src/share/vm/utilities/stack.inline.hpp

Mon, 02 Jul 2012 13:11:28 -0400

author
coleenp
date
Mon, 02 Jul 2012 13:11:28 -0400
changeset 3901
24b9c7f4cae6
parent 3900
d2a62e0f25eb
child 4153
b9a9ed0f8eeb
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_STACK_INLINE_HPP
    26 #define SHARE_VM_UTILITIES_STACK_INLINE_HPP
    28 #include "utilities/stack.hpp"
    30 template <MEMFLAGS F> StackBase<F>::StackBase(size_t segment_size, size_t max_cache_size,
    31                      size_t max_size):
    32   _seg_size(segment_size),
    33   _max_cache_size(max_cache_size),
    34   _max_size(adjust_max_size(max_size, segment_size))
    35 {
    36   assert(_max_size % _seg_size == 0, "not a multiple");
    37 }
    39 template <MEMFLAGS F> size_t StackBase<F>::adjust_max_size(size_t max_size, size_t seg_size)
    40 {
    41   assert(seg_size > 0, "cannot be 0");
    42   assert(max_size >= seg_size || max_size == 0, "max_size too small");
    43   const size_t limit = max_uintx - (seg_size - 1);
    44   if (max_size == 0 || max_size > limit) {
    45     max_size = limit;
    46   }
    47   return (max_size + seg_size - 1) / seg_size * seg_size;
    48 }
    50 template <class E, MEMFLAGS F>
    51 Stack<E, F>::Stack(size_t segment_size, size_t max_cache_size, size_t max_size):
    52   StackBase<F>(adjust_segment_size(segment_size), max_cache_size, max_size)
    53 {
    54   reset(true);
    55 }
    57 template <class E, MEMFLAGS F>
    58 void Stack<E, F>::push(E item)
    59 {
    60   assert(!is_full(), "pushing onto a full stack");
    61   if (this->_cur_seg_size == this->_seg_size) {
    62     push_segment();
    63   }
    64   this->_cur_seg[this->_cur_seg_size] = item;
    65   ++this->_cur_seg_size;
    66 }
    68 template <class E, MEMFLAGS F>
    69 E Stack<E, F>::pop()
    70 {
    71   assert(!is_empty(), "popping from an empty stack");
    72   if (this->_cur_seg_size == 1) {
    73     E tmp = _cur_seg[--this->_cur_seg_size];
    74     pop_segment();
    75     return tmp;
    76   }
    77   return this->_cur_seg[--this->_cur_seg_size];
    78 }
    80 template <class E, MEMFLAGS F>
    81 void Stack<E, F>::clear(bool clear_cache)
    82 {
    83   free_segments(_cur_seg);
    84   if (clear_cache) free_segments(_cache);
    85   reset(clear_cache);
    86 }
    88 template <class E, MEMFLAGS F>
    89 size_t Stack<E, F>::default_segment_size()
    90 {
    91   // Number of elements that fit in 4K bytes minus the size of two pointers
    92   // (link field and malloc header).
    93   return (4096 - 2 * sizeof(E*)) / sizeof(E);
    94 }
    96 template <class E, MEMFLAGS F>
    97 size_t Stack<E, F>::adjust_segment_size(size_t seg_size)
    98 {
    99   const size_t elem_sz = sizeof(E);
   100   const size_t ptr_sz = sizeof(E*);
   101   assert(elem_sz % ptr_sz == 0 || ptr_sz % elem_sz == 0, "bad element size");
   102   if (elem_sz < ptr_sz) {
   103     return align_size_up(seg_size * elem_sz, ptr_sz) / elem_sz;
   104   }
   105   return seg_size;
   106 }
   108 template <class E, MEMFLAGS F>
   109 size_t Stack<E, F>::link_offset() const
   110 {
   111   return align_size_up(this->_seg_size * sizeof(E), sizeof(E*));
   112 }
   114 template <class E, MEMFLAGS F>
   115 size_t Stack<E, F>::segment_bytes() const
   116 {
   117   return link_offset() + sizeof(E*);
   118 }
   120 template <class E, MEMFLAGS F>
   121 E** Stack<E, F>::link_addr(E* seg) const
   122 {
   123   return (E**) ((char*)seg + link_offset());
   124 }
   126 template <class E, MEMFLAGS F>
   127 E* Stack<E, F>::get_link(E* seg) const
   128 {
   129   return *link_addr(seg);
   130 }
   132 template <class E, MEMFLAGS F>
   133 E* Stack<E, F>::set_link(E* new_seg, E* old_seg)
   134 {
   135   *link_addr(new_seg) = old_seg;
   136   return new_seg;
   137 }
   139 template <class E, MEMFLAGS F>
   140 E* Stack<E, F>::alloc(size_t bytes)
   141 {
   142   return (E*) NEW_C_HEAP_ARRAY(char, bytes, F);
   143 }
   145 template <class E, MEMFLAGS F>
   146 void Stack<E, F>::free(E* addr, size_t bytes)
   147 {
   148   FREE_C_HEAP_ARRAY(char, (char*) addr, F);
   149 }
   151 template <class E, MEMFLAGS F>
   152 void Stack<E, F>::push_segment()
   153 {
   154   assert(this->_cur_seg_size == this->_seg_size, "current segment is not full");
   155   E* next;
   156   if (this->_cache_size > 0) {
   157     // Use a cached segment.
   158     next = _cache;
   159     _cache = get_link(_cache);
   160     --this->_cache_size;
   161   } else {
   162     next = alloc(segment_bytes());
   163     DEBUG_ONLY(zap_segment(next, true);)
   164   }
   165   const bool at_empty_transition = is_empty();
   166   this->_cur_seg = set_link(next, _cur_seg);
   167   this->_cur_seg_size = 0;
   168   this->_full_seg_size += at_empty_transition ? 0 : this->_seg_size;
   169   DEBUG_ONLY(verify(at_empty_transition);)
   170 }
   172 template <class E, MEMFLAGS F>
   173 void Stack<E, F>::pop_segment()
   174 {
   175   assert(this->_cur_seg_size == 0, "current segment is not empty");
   176   E* const prev = get_link(_cur_seg);
   177   if (this->_cache_size < this->_max_cache_size) {
   178     // Add the current segment to the cache.
   179     DEBUG_ONLY(zap_segment(_cur_seg, false);)
   180     _cache = set_link(_cur_seg, _cache);
   181     ++this->_cache_size;
   182   } else {
   183     DEBUG_ONLY(zap_segment(_cur_seg, true);)
   184     free(_cur_seg, segment_bytes());
   185   }
   186   const bool at_empty_transition = prev == NULL;
   187   this->_cur_seg = prev;
   188   this->_cur_seg_size = this->_seg_size;
   189   this->_full_seg_size -= at_empty_transition ? 0 : this->_seg_size;
   190   DEBUG_ONLY(verify(at_empty_transition);)
   191 }
   193 template <class E, MEMFLAGS F>
   194 void Stack<E, F>::free_segments(E* seg)
   195 {
   196   const size_t bytes = segment_bytes();
   197   while (seg != NULL) {
   198     E* const prev = get_link(seg);
   199     free(seg, bytes);
   200     seg = prev;
   201   }
   202 }
   204 template <class E, MEMFLAGS F>
   205 void Stack<E, F>::reset(bool reset_cache)
   206 {
   207   this->_cur_seg_size = this->_seg_size; // So push() will alloc a new segment.
   208   this->_full_seg_size = 0;
   209   _cur_seg = NULL;
   210   if (reset_cache) {
   211     this->_cache_size = 0;
   212     _cache = NULL;
   213   }
   214 }
   216 #ifdef ASSERT
   217 template <class E, MEMFLAGS F>
   218 void Stack<E, F>::verify(bool at_empty_transition) const
   219 {
   220   assert(size() <= this->max_size(), "stack exceeded bounds");
   221   assert(this->cache_size() <= this->max_cache_size(), "cache exceeded bounds");
   222   assert(this->_cur_seg_size <= this->segment_size(), "segment index exceeded bounds");
   224   assert(this->_full_seg_size % this->_seg_size == 0, "not a multiple");
   225   assert(at_empty_transition || is_empty() == (size() == 0), "mismatch");
   226   assert((_cache == NULL) == (this->cache_size() == 0), "mismatch");
   228   if (is_empty()) {
   229     assert(this->_cur_seg_size == this->segment_size(), "sanity");
   230   }
   231 }
   233 template <class E, MEMFLAGS F>
   234 void Stack<E, F>::zap_segment(E* seg, bool zap_link_field) const
   235 {
   236   if (!ZapStackSegments) return;
   237   const size_t zap_bytes = segment_bytes() - (zap_link_field ? 0 : sizeof(E*));
   238   uint32_t* cur = (uint32_t*)seg;
   239   const uint32_t* end = cur + zap_bytes / sizeof(uint32_t);
   240   while (cur < end) {
   241     *cur++ = 0xfadfaded;
   242   }
   243 }
   244 #endif
   246 template <class E, MEMFLAGS F>
   247 E* ResourceStack<E, F>::alloc(size_t bytes)
   248 {
   249   return (E*) resource_allocate_bytes(bytes);
   250 }
   252 template <class E, MEMFLAGS F>
   253 void ResourceStack<E, F>::free(E* addr, size_t bytes)
   254 {
   255   resource_free_bytes((char*) addr, bytes);
   256 }
   258 template <class E, MEMFLAGS F>
   259 void StackIterator<E, F>::sync()
   260 {
   261   _full_seg_size = _stack._full_seg_size;
   262   _cur_seg_size = _stack._cur_seg_size;
   263   _cur_seg = _stack._cur_seg;
   264 }
   266 template <class E, MEMFLAGS F>
   267 E* StackIterator<E, F>::next_addr()
   268 {
   269   assert(!is_empty(), "no items left");
   270   if (_cur_seg_size == 1) {
   271     E* addr = _cur_seg;
   272     _cur_seg = _stack.get_link(_cur_seg);
   273     _cur_seg_size = _stack.segment_size();
   274     _full_seg_size -= _stack.segment_size();
   275     return addr;
   276   }
   277   return _cur_seg + --_cur_seg_size;
   278 }
   280 #endif // SHARE_VM_UTILITIES_STACK_INLINE_HPP

mercurial