function()));
  1621   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1622   // arguments off of the stack. We could just re-adjust the stack pointer here
  1623   // and continue to do SP relative addressing but we instead switch to FP
  1624   // relative addressing.
  1626   // Unpack native results.
  1627   switch (ret_type) {
  1628   case T_BOOLEAN: __ c2bool(rax);            break;
  1629   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
  1630   case T_BYTE   : __ sign_extend_byte (rax); break;
  1631   case T_SHORT  : __ sign_extend_short(rax); break;
  1632   case T_INT    : /* nothing to do */        break;
  1633   case T_DOUBLE :
  1634   case T_FLOAT  :
  1635     // Result is in st0 we'll save as needed
  1636     break;
  1637   case T_ARRAY:                 // Really a handle
  1638   case T_OBJECT:                // Really a handle
  1639       break; // can't de-handlize until after safepoint check
  1640   case T_VOID: break;
  1641   case T_LONG: break;
  1642   default       : ShouldNotReachHere();
  1645   // Switch thread to "native transition" state before reading the synchronization state.
  1646   // This additional state is necessary because reading and testing the synchronization
  1647   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1648   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1649   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1650   //     Thread A is resumed to finish this native method, but doesn't block here since it
  1651   //     didn't see any synchronization is progress, and escapes.
  1652   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1654   if(os::is_MP()) {
  1655     if (UseMembar) {
  1656       // Force this write out before the read below
  1657       __ membar(Assembler::Membar_mask_bits(
  1658            Assembler::LoadLoad | Assembler::LoadStore |
  1659            Assembler::StoreLoad | Assembler::StoreStore));
  1660     } else {
  1661       // Write serialization page so VM thread can do a pseudo remote membar.
  1662       // We use the current thread pointer to calculate a thread specific
  1663       // offset to write to within the page. This minimizes bus traffic
  1664       // due to cache line collision.
  1665       __ serialize_memory(thread, rcx);
  1669   if (AlwaysRestoreFPU) {
  1670     // Make sure the control word is correct.
  1671     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1674   // check for safepoint operation in progress and/or pending suspend requests
  1675   { Label Continue;
  1677     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  1678              SafepointSynchronize::_not_synchronized);
  1680     Label L;
  1681     __ jcc(Assembler::notEqual, L);
  1682     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1683     __ jcc(Assembler::equal, Continue);
  1684     __ bind(L);
  1686     // Don't use call_VM as it will see a possible pending exception and forward it
  1687     // and never return here preventing us from clearing _last_native_pc down below.
  1688     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1689     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1690     // by hand.
  1691     //
  1692     save_native_result(masm, ret_type, stack_slots);
  1693     __ push(thread);
  1694     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1695                                             JavaThread::check_special_condition_for_native_trans)));
  1696     __ increment(rsp, wordSize);
  1697     // Restore any method result value
  1698     restore_native_result(masm, ret_type, stack_slots);
  1700     __ bind(Continue);
  1703   // change thread state
  1704   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1706   Label reguard;
  1707   Label reguard_done;
  1708   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1709   __ jcc(Assembler::equal, reguard);
  1711   // slow path reguard  re-enters here
  1712   __ bind(reguard_done);
  1714   // Handle possible exception (will unlock if necessary)
  1716   // native result if any is live
  1718   // Unlock
  1719   Label slow_path_unlock;
  1720   Label unlock_done;
  1721   if (method->is_synchronized()) {
  1723     Label done;
  1725     // Get locked oop from the handle we passed to jni
  1726     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1728     if (UseBiasedLocking) {
  1729       __ biased_locking_exit(obj_reg, rbx, done);
  1732     // Simple recursive lock?
  1734     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
  1735     __ jcc(Assembler::equal, done);
  1737     // Must save rax, if if it is live now because cmpxchg must use it
  1738     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1739       save_native_result(masm, ret_type, stack_slots);
  1742     //  get old displaced header
  1743     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
  1745     // get address of the stack lock
  1746     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  1748     // Atomic swap old header if oop still contains the stack lock
  1749     if (os::is_MP()) {
  1750     __ lock();
  1753     // src -> dest iff dest == rax, else rax, <- dest
  1754     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
  1755     __ cmpxchgptr(rbx, Address(obj_reg, 0));
  1756     __ jcc(Assembler::notEqual, slow_path_unlock);
  1758     // slow path re-enters here
  1759     __ bind(unlock_done);
  1760     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1761       restore_native_result(masm, ret_type, stack_slots);
  1764     __ bind(done);
  1769     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  1770     // Tell dtrace about this method exit
  1771     save_native_result(masm, ret_type, stack_slots);
  1772     __ movoop(rax, JNIHandles::make_local(method()));
  1773     __ call_VM_leaf(
  1774          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1775          thread, rax);
  1776     restore_native_result(masm, ret_type, stack_slots);
  1779   // We can finally stop using that last_Java_frame we setup ages ago
  1781   __ reset_last_Java_frame(thread, false, true);
  1783   // Unpack oop result
  1784   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  1785       Label L;
  1786       __ cmpptr(rax, (int32_t)NULL_WORD);
  1787       __ jcc(Assembler::equal, L);
  1788       __ movptr(rax, Address(rax, 0));
  1789       __ bind(L);
  1790       __ verify_oop(rax);
  1793   // reset handle block
  1794   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
  1796   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1798   // Any exception pending?
  1799   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1800   __ jcc(Assembler::notEqual, exception_pending);
  1803   // no exception, we're almost done
  1805   // check that only result value is on FPU stack
  1806   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
  1808   // Fixup floating pointer results so that result looks like a return from a compiled method
  1809   if (ret_type == T_FLOAT) {
  1810     if (UseSSE >= 1) {
  1811       // Pop st0 and store as float and reload into xmm register
  1812       __ fstp_s(Address(rbp, -4));
  1813       __ movflt(xmm0, Address(rbp, -4));
  1815   } else if (ret_type == T_DOUBLE) {
  1816     if (UseSSE >= 2) {
  1817       // Pop st0 and store as double and reload into xmm register
  1818       __ fstp_d(Address(rbp, -8));
  1819       __ movdbl(xmm0, Address(rbp, -8));
  1823   // Return
  1825   __ leave();
  1826   __ ret(0);
  1828   // Unexpected paths are out of line and go here
  1830   // Slow path locking & unlocking
  1831   if (method->is_synchronized()) {
  1833     // BEGIN Slow path lock
  1835     __ bind(slow_path_lock);
  1837     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  1838     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  1839     __ push(thread);
  1840     __ push(lock_reg);
  1841     __ push(obj_reg);
  1842     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
  1843     __ addptr(rsp, 3*wordSize);
  1845 #ifdef ASSERT
  1846     { Label L;
  1847     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  1848     __ jcc(Assembler::equal, L);
  1849     __ stop("no pending exception allowed on exit from monitorenter");
  1850     __ bind(L);
  1852 #endif
  1853     __ jmp(lock_done);
  1855     // END Slow path lock
  1857     // BEGIN Slow path unlock
  1858     __ bind(slow_path_unlock);
  1860     // Slow path unlock
  1862     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1863       save_native_result(masm, ret_type, stack_slots);
  1865     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  1867     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  1868     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1871     // should be a peal
  1872     // +wordSize because of the push above
  1873     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  1874     __ push(rax);
  1876     __ push(obj_reg);
  1877     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  1878     __ addptr(rsp, 2*wordSize);
  1879 #ifdef ASSERT
  1881       Label L;
  1882       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1883       __ jcc(Assembler::equal, L);
  1884       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  1885       __ bind(L);
  1887 #endif /* ASSERT */
  1889     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  1891     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1892       restore_native_result(masm, ret_type, stack_slots);
  1894     __ jmp(unlock_done);
  1895     // END Slow path unlock
  1899   // SLOW PATH Reguard the stack if needed
  1901   __ bind(reguard);
  1902   save_native_result(masm, ret_type, stack_slots);
  1904     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1906   restore_native_result(masm, ret_type, stack_slots);
  1907   __ jmp(reguard_done);
  1910   // BEGIN EXCEPTION PROCESSING
  1912   // Forward  the exception
  1913   __ bind(exception_pending);
  1915   // remove possible return value from FPU register stack
  1916   __ empty_FPU_stack();
  1918   // pop our frame
  1919   __ leave();
  1920   // and forward the exception
  1921   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1923   __ flush();
  1925   nmethod *nm = nmethod::new_native_nmethod(method,
  1926                                             masm->code(),
  1927                                             vep_offset,
  1928                                             frame_complete,
  1929                                             stack_slots / VMRegImpl::slots_per_word,
  1930                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  1931                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  1932                                             oop_maps);
  1933   return nm;
  1937 #ifdef HAVE_DTRACE_H
  1938 // ---------------------------------------------------------------------------
  1939 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  1940 // in the Java compiled code convention, marshals them to the native
  1941 // abi and then leaves nops at the position you would expect to call a native
  1942 // function. When the probe is enabled the nops are replaced with a trap
  1943 // instruction that dtrace inserts and the trace will cause a notification
  1944 // to dtrace.
  1945 //
  1946 // The probes are only able to take primitive types and java/lang/String as
  1947 // arguments.  No other java types are allowed. Strings are converted to utf8
  1948 // strings so that from dtrace point of view java strings are converted to C
  1949 // strings. There is an arbitrary fixed limit on the total space that a method
  1950 // can use for converting the strings. (256 chars per string in the signature).
  1951 // So any java string larger then this is truncated.
  1953 nmethod *SharedRuntime::generate_dtrace_nmethod(
  1954     MacroAssembler *masm, methodHandle method) {
  1956   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  1957   // be single threaded in this method.
  1958   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  1960   // Fill in the signature array, for the calling-convention call.
  1961   int total_args_passed = method->size_of_parameters();
  1963   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  1964   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  1966   // The signature we are going to use for the trap that dtrace will see
  1967   // java/lang/String is converted. We drop "this" and any other object
  1968   // is converted to NULL.  (A one-slot java/lang/Long object reference
  1969   // is converted to a two-slot long, which is why we double the allocation).
  1970   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  1971   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  1973   int i=0;
  1974   int total_strings = 0;
  1975   int first_arg_to_pass = 0;
  1976   int total_c_args = 0;
  1978   if( !method->is_static() ) {  // Pass in receiver first
  1979     in_sig_bt[i++] = T_OBJECT;
  1980     first_arg_to_pass = 1;
  1983   // We need to convert the java args to where a native (non-jni) function
  1984   // would expect them. To figure out where they go we convert the java
  1985   // signature to a C signature.
  1987   SignatureStream ss(method->signature());
  1988   for ( ; !ss.at_return_type(); ss.next()) {
  1989     BasicType bt = ss.type();
  1990     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  1991     out_sig_bt[total_c_args++] = bt;
  1992     if( bt == T_OBJECT) {
  1993       symbolOop s = ss.as_symbol_or_null();
  1994       if (s == vmSymbols::java_lang_String()) {
  1995         total_strings++;
  1996         out_sig_bt[total_c_args-1] = T_ADDRESS;
  1997       } else if (s == vmSymbols::java_lang_Boolean() ||
  1998                  s == vmSymbols::java_lang_Character() ||
  1999                  s == vmSymbols::java_lang_Byte() ||
  2000                  s == vmSymbols::java_lang_Short() ||
  2001                  s == vmSymbols::java_lang_Integer() ||
  2002                  s == vmSymbols::java_lang_Float()) {
  2003         out_sig_bt[total_c_args-1] = T_INT;
  2004       } else if (s == vmSymbols::java_lang_Long() ||
  2005                  s == vmSymbols::java_lang_Double()) {
  2006         out_sig_bt[total_c_args-1] = T_LONG;
  2007         out_sig_bt[total_c_args++] = T_VOID;
  2009     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2010       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2011       out_sig_bt[total_c_args++] = T_VOID;
  2015   assert(i==total_args_passed, "validly parsed signature");
  2017   // Now get the compiled-Java layout as input arguments
  2018   int comp_args_on_stack;
  2019   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2020       in_sig_bt, in_regs, total_args_passed, false);
  2022   // Now figure out where the args must be stored and how much stack space
  2023   // they require (neglecting out_preserve_stack_slots).
  2025   int out_arg_slots;
  2026   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2028   // Calculate the total number of stack slots we will need.
  2030   // First count the abi requirement plus all of the outgoing args
  2031   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2033   // Now space for the string(s) we must convert
  2035   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2036   for (i = 0; i < total_strings ; i++) {
  2037     string_locs[i] = stack_slots;
  2038     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2041   // + 2 for return address (which we own) and saved rbp,
  2043   stack_slots += 2;
  2045   // Ok The space we have allocated will look like:
  2046   //
  2047   //
  2048   // FP-> |                     |
  2049   //      |---------------------|
  2050   //      | string[n]           |
  2051   //      |---------------------| <- string_locs[n]
  2052   //      | string[n-1]         |
  2053   //      |---------------------| <- string_locs[n-1]
  2054   //      | ...                 |
  2055   //      | ...                 |
  2056   //      |---------------------| <- string_locs[1]
  2057   //      | string[0]           |
  2058   //      |---------------------| <- string_locs[0]
  2059   //      | outbound memory     |
  2060   //      | based arguments     |
  2061   //      |                     |
  2062   //      |---------------------|
  2063   //      |                     |
  2064   // SP-> | out_preserved_slots |
  2065   //
  2066   //
  2068   // Now compute actual number of stack words we need rounding to make
  2069   // stack properly aligned.
  2070   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2072   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2074   intptr_t start = (intptr_t)__ pc();
  2076   // First thing make an ic check to see if we should even be here
  2078   // We are free to use all registers as temps without saving them and
  2079   // restoring them except rbp. rbp, is the only callee save register
  2080   // as far as the interpreter and the compiler(s) are concerned.
  2082   const Register ic_reg = rax;
  2083   const Register receiver = rcx;
  2084   Label hit;
  2085   Label exception_pending;
  2088   __ verify_oop(receiver);
  2089   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2090   __ jcc(Assembler::equal, hit);
  2092   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2094   // verified entry must be aligned for code patching.
  2095   // and the first 5 bytes must be in the same cache line
  2096   // if we align at 8 then we will be sure 5 bytes are in the same line
  2097   __ align(8);
  2099   __ bind(hit);
  2101   int vep_offset = ((intptr_t)__ pc()) - start;
  2104   // The instruction at the verified entry point must be 5 bytes or longer
  2105   // because it can be patched on the fly by make_non_entrant. The stack bang
  2106   // instruction fits that requirement.
  2108   // Generate stack overflow check
  2111   if (UseStackBanging) {
  2112     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2113       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2114     } else {
  2115       __ movl(rax, stack_size);
  2116       __ bang_stack_size(rax, rbx);
  2118   } else {
  2119     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2120     __ fat_nop();
  2123   assert(((int)__ pc() - start - vep_offset) >= 5,
  2124          "valid size for make_non_entrant");
  2126   // Generate a new frame for the wrapper.
  2127   __ enter();
  2129   // -2 because return address is already present and so is saved rbp,
  2130   if (stack_size - 2*wordSize != 0) {
  2131     __ subl(rsp, stack_size - 2*wordSize);
  2134   // Frame is now completed as far a size and linkage.
  2136   int frame_complete = ((intptr_t)__ pc()) - start;
  2138   // First thing we do store all the args as if we are doing the call.
  2139   // Since the C calling convention is stack based that ensures that
  2140   // all the Java register args are stored before we need to convert any
  2141   // string we might have.
  2143   int sid = 0;
  2144   int c_arg, j_arg;
  2145   int string_reg = 0;
  2147   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2148        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2150     VMRegPair src = in_regs[j_arg];
  2151     VMRegPair dst = out_regs[c_arg];
  2152     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
  2153            "stack based abi assumed");
  2155     switch (in_sig_bt[j_arg]) {
  2157       case T_ARRAY:
  2158       case T_OBJECT:
  2159         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2160           // Any register based arg for a java string after the first
  2161           // will be destroyed by the call to get_utf so we store
  2162           // the original value in the location the utf string address
  2163           // will eventually be stored.
  2164           if (src.first()->is_reg()) {
  2165             if (string_reg++ != 0) {
  2166               simple_move32(masm, src, dst);
  2169         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2170           // need to unbox a one-word value
  2171           Register in_reg = rax;
  2172           if ( src.first()->is_reg() ) {
  2173             in_reg = src.first()->as_Register();
  2174           } else {
  2175             simple_move32(masm, src, in_reg->as_VMReg());
  2177           Label skipUnbox;
  2178           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2179           if ( out_sig_bt[c_arg] == T_LONG ) {
  2180             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
  2182           __ testl(in_reg, in_reg);
  2183           __ jcc(Assembler::zero, skipUnbox);
  2184           assert(dst.first()->is_stack() &&
  2185                  (!dst.second()->is_valid() || dst.second()->is_stack()),
  2186                  "value(s) must go into stack slots");
  2188           BasicType bt = out_sig_bt[c_arg];
  2189           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2190           if ( bt == T_LONG ) {
  2191             __ movl(rbx, Address(in_reg,
  2192                                  box_offset + VMRegImpl::stack_slot_size));
  2193             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
  2195           __ movl(in_reg,  Address(in_reg, box_offset));
  2196           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
  2197           __ bind(skipUnbox);
  2198         } else {
  2199           // Convert the arg to NULL
  2200           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2202         if (out_sig_bt[c_arg] == T_LONG) {
  2203           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2204           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2206         break;
  2208       case T_VOID:
  2209         break;
  2211       case T_FLOAT:
  2212         float_move(masm, src, dst);
  2213         break;
  2215       case T_DOUBLE:
  2216         assert( j_arg + 1 < total_args_passed &&
  2217                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
  2218         double_move(masm, src, dst);
  2219         break;
  2221       case T_LONG :
  2222         long_move(masm, src, dst);
  2223         break;
  2225       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2227       default:
  2228         simple_move32(masm, src, dst);
  2232   // Now we must convert any string we have to utf8
  2233   //
  2235   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
  2236        sid < total_strings ; j_arg++, c_arg++ ) {
  2238     if (out_sig_bt[c_arg] == T_ADDRESS) {
  2240       Address utf8_addr = Address(
  2241           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2242       __ leal(rax, utf8_addr);
  2244       // The first string we find might still be in the original java arg
  2245       // register
  2246       VMReg orig_loc = in_regs[j_arg].first();
  2247       Register string_oop;
  2249       // This is where the argument will eventually reside
  2250       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
  2252       if (sid == 1 && orig_loc->is_reg()) {
  2253         string_oop = orig_loc->as_Register();
  2254         assert(string_oop != rax, "smashed arg");
  2255       } else {
  2257         if (orig_loc->is_reg()) {
  2258           // Get the copy of the jls object
  2259           __ movl(rcx, dest);
  2260         } else {
  2261           // arg is still in the original location
  2262           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
  2264         string_oop = rcx;
  2267       Label nullString;
  2268       __ movl(dest, NULL_WORD);
  2269       __ testl(string_oop, string_oop);
  2270       __ jcc(Assembler::zero, nullString);
  2272       // Now we can store the address of the utf string as the argument
  2273       __ movl(dest, rax);
  2275       // And do the conversion
  2276       __ call_VM_leaf(CAST_FROM_FN_PTR(
  2277              address, SharedRuntime::get_utf), string_oop, rax);
  2278       __ bind(nullString);
  2281     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2282       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2283       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2288   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2289   // patch in the trap
  2291   int patch_offset = ((intptr_t)__ pc()) - start;
  2293   __ nop();
  2296   // Return
  2298   __ leave();
  2299   __ ret(0);
  2301   __ flush();
  2303   nmethod *nm = nmethod::new_dtrace_nmethod(
  2304       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2305       stack_slots / VMRegImpl::slots_per_word);
  2306   return nm;
  2310 #endif // HAVE_DTRACE_H
  2312 // this function returns the adjust size (in number of words) to a c2i adapter
  2313 // activation for use during deoptimization
  2314 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  2315   return (callee_locals - callee_parameters) * Interpreter::stackElementWords();
  2319 uint SharedRuntime::out_preserve_stack_slots() {
  2320   return 0;
  2324 //------------------------------generate_deopt_blob----------------------------
  2325 void SharedRuntime::generate_deopt_blob() {
  2326   // allocate space for the code
  2327   ResourceMark rm;
  2328   // setup code generation tools
  2329   CodeBuffer   buffer("deopt_blob", 1024, 1024);
  2330   MacroAssembler* masm = new MacroAssembler(&buffer);
  2331   int frame_size_in_words;
  2332   OopMap* map = NULL;
  2333   // Account for the extra args we place on the stack
  2334   // by the time we call fetch_unroll_info
  2335   const int additional_words = 2; // deopt kind, thread
  2337   OopMapSet *oop_maps = new OopMapSet();
  2339   // -------------
  2340   // This code enters when returning to a de-optimized nmethod.  A return
  2341   // address has been pushed on the the stack, and return values are in
  2342   // registers.
  2343   // If we are doing a normal deopt then we were called from the patched
  2344   // nmethod from the point we returned to the nmethod. So the return
  2345   // address on the stack is wrong by NativeCall::instruction_size
  2346   // We will adjust the value to it looks like we have the original return
  2347   // address on the stack (like when we eagerly deoptimized).
  2348   // In the case of an exception pending with deoptimized then we enter
  2349   // with a return address on the stack that points after the call we patched
  2350   // into the exception handler. We have the following register state:
  2351   //    rax,: exception
  2352   //    rbx,: exception handler
  2353   //    rdx: throwing pc
  2354   // So in this case we simply jam rdx into the useless return address and
  2355   // the stack looks just like we want.
  2356   //
  2357   // At this point we need to de-opt.  We save the argument return
  2358   // registers.  We call the first C routine, fetch_unroll_info().  This
  2359   // routine captures the return values and returns a structure which
  2360   // describes the current frame size and the sizes of all replacement frames.
  2361   // The current frame is compiled code and may contain many inlined
  2362   // functions, each with their own JVM state.  We pop the current frame, then
  2363   // push all the new frames.  Then we call the C routine unpack_frames() to
  2364   // populate these frames.  Finally unpack_frames() returns us the new target
  2365   // address.  Notice that callee-save registers are BLOWN here; they have
  2366   // already been captured in the vframeArray at the time the return PC was
  2367   // patched.
  2368   address start = __ pc();
  2369   Label cont;
  2371   // Prolog for non exception case!
  2373   // Save everything in sight.
  2375   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
  2376   // Normal deoptimization
  2377   __ push(Deoptimization::Unpack_deopt);
  2378   __ jmp(cont);
  2380   int reexecute_offset = __ pc() - start;
  2382   // Reexecute case
  2383   // return address is the pc describes what bci to do re-execute at
  2385   // No need to update map as each call to save_live_registers will produce identical oopmap
  2386   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
  2388   __ push(Deoptimization::Unpack_reexecute);
  2389   __ jmp(cont);
  2391   int exception_offset = __ pc() - start;
  2393   // Prolog for exception case
  2395   // all registers are dead at this entry point, except for rax, and
  2396   // rdx which contain the exception oop and exception pc
  2397   // respectively.  Set them in TLS and fall thru to the
  2398   // unpack_with_exception_in_tls entry point.
  2400   __ get_thread(rdi);
  2401   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
  2402   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
  2404   int exception_in_tls_offset = __ pc() - start;
  2406   // new implementation because exception oop is now passed in JavaThread
  2408   // Prolog for exception case
  2409   // All registers must be preserved because they might be used by LinearScan
  2410   // Exceptiop oop and throwing PC are passed in JavaThread
  2411   // tos: stack at point of call to method that threw the exception (i.e. only
  2412   // args are on the stack, no return address)
  2414   // make room on stack for the return address
  2415   // It will be patched later with the throwing pc. The correct value is not
  2416   // available now because loading it from memory would destroy registers.
  2417   __ push(0);
  2419   // Save everything in sight.
  2421   // No need to update map as each call to save_live_registers will produce identical oopmap
  2422   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
  2424   // Now it is safe to overwrite any register
  2426   // store the correct deoptimization type
  2427   __ push(Deoptimization::Unpack_exception);
  2429   // load throwing pc from JavaThread and patch it as the return address
  2430   // of the current frame. Then clear the field in JavaThread
  2431   __ get_thread(rdi);
  2432   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
  2433   __ movptr(Address(rbp, wordSize), rdx);
  2434   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  2436 #ifdef ASSERT
  2437   // verify that there is really an exception oop in JavaThread
  2438   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
  2439   __ verify_oop(rax);
  2441   // verify that there is no pending exception
  2442   Label no_pending_exception;
  2443   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
  2444   __ testptr(rax, rax);
  2445   __ jcc(Assembler::zero, no_pending_exception);
  2446   __ stop("must not have pending exception here");
  2447   __ bind(no_pending_exception);
  2448 #endif
  2450   __ bind(cont);
  2452   // Compiled code leaves the floating point stack dirty, empty it.
  2453   __ empty_FPU_stack();
  2456   // Call C code.  Need thread and this frame, but NOT official VM entry
  2457   // crud.  We cannot block on this call, no GC can happen.
  2458   __ get_thread(rcx);
  2459   __ push(rcx);
  2460   // fetch_unroll_info needs to call last_java_frame()
  2461   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
  2463   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  2465   // Need to have an oopmap that tells fetch_unroll_info where to
  2466   // find any register it might need.
  2468   oop_maps->add_gc_map( __ pc()-start, map);
  2470   // Discard arg to fetch_unroll_info
  2471   __ pop(rcx);
  2473   __ get_thread(rcx);
  2474   __ reset_last_Java_frame(rcx, false, false);
  2476   // Load UnrollBlock into EDI
  2477   __ mov(rdi, rax);
  2479   // Move the unpack kind to a safe place in the UnrollBlock because
  2480   // we are very short of registers
  2482   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
  2483   // retrieve the deopt kind from where we left it.
  2484   __ pop(rax);
  2485   __ movl(unpack_kind, rax);                      // save the unpack_kind value
  2487    Label noException;
  2488   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
  2489   __ jcc(Assembler::notEqual, noException);
  2490   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
  2491   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
  2492   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
  2493   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  2495   __ verify_oop(rax);
  2497   // Overwrite the result registers with the exception results.
  2498   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2499   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2501   __ bind(noException);
  2503   // Stack is back to only having register save data on the stack.
  2504   // Now restore the result registers. Everything else is either dead or captured
  2505   // in the vframeArray.
  2507   RegisterSaver::restore_result_registers(masm);
  2509   // All of the register save area has been popped of the stack. Only the
  2510   // return address remains.
  2512   // Pop all the frames we must move/replace.
  2513   //
  2514   // Frame picture (youngest to oldest)
  2515   // 1: self-frame (no frame link)
  2516   // 2: deopting frame  (no frame link)
  2517   // 3: caller of deopting frame (could be compiled/interpreted).
  2518   //
  2519   // Note: by leaving the return address of self-frame on the stack
  2520   // and using the size of frame 2 to adjust the stack
  2521   // when we are done the return to frame 3 will still be on the stack.
  2523   // Pop deoptimized frame
  2524   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2526   // sp should be pointing at the return address to the caller (3)
  2528   // Stack bang to make sure there's enough room for these interpreter frames.
  2529   if (UseStackBanging) {
  2530     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2531     __ bang_stack_size(rbx, rcx);
  2534   // Load array of frame pcs into ECX
  2535   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2537   __ pop(rsi); // trash the old pc
  2539   // Load array of frame sizes into ESI
  2540   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2542   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  2544   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2545   __ movl(counter, rbx);
  2547   // Pick up the initial fp we should save
  2548   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2550   // Now adjust the caller's stack to make up for the extra locals
  2551   // but record the original sp so that we can save it in the skeletal interpreter
  2552   // frame and the stack walking of interpreter_sender will get the unextended sp
  2553   // value and not the "real" sp value.
  2555   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  2556   __ movptr(sp_temp, rsp);
  2557   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  2558   __ subptr(rsp, rbx);
  2560   // Push interpreter frames in a loop
  2561   Label loop;
  2562   __ bind(loop);
  2563   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2564 #ifdef CC_INTERP
  2565   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2566 #ifdef ASSERT
  2567   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2568   __ push(0xDEADDEAD);
  2569 #else /* ASSERT */
  2570   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2571 #endif /* ASSERT */
  2572 #else /* CC_INTERP */
  2573   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  2574 #endif /* CC_INTERP */
  2575   __ pushptr(Address(rcx, 0));          // save return address
  2576   __ enter();                           // save old & set new rbp,
  2577   __ subptr(rsp, rbx);                  // Prolog!
  2578   __ movptr(rbx, sp_temp);              // sender's sp
  2579 #ifdef CC_INTERP
  2580   __ movptr(Address(rbp,
  2581                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2582           rbx); // Make it walkable
  2583 #else /* CC_INTERP */
  2584   // This value is corrected by layout_activation_impl
  2585   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  2586   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  2587 #endif /* CC_INTERP */
  2588   __ movptr(sp_temp, rsp);              // pass to next frame
  2589   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  2590   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  2591   __ decrementl(counter);             // decrement counter
  2592   __ jcc(Assembler::notZero, loop);
  2593   __ pushptr(Address(rcx, 0));          // save final return address
  2595   // Re-push self-frame
  2596   __ enter();                           // save old & set new rbp,
  2598   //  Return address and rbp, are in place
  2599   // We'll push additional args later. Just allocate a full sized
  2600   // register save area
  2601   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
  2603   // Restore frame locals after moving the frame
  2604   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2605   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2606   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
  2607   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  2608   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  2610   // Set up the args to unpack_frame
  2612   __ pushl(unpack_kind);                     // get the unpack_kind value
  2613   __ get_thread(rcx);
  2614   __ push(rcx);
  2616   // set last_Java_sp, last_Java_fp
  2617   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
  2619   // Call C code.  Need thread but NOT official VM entry
  2620   // crud.  We cannot block on this call, no GC can happen.  Call should
  2621   // restore return values to their stack-slots with the new SP.
  2622   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2623   // Set an oopmap for the call site
  2624   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
  2626   // rax, contains the return result type
  2627   __ push(rax);
  2629   __ get_thread(rcx);
  2630   __ reset_last_Java_frame(rcx, false, false);
  2632   // Collect return values
  2633   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
  2634   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
  2636   // Clear floating point stack before returning to interpreter
  2637   __ empty_FPU_stack();
  2639   // Check if we should push the float or double return value.
  2640   Label results_done, yes_double_value;
  2641   __ cmpl(Address(rsp, 0), T_DOUBLE);
  2642   __ jcc (Assembler::zero, yes_double_value);
  2643   __ cmpl(Address(rsp, 0), T_FLOAT);
  2644   __ jcc (Assembler::notZero, results_done);
  2646   // return float value as expected by interpreter
  2647   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  2648   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  2649   __ jmp(results_done);
  2651   // return double value as expected by interpreter
  2652   __ bind(yes_double_value);
  2653   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  2654   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  2656   __ bind(results_done);
  2658   // Pop self-frame.
  2659   __ leave();                              // Epilog!
  2661   // Jump to interpreter
  2662   __ ret(0);
  2664   // -------------
  2665   // make sure all code is generated
  2666   masm->flush();
  2668   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  2669   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  2673 #ifdef COMPILER2
  2674 //------------------------------generate_uncommon_trap_blob--------------------
  2675 void SharedRuntime::generate_uncommon_trap_blob() {
  2676   // allocate space for the code
  2677   ResourceMark rm;
  2678   // setup code generation tools
  2679   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
  2680   MacroAssembler* masm = new MacroAssembler(&buffer);
  2682   enum frame_layout {
  2683     arg0_off,      // thread                     sp + 0 // Arg location for
  2684     arg1_off,      // unloaded_class_index       sp + 1 // calling C
  2685     // The frame sender code expects that rbp will be in the "natural" place and
  2686     // will override any oopMap setting for it. We must therefore force the layout
  2687     // so that it agrees with the frame sender code.
  2688     rbp_off,       // callee saved register      sp + 2
  2689     return_off,    // slot for return address    sp + 3
  2690     framesize
  2691   };
  2693   address start = __ pc();
  2694   // Push self-frame.
  2695   __ subptr(rsp, return_off*wordSize);     // Epilog!
  2697   // rbp, is an implicitly saved callee saved register (i.e. the calling
  2698   // convention will save restore it in prolog/epilog) Other than that
  2699   // there are no callee save registers no that adapter frames are gone.
  2700   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
  2702   // Clear the floating point exception stack
  2703   __ empty_FPU_stack();
  2705   // set last_Java_sp
  2706   __ get_thread(rdx);
  2707   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
  2709   // Call C code.  Need thread but NOT official VM entry
  2710   // crud.  We cannot block on this call, no GC can happen.  Call should
  2711   // capture callee-saved registers as well as return values.
  2712   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
  2713   // argument already in ECX
  2714   __ movl(Address(rsp, arg1_off*wordSize),rcx);
  2715   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  2717   // Set an oopmap for the call site
  2718   OopMapSet *oop_maps = new OopMapSet();
  2719   OopMap* map =  new OopMap( framesize, 0 );
  2720   // No oopMap for rbp, it is known implicitly
  2722   oop_maps->add_gc_map( __ pc()-start, map);
  2724   __ get_thread(rcx);
  2726   __ reset_last_Java_frame(rcx, false, false);
  2728   // Load UnrollBlock into EDI
  2729   __ movptr(rdi, rax);
  2731   // Pop all the frames we must move/replace.
  2732   //
  2733   // Frame picture (youngest to oldest)
  2734   // 1: self-frame (no frame link)
  2735   // 2: deopting frame  (no frame link)
  2736   // 3: caller of deopting frame (could be compiled/interpreted).
  2738   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
  2739   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
  2741   // Pop deoptimized frame
  2742   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2743   __ addptr(rsp, rcx);
  2745   // sp should be pointing at the return address to the caller (3)
  2747   // Stack bang to make sure there's enough room for these interpreter frames.
  2748   if (UseStackBanging) {
  2749     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2750     __ bang_stack_size(rbx, rcx);
  2754   // Load array of frame pcs into ECX
  2755   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2757   __ pop(rsi); // trash the pc
  2759   // Load array of frame sizes into ESI
  2760   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2762   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  2764   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2765   __ movl(counter, rbx);
  2767   // Pick up the initial fp we should save
  2768   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2770   // Now adjust the caller's stack to make up for the extra locals
  2771   // but record the original sp so that we can save it in the skeletal interpreter
  2772   // frame and the stack walking of interpreter_sender will get the unextended sp
  2773   // value and not the "real" sp value.
  2775   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  2776   __ movptr(sp_temp, rsp);
  2777   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  2778   __ subptr(rsp, rbx);
  2780   // Push interpreter frames in a loop
  2781   Label loop;
  2782   __ bind(loop);
  2783   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2784 #ifdef CC_INTERP
  2785   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2786 #ifdef ASSERT
  2787   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2788   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
  2789 #else /* ASSERT */
  2790   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2791 #endif /* ASSERT */
  2792 #else /* CC_INTERP */
  2793   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  2794 #endif /* CC_INTERP */
  2795   __ pushptr(Address(rcx, 0));          // save return address
  2796   __ enter();                           // save old & set new rbp,
  2797   __ subptr(rsp, rbx);                  // Prolog!
  2798   __ movptr(rbx, sp_temp);              // sender's sp
  2799 #ifdef CC_INTERP
  2800   __ movptr(Address(rbp,
  2801                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2802           rbx); // Make it walkable
  2803 #else /* CC_INTERP */
  2804   // This value is corrected by layout_activation_impl
  2805   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  2806   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  2807 #endif /* CC_INTERP */
  2808   __ movptr(sp_temp, rsp);              // pass to next frame
  2809   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  2810   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  2811   __ decrementl(counter);             // decrement counter
  2812   __ jcc(Assembler::notZero, loop);
  2813   __ pushptr(Address(rcx, 0));            // save final return address
  2815   // Re-push self-frame
  2816   __ enter();                           // save old & set new rbp,
  2817   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
  2820   // set last_Java_sp, last_Java_fp
  2821   __ get_thread(rdi);
  2822   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
  2824   // Call C code.  Need thread but NOT official VM entry
  2825   // crud.  We cannot block on this call, no GC can happen.  Call should
  2826   // restore return values to their stack-slots with the new SP.
  2827   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
  2828   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
  2829   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2830   // Set an oopmap for the call site
  2831   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
  2833   __ get_thread(rdi);
  2834   __ reset_last_Java_frame(rdi, true, false);
  2836   // Pop self-frame.
  2837   __ leave();     // Epilog!
  2839   // Jump to interpreter
  2840   __ ret(0);
  2842   // -------------
  2843   // make sure all code is generated
  2844   masm->flush();
  2846    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
  2848 #endif // COMPILER2
  2850 //------------------------------generate_handler_blob------
  2851 //
  2852 // Generate a special Compile2Runtime blob that saves all registers,
  2853 // setup oopmap, and calls safepoint code to stop the compiled code for
  2854 // a safepoint.
  2855 //
  2856 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
  2858   // Account for thread arg in our frame
  2859   const int additional_words = 1;
  2860   int frame_size_in_words;
  2862   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  2864   ResourceMark rm;
  2865   OopMapSet *oop_maps = new OopMapSet();
  2866   OopMap* map;
  2868   // allocate space for the code
  2869   // setup code generation tools
  2870   CodeBuffer   buffer("handler_blob", 1024, 512);
  2871   MacroAssembler* masm = new MacroAssembler(&buffer);
  2873   const Register java_thread = rdi; // callee-saved for VC++
  2874   address start   = __ pc();
  2875   address call_pc = NULL;
  2877   // If cause_return is true we are at a poll_return and there is
  2878   // the return address on the stack to the caller on the nmethod
  2879   // that is safepoint. We can leave this return on the stack and
  2880   // effectively complete the return and safepoint in the caller.
  2881   // Otherwise we push space for a return address that the safepoint
  2882   // handler will install later to make the stack walking sensible.
  2883   if( !cause_return )
  2884     __ push(rbx);                // Make room for return address (or push it again)
  2886   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2888   // The following is basically a call_VM. However, we need the precise
  2889   // address of the call in order to generate an oopmap. Hence, we do all the
  2890   // work ourselves.
  2892   // Push thread argument and setup last_Java_sp
  2893   __ get_thread(java_thread);
  2894   __ push(java_thread);
  2895   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
  2897   // if this was not a poll_return then we need to correct the return address now.
  2898   if( !cause_return ) {
  2899     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
  2900     __ movptr(Address(rbp, wordSize), rax);
  2903   // do the call
  2904   __ call(RuntimeAddress(call_ptr));
  2906   // Set an oopmap for the call site.  This oopmap will map all
  2907   // oop-registers and debug-info registers as callee-saved.  This
  2908   // will allow deoptimization at this safepoint to find all possible
  2909   // debug-info recordings, as well as let GC find all oops.
  2911   oop_maps->add_gc_map( __ pc() - start, map);
  2913   // Discard arg
  2914   __ pop(rcx);
  2916   Label noException;
  2918   // Clear last_Java_sp again
  2919   __ get_thread(java_thread);
  2920   __ reset_last_Java_frame(java_thread, false, false);
  2922   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2923   __ jcc(Assembler::equal, noException);
  2925   // Exception pending
  2927   RegisterSaver::restore_live_registers(masm);
  2929   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2931   __ bind(noException);
  2933   // Normal exit, register restoring and exit
  2934   RegisterSaver::restore_live_registers(masm);
  2936   __ ret(0);
  2938   // make sure all code is generated
  2939   masm->flush();
  2941   // Fill-out other meta info
  2942   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  2945 //
  2946 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  2947 //
  2948 // Generate a stub that calls into vm to find out the proper destination
  2949 // of a java call. All the argument registers are live at this point
  2950 // but since this is generic code we don't know what they are and the caller
  2951 // must do any gc of the args.
  2952 //
  2953 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
  2954   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  2956   // allocate space for the code
  2957   ResourceMark rm;
  2959   CodeBuffer buffer(name, 1000, 512);
  2960   MacroAssembler* masm                = new MacroAssembler(&buffer);
  2962   int frame_size_words;
  2963   enum frame_layout {
  2964                 thread_off,
  2965                 extra_words };
  2967   OopMapSet *oop_maps = new OopMapSet();
  2968   OopMap* map = NULL;
  2970   int start = __ offset();
  2972   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
  2974   int frame_complete = __ offset();
  2976   const Register thread = rdi;
  2977   __ get_thread(rdi);
  2979   __ push(thread);
  2980   __ set_last_Java_frame(thread, noreg, rbp, NULL);
  2982   __ call(RuntimeAddress(destination));
  2985   // Set an oopmap for the call site.
  2986   // We need this not only for callee-saved registers, but also for volatile
  2987   // registers that the compiler might be keeping live across a safepoint.
  2989   oop_maps->add_gc_map( __ offset() - start, map);
  2991   // rax, contains the address we are going to jump to assuming no exception got installed
  2993   __ addptr(rsp, wordSize);
  2995   // clear last_Java_sp
  2996   __ reset_last_Java_frame(thread, true, false);
  2997   // check for pending exceptions
  2998   Label pending;
  2999   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3000   __ jcc(Assembler::notEqual, pending);
  3002   // get the returned methodOop
  3003   __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
  3004   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
  3006   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
  3008   RegisterSaver::restore_live_registers(masm);
  3010   // We are back the the original state on entry and ready to go.
  3012   __ jmp(rax);
  3014   // Pending exception after the safepoint
  3016   __ bind(pending);
  3018   RegisterSaver::restore_live_registers(masm);
  3020   // exception pending => remove activation and forward to exception handler
  3022   __ get_thread(thread);
  3023   __ movptr(Address(thread, JavaThread::vm_result_offset()), (int32_t)NULL_WORD);
  3024   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
  3025   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3027   // -------------
  3028   // make sure all code is generated
  3029   masm->flush();
  3031   // return the  blob
  3032   // frame_size_words or bytes??
  3033   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
  3036 void SharedRuntime::generate_stubs() {
  3038   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
  3039                                         "wrong_method_stub");
  3041   _ic_miss_blob      = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
  3042                                         "ic_miss_stub");
  3044   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
  3045                                         "resolve_opt_virtual_call");
  3047   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
  3048                                         "resolve_virtual_call");
  3050   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
  3051                                         "resolve_static_call");
  3053   _polling_page_safepoint_handler_blob =
  3054     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3055                    SafepointSynchronize::handle_polling_page_exception), false);
  3057   _polling_page_return_handler_blob =
  3058     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3059                    SafepointSynchronize::handle_polling_page_exception), true);
  3061   generate_deopt_blob();
  3062 #ifdef COMPILER2
  3063   generate_uncommon_trap_blob();
  3064 #endif // COMPILER2

mercurial