src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Sat, 12 Oct 2013 00:49:19 +0200

author
jwilhelm
date
Sat, 12 Oct 2013 00:49:19 +0200
changeset 5933
24f32d09a0d7
parent 5855
9b4d0569f2f4
child 6082
4288e54fd145
permissions
-rw-r--r--

8023643: G1 assert failed when NewSize was specified greater than MaxNewSize
Summary: Exit with an error if incompatible NewSize and MaxNeSize are set
Reviewed-by: brutisso, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    33 #include "gc_implementation/g1/g1Log.hpp"
    34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/java.hpp"
    38 #include "runtime/mutexLocker.hpp"
    39 #include "utilities/debug.hpp"
    41 // Different defaults for different number of GC threads
    42 // They were chosen by running GCOld and SPECjbb on debris with different
    43 //   numbers of GC threads and choosing them based on the results
    45 // all the same
    46 static double rs_length_diff_defaults[] = {
    47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    48 };
    50 static double cost_per_card_ms_defaults[] = {
    51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    52 };
    54 // all the same
    55 static double young_cards_per_entry_ratio_defaults[] = {
    56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    57 };
    59 static double cost_per_entry_ms_defaults[] = {
    60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    61 };
    63 static double cost_per_byte_ms_defaults[] = {
    64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    65 };
    67 // these should be pretty consistent
    68 static double constant_other_time_ms_defaults[] = {
    69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    70 };
    73 static double young_other_cost_per_region_ms_defaults[] = {
    74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    75 };
    77 static double non_young_other_cost_per_region_ms_defaults[] = {
    78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    79 };
    81 G1CollectorPolicy::G1CollectorPolicy() :
    82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
    83                         ? ParallelGCThreads : 1),
    85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    86   _stop_world_start(0.0),
    88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    92   _prev_collection_pause_end_ms(0.0),
    93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
    94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
    97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   103   _non_young_other_cost_per_region_ms_seq(
   104                                          new TruncatedSeq(TruncatedSeqLength)),
   106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   109   _pause_time_target_ms((double) MaxGCPauseMillis),
   111   _gcs_are_young(true),
   113   _during_marking(false),
   114   _in_marking_window(false),
   115   _in_marking_window_im(false),
   117   _recent_prev_end_times_for_all_gcs_sec(
   118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   120   _recent_avg_pause_time_ratio(0.0),
   122   _initiate_conc_mark_if_possible(false),
   123   _during_initial_mark_pause(false),
   124   _last_young_gc(false),
   125   _last_gc_was_young(false),
   127   _eden_used_bytes_before_gc(0),
   128   _survivor_used_bytes_before_gc(0),
   129   _heap_used_bytes_before_gc(0),
   130   _metaspace_used_bytes_before_gc(0),
   131   _eden_capacity_bytes_before_gc(0),
   132   _heap_capacity_bytes_before_gc(0),
   134   _eden_cset_region_length(0),
   135   _survivor_cset_region_length(0),
   136   _old_cset_region_length(0),
   138   _collection_set(NULL),
   139   _collection_set_bytes_used_before(0),
   141   // Incremental CSet attributes
   142   _inc_cset_build_state(Inactive),
   143   _inc_cset_head(NULL),
   144   _inc_cset_tail(NULL),
   145   _inc_cset_bytes_used_before(0),
   146   _inc_cset_max_finger(NULL),
   147   _inc_cset_recorded_rs_lengths(0),
   148   _inc_cset_recorded_rs_lengths_diffs(0),
   149   _inc_cset_predicted_elapsed_time_ms(0.0),
   150   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   152 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   153 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   154 #endif // _MSC_VER
   156   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   157                                                  G1YoungSurvRateNumRegionsSummary)),
   158   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   159                                               G1YoungSurvRateNumRegionsSummary)),
   160   // add here any more surv rate groups
   161   _recorded_survivor_regions(0),
   162   _recorded_survivor_head(NULL),
   163   _recorded_survivor_tail(NULL),
   164   _survivors_age_table(true),
   166   _gc_overhead_perc(0.0) {
   168   // Set up the region size and associated fields. Given that the
   169   // policy is created before the heap, we have to set this up here,
   170   // so it's done as soon as possible.
   172   // It would have been natural to pass initial_heap_byte_size() and
   173   // max_heap_byte_size() to setup_heap_region_size() but those have
   174   // not been set up at this point since they should be aligned with
   175   // the region size. So, there is a circular dependency here. We base
   176   // the region size on the heap size, but the heap size should be
   177   // aligned with the region size. To get around this we use the
   178   // unaligned values for the heap.
   179   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
   180   HeapRegionRemSet::setup_remset_size();
   182   G1ErgoVerbose::initialize();
   183   if (PrintAdaptiveSizePolicy) {
   184     // Currently, we only use a single switch for all the heuristics.
   185     G1ErgoVerbose::set_enabled(true);
   186     // Given that we don't currently have a verboseness level
   187     // parameter, we'll hardcode this to high. This can be easily
   188     // changed in the future.
   189     G1ErgoVerbose::set_level(ErgoHigh);
   190   } else {
   191     G1ErgoVerbose::set_enabled(false);
   192   }
   194   // Verify PLAB sizes
   195   const size_t region_size = HeapRegion::GrainWords;
   196   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   197     char buffer[128];
   198     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   199                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   200     vm_exit_during_initialization(buffer);
   201   }
   203   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   204   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   206   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
   208   int index = MIN2(_parallel_gc_threads - 1, 7);
   210   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   211   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   212   _young_cards_per_entry_ratio_seq->add(
   213                                   young_cards_per_entry_ratio_defaults[index]);
   214   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   215   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   216   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   217   _young_other_cost_per_region_ms_seq->add(
   218                                young_other_cost_per_region_ms_defaults[index]);
   219   _non_young_other_cost_per_region_ms_seq->add(
   220                            non_young_other_cost_per_region_ms_defaults[index]);
   222   // Below, we might need to calculate the pause time target based on
   223   // the pause interval. When we do so we are going to give G1 maximum
   224   // flexibility and allow it to do pauses when it needs to. So, we'll
   225   // arrange that the pause interval to be pause time target + 1 to
   226   // ensure that a) the pause time target is maximized with respect to
   227   // the pause interval and b) we maintain the invariant that pause
   228   // time target < pause interval. If the user does not want this
   229   // maximum flexibility, they will have to set the pause interval
   230   // explicitly.
   232   // First make sure that, if either parameter is set, its value is
   233   // reasonable.
   234   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   235     if (MaxGCPauseMillis < 1) {
   236       vm_exit_during_initialization("MaxGCPauseMillis should be "
   237                                     "greater than 0");
   238     }
   239   }
   240   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   241     if (GCPauseIntervalMillis < 1) {
   242       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   243                                     "greater than 0");
   244     }
   245   }
   247   // Then, if the pause time target parameter was not set, set it to
   248   // the default value.
   249   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   250     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   251       // The default pause time target in G1 is 200ms
   252       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   253     } else {
   254       // We do not allow the pause interval to be set without the
   255       // pause time target
   256       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   257                                     "without setting MaxGCPauseMillis");
   258     }
   259   }
   261   // Then, if the interval parameter was not set, set it according to
   262   // the pause time target (this will also deal with the case when the
   263   // pause time target is the default value).
   264   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   265     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   266   }
   268   // Finally, make sure that the two parameters are consistent.
   269   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   270     char buffer[256];
   271     jio_snprintf(buffer, 256,
   272                  "MaxGCPauseMillis (%u) should be less than "
   273                  "GCPauseIntervalMillis (%u)",
   274                  MaxGCPauseMillis, GCPauseIntervalMillis);
   275     vm_exit_during_initialization(buffer);
   276   }
   278   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   279   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   280   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   282   uintx confidence_perc = G1ConfidencePercent;
   283   // Put an artificial ceiling on this so that it's not set to a silly value.
   284   if (confidence_perc > 100) {
   285     confidence_perc = 100;
   286     warning("G1ConfidencePercent is set to a value that is too large, "
   287             "it's been updated to %u", confidence_perc);
   288   }
   289   _sigma = (double) confidence_perc / 100.0;
   291   // start conservatively (around 50ms is about right)
   292   _concurrent_mark_remark_times_ms->add(0.05);
   293   _concurrent_mark_cleanup_times_ms->add(0.20);
   294   _tenuring_threshold = MaxTenuringThreshold;
   295   // _max_survivor_regions will be calculated by
   296   // update_young_list_target_length() during initialization.
   297   _max_survivor_regions = 0;
   299   assert(GCTimeRatio > 0,
   300          "we should have set it to a default value set_g1_gc_flags() "
   301          "if a user set it to 0");
   302   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   304   uintx reserve_perc = G1ReservePercent;
   305   // Put an artificial ceiling on this so that it's not set to a silly value.
   306   if (reserve_perc > 50) {
   307     reserve_perc = 50;
   308     warning("G1ReservePercent is set to a value that is too large, "
   309             "it's been updated to %u", reserve_perc);
   310   }
   311   _reserve_factor = (double) reserve_perc / 100.0;
   312   // This will be set when the heap is expanded
   313   // for the first time during initialization.
   314   _reserve_regions = 0;
   316   initialize_all();
   317   _collectionSetChooser = new CollectionSetChooser();
   318   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
   319 }
   321 void G1CollectorPolicy::initialize_flags() {
   322   _min_alignment = HeapRegion::GrainBytes;
   323   size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name());
   324   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
   325   _max_alignment = MAX3(card_table_alignment, _min_alignment, page_size);
   326   if (SurvivorRatio < 1) {
   327     vm_exit_during_initialization("Invalid survivor ratio specified");
   328   }
   329   CollectorPolicy::initialize_flags();
   330 }
   332 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
   333   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
   334   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
   335   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
   337   if (FLAG_IS_CMDLINE(NewRatio)) {
   338     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   339       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   340     } else {
   341       _sizer_kind = SizerNewRatio;
   342       _adaptive_size = false;
   343       return;
   344     }
   345   }
   347   if (FLAG_IS_CMDLINE(NewSize) && FLAG_IS_CMDLINE(MaxNewSize) && NewSize > MaxNewSize) {
   348     vm_exit_during_initialization("Initial young gen size set larger than the maximum young gen size");
   349   }
   351   if (FLAG_IS_CMDLINE(NewSize)) {
   352     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
   353                                      1U);
   354     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   355       _max_desired_young_length =
   356                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   357                                   1U);
   358       _sizer_kind = SizerMaxAndNewSize;
   359       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
   360     } else {
   361       _sizer_kind = SizerNewSizeOnly;
   362     }
   363   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
   364     _max_desired_young_length =
   365                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   366                                   1U);
   367     _sizer_kind = SizerMaxNewSizeOnly;
   368   }
   369 }
   371 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
   372   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
   373   return MAX2(1U, default_value);
   374 }
   376 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
   377   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
   378   return MAX2(1U, default_value);
   379 }
   381 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
   382   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
   384   switch (_sizer_kind) {
   385     case SizerDefaults:
   386       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   387       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   388       break;
   389     case SizerNewSizeOnly:
   390       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   391       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
   392       break;
   393     case SizerMaxNewSizeOnly:
   394       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   395       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
   396       break;
   397     case SizerMaxAndNewSize:
   398       // Do nothing. Values set on the command line, don't update them at runtime.
   399       break;
   400     case SizerNewRatio:
   401       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
   402       _max_desired_young_length = _min_desired_young_length;
   403       break;
   404     default:
   405       ShouldNotReachHere();
   406   }
   408   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   409 }
   411 void G1CollectorPolicy::init() {
   412   // Set aside an initial future to_space.
   413   _g1 = G1CollectedHeap::heap();
   415   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   417   initialize_gc_policy_counters();
   419   if (adaptive_young_list_length()) {
   420     _young_list_fixed_length = 0;
   421   } else {
   422     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
   423   }
   424   _free_regions_at_end_of_collection = _g1->free_regions();
   425   update_young_list_target_length();
   427   // We may immediately start allocating regions and placing them on the
   428   // collection set list. Initialize the per-collection set info
   429   start_incremental_cset_building();
   430 }
   432 // Create the jstat counters for the policy.
   433 void G1CollectorPolicy::initialize_gc_policy_counters() {
   434   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   435 }
   437 bool G1CollectorPolicy::predict_will_fit(uint young_length,
   438                                          double base_time_ms,
   439                                          uint base_free_regions,
   440                                          double target_pause_time_ms) {
   441   if (young_length >= base_free_regions) {
   442     // end condition 1: not enough space for the young regions
   443     return false;
   444   }
   446   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
   447   size_t bytes_to_copy =
   448                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   449   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   450   double young_other_time_ms = predict_young_other_time_ms(young_length);
   451   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   452   if (pause_time_ms > target_pause_time_ms) {
   453     // end condition 2: prediction is over the target pause time
   454     return false;
   455   }
   457   size_t free_bytes =
   458                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
   459   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   460     // end condition 3: out-of-space (conservatively!)
   461     return false;
   462   }
   464   // success!
   465   return true;
   466 }
   468 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
   469   // re-calculate the necessary reserve
   470   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   471   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   472   // smaller than 1.0) we'll get 1.
   473   _reserve_regions = (uint) ceil(reserve_regions_d);
   475   _young_gen_sizer->heap_size_changed(new_number_of_regions);
   476 }
   478 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
   479                                                        uint base_min_length) {
   480   uint desired_min_length = 0;
   481   if (adaptive_young_list_length()) {
   482     if (_alloc_rate_ms_seq->num() > 3) {
   483       double now_sec = os::elapsedTime();
   484       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   485       double alloc_rate_ms = predict_alloc_rate_ms();
   486       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
   487     } else {
   488       // otherwise we don't have enough info to make the prediction
   489     }
   490   }
   491   desired_min_length += base_min_length;
   492   // make sure we don't go below any user-defined minimum bound
   493   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
   494 }
   496 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
   497   // Here, we might want to also take into account any additional
   498   // constraints (i.e., user-defined minimum bound). Currently, we
   499   // effectively don't set this bound.
   500   return _young_gen_sizer->max_desired_young_length();
   501 }
   503 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   504   if (rs_lengths == (size_t) -1) {
   505     // if it's set to the default value (-1), we should predict it;
   506     // otherwise, use the given value.
   507     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   508   }
   510   // Calculate the absolute and desired min bounds.
   512   // This is how many young regions we already have (currently: the survivors).
   513   uint base_min_length = recorded_survivor_regions();
   514   // This is the absolute minimum young length, which ensures that we
   515   // can allocate one eden region in the worst-case.
   516   uint absolute_min_length = base_min_length + 1;
   517   uint desired_min_length =
   518                      calculate_young_list_desired_min_length(base_min_length);
   519   if (desired_min_length < absolute_min_length) {
   520     desired_min_length = absolute_min_length;
   521   }
   523   // Calculate the absolute and desired max bounds.
   525   // We will try our best not to "eat" into the reserve.
   526   uint absolute_max_length = 0;
   527   if (_free_regions_at_end_of_collection > _reserve_regions) {
   528     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   529   }
   530   uint desired_max_length = calculate_young_list_desired_max_length();
   531   if (desired_max_length > absolute_max_length) {
   532     desired_max_length = absolute_max_length;
   533   }
   535   uint young_list_target_length = 0;
   536   if (adaptive_young_list_length()) {
   537     if (gcs_are_young()) {
   538       young_list_target_length =
   539                         calculate_young_list_target_length(rs_lengths,
   540                                                            base_min_length,
   541                                                            desired_min_length,
   542                                                            desired_max_length);
   543       _rs_lengths_prediction = rs_lengths;
   544     } else {
   545       // Don't calculate anything and let the code below bound it to
   546       // the desired_min_length, i.e., do the next GC as soon as
   547       // possible to maximize how many old regions we can add to it.
   548     }
   549   } else {
   550     // The user asked for a fixed young gen so we'll fix the young gen
   551     // whether the next GC is young or mixed.
   552     young_list_target_length = _young_list_fixed_length;
   553   }
   555   // Make sure we don't go over the desired max length, nor under the
   556   // desired min length. In case they clash, desired_min_length wins
   557   // which is why that test is second.
   558   if (young_list_target_length > desired_max_length) {
   559     young_list_target_length = desired_max_length;
   560   }
   561   if (young_list_target_length < desired_min_length) {
   562     young_list_target_length = desired_min_length;
   563   }
   565   assert(young_list_target_length > recorded_survivor_regions(),
   566          "we should be able to allocate at least one eden region");
   567   assert(young_list_target_length >= absolute_min_length, "post-condition");
   568   _young_list_target_length = young_list_target_length;
   570   update_max_gc_locker_expansion();
   571 }
   573 uint
   574 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   575                                                      uint base_min_length,
   576                                                      uint desired_min_length,
   577                                                      uint desired_max_length) {
   578   assert(adaptive_young_list_length(), "pre-condition");
   579   assert(gcs_are_young(), "only call this for young GCs");
   581   // In case some edge-condition makes the desired max length too small...
   582   if (desired_max_length <= desired_min_length) {
   583     return desired_min_length;
   584   }
   586   // We'll adjust min_young_length and max_young_length not to include
   587   // the already allocated young regions (i.e., so they reflect the
   588   // min and max eden regions we'll allocate). The base_min_length
   589   // will be reflected in the predictions by the
   590   // survivor_regions_evac_time prediction.
   591   assert(desired_min_length > base_min_length, "invariant");
   592   uint min_young_length = desired_min_length - base_min_length;
   593   assert(desired_max_length > base_min_length, "invariant");
   594   uint max_young_length = desired_max_length - base_min_length;
   596   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   597   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   598   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   599   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   600   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   601   double base_time_ms =
   602     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   603     survivor_regions_evac_time;
   604   uint available_free_regions = _free_regions_at_end_of_collection;
   605   uint base_free_regions = 0;
   606   if (available_free_regions > _reserve_regions) {
   607     base_free_regions = available_free_regions - _reserve_regions;
   608   }
   610   // Here, we will make sure that the shortest young length that
   611   // makes sense fits within the target pause time.
   613   if (predict_will_fit(min_young_length, base_time_ms,
   614                        base_free_regions, target_pause_time_ms)) {
   615     // The shortest young length will fit into the target pause time;
   616     // we'll now check whether the absolute maximum number of young
   617     // regions will fit in the target pause time. If not, we'll do
   618     // a binary search between min_young_length and max_young_length.
   619     if (predict_will_fit(max_young_length, base_time_ms,
   620                          base_free_regions, target_pause_time_ms)) {
   621       // The maximum young length will fit into the target pause time.
   622       // We are done so set min young length to the maximum length (as
   623       // the result is assumed to be returned in min_young_length).
   624       min_young_length = max_young_length;
   625     } else {
   626       // The maximum possible number of young regions will not fit within
   627       // the target pause time so we'll search for the optimal
   628       // length. The loop invariants are:
   629       //
   630       // min_young_length < max_young_length
   631       // min_young_length is known to fit into the target pause time
   632       // max_young_length is known not to fit into the target pause time
   633       //
   634       // Going into the loop we know the above hold as we've just
   635       // checked them. Every time around the loop we check whether
   636       // the middle value between min_young_length and
   637       // max_young_length fits into the target pause time. If it
   638       // does, it becomes the new min. If it doesn't, it becomes
   639       // the new max. This way we maintain the loop invariants.
   641       assert(min_young_length < max_young_length, "invariant");
   642       uint diff = (max_young_length - min_young_length) / 2;
   643       while (diff > 0) {
   644         uint young_length = min_young_length + diff;
   645         if (predict_will_fit(young_length, base_time_ms,
   646                              base_free_regions, target_pause_time_ms)) {
   647           min_young_length = young_length;
   648         } else {
   649           max_young_length = young_length;
   650         }
   651         assert(min_young_length <  max_young_length, "invariant");
   652         diff = (max_young_length - min_young_length) / 2;
   653       }
   654       // The results is min_young_length which, according to the
   655       // loop invariants, should fit within the target pause time.
   657       // These are the post-conditions of the binary search above:
   658       assert(min_young_length < max_young_length,
   659              "otherwise we should have discovered that max_young_length "
   660              "fits into the pause target and not done the binary search");
   661       assert(predict_will_fit(min_young_length, base_time_ms,
   662                               base_free_regions, target_pause_time_ms),
   663              "min_young_length, the result of the binary search, should "
   664              "fit into the pause target");
   665       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   666                                base_free_regions, target_pause_time_ms),
   667              "min_young_length, the result of the binary search, should be "
   668              "optimal, so no larger length should fit into the pause target");
   669     }
   670   } else {
   671     // Even the minimum length doesn't fit into the pause time
   672     // target, return it as the result nevertheless.
   673   }
   674   return base_min_length + min_young_length;
   675 }
   677 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   678   double survivor_regions_evac_time = 0.0;
   679   for (HeapRegion * r = _recorded_survivor_head;
   680        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   681        r = r->get_next_young_region()) {
   682     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
   683   }
   684   return survivor_regions_evac_time;
   685 }
   687 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   688   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   690   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   691   if (rs_lengths > _rs_lengths_prediction) {
   692     // add 10% to avoid having to recalculate often
   693     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   694     update_young_list_target_length(rs_lengths_prediction);
   695   }
   696 }
   700 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   701                                                bool is_tlab,
   702                                                bool* gc_overhead_limit_was_exceeded) {
   703   guarantee(false, "Not using this policy feature yet.");
   704   return NULL;
   705 }
   707 // This method controls how a collector handles one or more
   708 // of its generations being fully allocated.
   709 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   710                                                        bool is_tlab) {
   711   guarantee(false, "Not using this policy feature yet.");
   712   return NULL;
   713 }
   716 #ifndef PRODUCT
   717 bool G1CollectorPolicy::verify_young_ages() {
   718   HeapRegion* head = _g1->young_list()->first_region();
   719   return
   720     verify_young_ages(head, _short_lived_surv_rate_group);
   721   // also call verify_young_ages on any additional surv rate groups
   722 }
   724 bool
   725 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   726                                      SurvRateGroup *surv_rate_group) {
   727   guarantee( surv_rate_group != NULL, "pre-condition" );
   729   const char* name = surv_rate_group->name();
   730   bool ret = true;
   731   int prev_age = -1;
   733   for (HeapRegion* curr = head;
   734        curr != NULL;
   735        curr = curr->get_next_young_region()) {
   736     SurvRateGroup* group = curr->surv_rate_group();
   737     if (group == NULL && !curr->is_survivor()) {
   738       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   739       ret = false;
   740     }
   742     if (surv_rate_group == group) {
   743       int age = curr->age_in_surv_rate_group();
   745       if (age < 0) {
   746         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   747         ret = false;
   748       }
   750       if (age <= prev_age) {
   751         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   752                                "(%d, %d)", name, age, prev_age);
   753         ret = false;
   754       }
   755       prev_age = age;
   756     }
   757   }
   759   return ret;
   760 }
   761 #endif // PRODUCT
   763 void G1CollectorPolicy::record_full_collection_start() {
   764   _full_collection_start_sec = os::elapsedTime();
   765   record_heap_size_info_at_start(true /* full */);
   766   // Release the future to-space so that it is available for compaction into.
   767   _g1->set_full_collection();
   768 }
   770 void G1CollectorPolicy::record_full_collection_end() {
   771   // Consider this like a collection pause for the purposes of allocation
   772   // since last pause.
   773   double end_sec = os::elapsedTime();
   774   double full_gc_time_sec = end_sec - _full_collection_start_sec;
   775   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   777   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
   779   update_recent_gc_times(end_sec, full_gc_time_ms);
   781   _g1->clear_full_collection();
   783   // "Nuke" the heuristics that control the young/mixed GC
   784   // transitions and make sure we start with young GCs after the Full GC.
   785   set_gcs_are_young(true);
   786   _last_young_gc = false;
   787   clear_initiate_conc_mark_if_possible();
   788   clear_during_initial_mark_pause();
   789   _in_marking_window = false;
   790   _in_marking_window_im = false;
   792   _short_lived_surv_rate_group->start_adding_regions();
   793   // also call this on any additional surv rate groups
   795   record_survivor_regions(0, NULL, NULL);
   797   _free_regions_at_end_of_collection = _g1->free_regions();
   798   // Reset survivors SurvRateGroup.
   799   _survivor_surv_rate_group->reset();
   800   update_young_list_target_length();
   801   _collectionSetChooser->clear();
   802 }
   804 void G1CollectorPolicy::record_stop_world_start() {
   805   _stop_world_start = os::elapsedTime();
   806 }
   808 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
   809   // We only need to do this here as the policy will only be applied
   810   // to the GC we're about to start. so, no point is calculating this
   811   // every time we calculate / recalculate the target young length.
   812   update_survivors_policy();
   814   assert(_g1->used() == _g1->recalculate_used(),
   815          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   816                  _g1->used(), _g1->recalculate_used()));
   818   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   819   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
   820   _stop_world_start = 0.0;
   822   record_heap_size_info_at_start(false /* full */);
   824   phase_times()->record_cur_collection_start_sec(start_time_sec);
   825   _pending_cards = _g1->pending_card_num();
   827   _collection_set_bytes_used_before = 0;
   828   _bytes_copied_during_gc = 0;
   830   _last_gc_was_young = false;
   832   // do that for any other surv rate groups
   833   _short_lived_surv_rate_group->stop_adding_regions();
   834   _survivors_age_table.clear();
   836   assert( verify_young_ages(), "region age verification" );
   837 }
   839 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   840                                                    mark_init_elapsed_time_ms) {
   841   _during_marking = true;
   842   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   843   clear_during_initial_mark_pause();
   844   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   845 }
   847 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   848   _mark_remark_start_sec = os::elapsedTime();
   849   _during_marking = false;
   850 }
   852 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   853   double end_time_sec = os::elapsedTime();
   854   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   855   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   856   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   857   _prev_collection_pause_end_ms += elapsed_time_ms;
   859   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   860 }
   862 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   863   _mark_cleanup_start_sec = os::elapsedTime();
   864 }
   866 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   867   _last_young_gc = true;
   868   _in_marking_window = false;
   869 }
   871 void G1CollectorPolicy::record_concurrent_pause() {
   872   if (_stop_world_start > 0.0) {
   873     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
   874     _trace_gen0_time_data.record_yield_time(yield_ms);
   875   }
   876 }
   878 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
   879   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
   880     return false;
   881   }
   883   size_t marking_initiating_used_threshold =
   884     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
   885   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
   886   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
   888   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
   889     if (gcs_are_young() && !_last_young_gc) {
   890       ergo_verbose5(ErgoConcCycles,
   891         "request concurrent cycle initiation",
   892         ergo_format_reason("occupancy higher than threshold")
   893         ergo_format_byte("occupancy")
   894         ergo_format_byte("allocation request")
   895         ergo_format_byte_perc("threshold")
   896         ergo_format_str("source"),
   897         cur_used_bytes,
   898         alloc_byte_size,
   899         marking_initiating_used_threshold,
   900         (double) InitiatingHeapOccupancyPercent,
   901         source);
   902       return true;
   903     } else {
   904       ergo_verbose5(ErgoConcCycles,
   905         "do not request concurrent cycle initiation",
   906         ergo_format_reason("still doing mixed collections")
   907         ergo_format_byte("occupancy")
   908         ergo_format_byte("allocation request")
   909         ergo_format_byte_perc("threshold")
   910         ergo_format_str("source"),
   911         cur_used_bytes,
   912         alloc_byte_size,
   913         marking_initiating_used_threshold,
   914         (double) InitiatingHeapOccupancyPercent,
   915         source);
   916     }
   917   }
   919   return false;
   920 }
   922 // Anything below that is considered to be zero
   923 #define MIN_TIMER_GRANULARITY 0.0000001
   925 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
   926   double end_time_sec = os::elapsedTime();
   927   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
   928          "otherwise, the subtraction below does not make sense");
   929   size_t rs_size =
   930             _cur_collection_pause_used_regions_at_start - cset_region_length();
   931   size_t cur_used_bytes = _g1->used();
   932   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
   933   bool last_pause_included_initial_mark = false;
   934   bool update_stats = !_g1->evacuation_failed();
   936 #ifndef PRODUCT
   937   if (G1YoungSurvRateVerbose) {
   938     gclog_or_tty->print_cr("");
   939     _short_lived_surv_rate_group->print();
   940     // do that for any other surv rate groups too
   941   }
   942 #endif // PRODUCT
   944   last_pause_included_initial_mark = during_initial_mark_pause();
   945   if (last_pause_included_initial_mark) {
   946     record_concurrent_mark_init_end(0.0);
   947   } else if (need_to_start_conc_mark("end of GC")) {
   948     // Note: this might have already been set, if during the last
   949     // pause we decided to start a cycle but at the beginning of
   950     // this pause we decided to postpone it. That's OK.
   951     set_initiate_conc_mark_if_possible();
   952   }
   954   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
   955                           end_time_sec, false);
   957   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
   958   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
   960   if (update_stats) {
   961     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
   962     // this is where we update the allocation rate of the application
   963     double app_time_ms =
   964       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
   965     if (app_time_ms < MIN_TIMER_GRANULARITY) {
   966       // This usually happens due to the timer not having the required
   967       // granularity. Some Linuxes are the usual culprits.
   968       // We'll just set it to something (arbitrarily) small.
   969       app_time_ms = 1.0;
   970     }
   971     // We maintain the invariant that all objects allocated by mutator
   972     // threads will be allocated out of eden regions. So, we can use
   973     // the eden region number allocated since the previous GC to
   974     // calculate the application's allocate rate. The only exception
   975     // to that is humongous objects that are allocated separately. But
   976     // given that humongous object allocations do not really affect
   977     // either the pause's duration nor when the next pause will take
   978     // place we can safely ignore them here.
   979     uint regions_allocated = eden_cset_region_length();
   980     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
   981     _alloc_rate_ms_seq->add(alloc_rate_ms);
   983     double interval_ms =
   984       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
   985     update_recent_gc_times(end_time_sec, pause_time_ms);
   986     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
   987     if (recent_avg_pause_time_ratio() < 0.0 ||
   988         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
   989 #ifndef PRODUCT
   990       // Dump info to allow post-facto debugging
   991       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
   992       gclog_or_tty->print_cr("-------------------------------------------");
   993       gclog_or_tty->print_cr("Recent GC Times (ms):");
   994       _recent_gc_times_ms->dump();
   995       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
   996       _recent_prev_end_times_for_all_gcs_sec->dump();
   997       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
   998                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
   999       // In debug mode, terminate the JVM if the user wants to debug at this point.
  1000       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
  1001 #endif  // !PRODUCT
  1002       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
  1003       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1004       if (_recent_avg_pause_time_ratio < 0.0) {
  1005         _recent_avg_pause_time_ratio = 0.0;
  1006       } else {
  1007         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1008         _recent_avg_pause_time_ratio = 1.0;
  1013   bool new_in_marking_window = _in_marking_window;
  1014   bool new_in_marking_window_im = false;
  1015   if (during_initial_mark_pause()) {
  1016     new_in_marking_window = true;
  1017     new_in_marking_window_im = true;
  1020   if (_last_young_gc) {
  1021     // This is supposed to to be the "last young GC" before we start
  1022     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
  1024     if (!last_pause_included_initial_mark) {
  1025       if (next_gc_should_be_mixed("start mixed GCs",
  1026                                   "do not start mixed GCs")) {
  1027         set_gcs_are_young(false);
  1029     } else {
  1030       ergo_verbose0(ErgoMixedGCs,
  1031                     "do not start mixed GCs",
  1032                     ergo_format_reason("concurrent cycle is about to start"));
  1034     _last_young_gc = false;
  1037   if (!_last_gc_was_young) {
  1038     // This is a mixed GC. Here we decide whether to continue doing
  1039     // mixed GCs or not.
  1041     if (!next_gc_should_be_mixed("continue mixed GCs",
  1042                                  "do not continue mixed GCs")) {
  1043       set_gcs_are_young(true);
  1047   _short_lived_surv_rate_group->start_adding_regions();
  1048   // do that for any other surv rate groupsx
  1050   if (update_stats) {
  1051     double cost_per_card_ms = 0.0;
  1052     if (_pending_cards > 0) {
  1053       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
  1054       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1057     size_t cards_scanned = _g1->cards_scanned();
  1059     double cost_per_entry_ms = 0.0;
  1060     if (cards_scanned > 10) {
  1061       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
  1062       if (_last_gc_was_young) {
  1063         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1064       } else {
  1065         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1069     if (_max_rs_lengths > 0) {
  1070       double cards_per_entry_ratio =
  1071         (double) cards_scanned / (double) _max_rs_lengths;
  1072       if (_last_gc_was_young) {
  1073         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1074       } else {
  1075         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1079     // This is defensive. For a while _max_rs_lengths could get
  1080     // smaller than _recorded_rs_lengths which was causing
  1081     // rs_length_diff to get very large and mess up the RSet length
  1082     // predictions. The reason was unsafe concurrent updates to the
  1083     // _inc_cset_recorded_rs_lengths field which the code below guards
  1084     // against (see CR 7118202). This bug has now been fixed (see CR
  1085     // 7119027). However, I'm still worried that
  1086     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1087     // inaccurate. The concurrent refinement thread calculates an
  1088     // RSet's length concurrently with other CR threads updating it
  1089     // which might cause it to calculate the length incorrectly (if,
  1090     // say, it's in mid-coarsening). So I'll leave in the defensive
  1091     // conditional below just in case.
  1092     size_t rs_length_diff = 0;
  1093     if (_max_rs_lengths > _recorded_rs_lengths) {
  1094       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1096     _rs_length_diff_seq->add((double) rs_length_diff);
  1098     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
  1099     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
  1100     double cost_per_byte_ms = 0.0;
  1102     if (copied_bytes > 0) {
  1103       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
  1104       if (_in_marking_window) {
  1105         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1106       } else {
  1107         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1111     double all_other_time_ms = pause_time_ms -
  1112       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
  1113       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
  1115     double young_other_time_ms = 0.0;
  1116     if (young_cset_region_length() > 0) {
  1117       young_other_time_ms =
  1118         phase_times()->young_cset_choice_time_ms() +
  1119         phase_times()->young_free_cset_time_ms();
  1120       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1121                                           (double) young_cset_region_length());
  1123     double non_young_other_time_ms = 0.0;
  1124     if (old_cset_region_length() > 0) {
  1125       non_young_other_time_ms =
  1126         phase_times()->non_young_cset_choice_time_ms() +
  1127         phase_times()->non_young_free_cset_time_ms();
  1129       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1130                                             (double) old_cset_region_length());
  1133     double constant_other_time_ms = all_other_time_ms -
  1134       (young_other_time_ms + non_young_other_time_ms);
  1135     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1137     double survival_ratio = 0.0;
  1138     if (_collection_set_bytes_used_before > 0) {
  1139       survival_ratio = (double) _bytes_copied_during_gc /
  1140                                    (double) _collection_set_bytes_used_before;
  1143     _pending_cards_seq->add((double) _pending_cards);
  1144     _rs_lengths_seq->add((double) _max_rs_lengths);
  1147   _in_marking_window = new_in_marking_window;
  1148   _in_marking_window_im = new_in_marking_window_im;
  1149   _free_regions_at_end_of_collection = _g1->free_regions();
  1150   update_young_list_target_length();
  1152   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1153   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1154   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
  1155                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
  1157   _collectionSetChooser->verify();
  1160 #define EXT_SIZE_FORMAT "%.1f%s"
  1161 #define EXT_SIZE_PARAMS(bytes)                                  \
  1162   byte_size_in_proper_unit((double)(bytes)),                    \
  1163   proper_unit_for_byte_size((bytes))
  1165 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
  1166   YoungList* young_list = _g1->young_list();
  1167   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
  1168   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
  1169   _heap_capacity_bytes_before_gc = _g1->capacity();
  1170   _heap_used_bytes_before_gc = _g1->used();
  1171   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  1173   _eden_capacity_bytes_before_gc =
  1174          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
  1176   if (full) {
  1177     _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
  1181 void G1CollectorPolicy::print_heap_transition() {
  1182   _g1->print_size_transition(gclog_or_tty,
  1183                              _heap_used_bytes_before_gc,
  1184                              _g1->used(),
  1185                              _g1->capacity());
  1188 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
  1189   YoungList* young_list = _g1->young_list();
  1191   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
  1192   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
  1193   size_t heap_used_bytes_after_gc = _g1->used();
  1195   size_t heap_capacity_bytes_after_gc = _g1->capacity();
  1196   size_t eden_capacity_bytes_after_gc =
  1197     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
  1199   gclog_or_tty->print(
  1200     "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1201     "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1202     "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1203     EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1204     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
  1205     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
  1206     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
  1207     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
  1208     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
  1209     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
  1210     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
  1211     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
  1212     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
  1213     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
  1215   if (full) {
  1216     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
  1219   gclog_or_tty->cr();
  1222 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1223                                                      double update_rs_processed_buffers,
  1224                                                      double goal_ms) {
  1225   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1226   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1228   if (G1UseAdaptiveConcRefinement) {
  1229     const int k_gy = 3, k_gr = 6;
  1230     const double inc_k = 1.1, dec_k = 0.9;
  1232     int g = cg1r->green_zone();
  1233     if (update_rs_time > goal_ms) {
  1234       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1235     } else {
  1236       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1237         g = (int)MAX2(g * inc_k, g + 1.0);
  1240     // Change the refinement threads params
  1241     cg1r->set_green_zone(g);
  1242     cg1r->set_yellow_zone(g * k_gy);
  1243     cg1r->set_red_zone(g * k_gr);
  1244     cg1r->reinitialize_threads();
  1246     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1247     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1248                                     cg1r->yellow_zone());
  1249     // Change the barrier params
  1250     dcqs.set_process_completed_threshold(processing_threshold);
  1251     dcqs.set_max_completed_queue(cg1r->red_zone());
  1254   int curr_queue_size = dcqs.completed_buffers_num();
  1255   if (curr_queue_size >= cg1r->yellow_zone()) {
  1256     dcqs.set_completed_queue_padding(curr_queue_size);
  1257   } else {
  1258     dcqs.set_completed_queue_padding(0);
  1260   dcqs.notify_if_necessary();
  1263 double
  1264 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1265                                                 size_t scanned_cards) {
  1266   return
  1267     predict_rs_update_time_ms(pending_cards) +
  1268     predict_rs_scan_time_ms(scanned_cards) +
  1269     predict_constant_other_time_ms();
  1272 double
  1273 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1274   size_t rs_length = predict_rs_length_diff();
  1275   size_t card_num;
  1276   if (gcs_are_young()) {
  1277     card_num = predict_young_card_num(rs_length);
  1278   } else {
  1279     card_num = predict_non_young_card_num(rs_length);
  1281   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1284 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1285   size_t bytes_to_copy;
  1286   if (hr->is_marked())
  1287     bytes_to_copy = hr->max_live_bytes();
  1288   else {
  1289     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
  1290     int age = hr->age_in_surv_rate_group();
  1291     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1292     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1294   return bytes_to_copy;
  1297 double
  1298 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1299                                                   bool for_young_gc) {
  1300   size_t rs_length = hr->rem_set()->occupied();
  1301   size_t card_num;
  1303   // Predicting the number of cards is based on which type of GC
  1304   // we're predicting for.
  1305   if (for_young_gc) {
  1306     card_num = predict_young_card_num(rs_length);
  1307   } else {
  1308     card_num = predict_non_young_card_num(rs_length);
  1310   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1312   double region_elapsed_time_ms =
  1313     predict_rs_scan_time_ms(card_num) +
  1314     predict_object_copy_time_ms(bytes_to_copy);
  1316   // The prediction of the "other" time for this region is based
  1317   // upon the region type and NOT the GC type.
  1318   if (hr->is_young()) {
  1319     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1320   } else {
  1321     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1323   return region_elapsed_time_ms;
  1326 void
  1327 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
  1328                                             uint survivor_cset_region_length) {
  1329   _eden_cset_region_length     = eden_cset_region_length;
  1330   _survivor_cset_region_length = survivor_cset_region_length;
  1331   _old_cset_region_length      = 0;
  1334 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1335   _recorded_rs_lengths = rs_lengths;
  1338 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1339                                                double elapsed_ms) {
  1340   _recent_gc_times_ms->add(elapsed_ms);
  1341   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1342   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1345 size_t G1CollectorPolicy::expansion_amount() {
  1346   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1347   double threshold = _gc_overhead_perc;
  1348   if (recent_gc_overhead > threshold) {
  1349     // We will double the existing space, or take
  1350     // G1ExpandByPercentOfAvailable % of the available expansion
  1351     // space, whichever is smaller, bounded below by a minimum
  1352     // expansion (unless that's all that's left.)
  1353     const size_t min_expand_bytes = 1*M;
  1354     size_t reserved_bytes = _g1->max_capacity();
  1355     size_t committed_bytes = _g1->capacity();
  1356     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1357     size_t expand_bytes;
  1358     size_t expand_bytes_via_pct =
  1359       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1360     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1361     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1362     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1364     ergo_verbose5(ErgoHeapSizing,
  1365                   "attempt heap expansion",
  1366                   ergo_format_reason("recent GC overhead higher than "
  1367                                      "threshold after GC")
  1368                   ergo_format_perc("recent GC overhead")
  1369                   ergo_format_perc("threshold")
  1370                   ergo_format_byte("uncommitted")
  1371                   ergo_format_byte_perc("calculated expansion amount"),
  1372                   recent_gc_overhead, threshold,
  1373                   uncommitted_bytes,
  1374                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1376     return expand_bytes;
  1377   } else {
  1378     return 0;
  1382 void G1CollectorPolicy::print_tracing_info() const {
  1383   _trace_gen0_time_data.print();
  1384   _trace_gen1_time_data.print();
  1387 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  1388 #ifndef PRODUCT
  1389   _short_lived_surv_rate_group->print_surv_rate_summary();
  1390   // add this call for any other surv rate groups
  1391 #endif // PRODUCT
  1394 uint G1CollectorPolicy::max_regions(int purpose) {
  1395   switch (purpose) {
  1396     case GCAllocForSurvived:
  1397       return _max_survivor_regions;
  1398     case GCAllocForTenured:
  1399       return REGIONS_UNLIMITED;
  1400     default:
  1401       ShouldNotReachHere();
  1402       return REGIONS_UNLIMITED;
  1403   };
  1406 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  1407   uint expansion_region_num = 0;
  1408   if (GCLockerEdenExpansionPercent > 0) {
  1409     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  1410     double expansion_region_num_d = perc * (double) _young_list_target_length;
  1411     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  1412     // less than 1.0) we'll get 1.
  1413     expansion_region_num = (uint) ceil(expansion_region_num_d);
  1414   } else {
  1415     assert(expansion_region_num == 0, "sanity");
  1417   _young_list_max_length = _young_list_target_length + expansion_region_num;
  1418   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  1421 // Calculates survivor space parameters.
  1422 void G1CollectorPolicy::update_survivors_policy() {
  1423   double max_survivor_regions_d =
  1424                  (double) _young_list_target_length / (double) SurvivorRatio;
  1425   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  1426   // smaller than 1.0) we'll get 1.
  1427   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
  1429   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  1430         HeapRegion::GrainWords * _max_survivor_regions);
  1433 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  1434                                                      GCCause::Cause gc_cause) {
  1435   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1436   if (!during_cycle) {
  1437     ergo_verbose1(ErgoConcCycles,
  1438                   "request concurrent cycle initiation",
  1439                   ergo_format_reason("requested by GC cause")
  1440                   ergo_format_str("GC cause"),
  1441                   GCCause::to_string(gc_cause));
  1442     set_initiate_conc_mark_if_possible();
  1443     return true;
  1444   } else {
  1445     ergo_verbose1(ErgoConcCycles,
  1446                   "do not request concurrent cycle initiation",
  1447                   ergo_format_reason("concurrent cycle already in progress")
  1448                   ergo_format_str("GC cause"),
  1449                   GCCause::to_string(gc_cause));
  1450     return false;
  1454 void
  1455 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  1456   // We are about to decide on whether this pause will be an
  1457   // initial-mark pause.
  1459   // First, during_initial_mark_pause() should not be already set. We
  1460   // will set it here if we have to. However, it should be cleared by
  1461   // the end of the pause (it's only set for the duration of an
  1462   // initial-mark pause).
  1463   assert(!during_initial_mark_pause(), "pre-condition");
  1465   if (initiate_conc_mark_if_possible()) {
  1466     // We had noticed on a previous pause that the heap occupancy has
  1467     // gone over the initiating threshold and we should start a
  1468     // concurrent marking cycle. So we might initiate one.
  1470     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1471     if (!during_cycle) {
  1472       // The concurrent marking thread is not "during a cycle", i.e.,
  1473       // it has completed the last one. So we can go ahead and
  1474       // initiate a new cycle.
  1476       set_during_initial_mark_pause();
  1477       // We do not allow mixed GCs during marking.
  1478       if (!gcs_are_young()) {
  1479         set_gcs_are_young(true);
  1480         ergo_verbose0(ErgoMixedGCs,
  1481                       "end mixed GCs",
  1482                       ergo_format_reason("concurrent cycle is about to start"));
  1485       // And we can now clear initiate_conc_mark_if_possible() as
  1486       // we've already acted on it.
  1487       clear_initiate_conc_mark_if_possible();
  1489       ergo_verbose0(ErgoConcCycles,
  1490                   "initiate concurrent cycle",
  1491                   ergo_format_reason("concurrent cycle initiation requested"));
  1492     } else {
  1493       // The concurrent marking thread is still finishing up the
  1494       // previous cycle. If we start one right now the two cycles
  1495       // overlap. In particular, the concurrent marking thread might
  1496       // be in the process of clearing the next marking bitmap (which
  1497       // we will use for the next cycle if we start one). Starting a
  1498       // cycle now will be bad given that parts of the marking
  1499       // information might get cleared by the marking thread. And we
  1500       // cannot wait for the marking thread to finish the cycle as it
  1501       // periodically yields while clearing the next marking bitmap
  1502       // and, if it's in a yield point, it's waiting for us to
  1503       // finish. So, at this point we will not start a cycle and we'll
  1504       // let the concurrent marking thread complete the last one.
  1505       ergo_verbose0(ErgoConcCycles,
  1506                     "do not initiate concurrent cycle",
  1507                     ergo_format_reason("concurrent cycle already in progress"));
  1512 class KnownGarbageClosure: public HeapRegionClosure {
  1513   G1CollectedHeap* _g1h;
  1514   CollectionSetChooser* _hrSorted;
  1516 public:
  1517   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  1518     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
  1520   bool doHeapRegion(HeapRegion* r) {
  1521     // We only include humongous regions in collection
  1522     // sets when concurrent mark shows that their contained object is
  1523     // unreachable.
  1525     // Do we have any marking information for this region?
  1526     if (r->is_marked()) {
  1527       // We will skip any region that's currently used as an old GC
  1528       // alloc region (we should not consider those for collection
  1529       // before we fill them up).
  1530       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1531         _hrSorted->add_region(r);
  1534     return false;
  1536 };
  1538 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  1539   G1CollectedHeap* _g1h;
  1540   CSetChooserParUpdater _cset_updater;
  1542 public:
  1543   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  1544                            uint chunk_size) :
  1545     _g1h(G1CollectedHeap::heap()),
  1546     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
  1548   bool doHeapRegion(HeapRegion* r) {
  1549     // Do we have any marking information for this region?
  1550     if (r->is_marked()) {
  1551       // We will skip any region that's currently used as an old GC
  1552       // alloc region (we should not consider those for collection
  1553       // before we fill them up).
  1554       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1555         _cset_updater.add_region(r);
  1558     return false;
  1560 };
  1562 class ParKnownGarbageTask: public AbstractGangTask {
  1563   CollectionSetChooser* _hrSorted;
  1564   uint _chunk_size;
  1565   G1CollectedHeap* _g1;
  1566 public:
  1567   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
  1568     AbstractGangTask("ParKnownGarbageTask"),
  1569     _hrSorted(hrSorted), _chunk_size(chunk_size),
  1570     _g1(G1CollectedHeap::heap()) { }
  1572   void work(uint worker_id) {
  1573     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
  1575     // Back to zero for the claim value.
  1576     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  1577                                          _g1->workers()->active_workers(),
  1578                                          HeapRegion::InitialClaimValue);
  1580 };
  1582 void
  1583 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  1584   _collectionSetChooser->clear();
  1586   uint region_num = _g1->n_regions();
  1587   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1588     const uint OverpartitionFactor = 4;
  1589     uint WorkUnit;
  1590     // The use of MinChunkSize = 8 in the original code
  1591     // causes some assertion failures when the total number of
  1592     // region is less than 8.  The code here tries to fix that.
  1593     // Should the original code also be fixed?
  1594     if (no_of_gc_threads > 0) {
  1595       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
  1596       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
  1597                       MinWorkUnit);
  1598     } else {
  1599       assert(no_of_gc_threads > 0,
  1600         "The active gc workers should be greater than 0");
  1601       // In a product build do something reasonable to avoid a crash.
  1602       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
  1603       WorkUnit =
  1604         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
  1605              MinWorkUnit);
  1607     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
  1608                                                            WorkUnit);
  1609     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  1610                                             (int) WorkUnit);
  1611     _g1->workers()->run_task(&parKnownGarbageTask);
  1613     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  1614            "sanity check");
  1615   } else {
  1616     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  1617     _g1->heap_region_iterate(&knownGarbagecl);
  1620   _collectionSetChooser->sort_regions();
  1622   double end_sec = os::elapsedTime();
  1623   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  1624   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  1625   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  1626   _prev_collection_pause_end_ms += elapsed_time_ms;
  1627   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  1630 // Add the heap region at the head of the non-incremental collection set
  1631 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  1632   assert(_inc_cset_build_state == Active, "Precondition");
  1633   assert(!hr->is_young(), "non-incremental add of young region");
  1635   assert(!hr->in_collection_set(), "should not already be in the CSet");
  1636   hr->set_in_collection_set(true);
  1637   hr->set_next_in_collection_set(_collection_set);
  1638   _collection_set = hr;
  1639   _collection_set_bytes_used_before += hr->used();
  1640   _g1->register_region_with_in_cset_fast_test(hr);
  1641   size_t rs_length = hr->rem_set()->occupied();
  1642   _recorded_rs_lengths += rs_length;
  1643   _old_cset_region_length += 1;
  1646 // Initialize the per-collection-set information
  1647 void G1CollectorPolicy::start_incremental_cset_building() {
  1648   assert(_inc_cset_build_state == Inactive, "Precondition");
  1650   _inc_cset_head = NULL;
  1651   _inc_cset_tail = NULL;
  1652   _inc_cset_bytes_used_before = 0;
  1654   _inc_cset_max_finger = 0;
  1655   _inc_cset_recorded_rs_lengths = 0;
  1656   _inc_cset_recorded_rs_lengths_diffs = 0;
  1657   _inc_cset_predicted_elapsed_time_ms = 0.0;
  1658   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1659   _inc_cset_build_state = Active;
  1662 void G1CollectorPolicy::finalize_incremental_cset_building() {
  1663   assert(_inc_cset_build_state == Active, "Precondition");
  1664   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  1666   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  1667   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  1668   // that adds a new region to the CSet. Further updates by the
  1669   // concurrent refinement thread that samples the young RSet lengths
  1670   // are accumulated in the *_diffs fields. Here we add the diffs to
  1671   // the "main" fields.
  1673   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  1674     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  1675   } else {
  1676     // This is defensive. The diff should in theory be always positive
  1677     // as RSets can only grow between GCs. However, given that we
  1678     // sample their size concurrently with other threads updating them
  1679     // it's possible that we might get the wrong size back, which
  1680     // could make the calculations somewhat inaccurate.
  1681     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  1682     if (_inc_cset_recorded_rs_lengths >= diffs) {
  1683       _inc_cset_recorded_rs_lengths -= diffs;
  1684     } else {
  1685       _inc_cset_recorded_rs_lengths = 0;
  1688   _inc_cset_predicted_elapsed_time_ms +=
  1689                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  1691   _inc_cset_recorded_rs_lengths_diffs = 0;
  1692   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1695 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  1696   // This routine is used when:
  1697   // * adding survivor regions to the incremental cset at the end of an
  1698   //   evacuation pause,
  1699   // * adding the current allocation region to the incremental cset
  1700   //   when it is retired, and
  1701   // * updating existing policy information for a region in the
  1702   //   incremental cset via young list RSet sampling.
  1703   // Therefore this routine may be called at a safepoint by the
  1704   // VM thread, or in-between safepoints by mutator threads (when
  1705   // retiring the current allocation region) or a concurrent
  1706   // refine thread (RSet sampling).
  1708   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1709   size_t used_bytes = hr->used();
  1710   _inc_cset_recorded_rs_lengths += rs_length;
  1711   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  1712   _inc_cset_bytes_used_before += used_bytes;
  1714   // Cache the values we have added to the aggregated informtion
  1715   // in the heap region in case we have to remove this region from
  1716   // the incremental collection set, or it is updated by the
  1717   // rset sampling code
  1718   hr->set_recorded_rs_length(rs_length);
  1719   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  1722 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  1723                                                      size_t new_rs_length) {
  1724   // Update the CSet information that is dependent on the new RS length
  1725   assert(hr->is_young(), "Precondition");
  1726   assert(!SafepointSynchronize::is_at_safepoint(),
  1727                                                "should not be at a safepoint");
  1729   // We could have updated _inc_cset_recorded_rs_lengths and
  1730   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  1731   // that atomically, as this code is executed by a concurrent
  1732   // refinement thread, potentially concurrently with a mutator thread
  1733   // allocating a new region and also updating the same fields. To
  1734   // avoid the atomic operations we accumulate these updates on two
  1735   // separate fields (*_diffs) and we'll just add them to the "main"
  1736   // fields at the start of a GC.
  1738   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  1739   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  1740   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  1742   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  1743   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1744   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  1745   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  1747   hr->set_recorded_rs_length(new_rs_length);
  1748   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  1751 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  1752   assert(hr->is_young(), "invariant");
  1753   assert(hr->young_index_in_cset() > -1, "should have already been set");
  1754   assert(_inc_cset_build_state == Active, "Precondition");
  1756   // We need to clear and set the cached recorded/cached collection set
  1757   // information in the heap region here (before the region gets added
  1758   // to the collection set). An individual heap region's cached values
  1759   // are calculated, aggregated with the policy collection set info,
  1760   // and cached in the heap region here (initially) and (subsequently)
  1761   // by the Young List sampling code.
  1763   size_t rs_length = hr->rem_set()->occupied();
  1764   add_to_incremental_cset_info(hr, rs_length);
  1766   HeapWord* hr_end = hr->end();
  1767   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  1769   assert(!hr->in_collection_set(), "invariant");
  1770   hr->set_in_collection_set(true);
  1771   assert( hr->next_in_collection_set() == NULL, "invariant");
  1773   _g1->register_region_with_in_cset_fast_test(hr);
  1776 // Add the region at the RHS of the incremental cset
  1777 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  1778   // We should only ever be appending survivors at the end of a pause
  1779   assert( hr->is_survivor(), "Logic");
  1781   // Do the 'common' stuff
  1782   add_region_to_incremental_cset_common(hr);
  1784   // Now add the region at the right hand side
  1785   if (_inc_cset_tail == NULL) {
  1786     assert(_inc_cset_head == NULL, "invariant");
  1787     _inc_cset_head = hr;
  1788   } else {
  1789     _inc_cset_tail->set_next_in_collection_set(hr);
  1791   _inc_cset_tail = hr;
  1794 // Add the region to the LHS of the incremental cset
  1795 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  1796   // Survivors should be added to the RHS at the end of a pause
  1797   assert(!hr->is_survivor(), "Logic");
  1799   // Do the 'common' stuff
  1800   add_region_to_incremental_cset_common(hr);
  1802   // Add the region at the left hand side
  1803   hr->set_next_in_collection_set(_inc_cset_head);
  1804   if (_inc_cset_head == NULL) {
  1805     assert(_inc_cset_tail == NULL, "Invariant");
  1806     _inc_cset_tail = hr;
  1808   _inc_cset_head = hr;
  1811 #ifndef PRODUCT
  1812 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  1813   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  1815   st->print_cr("\nCollection_set:");
  1816   HeapRegion* csr = list_head;
  1817   while (csr != NULL) {
  1818     HeapRegion* next = csr->next_in_collection_set();
  1819     assert(csr->in_collection_set(), "bad CS");
  1820     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
  1821                  HR_FORMAT_PARAMS(csr),
  1822                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
  1823                  csr->age_in_surv_rate_group_cond());
  1824     csr = next;
  1827 #endif // !PRODUCT
  1829 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
  1830   // Returns the given amount of reclaimable bytes (that represents
  1831   // the amount of reclaimable space still to be collected) as a
  1832   // percentage of the current heap capacity.
  1833   size_t capacity_bytes = _g1->capacity();
  1834   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
  1837 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
  1838                                                 const char* false_action_str) {
  1839   CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1840   if (cset_chooser->is_empty()) {
  1841     ergo_verbose0(ErgoMixedGCs,
  1842                   false_action_str,
  1843                   ergo_format_reason("candidate old regions not available"));
  1844     return false;
  1847   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
  1848   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  1849   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  1850   double threshold = (double) G1HeapWastePercent;
  1851   if (reclaimable_perc <= threshold) {
  1852     ergo_verbose4(ErgoMixedGCs,
  1853               false_action_str,
  1854               ergo_format_reason("reclaimable percentage not over threshold")
  1855               ergo_format_region("candidate old regions")
  1856               ergo_format_byte_perc("reclaimable")
  1857               ergo_format_perc("threshold"),
  1858               cset_chooser->remaining_regions(),
  1859               reclaimable_bytes,
  1860               reclaimable_perc, threshold);
  1861     return false;
  1864   ergo_verbose4(ErgoMixedGCs,
  1865                 true_action_str,
  1866                 ergo_format_reason("candidate old regions available")
  1867                 ergo_format_region("candidate old regions")
  1868                 ergo_format_byte_perc("reclaimable")
  1869                 ergo_format_perc("threshold"),
  1870                 cset_chooser->remaining_regions(),
  1871                 reclaimable_bytes,
  1872                 reclaimable_perc, threshold);
  1873   return true;
  1876 uint G1CollectorPolicy::calc_min_old_cset_length() {
  1877   // The min old CSet region bound is based on the maximum desired
  1878   // number of mixed GCs after a cycle. I.e., even if some old regions
  1879   // look expensive, we should add them to the CSet anyway to make
  1880   // sure we go through the available old regions in no more than the
  1881   // maximum desired number of mixed GCs.
  1882   //
  1883   // The calculation is based on the number of marked regions we added
  1884   // to the CSet chooser in the first place, not how many remain, so
  1885   // that the result is the same during all mixed GCs that follow a cycle.
  1887   const size_t region_num = (size_t) _collectionSetChooser->length();
  1888   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
  1889   size_t result = region_num / gc_num;
  1890   // emulate ceiling
  1891   if (result * gc_num < region_num) {
  1892     result += 1;
  1894   return (uint) result;
  1897 uint G1CollectorPolicy::calc_max_old_cset_length() {
  1898   // The max old CSet region bound is based on the threshold expressed
  1899   // as a percentage of the heap size. I.e., it should bound the
  1900   // number of old regions added to the CSet irrespective of how many
  1901   // of them are available.
  1903   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1904   const size_t region_num = g1h->n_regions();
  1905   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
  1906   size_t result = region_num * perc / 100;
  1907   // emulate ceiling
  1908   if (100 * result < region_num * perc) {
  1909     result += 1;
  1911   return (uint) result;
  1915 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
  1916   double young_start_time_sec = os::elapsedTime();
  1918   YoungList* young_list = _g1->young_list();
  1919   finalize_incremental_cset_building();
  1921   guarantee(target_pause_time_ms > 0.0,
  1922             err_msg("target_pause_time_ms = %1.6lf should be positive",
  1923                     target_pause_time_ms));
  1924   guarantee(_collection_set == NULL, "Precondition");
  1926   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  1927   double predicted_pause_time_ms = base_time_ms;
  1928   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
  1930   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
  1931                 "start choosing CSet",
  1932                 ergo_format_size("_pending_cards")
  1933                 ergo_format_ms("predicted base time")
  1934                 ergo_format_ms("remaining time")
  1935                 ergo_format_ms("target pause time"),
  1936                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
  1938   _last_gc_was_young = gcs_are_young() ? true : false;
  1940   if (_last_gc_was_young) {
  1941     _trace_gen0_time_data.increment_young_collection_count();
  1942   } else {
  1943     _trace_gen0_time_data.increment_mixed_collection_count();
  1946   // The young list is laid with the survivor regions from the previous
  1947   // pause are appended to the RHS of the young list, i.e.
  1948   //   [Newly Young Regions ++ Survivors from last pause].
  1950   uint survivor_region_length = young_list->survivor_length();
  1951   uint eden_region_length = young_list->length() - survivor_region_length;
  1952   init_cset_region_lengths(eden_region_length, survivor_region_length);
  1954   HeapRegion* hr = young_list->first_survivor_region();
  1955   while (hr != NULL) {
  1956     assert(hr->is_survivor(), "badly formed young list");
  1957     hr->set_young();
  1958     hr = hr->get_next_young_region();
  1961   // Clear the fields that point to the survivor list - they are all young now.
  1962   young_list->clear_survivors();
  1964   _collection_set = _inc_cset_head;
  1965   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  1966   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
  1967   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  1969   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  1970                 "add young regions to CSet",
  1971                 ergo_format_region("eden")
  1972                 ergo_format_region("survivors")
  1973                 ergo_format_ms("predicted young region time"),
  1974                 eden_region_length, survivor_region_length,
  1975                 _inc_cset_predicted_elapsed_time_ms);
  1977   // The number of recorded young regions is the incremental
  1978   // collection set's current size
  1979   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  1981   double young_end_time_sec = os::elapsedTime();
  1982   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
  1984   // Set the start of the non-young choice time.
  1985   double non_young_start_time_sec = young_end_time_sec;
  1987   if (!gcs_are_young()) {
  1988     CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1989     cset_chooser->verify();
  1990     const uint min_old_cset_length = calc_min_old_cset_length();
  1991     const uint max_old_cset_length = calc_max_old_cset_length();
  1993     uint expensive_region_num = 0;
  1994     bool check_time_remaining = adaptive_young_list_length();
  1996     HeapRegion* hr = cset_chooser->peek();
  1997     while (hr != NULL) {
  1998       if (old_cset_region_length() >= max_old_cset_length) {
  1999         // Added maximum number of old regions to the CSet.
  2000         ergo_verbose2(ErgoCSetConstruction,
  2001                       "finish adding old regions to CSet",
  2002                       ergo_format_reason("old CSet region num reached max")
  2003                       ergo_format_region("old")
  2004                       ergo_format_region("max"),
  2005                       old_cset_region_length(), max_old_cset_length);
  2006         break;
  2010       // Stop adding regions if the remaining reclaimable space is
  2011       // not above G1HeapWastePercent.
  2012       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  2013       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  2014       double threshold = (double) G1HeapWastePercent;
  2015       if (reclaimable_perc <= threshold) {
  2016         // We've added enough old regions that the amount of uncollected
  2017         // reclaimable space is at or below the waste threshold. Stop
  2018         // adding old regions to the CSet.
  2019         ergo_verbose5(ErgoCSetConstruction,
  2020                       "finish adding old regions to CSet",
  2021                       ergo_format_reason("reclaimable percentage not over threshold")
  2022                       ergo_format_region("old")
  2023                       ergo_format_region("max")
  2024                       ergo_format_byte_perc("reclaimable")
  2025                       ergo_format_perc("threshold"),
  2026                       old_cset_region_length(),
  2027                       max_old_cset_length,
  2028                       reclaimable_bytes,
  2029                       reclaimable_perc, threshold);
  2030         break;
  2033       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  2034       if (check_time_remaining) {
  2035         if (predicted_time_ms > time_remaining_ms) {
  2036           // Too expensive for the current CSet.
  2038           if (old_cset_region_length() >= min_old_cset_length) {
  2039             // We have added the minimum number of old regions to the CSet,
  2040             // we are done with this CSet.
  2041             ergo_verbose4(ErgoCSetConstruction,
  2042                           "finish adding old regions to CSet",
  2043                           ergo_format_reason("predicted time is too high")
  2044                           ergo_format_ms("predicted time")
  2045                           ergo_format_ms("remaining time")
  2046                           ergo_format_region("old")
  2047                           ergo_format_region("min"),
  2048                           predicted_time_ms, time_remaining_ms,
  2049                           old_cset_region_length(), min_old_cset_length);
  2050             break;
  2053           // We'll add it anyway given that we haven't reached the
  2054           // minimum number of old regions.
  2055           expensive_region_num += 1;
  2057       } else {
  2058         if (old_cset_region_length() >= min_old_cset_length) {
  2059           // In the non-auto-tuning case, we'll finish adding regions
  2060           // to the CSet if we reach the minimum.
  2061           ergo_verbose2(ErgoCSetConstruction,
  2062                         "finish adding old regions to CSet",
  2063                         ergo_format_reason("old CSet region num reached min")
  2064                         ergo_format_region("old")
  2065                         ergo_format_region("min"),
  2066                         old_cset_region_length(), min_old_cset_length);
  2067           break;
  2071       // We will add this region to the CSet.
  2072       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
  2073       predicted_pause_time_ms += predicted_time_ms;
  2074       cset_chooser->remove_and_move_to_next(hr);
  2075       _g1->old_set_remove(hr);
  2076       add_old_region_to_cset(hr);
  2078       hr = cset_chooser->peek();
  2080     if (hr == NULL) {
  2081       ergo_verbose0(ErgoCSetConstruction,
  2082                     "finish adding old regions to CSet",
  2083                     ergo_format_reason("candidate old regions not available"));
  2086     if (expensive_region_num > 0) {
  2087       // We print the information once here at the end, predicated on
  2088       // whether we added any apparently expensive regions or not, to
  2089       // avoid generating output per region.
  2090       ergo_verbose4(ErgoCSetConstruction,
  2091                     "added expensive regions to CSet",
  2092                     ergo_format_reason("old CSet region num not reached min")
  2093                     ergo_format_region("old")
  2094                     ergo_format_region("expensive")
  2095                     ergo_format_region("min")
  2096                     ergo_format_ms("remaining time"),
  2097                     old_cset_region_length(),
  2098                     expensive_region_num,
  2099                     min_old_cset_length,
  2100                     time_remaining_ms);
  2103     cset_chooser->verify();
  2106   stop_incremental_cset_building();
  2108   ergo_verbose5(ErgoCSetConstruction,
  2109                 "finish choosing CSet",
  2110                 ergo_format_region("eden")
  2111                 ergo_format_region("survivors")
  2112                 ergo_format_region("old")
  2113                 ergo_format_ms("predicted pause time")
  2114                 ergo_format_ms("target pause time"),
  2115                 eden_region_length, survivor_region_length,
  2116                 old_cset_region_length(),
  2117                 predicted_pause_time_ms, target_pause_time_ms);
  2119   double non_young_end_time_sec = os::elapsedTime();
  2120   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
  2121   evacuation_info.set_collectionset_regions(cset_region_length());
  2124 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  2125   if(TraceGen0Time) {
  2126     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  2130 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  2131   if(TraceGen0Time) {
  2132     _all_yield_times_ms.add(yield_time_ms);
  2136 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
  2137   if(TraceGen0Time) {
  2138     _total.add(pause_time_ms);
  2139     _other.add(pause_time_ms - phase_times->accounted_time_ms());
  2140     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
  2141     _parallel.add(phase_times->cur_collection_par_time_ms());
  2142     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
  2143     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
  2144     _update_rs.add(phase_times->average_last_update_rs_time());
  2145     _scan_rs.add(phase_times->average_last_scan_rs_time());
  2146     _obj_copy.add(phase_times->average_last_obj_copy_time());
  2147     _termination.add(phase_times->average_last_termination_time());
  2149     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
  2150       phase_times->average_last_satb_filtering_times_ms() +
  2151       phase_times->average_last_update_rs_time() +
  2152       phase_times->average_last_scan_rs_time() +
  2153       phase_times->average_last_obj_copy_time() +
  2154       + phase_times->average_last_termination_time();
  2156     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
  2157     _parallel_other.add(parallel_other_time);
  2158     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
  2162 void TraceGen0TimeData::increment_young_collection_count() {
  2163   if(TraceGen0Time) {
  2164     ++_young_pause_num;
  2168 void TraceGen0TimeData::increment_mixed_collection_count() {
  2169   if(TraceGen0Time) {
  2170     ++_mixed_pause_num;
  2174 void TraceGen0TimeData::print_summary(const char* str,
  2175                                       const NumberSeq* seq) const {
  2176   double sum = seq->sum();
  2177   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
  2178                 str, sum / 1000.0, seq->avg());
  2181 void TraceGen0TimeData::print_summary_sd(const char* str,
  2182                                          const NumberSeq* seq) const {
  2183   print_summary(str, seq);
  2184   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  2185                 "(num", seq->num(), seq->sd(), seq->maximum());
  2188 void TraceGen0TimeData::print() const {
  2189   if (!TraceGen0Time) {
  2190     return;
  2193   gclog_or_tty->print_cr("ALL PAUSES");
  2194   print_summary_sd("   Total", &_total);
  2195   gclog_or_tty->print_cr("");
  2196   gclog_or_tty->print_cr("");
  2197   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  2198   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  2199   gclog_or_tty->print_cr("");
  2201   gclog_or_tty->print_cr("EVACUATION PAUSES");
  2203   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
  2204     gclog_or_tty->print_cr("none");
  2205   } else {
  2206     print_summary_sd("   Evacuation Pauses", &_total);
  2207     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
  2208     print_summary("      Parallel Time", &_parallel);
  2209     print_summary("         Ext Root Scanning", &_ext_root_scan);
  2210     print_summary("         SATB Filtering", &_satb_filtering);
  2211     print_summary("         Update RS", &_update_rs);
  2212     print_summary("         Scan RS", &_scan_rs);
  2213     print_summary("         Object Copy", &_obj_copy);
  2214     print_summary("         Termination", &_termination);
  2215     print_summary("         Parallel Other", &_parallel_other);
  2216     print_summary("      Clear CT", &_clear_ct);
  2217     print_summary("      Other", &_other);
  2219   gclog_or_tty->print_cr("");
  2221   gclog_or_tty->print_cr("MISC");
  2222   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  2223   print_summary_sd("   Yields", &_all_yield_times_ms);
  2226 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  2227   if (TraceGen1Time) {
  2228     _all_full_gc_times.add(full_gc_time_ms);
  2232 void TraceGen1TimeData::print() const {
  2233   if (!TraceGen1Time) {
  2234     return;
  2237   if (_all_full_gc_times.num() > 0) {
  2238     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2239       _all_full_gc_times.num(),
  2240       _all_full_gc_times.sum() / 1000.0);
  2241     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
  2242     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2243       _all_full_gc_times.sd(),
  2244       _all_full_gc_times.maximum());

mercurial