src/share/vm/runtime/objectMonitor.cpp

Wed, 17 Aug 2011 10:32:53 -0700

author
jcoomes
date
Wed, 17 Aug 2011 10:32:53 -0700
changeset 3057
24cee90e9453
parent 2708
1d1603768966
child 3156
f08d439fab8c
permissions
-rw-r--r--

6791672: enable 1G and larger pages on solaris
Reviewed-by: ysr, iveresov, johnc

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "oops/markOop.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "runtime/handles.inline.hpp"
    31 #include "runtime/interfaceSupport.hpp"
    32 #include "runtime/mutexLocker.hpp"
    33 #include "runtime/objectMonitor.hpp"
    34 #include "runtime/objectMonitor.inline.hpp"
    35 #include "runtime/osThread.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/thread.hpp"
    38 #include "services/threadService.hpp"
    39 #include "utilities/dtrace.hpp"
    40 #include "utilities/preserveException.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "os_linux.inline.hpp"
    43 # include "thread_linux.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_solaris
    46 # include "os_solaris.inline.hpp"
    47 # include "thread_solaris.inline.hpp"
    48 #endif
    49 #ifdef TARGET_OS_FAMILY_windows
    50 # include "os_windows.inline.hpp"
    51 # include "thread_windows.inline.hpp"
    52 #endif
    54 #if defined(__GNUC__) && !defined(IA64)
    55   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
    56   #define ATTR __attribute__((noinline))
    57 #else
    58   #define ATTR
    59 #endif
    62 #ifdef DTRACE_ENABLED
    64 // Only bother with this argument setup if dtrace is available
    65 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
    67 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
    68   jlong, uintptr_t, char*, int);
    69 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
    70   jlong, uintptr_t, char*, int);
    71 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
    72   jlong, uintptr_t, char*, int);
    73 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
    74   jlong, uintptr_t, char*, int);
    75 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
    76   jlong, uintptr_t, char*, int);
    78 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
    79   char* bytes = NULL;                                                      \
    80   int len = 0;                                                             \
    81   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
    82   Symbol* klassname = ((oop)(klassOop))->klass()->klass_part()->name();    \
    83   if (klassname != NULL) {                                                 \
    84     bytes = (char*)klassname->bytes();                                     \
    85     len = klassname->utf8_length();                                        \
    86   }
    88 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
    89   {                                                                        \
    90     if (DTraceMonitorProbes) {                                            \
    91       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
    92       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
    93                        (monitor), bytes, len, (millis));                   \
    94     }                                                                      \
    95   }
    97 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
    98   {                                                                        \
    99     if (DTraceMonitorProbes) {                                            \
   100       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
   101       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
   102                        (uintptr_t)(monitor), bytes, len);                  \
   103     }                                                                      \
   104   }
   106 #else //  ndef DTRACE_ENABLED
   108 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
   109 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
   111 #endif // ndef DTRACE_ENABLED
   113 // Tunables ...
   114 // The knob* variables are effectively final.  Once set they should
   115 // never be modified hence.  Consider using __read_mostly with GCC.
   117 int ObjectMonitor::Knob_Verbose    = 0 ;
   118 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
   119 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
   120 static int Knob_HandOff            = 0 ;
   121 static int Knob_ReportSettings     = 0 ;
   123 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
   124 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
   125 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
   126 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
   127 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
   128 static int Knob_SpinEarly          = 1 ;
   129 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
   130 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
   131 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
   132 static int Knob_Bonus              = 100 ;     // spin success bonus
   133 static int Knob_BonusB             = 100 ;     // spin success bonus
   134 static int Knob_Penalty            = 200 ;     // spin failure penalty
   135 static int Knob_Poverty            = 1000 ;
   136 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
   137 static int Knob_FixedSpin          = 0 ;
   138 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
   139 static int Knob_UsePause           = 1 ;
   140 static int Knob_ExitPolicy         = 0 ;
   141 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
   142 static int Knob_ResetEvent         = 0 ;
   143 static int BackOffMask             = 0 ;
   145 static int Knob_FastHSSEC          = 0 ;
   146 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
   147 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
   148 static volatile int InitDone       = 0 ;
   150 #define TrySpin TrySpin_VaryDuration
   152 // -----------------------------------------------------------------------------
   153 // Theory of operations -- Monitors lists, thread residency, etc:
   154 //
   155 // * A thread acquires ownership of a monitor by successfully
   156 //   CAS()ing the _owner field from null to non-null.
   157 //
   158 // * Invariant: A thread appears on at most one monitor list --
   159 //   cxq, EntryList or WaitSet -- at any one time.
   160 //
   161 // * Contending threads "push" themselves onto the cxq with CAS
   162 //   and then spin/park.
   163 //
   164 // * After a contending thread eventually acquires the lock it must
   165 //   dequeue itself from either the EntryList or the cxq.
   166 //
   167 // * The exiting thread identifies and unparks an "heir presumptive"
   168 //   tentative successor thread on the EntryList.  Critically, the
   169 //   exiting thread doesn't unlink the successor thread from the EntryList.
   170 //   After having been unparked, the wakee will recontend for ownership of
   171 //   the monitor.   The successor (wakee) will either acquire the lock or
   172 //   re-park itself.
   173 //
   174 //   Succession is provided for by a policy of competitive handoff.
   175 //   The exiting thread does _not_ grant or pass ownership to the
   176 //   successor thread.  (This is also referred to as "handoff" succession").
   177 //   Instead the exiting thread releases ownership and possibly wakes
   178 //   a successor, so the successor can (re)compete for ownership of the lock.
   179 //   If the EntryList is empty but the cxq is populated the exiting
   180 //   thread will drain the cxq into the EntryList.  It does so by
   181 //   by detaching the cxq (installing null with CAS) and folding
   182 //   the threads from the cxq into the EntryList.  The EntryList is
   183 //   doubly linked, while the cxq is singly linked because of the
   184 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
   185 //
   186 // * Concurrency invariants:
   187 //
   188 //   -- only the monitor owner may access or mutate the EntryList.
   189 //      The mutex property of the monitor itself protects the EntryList
   190 //      from concurrent interference.
   191 //   -- Only the monitor owner may detach the cxq.
   192 //
   193 // * The monitor entry list operations avoid locks, but strictly speaking
   194 //   they're not lock-free.  Enter is lock-free, exit is not.
   195 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
   196 //
   197 // * The cxq can have multiple concurrent "pushers" but only one concurrent
   198 //   detaching thread.  This mechanism is immune from the ABA corruption.
   199 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
   200 //
   201 // * Taken together, the cxq and the EntryList constitute or form a
   202 //   single logical queue of threads stalled trying to acquire the lock.
   203 //   We use two distinct lists to improve the odds of a constant-time
   204 //   dequeue operation after acquisition (in the ::enter() epilog) and
   205 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
   206 //   A key desideratum is to minimize queue & monitor metadata manipulation
   207 //   that occurs while holding the monitor lock -- that is, we want to
   208 //   minimize monitor lock holds times.  Note that even a small amount of
   209 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
   210 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
   211 //   locks and monitor metadata.
   212 //
   213 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
   214 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
   215 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
   216 //   the unlocking thread notices that EntryList is null but _cxq is != null.
   217 //
   218 //   The EntryList is ordered by the prevailing queue discipline and
   219 //   can be organized in any convenient fashion, such as a doubly-linked list or
   220 //   a circular doubly-linked list.  Critically, we want insert and delete operations
   221 //   to operate in constant-time.  If we need a priority queue then something akin
   222 //   to Solaris' sleepq would work nicely.  Viz.,
   223 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
   224 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
   225 //   drains the cxq into the EntryList, and orders or reorders the threads on the
   226 //   EntryList accordingly.
   227 //
   228 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
   229 //   somewhat similar to an elevator-scan.
   230 //
   231 // * The monitor synchronization subsystem avoids the use of native
   232 //   synchronization primitives except for the narrow platform-specific
   233 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
   234 //   the semantics of park-unpark.  Put another way, this monitor implementation
   235 //   depends only on atomic operations and park-unpark.  The monitor subsystem
   236 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
   237 //   underlying OS manages the READY<->RUN transitions.
   238 //
   239 // * Waiting threads reside on the WaitSet list -- wait() puts
   240 //   the caller onto the WaitSet.
   241 //
   242 // * notify() or notifyAll() simply transfers threads from the WaitSet to
   243 //   either the EntryList or cxq.  Subsequent exit() operations will
   244 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
   245 //   it's likely the notifyee would simply impale itself on the lock held
   246 //   by the notifier.
   247 //
   248 // * An interesting alternative is to encode cxq as (List,LockByte) where
   249 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
   250 //   variable, like _recursions, in the scheme.  The threads or Events that form
   251 //   the list would have to be aligned in 256-byte addresses.  A thread would
   252 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
   253 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
   254 //   Note that is is *not* word-tearing, but it does presume that full-word
   255 //   CAS operations are coherent with intermix with STB operations.  That's true
   256 //   on most common processors.
   257 //
   258 // * See also http://blogs.sun.com/dave
   261 // -----------------------------------------------------------------------------
   262 // Enter support
   264 bool ObjectMonitor::try_enter(Thread* THREAD) {
   265   if (THREAD != _owner) {
   266     if (THREAD->is_lock_owned ((address)_owner)) {
   267        assert(_recursions == 0, "internal state error");
   268        _owner = THREAD ;
   269        _recursions = 1 ;
   270        OwnerIsThread = 1 ;
   271        return true;
   272     }
   273     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
   274       return false;
   275     }
   276     return true;
   277   } else {
   278     _recursions++;
   279     return true;
   280   }
   281 }
   283 void ATTR ObjectMonitor::enter(TRAPS) {
   284   // The following code is ordered to check the most common cases first
   285   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
   286   Thread * const Self = THREAD ;
   287   void * cur ;
   289   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
   290   if (cur == NULL) {
   291      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
   292      assert (_recursions == 0   , "invariant") ;
   293      assert (_owner      == Self, "invariant") ;
   294      // CONSIDER: set or assert OwnerIsThread == 1
   295      return ;
   296   }
   298   if (cur == Self) {
   299      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
   300      _recursions ++ ;
   301      return ;
   302   }
   304   if (Self->is_lock_owned ((address)cur)) {
   305     assert (_recursions == 0, "internal state error");
   306     _recursions = 1 ;
   307     // Commute owner from a thread-specific on-stack BasicLockObject address to
   308     // a full-fledged "Thread *".
   309     _owner = Self ;
   310     OwnerIsThread = 1 ;
   311     return ;
   312   }
   314   // We've encountered genuine contention.
   315   assert (Self->_Stalled == 0, "invariant") ;
   316   Self->_Stalled = intptr_t(this) ;
   318   // Try one round of spinning *before* enqueueing Self
   319   // and before going through the awkward and expensive state
   320   // transitions.  The following spin is strictly optional ...
   321   // Note that if we acquire the monitor from an initial spin
   322   // we forgo posting JVMTI events and firing DTRACE probes.
   323   if (Knob_SpinEarly && TrySpin (Self) > 0) {
   324      assert (_owner == Self      , "invariant") ;
   325      assert (_recursions == 0    , "invariant") ;
   326      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   327      Self->_Stalled = 0 ;
   328      return ;
   329   }
   331   assert (_owner != Self          , "invariant") ;
   332   assert (_succ  != Self          , "invariant") ;
   333   assert (Self->is_Java_thread()  , "invariant") ;
   334   JavaThread * jt = (JavaThread *) Self ;
   335   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
   336   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
   337   assert (this->object() != NULL  , "invariant") ;
   338   assert (_count >= 0, "invariant") ;
   340   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
   341   // Ensure the object-monitor relationship remains stable while there's contention.
   342   Atomic::inc_ptr(&_count);
   344   { // Change java thread status to indicate blocked on monitor enter.
   345     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
   347     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
   348     if (JvmtiExport::should_post_monitor_contended_enter()) {
   349       JvmtiExport::post_monitor_contended_enter(jt, this);
   350     }
   352     OSThreadContendState osts(Self->osthread());
   353     ThreadBlockInVM tbivm(jt);
   355     Self->set_current_pending_monitor(this);
   357     // TODO-FIXME: change the following for(;;) loop to straight-line code.
   358     for (;;) {
   359       jt->set_suspend_equivalent();
   360       // cleared by handle_special_suspend_equivalent_condition()
   361       // or java_suspend_self()
   363       EnterI (THREAD) ;
   365       if (!ExitSuspendEquivalent(jt)) break ;
   367       //
   368       // We have acquired the contended monitor, but while we were
   369       // waiting another thread suspended us. We don't want to enter
   370       // the monitor while suspended because that would surprise the
   371       // thread that suspended us.
   372       //
   373           _recursions = 0 ;
   374       _succ = NULL ;
   375       exit (Self) ;
   377       jt->java_suspend_self();
   378     }
   379     Self->set_current_pending_monitor(NULL);
   380   }
   382   Atomic::dec_ptr(&_count);
   383   assert (_count >= 0, "invariant") ;
   384   Self->_Stalled = 0 ;
   386   // Must either set _recursions = 0 or ASSERT _recursions == 0.
   387   assert (_recursions == 0     , "invariant") ;
   388   assert (_owner == Self       , "invariant") ;
   389   assert (_succ  != Self       , "invariant") ;
   390   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   392   // The thread -- now the owner -- is back in vm mode.
   393   // Report the glorious news via TI,DTrace and jvmstat.
   394   // The probe effect is non-trivial.  All the reportage occurs
   395   // while we hold the monitor, increasing the length of the critical
   396   // section.  Amdahl's parallel speedup law comes vividly into play.
   397   //
   398   // Another option might be to aggregate the events (thread local or
   399   // per-monitor aggregation) and defer reporting until a more opportune
   400   // time -- such as next time some thread encounters contention but has
   401   // yet to acquire the lock.  While spinning that thread could
   402   // spinning we could increment JVMStat counters, etc.
   404   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
   405   if (JvmtiExport::should_post_monitor_contended_entered()) {
   406     JvmtiExport::post_monitor_contended_entered(jt, this);
   407   }
   408   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
   409      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
   410   }
   411 }
   414 // Caveat: TryLock() is not necessarily serializing if it returns failure.
   415 // Callers must compensate as needed.
   417 int ObjectMonitor::TryLock (Thread * Self) {
   418    for (;;) {
   419       void * own = _owner ;
   420       if (own != NULL) return 0 ;
   421       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
   422          // Either guarantee _recursions == 0 or set _recursions = 0.
   423          assert (_recursions == 0, "invariant") ;
   424          assert (_owner == Self, "invariant") ;
   425          // CONSIDER: set or assert that OwnerIsThread == 1
   426          return 1 ;
   427       }
   428       // The lock had been free momentarily, but we lost the race to the lock.
   429       // Interference -- the CAS failed.
   430       // We can either return -1 or retry.
   431       // Retry doesn't make as much sense because the lock was just acquired.
   432       if (true) return -1 ;
   433    }
   434 }
   436 void ATTR ObjectMonitor::EnterI (TRAPS) {
   437     Thread * Self = THREAD ;
   438     assert (Self->is_Java_thread(), "invariant") ;
   439     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
   441     // Try the lock - TATAS
   442     if (TryLock (Self) > 0) {
   443         assert (_succ != Self              , "invariant") ;
   444         assert (_owner == Self             , "invariant") ;
   445         assert (_Responsible != Self       , "invariant") ;
   446         return ;
   447     }
   449     DeferredInitialize () ;
   451     // We try one round of spinning *before* enqueueing Self.
   452     //
   453     // If the _owner is ready but OFFPROC we could use a YieldTo()
   454     // operation to donate the remainder of this thread's quantum
   455     // to the owner.  This has subtle but beneficial affinity
   456     // effects.
   458     if (TrySpin (Self) > 0) {
   459         assert (_owner == Self        , "invariant") ;
   460         assert (_succ != Self         , "invariant") ;
   461         assert (_Responsible != Self  , "invariant") ;
   462         return ;
   463     }
   465     // The Spin failed -- Enqueue and park the thread ...
   466     assert (_succ  != Self            , "invariant") ;
   467     assert (_owner != Self            , "invariant") ;
   468     assert (_Responsible != Self      , "invariant") ;
   470     // Enqueue "Self" on ObjectMonitor's _cxq.
   471     //
   472     // Node acts as a proxy for Self.
   473     // As an aside, if were to ever rewrite the synchronization code mostly
   474     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
   475     // Java objects.  This would avoid awkward lifecycle and liveness issues,
   476     // as well as eliminate a subset of ABA issues.
   477     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
   478     //
   480     ObjectWaiter node(Self) ;
   481     Self->_ParkEvent->reset() ;
   482     node._prev   = (ObjectWaiter *) 0xBAD ;
   483     node.TState  = ObjectWaiter::TS_CXQ ;
   485     // Push "Self" onto the front of the _cxq.
   486     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
   487     // Note that spinning tends to reduce the rate at which threads
   488     // enqueue and dequeue on EntryList|cxq.
   489     ObjectWaiter * nxt ;
   490     for (;;) {
   491         node._next = nxt = _cxq ;
   492         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
   494         // Interference - the CAS failed because _cxq changed.  Just retry.
   495         // As an optional optimization we retry the lock.
   496         if (TryLock (Self) > 0) {
   497             assert (_succ != Self         , "invariant") ;
   498             assert (_owner == Self        , "invariant") ;
   499             assert (_Responsible != Self  , "invariant") ;
   500             return ;
   501         }
   502     }
   504     // Check for cxq|EntryList edge transition to non-null.  This indicates
   505     // the onset of contention.  While contention persists exiting threads
   506     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
   507     // operations revert to the faster 1-0 mode.  This enter operation may interleave
   508     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
   509     // arrange for one of the contending thread to use a timed park() operations
   510     // to detect and recover from the race.  (Stranding is form of progress failure
   511     // where the monitor is unlocked but all the contending threads remain parked).
   512     // That is, at least one of the contended threads will periodically poll _owner.
   513     // One of the contending threads will become the designated "Responsible" thread.
   514     // The Responsible thread uses a timed park instead of a normal indefinite park
   515     // operation -- it periodically wakes and checks for and recovers from potential
   516     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
   517     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
   518     // be responsible for a monitor.
   519     //
   520     // Currently, one of the contended threads takes on the added role of "Responsible".
   521     // A viable alternative would be to use a dedicated "stranding checker" thread
   522     // that periodically iterated over all the threads (or active monitors) and unparked
   523     // successors where there was risk of stranding.  This would help eliminate the
   524     // timer scalability issues we see on some platforms as we'd only have one thread
   525     // -- the checker -- parked on a timer.
   527     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
   528         // Try to assume the role of responsible thread for the monitor.
   529         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
   530         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
   531     }
   533     // The lock have been released while this thread was occupied queueing
   534     // itself onto _cxq.  To close the race and avoid "stranding" and
   535     // progress-liveness failure we must resample-retry _owner before parking.
   536     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
   537     // In this case the ST-MEMBAR is accomplished with CAS().
   538     //
   539     // TODO: Defer all thread state transitions until park-time.
   540     // Since state transitions are heavy and inefficient we'd like
   541     // to defer the state transitions until absolutely necessary,
   542     // and in doing so avoid some transitions ...
   544     TEVENT (Inflated enter - Contention) ;
   545     int nWakeups = 0 ;
   546     int RecheckInterval = 1 ;
   548     for (;;) {
   550         if (TryLock (Self) > 0) break ;
   551         assert (_owner != Self, "invariant") ;
   553         if ((SyncFlags & 2) && _Responsible == NULL) {
   554            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
   555         }
   557         // park self
   558         if (_Responsible == Self || (SyncFlags & 1)) {
   559             TEVENT (Inflated enter - park TIMED) ;
   560             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
   561             // Increase the RecheckInterval, but clamp the value.
   562             RecheckInterval *= 8 ;
   563             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
   564         } else {
   565             TEVENT (Inflated enter - park UNTIMED) ;
   566             Self->_ParkEvent->park() ;
   567         }
   569         if (TryLock(Self) > 0) break ;
   571         // The lock is still contested.
   572         // Keep a tally of the # of futile wakeups.
   573         // Note that the counter is not protected by a lock or updated by atomics.
   574         // That is by design - we trade "lossy" counters which are exposed to
   575         // races during updates for a lower probe effect.
   576         TEVENT (Inflated enter - Futile wakeup) ;
   577         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
   578            ObjectMonitor::_sync_FutileWakeups->inc() ;
   579         }
   580         ++ nWakeups ;
   582         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
   583         // We can defer clearing _succ until after the spin completes
   584         // TrySpin() must tolerate being called with _succ == Self.
   585         // Try yet another round of adaptive spinning.
   586         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
   588         // We can find that we were unpark()ed and redesignated _succ while
   589         // we were spinning.  That's harmless.  If we iterate and call park(),
   590         // park() will consume the event and return immediately and we'll
   591         // just spin again.  This pattern can repeat, leaving _succ to simply
   592         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
   593         // Alternately, we can sample fired() here, and if set, forgo spinning
   594         // in the next iteration.
   596         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
   597            Self->_ParkEvent->reset() ;
   598            OrderAccess::fence() ;
   599         }
   600         if (_succ == Self) _succ = NULL ;
   602         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
   603         OrderAccess::fence() ;
   604     }
   606     // Egress :
   607     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
   608     // Normally we'll find Self on the EntryList .
   609     // From the perspective of the lock owner (this thread), the
   610     // EntryList is stable and cxq is prepend-only.
   611     // The head of cxq is volatile but the interior is stable.
   612     // In addition, Self.TState is stable.
   614     assert (_owner == Self      , "invariant") ;
   615     assert (object() != NULL    , "invariant") ;
   616     // I'd like to write:
   617     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   618     // but as we're at a safepoint that's not safe.
   620     UnlinkAfterAcquire (Self, &node) ;
   621     if (_succ == Self) _succ = NULL ;
   623     assert (_succ != Self, "invariant") ;
   624     if (_Responsible == Self) {
   625         _Responsible = NULL ;
   626         // Dekker pivot-point.
   627         // Consider OrderAccess::storeload() here
   629         // We may leave threads on cxq|EntryList without a designated
   630         // "Responsible" thread.  This is benign.  When this thread subsequently
   631         // exits the monitor it can "see" such preexisting "old" threads --
   632         // threads that arrived on the cxq|EntryList before the fence, above --
   633         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
   634         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
   635         // non-null and elect a new "Responsible" timer thread.
   636         //
   637         // This thread executes:
   638         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
   639         //    LD cxq|EntryList               (in subsequent exit)
   640         //
   641         // Entering threads in the slow/contended path execute:
   642         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
   643         //    The (ST cxq; MEMBAR) is accomplished with CAS().
   644         //
   645         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
   646         // exit operation from floating above the ST Responsible=null.
   647         //
   648         // In *practice* however, EnterI() is always followed by some atomic
   649         // operation such as the decrement of _count in ::enter().  Those atomics
   650         // obviate the need for the explicit MEMBAR, above.
   651     }
   653     // We've acquired ownership with CAS().
   654     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
   655     // But since the CAS() this thread may have also stored into _succ,
   656     // EntryList, cxq or Responsible.  These meta-data updates must be
   657     // visible __before this thread subsequently drops the lock.
   658     // Consider what could occur if we didn't enforce this constraint --
   659     // STs to monitor meta-data and user-data could reorder with (become
   660     // visible after) the ST in exit that drops ownership of the lock.
   661     // Some other thread could then acquire the lock, but observe inconsistent
   662     // or old monitor meta-data and heap data.  That violates the JMM.
   663     // To that end, the 1-0 exit() operation must have at least STST|LDST
   664     // "release" barrier semantics.  Specifically, there must be at least a
   665     // STST|LDST barrier in exit() before the ST of null into _owner that drops
   666     // the lock.   The barrier ensures that changes to monitor meta-data and data
   667     // protected by the lock will be visible before we release the lock, and
   668     // therefore before some other thread (CPU) has a chance to acquire the lock.
   669     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
   670     //
   671     // Critically, any prior STs to _succ or EntryList must be visible before
   672     // the ST of null into _owner in the *subsequent* (following) corresponding
   673     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
   674     // execute a serializing instruction.
   676     if (SyncFlags & 8) {
   677        OrderAccess::fence() ;
   678     }
   679     return ;
   680 }
   682 // ReenterI() is a specialized inline form of the latter half of the
   683 // contended slow-path from EnterI().  We use ReenterI() only for
   684 // monitor reentry in wait().
   685 //
   686 // In the future we should reconcile EnterI() and ReenterI(), adding
   687 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
   688 // loop accordingly.
   690 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
   691     assert (Self != NULL                , "invariant") ;
   692     assert (SelfNode != NULL            , "invariant") ;
   693     assert (SelfNode->_thread == Self   , "invariant") ;
   694     assert (_waiters > 0                , "invariant") ;
   695     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
   696     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
   697     JavaThread * jt = (JavaThread *) Self ;
   699     int nWakeups = 0 ;
   700     for (;;) {
   701         ObjectWaiter::TStates v = SelfNode->TState ;
   702         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
   703         assert    (_owner != Self, "invariant") ;
   705         if (TryLock (Self) > 0) break ;
   706         if (TrySpin (Self) > 0) break ;
   708         TEVENT (Wait Reentry - parking) ;
   710         // State transition wrappers around park() ...
   711         // ReenterI() wisely defers state transitions until
   712         // it's clear we must park the thread.
   713         {
   714            OSThreadContendState osts(Self->osthread());
   715            ThreadBlockInVM tbivm(jt);
   717            // cleared by handle_special_suspend_equivalent_condition()
   718            // or java_suspend_self()
   719            jt->set_suspend_equivalent();
   720            if (SyncFlags & 1) {
   721               Self->_ParkEvent->park ((jlong)1000) ;
   722            } else {
   723               Self->_ParkEvent->park () ;
   724            }
   726            // were we externally suspended while we were waiting?
   727            for (;;) {
   728               if (!ExitSuspendEquivalent (jt)) break ;
   729               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
   730               jt->java_suspend_self();
   731               jt->set_suspend_equivalent();
   732            }
   733         }
   735         // Try again, but just so we distinguish between futile wakeups and
   736         // successful wakeups.  The following test isn't algorithmically
   737         // necessary, but it helps us maintain sensible statistics.
   738         if (TryLock(Self) > 0) break ;
   740         // The lock is still contested.
   741         // Keep a tally of the # of futile wakeups.
   742         // Note that the counter is not protected by a lock or updated by atomics.
   743         // That is by design - we trade "lossy" counters which are exposed to
   744         // races during updates for a lower probe effect.
   745         TEVENT (Wait Reentry - futile wakeup) ;
   746         ++ nWakeups ;
   748         // Assuming this is not a spurious wakeup we'll normally
   749         // find that _succ == Self.
   750         if (_succ == Self) _succ = NULL ;
   752         // Invariant: after clearing _succ a contending thread
   753         // *must* retry  _owner before parking.
   754         OrderAccess::fence() ;
   756         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
   757           ObjectMonitor::_sync_FutileWakeups->inc() ;
   758         }
   759     }
   761     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
   762     // Normally we'll find Self on the EntryList.
   763     // Unlinking from the EntryList is constant-time and atomic-free.
   764     // From the perspective of the lock owner (this thread), the
   765     // EntryList is stable and cxq is prepend-only.
   766     // The head of cxq is volatile but the interior is stable.
   767     // In addition, Self.TState is stable.
   769     assert (_owner == Self, "invariant") ;
   770     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   771     UnlinkAfterAcquire (Self, SelfNode) ;
   772     if (_succ == Self) _succ = NULL ;
   773     assert (_succ != Self, "invariant") ;
   774     SelfNode->TState = ObjectWaiter::TS_RUN ;
   775     OrderAccess::fence() ;      // see comments at the end of EnterI()
   776 }
   778 // after the thread acquires the lock in ::enter().  Equally, we could defer
   779 // unlinking the thread until ::exit()-time.
   781 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
   782 {
   783     assert (_owner == Self, "invariant") ;
   784     assert (SelfNode->_thread == Self, "invariant") ;
   786     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
   787         // Normal case: remove Self from the DLL EntryList .
   788         // This is a constant-time operation.
   789         ObjectWaiter * nxt = SelfNode->_next ;
   790         ObjectWaiter * prv = SelfNode->_prev ;
   791         if (nxt != NULL) nxt->_prev = prv ;
   792         if (prv != NULL) prv->_next = nxt ;
   793         if (SelfNode == _EntryList ) _EntryList = nxt ;
   794         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
   795         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
   796         TEVENT (Unlink from EntryList) ;
   797     } else {
   798         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
   799         // Inopportune interleaving -- Self is still on the cxq.
   800         // This usually means the enqueue of self raced an exiting thread.
   801         // Normally we'll find Self near the front of the cxq, so
   802         // dequeueing is typically fast.  If needbe we can accelerate
   803         // this with some MCS/CHL-like bidirectional list hints and advisory
   804         // back-links so dequeueing from the interior will normally operate
   805         // in constant-time.
   806         // Dequeue Self from either the head (with CAS) or from the interior
   807         // with a linear-time scan and normal non-atomic memory operations.
   808         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
   809         // and then unlink Self from EntryList.  We have to drain eventually,
   810         // so it might as well be now.
   812         ObjectWaiter * v = _cxq ;
   813         assert (v != NULL, "invariant") ;
   814         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
   815             // The CAS above can fail from interference IFF a "RAT" arrived.
   816             // In that case Self must be in the interior and can no longer be
   817             // at the head of cxq.
   818             if (v == SelfNode) {
   819                 assert (_cxq != v, "invariant") ;
   820                 v = _cxq ;          // CAS above failed - start scan at head of list
   821             }
   822             ObjectWaiter * p ;
   823             ObjectWaiter * q = NULL ;
   824             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
   825                 q = p ;
   826                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
   827             }
   828             assert (v != SelfNode,  "invariant") ;
   829             assert (p == SelfNode,  "Node not found on cxq") ;
   830             assert (p != _cxq,      "invariant") ;
   831             assert (q != NULL,      "invariant") ;
   832             assert (q->_next == p,  "invariant") ;
   833             q->_next = p->_next ;
   834         }
   835         TEVENT (Unlink from cxq) ;
   836     }
   838     // Diagnostic hygiene ...
   839     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
   840     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
   841     SelfNode->TState = ObjectWaiter::TS_RUN ;
   842 }
   844 // -----------------------------------------------------------------------------
   845 // Exit support
   846 //
   847 // exit()
   848 // ~~~~~~
   849 // Note that the collector can't reclaim the objectMonitor or deflate
   850 // the object out from underneath the thread calling ::exit() as the
   851 // thread calling ::exit() never transitions to a stable state.
   852 // This inhibits GC, which in turn inhibits asynchronous (and
   853 // inopportune) reclamation of "this".
   854 //
   855 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
   856 // There's one exception to the claim above, however.  EnterI() can call
   857 // exit() to drop a lock if the acquirer has been externally suspended.
   858 // In that case exit() is called with _thread_state as _thread_blocked,
   859 // but the monitor's _count field is > 0, which inhibits reclamation.
   860 //
   861 // 1-0 exit
   862 // ~~~~~~~~
   863 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
   864 // the fast-path operators have been optimized so the common ::exit()
   865 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
   866 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
   867 // greatly improves latency -- MEMBAR and CAS having considerable local
   868 // latency on modern processors -- but at the cost of "stranding".  Absent the
   869 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
   870 // ::enter() path, resulting in the entering thread being stranding
   871 // and a progress-liveness failure.   Stranding is extremely rare.
   872 // We use timers (timed park operations) & periodic polling to detect
   873 // and recover from stranding.  Potentially stranded threads periodically
   874 // wake up and poll the lock.  See the usage of the _Responsible variable.
   875 //
   876 // The CAS() in enter provides for safety and exclusion, while the CAS or
   877 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
   878 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
   879 // We detect and recover from stranding with timers.
   880 //
   881 // If a thread transiently strands it'll park until (a) another
   882 // thread acquires the lock and then drops the lock, at which time the
   883 // exiting thread will notice and unpark the stranded thread, or, (b)
   884 // the timer expires.  If the lock is high traffic then the stranding latency
   885 // will be low due to (a).  If the lock is low traffic then the odds of
   886 // stranding are lower, although the worst-case stranding latency
   887 // is longer.  Critically, we don't want to put excessive load in the
   888 // platform's timer subsystem.  We want to minimize both the timer injection
   889 // rate (timers created/sec) as well as the number of timers active at
   890 // any one time.  (more precisely, we want to minimize timer-seconds, which is
   891 // the integral of the # of active timers at any instant over time).
   892 // Both impinge on OS scalability.  Given that, at most one thread parked on
   893 // a monitor will use a timer.
   895 void ATTR ObjectMonitor::exit(TRAPS) {
   896    Thread * Self = THREAD ;
   897    if (THREAD != _owner) {
   898      if (THREAD->is_lock_owned((address) _owner)) {
   899        // Transmute _owner from a BasicLock pointer to a Thread address.
   900        // We don't need to hold _mutex for this transition.
   901        // Non-null to Non-null is safe as long as all readers can
   902        // tolerate either flavor.
   903        assert (_recursions == 0, "invariant") ;
   904        _owner = THREAD ;
   905        _recursions = 0 ;
   906        OwnerIsThread = 1 ;
   907      } else {
   908        // NOTE: we need to handle unbalanced monitor enter/exit
   909        // in native code by throwing an exception.
   910        // TODO: Throw an IllegalMonitorStateException ?
   911        TEVENT (Exit - Throw IMSX) ;
   912        assert(false, "Non-balanced monitor enter/exit!");
   913        if (false) {
   914           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
   915        }
   916        return;
   917      }
   918    }
   920    if (_recursions != 0) {
   921      _recursions--;        // this is simple recursive enter
   922      TEVENT (Inflated exit - recursive) ;
   923      return ;
   924    }
   926    // Invariant: after setting Responsible=null an thread must execute
   927    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
   928    if ((SyncFlags & 4) == 0) {
   929       _Responsible = NULL ;
   930    }
   932    for (;;) {
   933       assert (THREAD == _owner, "invariant") ;
   936       if (Knob_ExitPolicy == 0) {
   937          // release semantics: prior loads and stores from within the critical section
   938          // must not float (reorder) past the following store that drops the lock.
   939          // On SPARC that requires MEMBAR #loadstore|#storestore.
   940          // But of course in TSO #loadstore|#storestore is not required.
   941          // I'd like to write one of the following:
   942          // A.  OrderAccess::release() ; _owner = NULL
   943          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
   944          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
   945          // store into a _dummy variable.  That store is not needed, but can result
   946          // in massive wasteful coherency traffic on classic SMP systems.
   947          // Instead, I use release_store(), which is implemented as just a simple
   948          // ST on x64, x86 and SPARC.
   949          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
   950          OrderAccess::storeload() ;                         // See if we need to wake a successor
   951          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
   952             TEVENT (Inflated exit - simple egress) ;
   953             return ;
   954          }
   955          TEVENT (Inflated exit - complex egress) ;
   957          // Normally the exiting thread is responsible for ensuring succession,
   958          // but if other successors are ready or other entering threads are spinning
   959          // then this thread can simply store NULL into _owner and exit without
   960          // waking a successor.  The existence of spinners or ready successors
   961          // guarantees proper succession (liveness).  Responsibility passes to the
   962          // ready or running successors.  The exiting thread delegates the duty.
   963          // More precisely, if a successor already exists this thread is absolved
   964          // of the responsibility of waking (unparking) one.
   965          //
   966          // The _succ variable is critical to reducing futile wakeup frequency.
   967          // _succ identifies the "heir presumptive" thread that has been made
   968          // ready (unparked) but that has not yet run.  We need only one such
   969          // successor thread to guarantee progress.
   970          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
   971          // section 3.3 "Futile Wakeup Throttling" for details.
   972          //
   973          // Note that spinners in Enter() also set _succ non-null.
   974          // In the current implementation spinners opportunistically set
   975          // _succ so that exiting threads might avoid waking a successor.
   976          // Another less appealing alternative would be for the exiting thread
   977          // to drop the lock and then spin briefly to see if a spinner managed
   978          // to acquire the lock.  If so, the exiting thread could exit
   979          // immediately without waking a successor, otherwise the exiting
   980          // thread would need to dequeue and wake a successor.
   981          // (Note that we'd need to make the post-drop spin short, but no
   982          // shorter than the worst-case round-trip cache-line migration time.
   983          // The dropped lock needs to become visible to the spinner, and then
   984          // the acquisition of the lock by the spinner must become visible to
   985          // the exiting thread).
   986          //
   988          // It appears that an heir-presumptive (successor) must be made ready.
   989          // Only the current lock owner can manipulate the EntryList or
   990          // drain _cxq, so we need to reacquire the lock.  If we fail
   991          // to reacquire the lock the responsibility for ensuring succession
   992          // falls to the new owner.
   993          //
   994          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
   995             return ;
   996          }
   997          TEVENT (Exit - Reacquired) ;
   998       } else {
   999          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  1000             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  1001             OrderAccess::storeload() ;
  1002             // Ratify the previously observed values.
  1003             if (_cxq == NULL || _succ != NULL) {
  1004                 TEVENT (Inflated exit - simple egress) ;
  1005                 return ;
  1008             // inopportune interleaving -- the exiting thread (this thread)
  1009             // in the fast-exit path raced an entering thread in the slow-enter
  1010             // path.
  1011             // We have two choices:
  1012             // A.  Try to reacquire the lock.
  1013             //     If the CAS() fails return immediately, otherwise
  1014             //     we either restart/rerun the exit operation, or simply
  1015             //     fall-through into the code below which wakes a successor.
  1016             // B.  If the elements forming the EntryList|cxq are TSM
  1017             //     we could simply unpark() the lead thread and return
  1018             //     without having set _succ.
  1019             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1020                TEVENT (Inflated exit - reacquired succeeded) ;
  1021                return ;
  1023             TEVENT (Inflated exit - reacquired failed) ;
  1024          } else {
  1025             TEVENT (Inflated exit - complex egress) ;
  1029       guarantee (_owner == THREAD, "invariant") ;
  1031       ObjectWaiter * w = NULL ;
  1032       int QMode = Knob_QMode ;
  1034       if (QMode == 2 && _cxq != NULL) {
  1035           // QMode == 2 : cxq has precedence over EntryList.
  1036           // Try to directly wake a successor from the cxq.
  1037           // If successful, the successor will need to unlink itself from cxq.
  1038           w = _cxq ;
  1039           assert (w != NULL, "invariant") ;
  1040           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1041           ExitEpilog (Self, w) ;
  1042           return ;
  1045       if (QMode == 3 && _cxq != NULL) {
  1046           // Aggressively drain cxq into EntryList at the first opportunity.
  1047           // This policy ensure that recently-run threads live at the head of EntryList.
  1048           // Drain _cxq into EntryList - bulk transfer.
  1049           // First, detach _cxq.
  1050           // The following loop is tantamount to: w = swap (&cxq, NULL)
  1051           w = _cxq ;
  1052           for (;;) {
  1053              assert (w != NULL, "Invariant") ;
  1054              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1055              if (u == w) break ;
  1056              w = u ;
  1058           assert (w != NULL              , "invariant") ;
  1060           ObjectWaiter * q = NULL ;
  1061           ObjectWaiter * p ;
  1062           for (p = w ; p != NULL ; p = p->_next) {
  1063               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1064               p->TState = ObjectWaiter::TS_ENTER ;
  1065               p->_prev = q ;
  1066               q = p ;
  1069           // Append the RATs to the EntryList
  1070           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
  1071           ObjectWaiter * Tail ;
  1072           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
  1073           if (Tail == NULL) {
  1074               _EntryList = w ;
  1075           } else {
  1076               Tail->_next = w ;
  1077               w->_prev = Tail ;
  1080           // Fall thru into code that tries to wake a successor from EntryList
  1083       if (QMode == 4 && _cxq != NULL) {
  1084           // Aggressively drain cxq into EntryList at the first opportunity.
  1085           // This policy ensure that recently-run threads live at the head of EntryList.
  1087           // Drain _cxq into EntryList - bulk transfer.
  1088           // First, detach _cxq.
  1089           // The following loop is tantamount to: w = swap (&cxq, NULL)
  1090           w = _cxq ;
  1091           for (;;) {
  1092              assert (w != NULL, "Invariant") ;
  1093              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1094              if (u == w) break ;
  1095              w = u ;
  1097           assert (w != NULL              , "invariant") ;
  1099           ObjectWaiter * q = NULL ;
  1100           ObjectWaiter * p ;
  1101           for (p = w ; p != NULL ; p = p->_next) {
  1102               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1103               p->TState = ObjectWaiter::TS_ENTER ;
  1104               p->_prev = q ;
  1105               q = p ;
  1108           // Prepend the RATs to the EntryList
  1109           if (_EntryList != NULL) {
  1110               q->_next = _EntryList ;
  1111               _EntryList->_prev = q ;
  1113           _EntryList = w ;
  1115           // Fall thru into code that tries to wake a successor from EntryList
  1118       w = _EntryList  ;
  1119       if (w != NULL) {
  1120           // I'd like to write: guarantee (w->_thread != Self).
  1121           // But in practice an exiting thread may find itself on the EntryList.
  1122           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
  1123           // then calls exit().  Exit release the lock by setting O._owner to NULL.
  1124           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
  1125           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
  1126           // release the lock "O".  T2 resumes immediately after the ST of null into
  1127           // _owner, above.  T2 notices that the EntryList is populated, so it
  1128           // reacquires the lock and then finds itself on the EntryList.
  1129           // Given all that, we have to tolerate the circumstance where "w" is
  1130           // associated with Self.
  1131           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1132           ExitEpilog (Self, w) ;
  1133           return ;
  1136       // If we find that both _cxq and EntryList are null then just
  1137       // re-run the exit protocol from the top.
  1138       w = _cxq ;
  1139       if (w == NULL) continue ;
  1141       // Drain _cxq into EntryList - bulk transfer.
  1142       // First, detach _cxq.
  1143       // The following loop is tantamount to: w = swap (&cxq, NULL)
  1144       for (;;) {
  1145           assert (w != NULL, "Invariant") ;
  1146           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1147           if (u == w) break ;
  1148           w = u ;
  1150       TEVENT (Inflated exit - drain cxq into EntryList) ;
  1152       assert (w != NULL              , "invariant") ;
  1153       assert (_EntryList  == NULL    , "invariant") ;
  1155       // Convert the LIFO SLL anchored by _cxq into a DLL.
  1156       // The list reorganization step operates in O(LENGTH(w)) time.
  1157       // It's critical that this step operate quickly as
  1158       // "Self" still holds the outer-lock, restricting parallelism
  1159       // and effectively lengthening the critical section.
  1160       // Invariant: s chases t chases u.
  1161       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
  1162       // we have faster access to the tail.
  1164       if (QMode == 1) {
  1165          // QMode == 1 : drain cxq to EntryList, reversing order
  1166          // We also reverse the order of the list.
  1167          ObjectWaiter * s = NULL ;
  1168          ObjectWaiter * t = w ;
  1169          ObjectWaiter * u = NULL ;
  1170          while (t != NULL) {
  1171              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  1172              t->TState = ObjectWaiter::TS_ENTER ;
  1173              u = t->_next ;
  1174              t->_prev = u ;
  1175              t->_next = s ;
  1176              s = t;
  1177              t = u ;
  1179          _EntryList  = s ;
  1180          assert (s != NULL, "invariant") ;
  1181       } else {
  1182          // QMode == 0 or QMode == 2
  1183          _EntryList = w ;
  1184          ObjectWaiter * q = NULL ;
  1185          ObjectWaiter * p ;
  1186          for (p = w ; p != NULL ; p = p->_next) {
  1187              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1188              p->TState = ObjectWaiter::TS_ENTER ;
  1189              p->_prev = q ;
  1190              q = p ;
  1194       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
  1195       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
  1197       // See if we can abdicate to a spinner instead of waking a thread.
  1198       // A primary goal of the implementation is to reduce the
  1199       // context-switch rate.
  1200       if (_succ != NULL) continue;
  1202       w = _EntryList  ;
  1203       if (w != NULL) {
  1204           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1205           ExitEpilog (Self, w) ;
  1206           return ;
  1211 // ExitSuspendEquivalent:
  1212 // A faster alternate to handle_special_suspend_equivalent_condition()
  1213 //
  1214 // handle_special_suspend_equivalent_condition() unconditionally
  1215 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
  1216 // operations have high latency.  Note that in ::enter() we call HSSEC
  1217 // while holding the monitor, so we effectively lengthen the critical sections.
  1218 //
  1219 // There are a number of possible solutions:
  1220 //
  1221 // A.  To ameliorate the problem we might also defer state transitions
  1222 //     to as late as possible -- just prior to parking.
  1223 //     Given that, we'd call HSSEC after having returned from park(),
  1224 //     but before attempting to acquire the monitor.  This is only a
  1225 //     partial solution.  It avoids calling HSSEC while holding the
  1226 //     monitor (good), but it still increases successor reacquisition latency --
  1227 //     the interval between unparking a successor and the time the successor
  1228 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
  1229 //     If we use this technique we can also avoid EnterI()-exit() loop
  1230 //     in ::enter() where we iteratively drop the lock and then attempt
  1231 //     to reacquire it after suspending.
  1232 //
  1233 // B.  In the future we might fold all the suspend bits into a
  1234 //     composite per-thread suspend flag and then update it with CAS().
  1235 //     Alternately, a Dekker-like mechanism with multiple variables
  1236 //     would suffice:
  1237 //       ST Self->_suspend_equivalent = false
  1238 //       MEMBAR
  1239 //       LD Self_>_suspend_flags
  1240 //
  1243 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
  1244    int Mode = Knob_FastHSSEC ;
  1245    if (Mode && !jSelf->is_external_suspend()) {
  1246       assert (jSelf->is_suspend_equivalent(), "invariant") ;
  1247       jSelf->clear_suspend_equivalent() ;
  1248       if (2 == Mode) OrderAccess::storeload() ;
  1249       if (!jSelf->is_external_suspend()) return false ;
  1250       // We raced a suspension -- fall thru into the slow path
  1251       TEVENT (ExitSuspendEquivalent - raced) ;
  1252       jSelf->set_suspend_equivalent() ;
  1254    return jSelf->handle_special_suspend_equivalent_condition() ;
  1258 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
  1259    assert (_owner == Self, "invariant") ;
  1261    // Exit protocol:
  1262    // 1. ST _succ = wakee
  1263    // 2. membar #loadstore|#storestore;
  1264    // 2. ST _owner = NULL
  1265    // 3. unpark(wakee)
  1267    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
  1268    ParkEvent * Trigger = Wakee->_event ;
  1270    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
  1271    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
  1272    // out-of-scope (non-extant).
  1273    Wakee  = NULL ;
  1275    // Drop the lock
  1276    OrderAccess::release_store_ptr (&_owner, NULL) ;
  1277    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
  1279    if (SafepointSynchronize::do_call_back()) {
  1280       TEVENT (unpark before SAFEPOINT) ;
  1283    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
  1284    Trigger->unpark() ;
  1286    // Maintain stats and report events to JVMTI
  1287    if (ObjectMonitor::_sync_Parks != NULL) {
  1288       ObjectMonitor::_sync_Parks->inc() ;
  1293 // -----------------------------------------------------------------------------
  1294 // Class Loader deadlock handling.
  1295 //
  1296 // complete_exit exits a lock returning recursion count
  1297 // complete_exit/reenter operate as a wait without waiting
  1298 // complete_exit requires an inflated monitor
  1299 // The _owner field is not always the Thread addr even with an
  1300 // inflated monitor, e.g. the monitor can be inflated by a non-owning
  1301 // thread due to contention.
  1302 intptr_t ObjectMonitor::complete_exit(TRAPS) {
  1303    Thread * const Self = THREAD;
  1304    assert(Self->is_Java_thread(), "Must be Java thread!");
  1305    JavaThread *jt = (JavaThread *)THREAD;
  1307    DeferredInitialize();
  1309    if (THREAD != _owner) {
  1310     if (THREAD->is_lock_owned ((address)_owner)) {
  1311        assert(_recursions == 0, "internal state error");
  1312        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
  1313        _recursions = 0 ;
  1314        OwnerIsThread = 1 ;
  1318    guarantee(Self == _owner, "complete_exit not owner");
  1319    intptr_t save = _recursions; // record the old recursion count
  1320    _recursions = 0;        // set the recursion level to be 0
  1321    exit (Self) ;           // exit the monitor
  1322    guarantee (_owner != Self, "invariant");
  1323    return save;
  1326 // reenter() enters a lock and sets recursion count
  1327 // complete_exit/reenter operate as a wait without waiting
  1328 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
  1329    Thread * const Self = THREAD;
  1330    assert(Self->is_Java_thread(), "Must be Java thread!");
  1331    JavaThread *jt = (JavaThread *)THREAD;
  1333    guarantee(_owner != Self, "reenter already owner");
  1334    enter (THREAD);       // enter the monitor
  1335    guarantee (_recursions == 0, "reenter recursion");
  1336    _recursions = recursions;
  1337    return;
  1341 // -----------------------------------------------------------------------------
  1342 // A macro is used below because there may already be a pending
  1343 // exception which should not abort the execution of the routines
  1344 // which use this (which is why we don't put this into check_slow and
  1345 // call it with a CHECK argument).
  1347 #define CHECK_OWNER()                                                             \
  1348   do {                                                                            \
  1349     if (THREAD != _owner) {                                                       \
  1350       if (THREAD->is_lock_owned((address) _owner)) {                              \
  1351         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
  1352         _recursions = 0;                                                          \
  1353         OwnerIsThread = 1 ;                                                       \
  1354       } else {                                                                    \
  1355         TEVENT (Throw IMSX) ;                                                     \
  1356         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
  1357       }                                                                           \
  1358     }                                                                             \
  1359   } while (false)
  1361 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
  1362 // TODO-FIXME: remove check_slow() -- it's likely dead.
  1364 void ObjectMonitor::check_slow(TRAPS) {
  1365   TEVENT (check_slow - throw IMSX) ;
  1366   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
  1367   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
  1370 static int Adjust (volatile int * adr, int dx) {
  1371   int v ;
  1372   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
  1373   return v ;
  1375 // -----------------------------------------------------------------------------
  1376 // Wait/Notify/NotifyAll
  1377 //
  1378 // Note: a subset of changes to ObjectMonitor::wait()
  1379 // will need to be replicated in complete_exit above
  1380 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
  1381    Thread * const Self = THREAD ;
  1382    assert(Self->is_Java_thread(), "Must be Java thread!");
  1383    JavaThread *jt = (JavaThread *)THREAD;
  1385    DeferredInitialize () ;
  1387    // Throw IMSX or IEX.
  1388    CHECK_OWNER();
  1390    // check for a pending interrupt
  1391    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1392      // post monitor waited event.  Note that this is past-tense, we are done waiting.
  1393      if (JvmtiExport::should_post_monitor_waited()) {
  1394         // Note: 'false' parameter is passed here because the
  1395         // wait was not timed out due to thread interrupt.
  1396         JvmtiExport::post_monitor_waited(jt, this, false);
  1398      TEVENT (Wait - Throw IEX) ;
  1399      THROW(vmSymbols::java_lang_InterruptedException());
  1400      return ;
  1402    TEVENT (Wait) ;
  1404    assert (Self->_Stalled == 0, "invariant") ;
  1405    Self->_Stalled = intptr_t(this) ;
  1406    jt->set_current_waiting_monitor(this);
  1408    // create a node to be put into the queue
  1409    // Critically, after we reset() the event but prior to park(), we must check
  1410    // for a pending interrupt.
  1411    ObjectWaiter node(Self);
  1412    node.TState = ObjectWaiter::TS_WAIT ;
  1413    Self->_ParkEvent->reset() ;
  1414    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
  1416    // Enter the waiting queue, which is a circular doubly linked list in this case
  1417    // but it could be a priority queue or any data structure.
  1418    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
  1419    // by the the owner of the monitor *except* in the case where park()
  1420    // returns because of a timeout of interrupt.  Contention is exceptionally rare
  1421    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
  1423    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
  1424    AddWaiter (&node) ;
  1425    Thread::SpinRelease (&_WaitSetLock) ;
  1427    if ((SyncFlags & 4) == 0) {
  1428       _Responsible = NULL ;
  1430    intptr_t save = _recursions; // record the old recursion count
  1431    _waiters++;                  // increment the number of waiters
  1432    _recursions = 0;             // set the recursion level to be 1
  1433    exit (Self) ;                    // exit the monitor
  1434    guarantee (_owner != Self, "invariant") ;
  1436    // As soon as the ObjectMonitor's ownership is dropped in the exit()
  1437    // call above, another thread can enter() the ObjectMonitor, do the
  1438    // notify(), and exit() the ObjectMonitor. If the other thread's
  1439    // exit() call chooses this thread as the successor and the unpark()
  1440    // call happens to occur while this thread is posting a
  1441    // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
  1442    // handler using RawMonitors and consuming the unpark().
  1443    //
  1444    // To avoid the problem, we re-post the event. This does no harm
  1445    // even if the original unpark() was not consumed because we are the
  1446    // chosen successor for this monitor.
  1447    if (node._notified != 0 && _succ == Self) {
  1448       node._event->unpark();
  1451    // The thread is on the WaitSet list - now park() it.
  1452    // On MP systems it's conceivable that a brief spin before we park
  1453    // could be profitable.
  1454    //
  1455    // TODO-FIXME: change the following logic to a loop of the form
  1456    //   while (!timeout && !interrupted && _notified == 0) park()
  1458    int ret = OS_OK ;
  1459    int WasNotified = 0 ;
  1460    { // State transition wrappers
  1461      OSThread* osthread = Self->osthread();
  1462      OSThreadWaitState osts(osthread, true);
  1464        ThreadBlockInVM tbivm(jt);
  1465        // Thread is in thread_blocked state and oop access is unsafe.
  1466        jt->set_suspend_equivalent();
  1468        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
  1469            // Intentionally empty
  1470        } else
  1471        if (node._notified == 0) {
  1472          if (millis <= 0) {
  1473             Self->_ParkEvent->park () ;
  1474          } else {
  1475             ret = Self->_ParkEvent->park (millis) ;
  1479        // were we externally suspended while we were waiting?
  1480        if (ExitSuspendEquivalent (jt)) {
  1481           // TODO-FIXME: add -- if succ == Self then succ = null.
  1482           jt->java_suspend_self();
  1485      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
  1488      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
  1489      // from the WaitSet to the EntryList.
  1490      // See if we need to remove Node from the WaitSet.
  1491      // We use double-checked locking to avoid grabbing _WaitSetLock
  1492      // if the thread is not on the wait queue.
  1493      //
  1494      // Note that we don't need a fence before the fetch of TState.
  1495      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
  1496      // written by the is thread. (perhaps the fetch might even be satisfied
  1497      // by a look-aside into the processor's own store buffer, although given
  1498      // the length of the code path between the prior ST and this load that's
  1499      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
  1500      // then we'll acquire the lock and then re-fetch a fresh TState value.
  1501      // That is, we fail toward safety.
  1503      if (node.TState == ObjectWaiter::TS_WAIT) {
  1504          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
  1505          if (node.TState == ObjectWaiter::TS_WAIT) {
  1506             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
  1507             assert(node._notified == 0, "invariant");
  1508             node.TState = ObjectWaiter::TS_RUN ;
  1510          Thread::SpinRelease (&_WaitSetLock) ;
  1513      // The thread is now either on off-list (TS_RUN),
  1514      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
  1515      // The Node's TState variable is stable from the perspective of this thread.
  1516      // No other threads will asynchronously modify TState.
  1517      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
  1518      OrderAccess::loadload() ;
  1519      if (_succ == Self) _succ = NULL ;
  1520      WasNotified = node._notified ;
  1522      // Reentry phase -- reacquire the monitor.
  1523      // re-enter contended monitor after object.wait().
  1524      // retain OBJECT_WAIT state until re-enter successfully completes
  1525      // Thread state is thread_in_vm and oop access is again safe,
  1526      // although the raw address of the object may have changed.
  1527      // (Don't cache naked oops over safepoints, of course).
  1529      // post monitor waited event. Note that this is past-tense, we are done waiting.
  1530      if (JvmtiExport::should_post_monitor_waited()) {
  1531        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
  1533      OrderAccess::fence() ;
  1535      assert (Self->_Stalled != 0, "invariant") ;
  1536      Self->_Stalled = 0 ;
  1538      assert (_owner != Self, "invariant") ;
  1539      ObjectWaiter::TStates v = node.TState ;
  1540      if (v == ObjectWaiter::TS_RUN) {
  1541          enter (Self) ;
  1542      } else {
  1543          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
  1544          ReenterI (Self, &node) ;
  1545          node.wait_reenter_end(this);
  1548      // Self has reacquired the lock.
  1549      // Lifecycle - the node representing Self must not appear on any queues.
  1550      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
  1551      // want residual elements associated with this thread left on any lists.
  1552      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
  1553      assert    (_owner == Self, "invariant") ;
  1554      assert    (_succ != Self , "invariant") ;
  1555    } // OSThreadWaitState()
  1557    jt->set_current_waiting_monitor(NULL);
  1559    guarantee (_recursions == 0, "invariant") ;
  1560    _recursions = save;     // restore the old recursion count
  1561    _waiters--;             // decrement the number of waiters
  1563    // Verify a few postconditions
  1564    assert (_owner == Self       , "invariant") ;
  1565    assert (_succ  != Self       , "invariant") ;
  1566    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  1568    if (SyncFlags & 32) {
  1569       OrderAccess::fence() ;
  1572    // check if the notification happened
  1573    if (!WasNotified) {
  1574      // no, it could be timeout or Thread.interrupt() or both
  1575      // check for interrupt event, otherwise it is timeout
  1576      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1577        TEVENT (Wait - throw IEX from epilog) ;
  1578        THROW(vmSymbols::java_lang_InterruptedException());
  1582    // NOTE: Spurious wake up will be consider as timeout.
  1583    // Monitor notify has precedence over thread interrupt.
  1587 // Consider:
  1588 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
  1589 // then instead of transferring a thread from the WaitSet to the EntryList
  1590 // we might just dequeue a thread from the WaitSet and directly unpark() it.
  1592 void ObjectMonitor::notify(TRAPS) {
  1593   CHECK_OWNER();
  1594   if (_WaitSet == NULL) {
  1595      TEVENT (Empty-Notify) ;
  1596      return ;
  1598   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
  1600   int Policy = Knob_MoveNotifyee ;
  1602   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
  1603   ObjectWaiter * iterator = DequeueWaiter() ;
  1604   if (iterator != NULL) {
  1605      TEVENT (Notify1 - Transfer) ;
  1606      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1607      guarantee (iterator->_notified == 0, "invariant") ;
  1608      if (Policy != 4) {
  1609         iterator->TState = ObjectWaiter::TS_ENTER ;
  1611      iterator->_notified = 1 ;
  1613      ObjectWaiter * List = _EntryList ;
  1614      if (List != NULL) {
  1615         assert (List->_prev == NULL, "invariant") ;
  1616         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1617         assert (List != iterator, "invariant") ;
  1620      if (Policy == 0) {       // prepend to EntryList
  1621          if (List == NULL) {
  1622              iterator->_next = iterator->_prev = NULL ;
  1623              _EntryList = iterator ;
  1624          } else {
  1625              List->_prev = iterator ;
  1626              iterator->_next = List ;
  1627              iterator->_prev = NULL ;
  1628              _EntryList = iterator ;
  1630      } else
  1631      if (Policy == 1) {      // append to EntryList
  1632          if (List == NULL) {
  1633              iterator->_next = iterator->_prev = NULL ;
  1634              _EntryList = iterator ;
  1635          } else {
  1636             // CONSIDER:  finding the tail currently requires a linear-time walk of
  1637             // the EntryList.  We can make tail access constant-time by converting to
  1638             // a CDLL instead of using our current DLL.
  1639             ObjectWaiter * Tail ;
  1640             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1641             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1642             Tail->_next = iterator ;
  1643             iterator->_prev = Tail ;
  1644             iterator->_next = NULL ;
  1646      } else
  1647      if (Policy == 2) {      // prepend to cxq
  1648          // prepend to cxq
  1649          if (List == NULL) {
  1650              iterator->_next = iterator->_prev = NULL ;
  1651              _EntryList = iterator ;
  1652          } else {
  1653             iterator->TState = ObjectWaiter::TS_CXQ ;
  1654             for (;;) {
  1655                 ObjectWaiter * Front = _cxq ;
  1656                 iterator->_next = Front ;
  1657                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1658                     break ;
  1662      } else
  1663      if (Policy == 3) {      // append to cxq
  1664         iterator->TState = ObjectWaiter::TS_CXQ ;
  1665         for (;;) {
  1666             ObjectWaiter * Tail ;
  1667             Tail = _cxq ;
  1668             if (Tail == NULL) {
  1669                 iterator->_next = NULL ;
  1670                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1671                    break ;
  1673             } else {
  1674                 while (Tail->_next != NULL) Tail = Tail->_next ;
  1675                 Tail->_next = iterator ;
  1676                 iterator->_prev = Tail ;
  1677                 iterator->_next = NULL ;
  1678                 break ;
  1681      } else {
  1682         ParkEvent * ev = iterator->_event ;
  1683         iterator->TState = ObjectWaiter::TS_RUN ;
  1684         OrderAccess::fence() ;
  1685         ev->unpark() ;
  1688      if (Policy < 4) {
  1689        iterator->wait_reenter_begin(this);
  1692      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1693      // move the add-to-EntryList operation, above, outside the critical section
  1694      // protected by _WaitSetLock.  In practice that's not useful.  With the
  1695      // exception of  wait() timeouts and interrupts the monitor owner
  1696      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1697      // on _WaitSetLock so it's not profitable to reduce the length of the
  1698      // critical section.
  1701   Thread::SpinRelease (&_WaitSetLock) ;
  1703   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
  1704      ObjectMonitor::_sync_Notifications->inc() ;
  1709 void ObjectMonitor::notifyAll(TRAPS) {
  1710   CHECK_OWNER();
  1711   ObjectWaiter* iterator;
  1712   if (_WaitSet == NULL) {
  1713       TEVENT (Empty-NotifyAll) ;
  1714       return ;
  1716   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
  1718   int Policy = Knob_MoveNotifyee ;
  1719   int Tally = 0 ;
  1720   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
  1722   for (;;) {
  1723      iterator = DequeueWaiter () ;
  1724      if (iterator == NULL) break ;
  1725      TEVENT (NotifyAll - Transfer1) ;
  1726      ++Tally ;
  1728      // Disposition - what might we do with iterator ?
  1729      // a.  add it directly to the EntryList - either tail or head.
  1730      // b.  push it onto the front of the _cxq.
  1731      // For now we use (a).
  1733      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1734      guarantee (iterator->_notified == 0, "invariant") ;
  1735      iterator->_notified = 1 ;
  1736      if (Policy != 4) {
  1737         iterator->TState = ObjectWaiter::TS_ENTER ;
  1740      ObjectWaiter * List = _EntryList ;
  1741      if (List != NULL) {
  1742         assert (List->_prev == NULL, "invariant") ;
  1743         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1744         assert (List != iterator, "invariant") ;
  1747      if (Policy == 0) {       // prepend to EntryList
  1748          if (List == NULL) {
  1749              iterator->_next = iterator->_prev = NULL ;
  1750              _EntryList = iterator ;
  1751          } else {
  1752              List->_prev = iterator ;
  1753              iterator->_next = List ;
  1754              iterator->_prev = NULL ;
  1755              _EntryList = iterator ;
  1757      } else
  1758      if (Policy == 1) {      // append to EntryList
  1759          if (List == NULL) {
  1760              iterator->_next = iterator->_prev = NULL ;
  1761              _EntryList = iterator ;
  1762          } else {
  1763             // CONSIDER:  finding the tail currently requires a linear-time walk of
  1764             // the EntryList.  We can make tail access constant-time by converting to
  1765             // a CDLL instead of using our current DLL.
  1766             ObjectWaiter * Tail ;
  1767             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1768             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1769             Tail->_next = iterator ;
  1770             iterator->_prev = Tail ;
  1771             iterator->_next = NULL ;
  1773      } else
  1774      if (Policy == 2) {      // prepend to cxq
  1775          // prepend to cxq
  1776          iterator->TState = ObjectWaiter::TS_CXQ ;
  1777          for (;;) {
  1778              ObjectWaiter * Front = _cxq ;
  1779              iterator->_next = Front ;
  1780              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1781                  break ;
  1784      } else
  1785      if (Policy == 3) {      // append to cxq
  1786         iterator->TState = ObjectWaiter::TS_CXQ ;
  1787         for (;;) {
  1788             ObjectWaiter * Tail ;
  1789             Tail = _cxq ;
  1790             if (Tail == NULL) {
  1791                 iterator->_next = NULL ;
  1792                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1793                    break ;
  1795             } else {
  1796                 while (Tail->_next != NULL) Tail = Tail->_next ;
  1797                 Tail->_next = iterator ;
  1798                 iterator->_prev = Tail ;
  1799                 iterator->_next = NULL ;
  1800                 break ;
  1803      } else {
  1804         ParkEvent * ev = iterator->_event ;
  1805         iterator->TState = ObjectWaiter::TS_RUN ;
  1806         OrderAccess::fence() ;
  1807         ev->unpark() ;
  1810      if (Policy < 4) {
  1811        iterator->wait_reenter_begin(this);
  1814      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1815      // move the add-to-EntryList operation, above, outside the critical section
  1816      // protected by _WaitSetLock.  In practice that's not useful.  With the
  1817      // exception of  wait() timeouts and interrupts the monitor owner
  1818      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1819      // on _WaitSetLock so it's not profitable to reduce the length of the
  1820      // critical section.
  1823   Thread::SpinRelease (&_WaitSetLock) ;
  1825   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
  1826      ObjectMonitor::_sync_Notifications->inc(Tally) ;
  1830 // -----------------------------------------------------------------------------
  1831 // Adaptive Spinning Support
  1832 //
  1833 // Adaptive spin-then-block - rational spinning
  1834 //
  1835 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
  1836 // algorithm.  On high order SMP systems it would be better to start with
  1837 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
  1838 // a contending thread could enqueue itself on the cxq and then spin locally
  1839 // on a thread-specific variable such as its ParkEvent._Event flag.
  1840 // That's left as an exercise for the reader.  Note that global spinning is
  1841 // not problematic on Niagara, as the L2$ serves the interconnect and has both
  1842 // low latency and massive bandwidth.
  1843 //
  1844 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
  1845 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
  1846 // (duration) or we can fix the count at approximately the duration of
  1847 // a context switch and vary the frequency.   Of course we could also
  1848 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
  1849 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
  1850 //
  1851 // This implementation varies the duration "D", where D varies with
  1852 // the success rate of recent spin attempts. (D is capped at approximately
  1853 // length of a round-trip context switch).  The success rate for recent
  1854 // spin attempts is a good predictor of the success rate of future spin
  1855 // attempts.  The mechanism adapts automatically to varying critical
  1856 // section length (lock modality), system load and degree of parallelism.
  1857 // D is maintained per-monitor in _SpinDuration and is initialized
  1858 // optimistically.  Spin frequency is fixed at 100%.
  1859 //
  1860 // Note that _SpinDuration is volatile, but we update it without locks
  1861 // or atomics.  The code is designed so that _SpinDuration stays within
  1862 // a reasonable range even in the presence of races.  The arithmetic
  1863 // operations on _SpinDuration are closed over the domain of legal values,
  1864 // so at worst a race will install and older but still legal value.
  1865 // At the very worst this introduces some apparent non-determinism.
  1866 // We might spin when we shouldn't or vice-versa, but since the spin
  1867 // count are relatively short, even in the worst case, the effect is harmless.
  1868 //
  1869 // Care must be taken that a low "D" value does not become an
  1870 // an absorbing state.  Transient spinning failures -- when spinning
  1871 // is overall profitable -- should not cause the system to converge
  1872 // on low "D" values.  We want spinning to be stable and predictable
  1873 // and fairly responsive to change and at the same time we don't want
  1874 // it to oscillate, become metastable, be "too" non-deterministic,
  1875 // or converge on or enter undesirable stable absorbing states.
  1876 //
  1877 // We implement a feedback-based control system -- using past behavior
  1878 // to predict future behavior.  We face two issues: (a) if the
  1879 // input signal is random then the spin predictor won't provide optimal
  1880 // results, and (b) if the signal frequency is too high then the control
  1881 // system, which has some natural response lag, will "chase" the signal.
  1882 // (b) can arise from multimodal lock hold times.  Transient preemption
  1883 // can also result in apparent bimodal lock hold times.
  1884 // Although sub-optimal, neither condition is particularly harmful, as
  1885 // in the worst-case we'll spin when we shouldn't or vice-versa.
  1886 // The maximum spin duration is rather short so the failure modes aren't bad.
  1887 // To be conservative, I've tuned the gain in system to bias toward
  1888 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
  1889 // "rings" or oscillates between spinning and not spinning.  This happens
  1890 // when spinning is just on the cusp of profitability, however, so the
  1891 // situation is not dire.  The state is benign -- there's no need to add
  1892 // hysteresis control to damp the transition rate between spinning and
  1893 // not spinning.
  1894 //
  1896 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
  1897 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
  1899 // Spinning: Fixed frequency (100%), vary duration
  1902 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
  1904     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
  1905     int ctr = Knob_FixedSpin ;
  1906     if (ctr != 0) {
  1907         while (--ctr >= 0) {
  1908             if (TryLock (Self) > 0) return 1 ;
  1909             SpinPause () ;
  1911         return 0 ;
  1914     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
  1915       if (TryLock(Self) > 0) {
  1916         // Increase _SpinDuration ...
  1917         // Note that we don't clamp SpinDuration precisely at SpinLimit.
  1918         // Raising _SpurDuration to the poverty line is key.
  1919         int x = _SpinDuration ;
  1920         if (x < Knob_SpinLimit) {
  1921            if (x < Knob_Poverty) x = Knob_Poverty ;
  1922            _SpinDuration = x + Knob_BonusB ;
  1924         return 1 ;
  1926       SpinPause () ;
  1929     // Admission control - verify preconditions for spinning
  1930     //
  1931     // We always spin a little bit, just to prevent _SpinDuration == 0 from
  1932     // becoming an absorbing state.  Put another way, we spin briefly to
  1933     // sample, just in case the system load, parallelism, contention, or lock
  1934     // modality changed.
  1935     //
  1936     // Consider the following alternative:
  1937     // Periodically set _SpinDuration = _SpinLimit and try a long/full
  1938     // spin attempt.  "Periodically" might mean after a tally of
  1939     // the # of failed spin attempts (or iterations) reaches some threshold.
  1940     // This takes us into the realm of 1-out-of-N spinning, where we
  1941     // hold the duration constant but vary the frequency.
  1943     ctr = _SpinDuration  ;
  1944     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
  1945     if (ctr <= 0) return 0 ;
  1947     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
  1948     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
  1949        TEVENT (Spin abort - notrunnable [TOP]);
  1950        return 0 ;
  1953     int MaxSpin = Knob_MaxSpinners ;
  1954     if (MaxSpin >= 0) {
  1955        if (_Spinner > MaxSpin) {
  1956           TEVENT (Spin abort -- too many spinners) ;
  1957           return 0 ;
  1959        // Slighty racy, but benign ...
  1960        Adjust (&_Spinner, 1) ;
  1963     // We're good to spin ... spin ingress.
  1964     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
  1965     // when preparing to LD...CAS _owner, etc and the CAS is likely
  1966     // to succeed.
  1967     int hits    = 0 ;
  1968     int msk     = 0 ;
  1969     int caspty  = Knob_CASPenalty ;
  1970     int oxpty   = Knob_OXPenalty ;
  1971     int sss     = Knob_SpinSetSucc ;
  1972     if (sss && _succ == NULL ) _succ = Self ;
  1973     Thread * prv = NULL ;
  1975     // There are three ways to exit the following loop:
  1976     // 1.  A successful spin where this thread has acquired the lock.
  1977     // 2.  Spin failure with prejudice
  1978     // 3.  Spin failure without prejudice
  1980     while (--ctr >= 0) {
  1982       // Periodic polling -- Check for pending GC
  1983       // Threads may spin while they're unsafe.
  1984       // We don't want spinning threads to delay the JVM from reaching
  1985       // a stop-the-world safepoint or to steal cycles from GC.
  1986       // If we detect a pending safepoint we abort in order that
  1987       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
  1988       // this thread, if safe, doesn't steal cycles from GC.
  1989       // This is in keeping with the "no loitering in runtime" rule.
  1990       // We periodically check to see if there's a safepoint pending.
  1991       if ((ctr & 0xFF) == 0) {
  1992          if (SafepointSynchronize::do_call_back()) {
  1993             TEVENT (Spin: safepoint) ;
  1994             goto Abort ;           // abrupt spin egress
  1996          if (Knob_UsePause & 1) SpinPause () ;
  1998          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
  1999          if (hits > 50 && scb != NULL) {
  2000             int abend = (*scb)(SpinCallbackArgument, 0) ;
  2004       if (Knob_UsePause & 2) SpinPause() ;
  2006       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
  2007       // This is useful on classic SMP systems, but is of less utility on
  2008       // N1-style CMT platforms.
  2009       //
  2010       // Trade-off: lock acquisition latency vs coherency bandwidth.
  2011       // Lock hold times are typically short.  A histogram
  2012       // of successful spin attempts shows that we usually acquire
  2013       // the lock early in the spin.  That suggests we want to
  2014       // sample _owner frequently in the early phase of the spin,
  2015       // but then back-off and sample less frequently as the spin
  2016       // progresses.  The back-off makes a good citizen on SMP big
  2017       // SMP systems.  Oversampling _owner can consume excessive
  2018       // coherency bandwidth.  Relatedly, if we _oversample _owner we
  2019       // can inadvertently interfere with the the ST m->owner=null.
  2020       // executed by the lock owner.
  2021       if (ctr & msk) continue ;
  2022       ++hits ;
  2023       if ((hits & 0xF) == 0) {
  2024         // The 0xF, above, corresponds to the exponent.
  2025         // Consider: (msk+1)|msk
  2026         msk = ((msk << 2)|3) & BackOffMask ;
  2029       // Probe _owner with TATAS
  2030       // If this thread observes the monitor transition or flicker
  2031       // from locked to unlocked to locked, then the odds that this
  2032       // thread will acquire the lock in this spin attempt go down
  2033       // considerably.  The same argument applies if the CAS fails
  2034       // or if we observe _owner change from one non-null value to
  2035       // another non-null value.   In such cases we might abort
  2036       // the spin without prejudice or apply a "penalty" to the
  2037       // spin count-down variable "ctr", reducing it by 100, say.
  2039       Thread * ox = (Thread *) _owner ;
  2040       if (ox == NULL) {
  2041          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  2042          if (ox == NULL) {
  2043             // The CAS succeeded -- this thread acquired ownership
  2044             // Take care of some bookkeeping to exit spin state.
  2045             if (sss && _succ == Self) {
  2046                _succ = NULL ;
  2048             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
  2050             // Increase _SpinDuration :
  2051             // The spin was successful (profitable) so we tend toward
  2052             // longer spin attempts in the future.
  2053             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
  2054             // If we acquired the lock early in the spin cycle it
  2055             // makes sense to increase _SpinDuration proportionally.
  2056             // Note that we don't clamp SpinDuration precisely at SpinLimit.
  2057             int x = _SpinDuration ;
  2058             if (x < Knob_SpinLimit) {
  2059                 if (x < Knob_Poverty) x = Knob_Poverty ;
  2060                 _SpinDuration = x + Knob_Bonus ;
  2062             return 1 ;
  2065          // The CAS failed ... we can take any of the following actions:
  2066          // * penalize: ctr -= Knob_CASPenalty
  2067          // * exit spin with prejudice -- goto Abort;
  2068          // * exit spin without prejudice.
  2069          // * Since CAS is high-latency, retry again immediately.
  2070          prv = ox ;
  2071          TEVENT (Spin: cas failed) ;
  2072          if (caspty == -2) break ;
  2073          if (caspty == -1) goto Abort ;
  2074          ctr -= caspty ;
  2075          continue ;
  2078       // Did lock ownership change hands ?
  2079       if (ox != prv && prv != NULL ) {
  2080           TEVENT (spin: Owner changed)
  2081           if (oxpty == -2) break ;
  2082           if (oxpty == -1) goto Abort ;
  2083           ctr -= oxpty ;
  2085       prv = ox ;
  2087       // Abort the spin if the owner is not executing.
  2088       // The owner must be executing in order to drop the lock.
  2089       // Spinning while the owner is OFFPROC is idiocy.
  2090       // Consider: ctr -= RunnablePenalty ;
  2091       if (Knob_OState && NotRunnable (Self, ox)) {
  2092          TEVENT (Spin abort - notrunnable);
  2093          goto Abort ;
  2095       if (sss && _succ == NULL ) _succ = Self ;
  2098    // Spin failed with prejudice -- reduce _SpinDuration.
  2099    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
  2100    // AIMD is globally stable.
  2101    TEVENT (Spin failure) ;
  2103      int x = _SpinDuration ;
  2104      if (x > 0) {
  2105         // Consider an AIMD scheme like: x -= (x >> 3) + 100
  2106         // This is globally sample and tends to damp the response.
  2107         x -= Knob_Penalty ;
  2108         if (x < 0) x = 0 ;
  2109         _SpinDuration = x ;
  2113  Abort:
  2114    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
  2115    if (sss && _succ == Self) {
  2116       _succ = NULL ;
  2117       // Invariant: after setting succ=null a contending thread
  2118       // must recheck-retry _owner before parking.  This usually happens
  2119       // in the normal usage of TrySpin(), but it's safest
  2120       // to make TrySpin() as foolproof as possible.
  2121       OrderAccess::fence() ;
  2122       if (TryLock(Self) > 0) return 1 ;
  2124    return 0 ;
  2127 // NotRunnable() -- informed spinning
  2128 //
  2129 // Don't bother spinning if the owner is not eligible to drop the lock.
  2130 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
  2131 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
  2132 // The thread must be runnable in order to drop the lock in timely fashion.
  2133 // If the _owner is not runnable then spinning will not likely be
  2134 // successful (profitable).
  2135 //
  2136 // Beware -- the thread referenced by _owner could have died
  2137 // so a simply fetch from _owner->_thread_state might trap.
  2138 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
  2139 // Because of the lifecycle issues the schedctl and _thread_state values
  2140 // observed by NotRunnable() might be garbage.  NotRunnable must
  2141 // tolerate this and consider the observed _thread_state value
  2142 // as advisory.
  2143 //
  2144 // Beware too, that _owner is sometimes a BasicLock address and sometimes
  2145 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
  2146 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
  2147 // with the LSB of _owner.  Another option would be to probablistically probe
  2148 // the putative _owner->TypeTag value.
  2149 //
  2150 // Checking _thread_state isn't perfect.  Even if the thread is
  2151 // in_java it might be blocked on a page-fault or have been preempted
  2152 // and sitting on a ready/dispatch queue.  _thread state in conjunction
  2153 // with schedctl.sc_state gives us a good picture of what the
  2154 // thread is doing, however.
  2155 //
  2156 // TODO: check schedctl.sc_state.
  2157 // We'll need to use SafeFetch32() to read from the schedctl block.
  2158 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
  2159 //
  2160 // The return value from NotRunnable() is *advisory* -- the
  2161 // result is based on sampling and is not necessarily coherent.
  2162 // The caller must tolerate false-negative and false-positive errors.
  2163 // Spinning, in general, is probabilistic anyway.
  2166 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
  2167     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
  2168     if (!OwnerIsThread) return 0 ;
  2170     if (ox == NULL) return 0 ;
  2172     // Avoid transitive spinning ...
  2173     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
  2174     // Immediately after T1 acquires L it's possible that T2, also
  2175     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
  2176     // This occurs transiently after T1 acquired L but before
  2177     // T1 managed to clear T1.Stalled.  T2 does not need to abort
  2178     // its spin in this circumstance.
  2179     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
  2181     if (BlockedOn == 1) return 1 ;
  2182     if (BlockedOn != 0) {
  2183       return BlockedOn != intptr_t(this) && _owner == ox ;
  2186     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
  2187     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
  2188     // consider also: jst != _thread_in_Java -- but that's overspecific.
  2189     return jst == _thread_blocked || jst == _thread_in_native ;
  2193 // -----------------------------------------------------------------------------
  2194 // WaitSet management ...
  2196 ObjectWaiter::ObjectWaiter(Thread* thread) {
  2197   _next     = NULL;
  2198   _prev     = NULL;
  2199   _notified = 0;
  2200   TState    = TS_RUN ;
  2201   _thread   = thread;
  2202   _event    = thread->_ParkEvent ;
  2203   _active   = false;
  2204   assert (_event != NULL, "invariant") ;
  2207 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
  2208   JavaThread *jt = (JavaThread *)this->_thread;
  2209   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
  2212 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
  2213   JavaThread *jt = (JavaThread *)this->_thread;
  2214   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
  2217 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
  2218   assert(node != NULL, "should not dequeue NULL node");
  2219   assert(node->_prev == NULL, "node already in list");
  2220   assert(node->_next == NULL, "node already in list");
  2221   // put node at end of queue (circular doubly linked list)
  2222   if (_WaitSet == NULL) {
  2223     _WaitSet = node;
  2224     node->_prev = node;
  2225     node->_next = node;
  2226   } else {
  2227     ObjectWaiter* head = _WaitSet ;
  2228     ObjectWaiter* tail = head->_prev;
  2229     assert(tail->_next == head, "invariant check");
  2230     tail->_next = node;
  2231     head->_prev = node;
  2232     node->_next = head;
  2233     node->_prev = tail;
  2237 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
  2238   // dequeue the very first waiter
  2239   ObjectWaiter* waiter = _WaitSet;
  2240   if (waiter) {
  2241     DequeueSpecificWaiter(waiter);
  2243   return waiter;
  2246 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
  2247   assert(node != NULL, "should not dequeue NULL node");
  2248   assert(node->_prev != NULL, "node already removed from list");
  2249   assert(node->_next != NULL, "node already removed from list");
  2250   // when the waiter has woken up because of interrupt,
  2251   // timeout or other spurious wake-up, dequeue the
  2252   // waiter from waiting list
  2253   ObjectWaiter* next = node->_next;
  2254   if (next == node) {
  2255     assert(node->_prev == node, "invariant check");
  2256     _WaitSet = NULL;
  2257   } else {
  2258     ObjectWaiter* prev = node->_prev;
  2259     assert(prev->_next == node, "invariant check");
  2260     assert(next->_prev == node, "invariant check");
  2261     next->_prev = prev;
  2262     prev->_next = next;
  2263     if (_WaitSet == node) {
  2264       _WaitSet = next;
  2267   node->_next = NULL;
  2268   node->_prev = NULL;
  2271 // -----------------------------------------------------------------------------
  2272 // PerfData support
  2273 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
  2274 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
  2275 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
  2276 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
  2277 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
  2278 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
  2279 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
  2280 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
  2281 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
  2282 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
  2283 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
  2284 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
  2285 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
  2286 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
  2287 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
  2288 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
  2289 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
  2290 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
  2292 // One-shot global initialization for the sync subsystem.
  2293 // We could also defer initialization and initialize on-demand
  2294 // the first time we call inflate().  Initialization would
  2295 // be protected - like so many things - by the MonitorCache_lock.
  2297 void ObjectMonitor::Initialize () {
  2298   static int InitializationCompleted = 0 ;
  2299   assert (InitializationCompleted == 0, "invariant") ;
  2300   InitializationCompleted = 1 ;
  2301   if (UsePerfData) {
  2302       EXCEPTION_MARK ;
  2303       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
  2304       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
  2305       NEWPERFCOUNTER(_sync_Inflations) ;
  2306       NEWPERFCOUNTER(_sync_Deflations) ;
  2307       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
  2308       NEWPERFCOUNTER(_sync_FutileWakeups) ;
  2309       NEWPERFCOUNTER(_sync_Parks) ;
  2310       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
  2311       NEWPERFCOUNTER(_sync_Notifications) ;
  2312       NEWPERFCOUNTER(_sync_SlowEnter) ;
  2313       NEWPERFCOUNTER(_sync_SlowExit) ;
  2314       NEWPERFCOUNTER(_sync_SlowNotify) ;
  2315       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
  2316       NEWPERFCOUNTER(_sync_FailedSpins) ;
  2317       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
  2318       NEWPERFCOUNTER(_sync_PrivateA) ;
  2319       NEWPERFCOUNTER(_sync_PrivateB) ;
  2320       NEWPERFCOUNTER(_sync_MonInCirculation) ;
  2321       NEWPERFCOUNTER(_sync_MonScavenged) ;
  2322       NEWPERFVARIABLE(_sync_MonExtant) ;
  2323       #undef NEWPERFCOUNTER
  2328 // Compile-time asserts
  2329 // When possible, it's better to catch errors deterministically at
  2330 // compile-time than at runtime.  The down-side to using compile-time
  2331 // asserts is that error message -- often something about negative array
  2332 // indices -- is opaque.
  2334 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
  2336 void ObjectMonitor::ctAsserts() {
  2337   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
  2341 static char * kvGet (char * kvList, const char * Key) {
  2342     if (kvList == NULL) return NULL ;
  2343     size_t n = strlen (Key) ;
  2344     char * Search ;
  2345     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
  2346         if (strncmp (Search, Key, n) == 0) {
  2347             if (Search[n] == '=') return Search + n + 1 ;
  2348             if (Search[n] == 0)   return (char *) "1" ;
  2351     return NULL ;
  2354 static int kvGetInt (char * kvList, const char * Key, int Default) {
  2355     char * v = kvGet (kvList, Key) ;
  2356     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
  2357     if (Knob_ReportSettings && v != NULL) {
  2358         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
  2359         ::fflush (stdout) ;
  2361     return rslt ;
  2364 void ObjectMonitor::DeferredInitialize () {
  2365   if (InitDone > 0) return ;
  2366   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
  2367       while (InitDone != 1) ;
  2368       return ;
  2371   // One-shot global initialization ...
  2372   // The initialization is idempotent, so we don't need locks.
  2373   // In the future consider doing this via os::init_2().
  2374   // SyncKnobs consist of <Key>=<Value> pairs in the style
  2375   // of environment variables.  Start by converting ':' to NUL.
  2377   if (SyncKnobs == NULL) SyncKnobs = "" ;
  2379   size_t sz = strlen (SyncKnobs) ;
  2380   char * knobs = (char *) malloc (sz + 2) ;
  2381   if (knobs == NULL) {
  2382      vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
  2383      guarantee (0, "invariant") ;
  2385   strcpy (knobs, SyncKnobs) ;
  2386   knobs[sz+1] = 0 ;
  2387   for (char * p = knobs ; *p ; p++) {
  2388      if (*p == ':') *p = 0 ;
  2391   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
  2392   SETKNOB(ReportSettings) ;
  2393   SETKNOB(Verbose) ;
  2394   SETKNOB(FixedSpin) ;
  2395   SETKNOB(SpinLimit) ;
  2396   SETKNOB(SpinBase) ;
  2397   SETKNOB(SpinBackOff);
  2398   SETKNOB(CASPenalty) ;
  2399   SETKNOB(OXPenalty) ;
  2400   SETKNOB(LogSpins) ;
  2401   SETKNOB(SpinSetSucc) ;
  2402   SETKNOB(SuccEnabled) ;
  2403   SETKNOB(SuccRestrict) ;
  2404   SETKNOB(Penalty) ;
  2405   SETKNOB(Bonus) ;
  2406   SETKNOB(BonusB) ;
  2407   SETKNOB(Poverty) ;
  2408   SETKNOB(SpinAfterFutile) ;
  2409   SETKNOB(UsePause) ;
  2410   SETKNOB(SpinEarly) ;
  2411   SETKNOB(OState) ;
  2412   SETKNOB(MaxSpinners) ;
  2413   SETKNOB(PreSpin) ;
  2414   SETKNOB(ExitPolicy) ;
  2415   SETKNOB(QMode);
  2416   SETKNOB(ResetEvent) ;
  2417   SETKNOB(MoveNotifyee) ;
  2418   SETKNOB(FastHSSEC) ;
  2419   #undef SETKNOB
  2421   if (os::is_MP()) {
  2422      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
  2423      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
  2424      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
  2425   } else {
  2426      Knob_SpinLimit = 0 ;
  2427      Knob_SpinBase  = 0 ;
  2428      Knob_PreSpin   = 0 ;
  2429      Knob_FixedSpin = -1 ;
  2432   if (Knob_LogSpins == 0) {
  2433      ObjectMonitor::_sync_FailedSpins = NULL ;
  2436   free (knobs) ;
  2437   OrderAccess::fence() ;
  2438   InitDone = 1 ;
  2441 #ifndef PRODUCT
  2442 void ObjectMonitor::verify() {
  2445 void ObjectMonitor::print() {
  2447 #endif

mercurial