src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Mon, 16 Mar 2009 08:01:32 -0700

author
iveresov
date
Mon, 16 Mar 2009 08:01:32 -0700
changeset 1072
25e146966e7c
parent 1071
6c4cea9bfa11
child 1075
ba50942c8138
permissions
-rw-r--r--

6817419: G1: Enable extensive verification for humongous regions
Summary: Enabled full verification for humongous regions. Also made sure that the VerifyAfterGC works with deferred updates and G1HRRSFlushLogBuffersOnVerify.
Reviewed-by: tonyp

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_g1CollectedHeap.cpp.incl"
    28 // turn it on so that the contents of the young list (scan-only /
    29 // to-be-collected) are printed at "strategic" points before / during
    30 // / after the collection --- this is useful for debugging
    31 #define SCAN_ONLY_VERBOSE 0
    32 // CURRENT STATUS
    33 // This file is under construction.  Search for "FIXME".
    35 // INVARIANTS/NOTES
    36 //
    37 // All allocation activity covered by the G1CollectedHeap interface is
    38 //   serialized by acquiring the HeapLock.  This happens in
    39 //   mem_allocate_work, which all such allocation functions call.
    40 //   (Note that this does not apply to TLAB allocation, which is not part
    41 //   of this interface: it is done by clients of this interface.)
    43 // Local to this file.
    45 // Finds the first HeapRegion.
    46 // No longer used, but might be handy someday.
    48 class FindFirstRegionClosure: public HeapRegionClosure {
    49   HeapRegion* _a_region;
    50 public:
    51   FindFirstRegionClosure() : _a_region(NULL) {}
    52   bool doHeapRegion(HeapRegion* r) {
    53     _a_region = r;
    54     return true;
    55   }
    56   HeapRegion* result() { return _a_region; }
    57 };
    60 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    61   SuspendibleThreadSet* _sts;
    62   G1RemSet* _g1rs;
    63   ConcurrentG1Refine* _cg1r;
    64   bool _concurrent;
    65 public:
    66   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    67                               G1RemSet* g1rs,
    68                               ConcurrentG1Refine* cg1r) :
    69     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    70   {}
    71   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    72     _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
    73     if (_concurrent && _sts->should_yield()) {
    74       // Caller will actually yield.
    75       return false;
    76     }
    77     // Otherwise, we finished successfully; return true.
    78     return true;
    79   }
    80   void set_concurrent(bool b) { _concurrent = b; }
    81 };
    84 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    85   int _calls;
    86   G1CollectedHeap* _g1h;
    87   CardTableModRefBS* _ctbs;
    88   int _histo[256];
    89 public:
    90   ClearLoggedCardTableEntryClosure() :
    91     _calls(0)
    92   {
    93     _g1h = G1CollectedHeap::heap();
    94     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    95     for (int i = 0; i < 256; i++) _histo[i] = 0;
    96   }
    97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    98     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
    99       _calls++;
   100       unsigned char* ujb = (unsigned char*)card_ptr;
   101       int ind = (int)(*ujb);
   102       _histo[ind]++;
   103       *card_ptr = -1;
   104     }
   105     return true;
   106   }
   107   int calls() { return _calls; }
   108   void print_histo() {
   109     gclog_or_tty->print_cr("Card table value histogram:");
   110     for (int i = 0; i < 256; i++) {
   111       if (_histo[i] != 0) {
   112         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   113       }
   114     }
   115   }
   116 };
   118 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   119   int _calls;
   120   G1CollectedHeap* _g1h;
   121   CardTableModRefBS* _ctbs;
   122 public:
   123   RedirtyLoggedCardTableEntryClosure() :
   124     _calls(0)
   125   {
   126     _g1h = G1CollectedHeap::heap();
   127     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   128   }
   129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   131       _calls++;
   132       *card_ptr = 0;
   133     }
   134     return true;
   135   }
   136   int calls() { return _calls; }
   137 };
   139 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   140 public:
   141   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   142     *card_ptr = CardTableModRefBS::dirty_card_val();
   143     return true;
   144   }
   145 };
   147 YoungList::YoungList(G1CollectedHeap* g1h)
   148   : _g1h(g1h), _head(NULL),
   149     _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
   150     _length(0), _scan_only_length(0),
   151     _last_sampled_rs_lengths(0),
   152     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   153 {
   154   guarantee( check_list_empty(false), "just making sure..." );
   155 }
   157 void YoungList::push_region(HeapRegion *hr) {
   158   assert(!hr->is_young(), "should not already be young");
   159   assert(hr->get_next_young_region() == NULL, "cause it should!");
   161   hr->set_next_young_region(_head);
   162   _head = hr;
   164   hr->set_young();
   165   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   166   ++_length;
   167 }
   169 void YoungList::add_survivor_region(HeapRegion* hr) {
   170   assert(hr->is_survivor(), "should be flagged as survivor region");
   171   assert(hr->get_next_young_region() == NULL, "cause it should!");
   173   hr->set_next_young_region(_survivor_head);
   174   if (_survivor_head == NULL) {
   175     _survivor_tail = hr;
   176   }
   177   _survivor_head = hr;
   179   ++_survivor_length;
   180 }
   182 HeapRegion* YoungList::pop_region() {
   183   while (_head != NULL) {
   184     assert( length() > 0, "list should not be empty" );
   185     HeapRegion* ret = _head;
   186     _head = ret->get_next_young_region();
   187     ret->set_next_young_region(NULL);
   188     --_length;
   189     assert(ret->is_young(), "region should be very young");
   191     // Replace 'Survivor' region type with 'Young'. So the region will
   192     // be treated as a young region and will not be 'confused' with
   193     // newly created survivor regions.
   194     if (ret->is_survivor()) {
   195       ret->set_young();
   196     }
   198     if (!ret->is_scan_only()) {
   199       return ret;
   200     }
   202     // scan-only, we'll add it to the scan-only list
   203     if (_scan_only_tail == NULL) {
   204       guarantee( _scan_only_head == NULL, "invariant" );
   206       _scan_only_head = ret;
   207       _curr_scan_only = ret;
   208     } else {
   209       guarantee( _scan_only_head != NULL, "invariant" );
   210       _scan_only_tail->set_next_young_region(ret);
   211     }
   212     guarantee( ret->get_next_young_region() == NULL, "invariant" );
   213     _scan_only_tail = ret;
   215     // no need to be tagged as scan-only any more
   216     ret->set_young();
   218     ++_scan_only_length;
   219   }
   220   assert( length() == 0, "list should be empty" );
   221   return NULL;
   222 }
   224 void YoungList::empty_list(HeapRegion* list) {
   225   while (list != NULL) {
   226     HeapRegion* next = list->get_next_young_region();
   227     list->set_next_young_region(NULL);
   228     list->uninstall_surv_rate_group();
   229     list->set_not_young();
   230     list = next;
   231   }
   232 }
   234 void YoungList::empty_list() {
   235   assert(check_list_well_formed(), "young list should be well formed");
   237   empty_list(_head);
   238   _head = NULL;
   239   _length = 0;
   241   empty_list(_scan_only_head);
   242   _scan_only_head = NULL;
   243   _scan_only_tail = NULL;
   244   _scan_only_length = 0;
   245   _curr_scan_only = NULL;
   247   empty_list(_survivor_head);
   248   _survivor_head = NULL;
   249   _survivor_tail = NULL;
   250   _survivor_length = 0;
   252   _last_sampled_rs_lengths = 0;
   254   assert(check_list_empty(false), "just making sure...");
   255 }
   257 bool YoungList::check_list_well_formed() {
   258   bool ret = true;
   260   size_t length = 0;
   261   HeapRegion* curr = _head;
   262   HeapRegion* last = NULL;
   263   while (curr != NULL) {
   264     if (!curr->is_young() || curr->is_scan_only()) {
   265       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   266                              "incorrectly tagged (%d, %d)",
   267                              curr->bottom(), curr->end(),
   268                              curr->is_young(), curr->is_scan_only());
   269       ret = false;
   270     }
   271     ++length;
   272     last = curr;
   273     curr = curr->get_next_young_region();
   274   }
   275   ret = ret && (length == _length);
   277   if (!ret) {
   278     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   279     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   280                            length, _length);
   281   }
   283   bool scan_only_ret = true;
   284   length = 0;
   285   curr = _scan_only_head;
   286   last = NULL;
   287   while (curr != NULL) {
   288     if (!curr->is_young() || curr->is_scan_only()) {
   289       gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
   290                              "incorrectly tagged (%d, %d)",
   291                              curr->bottom(), curr->end(),
   292                              curr->is_young(), curr->is_scan_only());
   293       scan_only_ret = false;
   294     }
   295     ++length;
   296     last = curr;
   297     curr = curr->get_next_young_region();
   298   }
   299   scan_only_ret = scan_only_ret && (length == _scan_only_length);
   301   if ( (last != _scan_only_tail) ||
   302        (_scan_only_head == NULL && _scan_only_tail != NULL) ||
   303        (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
   304      gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
   305      scan_only_ret = false;
   306   }
   308   if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
   309     gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
   310     scan_only_ret = false;
   311    }
   313   if (!scan_only_ret) {
   314     gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
   315     gclog_or_tty->print_cr("###   list has %d entries, _scan_only_length is %d",
   316                   length, _scan_only_length);
   317   }
   319   return ret && scan_only_ret;
   320 }
   322 bool YoungList::check_list_empty(bool ignore_scan_only_list,
   323                                  bool check_sample) {
   324   bool ret = true;
   326   if (_length != 0) {
   327     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   328                   _length);
   329     ret = false;
   330   }
   331   if (check_sample && _last_sampled_rs_lengths != 0) {
   332     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   333     ret = false;
   334   }
   335   if (_head != NULL) {
   336     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   337     ret = false;
   338   }
   339   if (!ret) {
   340     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   341   }
   343   if (ignore_scan_only_list)
   344     return ret;
   346   bool scan_only_ret = true;
   347   if (_scan_only_length != 0) {
   348     gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
   349                   _scan_only_length);
   350     scan_only_ret = false;
   351   }
   352   if (_scan_only_head != NULL) {
   353     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
   354      scan_only_ret = false;
   355   }
   356   if (_scan_only_tail != NULL) {
   357     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
   358     scan_only_ret = false;
   359   }
   360   if (!scan_only_ret) {
   361     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
   362   }
   364   return ret && scan_only_ret;
   365 }
   367 void
   368 YoungList::rs_length_sampling_init() {
   369   _sampled_rs_lengths = 0;
   370   _curr               = _head;
   371 }
   373 bool
   374 YoungList::rs_length_sampling_more() {
   375   return _curr != NULL;
   376 }
   378 void
   379 YoungList::rs_length_sampling_next() {
   380   assert( _curr != NULL, "invariant" );
   381   _sampled_rs_lengths += _curr->rem_set()->occupied();
   382   _curr = _curr->get_next_young_region();
   383   if (_curr == NULL) {
   384     _last_sampled_rs_lengths = _sampled_rs_lengths;
   385     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   386   }
   387 }
   389 void
   390 YoungList::reset_auxilary_lists() {
   391   // We could have just "moved" the scan-only list to the young list.
   392   // However, the scan-only list is ordered according to the region
   393   // age in descending order, so, by moving one entry at a time, we
   394   // ensure that it is recreated in ascending order.
   396   guarantee( is_empty(), "young list should be empty" );
   397   assert(check_list_well_formed(), "young list should be well formed");
   399   // Add survivor regions to SurvRateGroup.
   400   _g1h->g1_policy()->note_start_adding_survivor_regions();
   401   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   402   for (HeapRegion* curr = _survivor_head;
   403        curr != NULL;
   404        curr = curr->get_next_young_region()) {
   405     _g1h->g1_policy()->set_region_survivors(curr);
   406   }
   407   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   409   if (_survivor_head != NULL) {
   410     _head           = _survivor_head;
   411     _length         = _survivor_length + _scan_only_length;
   412     _survivor_tail->set_next_young_region(_scan_only_head);
   413   } else {
   414     _head           = _scan_only_head;
   415     _length         = _scan_only_length;
   416   }
   418   for (HeapRegion* curr = _scan_only_head;
   419        curr != NULL;
   420        curr = curr->get_next_young_region()) {
   421     curr->recalculate_age_in_surv_rate_group();
   422   }
   423   _scan_only_head   = NULL;
   424   _scan_only_tail   = NULL;
   425   _scan_only_length = 0;
   426   _curr_scan_only   = NULL;
   428   _survivor_head    = NULL;
   429   _survivor_tail   = NULL;
   430   _survivor_length  = 0;
   431   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   433   assert(check_list_well_formed(), "young list should be well formed");
   434 }
   436 void YoungList::print() {
   437   HeapRegion* lists[] = {_head,   _scan_only_head, _survivor_head};
   438   const char* names[] = {"YOUNG", "SCAN-ONLY",     "SURVIVOR"};
   440   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   441     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   442     HeapRegion *curr = lists[list];
   443     if (curr == NULL)
   444       gclog_or_tty->print_cr("  empty");
   445     while (curr != NULL) {
   446       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   447                              "age: %4d, y: %d, s-o: %d, surv: %d",
   448                              curr->bottom(), curr->end(),
   449                              curr->top(),
   450                              curr->prev_top_at_mark_start(),
   451                              curr->next_top_at_mark_start(),
   452                              curr->top_at_conc_mark_count(),
   453                              curr->age_in_surv_rate_group_cond(),
   454                              curr->is_young(),
   455                              curr->is_scan_only(),
   456                              curr->is_survivor());
   457       curr = curr->get_next_young_region();
   458     }
   459   }
   461   gclog_or_tty->print_cr("");
   462 }
   464 void G1CollectedHeap::stop_conc_gc_threads() {
   465   _cg1r->cg1rThread()->stop();
   466   _czft->stop();
   467   _cmThread->stop();
   468 }
   471 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   472   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   473   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   475   // Count the dirty cards at the start.
   476   CountNonCleanMemRegionClosure count1(this);
   477   ct_bs->mod_card_iterate(&count1);
   478   int orig_count = count1.n();
   480   // First clear the logged cards.
   481   ClearLoggedCardTableEntryClosure clear;
   482   dcqs.set_closure(&clear);
   483   dcqs.apply_closure_to_all_completed_buffers();
   484   dcqs.iterate_closure_all_threads(false);
   485   clear.print_histo();
   487   // Now ensure that there's no dirty cards.
   488   CountNonCleanMemRegionClosure count2(this);
   489   ct_bs->mod_card_iterate(&count2);
   490   if (count2.n() != 0) {
   491     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   492                            count2.n(), orig_count);
   493   }
   494   guarantee(count2.n() == 0, "Card table should be clean.");
   496   RedirtyLoggedCardTableEntryClosure redirty;
   497   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   498   dcqs.apply_closure_to_all_completed_buffers();
   499   dcqs.iterate_closure_all_threads(false);
   500   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   501                          clear.calls(), orig_count);
   502   guarantee(redirty.calls() == clear.calls(),
   503             "Or else mechanism is broken.");
   505   CountNonCleanMemRegionClosure count3(this);
   506   ct_bs->mod_card_iterate(&count3);
   507   if (count3.n() != orig_count) {
   508     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   509                            orig_count, count3.n());
   510     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   511   }
   513   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   514 }
   516 // Private class members.
   518 G1CollectedHeap* G1CollectedHeap::_g1h;
   520 // Private methods.
   522 // Finds a HeapRegion that can be used to allocate a given size of block.
   525 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
   526                                                  bool do_expand,
   527                                                  bool zero_filled) {
   528   ConcurrentZFThread::note_region_alloc();
   529   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
   530   if (res == NULL && do_expand) {
   531     expand(word_size * HeapWordSize);
   532     res = alloc_free_region_from_lists(zero_filled);
   533     assert(res == NULL ||
   534            (!res->isHumongous() &&
   535             (!zero_filled ||
   536              res->zero_fill_state() == HeapRegion::Allocated)),
   537            "Alloc Regions must be zero filled (and non-H)");
   538   }
   539   if (res != NULL && res->is_empty()) _free_regions--;
   540   assert(res == NULL ||
   541          (!res->isHumongous() &&
   542           (!zero_filled ||
   543            res->zero_fill_state() == HeapRegion::Allocated)),
   544          "Non-young alloc Regions must be zero filled (and non-H)");
   546   if (G1TraceRegions) {
   547     if (res != NULL) {
   548       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
   549                              "top "PTR_FORMAT,
   550                              res->hrs_index(), res->bottom(), res->end(), res->top());
   551     }
   552   }
   554   return res;
   555 }
   557 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
   558                                                          size_t word_size,
   559                                                          bool zero_filled) {
   560   HeapRegion* alloc_region = NULL;
   561   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
   562     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
   563     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
   564       alloc_region->set_survivor();
   565     }
   566     ++_gc_alloc_region_counts[purpose];
   567   } else {
   568     g1_policy()->note_alloc_region_limit_reached(purpose);
   569   }
   570   return alloc_region;
   571 }
   573 // If could fit into free regions w/o expansion, try.
   574 // Otherwise, if can expand, do so.
   575 // Otherwise, if using ex regions might help, try with ex given back.
   576 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
   577   assert(regions_accounted_for(), "Region leakage!");
   579   // We can't allocate H regions while cleanupComplete is running, since
   580   // some of the regions we find to be empty might not yet be added to the
   581   // unclean list.  (If we're already at a safepoint, this call is
   582   // unnecessary, not to mention wrong.)
   583   if (!SafepointSynchronize::is_at_safepoint())
   584     wait_for_cleanup_complete();
   586   size_t num_regions =
   587     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   589   // Special case if < one region???
   591   // Remember the ft size.
   592   size_t x_size = expansion_regions();
   594   HeapWord* res = NULL;
   595   bool eliminated_allocated_from_lists = false;
   597   // Can the allocation potentially fit in the free regions?
   598   if (free_regions() >= num_regions) {
   599     res = _hrs->obj_allocate(word_size);
   600   }
   601   if (res == NULL) {
   602     // Try expansion.
   603     size_t fs = _hrs->free_suffix();
   604     if (fs + x_size >= num_regions) {
   605       expand((num_regions - fs) * HeapRegion::GrainBytes);
   606       res = _hrs->obj_allocate(word_size);
   607       assert(res != NULL, "This should have worked.");
   608     } else {
   609       // Expansion won't help.  Are there enough free regions if we get rid
   610       // of reservations?
   611       size_t avail = free_regions();
   612       if (avail >= num_regions) {
   613         res = _hrs->obj_allocate(word_size);
   614         if (res != NULL) {
   615           remove_allocated_regions_from_lists();
   616           eliminated_allocated_from_lists = true;
   617         }
   618       }
   619     }
   620   }
   621   if (res != NULL) {
   622     // Increment by the number of regions allocated.
   623     // FIXME: Assumes regions all of size GrainBytes.
   624 #ifndef PRODUCT
   625     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
   626                                            HeapRegion::GrainWords));
   627 #endif
   628     if (!eliminated_allocated_from_lists)
   629       remove_allocated_regions_from_lists();
   630     _summary_bytes_used += word_size * HeapWordSize;
   631     _free_regions -= num_regions;
   632     _num_humongous_regions += (int) num_regions;
   633   }
   634   assert(regions_accounted_for(), "Region Leakage");
   635   return res;
   636 }
   638 HeapWord*
   639 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   640                                          bool permit_collection_pause) {
   641   HeapWord* res = NULL;
   642   HeapRegion* allocated_young_region = NULL;
   644   assert( SafepointSynchronize::is_at_safepoint() ||
   645           Heap_lock->owned_by_self(), "pre condition of the call" );
   647   if (isHumongous(word_size)) {
   648     // Allocation of a humongous object can, in a sense, complete a
   649     // partial region, if the previous alloc was also humongous, and
   650     // caused the test below to succeed.
   651     if (permit_collection_pause)
   652       do_collection_pause_if_appropriate(word_size);
   653     res = humongousObjAllocate(word_size);
   654     assert(_cur_alloc_region == NULL
   655            || !_cur_alloc_region->isHumongous(),
   656            "Prevent a regression of this bug.");
   658   } else {
   659     // We may have concurrent cleanup working at the time. Wait for it
   660     // to complete. In the future we would probably want to make the
   661     // concurrent cleanup truly concurrent by decoupling it from the
   662     // allocation.
   663     if (!SafepointSynchronize::is_at_safepoint())
   664       wait_for_cleanup_complete();
   665     // If we do a collection pause, this will be reset to a non-NULL
   666     // value.  If we don't, nulling here ensures that we allocate a new
   667     // region below.
   668     if (_cur_alloc_region != NULL) {
   669       // We're finished with the _cur_alloc_region.
   670       _summary_bytes_used += _cur_alloc_region->used();
   671       _cur_alloc_region = NULL;
   672     }
   673     assert(_cur_alloc_region == NULL, "Invariant.");
   674     // Completion of a heap region is perhaps a good point at which to do
   675     // a collection pause.
   676     if (permit_collection_pause)
   677       do_collection_pause_if_appropriate(word_size);
   678     // Make sure we have an allocation region available.
   679     if (_cur_alloc_region == NULL) {
   680       if (!SafepointSynchronize::is_at_safepoint())
   681         wait_for_cleanup_complete();
   682       bool next_is_young = should_set_young_locked();
   683       // If the next region is not young, make sure it's zero-filled.
   684       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
   685       if (_cur_alloc_region != NULL) {
   686         _summary_bytes_used -= _cur_alloc_region->used();
   687         if (next_is_young) {
   688           set_region_short_lived_locked(_cur_alloc_region);
   689           allocated_young_region = _cur_alloc_region;
   690         }
   691       }
   692     }
   693     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
   694            "Prevent a regression of this bug.");
   696     // Now retry the allocation.
   697     if (_cur_alloc_region != NULL) {
   698       res = _cur_alloc_region->allocate(word_size);
   699     }
   700   }
   702   // NOTE: fails frequently in PRT
   703   assert(regions_accounted_for(), "Region leakage!");
   705   if (res != NULL) {
   706     if (!SafepointSynchronize::is_at_safepoint()) {
   707       assert( permit_collection_pause, "invariant" );
   708       assert( Heap_lock->owned_by_self(), "invariant" );
   709       Heap_lock->unlock();
   710     }
   712     if (allocated_young_region != NULL) {
   713       HeapRegion* hr = allocated_young_region;
   714       HeapWord* bottom = hr->bottom();
   715       HeapWord* end = hr->end();
   716       MemRegion mr(bottom, end);
   717       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
   718     }
   719   }
   721   assert( SafepointSynchronize::is_at_safepoint() ||
   722           (res == NULL && Heap_lock->owned_by_self()) ||
   723           (res != NULL && !Heap_lock->owned_by_self()),
   724           "post condition of the call" );
   726   return res;
   727 }
   729 HeapWord*
   730 G1CollectedHeap::mem_allocate(size_t word_size,
   731                               bool   is_noref,
   732                               bool   is_tlab,
   733                               bool* gc_overhead_limit_was_exceeded) {
   734   debug_only(check_for_valid_allocation_state());
   735   assert(no_gc_in_progress(), "Allocation during gc not allowed");
   736   HeapWord* result = NULL;
   738   // Loop until the allocation is satisified,
   739   // or unsatisfied after GC.
   740   for (int try_count = 1; /* return or throw */; try_count += 1) {
   741     int gc_count_before;
   742     {
   743       Heap_lock->lock();
   744       result = attempt_allocation(word_size);
   745       if (result != NULL) {
   746         // attempt_allocation should have unlocked the heap lock
   747         assert(is_in(result), "result not in heap");
   748         return result;
   749       }
   750       // Read the gc count while the heap lock is held.
   751       gc_count_before = SharedHeap::heap()->total_collections();
   752       Heap_lock->unlock();
   753     }
   755     // Create the garbage collection operation...
   756     VM_G1CollectForAllocation op(word_size,
   757                                  gc_count_before);
   759     // ...and get the VM thread to execute it.
   760     VMThread::execute(&op);
   761     if (op.prologue_succeeded()) {
   762       result = op.result();
   763       assert(result == NULL || is_in(result), "result not in heap");
   764       return result;
   765     }
   767     // Give a warning if we seem to be looping forever.
   768     if ((QueuedAllocationWarningCount > 0) &&
   769         (try_count % QueuedAllocationWarningCount == 0)) {
   770       warning("G1CollectedHeap::mem_allocate_work retries %d times",
   771               try_count);
   772     }
   773   }
   774 }
   776 void G1CollectedHeap::abandon_cur_alloc_region() {
   777   if (_cur_alloc_region != NULL) {
   778     // We're finished with the _cur_alloc_region.
   779     if (_cur_alloc_region->is_empty()) {
   780       _free_regions++;
   781       free_region(_cur_alloc_region);
   782     } else {
   783       _summary_bytes_used += _cur_alloc_region->used();
   784     }
   785     _cur_alloc_region = NULL;
   786   }
   787 }
   789 void G1CollectedHeap::abandon_gc_alloc_regions() {
   790   // first, make sure that the GC alloc region list is empty (it should!)
   791   assert(_gc_alloc_region_list == NULL, "invariant");
   792   release_gc_alloc_regions(true /* totally */);
   793 }
   795 class PostMCRemSetClearClosure: public HeapRegionClosure {
   796   ModRefBarrierSet* _mr_bs;
   797 public:
   798   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   799   bool doHeapRegion(HeapRegion* r) {
   800     r->reset_gc_time_stamp();
   801     if (r->continuesHumongous())
   802       return false;
   803     HeapRegionRemSet* hrrs = r->rem_set();
   804     if (hrrs != NULL) hrrs->clear();
   805     // You might think here that we could clear just the cards
   806     // corresponding to the used region.  But no: if we leave a dirty card
   807     // in a region we might allocate into, then it would prevent that card
   808     // from being enqueued, and cause it to be missed.
   809     // Re: the performance cost: we shouldn't be doing full GC anyway!
   810     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
   811     return false;
   812   }
   813 };
   816 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
   817   ModRefBarrierSet* _mr_bs;
   818 public:
   819   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   820   bool doHeapRegion(HeapRegion* r) {
   821     if (r->continuesHumongous()) return false;
   822     if (r->used_region().word_size() != 0) {
   823       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
   824     }
   825     return false;
   826   }
   827 };
   829 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
   830   G1CollectedHeap*   _g1h;
   831   UpdateRSOopClosure _cl;
   832   int                _worker_i;
   833 public:
   834   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
   835     _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
   836     _worker_i(worker_i),
   837     _g1h(g1)
   838   { }
   839   bool doHeapRegion(HeapRegion* r) {
   840     if (!r->continuesHumongous()) {
   841       _cl.set_from(r);
   842       r->oop_iterate(&_cl);
   843     }
   844     return false;
   845   }
   846 };
   848 class ParRebuildRSTask: public AbstractGangTask {
   849   G1CollectedHeap* _g1;
   850 public:
   851   ParRebuildRSTask(G1CollectedHeap* g1)
   852     : AbstractGangTask("ParRebuildRSTask"),
   853       _g1(g1)
   854   { }
   856   void work(int i) {
   857     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
   858     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
   859                                          HeapRegion::RebuildRSClaimValue);
   860   }
   861 };
   863 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
   864                                     size_t word_size) {
   865   ResourceMark rm;
   867   if (full && DisableExplicitGC) {
   868     gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
   869     return;
   870   }
   872   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   873   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
   875   if (GC_locker::is_active()) {
   876     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   877   }
   879   {
   880     IsGCActiveMark x;
   882     // Timing
   883     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   884     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   885     TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
   887     double start = os::elapsedTime();
   888     GCOverheadReporter::recordSTWStart(start);
   889     g1_policy()->record_full_collection_start();
   891     gc_prologue(true);
   892     increment_total_collections();
   894     size_t g1h_prev_used = used();
   895     assert(used() == recalculate_used(), "Should be equal");
   897     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
   898       HandleMark hm;  // Discard invalid handles created during verification
   899       prepare_for_verify();
   900       gclog_or_tty->print(" VerifyBeforeGC:");
   901       Universe::verify(true);
   902     }
   903     assert(regions_accounted_for(), "Region leakage!");
   905     COMPILER2_PRESENT(DerivedPointerTable::clear());
   907     // We want to discover references, but not process them yet.
   908     // This mode is disabled in
   909     // instanceRefKlass::process_discovered_references if the
   910     // generation does some collection work, or
   911     // instanceRefKlass::enqueue_discovered_references if the
   912     // generation returns without doing any work.
   913     ref_processor()->disable_discovery();
   914     ref_processor()->abandon_partial_discovery();
   915     ref_processor()->verify_no_references_recorded();
   917     // Abandon current iterations of concurrent marking and concurrent
   918     // refinement, if any are in progress.
   919     concurrent_mark()->abort();
   921     // Make sure we'll choose a new allocation region afterwards.
   922     abandon_cur_alloc_region();
   923     abandon_gc_alloc_regions();
   924     assert(_cur_alloc_region == NULL, "Invariant.");
   925     g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
   926     tear_down_region_lists();
   927     set_used_regions_to_need_zero_fill();
   928     if (g1_policy()->in_young_gc_mode()) {
   929       empty_young_list();
   930       g1_policy()->set_full_young_gcs(true);
   931     }
   933     // Temporarily make reference _discovery_ single threaded (non-MT).
   934     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
   936     // Temporarily make refs discovery atomic
   937     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
   939     // Temporarily clear _is_alive_non_header
   940     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
   942     ref_processor()->enable_discovery();
   943     ref_processor()->setup_policy(clear_all_soft_refs);
   945     // Do collection work
   946     {
   947       HandleMark hm;  // Discard invalid handles created during gc
   948       G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
   949     }
   950     // Because freeing humongous regions may have added some unclean
   951     // regions, it is necessary to tear down again before rebuilding.
   952     tear_down_region_lists();
   953     rebuild_region_lists();
   955     _summary_bytes_used = recalculate_used();
   957     ref_processor()->enqueue_discovered_references();
   959     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   961     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
   962       HandleMark hm;  // Discard invalid handles created during verification
   963       gclog_or_tty->print(" VerifyAfterGC:");
   964       prepare_for_verify();
   965       Universe::verify(false);
   966     }
   967     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   969     reset_gc_time_stamp();
   970     // Since everything potentially moved, we will clear all remembered
   971     // sets, and clear all cards.  Later we will rebuild remebered
   972     // sets. We will also reset the GC time stamps of the regions.
   973     PostMCRemSetClearClosure rs_clear(mr_bs());
   974     heap_region_iterate(&rs_clear);
   976     // Resize the heap if necessary.
   977     resize_if_necessary_after_full_collection(full ? 0 : word_size);
   979     if (_cg1r->use_cache()) {
   980       _cg1r->clear_and_record_card_counts();
   981       _cg1r->clear_hot_cache();
   982     }
   984     // Rebuild remembered sets of all regions.
   985     if (ParallelGCThreads > 0) {
   986       ParRebuildRSTask rebuild_rs_task(this);
   987       assert(check_heap_region_claim_values(
   988              HeapRegion::InitialClaimValue), "sanity check");
   989       set_par_threads(workers()->total_workers());
   990       workers()->run_task(&rebuild_rs_task);
   991       set_par_threads(0);
   992       assert(check_heap_region_claim_values(
   993              HeapRegion::RebuildRSClaimValue), "sanity check");
   994       reset_heap_region_claim_values();
   995     } else {
   996       RebuildRSOutOfRegionClosure rebuild_rs(this);
   997       heap_region_iterate(&rebuild_rs);
   998     }
  1000     if (PrintGC) {
  1001       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1004     if (true) { // FIXME
  1005       // Ask the permanent generation to adjust size for full collections
  1006       perm()->compute_new_size();
  1009     double end = os::elapsedTime();
  1010     GCOverheadReporter::recordSTWEnd(end);
  1011     g1_policy()->record_full_collection_end();
  1013 #ifdef TRACESPINNING
  1014     ParallelTaskTerminator::print_termination_counts();
  1015 #endif
  1017     gc_epilogue(true);
  1019     // Abandon concurrent refinement.  This must happen last: in the
  1020     // dirty-card logging system, some cards may be dirty by weak-ref
  1021     // processing, and may be enqueued.  But the whole card table is
  1022     // dirtied, so this should abandon those logs, and set "do_traversal"
  1023     // to true.
  1024     concurrent_g1_refine()->set_pya_restart();
  1025     assert(!G1DeferredRSUpdate
  1026            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1027     assert(regions_accounted_for(), "Region leakage!");
  1030   if (g1_policy()->in_young_gc_mode()) {
  1031     _young_list->reset_sampled_info();
  1032     assert( check_young_list_empty(false, false),
  1033             "young list should be empty at this point");
  1037 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1038   do_collection(true, clear_all_soft_refs, 0);
  1041 // This code is mostly copied from TenuredGeneration.
  1042 void
  1043 G1CollectedHeap::
  1044 resize_if_necessary_after_full_collection(size_t word_size) {
  1045   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1047   // Include the current allocation, if any, and bytes that will be
  1048   // pre-allocated to support collections, as "used".
  1049   const size_t used_after_gc = used();
  1050   const size_t capacity_after_gc = capacity();
  1051   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1053   // We don't have floating point command-line arguments
  1054   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
  1055   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1056   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
  1057   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1059   size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
  1060   size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
  1062   // Don't shrink less than the initial size.
  1063   minimum_desired_capacity =
  1064     MAX2(minimum_desired_capacity,
  1065          collector_policy()->initial_heap_byte_size());
  1066   maximum_desired_capacity =
  1067     MAX2(maximum_desired_capacity,
  1068          collector_policy()->initial_heap_byte_size());
  1070   // We are failing here because minimum_desired_capacity is
  1071   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
  1072   assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
  1074   if (PrintGC && Verbose) {
  1075     const double free_percentage = ((double)free_after_gc) / capacity();
  1076     gclog_or_tty->print_cr("Computing new size after full GC ");
  1077     gclog_or_tty->print_cr("  "
  1078                            "  minimum_free_percentage: %6.2f",
  1079                            minimum_free_percentage);
  1080     gclog_or_tty->print_cr("  "
  1081                            "  maximum_free_percentage: %6.2f",
  1082                            maximum_free_percentage);
  1083     gclog_or_tty->print_cr("  "
  1084                            "  capacity: %6.1fK"
  1085                            "  minimum_desired_capacity: %6.1fK"
  1086                            "  maximum_desired_capacity: %6.1fK",
  1087                            capacity() / (double) K,
  1088                            minimum_desired_capacity / (double) K,
  1089                            maximum_desired_capacity / (double) K);
  1090     gclog_or_tty->print_cr("  "
  1091                            "   free_after_gc   : %6.1fK"
  1092                            "   used_after_gc   : %6.1fK",
  1093                            free_after_gc / (double) K,
  1094                            used_after_gc / (double) K);
  1095     gclog_or_tty->print_cr("  "
  1096                            "   free_percentage: %6.2f",
  1097                            free_percentage);
  1099   if (capacity() < minimum_desired_capacity) {
  1100     // Don't expand unless it's significant
  1101     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1102     expand(expand_bytes);
  1103     if (PrintGC && Verbose) {
  1104       gclog_or_tty->print_cr("    expanding:"
  1105                              "  minimum_desired_capacity: %6.1fK"
  1106                              "  expand_bytes: %6.1fK",
  1107                              minimum_desired_capacity / (double) K,
  1108                              expand_bytes / (double) K);
  1111     // No expansion, now see if we want to shrink
  1112   } else if (capacity() > maximum_desired_capacity) {
  1113     // Capacity too large, compute shrinking size
  1114     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1115     shrink(shrink_bytes);
  1116     if (PrintGC && Verbose) {
  1117       gclog_or_tty->print_cr("  "
  1118                              "  shrinking:"
  1119                              "  initSize: %.1fK"
  1120                              "  maximum_desired_capacity: %.1fK",
  1121                              collector_policy()->initial_heap_byte_size() / (double) K,
  1122                              maximum_desired_capacity / (double) K);
  1123       gclog_or_tty->print_cr("  "
  1124                              "  shrink_bytes: %.1fK",
  1125                              shrink_bytes / (double) K);
  1131 HeapWord*
  1132 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
  1133   HeapWord* result = NULL;
  1135   // In a G1 heap, we're supposed to keep allocation from failing by
  1136   // incremental pauses.  Therefore, at least for now, we'll favor
  1137   // expansion over collection.  (This might change in the future if we can
  1138   // do something smarter than full collection to satisfy a failed alloc.)
  1140   result = expand_and_allocate(word_size);
  1141   if (result != NULL) {
  1142     assert(is_in(result), "result not in heap");
  1143     return result;
  1146   // OK, I guess we have to try collection.
  1148   do_collection(false, false, word_size);
  1150   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1152   if (result != NULL) {
  1153     assert(is_in(result), "result not in heap");
  1154     return result;
  1157   // Try collecting soft references.
  1158   do_collection(false, true, word_size);
  1159   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1160   if (result != NULL) {
  1161     assert(is_in(result), "result not in heap");
  1162     return result;
  1165   // What else?  We might try synchronous finalization later.  If the total
  1166   // space available is large enough for the allocation, then a more
  1167   // complete compaction phase than we've tried so far might be
  1168   // appropriate.
  1169   return NULL;
  1172 // Attempting to expand the heap sufficiently
  1173 // to support an allocation of the given "word_size".  If
  1174 // successful, perform the allocation and return the address of the
  1175 // allocated block, or else "NULL".
  1177 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1178   size_t expand_bytes = word_size * HeapWordSize;
  1179   if (expand_bytes < MinHeapDeltaBytes) {
  1180     expand_bytes = MinHeapDeltaBytes;
  1182   expand(expand_bytes);
  1183   assert(regions_accounted_for(), "Region leakage!");
  1184   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
  1185   return result;
  1188 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
  1189   size_t pre_used = 0;
  1190   size_t cleared_h_regions = 0;
  1191   size_t freed_regions = 0;
  1192   UncleanRegionList local_list;
  1193   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
  1194                                     freed_regions, &local_list);
  1196   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  1197                           &local_list);
  1198   return pre_used;
  1201 void
  1202 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
  1203                                                    size_t& pre_used,
  1204                                                    size_t& cleared_h,
  1205                                                    size_t& freed_regions,
  1206                                                    UncleanRegionList* list,
  1207                                                    bool par) {
  1208   assert(!hr->continuesHumongous(), "should have filtered these out");
  1209   size_t res = 0;
  1210   if (!hr->popular() && hr->used() > 0 && hr->garbage_bytes() == hr->used()) {
  1211     if (!hr->is_young()) {
  1212       if (G1PolicyVerbose > 0)
  1213         gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
  1214                                " during cleanup", hr, hr->used());
  1215       free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
  1220 // FIXME: both this and shrink could probably be more efficient by
  1221 // doing one "VirtualSpace::expand_by" call rather than several.
  1222 void G1CollectedHeap::expand(size_t expand_bytes) {
  1223   size_t old_mem_size = _g1_storage.committed_size();
  1224   // We expand by a minimum of 1K.
  1225   expand_bytes = MAX2(expand_bytes, (size_t)K);
  1226   size_t aligned_expand_bytes =
  1227     ReservedSpace::page_align_size_up(expand_bytes);
  1228   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1229                                        HeapRegion::GrainBytes);
  1230   expand_bytes = aligned_expand_bytes;
  1231   while (expand_bytes > 0) {
  1232     HeapWord* base = (HeapWord*)_g1_storage.high();
  1233     // Commit more storage.
  1234     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
  1235     if (!successful) {
  1236         expand_bytes = 0;
  1237     } else {
  1238       expand_bytes -= HeapRegion::GrainBytes;
  1239       // Expand the committed region.
  1240       HeapWord* high = (HeapWord*) _g1_storage.high();
  1241       _g1_committed.set_end(high);
  1242       // Create a new HeapRegion.
  1243       MemRegion mr(base, high);
  1244       bool is_zeroed = !_g1_max_committed.contains(base);
  1245       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
  1247       // Now update max_committed if necessary.
  1248       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
  1250       // Add it to the HeapRegionSeq.
  1251       _hrs->insert(hr);
  1252       // Set the zero-fill state, according to whether it's already
  1253       // zeroed.
  1255         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  1256         if (is_zeroed) {
  1257           hr->set_zero_fill_complete();
  1258           put_free_region_on_list_locked(hr);
  1259         } else {
  1260           hr->set_zero_fill_needed();
  1261           put_region_on_unclean_list_locked(hr);
  1264       _free_regions++;
  1265       // And we used up an expansion region to create it.
  1266       _expansion_regions--;
  1267       // Tell the cardtable about it.
  1268       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1269       // And the offset table as well.
  1270       _bot_shared->resize(_g1_committed.word_size());
  1273   if (Verbose && PrintGC) {
  1274     size_t new_mem_size = _g1_storage.committed_size();
  1275     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
  1276                            old_mem_size/K, aligned_expand_bytes/K,
  1277                            new_mem_size/K);
  1281 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
  1283   size_t old_mem_size = _g1_storage.committed_size();
  1284   size_t aligned_shrink_bytes =
  1285     ReservedSpace::page_align_size_down(shrink_bytes);
  1286   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1287                                          HeapRegion::GrainBytes);
  1288   size_t num_regions_deleted = 0;
  1289   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
  1291   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1292   if (mr.byte_size() > 0)
  1293     _g1_storage.shrink_by(mr.byte_size());
  1294   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1296   _g1_committed.set_end(mr.start());
  1297   _free_regions -= num_regions_deleted;
  1298   _expansion_regions += num_regions_deleted;
  1300   // Tell the cardtable about it.
  1301   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1303   // And the offset table as well.
  1304   _bot_shared->resize(_g1_committed.word_size());
  1306   HeapRegionRemSet::shrink_heap(n_regions());
  1308   if (Verbose && PrintGC) {
  1309     size_t new_mem_size = _g1_storage.committed_size();
  1310     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1311                            old_mem_size/K, aligned_shrink_bytes/K,
  1312                            new_mem_size/K);
  1316 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1317   release_gc_alloc_regions(true /* totally */);
  1318   tear_down_region_lists();  // We will rebuild them in a moment.
  1319   shrink_helper(shrink_bytes);
  1320   rebuild_region_lists();
  1323 // Public methods.
  1325 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1326 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1327 #endif // _MSC_VER
  1330 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1331   SharedHeap(policy_),
  1332   _g1_policy(policy_),
  1333   _ref_processor(NULL),
  1334   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1335   _bot_shared(NULL),
  1336   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
  1337   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1338   _evac_failure_scan_stack(NULL) ,
  1339   _mark_in_progress(false),
  1340   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
  1341   _cur_alloc_region(NULL),
  1342   _refine_cte_cl(NULL),
  1343   _free_region_list(NULL), _free_region_list_size(0),
  1344   _free_regions(0),
  1345   _popular_object_boundary(NULL),
  1346   _cur_pop_hr_index(0),
  1347   _popular_regions_to_be_evacuated(NULL),
  1348   _pop_obj_rc_at_copy(),
  1349   _full_collection(false),
  1350   _unclean_region_list(),
  1351   _unclean_regions_coming(false),
  1352   _young_list(new YoungList(this)),
  1353   _gc_time_stamp(0),
  1354   _surviving_young_words(NULL),
  1355   _in_cset_fast_test(NULL),
  1356   _in_cset_fast_test_base(NULL) {
  1357   _g1h = this; // To catch bugs.
  1358   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1359     vm_exit_during_initialization("Failed necessary allocation.");
  1361   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1362   _task_queues = new RefToScanQueueSet(n_queues);
  1364   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1365   assert(n_rem_sets > 0, "Invariant.");
  1367   HeapRegionRemSetIterator** iter_arr =
  1368     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1369   for (int i = 0; i < n_queues; i++) {
  1370     iter_arr[i] = new HeapRegionRemSetIterator();
  1372   _rem_set_iterator = iter_arr;
  1374   for (int i = 0; i < n_queues; i++) {
  1375     RefToScanQueue* q = new RefToScanQueue();
  1376     q->initialize();
  1377     _task_queues->register_queue(i, q);
  1380   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1381     _gc_alloc_regions[ap]          = NULL;
  1382     _gc_alloc_region_counts[ap]    = 0;
  1383     _retained_gc_alloc_regions[ap] = NULL;
  1384     // by default, we do not retain a GC alloc region for each ap;
  1385     // we'll override this, when appropriate, below
  1386     _retain_gc_alloc_region[ap]    = false;
  1389   // We will try to remember the last half-full tenured region we
  1390   // allocated to at the end of a collection so that we can re-use it
  1391   // during the next collection.
  1392   _retain_gc_alloc_region[GCAllocForTenured]  = true;
  1394   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1397 jint G1CollectedHeap::initialize() {
  1398   os::enable_vtime();
  1400   // Necessary to satisfy locking discipline assertions.
  1402   MutexLocker x(Heap_lock);
  1404   // While there are no constraints in the GC code that HeapWordSize
  1405   // be any particular value, there are multiple other areas in the
  1406   // system which believe this to be true (e.g. oop->object_size in some
  1407   // cases incorrectly returns the size in wordSize units rather than
  1408   // HeapWordSize).
  1409   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1411   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1412   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1414   // Ensure that the sizes are properly aligned.
  1415   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1416   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1418   // We allocate this in any case, but only do no work if the command line
  1419   // param is off.
  1420   _cg1r = new ConcurrentG1Refine();
  1422   // Reserve the maximum.
  1423   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1424   // Includes the perm-gen.
  1425   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
  1426                         HeapRegion::GrainBytes,
  1427                         false /*ism*/);
  1429   if (!heap_rs.is_reserved()) {
  1430     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1431     return JNI_ENOMEM;
  1434   // It is important to do this in a way such that concurrent readers can't
  1435   // temporarily think somethings in the heap.  (I've actually seen this
  1436   // happen in asserts: DLD.)
  1437   _reserved.set_word_size(0);
  1438   _reserved.set_start((HeapWord*)heap_rs.base());
  1439   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1441   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1443   _num_humongous_regions = 0;
  1445   // Create the gen rem set (and barrier set) for the entire reserved region.
  1446   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1447   set_barrier_set(rem_set()->bs());
  1448   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1449     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1450   } else {
  1451     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1452     return JNI_ENOMEM;
  1455   // Also create a G1 rem set.
  1456   if (G1UseHRIntoRS) {
  1457     if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1458       _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1459     } else {
  1460       vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1461       return JNI_ENOMEM;
  1463   } else {
  1464     _g1_rem_set = new StupidG1RemSet(this);
  1467   // Carve out the G1 part of the heap.
  1469   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1470   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1471                            g1_rs.size()/HeapWordSize);
  1472   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1474   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1476   _g1_storage.initialize(g1_rs, 0);
  1477   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1478   _g1_max_committed = _g1_committed;
  1479   _hrs = new HeapRegionSeq(_expansion_regions);
  1480   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  1481   guarantee(_cur_alloc_region == NULL, "from constructor");
  1483   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1484                                              heap_word_size(init_byte_size));
  1486   _g1h = this;
  1488   // Create the ConcurrentMark data structure and thread.
  1489   // (Must do this late, so that "max_regions" is defined.)
  1490   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1491   _cmThread = _cm->cmThread();
  1493   // ...and the concurrent zero-fill thread, if necessary.
  1494   if (G1ConcZeroFill) {
  1495     _czft = new ConcurrentZFThread();
  1500   // Allocate the popular regions; take them off free lists.
  1501   size_t pop_byte_size = G1NumPopularRegions * HeapRegion::GrainBytes;
  1502   expand(pop_byte_size);
  1503   _popular_object_boundary =
  1504     _g1_reserved.start() + (G1NumPopularRegions * HeapRegion::GrainWords);
  1505   for (int i = 0; i < G1NumPopularRegions; i++) {
  1506     HeapRegion* hr = newAllocRegion(HeapRegion::GrainWords);
  1507     //    assert(hr != NULL && hr->bottom() < _popular_object_boundary,
  1508     //     "Should be enough, and all should be below boundary.");
  1509     hr->set_popular(true);
  1511   assert(_cur_pop_hr_index == 0, "Start allocating at the first region.");
  1513   // Initialize the from_card cache structure of HeapRegionRemSet.
  1514   HeapRegionRemSet::init_heap(max_regions());
  1516   // Now expand into the rest of the initial heap size.
  1517   expand(init_byte_size - pop_byte_size);
  1519   // Perform any initialization actions delegated to the policy.
  1520   g1_policy()->init();
  1522   g1_policy()->note_start_of_mark_thread();
  1524   _refine_cte_cl =
  1525     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  1526                                     g1_rem_set(),
  1527                                     concurrent_g1_refine());
  1528   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  1530   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  1531                                                SATB_Q_FL_lock,
  1532                                                0,
  1533                                                Shared_SATB_Q_lock);
  1534   if (G1RSBarrierUseQueue) {
  1535     JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1536                                                   DirtyCardQ_FL_lock,
  1537                                                   G1DirtyCardQueueMax,
  1538                                                   Shared_DirtyCardQ_lock);
  1540   if (G1DeferredRSUpdate) {
  1541     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1542                                       DirtyCardQ_FL_lock,
  1543                                       0,
  1544                                       Shared_DirtyCardQ_lock,
  1545                                       &JavaThread::dirty_card_queue_set());
  1547   // In case we're keeping closure specialization stats, initialize those
  1548   // counts and that mechanism.
  1549   SpecializationStats::clear();
  1551   _gc_alloc_region_list = NULL;
  1553   // Do later initialization work for concurrent refinement.
  1554   _cg1r->init();
  1556   const char* group_names[] = { "CR", "ZF", "CM", "CL" };
  1557   GCOverheadReporter::initGCOverheadReporter(4, group_names);
  1559   return JNI_OK;
  1562 void G1CollectedHeap::ref_processing_init() {
  1563   SharedHeap::ref_processing_init();
  1564   MemRegion mr = reserved_region();
  1565   _ref_processor = ReferenceProcessor::create_ref_processor(
  1566                                          mr,    // span
  1567                                          false, // Reference discovery is not atomic
  1568                                                 // (though it shouldn't matter here.)
  1569                                          true,  // mt_discovery
  1570                                          NULL,  // is alive closure: need to fill this in for efficiency
  1571                                          ParallelGCThreads,
  1572                                          ParallelRefProcEnabled,
  1573                                          true); // Setting next fields of discovered
  1574                                                 // lists requires a barrier.
  1577 size_t G1CollectedHeap::capacity() const {
  1578   return _g1_committed.byte_size();
  1581 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
  1582                                                  int worker_i) {
  1583   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1584   int n_completed_buffers = 0;
  1585   while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
  1586     n_completed_buffers++;
  1588   g1_policy()->record_update_rs_processed_buffers(worker_i,
  1589                                                   (double) n_completed_buffers);
  1590   dcqs.clear_n_completed_buffers();
  1591   // Finish up the queue...
  1592   if (worker_i == 0) concurrent_g1_refine()->clean_up_cache(worker_i,
  1593                                                             g1_rem_set());
  1594   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  1598 // Computes the sum of the storage used by the various regions.
  1600 size_t G1CollectedHeap::used() const {
  1601   assert(Heap_lock->owner() != NULL,
  1602          "Should be owned on this thread's behalf.");
  1603   size_t result = _summary_bytes_used;
  1604   if (_cur_alloc_region != NULL)
  1605     result += _cur_alloc_region->used();
  1606   return result;
  1609 class SumUsedClosure: public HeapRegionClosure {
  1610   size_t _used;
  1611 public:
  1612   SumUsedClosure() : _used(0) {}
  1613   bool doHeapRegion(HeapRegion* r) {
  1614     if (!r->continuesHumongous()) {
  1615       _used += r->used();
  1617     return false;
  1619   size_t result() { return _used; }
  1620 };
  1622 size_t G1CollectedHeap::recalculate_used() const {
  1623   SumUsedClosure blk;
  1624   _hrs->iterate(&blk);
  1625   return blk.result();
  1628 #ifndef PRODUCT
  1629 class SumUsedRegionsClosure: public HeapRegionClosure {
  1630   size_t _num;
  1631 public:
  1632   // _num is set to 1 to account for the popular region
  1633   SumUsedRegionsClosure() : _num(G1NumPopularRegions) {}
  1634   bool doHeapRegion(HeapRegion* r) {
  1635     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
  1636       _num += 1;
  1638     return false;
  1640   size_t result() { return _num; }
  1641 };
  1643 size_t G1CollectedHeap::recalculate_used_regions() const {
  1644   SumUsedRegionsClosure blk;
  1645   _hrs->iterate(&blk);
  1646   return blk.result();
  1648 #endif // PRODUCT
  1650 size_t G1CollectedHeap::unsafe_max_alloc() {
  1651   if (_free_regions > 0) return HeapRegion::GrainBytes;
  1652   // otherwise, is there space in the current allocation region?
  1654   // We need to store the current allocation region in a local variable
  1655   // here. The problem is that this method doesn't take any locks and
  1656   // there may be other threads which overwrite the current allocation
  1657   // region field. attempt_allocation(), for example, sets it to NULL
  1658   // and this can happen *after* the NULL check here but before the call
  1659   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  1660   // to be a problem in the optimized build, since the two loads of the
  1661   // current allocation region field are optimized away.
  1662   HeapRegion* car = _cur_alloc_region;
  1664   // FIXME: should iterate over all regions?
  1665   if (car == NULL) {
  1666     return 0;
  1668   return car->free();
  1671 void G1CollectedHeap::collect(GCCause::Cause cause) {
  1672   // The caller doesn't have the Heap_lock
  1673   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  1674   MutexLocker ml(Heap_lock);
  1675   collect_locked(cause);
  1678 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  1679   assert(Thread::current()->is_VM_thread(), "Precondition#1");
  1680   assert(Heap_lock->is_locked(), "Precondition#2");
  1681   GCCauseSetter gcs(this, cause);
  1682   switch (cause) {
  1683     case GCCause::_heap_inspection:
  1684     case GCCause::_heap_dump: {
  1685       HandleMark hm;
  1686       do_full_collection(false);         // don't clear all soft refs
  1687       break;
  1689     default: // XXX FIX ME
  1690       ShouldNotReachHere(); // Unexpected use of this function
  1695 void G1CollectedHeap::collect_locked(GCCause::Cause cause) {
  1696   // Don't want to do a GC until cleanup is completed.
  1697   wait_for_cleanup_complete();
  1699   // Read the GC count while holding the Heap_lock
  1700   int gc_count_before = SharedHeap::heap()->total_collections();
  1702     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  1703     VM_G1CollectFull op(gc_count_before, cause);
  1704     VMThread::execute(&op);
  1708 bool G1CollectedHeap::is_in(const void* p) const {
  1709   if (_g1_committed.contains(p)) {
  1710     HeapRegion* hr = _hrs->addr_to_region(p);
  1711     return hr->is_in(p);
  1712   } else {
  1713     return _perm_gen->as_gen()->is_in(p);
  1717 // Iteration functions.
  1719 // Iterates an OopClosure over all ref-containing fields of objects
  1720 // within a HeapRegion.
  1722 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  1723   MemRegion _mr;
  1724   OopClosure* _cl;
  1725 public:
  1726   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  1727     : _mr(mr), _cl(cl) {}
  1728   bool doHeapRegion(HeapRegion* r) {
  1729     if (! r->continuesHumongous()) {
  1730       r->oop_iterate(_cl);
  1732     return false;
  1734 };
  1736 void G1CollectedHeap::oop_iterate(OopClosure* cl) {
  1737   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  1738   _hrs->iterate(&blk);
  1741 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
  1742   IterateOopClosureRegionClosure blk(mr, cl);
  1743   _hrs->iterate(&blk);
  1746 // Iterates an ObjectClosure over all objects within a HeapRegion.
  1748 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  1749   ObjectClosure* _cl;
  1750 public:
  1751   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  1752   bool doHeapRegion(HeapRegion* r) {
  1753     if (! r->continuesHumongous()) {
  1754       r->object_iterate(_cl);
  1756     return false;
  1758 };
  1760 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  1761   IterateObjectClosureRegionClosure blk(cl);
  1762   _hrs->iterate(&blk);
  1765 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1766   // FIXME: is this right?
  1767   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  1770 // Calls a SpaceClosure on a HeapRegion.
  1772 class SpaceClosureRegionClosure: public HeapRegionClosure {
  1773   SpaceClosure* _cl;
  1774 public:
  1775   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  1776   bool doHeapRegion(HeapRegion* r) {
  1777     _cl->do_space(r);
  1778     return false;
  1780 };
  1782 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  1783   SpaceClosureRegionClosure blk(cl);
  1784   _hrs->iterate(&blk);
  1787 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  1788   _hrs->iterate(cl);
  1791 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  1792                                                HeapRegionClosure* cl) {
  1793   _hrs->iterate_from(r, cl);
  1796 void
  1797 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  1798   _hrs->iterate_from(idx, cl);
  1801 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
  1803 void
  1804 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  1805                                                  int worker,
  1806                                                  jint claim_value) {
  1807   const size_t regions = n_regions();
  1808   const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
  1809   // try to spread out the starting points of the workers
  1810   const size_t start_index = regions / worker_num * (size_t) worker;
  1812   // each worker will actually look at all regions
  1813   for (size_t count = 0; count < regions; ++count) {
  1814     const size_t index = (start_index + count) % regions;
  1815     assert(0 <= index && index < regions, "sanity");
  1816     HeapRegion* r = region_at(index);
  1817     // we'll ignore "continues humongous" regions (we'll process them
  1818     // when we come across their corresponding "start humongous"
  1819     // region) and regions already claimed
  1820     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  1821       continue;
  1823     // OK, try to claim it
  1824     if (r->claimHeapRegion(claim_value)) {
  1825       // success!
  1826       assert(!r->continuesHumongous(), "sanity");
  1827       if (r->startsHumongous()) {
  1828         // If the region is "starts humongous" we'll iterate over its
  1829         // "continues humongous" first; in fact we'll do them
  1830         // first. The order is important. In on case, calling the
  1831         // closure on the "starts humongous" region might de-allocate
  1832         // and clear all its "continues humongous" regions and, as a
  1833         // result, we might end up processing them twice. So, we'll do
  1834         // them first (notice: most closures will ignore them anyway) and
  1835         // then we'll do the "starts humongous" region.
  1836         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  1837           HeapRegion* chr = region_at(ch_index);
  1839           // if the region has already been claimed or it's not
  1840           // "continues humongous" we're done
  1841           if (chr->claim_value() == claim_value ||
  1842               !chr->continuesHumongous()) {
  1843             break;
  1846           // Noone should have claimed it directly. We can given
  1847           // that we claimed its "starts humongous" region.
  1848           assert(chr->claim_value() != claim_value, "sanity");
  1849           assert(chr->humongous_start_region() == r, "sanity");
  1851           if (chr->claimHeapRegion(claim_value)) {
  1852             // we should always be able to claim it; noone else should
  1853             // be trying to claim this region
  1855             bool res2 = cl->doHeapRegion(chr);
  1856             assert(!res2, "Should not abort");
  1858             // Right now, this holds (i.e., no closure that actually
  1859             // does something with "continues humongous" regions
  1860             // clears them). We might have to weaken it in the future,
  1861             // but let's leave these two asserts here for extra safety.
  1862             assert(chr->continuesHumongous(), "should still be the case");
  1863             assert(chr->humongous_start_region() == r, "sanity");
  1864           } else {
  1865             guarantee(false, "we should not reach here");
  1870       assert(!r->continuesHumongous(), "sanity");
  1871       bool res = cl->doHeapRegion(r);
  1872       assert(!res, "Should not abort");
  1877 class ResetClaimValuesClosure: public HeapRegionClosure {
  1878 public:
  1879   bool doHeapRegion(HeapRegion* r) {
  1880     r->set_claim_value(HeapRegion::InitialClaimValue);
  1881     return false;
  1883 };
  1885 void
  1886 G1CollectedHeap::reset_heap_region_claim_values() {
  1887   ResetClaimValuesClosure blk;
  1888   heap_region_iterate(&blk);
  1891 #ifdef ASSERT
  1892 // This checks whether all regions in the heap have the correct claim
  1893 // value. I also piggy-backed on this a check to ensure that the
  1894 // humongous_start_region() information on "continues humongous"
  1895 // regions is correct.
  1897 class CheckClaimValuesClosure : public HeapRegionClosure {
  1898 private:
  1899   jint _claim_value;
  1900   size_t _failures;
  1901   HeapRegion* _sh_region;
  1902 public:
  1903   CheckClaimValuesClosure(jint claim_value) :
  1904     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  1905   bool doHeapRegion(HeapRegion* r) {
  1906     if (r->claim_value() != _claim_value) {
  1907       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1908                              "claim value = %d, should be %d",
  1909                              r->bottom(), r->end(), r->claim_value(),
  1910                              _claim_value);
  1911       ++_failures;
  1913     if (!r->isHumongous()) {
  1914       _sh_region = NULL;
  1915     } else if (r->startsHumongous()) {
  1916       _sh_region = r;
  1917     } else if (r->continuesHumongous()) {
  1918       if (r->humongous_start_region() != _sh_region) {
  1919         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1920                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  1921                                r->bottom(), r->end(),
  1922                                r->humongous_start_region(),
  1923                                _sh_region);
  1924         ++_failures;
  1927     return false;
  1929   size_t failures() {
  1930     return _failures;
  1932 };
  1934 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  1935   CheckClaimValuesClosure cl(claim_value);
  1936   heap_region_iterate(&cl);
  1937   return cl.failures() == 0;
  1939 #endif // ASSERT
  1941 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  1942   HeapRegion* r = g1_policy()->collection_set();
  1943   while (r != NULL) {
  1944     HeapRegion* next = r->next_in_collection_set();
  1945     if (cl->doHeapRegion(r)) {
  1946       cl->incomplete();
  1947       return;
  1949     r = next;
  1953 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  1954                                                   HeapRegionClosure *cl) {
  1955   assert(r->in_collection_set(),
  1956          "Start region must be a member of the collection set.");
  1957   HeapRegion* cur = r;
  1958   while (cur != NULL) {
  1959     HeapRegion* next = cur->next_in_collection_set();
  1960     if (cl->doHeapRegion(cur) && false) {
  1961       cl->incomplete();
  1962       return;
  1964     cur = next;
  1966   cur = g1_policy()->collection_set();
  1967   while (cur != r) {
  1968     HeapRegion* next = cur->next_in_collection_set();
  1969     if (cl->doHeapRegion(cur) && false) {
  1970       cl->incomplete();
  1971       return;
  1973     cur = next;
  1977 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  1978   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
  1982 Space* G1CollectedHeap::space_containing(const void* addr) const {
  1983   Space* res = heap_region_containing(addr);
  1984   if (res == NULL)
  1985     res = perm_gen()->space_containing(addr);
  1986   return res;
  1989 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  1990   Space* sp = space_containing(addr);
  1991   if (sp != NULL) {
  1992     return sp->block_start(addr);
  1994   return NULL;
  1997 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  1998   Space* sp = space_containing(addr);
  1999   assert(sp != NULL, "block_size of address outside of heap");
  2000   return sp->block_size(addr);
  2003 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2004   Space* sp = space_containing(addr);
  2005   return sp->block_is_obj(addr);
  2008 bool G1CollectedHeap::supports_tlab_allocation() const {
  2009   return true;
  2012 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2013   return HeapRegion::GrainBytes;
  2016 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2017   // Return the remaining space in the cur alloc region, but not less than
  2018   // the min TLAB size.
  2019   // Also, no more than half the region size, since we can't allow tlabs to
  2020   // grow big enough to accomodate humongous objects.
  2022   // We need to story it locally, since it might change between when we
  2023   // test for NULL and when we use it later.
  2024   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
  2025   if (cur_alloc_space == NULL) {
  2026     return HeapRegion::GrainBytes/2;
  2027   } else {
  2028     return MAX2(MIN2(cur_alloc_space->free(),
  2029                      (size_t)(HeapRegion::GrainBytes/2)),
  2030                 (size_t)MinTLABSize);
  2034 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
  2035   bool dummy;
  2036   return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
  2039 bool G1CollectedHeap::allocs_are_zero_filled() {
  2040   return false;
  2043 size_t G1CollectedHeap::large_typearray_limit() {
  2044   // FIXME
  2045   return HeapRegion::GrainBytes/HeapWordSize;
  2048 size_t G1CollectedHeap::max_capacity() const {
  2049   return _g1_committed.byte_size();
  2052 jlong G1CollectedHeap::millis_since_last_gc() {
  2053   // assert(false, "NYI");
  2054   return 0;
  2058 void G1CollectedHeap::prepare_for_verify() {
  2059   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2060     ensure_parsability(false);
  2062   g1_rem_set()->prepare_for_verify();
  2065 class VerifyLivenessOopClosure: public OopClosure {
  2066   G1CollectedHeap* g1h;
  2067 public:
  2068   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
  2069     g1h = _g1h;
  2071   void do_oop(narrowOop *p) {
  2072     guarantee(false, "NYI");
  2074   void do_oop(oop *p) {
  2075     oop obj = *p;
  2076     assert(obj == NULL || !g1h->is_obj_dead(obj),
  2077            "Dead object referenced by a not dead object");
  2079 };
  2081 class VerifyObjsInRegionClosure: public ObjectClosure {
  2082   G1CollectedHeap* _g1h;
  2083   size_t _live_bytes;
  2084   HeapRegion *_hr;
  2085 public:
  2086   VerifyObjsInRegionClosure(HeapRegion *hr) : _live_bytes(0), _hr(hr) {
  2087     _g1h = G1CollectedHeap::heap();
  2089   void do_object(oop o) {
  2090     VerifyLivenessOopClosure isLive(_g1h);
  2091     assert(o != NULL, "Huh?");
  2092     if (!_g1h->is_obj_dead(o)) {
  2093       o->oop_iterate(&isLive);
  2094       if (!_hr->obj_allocated_since_prev_marking(o))
  2095         _live_bytes += (o->size() * HeapWordSize);
  2098   size_t live_bytes() { return _live_bytes; }
  2099 };
  2101 class PrintObjsInRegionClosure : public ObjectClosure {
  2102   HeapRegion *_hr;
  2103   G1CollectedHeap *_g1;
  2104 public:
  2105   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2106     _g1 = G1CollectedHeap::heap();
  2107   };
  2109   void do_object(oop o) {
  2110     if (o != NULL) {
  2111       HeapWord *start = (HeapWord *) o;
  2112       size_t word_sz = o->size();
  2113       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2114                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2115                           (void*) o, word_sz,
  2116                           _g1->isMarkedPrev(o),
  2117                           _g1->isMarkedNext(o),
  2118                           _hr->obj_allocated_since_prev_marking(o));
  2119       HeapWord *end = start + word_sz;
  2120       HeapWord *cur;
  2121       int *val;
  2122       for (cur = start; cur < end; cur++) {
  2123         val = (int *) cur;
  2124         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2128 };
  2130 class VerifyRegionClosure: public HeapRegionClosure {
  2131 public:
  2132   bool _allow_dirty;
  2133   bool _par;
  2134   VerifyRegionClosure(bool allow_dirty, bool par = false)
  2135     : _allow_dirty(allow_dirty), _par(par) {}
  2136   bool doHeapRegion(HeapRegion* r) {
  2137     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2138               "Should be unclaimed at verify points.");
  2139     if (!r->continuesHumongous()) {
  2140       VerifyObjsInRegionClosure not_dead_yet_cl(r);
  2141       r->verify(_allow_dirty);
  2142       r->object_iterate(&not_dead_yet_cl);
  2143       guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(),
  2144                 "More live objects than counted in last complete marking.");
  2146     return false;
  2148 };
  2150 class VerifyRootsClosure: public OopsInGenClosure {
  2151 private:
  2152   G1CollectedHeap* _g1h;
  2153   bool             _failures;
  2155 public:
  2156   VerifyRootsClosure() :
  2157     _g1h(G1CollectedHeap::heap()), _failures(false) { }
  2159   bool failures() { return _failures; }
  2161   void do_oop(narrowOop* p) {
  2162     guarantee(false, "NYI");
  2165   void do_oop(oop* p) {
  2166     oop obj = *p;
  2167     if (obj != NULL) {
  2168       if (_g1h->is_obj_dead(obj)) {
  2169         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2170                                "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2171         obj->print_on(gclog_or_tty);
  2172         _failures = true;
  2176 };
  2178 // This is the task used for parallel heap verification.
  2180 class G1ParVerifyTask: public AbstractGangTask {
  2181 private:
  2182   G1CollectedHeap* _g1h;
  2183   bool _allow_dirty;
  2185 public:
  2186   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty) :
  2187     AbstractGangTask("Parallel verify task"),
  2188     _g1h(g1h), _allow_dirty(allow_dirty) { }
  2190   void work(int worker_i) {
  2191     HandleMark hm;
  2192     VerifyRegionClosure blk(_allow_dirty, true);
  2193     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2194                                           HeapRegion::ParVerifyClaimValue);
  2196 };
  2198 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2199   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2200     if (!silent) { gclog_or_tty->print("roots "); }
  2201     VerifyRootsClosure rootsCl;
  2202     process_strong_roots(false,
  2203                          SharedHeap::SO_AllClasses,
  2204                          &rootsCl,
  2205                          &rootsCl);
  2206     rem_set()->invalidate(perm_gen()->used_region(), false);
  2207     if (!silent) { gclog_or_tty->print("heapRegions "); }
  2208     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2209       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2210              "sanity check");
  2212       G1ParVerifyTask task(this, allow_dirty);
  2213       int n_workers = workers()->total_workers();
  2214       set_par_threads(n_workers);
  2215       workers()->run_task(&task);
  2216       set_par_threads(0);
  2218       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2219              "sanity check");
  2221       reset_heap_region_claim_values();
  2223       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2224              "sanity check");
  2225     } else {
  2226       VerifyRegionClosure blk(allow_dirty);
  2227       _hrs->iterate(&blk);
  2229     if (!silent) gclog_or_tty->print("remset ");
  2230     rem_set()->verify();
  2231     guarantee(!rootsCl.failures(), "should not have had failures");
  2232   } else {
  2233     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2237 class PrintRegionClosure: public HeapRegionClosure {
  2238   outputStream* _st;
  2239 public:
  2240   PrintRegionClosure(outputStream* st) : _st(st) {}
  2241   bool doHeapRegion(HeapRegion* r) {
  2242     r->print_on(_st);
  2243     return false;
  2245 };
  2247 void G1CollectedHeap::print() const { print_on(gclog_or_tty); }
  2249 void G1CollectedHeap::print_on(outputStream* st) const {
  2250   PrintRegionClosure blk(st);
  2251   _hrs->iterate(&blk);
  2254 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  2255   if (ParallelGCThreads > 0) {
  2256     workers()->print_worker_threads();
  2258   st->print("\"G1 concurrent mark GC Thread\" ");
  2259   _cmThread->print();
  2260   st->cr();
  2261   st->print("\"G1 concurrent refinement GC Thread\" ");
  2262   _cg1r->cg1rThread()->print_on(st);
  2263   st->cr();
  2264   st->print("\"G1 zero-fill GC Thread\" ");
  2265   _czft->print_on(st);
  2266   st->cr();
  2269 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  2270   if (ParallelGCThreads > 0) {
  2271     workers()->threads_do(tc);
  2273   tc->do_thread(_cmThread);
  2274   tc->do_thread(_cg1r->cg1rThread());
  2275   tc->do_thread(_czft);
  2278 void G1CollectedHeap::print_tracing_info() const {
  2279   concurrent_g1_refine()->print_final_card_counts();
  2281   // We'll overload this to mean "trace GC pause statistics."
  2282   if (TraceGen0Time || TraceGen1Time) {
  2283     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  2284     // to that.
  2285     g1_policy()->print_tracing_info();
  2287   if (SummarizeG1RSStats) {
  2288     g1_rem_set()->print_summary_info();
  2290   if (SummarizeG1ConcMark) {
  2291     concurrent_mark()->print_summary_info();
  2293   if (SummarizeG1ZFStats) {
  2294     ConcurrentZFThread::print_summary_info();
  2296   if (G1SummarizePopularity) {
  2297     print_popularity_summary_info();
  2299   g1_policy()->print_yg_surv_rate_info();
  2301   GCOverheadReporter::printGCOverhead();
  2303   SpecializationStats::print();
  2307 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  2308   HeapRegion* hr = heap_region_containing(addr);
  2309   if (hr == NULL) {
  2310     return 0;
  2311   } else {
  2312     return 1;
  2316 G1CollectedHeap* G1CollectedHeap::heap() {
  2317   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  2318          "not a garbage-first heap");
  2319   return _g1h;
  2322 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  2323   if (PrintHeapAtGC){
  2324     gclog_or_tty->print_cr(" {Heap before GC collections=%d:", total_collections());
  2325     Universe::print();
  2327   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  2328   // Call allocation profiler
  2329   AllocationProfiler::iterate_since_last_gc();
  2330   // Fill TLAB's and such
  2331   ensure_parsability(true);
  2334 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  2335   // FIXME: what is this about?
  2336   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  2337   // is set.
  2338   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  2339                         "derived pointer present"));
  2341   if (PrintHeapAtGC){
  2342     gclog_or_tty->print_cr(" Heap after GC collections=%d:", total_collections());
  2343     Universe::print();
  2344     gclog_or_tty->print("} ");
  2348 void G1CollectedHeap::do_collection_pause() {
  2349   // Read the GC count while holding the Heap_lock
  2350   // we need to do this _before_ wait_for_cleanup_complete(), to
  2351   // ensure that we do not give up the heap lock and potentially
  2352   // pick up the wrong count
  2353   int gc_count_before = SharedHeap::heap()->total_collections();
  2355   // Don't want to do a GC pause while cleanup is being completed!
  2356   wait_for_cleanup_complete();
  2358   g1_policy()->record_stop_world_start();
  2360     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  2361     VM_G1IncCollectionPause op(gc_count_before);
  2362     VMThread::execute(&op);
  2366 void
  2367 G1CollectedHeap::doConcurrentMark() {
  2368   if (G1ConcMark) {
  2369     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2370     if (!_cmThread->in_progress()) {
  2371       _cmThread->set_started();
  2372       CGC_lock->notify();
  2377 class VerifyMarkedObjsClosure: public ObjectClosure {
  2378     G1CollectedHeap* _g1h;
  2379     public:
  2380     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
  2381     void do_object(oop obj) {
  2382       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
  2383              "markandsweep mark should agree with concurrent deadness");
  2385 };
  2387 void
  2388 G1CollectedHeap::checkConcurrentMark() {
  2389     VerifyMarkedObjsClosure verifycl(this);
  2390     //    MutexLockerEx x(getMarkBitMapLock(),
  2391     //              Mutex::_no_safepoint_check_flag);
  2392     object_iterate(&verifycl);
  2395 void G1CollectedHeap::do_sync_mark() {
  2396   _cm->checkpointRootsInitial();
  2397   _cm->markFromRoots();
  2398   _cm->checkpointRootsFinal(false);
  2401 // <NEW PREDICTION>
  2403 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  2404                                                        bool young) {
  2405   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  2408 void G1CollectedHeap::check_if_region_is_too_expensive(double
  2409                                                            predicted_time_ms) {
  2410   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  2413 size_t G1CollectedHeap::pending_card_num() {
  2414   size_t extra_cards = 0;
  2415   JavaThread *curr = Threads::first();
  2416   while (curr != NULL) {
  2417     DirtyCardQueue& dcq = curr->dirty_card_queue();
  2418     extra_cards += dcq.size();
  2419     curr = curr->next();
  2421   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2422   size_t buffer_size = dcqs.buffer_size();
  2423   size_t buffer_num = dcqs.completed_buffers_num();
  2424   return buffer_size * buffer_num + extra_cards;
  2427 size_t G1CollectedHeap::max_pending_card_num() {
  2428   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2429   size_t buffer_size = dcqs.buffer_size();
  2430   size_t buffer_num  = dcqs.completed_buffers_num();
  2431   int thread_num  = Threads::number_of_threads();
  2432   return (buffer_num + thread_num) * buffer_size;
  2435 size_t G1CollectedHeap::cards_scanned() {
  2436   HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
  2437   return g1_rset->cardsScanned();
  2440 void
  2441 G1CollectedHeap::setup_surviving_young_words() {
  2442   guarantee( _surviving_young_words == NULL, "pre-condition" );
  2443   size_t array_length = g1_policy()->young_cset_length();
  2444   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  2445   if (_surviving_young_words == NULL) {
  2446     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  2447                           "Not enough space for young surv words summary.");
  2449   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  2450   for (size_t i = 0;  i < array_length; ++i) {
  2451     guarantee( _surviving_young_words[i] == 0, "invariant" );
  2455 void
  2456 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  2457   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2458   size_t array_length = g1_policy()->young_cset_length();
  2459   for (size_t i = 0; i < array_length; ++i)
  2460     _surviving_young_words[i] += surv_young_words[i];
  2463 void
  2464 G1CollectedHeap::cleanup_surviving_young_words() {
  2465   guarantee( _surviving_young_words != NULL, "pre-condition" );
  2466   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  2467   _surviving_young_words = NULL;
  2470 // </NEW PREDICTION>
  2472 void
  2473 G1CollectedHeap::do_collection_pause_at_safepoint(HeapRegion* popular_region) {
  2474   char verbose_str[128];
  2475   sprintf(verbose_str, "GC pause ");
  2476   if (popular_region != NULL)
  2477     strcat(verbose_str, "(popular)");
  2478   else if (g1_policy()->in_young_gc_mode()) {
  2479     if (g1_policy()->full_young_gcs())
  2480       strcat(verbose_str, "(young)");
  2481     else
  2482       strcat(verbose_str, "(partial)");
  2484   bool reset_should_initiate_conc_mark = false;
  2485   if (popular_region != NULL && g1_policy()->should_initiate_conc_mark()) {
  2486     // we currently do not allow an initial mark phase to be piggy-backed
  2487     // on a popular pause
  2488     reset_should_initiate_conc_mark = true;
  2489     g1_policy()->unset_should_initiate_conc_mark();
  2491   if (g1_policy()->should_initiate_conc_mark())
  2492     strcat(verbose_str, " (initial-mark)");
  2494   GCCauseSetter x(this, (popular_region == NULL ?
  2495                          GCCause::_g1_inc_collection_pause :
  2496                          GCCause::_g1_pop_region_collection_pause));
  2498   // if PrintGCDetails is on, we'll print long statistics information
  2499   // in the collector policy code, so let's not print this as the output
  2500   // is messy if we do.
  2501   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2502   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2503   TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  2505   ResourceMark rm;
  2506   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  2507   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
  2508   guarantee(!is_gc_active(), "collection is not reentrant");
  2509   assert(regions_accounted_for(), "Region leakage!");
  2511   increment_gc_time_stamp();
  2513   if (g1_policy()->in_young_gc_mode()) {
  2514     assert(check_young_list_well_formed(),
  2515                 "young list should be well formed");
  2518   if (GC_locker::is_active()) {
  2519     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  2522   bool abandoned = false;
  2523   { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  2524     IsGCActiveMark x;
  2526     gc_prologue(false);
  2527     increment_total_collections();
  2529 #if G1_REM_SET_LOGGING
  2530     gclog_or_tty->print_cr("\nJust chose CS, heap:");
  2531     print();
  2532 #endif
  2534     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  2535       HandleMark hm;  // Discard invalid handles created during verification
  2536       prepare_for_verify();
  2537       gclog_or_tty->print(" VerifyBeforeGC:");
  2538       Universe::verify(false);
  2541     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2543     // We want to turn off ref discovery, if necessary, and turn it back on
  2544     // on again later if we do.
  2545     bool was_enabled = ref_processor()->discovery_enabled();
  2546     if (was_enabled) ref_processor()->disable_discovery();
  2548     // Forget the current alloc region (we might even choose it to be part
  2549     // of the collection set!).
  2550     abandon_cur_alloc_region();
  2552     // The elapsed time induced by the start time below deliberately elides
  2553     // the possible verification above.
  2554     double start_time_sec = os::elapsedTime();
  2555     GCOverheadReporter::recordSTWStart(start_time_sec);
  2556     size_t start_used_bytes = used();
  2557     if (!G1ConcMark) {
  2558       do_sync_mark();
  2561     g1_policy()->record_collection_pause_start(start_time_sec,
  2562                                                start_used_bytes);
  2564     guarantee(_in_cset_fast_test == NULL, "invariant");
  2565     guarantee(_in_cset_fast_test_base == NULL, "invariant");
  2566     _in_cset_fast_test_length = max_regions();
  2567     _in_cset_fast_test_base =
  2568                              NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  2569     memset(_in_cset_fast_test_base, false,
  2570                                      _in_cset_fast_test_length * sizeof(bool));
  2571     // We're biasing _in_cset_fast_test to avoid subtracting the
  2572     // beginning of the heap every time we want to index; basically
  2573     // it's the same with what we do with the card table.
  2574     _in_cset_fast_test = _in_cset_fast_test_base -
  2575               ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2577 #if SCAN_ONLY_VERBOSE
  2578     _young_list->print();
  2579 #endif // SCAN_ONLY_VERBOSE
  2581     if (g1_policy()->should_initiate_conc_mark()) {
  2582       concurrent_mark()->checkpointRootsInitialPre();
  2584     save_marks();
  2586     // We must do this before any possible evacuation that should propagate
  2587     // marks, including evacuation of popular objects in a popular pause.
  2588     if (mark_in_progress()) {
  2589       double start_time_sec = os::elapsedTime();
  2591       _cm->drainAllSATBBuffers();
  2592       double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  2593       g1_policy()->record_satb_drain_time(finish_mark_ms);
  2596     // Record the number of elements currently on the mark stack, so we
  2597     // only iterate over these.  (Since evacuation may add to the mark
  2598     // stack, doing more exposes race conditions.)  If no mark is in
  2599     // progress, this will be zero.
  2600     _cm->set_oops_do_bound();
  2602     assert(regions_accounted_for(), "Region leakage.");
  2604     bool abandoned = false;
  2606     if (mark_in_progress())
  2607       concurrent_mark()->newCSet();
  2609     // Now choose the CS.
  2610     if (popular_region == NULL) {
  2611       g1_policy()->choose_collection_set();
  2612     } else {
  2613       // We may be evacuating a single region (for popularity).
  2614       g1_policy()->record_popular_pause_preamble_start();
  2615       popularity_pause_preamble(popular_region);
  2616       g1_policy()->record_popular_pause_preamble_end();
  2617       abandoned = (g1_policy()->collection_set() == NULL);
  2618       // Now we allow more regions to be added (we have to collect
  2619       // all popular regions).
  2620       if (!abandoned) {
  2621         g1_policy()->choose_collection_set(popular_region);
  2624     // We may abandon a pause if we find no region that will fit in the MMU
  2625     // pause.
  2626     abandoned = (g1_policy()->collection_set() == NULL);
  2628     // Nothing to do if we were unable to choose a collection set.
  2629     if (!abandoned) {
  2630 #if G1_REM_SET_LOGGING
  2631       gclog_or_tty->print_cr("\nAfter pause, heap:");
  2632       print();
  2633 #endif
  2635       setup_surviving_young_words();
  2637       // Set up the gc allocation regions.
  2638       get_gc_alloc_regions();
  2640       // Actually do the work...
  2641       evacuate_collection_set();
  2642       free_collection_set(g1_policy()->collection_set());
  2643       g1_policy()->clear_collection_set();
  2645       FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
  2646       // this is more for peace of mind; we're nulling them here and
  2647       // we're expecting them to be null at the beginning of the next GC
  2648       _in_cset_fast_test = NULL;
  2649       _in_cset_fast_test_base = NULL;
  2651       if (popular_region != NULL) {
  2652         // We have to wait until now, because we don't want the region to
  2653         // be rescheduled for pop-evac during RS update.
  2654         popular_region->set_popular_pending(false);
  2657       release_gc_alloc_regions(false /* totally */);
  2659       cleanup_surviving_young_words();
  2661       if (g1_policy()->in_young_gc_mode()) {
  2662         _young_list->reset_sampled_info();
  2663         assert(check_young_list_empty(true),
  2664                "young list should be empty");
  2666 #if SCAN_ONLY_VERBOSE
  2667         _young_list->print();
  2668 #endif // SCAN_ONLY_VERBOSE
  2670         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  2671                                              _young_list->first_survivor_region(),
  2672                                              _young_list->last_survivor_region());
  2673         _young_list->reset_auxilary_lists();
  2675     } else {
  2676       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  2679     if (evacuation_failed()) {
  2680       _summary_bytes_used = recalculate_used();
  2681     } else {
  2682       // The "used" of the the collection set have already been subtracted
  2683       // when they were freed.  Add in the bytes evacuated.
  2684       _summary_bytes_used += g1_policy()->bytes_in_to_space();
  2687     if (g1_policy()->in_young_gc_mode() &&
  2688         g1_policy()->should_initiate_conc_mark()) {
  2689       concurrent_mark()->checkpointRootsInitialPost();
  2690       set_marking_started();
  2691       doConcurrentMark();
  2694 #if SCAN_ONLY_VERBOSE
  2695     _young_list->print();
  2696 #endif // SCAN_ONLY_VERBOSE
  2698     double end_time_sec = os::elapsedTime();
  2699     double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  2700     g1_policy()->record_pause_time_ms(pause_time_ms);
  2701     GCOverheadReporter::recordSTWEnd(end_time_sec);
  2702     g1_policy()->record_collection_pause_end(popular_region != NULL,
  2703                                              abandoned);
  2705     assert(regions_accounted_for(), "Region leakage.");
  2707     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  2708       HandleMark hm;  // Discard invalid handles created during verification
  2709       gclog_or_tty->print(" VerifyAfterGC:");
  2710       prepare_for_verify();
  2711       Universe::verify(false);
  2714     if (was_enabled) ref_processor()->enable_discovery();
  2717       size_t expand_bytes = g1_policy()->expansion_amount();
  2718       if (expand_bytes > 0) {
  2719         size_t bytes_before = capacity();
  2720         expand(expand_bytes);
  2724     if (mark_in_progress()) {
  2725       concurrent_mark()->update_g1_committed();
  2728 #ifdef TRACESPINNING
  2729     ParallelTaskTerminator::print_termination_counts();
  2730 #endif
  2732     gc_epilogue(false);
  2735   assert(verify_region_lists(), "Bad region lists.");
  2737   if (reset_should_initiate_conc_mark)
  2738     g1_policy()->set_should_initiate_conc_mark();
  2740   if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  2741     gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  2742     print_tracing_info();
  2743     vm_exit(-1);
  2747 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  2748   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
  2749   // make sure we don't call set_gc_alloc_region() multiple times on
  2750   // the same region
  2751   assert(r == NULL || !r->is_gc_alloc_region(),
  2752          "shouldn't already be a GC alloc region");
  2753   HeapWord* original_top = NULL;
  2754   if (r != NULL)
  2755     original_top = r->top();
  2757   // We will want to record the used space in r as being there before gc.
  2758   // One we install it as a GC alloc region it's eligible for allocation.
  2759   // So record it now and use it later.
  2760   size_t r_used = 0;
  2761   if (r != NULL) {
  2762     r_used = r->used();
  2764     if (ParallelGCThreads > 0) {
  2765       // need to take the lock to guard against two threads calling
  2766       // get_gc_alloc_region concurrently (very unlikely but...)
  2767       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2768       r->save_marks();
  2771   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  2772   _gc_alloc_regions[purpose] = r;
  2773   if (old_alloc_region != NULL) {
  2774     // Replace aliases too.
  2775     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2776       if (_gc_alloc_regions[ap] == old_alloc_region) {
  2777         _gc_alloc_regions[ap] = r;
  2781   if (r != NULL) {
  2782     push_gc_alloc_region(r);
  2783     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
  2784       // We are using a region as a GC alloc region after it has been used
  2785       // as a mutator allocation region during the current marking cycle.
  2786       // The mutator-allocated objects are currently implicitly marked, but
  2787       // when we move hr->next_top_at_mark_start() forward at the the end
  2788       // of the GC pause, they won't be.  We therefore mark all objects in
  2789       // the "gap".  We do this object-by-object, since marking densely
  2790       // does not currently work right with marking bitmap iteration.  This
  2791       // means we rely on TLAB filling at the start of pauses, and no
  2792       // "resuscitation" of filled TLAB's.  If we want to do this, we need
  2793       // to fix the marking bitmap iteration.
  2794       HeapWord* curhw = r->next_top_at_mark_start();
  2795       HeapWord* t = original_top;
  2797       while (curhw < t) {
  2798         oop cur = (oop)curhw;
  2799         // We'll assume parallel for generality.  This is rare code.
  2800         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
  2801         curhw = curhw + cur->size();
  2803       assert(curhw == t, "Should have parsed correctly.");
  2805     if (G1PolicyVerbose > 1) {
  2806       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
  2807                           "for survivors:", r->bottom(), original_top, r->end());
  2808       r->print();
  2810     g1_policy()->record_before_bytes(r_used);
  2814 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  2815   assert(Thread::current()->is_VM_thread() ||
  2816          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
  2817   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
  2818          "Precondition.");
  2819   hr->set_is_gc_alloc_region(true);
  2820   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  2821   _gc_alloc_region_list = hr;
  2824 #ifdef G1_DEBUG
  2825 class FindGCAllocRegion: public HeapRegionClosure {
  2826 public:
  2827   bool doHeapRegion(HeapRegion* r) {
  2828     if (r->is_gc_alloc_region()) {
  2829       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
  2830                              r->hrs_index(), r->bottom());
  2832     return false;
  2834 };
  2835 #endif // G1_DEBUG
  2837 void G1CollectedHeap::forget_alloc_region_list() {
  2838   assert(Thread::current()->is_VM_thread(), "Precondition");
  2839   while (_gc_alloc_region_list != NULL) {
  2840     HeapRegion* r = _gc_alloc_region_list;
  2841     assert(r->is_gc_alloc_region(), "Invariant.");
  2842     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
  2843     // newly allocated data in order to be able to apply deferred updates
  2844     // before the GC is done for verification purposes (i.e to allow
  2845     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
  2846     // collection.
  2847     r->ContiguousSpace::set_saved_mark();
  2848     _gc_alloc_region_list = r->next_gc_alloc_region();
  2849     r->set_next_gc_alloc_region(NULL);
  2850     r->set_is_gc_alloc_region(false);
  2851     if (r->is_survivor()) {
  2852       if (r->is_empty()) {
  2853         r->set_not_young();
  2854       } else {
  2855         _young_list->add_survivor_region(r);
  2858     if (r->is_empty()) {
  2859       ++_free_regions;
  2862 #ifdef G1_DEBUG
  2863   FindGCAllocRegion fa;
  2864   heap_region_iterate(&fa);
  2865 #endif // G1_DEBUG
  2869 bool G1CollectedHeap::check_gc_alloc_regions() {
  2870   // TODO: allocation regions check
  2871   return true;
  2874 void G1CollectedHeap::get_gc_alloc_regions() {
  2875   // First, let's check that the GC alloc region list is empty (it should)
  2876   assert(_gc_alloc_region_list == NULL, "invariant");
  2878   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2879     assert(_gc_alloc_regions[ap] == NULL, "invariant");
  2881     // Create new GC alloc regions.
  2882     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
  2883     _retained_gc_alloc_regions[ap] = NULL;
  2885     if (alloc_region != NULL) {
  2886       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
  2888       // let's make sure that the GC alloc region is not tagged as such
  2889       // outside a GC operation
  2890       assert(!alloc_region->is_gc_alloc_region(), "sanity");
  2892       if (alloc_region->in_collection_set() ||
  2893           alloc_region->top() == alloc_region->end() ||
  2894           alloc_region->top() == alloc_region->bottom()) {
  2895         // we will discard the current GC alloc region if it's in the
  2896         // collection set (it can happen!), if it's already full (no
  2897         // point in using it), or if it's empty (this means that it
  2898         // was emptied during a cleanup and it should be on the free
  2899         // list now).
  2901         alloc_region = NULL;
  2905     if (alloc_region == NULL) {
  2906       // we will get a new GC alloc region
  2907       alloc_region = newAllocRegionWithExpansion(ap, 0);
  2910     if (alloc_region != NULL) {
  2911       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
  2912       set_gc_alloc_region(ap, alloc_region);
  2915     assert(_gc_alloc_regions[ap] == NULL ||
  2916            _gc_alloc_regions[ap]->is_gc_alloc_region(),
  2917            "the GC alloc region should be tagged as such");
  2918     assert(_gc_alloc_regions[ap] == NULL ||
  2919            _gc_alloc_regions[ap] == _gc_alloc_region_list,
  2920            "the GC alloc region should be the same as the GC alloc list head");
  2922   // Set alternative regions for allocation purposes that have reached
  2923   // their limit.
  2924   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2925     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
  2926     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
  2927       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
  2930   assert(check_gc_alloc_regions(), "alloc regions messed up");
  2933 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
  2934   // We keep a separate list of all regions that have been alloc regions in
  2935   // the current collection pause. Forget that now. This method will
  2936   // untag the GC alloc regions and tear down the GC alloc region
  2937   // list. It's desirable that no regions are tagged as GC alloc
  2938   // outside GCs.
  2939   forget_alloc_region_list();
  2941   // The current alloc regions contain objs that have survived
  2942   // collection. Make them no longer GC alloc regions.
  2943   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2944     HeapRegion* r = _gc_alloc_regions[ap];
  2945     _retained_gc_alloc_regions[ap] = NULL;
  2947     if (r != NULL) {
  2948       // we retain nothing on _gc_alloc_regions between GCs
  2949       set_gc_alloc_region(ap, NULL);
  2950       _gc_alloc_region_counts[ap] = 0;
  2952       if (r->is_empty()) {
  2953         // we didn't actually allocate anything in it; let's just put
  2954         // it on the free list
  2955         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  2956         r->set_zero_fill_complete();
  2957         put_free_region_on_list_locked(r);
  2958       } else if (_retain_gc_alloc_region[ap] && !totally) {
  2959         // retain it so that we can use it at the beginning of the next GC
  2960         _retained_gc_alloc_regions[ap] = r;
  2966 #ifndef PRODUCT
  2967 // Useful for debugging
  2969 void G1CollectedHeap::print_gc_alloc_regions() {
  2970   gclog_or_tty->print_cr("GC alloc regions");
  2971   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2972     HeapRegion* r = _gc_alloc_regions[ap];
  2973     if (r == NULL) {
  2974       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
  2975     } else {
  2976       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
  2977                              ap, r->bottom(), r->used());
  2981 #endif // PRODUCT
  2983 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  2984   _drain_in_progress = false;
  2985   set_evac_failure_closure(cl);
  2986   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  2989 void G1CollectedHeap::finalize_for_evac_failure() {
  2990   assert(_evac_failure_scan_stack != NULL &&
  2991          _evac_failure_scan_stack->length() == 0,
  2992          "Postcondition");
  2993   assert(!_drain_in_progress, "Postcondition");
  2994   // Don't have to delete, since the scan stack is a resource object.
  2995   _evac_failure_scan_stack = NULL;
  3000 // *** Sequential G1 Evacuation
  3002 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
  3003   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3004   // let the caller handle alloc failure
  3005   if (alloc_region == NULL) return NULL;
  3006   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
  3007          "Either the object is humongous or the region isn't");
  3008   HeapWord* block = alloc_region->allocate(word_size);
  3009   if (block == NULL) {
  3010     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
  3012   return block;
  3015 class G1IsAliveClosure: public BoolObjectClosure {
  3016   G1CollectedHeap* _g1;
  3017 public:
  3018   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3019   void do_object(oop p) { assert(false, "Do not call."); }
  3020   bool do_object_b(oop p) {
  3021     // It is reachable if it is outside the collection set, or is inside
  3022     // and forwarded.
  3024 #ifdef G1_DEBUG
  3025     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  3026                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  3027                            !_g1->obj_in_cs(p) || p->is_forwarded());
  3028 #endif // G1_DEBUG
  3030     return !_g1->obj_in_cs(p) || p->is_forwarded();
  3032 };
  3034 class G1KeepAliveClosure: public OopClosure {
  3035   G1CollectedHeap* _g1;
  3036 public:
  3037   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3038   void do_oop(narrowOop* p) {
  3039     guarantee(false, "NYI");
  3041   void do_oop(oop* p) {
  3042     oop obj = *p;
  3043 #ifdef G1_DEBUG
  3044     if (PrintGC && Verbose) {
  3045       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  3046                              p, (void*) obj, (void*) *p);
  3048 #endif // G1_DEBUG
  3050     if (_g1->obj_in_cs(obj)) {
  3051       assert( obj->is_forwarded(), "invariant" );
  3052       *p = obj->forwardee();
  3054 #ifdef G1_DEBUG
  3055       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  3056                              (void*) obj, (void*) *p);
  3057 #endif // G1_DEBUG
  3060 };
  3062 class UpdateRSetImmediate : public OopsInHeapRegionClosure {
  3063 private:
  3064   G1CollectedHeap* _g1;
  3065   G1RemSet* _g1_rem_set;
  3066 public:
  3067   UpdateRSetImmediate(G1CollectedHeap* g1) :
  3068     _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}
  3070   void do_oop(narrowOop* p) {
  3071     guarantee(false, "NYI");
  3073   void do_oop(oop* p) {
  3074     assert(_from->is_in_reserved(p), "paranoia");
  3075     if (*p != NULL && !_from->is_survivor()) {
  3076       _g1_rem_set->par_write_ref(_from, p, 0);
  3079 };
  3081 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3082 private:
  3083   G1CollectedHeap* _g1;
  3084   DirtyCardQueue *_dcq;
  3085   CardTableModRefBS* _ct_bs;
  3087 public:
  3088   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3089     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3091   void do_oop(narrowOop* p) {
  3092     guarantee(false, "NYI");
  3094   void do_oop(oop* p) {
  3095     assert(_from->is_in_reserved(p), "paranoia");
  3096     if (!_from->is_in_reserved(*p) && !_from->is_survivor()) {
  3097       size_t card_index = _ct_bs->index_for(p);
  3098       if (_ct_bs->mark_card_deferred(card_index)) {
  3099         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3103 };
  3107 class RemoveSelfPointerClosure: public ObjectClosure {
  3108 private:
  3109   G1CollectedHeap* _g1;
  3110   ConcurrentMark* _cm;
  3111   HeapRegion* _hr;
  3112   size_t _prev_marked_bytes;
  3113   size_t _next_marked_bytes;
  3114   OopsInHeapRegionClosure *_cl;
  3115 public:
  3116   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
  3117     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3118     _next_marked_bytes(0), _cl(cl) {}
  3120   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3121   size_t next_marked_bytes() { return _next_marked_bytes; }
  3123   // The original idea here was to coalesce evacuated and dead objects.
  3124   // However that caused complications with the block offset table (BOT).
  3125   // In particular if there were two TLABs, one of them partially refined.
  3126   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3127   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3128   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3129   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3130   // would point into middle of the filler object.
  3131   //
  3132   // The current approach is to not coalesce and leave the BOT contents intact.
  3133   void do_object(oop obj) {
  3134     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3135       // The object failed to move.
  3136       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3137       _cm->markPrev(obj);
  3138       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3139       _prev_marked_bytes += (obj->size() * HeapWordSize);
  3140       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3141         _cm->markAndGrayObjectIfNecessary(obj);
  3143       obj->set_mark(markOopDesc::prototype());
  3144       // While we were processing RSet buffers during the
  3145       // collection, we actually didn't scan any cards on the
  3146       // collection set, since we didn't want to update remebered
  3147       // sets with entries that point into the collection set, given
  3148       // that live objects fromthe collection set are about to move
  3149       // and such entries will be stale very soon. This change also
  3150       // dealt with a reliability issue which involved scanning a
  3151       // card in the collection set and coming across an array that
  3152       // was being chunked and looking malformed. The problem is
  3153       // that, if evacuation fails, we might have remembered set
  3154       // entries missing given that we skipped cards on the
  3155       // collection set. So, we'll recreate such entries now.
  3156       obj->oop_iterate(_cl);
  3157       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3158     } else {
  3159       // The object has been either evacuated or is dead. Fill it with a
  3160       // dummy object.
  3161       MemRegion mr((HeapWord*)obj, obj->size());
  3162       CollectedHeap::fill_with_object(mr);
  3163       _cm->clearRangeBothMaps(mr);
  3166 };
  3168 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3169   UpdateRSetImmediate immediate_update(_g1h);
  3170   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3171   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3172   OopsInHeapRegionClosure *cl;
  3173   if (G1DeferredRSUpdate) {
  3174     cl = &deferred_update;
  3175   } else {
  3176     cl = &immediate_update;
  3178   HeapRegion* cur = g1_policy()->collection_set();
  3179   while (cur != NULL) {
  3180     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3182     RemoveSelfPointerClosure rspc(_g1h, cl);
  3183     if (cur->evacuation_failed()) {
  3184       assert(cur->in_collection_set(), "bad CS");
  3185       cl->set_region(cur);
  3186       cur->object_iterate(&rspc);
  3188       // A number of manipulations to make the TAMS be the current top,
  3189       // and the marked bytes be the ones observed in the iteration.
  3190       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3191         // The comments below are the postconditions achieved by the
  3192         // calls.  Note especially the last such condition, which says that
  3193         // the count of marked bytes has been properly restored.
  3194         cur->note_start_of_marking(false);
  3195         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3196         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3197         // _next_marked_bytes == prev_marked_bytes.
  3198         cur->note_end_of_marking();
  3199         // _prev_top_at_mark_start == top(),
  3200         // _prev_marked_bytes == prev_marked_bytes
  3202       // If there is no mark in progress, we modified the _next variables
  3203       // above needlessly, but harmlessly.
  3204       if (_g1h->mark_in_progress()) {
  3205         cur->note_start_of_marking(false);
  3206         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3207         // _next_marked_bytes == next_marked_bytes.
  3210       // Now make sure the region has the right index in the sorted array.
  3211       g1_policy()->note_change_in_marked_bytes(cur);
  3213     cur = cur->next_in_collection_set();
  3215   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3217   // Now restore saved marks, if any.
  3218   if (_objs_with_preserved_marks != NULL) {
  3219     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3220     assert(_objs_with_preserved_marks->length() ==
  3221            _preserved_marks_of_objs->length(), "Both or none.");
  3222     guarantee(_objs_with_preserved_marks->length() ==
  3223               _preserved_marks_of_objs->length(), "Both or none.");
  3224     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3225       oop obj   = _objs_with_preserved_marks->at(i);
  3226       markOop m = _preserved_marks_of_objs->at(i);
  3227       obj->set_mark(m);
  3229     // Delete the preserved marks growable arrays (allocated on the C heap).
  3230     delete _objs_with_preserved_marks;
  3231     delete _preserved_marks_of_objs;
  3232     _objs_with_preserved_marks = NULL;
  3233     _preserved_marks_of_objs = NULL;
  3237 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3238   _evac_failure_scan_stack->push(obj);
  3241 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3242   assert(_evac_failure_scan_stack != NULL, "precondition");
  3244   while (_evac_failure_scan_stack->length() > 0) {
  3245      oop obj = _evac_failure_scan_stack->pop();
  3246      _evac_failure_closure->set_region(heap_region_containing(obj));
  3247      obj->oop_iterate_backwards(_evac_failure_closure);
  3251 void G1CollectedHeap::handle_evacuation_failure(oop old) {
  3252   markOop m = old->mark();
  3253   // forward to self
  3254   assert(!old->is_forwarded(), "precondition");
  3256   old->forward_to(old);
  3257   handle_evacuation_failure_common(old, m);
  3260 oop
  3261 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3262                                                oop old) {
  3263   markOop m = old->mark();
  3264   oop forward_ptr = old->forward_to_atomic(old);
  3265   if (forward_ptr == NULL) {
  3266     // Forward-to-self succeeded.
  3267     if (_evac_failure_closure != cl) {
  3268       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3269       assert(!_drain_in_progress,
  3270              "Should only be true while someone holds the lock.");
  3271       // Set the global evac-failure closure to the current thread's.
  3272       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3273       set_evac_failure_closure(cl);
  3274       // Now do the common part.
  3275       handle_evacuation_failure_common(old, m);
  3276       // Reset to NULL.
  3277       set_evac_failure_closure(NULL);
  3278     } else {
  3279       // The lock is already held, and this is recursive.
  3280       assert(_drain_in_progress, "This should only be the recursive case.");
  3281       handle_evacuation_failure_common(old, m);
  3283     return old;
  3284   } else {
  3285     // Someone else had a place to copy it.
  3286     return forward_ptr;
  3290 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3291   set_evacuation_failed(true);
  3293   preserve_mark_if_necessary(old, m);
  3295   HeapRegion* r = heap_region_containing(old);
  3296   if (!r->evacuation_failed()) {
  3297     r->set_evacuation_failed(true);
  3298     if (G1TraceRegions) {
  3299       gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
  3300                           "["PTR_FORMAT","PTR_FORMAT")\n",
  3301                           r, r->bottom(), r->end());
  3305   push_on_evac_failure_scan_stack(old);
  3307   if (!_drain_in_progress) {
  3308     // prevent recursion in copy_to_survivor_space()
  3309     _drain_in_progress = true;
  3310     drain_evac_failure_scan_stack();
  3311     _drain_in_progress = false;
  3315 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  3316   if (m != markOopDesc::prototype()) {
  3317     if (_objs_with_preserved_marks == NULL) {
  3318       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  3319       _objs_with_preserved_marks =
  3320         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3321       _preserved_marks_of_objs =
  3322         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  3324     _objs_with_preserved_marks->push(obj);
  3325     _preserved_marks_of_objs->push(m);
  3329 // *** Parallel G1 Evacuation
  3331 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  3332                                                   size_t word_size) {
  3333   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3334   // let the caller handle alloc failure
  3335   if (alloc_region == NULL) return NULL;
  3337   HeapWord* block = alloc_region->par_allocate(word_size);
  3338   if (block == NULL) {
  3339     MutexLockerEx x(par_alloc_during_gc_lock(),
  3340                     Mutex::_no_safepoint_check_flag);
  3341     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  3343   return block;
  3346 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
  3347                                             bool par) {
  3348   // Another thread might have obtained alloc_region for the given
  3349   // purpose, and might be attempting to allocate in it, and might
  3350   // succeed.  Therefore, we can't do the "finalization" stuff on the
  3351   // region below until we're sure the last allocation has happened.
  3352   // We ensure this by allocating the remaining space with a garbage
  3353   // object.
  3354   if (par) par_allocate_remaining_space(alloc_region);
  3355   // Now we can do the post-GC stuff on the region.
  3356   alloc_region->note_end_of_copying();
  3357   g1_policy()->record_after_bytes(alloc_region->used());
  3360 HeapWord*
  3361 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
  3362                                          HeapRegion*    alloc_region,
  3363                                          bool           par,
  3364                                          size_t         word_size) {
  3365   HeapWord* block = NULL;
  3366   // In the parallel case, a previous thread to obtain the lock may have
  3367   // already assigned a new gc_alloc_region.
  3368   if (alloc_region != _gc_alloc_regions[purpose]) {
  3369     assert(par, "But should only happen in parallel case.");
  3370     alloc_region = _gc_alloc_regions[purpose];
  3371     if (alloc_region == NULL) return NULL;
  3372     block = alloc_region->par_allocate(word_size);
  3373     if (block != NULL) return block;
  3374     // Otherwise, continue; this new region is empty, too.
  3376   assert(alloc_region != NULL, "We better have an allocation region");
  3377   retire_alloc_region(alloc_region, par);
  3379   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
  3380     // Cannot allocate more regions for the given purpose.
  3381     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
  3382     // Is there an alternative?
  3383     if (purpose != alt_purpose) {
  3384       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
  3385       // Has not the alternative region been aliased?
  3386       if (alloc_region != alt_region && alt_region != NULL) {
  3387         // Try to allocate in the alternative region.
  3388         if (par) {
  3389           block = alt_region->par_allocate(word_size);
  3390         } else {
  3391           block = alt_region->allocate(word_size);
  3393         // Make an alias.
  3394         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
  3395         if (block != NULL) {
  3396           return block;
  3398         retire_alloc_region(alt_region, par);
  3400       // Both the allocation region and the alternative one are full
  3401       // and aliased, replace them with a new allocation region.
  3402       purpose = alt_purpose;
  3403     } else {
  3404       set_gc_alloc_region(purpose, NULL);
  3405       return NULL;
  3409   // Now allocate a new region for allocation.
  3410   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
  3412   // let the caller handle alloc failure
  3413   if (alloc_region != NULL) {
  3415     assert(check_gc_alloc_regions(), "alloc regions messed up");
  3416     assert(alloc_region->saved_mark_at_top(),
  3417            "Mark should have been saved already.");
  3418     // We used to assert that the region was zero-filled here, but no
  3419     // longer.
  3421     // This must be done last: once it's installed, other regions may
  3422     // allocate in it (without holding the lock.)
  3423     set_gc_alloc_region(purpose, alloc_region);
  3425     if (par) {
  3426       block = alloc_region->par_allocate(word_size);
  3427     } else {
  3428       block = alloc_region->allocate(word_size);
  3430     // Caller handles alloc failure.
  3431   } else {
  3432     // This sets other apis using the same old alloc region to NULL, also.
  3433     set_gc_alloc_region(purpose, NULL);
  3435   return block;  // May be NULL.
  3438 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  3439   HeapWord* block = NULL;
  3440   size_t free_words;
  3441   do {
  3442     free_words = r->free()/HeapWordSize;
  3443     // If there's too little space, no one can allocate, so we're done.
  3444     if (free_words < (size_t)oopDesc::header_size()) return;
  3445     // Otherwise, try to claim it.
  3446     block = r->par_allocate(free_words);
  3447   } while (block == NULL);
  3448   fill_with_object(block, free_words);
  3451 #define use_local_bitmaps         1
  3452 #define verify_local_bitmaps      0
  3454 #ifndef PRODUCT
  3456 class GCLabBitMap;
  3457 class GCLabBitMapClosure: public BitMapClosure {
  3458 private:
  3459   ConcurrentMark* _cm;
  3460   GCLabBitMap*    _bitmap;
  3462 public:
  3463   GCLabBitMapClosure(ConcurrentMark* cm,
  3464                      GCLabBitMap* bitmap) {
  3465     _cm     = cm;
  3466     _bitmap = bitmap;
  3469   virtual bool do_bit(size_t offset);
  3470 };
  3472 #endif // PRODUCT
  3474 #define oop_buffer_length 256
  3476 class GCLabBitMap: public BitMap {
  3477 private:
  3478   ConcurrentMark* _cm;
  3480   int       _shifter;
  3481   size_t    _bitmap_word_covers_words;
  3483   // beginning of the heap
  3484   HeapWord* _heap_start;
  3486   // this is the actual start of the GCLab
  3487   HeapWord* _real_start_word;
  3489   // this is the actual end of the GCLab
  3490   HeapWord* _real_end_word;
  3492   // this is the first word, possibly located before the actual start
  3493   // of the GCLab, that corresponds to the first bit of the bitmap
  3494   HeapWord* _start_word;
  3496   // size of a GCLab in words
  3497   size_t _gclab_word_size;
  3499   static int shifter() {
  3500     return MinObjAlignment - 1;
  3503   // how many heap words does a single bitmap word corresponds to?
  3504   static size_t bitmap_word_covers_words() {
  3505     return BitsPerWord << shifter();
  3508   static size_t gclab_word_size() {
  3509     return ParallelGCG1AllocBufferSize / HeapWordSize;
  3512   static size_t bitmap_size_in_bits() {
  3513     size_t bits_in_bitmap = gclab_word_size() >> shifter();
  3514     // We are going to ensure that the beginning of a word in this
  3515     // bitmap also corresponds to the beginning of a word in the
  3516     // global marking bitmap. To handle the case where a GCLab
  3517     // starts from the middle of the bitmap, we need to add enough
  3518     // space (i.e. up to a bitmap word) to ensure that we have
  3519     // enough bits in the bitmap.
  3520     return bits_in_bitmap + BitsPerWord - 1;
  3522 public:
  3523   GCLabBitMap(HeapWord* heap_start)
  3524     : BitMap(bitmap_size_in_bits()),
  3525       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  3526       _shifter(shifter()),
  3527       _bitmap_word_covers_words(bitmap_word_covers_words()),
  3528       _heap_start(heap_start),
  3529       _gclab_word_size(gclab_word_size()),
  3530       _real_start_word(NULL),
  3531       _real_end_word(NULL),
  3532       _start_word(NULL)
  3534     guarantee( size_in_words() >= bitmap_size_in_words(),
  3535                "just making sure");
  3538   inline unsigned heapWordToOffset(HeapWord* addr) {
  3539     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  3540     assert(offset < size(), "offset should be within bounds");
  3541     return offset;
  3544   inline HeapWord* offsetToHeapWord(size_t offset) {
  3545     HeapWord* addr =  _start_word + (offset << _shifter);
  3546     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  3547     return addr;
  3550   bool fields_well_formed() {
  3551     bool ret1 = (_real_start_word == NULL) &&
  3552                 (_real_end_word == NULL) &&
  3553                 (_start_word == NULL);
  3554     if (ret1)
  3555       return true;
  3557     bool ret2 = _real_start_word >= _start_word &&
  3558       _start_word < _real_end_word &&
  3559       (_real_start_word + _gclab_word_size) == _real_end_word &&
  3560       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  3561                                                               > _real_end_word;
  3562     return ret2;
  3565   inline bool mark(HeapWord* addr) {
  3566     guarantee(use_local_bitmaps, "invariant");
  3567     assert(fields_well_formed(), "invariant");
  3569     if (addr >= _real_start_word && addr < _real_end_word) {
  3570       assert(!isMarked(addr), "should not have already been marked");
  3572       // first mark it on the bitmap
  3573       at_put(heapWordToOffset(addr), true);
  3575       return true;
  3576     } else {
  3577       return false;
  3581   inline bool isMarked(HeapWord* addr) {
  3582     guarantee(use_local_bitmaps, "invariant");
  3583     assert(fields_well_formed(), "invariant");
  3585     return at(heapWordToOffset(addr));
  3588   void set_buffer(HeapWord* start) {
  3589     guarantee(use_local_bitmaps, "invariant");
  3590     clear();
  3592     assert(start != NULL, "invariant");
  3593     _real_start_word = start;
  3594     _real_end_word   = start + _gclab_word_size;
  3596     size_t diff =
  3597       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  3598     _start_word = start - diff;
  3600     assert(fields_well_formed(), "invariant");
  3603 #ifndef PRODUCT
  3604   void verify() {
  3605     // verify that the marks have been propagated
  3606     GCLabBitMapClosure cl(_cm, this);
  3607     iterate(&cl);
  3609 #endif // PRODUCT
  3611   void retire() {
  3612     guarantee(use_local_bitmaps, "invariant");
  3613     assert(fields_well_formed(), "invariant");
  3615     if (_start_word != NULL) {
  3616       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  3618       // this means that the bitmap was set up for the GCLab
  3619       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  3621       mark_bitmap->mostly_disjoint_range_union(this,
  3622                                 0, // always start from the start of the bitmap
  3623                                 _start_word,
  3624                                 size_in_words());
  3625       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  3627 #ifndef PRODUCT
  3628       if (use_local_bitmaps && verify_local_bitmaps)
  3629         verify();
  3630 #endif // PRODUCT
  3631     } else {
  3632       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  3636   static size_t bitmap_size_in_words() {
  3637     return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
  3639 };
  3641 #ifndef PRODUCT
  3643 bool GCLabBitMapClosure::do_bit(size_t offset) {
  3644   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  3645   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  3646   return true;
  3649 #endif // PRODUCT
  3651 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  3652 private:
  3653   bool        _retired;
  3654   bool        _during_marking;
  3655   GCLabBitMap _bitmap;
  3657 public:
  3658   G1ParGCAllocBuffer() :
  3659     ParGCAllocBuffer(ParallelGCG1AllocBufferSize / HeapWordSize),
  3660     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  3661     _bitmap(G1CollectedHeap::heap()->reserved_region().start()),
  3662     _retired(false)
  3663   { }
  3665   inline bool mark(HeapWord* addr) {
  3666     guarantee(use_local_bitmaps, "invariant");
  3667     assert(_during_marking, "invariant");
  3668     return _bitmap.mark(addr);
  3671   inline void set_buf(HeapWord* buf) {
  3672     if (use_local_bitmaps && _during_marking)
  3673       _bitmap.set_buffer(buf);
  3674     ParGCAllocBuffer::set_buf(buf);
  3675     _retired = false;
  3678   inline void retire(bool end_of_gc, bool retain) {
  3679     if (_retired)
  3680       return;
  3681     if (use_local_bitmaps && _during_marking) {
  3682       _bitmap.retire();
  3684     ParGCAllocBuffer::retire(end_of_gc, retain);
  3685     _retired = true;
  3687 };
  3690 class G1ParScanThreadState : public StackObj {
  3691 protected:
  3692   G1CollectedHeap* _g1h;
  3693   RefToScanQueue*  _refs;
  3694   DirtyCardQueue   _dcq;
  3695   CardTableModRefBS* _ct_bs;
  3696   G1RemSet* _g1_rem;
  3698   typedef GrowableArray<oop*> OverflowQueue;
  3699   OverflowQueue* _overflowed_refs;
  3701   G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
  3702   ageTable           _age_table;
  3704   size_t           _alloc_buffer_waste;
  3705   size_t           _undo_waste;
  3707   OopsInHeapRegionClosure*      _evac_failure_cl;
  3708   G1ParScanHeapEvacClosure*     _evac_cl;
  3709   G1ParScanPartialArrayClosure* _partial_scan_cl;
  3711   int _hash_seed;
  3712   int _queue_num;
  3714   int _term_attempts;
  3715 #if G1_DETAILED_STATS
  3716   int _pushes, _pops, _steals, _steal_attempts;
  3717   int _overflow_pushes;
  3718 #endif
  3720   double _start;
  3721   double _start_strong_roots;
  3722   double _strong_roots_time;
  3723   double _start_term;
  3724   double _term_time;
  3726   // Map from young-age-index (0 == not young, 1 is youngest) to
  3727   // surviving words. base is what we get back from the malloc call
  3728   size_t* _surviving_young_words_base;
  3729   // this points into the array, as we use the first few entries for padding
  3730   size_t* _surviving_young_words;
  3732 #define PADDING_ELEM_NUM (64 / sizeof(size_t))
  3734   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  3736   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  3738   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  3739   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  3741   void immediate_rs_update(HeapRegion* from, oop* p, int tid) {
  3742     if (!from->is_survivor()) {
  3743       _g1_rem->par_write_ref(from, p, tid);
  3747   void deferred_rs_update(HeapRegion* from, oop* p, int tid) {
  3748     // If the new value of the field points to the same region or
  3749     // is the to-space, we don't need to include it in the Rset updates.
  3750     if (!from->is_in_reserved(*p) && !from->is_survivor()) {
  3751       size_t card_index = ctbs()->index_for(p);
  3752       // If the card hasn't been added to the buffer, do it.
  3753       if (ctbs()->mark_card_deferred(card_index)) {
  3754         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  3759 public:
  3760   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  3761     : _g1h(g1h),
  3762       _refs(g1h->task_queue(queue_num)),
  3763       _dcq(&g1h->dirty_card_queue_set()),
  3764       _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  3765       _g1_rem(g1h->g1_rem_set()),
  3766       _hash_seed(17), _queue_num(queue_num),
  3767       _term_attempts(0),
  3768       _age_table(false),
  3769 #if G1_DETAILED_STATS
  3770       _pushes(0), _pops(0), _steals(0),
  3771       _steal_attempts(0),  _overflow_pushes(0),
  3772 #endif
  3773       _strong_roots_time(0), _term_time(0),
  3774       _alloc_buffer_waste(0), _undo_waste(0)
  3776     // we allocate G1YoungSurvRateNumRegions plus one entries, since
  3777     // we "sacrifice" entry 0 to keep track of surviving bytes for
  3778     // non-young regions (where the age is -1)
  3779     // We also add a few elements at the beginning and at the end in
  3780     // an attempt to eliminate cache contention
  3781     size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  3782     size_t array_length = PADDING_ELEM_NUM +
  3783                           real_length +
  3784                           PADDING_ELEM_NUM;
  3785     _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  3786     if (_surviving_young_words_base == NULL)
  3787       vm_exit_out_of_memory(array_length * sizeof(size_t),
  3788                             "Not enough space for young surv histo.");
  3789     _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  3790     memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  3792     _overflowed_refs = new OverflowQueue(10);
  3794     _start = os::elapsedTime();
  3797   ~G1ParScanThreadState() {
  3798     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  3801   RefToScanQueue*   refs()            { return _refs;             }
  3802   OverflowQueue*    overflowed_refs() { return _overflowed_refs;  }
  3803   ageTable*         age_table()       { return &_age_table;       }
  3805   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  3806     return &_alloc_buffers[purpose];
  3809   size_t alloc_buffer_waste()                    { return _alloc_buffer_waste; }
  3810   size_t undo_waste()                            { return _undo_waste; }
  3812   void push_on_queue(oop* ref) {
  3813     assert(ref != NULL, "invariant");
  3814     assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref), "invariant");
  3816     if (!refs()->push(ref)) {
  3817       overflowed_refs()->push(ref);
  3818       IF_G1_DETAILED_STATS(note_overflow_push());
  3819     } else {
  3820       IF_G1_DETAILED_STATS(note_push());
  3824   void pop_from_queue(oop*& ref) {
  3825     if (!refs()->pop_local(ref)) {
  3826       ref = NULL;
  3827     } else {
  3828       assert(ref != NULL, "invariant");
  3829       assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref),
  3830              "invariant");
  3832       IF_G1_DETAILED_STATS(note_pop());
  3836   void pop_from_overflow_queue(oop*& ref) {
  3837     ref = overflowed_refs()->pop();
  3840   int refs_to_scan()                             { return refs()->size();                 }
  3841   int overflowed_refs_to_scan()                  { return overflowed_refs()->length();    }
  3843   void update_rs(HeapRegion* from, oop* p, int tid) {
  3844     if (G1DeferredRSUpdate) {
  3845       deferred_rs_update(from, p, tid);
  3846     } else {
  3847       immediate_rs_update(from, p, tid);
  3851   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  3853     HeapWord* obj = NULL;
  3854     if (word_sz * 100 <
  3855         (size_t)(ParallelGCG1AllocBufferSize / HeapWordSize) *
  3856                                                   ParallelGCBufferWastePct) {
  3857       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  3858       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  3859       alloc_buf->retire(false, false);
  3861       HeapWord* buf =
  3862         _g1h->par_allocate_during_gc(purpose, ParallelGCG1AllocBufferSize / HeapWordSize);
  3863       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  3864       // Otherwise.
  3865       alloc_buf->set_buf(buf);
  3867       obj = alloc_buf->allocate(word_sz);
  3868       assert(obj != NULL, "buffer was definitely big enough...");
  3869     } else {
  3870       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  3872     return obj;
  3875   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  3876     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  3877     if (obj != NULL) return obj;
  3878     return allocate_slow(purpose, word_sz);
  3881   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  3882     if (alloc_buffer(purpose)->contains(obj)) {
  3883       guarantee(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  3884                 "should contain whole object");
  3885       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  3886     } else {
  3887       CollectedHeap::fill_with_object(obj, word_sz);
  3888       add_to_undo_waste(word_sz);
  3892   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  3893     _evac_failure_cl = evac_failure_cl;
  3895   OopsInHeapRegionClosure* evac_failure_closure() {
  3896     return _evac_failure_cl;
  3899   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  3900     _evac_cl = evac_cl;
  3903   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  3904     _partial_scan_cl = partial_scan_cl;
  3907   int* hash_seed() { return &_hash_seed; }
  3908   int  queue_num() { return _queue_num; }
  3910   int term_attempts()   { return _term_attempts; }
  3911   void note_term_attempt()  { _term_attempts++; }
  3913 #if G1_DETAILED_STATS
  3914   int pushes()          { return _pushes; }
  3915   int pops()            { return _pops; }
  3916   int steals()          { return _steals; }
  3917   int steal_attempts()  { return _steal_attempts; }
  3918   int overflow_pushes() { return _overflow_pushes; }
  3920   void note_push()          { _pushes++; }
  3921   void note_pop()           { _pops++; }
  3922   void note_steal()         { _steals++; }
  3923   void note_steal_attempt() { _steal_attempts++; }
  3924   void note_overflow_push() { _overflow_pushes++; }
  3925 #endif
  3927   void start_strong_roots() {
  3928     _start_strong_roots = os::elapsedTime();
  3930   void end_strong_roots() {
  3931     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  3933   double strong_roots_time() { return _strong_roots_time; }
  3935   void start_term_time() {
  3936     note_term_attempt();
  3937     _start_term = os::elapsedTime();
  3939   void end_term_time() {
  3940     _term_time += (os::elapsedTime() - _start_term);
  3942   double term_time() { return _term_time; }
  3944   double elapsed() {
  3945     return os::elapsedTime() - _start;
  3948   size_t* surviving_young_words() {
  3949     // We add on to hide entry 0 which accumulates surviving words for
  3950     // age -1 regions (i.e. non-young ones)
  3951     return _surviving_young_words;
  3954   void retire_alloc_buffers() {
  3955     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3956       size_t waste = _alloc_buffers[ap].words_remaining();
  3957       add_to_alloc_buffer_waste(waste);
  3958       _alloc_buffers[ap].retire(true, false);
  3962 private:
  3963   void deal_with_reference(oop* ref_to_scan) {
  3964     if (has_partial_array_mask(ref_to_scan)) {
  3965       _partial_scan_cl->do_oop_nv(ref_to_scan);
  3966     } else {
  3967       // Note: we can use "raw" versions of "region_containing" because
  3968       // "obj_to_scan" is definitely in the heap, and is not in a
  3969       // humongous region.
  3970       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  3971       _evac_cl->set_region(r);
  3972       _evac_cl->do_oop_nv(ref_to_scan);
  3976 public:
  3977   void trim_queue() {
  3978     // I've replicated the loop twice, first to drain the overflow
  3979     // queue, second to drain the task queue. This is better than
  3980     // having a single loop, which checks both conditions and, inside
  3981     // it, either pops the overflow queue or the task queue, as each
  3982     // loop is tighter. Also, the decision to drain the overflow queue
  3983     // first is not arbitrary, as the overflow queue is not visible
  3984     // to the other workers, whereas the task queue is. So, we want to
  3985     // drain the "invisible" entries first, while allowing the other
  3986     // workers to potentially steal the "visible" entries.
  3988     while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
  3989       while (overflowed_refs_to_scan() > 0) {
  3990         oop *ref_to_scan = NULL;
  3991         pop_from_overflow_queue(ref_to_scan);
  3992         assert(ref_to_scan != NULL, "invariant");
  3993         // We shouldn't have pushed it on the queue if it was not
  3994         // pointing into the CSet.
  3995         assert(ref_to_scan != NULL, "sanity");
  3996         assert(has_partial_array_mask(ref_to_scan) ||
  3997                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
  3999         deal_with_reference(ref_to_scan);
  4002       while (refs_to_scan() > 0) {
  4003         oop *ref_to_scan = NULL;
  4004         pop_from_queue(ref_to_scan);
  4006         if (ref_to_scan != NULL) {
  4007           // We shouldn't have pushed it on the queue if it was not
  4008           // pointing into the CSet.
  4009           assert(has_partial_array_mask(ref_to_scan) ||
  4010                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
  4012           deal_with_reference(ref_to_scan);
  4017 };
  4019 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  4020   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4021   _par_scan_state(par_scan_state) { }
  4023 // This closure is applied to the fields of the objects that have just been copied.
  4024 // Should probably be made inline and moved in g1OopClosures.inline.hpp.
  4025 void G1ParScanClosure::do_oop_nv(oop* p) {
  4026   oop obj = *p;
  4028   if (obj != NULL) {
  4029     if (_g1->in_cset_fast_test(obj)) {
  4030       // We're not going to even bother checking whether the object is
  4031       // already forwarded or not, as this usually causes an immediate
  4032       // stall. We'll try to prefetch the object (for write, given that
  4033       // we might need to install the forwarding reference) and we'll
  4034       // get back to it when pop it from the queue
  4035       Prefetch::write(obj->mark_addr(), 0);
  4036       Prefetch::read(obj->mark_addr(), (HeapWordSize*2));
  4038       // slightly paranoid test; I'm trying to catch potential
  4039       // problems before we go into push_on_queue to know where the
  4040       // problem is coming from
  4041       assert(obj == *p, "the value of *p should not have changed");
  4042       _par_scan_state->push_on_queue(p);
  4043     } else {
  4044       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4049 void G1ParCopyHelper::mark_forwardee(oop* p) {
  4050   // This is called _after_ do_oop_work has been called, hence after
  4051   // the object has been relocated to its new location and *p points
  4052   // to its new location.
  4054   oop thisOop = *p;
  4055   if (thisOop != NULL) {
  4056     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(thisOop)),
  4057            "shouldn't still be in the CSet if evacuation didn't fail.");
  4058     HeapWord* addr = (HeapWord*)thisOop;
  4059     if (_g1->is_in_g1_reserved(addr))
  4060       _cm->grayRoot(oop(addr));
  4064 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  4065   size_t    word_sz = old->size();
  4066   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4067   // +1 to make the -1 indexes valid...
  4068   int       young_index = from_region->young_index_in_cset()+1;
  4069   assert( (from_region->is_young() && young_index > 0) ||
  4070           (!from_region->is_young() && young_index == 0), "invariant" );
  4071   G1CollectorPolicy* g1p = _g1->g1_policy();
  4072   markOop m = old->mark();
  4073   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4074                                            : m->age();
  4075   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4076                                                              word_sz);
  4077   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4078   oop       obj     = oop(obj_ptr);
  4080   if (obj_ptr == NULL) {
  4081     // This will either forward-to-self, or detect that someone else has
  4082     // installed a forwarding pointer.
  4083     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4084     return _g1->handle_evacuation_failure_par(cl, old);
  4087   // We're going to allocate linearly, so might as well prefetch ahead.
  4088   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4090   oop forward_ptr = old->forward_to_atomic(obj);
  4091   if (forward_ptr == NULL) {
  4092     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4093     if (g1p->track_object_age(alloc_purpose)) {
  4094       // We could simply do obj->incr_age(). However, this causes a
  4095       // performance issue. obj->incr_age() will first check whether
  4096       // the object has a displaced mark by checking its mark word;
  4097       // getting the mark word from the new location of the object
  4098       // stalls. So, given that we already have the mark word and we
  4099       // are about to install it anyway, it's better to increase the
  4100       // age on the mark word, when the object does not have a
  4101       // displaced mark word. We're not expecting many objects to have
  4102       // a displaced marked word, so that case is not optimized
  4103       // further (it could be...) and we simply call obj->incr_age().
  4105       if (m->has_displaced_mark_helper()) {
  4106         // in this case, we have to install the mark word first,
  4107         // otherwise obj looks to be forwarded (the old mark word,
  4108         // which contains the forward pointer, was copied)
  4109         obj->set_mark(m);
  4110         obj->incr_age();
  4111       } else {
  4112         m = m->incr_age();
  4113         obj->set_mark(m);
  4115       _par_scan_state->age_table()->add(obj, word_sz);
  4116     } else {
  4117       obj->set_mark(m);
  4120     // preserve "next" mark bit
  4121     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  4122       if (!use_local_bitmaps ||
  4123           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  4124         // if we couldn't mark it on the local bitmap (this happens when
  4125         // the object was not allocated in the GCLab), we have to bite
  4126         // the bullet and do the standard parallel mark
  4127         _cm->markAndGrayObjectIfNecessary(obj);
  4129 #if 1
  4130       if (_g1->isMarkedNext(old)) {
  4131         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  4133 #endif
  4136     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4137     surv_young_words[young_index] += word_sz;
  4139     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4140       arrayOop(old)->set_length(0);
  4141       _par_scan_state->push_on_queue(set_partial_array_mask(old));
  4142     } else {
  4143       // No point in using the slower heap_region_containing() method,
  4144       // given that we know obj is in the heap.
  4145       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  4146       obj->oop_iterate_backwards(_scanner);
  4148   } else {
  4149     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4150     obj = forward_ptr;
  4152   return obj;
  4155 template<bool do_gen_barrier, G1Barrier barrier,
  4156          bool do_mark_forwardee, bool skip_cset_test>
  4157 void G1ParCopyClosure<do_gen_barrier, barrier,
  4158                       do_mark_forwardee, skip_cset_test>::do_oop_work(oop* p) {
  4159   oop obj = *p;
  4160   assert(barrier != G1BarrierRS || obj != NULL,
  4161          "Precondition: G1BarrierRS implies obj is nonNull");
  4163   // The only time we skip the cset test is when we're scanning
  4164   // references popped from the queue. And we only push on the queue
  4165   // references that we know point into the cset, so no point in
  4166   // checking again. But we'll leave an assert here for peace of mind.
  4167   assert(!skip_cset_test || _g1->obj_in_cs(obj), "invariant");
  4169   // here the null check is implicit in the cset_fast_test() test
  4170   if (skip_cset_test || _g1->in_cset_fast_test(obj)) {
  4171 #if G1_REM_SET_LOGGING
  4172     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
  4173                            "into CS.", p, (void*) obj);
  4174 #endif
  4175     if (obj->is_forwarded()) {
  4176       *p = obj->forwardee();
  4177     } else {
  4178       *p = copy_to_survivor_space(obj);
  4180     // When scanning the RS, we only care about objs in CS.
  4181     if (barrier == G1BarrierRS) {
  4182       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4186   // When scanning moved objs, must look at all oops.
  4187   if (barrier == G1BarrierEvac && obj != NULL) {
  4188     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4191   if (do_gen_barrier && obj != NULL) {
  4192     par_do_barrier(p);
  4196 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(oop* p);
  4198 template<class T> void G1ParScanPartialArrayClosure::process_array_chunk(
  4199   oop obj, int start, int end) {
  4200   // process our set of indices (include header in first chunk)
  4201   assert(start < end, "invariant");
  4202   T* const base      = (T*)objArrayOop(obj)->base();
  4203   T* const start_addr = (start == 0) ? (T*) obj : base + start;
  4204   T* const end_addr   = base + end;
  4205   MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr);
  4206   _scanner.set_region(_g1->heap_region_containing(obj));
  4207   obj->oop_iterate(&_scanner, mr);
  4210 void G1ParScanPartialArrayClosure::do_oop_nv(oop* p) {
  4211   assert(!UseCompressedOops, "Needs to be fixed to work with compressed oops");
  4212   assert(has_partial_array_mask(p), "invariant");
  4213   oop old = clear_partial_array_mask(p);
  4214   assert(old->is_objArray(), "must be obj array");
  4215   assert(old->is_forwarded(), "must be forwarded");
  4216   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  4218   objArrayOop obj = objArrayOop(old->forwardee());
  4219   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  4220   // Process ParGCArrayScanChunk elements now
  4221   // and push the remainder back onto queue
  4222   int start     = arrayOop(old)->length();
  4223   int end       = obj->length();
  4224   int remainder = end - start;
  4225   assert(start <= end, "just checking");
  4226   if (remainder > 2 * ParGCArrayScanChunk) {
  4227     // Test above combines last partial chunk with a full chunk
  4228     end = start + ParGCArrayScanChunk;
  4229     arrayOop(old)->set_length(end);
  4230     // Push remainder.
  4231     _par_scan_state->push_on_queue(set_partial_array_mask(old));
  4232   } else {
  4233     // Restore length so that the heap remains parsable in
  4234     // case of evacuation failure.
  4235     arrayOop(old)->set_length(end);
  4238   // process our set of indices (include header in first chunk)
  4239   process_array_chunk<oop>(obj, start, end);
  4242 int G1ScanAndBalanceClosure::_nq = 0;
  4244 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4245 protected:
  4246   G1CollectedHeap*              _g1h;
  4247   G1ParScanThreadState*         _par_scan_state;
  4248   RefToScanQueueSet*            _queues;
  4249   ParallelTaskTerminator*       _terminator;
  4251   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4252   RefToScanQueueSet*      queues()         { return _queues; }
  4253   ParallelTaskTerminator* terminator()     { return _terminator; }
  4255 public:
  4256   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4257                                 G1ParScanThreadState* par_scan_state,
  4258                                 RefToScanQueueSet* queues,
  4259                                 ParallelTaskTerminator* terminator)
  4260     : _g1h(g1h), _par_scan_state(par_scan_state),
  4261       _queues(queues), _terminator(terminator) {}
  4263   void do_void() {
  4264     G1ParScanThreadState* pss = par_scan_state();
  4265     while (true) {
  4266       oop* ref_to_scan;
  4267       pss->trim_queue();
  4268       IF_G1_DETAILED_STATS(pss->note_steal_attempt());
  4269       if (queues()->steal(pss->queue_num(),
  4270                           pss->hash_seed(),
  4271                           ref_to_scan)) {
  4272         IF_G1_DETAILED_STATS(pss->note_steal());
  4274         // slightly paranoid tests; I'm trying to catch potential
  4275         // problems before we go into push_on_queue to know where the
  4276         // problem is coming from
  4277         assert(ref_to_scan != NULL, "invariant");
  4278         assert(has_partial_array_mask(ref_to_scan) ||
  4279                                    _g1h->obj_in_cs(*ref_to_scan), "invariant");
  4280         pss->push_on_queue(ref_to_scan);
  4281         continue;
  4283       pss->start_term_time();
  4284       if (terminator()->offer_termination()) break;
  4285       pss->end_term_time();
  4287     pss->end_term_time();
  4288     pss->retire_alloc_buffers();
  4290 };
  4292 class G1ParTask : public AbstractGangTask {
  4293 protected:
  4294   G1CollectedHeap*       _g1h;
  4295   RefToScanQueueSet      *_queues;
  4296   ParallelTaskTerminator _terminator;
  4298   Mutex _stats_lock;
  4299   Mutex* stats_lock() { return &_stats_lock; }
  4301   size_t getNCards() {
  4302     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4303       / G1BlockOffsetSharedArray::N_bytes;
  4306 public:
  4307   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  4308     : AbstractGangTask("G1 collection"),
  4309       _g1h(g1h),
  4310       _queues(task_queues),
  4311       _terminator(workers, _queues),
  4312       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4313   {}
  4315   RefToScanQueueSet* queues() { return _queues; }
  4317   RefToScanQueue *work_queue(int i) {
  4318     return queues()->queue(i);
  4321   void work(int i) {
  4322     ResourceMark rm;
  4323     HandleMark   hm;
  4325     G1ParScanThreadState            pss(_g1h, i);
  4326     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  4327     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  4328     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  4330     pss.set_evac_closure(&scan_evac_cl);
  4331     pss.set_evac_failure_closure(&evac_failure_cl);
  4332     pss.set_partial_scan_closure(&partial_scan_cl);
  4334     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  4335     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  4336     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  4338     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  4339     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  4340     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  4342     OopsInHeapRegionClosure        *scan_root_cl;
  4343     OopsInHeapRegionClosure        *scan_perm_cl;
  4344     OopsInHeapRegionClosure        *scan_so_cl;
  4346     if (_g1h->g1_policy()->should_initiate_conc_mark()) {
  4347       scan_root_cl = &scan_mark_root_cl;
  4348       scan_perm_cl = &scan_mark_perm_cl;
  4349       scan_so_cl   = &scan_mark_heap_rs_cl;
  4350     } else {
  4351       scan_root_cl = &only_scan_root_cl;
  4352       scan_perm_cl = &only_scan_perm_cl;
  4353       scan_so_cl   = &only_scan_heap_rs_cl;
  4356     pss.start_strong_roots();
  4357     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4358                                   SharedHeap::SO_AllClasses,
  4359                                   scan_root_cl,
  4360                                   &only_scan_heap_rs_cl,
  4361                                   scan_so_cl,
  4362                                   scan_perm_cl,
  4363                                   i);
  4364     pss.end_strong_roots();
  4366       double start = os::elapsedTime();
  4367       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4368       evac.do_void();
  4369       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4370       double term_ms = pss.term_time()*1000.0;
  4371       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  4372       _g1h->g1_policy()->record_termination_time(i, term_ms);
  4374     if (G1UseSurvivorSpace) {
  4375       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4377     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4379     // Clean up any par-expanded rem sets.
  4380     HeapRegionRemSet::par_cleanup();
  4382     MutexLocker x(stats_lock());
  4383     if (ParallelGCVerbose) {
  4384       gclog_or_tty->print("Thread %d complete:\n", i);
  4385 #if G1_DETAILED_STATS
  4386       gclog_or_tty->print("  Pushes: %7d    Pops: %7d   Overflows: %7d   Steals %7d (in %d attempts)\n",
  4387                           pss.pushes(),
  4388                           pss.pops(),
  4389                           pss.overflow_pushes(),
  4390                           pss.steals(),
  4391                           pss.steal_attempts());
  4392 #endif
  4393       double elapsed      = pss.elapsed();
  4394       double strong_roots = pss.strong_roots_time();
  4395       double term         = pss.term_time();
  4396       gclog_or_tty->print("  Elapsed: %7.2f ms.\n"
  4397                           "    Strong roots: %7.2f ms (%6.2f%%)\n"
  4398                           "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
  4399                           elapsed * 1000.0,
  4400                           strong_roots * 1000.0, (strong_roots*100.0/elapsed),
  4401                           term * 1000.0, (term*100.0/elapsed),
  4402                           pss.term_attempts());
  4403       size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
  4404       gclog_or_tty->print("  Waste: %8dK\n"
  4405                  "    Alloc Buffer: %8dK\n"
  4406                  "    Undo: %8dK\n",
  4407                  (total_waste * HeapWordSize) / K,
  4408                  (pss.alloc_buffer_waste() * HeapWordSize) / K,
  4409                  (pss.undo_waste() * HeapWordSize) / K);
  4412     assert(pss.refs_to_scan() == 0, "Task queue should be empty");
  4413     assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
  4415 };
  4417 // *** Common G1 Evacuation Stuff
  4419 class G1CountClosure: public OopsInHeapRegionClosure {
  4420 public:
  4421   int n;
  4422   G1CountClosure() : n(0) {}
  4423   void do_oop(narrowOop* p) {
  4424     guarantee(false, "NYI");
  4426   void do_oop(oop* p) {
  4427     oop obj = *p;
  4428     assert(obj != NULL && G1CollectedHeap::heap()->obj_in_cs(obj),
  4429            "Rem set closure called on non-rem-set pointer.");
  4430     n++;
  4432 };
  4434 static G1CountClosure count_closure;
  4436 void
  4437 G1CollectedHeap::
  4438 g1_process_strong_roots(bool collecting_perm_gen,
  4439                         SharedHeap::ScanningOption so,
  4440                         OopClosure* scan_non_heap_roots,
  4441                         OopsInHeapRegionClosure* scan_rs,
  4442                         OopsInHeapRegionClosure* scan_so,
  4443                         OopsInGenClosure* scan_perm,
  4444                         int worker_i) {
  4445   // First scan the strong roots, including the perm gen.
  4446   double ext_roots_start = os::elapsedTime();
  4447   double closure_app_time_sec = 0.0;
  4449   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4450   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4451   buf_scan_perm.set_generation(perm_gen());
  4453   process_strong_roots(collecting_perm_gen, so,
  4454                        &buf_scan_non_heap_roots,
  4455                        &buf_scan_perm);
  4456   // Finish up any enqueued closure apps.
  4457   buf_scan_non_heap_roots.done();
  4458   buf_scan_perm.done();
  4459   double ext_roots_end = os::elapsedTime();
  4460   g1_policy()->reset_obj_copy_time(worker_i);
  4461   double obj_copy_time_sec =
  4462     buf_scan_non_heap_roots.closure_app_seconds() +
  4463     buf_scan_perm.closure_app_seconds();
  4464   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4465   double ext_root_time_ms =
  4466     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4467   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4469   // Scan strong roots in mark stack.
  4470   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4471     concurrent_mark()->oops_do(scan_non_heap_roots);
  4473   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4474   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4476   // XXX What should this be doing in the parallel case?
  4477   g1_policy()->record_collection_pause_end_CH_strong_roots();
  4478   if (G1VerifyRemSet) {
  4479     // :::: FIXME ::::
  4480     // The stupid remembered set doesn't know how to filter out dead
  4481     // objects, which the smart one does, and so when it is created
  4482     // and then compared the number of entries in each differs and
  4483     // the verification code fails.
  4484     guarantee(false, "verification code is broken, see note");
  4486     // Let's make sure that the current rem set agrees with the stupidest
  4487     // one possible!
  4488     bool refs_enabled = ref_processor()->discovery_enabled();
  4489     if (refs_enabled) ref_processor()->disable_discovery();
  4490     StupidG1RemSet stupid(this);
  4491     count_closure.n = 0;
  4492     stupid.oops_into_collection_set_do(&count_closure, worker_i);
  4493     int stupid_n = count_closure.n;
  4494     count_closure.n = 0;
  4495     g1_rem_set()->oops_into_collection_set_do(&count_closure, worker_i);
  4496     guarantee(count_closure.n == stupid_n, "Old and new rem sets differ.");
  4497     gclog_or_tty->print_cr("\nFound %d pointers in heap RS.", count_closure.n);
  4498     if (refs_enabled) ref_processor()->enable_discovery();
  4500   if (scan_so != NULL) {
  4501     scan_scan_only_set(scan_so, worker_i);
  4503   // Now scan the complement of the collection set.
  4504   if (scan_rs != NULL) {
  4505     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4507   // Finish with the ref_processor roots.
  4508   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4509     ref_processor()->oops_do(scan_non_heap_roots);
  4511   g1_policy()->record_collection_pause_end_G1_strong_roots();
  4512   _process_strong_tasks->all_tasks_completed();
  4515 void
  4516 G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
  4517                                        OopsInHeapRegionClosure* oc,
  4518                                        int worker_i) {
  4519   HeapWord* startAddr = r->bottom();
  4520   HeapWord* endAddr = r->used_region().end();
  4522   oc->set_region(r);
  4524   HeapWord* p = r->bottom();
  4525   HeapWord* t = r->top();
  4526   guarantee( p == r->next_top_at_mark_start(), "invariant" );
  4527   while (p < t) {
  4528     oop obj = oop(p);
  4529     p += obj->oop_iterate(oc);
  4533 void
  4534 G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
  4535                                     int worker_i) {
  4536   double start = os::elapsedTime();
  4538   BufferingOopsInHeapRegionClosure boc(oc);
  4540   FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
  4541   FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
  4543   OopsInHeapRegionClosure *foc;
  4544   if (g1_policy()->should_initiate_conc_mark())
  4545     foc = &scan_and_mark;
  4546   else
  4547     foc = &scan_only;
  4549   HeapRegion* hr;
  4550   int n = 0;
  4551   while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
  4552     scan_scan_only_region(hr, foc, worker_i);
  4553     ++n;
  4555   boc.done();
  4557   double closure_app_s = boc.closure_app_seconds();
  4558   g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
  4559   double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
  4560   g1_policy()->record_scan_only_time(worker_i, ms, n);
  4563 void
  4564 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4565                                        OopClosure* non_root_closure) {
  4566   SharedHeap::process_weak_roots(root_closure, non_root_closure);
  4570 class SaveMarksClosure: public HeapRegionClosure {
  4571 public:
  4572   bool doHeapRegion(HeapRegion* r) {
  4573     r->save_marks();
  4574     return false;
  4576 };
  4578 void G1CollectedHeap::save_marks() {
  4579   if (ParallelGCThreads == 0) {
  4580     SaveMarksClosure sm;
  4581     heap_region_iterate(&sm);
  4583   // We do this even in the parallel case
  4584   perm_gen()->save_marks();
  4587 void G1CollectedHeap::evacuate_collection_set() {
  4588   set_evacuation_failed(false);
  4590   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4591   concurrent_g1_refine()->set_use_cache(false);
  4592   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4593   set_par_threads(n_workers);
  4594   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4596   init_for_evac_failure(NULL);
  4598   change_strong_roots_parity();  // In preparation for parallel strong roots.
  4599   rem_set()->prepare_for_younger_refs_iterate(true);
  4601   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4602   double start_par = os::elapsedTime();
  4603   if (ParallelGCThreads > 0) {
  4604     // The individual threads will set their evac-failure closures.
  4605     workers()->run_task(&g1_par_task);
  4606   } else {
  4607     g1_par_task.work(0);
  4610   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4611   g1_policy()->record_par_time(par_time);
  4612   set_par_threads(0);
  4613   // Is this the right thing to do here?  We don't save marks
  4614   // on individual heap regions when we allocate from
  4615   // them in parallel, so this seems like the correct place for this.
  4616   retire_all_alloc_regions();
  4618     G1IsAliveClosure is_alive(this);
  4619     G1KeepAliveClosure keep_alive(this);
  4620     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4622   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4624   concurrent_g1_refine()->set_use_cache(true);
  4626   finalize_for_evac_failure();
  4628   // Must do this before removing self-forwarding pointers, which clears
  4629   // the per-region evac-failure flags.
  4630   concurrent_mark()->complete_marking_in_collection_set();
  4632   if (evacuation_failed()) {
  4633     remove_self_forwarding_pointers();
  4634     if (PrintGCDetails) {
  4635       gclog_or_tty->print(" (evacuation failed)");
  4636     } else if (PrintGC) {
  4637       gclog_or_tty->print("--");
  4641   if (G1DeferredRSUpdate) {
  4642     RedirtyLoggedCardTableEntryFastClosure redirty;
  4643     dirty_card_queue_set().set_closure(&redirty);
  4644     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4645     JavaThread::dirty_card_queue_set().merge_bufferlists(&dirty_card_queue_set());
  4646     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4649   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4652 void G1CollectedHeap::free_region(HeapRegion* hr) {
  4653   size_t pre_used = 0;
  4654   size_t cleared_h_regions = 0;
  4655   size_t freed_regions = 0;
  4656   UncleanRegionList local_list;
  4658   HeapWord* start = hr->bottom();
  4659   HeapWord* end   = hr->prev_top_at_mark_start();
  4660   size_t used_bytes = hr->used();
  4661   size_t live_bytes = hr->max_live_bytes();
  4662   if (used_bytes > 0) {
  4663     guarantee( live_bytes <= used_bytes, "invariant" );
  4664   } else {
  4665     guarantee( live_bytes == 0, "invariant" );
  4668   size_t garbage_bytes = used_bytes - live_bytes;
  4669   if (garbage_bytes > 0)
  4670     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
  4672   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
  4673                    &local_list);
  4674   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  4675                           &local_list);
  4678 void
  4679 G1CollectedHeap::free_region_work(HeapRegion* hr,
  4680                                   size_t& pre_used,
  4681                                   size_t& cleared_h_regions,
  4682                                   size_t& freed_regions,
  4683                                   UncleanRegionList* list,
  4684                                   bool par) {
  4685   assert(!hr->popular(), "should not free popular regions");
  4686   pre_used += hr->used();
  4687   if (hr->isHumongous()) {
  4688     assert(hr->startsHumongous(),
  4689            "Only the start of a humongous region should be freed.");
  4690     int ind = _hrs->find(hr);
  4691     assert(ind != -1, "Should have an index.");
  4692     // Clear the start region.
  4693     hr->hr_clear(par, true /*clear_space*/);
  4694     list->insert_before_head(hr);
  4695     cleared_h_regions++;
  4696     freed_regions++;
  4697     // Clear any continued regions.
  4698     ind++;
  4699     while ((size_t)ind < n_regions()) {
  4700       HeapRegion* hrc = _hrs->at(ind);
  4701       if (!hrc->continuesHumongous()) break;
  4702       // Otherwise, does continue the H region.
  4703       assert(hrc->humongous_start_region() == hr, "Huh?");
  4704       hrc->hr_clear(par, true /*clear_space*/);
  4705       cleared_h_regions++;
  4706       freed_regions++;
  4707       list->insert_before_head(hrc);
  4708       ind++;
  4710   } else {
  4711     hr->hr_clear(par, true /*clear_space*/);
  4712     list->insert_before_head(hr);
  4713     freed_regions++;
  4714     // If we're using clear2, this should not be enabled.
  4715     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
  4719 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
  4720                                               size_t cleared_h_regions,
  4721                                               size_t freed_regions,
  4722                                               UncleanRegionList* list) {
  4723   if (list != NULL && list->sz() > 0) {
  4724     prepend_region_list_on_unclean_list(list);
  4726   // Acquire a lock, if we're parallel, to update possibly-shared
  4727   // variables.
  4728   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
  4730     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4731     _summary_bytes_used -= pre_used;
  4732     _num_humongous_regions -= (int) cleared_h_regions;
  4733     _free_regions += freed_regions;
  4738 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  4739   while (list != NULL) {
  4740     guarantee( list->is_young(), "invariant" );
  4742     HeapWord* bottom = list->bottom();
  4743     HeapWord* end = list->end();
  4744     MemRegion mr(bottom, end);
  4745     ct_bs->dirty(mr);
  4747     list = list->get_next_young_region();
  4751 void G1CollectedHeap::cleanUpCardTable() {
  4752   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4753   double start = os::elapsedTime();
  4755   ct_bs->clear(_g1_committed);
  4757   // now, redirty the cards of the scan-only and survivor regions
  4758   // (it seemed faster to do it this way, instead of iterating over
  4759   // all regions and then clearing / dirtying as approprite)
  4760   dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
  4761   dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
  4763   double elapsed = os::elapsedTime() - start;
  4764   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4768 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
  4769   // First do any popular regions.
  4770   HeapRegion* hr;
  4771   while ((hr = popular_region_to_evac()) != NULL) {
  4772     evac_popular_region(hr);
  4774   // Now do heuristic pauses.
  4775   if (g1_policy()->should_do_collection_pause(word_size)) {
  4776     do_collection_pause();
  4780 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  4781   double young_time_ms     = 0.0;
  4782   double non_young_time_ms = 0.0;
  4784   G1CollectorPolicy* policy = g1_policy();
  4786   double start_sec = os::elapsedTime();
  4787   bool non_young = true;
  4789   HeapRegion* cur = cs_head;
  4790   int age_bound = -1;
  4791   size_t rs_lengths = 0;
  4793   while (cur != NULL) {
  4794     if (non_young) {
  4795       if (cur->is_young()) {
  4796         double end_sec = os::elapsedTime();
  4797         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4798         non_young_time_ms += elapsed_ms;
  4800         start_sec = os::elapsedTime();
  4801         non_young = false;
  4803     } else {
  4804       if (!cur->is_on_free_list()) {
  4805         double end_sec = os::elapsedTime();
  4806         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4807         young_time_ms += elapsed_ms;
  4809         start_sec = os::elapsedTime();
  4810         non_young = true;
  4814     rs_lengths += cur->rem_set()->occupied();
  4816     HeapRegion* next = cur->next_in_collection_set();
  4817     assert(cur->in_collection_set(), "bad CS");
  4818     cur->set_next_in_collection_set(NULL);
  4819     cur->set_in_collection_set(false);
  4821     if (cur->is_young()) {
  4822       int index = cur->young_index_in_cset();
  4823       guarantee( index != -1, "invariant" );
  4824       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  4825       size_t words_survived = _surviving_young_words[index];
  4826       cur->record_surv_words_in_group(words_survived);
  4827     } else {
  4828       int index = cur->young_index_in_cset();
  4829       guarantee( index == -1, "invariant" );
  4832     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  4833             (!cur->is_young() && cur->young_index_in_cset() == -1),
  4834             "invariant" );
  4836     if (!cur->evacuation_failed()) {
  4837       // And the region is empty.
  4838       assert(!cur->is_empty(),
  4839              "Should not have empty regions in a CS.");
  4840       free_region(cur);
  4841     } else {
  4842       guarantee( !cur->is_scan_only(), "should not be scan only" );
  4843       cur->uninstall_surv_rate_group();
  4844       if (cur->is_young())
  4845         cur->set_young_index_in_cset(-1);
  4846       cur->set_not_young();
  4847       cur->set_evacuation_failed(false);
  4849     cur = next;
  4852   policy->record_max_rs_lengths(rs_lengths);
  4853   policy->cset_regions_freed();
  4855   double end_sec = os::elapsedTime();
  4856   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4857   if (non_young)
  4858     non_young_time_ms += elapsed_ms;
  4859   else
  4860     young_time_ms += elapsed_ms;
  4862   policy->record_young_free_cset_time_ms(young_time_ms);
  4863   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  4866 HeapRegion*
  4867 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
  4868   assert(ZF_mon->owned_by_self(), "Precondition");
  4869   HeapRegion* res = pop_unclean_region_list_locked();
  4870   if (res != NULL) {
  4871     assert(!res->continuesHumongous() &&
  4872            res->zero_fill_state() != HeapRegion::Allocated,
  4873            "Only free regions on unclean list.");
  4874     if (zero_filled) {
  4875       res->ensure_zero_filled_locked();
  4876       res->set_zero_fill_allocated();
  4879   return res;
  4882 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
  4883   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
  4884   return alloc_region_from_unclean_list_locked(zero_filled);
  4887 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
  4888   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4889   put_region_on_unclean_list_locked(r);
  4890   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4893 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
  4894   MutexLockerEx x(Cleanup_mon);
  4895   set_unclean_regions_coming_locked(b);
  4898 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
  4899   assert(Cleanup_mon->owned_by_self(), "Precondition");
  4900   _unclean_regions_coming = b;
  4901   // Wake up mutator threads that might be waiting for completeCleanup to
  4902   // finish.
  4903   if (!b) Cleanup_mon->notify_all();
  4906 void G1CollectedHeap::wait_for_cleanup_complete() {
  4907   MutexLockerEx x(Cleanup_mon);
  4908   wait_for_cleanup_complete_locked();
  4911 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
  4912   assert(Cleanup_mon->owned_by_self(), "precondition");
  4913   while (_unclean_regions_coming) {
  4914     Cleanup_mon->wait();
  4918 void
  4919 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
  4920   assert(ZF_mon->owned_by_self(), "precondition.");
  4921   _unclean_region_list.insert_before_head(r);
  4924 void
  4925 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
  4926   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4927   prepend_region_list_on_unclean_list_locked(list);
  4928   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4931 void
  4932 G1CollectedHeap::
  4933 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
  4934   assert(ZF_mon->owned_by_self(), "precondition.");
  4935   _unclean_region_list.prepend_list(list);
  4938 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
  4939   assert(ZF_mon->owned_by_self(), "precondition.");
  4940   HeapRegion* res = _unclean_region_list.pop();
  4941   if (res != NULL) {
  4942     // Inform ZF thread that there's a new unclean head.
  4943     if (_unclean_region_list.hd() != NULL && should_zf())
  4944       ZF_mon->notify_all();
  4946   return res;
  4949 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
  4950   assert(ZF_mon->owned_by_self(), "precondition.");
  4951   return _unclean_region_list.hd();
  4955 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
  4956   assert(ZF_mon->owned_by_self(), "Precondition");
  4957   HeapRegion* r = peek_unclean_region_list_locked();
  4958   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
  4959     // Result of below must be equal to "r", since we hold the lock.
  4960     (void)pop_unclean_region_list_locked();
  4961     put_free_region_on_list_locked(r);
  4962     return true;
  4963   } else {
  4964     return false;
  4968 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
  4969   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4970   return move_cleaned_region_to_free_list_locked();
  4974 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
  4975   assert(ZF_mon->owned_by_self(), "precondition.");
  4976   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4977   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
  4978         "Regions on free list must be zero filled");
  4979   assert(!r->isHumongous(), "Must not be humongous.");
  4980   assert(r->is_empty(), "Better be empty");
  4981   assert(!r->is_on_free_list(),
  4982          "Better not already be on free list");
  4983   assert(!r->is_on_unclean_list(),
  4984          "Better not already be on unclean list");
  4985   r->set_on_free_list(true);
  4986   r->set_next_on_free_list(_free_region_list);
  4987   _free_region_list = r;
  4988   _free_region_list_size++;
  4989   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4992 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
  4993   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4994   put_free_region_on_list_locked(r);
  4997 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
  4998   assert(ZF_mon->owned_by_self(), "precondition.");
  4999   assert(_free_region_list_size == free_region_list_length(), "Inv");
  5000   HeapRegion* res = _free_region_list;
  5001   if (res != NULL) {
  5002     _free_region_list = res->next_from_free_list();
  5003     _free_region_list_size--;
  5004     res->set_on_free_list(false);
  5005     res->set_next_on_free_list(NULL);
  5006     assert(_free_region_list_size == free_region_list_length(), "Inv");
  5008   return res;
  5012 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
  5013   // By self, or on behalf of self.
  5014   assert(Heap_lock->is_locked(), "Precondition");
  5015   HeapRegion* res = NULL;
  5016   bool first = true;
  5017   while (res == NULL) {
  5018     if (zero_filled || !first) {
  5019       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5020       res = pop_free_region_list_locked();
  5021       if (res != NULL) {
  5022         assert(!res->zero_fill_is_allocated(),
  5023                "No allocated regions on free list.");
  5024         res->set_zero_fill_allocated();
  5025       } else if (!first) {
  5026         break;  // We tried both, time to return NULL.
  5030     if (res == NULL) {
  5031       res = alloc_region_from_unclean_list(zero_filled);
  5033     assert(res == NULL ||
  5034            !zero_filled ||
  5035            res->zero_fill_is_allocated(),
  5036            "We must have allocated the region we're returning");
  5037     first = false;
  5039   return res;
  5042 void G1CollectedHeap::remove_allocated_regions_from_lists() {
  5043   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5045     HeapRegion* prev = NULL;
  5046     HeapRegion* cur = _unclean_region_list.hd();
  5047     while (cur != NULL) {
  5048       HeapRegion* next = cur->next_from_unclean_list();
  5049       if (cur->zero_fill_is_allocated()) {
  5050         // Remove from the list.
  5051         if (prev == NULL) {
  5052           (void)_unclean_region_list.pop();
  5053         } else {
  5054           _unclean_region_list.delete_after(prev);
  5056         cur->set_on_unclean_list(false);
  5057         cur->set_next_on_unclean_list(NULL);
  5058       } else {
  5059         prev = cur;
  5061       cur = next;
  5063     assert(_unclean_region_list.sz() == unclean_region_list_length(),
  5064            "Inv");
  5068     HeapRegion* prev = NULL;
  5069     HeapRegion* cur = _free_region_list;
  5070     while (cur != NULL) {
  5071       HeapRegion* next = cur->next_from_free_list();
  5072       if (cur->zero_fill_is_allocated()) {
  5073         // Remove from the list.
  5074         if (prev == NULL) {
  5075           _free_region_list = cur->next_from_free_list();
  5076         } else {
  5077           prev->set_next_on_free_list(cur->next_from_free_list());
  5079         cur->set_on_free_list(false);
  5080         cur->set_next_on_free_list(NULL);
  5081         _free_region_list_size--;
  5082       } else {
  5083         prev = cur;
  5085       cur = next;
  5087     assert(_free_region_list_size == free_region_list_length(), "Inv");
  5091 bool G1CollectedHeap::verify_region_lists() {
  5092   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5093   return verify_region_lists_locked();
  5096 bool G1CollectedHeap::verify_region_lists_locked() {
  5097   HeapRegion* unclean = _unclean_region_list.hd();
  5098   while (unclean != NULL) {
  5099     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
  5100     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
  5101     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
  5102               "Everything else is possible.");
  5103     unclean = unclean->next_from_unclean_list();
  5105   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
  5107   HeapRegion* free_r = _free_region_list;
  5108   while (free_r != NULL) {
  5109     assert(free_r->is_on_free_list(), "Well, it is!");
  5110     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
  5111     switch (free_r->zero_fill_state()) {
  5112     case HeapRegion::NotZeroFilled:
  5113     case HeapRegion::ZeroFilling:
  5114       guarantee(false, "Should not be on free list.");
  5115       break;
  5116     default:
  5117       // Everything else is possible.
  5118       break;
  5120     free_r = free_r->next_from_free_list();
  5122   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
  5123   // If we didn't do an assertion...
  5124   return true;
  5127 size_t G1CollectedHeap::free_region_list_length() {
  5128   assert(ZF_mon->owned_by_self(), "precondition.");
  5129   size_t len = 0;
  5130   HeapRegion* cur = _free_region_list;
  5131   while (cur != NULL) {
  5132     len++;
  5133     cur = cur->next_from_free_list();
  5135   return len;
  5138 size_t G1CollectedHeap::unclean_region_list_length() {
  5139   assert(ZF_mon->owned_by_self(), "precondition.");
  5140   return _unclean_region_list.length();
  5143 size_t G1CollectedHeap::n_regions() {
  5144   return _hrs->length();
  5147 size_t G1CollectedHeap::max_regions() {
  5148   return
  5149     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
  5150     HeapRegion::GrainBytes;
  5153 size_t G1CollectedHeap::free_regions() {
  5154   /* Possibly-expensive assert.
  5155   assert(_free_regions == count_free_regions(),
  5156          "_free_regions is off.");
  5157   */
  5158   return _free_regions;
  5161 bool G1CollectedHeap::should_zf() {
  5162   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
  5165 class RegionCounter: public HeapRegionClosure {
  5166   size_t _n;
  5167 public:
  5168   RegionCounter() : _n(0) {}
  5169   bool doHeapRegion(HeapRegion* r) {
  5170     if (r->is_empty() && !r->popular()) {
  5171       assert(!r->isHumongous(), "H regions should not be empty.");
  5172       _n++;
  5174     return false;
  5176   int res() { return (int) _n; }
  5177 };
  5179 size_t G1CollectedHeap::count_free_regions() {
  5180   RegionCounter rc;
  5181   heap_region_iterate(&rc);
  5182   size_t n = rc.res();
  5183   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
  5184     n--;
  5185   return n;
  5188 size_t G1CollectedHeap::count_free_regions_list() {
  5189   size_t n = 0;
  5190   size_t o = 0;
  5191   ZF_mon->lock_without_safepoint_check();
  5192   HeapRegion* cur = _free_region_list;
  5193   while (cur != NULL) {
  5194     cur = cur->next_from_free_list();
  5195     n++;
  5197   size_t m = unclean_region_list_length();
  5198   ZF_mon->unlock();
  5199   return n + m;
  5202 bool G1CollectedHeap::should_set_young_locked() {
  5203   assert(heap_lock_held_for_gc(),
  5204               "the heap lock should already be held by or for this thread");
  5205   return  (g1_policy()->in_young_gc_mode() &&
  5206            g1_policy()->should_add_next_region_to_young_list());
  5209 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5210   assert(heap_lock_held_for_gc(),
  5211               "the heap lock should already be held by or for this thread");
  5212   _young_list->push_region(hr);
  5213   g1_policy()->set_region_short_lived(hr);
  5216 class NoYoungRegionsClosure: public HeapRegionClosure {
  5217 private:
  5218   bool _success;
  5219 public:
  5220   NoYoungRegionsClosure() : _success(true) { }
  5221   bool doHeapRegion(HeapRegion* r) {
  5222     if (r->is_young()) {
  5223       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5224                              r->bottom(), r->end());
  5225       _success = false;
  5227     return false;
  5229   bool success() { return _success; }
  5230 };
  5232 bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
  5233                                              bool check_sample) {
  5234   bool ret = true;
  5236   ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
  5237   if (!ignore_scan_only_list) {
  5238     NoYoungRegionsClosure closure;
  5239     heap_region_iterate(&closure);
  5240     ret = ret && closure.success();
  5243   return ret;
  5246 void G1CollectedHeap::empty_young_list() {
  5247   assert(heap_lock_held_for_gc(),
  5248               "the heap lock should already be held by or for this thread");
  5249   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
  5251   _young_list->empty_list();
  5254 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  5255   bool no_allocs = true;
  5256   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
  5257     HeapRegion* r = _gc_alloc_regions[ap];
  5258     no_allocs = r == NULL || r->saved_mark_at_top();
  5260   return no_allocs;
  5263 void G1CollectedHeap::retire_all_alloc_regions() {
  5264   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  5265     HeapRegion* r = _gc_alloc_regions[ap];
  5266     if (r != NULL) {
  5267       // Check for aliases.
  5268       bool has_processed_alias = false;
  5269       for (int i = 0; i < ap; ++i) {
  5270         if (_gc_alloc_regions[i] == r) {
  5271           has_processed_alias = true;
  5272           break;
  5275       if (!has_processed_alias) {
  5276         retire_alloc_region(r, false /* par */);
  5283 // Done at the start of full GC.
  5284 void G1CollectedHeap::tear_down_region_lists() {
  5285   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5286   while (pop_unclean_region_list_locked() != NULL) ;
  5287   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
  5288          "Postconditions of loop.")
  5289   while (pop_free_region_list_locked() != NULL) ;
  5290   assert(_free_region_list == NULL, "Postcondition of loop.");
  5291   if (_free_region_list_size != 0) {
  5292     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
  5293     print();
  5295   assert(_free_region_list_size == 0, "Postconditions of loop.");
  5299 class RegionResetter: public HeapRegionClosure {
  5300   G1CollectedHeap* _g1;
  5301   int _n;
  5302 public:
  5303   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5304   bool doHeapRegion(HeapRegion* r) {
  5305     if (r->continuesHumongous()) return false;
  5306     if (r->top() > r->bottom()) {
  5307       if (r->top() < r->end()) {
  5308         Copy::fill_to_words(r->top(),
  5309                           pointer_delta(r->end(), r->top()));
  5311       r->set_zero_fill_allocated();
  5312     } else {
  5313       assert(r->is_empty(), "tautology");
  5314       if (r->popular()) {
  5315         if (r->zero_fill_state() != HeapRegion::Allocated) {
  5316           r->ensure_zero_filled_locked();
  5317           r->set_zero_fill_allocated();
  5319       } else {
  5320         _n++;
  5321         switch (r->zero_fill_state()) {
  5322         case HeapRegion::NotZeroFilled:
  5323         case HeapRegion::ZeroFilling:
  5324           _g1->put_region_on_unclean_list_locked(r);
  5325           break;
  5326         case HeapRegion::Allocated:
  5327           r->set_zero_fill_complete();
  5328           // no break; go on to put on free list.
  5329         case HeapRegion::ZeroFilled:
  5330           _g1->put_free_region_on_list_locked(r);
  5331           break;
  5335     return false;
  5338   int getFreeRegionCount() {return _n;}
  5339 };
  5341 // Done at the end of full GC.
  5342 void G1CollectedHeap::rebuild_region_lists() {
  5343   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5344   // This needs to go at the end of the full GC.
  5345   RegionResetter rs;
  5346   heap_region_iterate(&rs);
  5347   _free_regions = rs.getFreeRegionCount();
  5348   // Tell the ZF thread it may have work to do.
  5349   if (should_zf()) ZF_mon->notify_all();
  5352 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
  5353   G1CollectedHeap* _g1;
  5354   int _n;
  5355 public:
  5356   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5357   bool doHeapRegion(HeapRegion* r) {
  5358     if (r->continuesHumongous()) return false;
  5359     if (r->top() > r->bottom()) {
  5360       // There are assertions in "set_zero_fill_needed()" below that
  5361       // require top() == bottom(), so this is technically illegal.
  5362       // We'll skirt the law here, by making that true temporarily.
  5363       DEBUG_ONLY(HeapWord* save_top = r->top();
  5364                  r->set_top(r->bottom()));
  5365       r->set_zero_fill_needed();
  5366       DEBUG_ONLY(r->set_top(save_top));
  5368     return false;
  5370 };
  5372 // Done at the start of full GC.
  5373 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
  5374   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5375   // This needs to go at the end of the full GC.
  5376   UsedRegionsNeedZeroFillSetter rs;
  5377   heap_region_iterate(&rs);
  5380 class CountObjClosure: public ObjectClosure {
  5381   size_t _n;
  5382 public:
  5383   CountObjClosure() : _n(0) {}
  5384   void do_object(oop obj) { _n++; }
  5385   size_t n() { return _n; }
  5386 };
  5388 size_t G1CollectedHeap::pop_object_used_objs() {
  5389   size_t sum_objs = 0;
  5390   for (int i = 0; i < G1NumPopularRegions; i++) {
  5391     CountObjClosure cl;
  5392     _hrs->at(i)->object_iterate(&cl);
  5393     sum_objs += cl.n();
  5395   return sum_objs;
  5398 size_t G1CollectedHeap::pop_object_used_bytes() {
  5399   size_t sum_bytes = 0;
  5400   for (int i = 0; i < G1NumPopularRegions; i++) {
  5401     sum_bytes += _hrs->at(i)->used();
  5403   return sum_bytes;
  5407 static int nq = 0;
  5409 HeapWord* G1CollectedHeap::allocate_popular_object(size_t word_size) {
  5410   while (_cur_pop_hr_index < G1NumPopularRegions) {
  5411     HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
  5412     HeapWord* res = cur_pop_region->allocate(word_size);
  5413     if (res != NULL) {
  5414       // We account for popular objs directly in the used summary:
  5415       _summary_bytes_used += (word_size * HeapWordSize);
  5416       return res;
  5418     // Otherwise, try the next region (first making sure that we remember
  5419     // the last "top" value as the "next_top_at_mark_start", so that
  5420     // objects made popular during markings aren't automatically considered
  5421     // live).
  5422     cur_pop_region->note_end_of_copying();
  5423     // Otherwise, try the next region.
  5424     _cur_pop_hr_index++;
  5426   // XXX: For now !!!
  5427   vm_exit_out_of_memory(word_size,
  5428                         "Not enough pop obj space (To Be Fixed)");
  5429   return NULL;
  5432 class HeapRegionList: public CHeapObj {
  5433   public:
  5434   HeapRegion* hr;
  5435   HeapRegionList* next;
  5436 };
  5438 void G1CollectedHeap::schedule_popular_region_evac(HeapRegion* r) {
  5439   // This might happen during parallel GC, so protect by this lock.
  5440   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  5441   // We don't schedule regions whose evacuations are already pending, or
  5442   // are already being evacuated.
  5443   if (!r->popular_pending() && !r->in_collection_set()) {
  5444     r->set_popular_pending(true);
  5445     if (G1TracePopularity) {
  5446       gclog_or_tty->print_cr("Scheduling region "PTR_FORMAT" "
  5447                              "["PTR_FORMAT", "PTR_FORMAT") for pop-object evacuation.",
  5448                              r, r->bottom(), r->end());
  5450     HeapRegionList* hrl = new HeapRegionList;
  5451     hrl->hr = r;
  5452     hrl->next = _popular_regions_to_be_evacuated;
  5453     _popular_regions_to_be_evacuated = hrl;
  5457 HeapRegion* G1CollectedHeap::popular_region_to_evac() {
  5458   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  5459   HeapRegion* res = NULL;
  5460   while (_popular_regions_to_be_evacuated != NULL && res == NULL) {
  5461     HeapRegionList* hrl = _popular_regions_to_be_evacuated;
  5462     _popular_regions_to_be_evacuated = hrl->next;
  5463     res = hrl->hr;
  5464     // The G1RSPopLimit may have increased, so recheck here...
  5465     if (res->rem_set()->occupied() < (size_t) G1RSPopLimit) {
  5466       // Hah: don't need to schedule.
  5467       if (G1TracePopularity) {
  5468         gclog_or_tty->print_cr("Unscheduling region "PTR_FORMAT" "
  5469                                "["PTR_FORMAT", "PTR_FORMAT") "
  5470                                "for pop-object evacuation (size %d < limit %d)",
  5471                                res, res->bottom(), res->end(),
  5472                                res->rem_set()->occupied(), G1RSPopLimit);
  5474       res->set_popular_pending(false);
  5475       res = NULL;
  5477     // We do not reset res->popular() here; if we did so, it would allow
  5478     // the region to be "rescheduled" for popularity evacuation.  Instead,
  5479     // this is done in the collection pause, with the world stopped.
  5480     // So the invariant is that the regions in the list have the popularity
  5481     // boolean set, but having the boolean set does not imply membership
  5482     // on the list (though there can at most one such pop-pending region
  5483     // not on the list at any time).
  5484     delete hrl;
  5486   return res;
  5489 void G1CollectedHeap::evac_popular_region(HeapRegion* hr) {
  5490   while (true) {
  5491     // Don't want to do a GC pause while cleanup is being completed!
  5492     wait_for_cleanup_complete();
  5494     // Read the GC count while holding the Heap_lock
  5495     int gc_count_before = SharedHeap::heap()->total_collections();
  5496     g1_policy()->record_stop_world_start();
  5499       MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  5500       VM_G1PopRegionCollectionPause op(gc_count_before, hr);
  5501       VMThread::execute(&op);
  5503       // If the prolog succeeded, we didn't do a GC for this.
  5504       if (op.prologue_succeeded()) break;
  5506     // Otherwise we didn't.  We should recheck the size, though, since
  5507     // the limit may have increased...
  5508     if (hr->rem_set()->occupied() < (size_t) G1RSPopLimit) {
  5509       hr->set_popular_pending(false);
  5510       break;
  5515 void G1CollectedHeap::atomic_inc_obj_rc(oop obj) {
  5516   Atomic::inc(obj_rc_addr(obj));
  5519 class CountRCClosure: public OopsInHeapRegionClosure {
  5520   G1CollectedHeap* _g1h;
  5521   bool _parallel;
  5522 public:
  5523   CountRCClosure(G1CollectedHeap* g1h) :
  5524     _g1h(g1h), _parallel(ParallelGCThreads > 0)
  5525   {}
  5526   void do_oop(narrowOop* p) {
  5527     guarantee(false, "NYI");
  5529   void do_oop(oop* p) {
  5530     oop obj = *p;
  5531     assert(obj != NULL, "Precondition.");
  5532     if (_parallel) {
  5533       // We go sticky at the limit to avoid excess contention.
  5534       // If we want to track the actual RC's further, we'll need to keep a
  5535       // per-thread hash table or something for the popular objects.
  5536       if (_g1h->obj_rc(obj) < G1ObjPopLimit) {
  5537         _g1h->atomic_inc_obj_rc(obj);
  5539     } else {
  5540       _g1h->inc_obj_rc(obj);
  5543 };
  5545 class EvacPopObjClosure: public ObjectClosure {
  5546   G1CollectedHeap* _g1h;
  5547   size_t _pop_objs;
  5548   size_t _max_rc;
  5549 public:
  5550   EvacPopObjClosure(G1CollectedHeap* g1h) :
  5551     _g1h(g1h), _pop_objs(0), _max_rc(0) {}
  5553   void do_object(oop obj) {
  5554     size_t rc = _g1h->obj_rc(obj);
  5555     _max_rc = MAX2(rc, _max_rc);
  5556     if (rc >= (size_t) G1ObjPopLimit) {
  5557       _g1h->_pop_obj_rc_at_copy.add((double)rc);
  5558       size_t word_sz = obj->size();
  5559       HeapWord* new_pop_loc = _g1h->allocate_popular_object(word_sz);
  5560       oop new_pop_obj = (oop)new_pop_loc;
  5561       Copy::aligned_disjoint_words((HeapWord*)obj, new_pop_loc, word_sz);
  5562       obj->forward_to(new_pop_obj);
  5563       G1ScanAndBalanceClosure scan_and_balance(_g1h);
  5564       new_pop_obj->oop_iterate_backwards(&scan_and_balance);
  5565       // preserve "next" mark bit if marking is in progress.
  5566       if (_g1h->mark_in_progress() && !_g1h->is_obj_ill(obj)) {
  5567         _g1h->concurrent_mark()->markAndGrayObjectIfNecessary(new_pop_obj);
  5570       if (G1TracePopularity) {
  5571         gclog_or_tty->print_cr("Found obj " PTR_FORMAT " of word size " SIZE_FORMAT
  5572                                " pop (%d), move to " PTR_FORMAT,
  5573                                (void*) obj, word_sz,
  5574                                _g1h->obj_rc(obj), (void*) new_pop_obj);
  5576       _pop_objs++;
  5579   size_t pop_objs() { return _pop_objs; }
  5580   size_t max_rc() { return _max_rc; }
  5581 };
  5583 class G1ParCountRCTask : public AbstractGangTask {
  5584   G1CollectedHeap* _g1h;
  5585   BitMap _bm;
  5587   size_t getNCards() {
  5588     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  5589       / G1BlockOffsetSharedArray::N_bytes;
  5591   CountRCClosure _count_rc_closure;
  5592 public:
  5593   G1ParCountRCTask(G1CollectedHeap* g1h) :
  5594     AbstractGangTask("G1 Par RC Count task"),
  5595     _g1h(g1h), _bm(getNCards()), _count_rc_closure(g1h)
  5596   {}
  5598   void work(int i) {
  5599     ResourceMark rm;
  5600     HandleMark   hm;
  5601     _g1h->g1_rem_set()->oops_into_collection_set_do(&_count_rc_closure, i);
  5603 };
  5605 void G1CollectedHeap::popularity_pause_preamble(HeapRegion* popular_region) {
  5606   // We're evacuating a single region (for popularity).
  5607   if (G1TracePopularity) {
  5608     gclog_or_tty->print_cr("Doing pop region pause for ["PTR_FORMAT", "PTR_FORMAT")",
  5609                            popular_region->bottom(), popular_region->end());
  5611   g1_policy()->set_single_region_collection_set(popular_region);
  5612   size_t max_rc;
  5613   if (!compute_reference_counts_and_evac_popular(popular_region,
  5614                                                  &max_rc)) {
  5615     // We didn't evacuate any popular objects.
  5616     // We increase the RS popularity limit, to prevent this from
  5617     // happening in the future.
  5618     if (G1RSPopLimit < (1 << 30)) {
  5619       G1RSPopLimit *= 2;
  5621     // For now, interesting enough for a message:
  5622 #if 1
  5623     gclog_or_tty->print_cr("In pop region pause for ["PTR_FORMAT", "PTR_FORMAT"), "
  5624                            "failed to find a pop object (max = %d).",
  5625                            popular_region->bottom(), popular_region->end(),
  5626                            max_rc);
  5627     gclog_or_tty->print_cr("Increased G1RSPopLimit to %d.", G1RSPopLimit);
  5628 #endif // 0
  5629     // Also, we reset the collection set to NULL, to make the rest of
  5630     // the collection do nothing.
  5631     assert(popular_region->next_in_collection_set() == NULL,
  5632            "should be single-region.");
  5633     popular_region->set_in_collection_set(false);
  5634     popular_region->set_popular_pending(false);
  5635     g1_policy()->clear_collection_set();
  5639 bool G1CollectedHeap::
  5640 compute_reference_counts_and_evac_popular(HeapRegion* popular_region,
  5641                                           size_t* max_rc) {
  5642   HeapWord* rc_region_bot;
  5643   HeapWord* rc_region_end;
  5645   // Set up the reference count region.
  5646   HeapRegion* rc_region = newAllocRegion(HeapRegion::GrainWords);
  5647   if (rc_region != NULL) {
  5648     rc_region_bot = rc_region->bottom();
  5649     rc_region_end = rc_region->end();
  5650   } else {
  5651     rc_region_bot = NEW_C_HEAP_ARRAY(HeapWord, HeapRegion::GrainWords);
  5652     if (rc_region_bot == NULL) {
  5653       vm_exit_out_of_memory(HeapRegion::GrainWords,
  5654                             "No space for RC region.");
  5656     rc_region_end = rc_region_bot + HeapRegion::GrainWords;
  5659   if (G1TracePopularity)
  5660     gclog_or_tty->print_cr("RC region is ["PTR_FORMAT", "PTR_FORMAT")",
  5661                            rc_region_bot, rc_region_end);
  5662   if (rc_region_bot > popular_region->bottom()) {
  5663     _rc_region_above = true;
  5664     _rc_region_diff =
  5665       pointer_delta(rc_region_bot, popular_region->bottom(), 1);
  5666   } else {
  5667     assert(rc_region_bot < popular_region->bottom(), "Can't be equal.");
  5668     _rc_region_above = false;
  5669     _rc_region_diff =
  5670       pointer_delta(popular_region->bottom(), rc_region_bot, 1);
  5672   g1_policy()->record_pop_compute_rc_start();
  5673   // Count external references.
  5674   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5675   if (ParallelGCThreads > 0) {
  5677     set_par_threads(workers()->total_workers());
  5678     G1ParCountRCTask par_count_rc_task(this);
  5679     workers()->run_task(&par_count_rc_task);
  5680     set_par_threads(0);
  5682   } else {
  5683     CountRCClosure count_rc_closure(this);
  5684     g1_rem_set()->oops_into_collection_set_do(&count_rc_closure, 0);
  5686   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5687   g1_policy()->record_pop_compute_rc_end();
  5689   // Now evacuate popular objects.
  5690   g1_policy()->record_pop_evac_start();
  5691   EvacPopObjClosure evac_pop_obj_cl(this);
  5692   popular_region->object_iterate(&evac_pop_obj_cl);
  5693   *max_rc = evac_pop_obj_cl.max_rc();
  5695   // Make sure the last "top" value of the current popular region is copied
  5696   // as the "next_top_at_mark_start", so that objects made popular during
  5697   // markings aren't automatically considered live.
  5698   HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
  5699   cur_pop_region->note_end_of_copying();
  5701   if (rc_region != NULL) {
  5702     free_region(rc_region);
  5703   } else {
  5704     FREE_C_HEAP_ARRAY(HeapWord, rc_region_bot);
  5706   g1_policy()->record_pop_evac_end();
  5708   return evac_pop_obj_cl.pop_objs() > 0;
  5711 class CountPopObjInfoClosure: public HeapRegionClosure {
  5712   size_t _objs;
  5713   size_t _bytes;
  5715   class CountObjClosure: public ObjectClosure {
  5716     int _n;
  5717   public:
  5718     CountObjClosure() : _n(0) {}
  5719     void do_object(oop obj) { _n++; }
  5720     size_t n() { return _n; }
  5721   };
  5723 public:
  5724   CountPopObjInfoClosure() : _objs(0), _bytes(0) {}
  5725   bool doHeapRegion(HeapRegion* r) {
  5726     _bytes += r->used();
  5727     CountObjClosure blk;
  5728     r->object_iterate(&blk);
  5729     _objs += blk.n();
  5730     return false;
  5732   size_t objs() { return _objs; }
  5733   size_t bytes() { return _bytes; }
  5734 };
  5737 void G1CollectedHeap::print_popularity_summary_info() const {
  5738   CountPopObjInfoClosure blk;
  5739   for (int i = 0; i <= _cur_pop_hr_index; i++) {
  5740     blk.doHeapRegion(_hrs->at(i));
  5742   gclog_or_tty->print_cr("\nPopular objects: %d objs, %d bytes.",
  5743                          blk.objs(), blk.bytes());
  5744   gclog_or_tty->print_cr("   RC at copy = [avg = %5.2f, max = %5.2f, sd = %5.2f].",
  5745                 _pop_obj_rc_at_copy.avg(),
  5746                 _pop_obj_rc_at_copy.maximum(),
  5747                 _pop_obj_rc_at_copy.sd());
  5750 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5751   _refine_cte_cl->set_concurrent(concurrent);
  5754 #ifndef PRODUCT
  5756 class PrintHeapRegionClosure: public HeapRegionClosure {
  5757 public:
  5758   bool doHeapRegion(HeapRegion *r) {
  5759     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
  5760     if (r != NULL) {
  5761       if (r->is_on_free_list())
  5762         gclog_or_tty->print("Free ");
  5763       if (r->is_young())
  5764         gclog_or_tty->print("Young ");
  5765       if (r->isHumongous())
  5766         gclog_or_tty->print("Is Humongous ");
  5767       r->print();
  5769     return false;
  5771 };
  5773 class SortHeapRegionClosure : public HeapRegionClosure {
  5774   size_t young_regions,free_regions, unclean_regions;
  5775   size_t hum_regions, count;
  5776   size_t unaccounted, cur_unclean, cur_alloc;
  5777   size_t total_free;
  5778   HeapRegion* cur;
  5779 public:
  5780   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
  5781     free_regions(0), unclean_regions(0),
  5782     hum_regions(0),
  5783     count(0), unaccounted(0),
  5784     cur_alloc(0), total_free(0)
  5785   {}
  5786   bool doHeapRegion(HeapRegion *r) {
  5787     count++;
  5788     if (r->is_on_free_list()) free_regions++;
  5789     else if (r->is_on_unclean_list()) unclean_regions++;
  5790     else if (r->isHumongous())  hum_regions++;
  5791     else if (r->is_young()) young_regions++;
  5792     else if (r == cur) cur_alloc++;
  5793     else unaccounted++;
  5794     return false;
  5796   void print() {
  5797     total_free = free_regions + unclean_regions;
  5798     gclog_or_tty->print("%d regions\n", count);
  5799     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
  5800                         total_free, free_regions, unclean_regions);
  5801     gclog_or_tty->print("%d humongous %d young\n",
  5802                         hum_regions, young_regions);
  5803     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
  5804     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
  5806 };
  5808 void G1CollectedHeap::print_region_counts() {
  5809   SortHeapRegionClosure sc(_cur_alloc_region);
  5810   PrintHeapRegionClosure cl;
  5811   heap_region_iterate(&cl);
  5812   heap_region_iterate(&sc);
  5813   sc.print();
  5814   print_region_accounting_info();
  5815 };
  5817 bool G1CollectedHeap::regions_accounted_for() {
  5818   // TODO: regions accounting for young/survivor/tenured
  5819   return true;
  5822 bool G1CollectedHeap::print_region_accounting_info() {
  5823   gclog_or_tty->print_cr("P regions: %d.", G1NumPopularRegions);
  5824   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
  5825                          free_regions(),
  5826                          count_free_regions(), count_free_regions_list(),
  5827                          _free_region_list_size, _unclean_region_list.sz());
  5828   gclog_or_tty->print_cr("cur_alloc: %d.",
  5829                          (_cur_alloc_region == NULL ? 0 : 1));
  5830   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
  5832   // TODO: check regions accounting for young/survivor/tenured
  5833   return true;
  5836 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5837   HeapRegion* hr = heap_region_containing(p);
  5838   if (hr == NULL) {
  5839     return is_in_permanent(p);
  5840   } else {
  5841     return hr->is_in(p);
  5844 #endif // PRODUCT
  5846 void G1CollectedHeap::g1_unimplemented() {
  5847   // Unimplemented();
  5851 // Local Variables: ***
  5852 // c-indentation-style: gnu ***
  5853 // End: ***

mercurial