src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Mon, 02 Jul 2012 13:11:28 -0400

author
coleenp
date
Mon, 02 Jul 2012 13:11:28 -0400
changeset 3901
24b9c7f4cae6
parent 3900
d2a62e0f25eb
child 3924
3a431b605145
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    40 // TraceGen0Time collects data on _both_ young and mixed evacuation pauses
    41 // (the latter may contain non-young regions - i.e. regions that are
    42 // technically in Gen1) while TraceGen1Time collects data about full GCs.
    43 class TraceGen0TimeData : public CHeapObj<mtGC> {
    44  private:
    45   unsigned  _young_pause_num;
    46   unsigned  _mixed_pause_num;
    48   NumberSeq _all_stop_world_times_ms;
    49   NumberSeq _all_yield_times_ms;
    51   NumberSeq _total;
    52   NumberSeq _other;
    53   NumberSeq _root_region_scan_wait;
    54   NumberSeq _parallel;
    55   NumberSeq _ext_root_scan;
    56   NumberSeq _satb_filtering;
    57   NumberSeq _update_rs;
    58   NumberSeq _scan_rs;
    59   NumberSeq _obj_copy;
    60   NumberSeq _termination;
    61   NumberSeq _parallel_other;
    62   NumberSeq _clear_ct;
    64   void print_summary (int level, const char* str, const NumberSeq* seq) const;
    65   void print_summary_sd (int level, const char* str, const NumberSeq* seq) const;
    67 public:
    68    TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
    69   void record_start_collection(double time_to_stop_the_world_ms);
    70   void record_yield_time(double yield_time_ms);
    71   void record_end_collection(
    72      double total_ms,
    73      double other_ms,
    74      double root_region_scan_wait_ms,
    75      double parallel_ms,
    76      double ext_root_scan_ms,
    77      double satb_filtering_ms,
    78      double update_rs_ms,
    79      double scan_rs_ms,
    80      double obj_copy_ms,
    81      double termination_ms,
    82      double parallel_other_ms,
    83      double clear_ct_ms);
    84   void increment_young_collection_count();
    85   void increment_mixed_collection_count();
    86   void print() const;
    87 };
    89 class TraceGen1TimeData : public CHeapObj<mtGC> {
    90  private:
    91   NumberSeq _all_full_gc_times;
    93  public:
    94   void record_full_collection(double full_gc_time_ms);
    95   void print() const;
    96 };
    98 // There are three command line options related to the young gen size:
    99 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
   100 // just a short form for NewSize==MaxNewSize). G1 will use its internal
   101 // heuristics to calculate the actual young gen size, so these options
   102 // basically only limit the range within which G1 can pick a young gen
   103 // size. Also, these are general options taking byte sizes. G1 will
   104 // internally work with a number of regions instead. So, some rounding
   105 // will occur.
   106 //
   107 // If nothing related to the the young gen size is set on the command
   108 // line we should allow the young gen to be between
   109 // G1DefaultMinNewGenPercent and G1DefaultMaxNewGenPercent of the
   110 // heap size. This means that every time the heap size changes the
   111 // limits for the young gen size will be updated.
   112 //
   113 // If only -XX:NewSize is set we should use the specified value as the
   114 // minimum size for young gen. Still using G1DefaultMaxNewGenPercent
   115 // of the heap as maximum.
   116 //
   117 // If only -XX:MaxNewSize is set we should use the specified value as the
   118 // maximum size for young gen. Still using G1DefaultMinNewGenPercent
   119 // of the heap as minimum.
   120 //
   121 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
   122 // No updates when the heap size changes. There is a special case when
   123 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
   124 // different heuristic for calculating the collection set when we do mixed
   125 // collection.
   126 //
   127 // If only -XX:NewRatio is set we should use the specified ratio of the heap
   128 // as both min and max. This will be interpreted as "fixed" just like the
   129 // NewSize==MaxNewSize case above. But we will update the min and max
   130 // everytime the heap size changes.
   131 //
   132 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
   133 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
   134 class G1YoungGenSizer : public CHeapObj<mtGC> {
   135 private:
   136   enum SizerKind {
   137     SizerDefaults,
   138     SizerNewSizeOnly,
   139     SizerMaxNewSizeOnly,
   140     SizerMaxAndNewSize,
   141     SizerNewRatio
   142   };
   143   SizerKind _sizer_kind;
   144   uint _min_desired_young_length;
   145   uint _max_desired_young_length;
   146   bool _adaptive_size;
   147   uint calculate_default_min_length(uint new_number_of_heap_regions);
   148   uint calculate_default_max_length(uint new_number_of_heap_regions);
   150 public:
   151   G1YoungGenSizer();
   152   void heap_size_changed(uint new_number_of_heap_regions);
   153   uint min_desired_young_length() {
   154     return _min_desired_young_length;
   155   }
   156   uint max_desired_young_length() {
   157     return _max_desired_young_length;
   158   }
   159   bool adaptive_young_list_length() {
   160     return _adaptive_size;
   161   }
   162 };
   164 class G1CollectorPolicy: public CollectorPolicy {
   165 private:
   166   // either equal to the number of parallel threads, if ParallelGCThreads
   167   // has been set, or 1 otherwise
   168   int _parallel_gc_threads;
   170   // The number of GC threads currently active.
   171   uintx _no_of_gc_threads;
   173   enum SomePrivateConstants {
   174     NumPrevPausesForHeuristics = 10
   175   };
   177   G1MMUTracker* _mmu_tracker;
   179   void initialize_flags();
   181   void initialize_all() {
   182     initialize_flags();
   183     initialize_size_info();
   184     initialize_perm_generation(PermGen::MarkSweepCompact);
   185   }
   187   CollectionSetChooser* _collectionSetChooser;
   189   double _cur_collection_start_sec;
   190   size_t _cur_collection_pause_used_at_start_bytes;
   191   uint   _cur_collection_pause_used_regions_at_start;
   192   double _cur_collection_par_time_ms;
   194   double _cur_collection_code_root_fixup_time_ms;
   196   double _cur_clear_ct_time_ms;
   197   double _cur_ref_proc_time_ms;
   198   double _cur_ref_enq_time_ms;
   200 #ifndef PRODUCT
   201   // Card Table Count Cache stats
   202   double _min_clear_cc_time_ms;         // min
   203   double _max_clear_cc_time_ms;         // max
   204   double _cur_clear_cc_time_ms;         // clearing time during current pause
   205   double _cum_clear_cc_time_ms;         // cummulative clearing time
   206   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   207 #endif
   209   // These exclude marking times.
   210   TruncatedSeq* _recent_gc_times_ms;
   212   TruncatedSeq* _concurrent_mark_remark_times_ms;
   213   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   215   TraceGen0TimeData _trace_gen0_time_data;
   216   TraceGen1TimeData _trace_gen1_time_data;
   218   double _stop_world_start;
   220   double* _par_last_gc_worker_start_times_ms;
   221   double* _par_last_ext_root_scan_times_ms;
   222   double* _par_last_satb_filtering_times_ms;
   223   double* _par_last_update_rs_times_ms;
   224   double* _par_last_update_rs_processed_buffers;
   225   double* _par_last_scan_rs_times_ms;
   226   double* _par_last_obj_copy_times_ms;
   227   double* _par_last_termination_times_ms;
   228   double* _par_last_termination_attempts;
   229   double* _par_last_gc_worker_end_times_ms;
   230   double* _par_last_gc_worker_times_ms;
   232   // Each workers 'other' time i.e. the elapsed time of the parallel
   233   // code executed by a worker minus the sum of the individual sub-phase
   234   // times for that worker thread.
   235   double* _par_last_gc_worker_other_times_ms;
   237   // indicates whether we are in young or mixed GC mode
   238   bool _gcs_are_young;
   240   uint _young_list_target_length;
   241   uint _young_list_fixed_length;
   242   size_t _prev_eden_capacity; // used for logging
   244   // The max number of regions we can extend the eden by while the GC
   245   // locker is active. This should be >= _young_list_target_length;
   246   uint _young_list_max_length;
   248   bool                  _last_gc_was_young;
   250   bool                  _during_marking;
   251   bool                  _in_marking_window;
   252   bool                  _in_marking_window_im;
   254   SurvRateGroup*        _short_lived_surv_rate_group;
   255   SurvRateGroup*        _survivor_surv_rate_group;
   256   // add here any more surv rate groups
   258   double                _gc_overhead_perc;
   260   double _reserve_factor;
   261   uint _reserve_regions;
   263   bool during_marking() {
   264     return _during_marking;
   265   }
   267 private:
   268   enum PredictionConstants {
   269     TruncatedSeqLength = 10
   270   };
   272   TruncatedSeq* _alloc_rate_ms_seq;
   273   double        _prev_collection_pause_end_ms;
   275   TruncatedSeq* _pending_card_diff_seq;
   276   TruncatedSeq* _rs_length_diff_seq;
   277   TruncatedSeq* _cost_per_card_ms_seq;
   278   TruncatedSeq* _young_cards_per_entry_ratio_seq;
   279   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
   280   TruncatedSeq* _cost_per_entry_ms_seq;
   281   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
   282   TruncatedSeq* _cost_per_byte_ms_seq;
   283   TruncatedSeq* _constant_other_time_ms_seq;
   284   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   285   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   287   TruncatedSeq* _pending_cards_seq;
   288   TruncatedSeq* _rs_lengths_seq;
   290   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   292   G1YoungGenSizer* _young_gen_sizer;
   294   uint _eden_cset_region_length;
   295   uint _survivor_cset_region_length;
   296   uint _old_cset_region_length;
   298   void init_cset_region_lengths(uint eden_cset_region_length,
   299                                 uint survivor_cset_region_length);
   301   uint eden_cset_region_length()     { return _eden_cset_region_length;     }
   302   uint survivor_cset_region_length() { return _survivor_cset_region_length; }
   303   uint old_cset_region_length()      { return _old_cset_region_length;      }
   305   uint _free_regions_at_end_of_collection;
   307   size_t _recorded_rs_lengths;
   308   size_t _max_rs_lengths;
   310   double _recorded_young_free_cset_time_ms;
   311   double _recorded_non_young_free_cset_time_ms;
   313   double _sigma;
   315   size_t _rs_lengths_prediction;
   317   double sigma() { return _sigma; }
   319   // A function that prevents us putting too much stock in small sample
   320   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   321   // of samples.  5 or more samples yields one; fewer scales linearly from
   322   // 2.0 at 1 sample to 1.0 at 5.
   323   double confidence_factor(int samples) {
   324     if (samples > 4) return 1.0;
   325     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   326   }
   328   double get_new_neg_prediction(TruncatedSeq* seq) {
   329     return seq->davg() - sigma() * seq->dsd();
   330   }
   332 #ifndef PRODUCT
   333   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   334 #endif // PRODUCT
   336   void adjust_concurrent_refinement(double update_rs_time,
   337                                     double update_rs_processed_buffers,
   338                                     double goal_ms);
   340   uintx no_of_gc_threads() { return _no_of_gc_threads; }
   341   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
   343   double _pause_time_target_ms;
   344   double _recorded_young_cset_choice_time_ms;
   345   double _recorded_non_young_cset_choice_time_ms;
   346   size_t _pending_cards;
   347   size_t _max_pending_cards;
   349 public:
   350   // Accessors
   352   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
   353     hr->set_young();
   354     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   355     hr->set_young_index_in_cset(young_index_in_cset);
   356   }
   358   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
   359     assert(hr->is_young() && hr->is_survivor(), "pre-condition");
   360     hr->install_surv_rate_group(_survivor_surv_rate_group);
   361     hr->set_young_index_in_cset(young_index_in_cset);
   362   }
   364 #ifndef PRODUCT
   365   bool verify_young_ages();
   366 #endif // PRODUCT
   368   double get_new_prediction(TruncatedSeq* seq) {
   369     return MAX2(seq->davg() + sigma() * seq->dsd(),
   370                 seq->davg() * confidence_factor(seq->num()));
   371   }
   373   void record_max_rs_lengths(size_t rs_lengths) {
   374     _max_rs_lengths = rs_lengths;
   375   }
   377   size_t predict_pending_card_diff() {
   378     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   379     if (prediction < 0.00001) {
   380       return 0;
   381     } else {
   382       return (size_t) prediction;
   383     }
   384   }
   386   size_t predict_pending_cards() {
   387     size_t max_pending_card_num = _g1->max_pending_card_num();
   388     size_t diff = predict_pending_card_diff();
   389     size_t prediction;
   390     if (diff > max_pending_card_num) {
   391       prediction = max_pending_card_num;
   392     } else {
   393       prediction = max_pending_card_num - diff;
   394     }
   396     return prediction;
   397   }
   399   size_t predict_rs_length_diff() {
   400     return (size_t) get_new_prediction(_rs_length_diff_seq);
   401   }
   403   double predict_alloc_rate_ms() {
   404     return get_new_prediction(_alloc_rate_ms_seq);
   405   }
   407   double predict_cost_per_card_ms() {
   408     return get_new_prediction(_cost_per_card_ms_seq);
   409   }
   411   double predict_rs_update_time_ms(size_t pending_cards) {
   412     return (double) pending_cards * predict_cost_per_card_ms();
   413   }
   415   double predict_young_cards_per_entry_ratio() {
   416     return get_new_prediction(_young_cards_per_entry_ratio_seq);
   417   }
   419   double predict_mixed_cards_per_entry_ratio() {
   420     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
   421       return predict_young_cards_per_entry_ratio();
   422     } else {
   423       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
   424     }
   425   }
   427   size_t predict_young_card_num(size_t rs_length) {
   428     return (size_t) ((double) rs_length *
   429                      predict_young_cards_per_entry_ratio());
   430   }
   432   size_t predict_non_young_card_num(size_t rs_length) {
   433     return (size_t) ((double) rs_length *
   434                      predict_mixed_cards_per_entry_ratio());
   435   }
   437   double predict_rs_scan_time_ms(size_t card_num) {
   438     if (gcs_are_young()) {
   439       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   440     } else {
   441       return predict_mixed_rs_scan_time_ms(card_num);
   442     }
   443   }
   445   double predict_mixed_rs_scan_time_ms(size_t card_num) {
   446     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
   447       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   448     } else {
   449       return (double) (card_num *
   450                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
   451     }
   452   }
   454   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   455     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
   456       return (1.1 * (double) bytes_to_copy) *
   457               get_new_prediction(_cost_per_byte_ms_seq);
   458     } else {
   459       return (double) bytes_to_copy *
   460              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   461     }
   462   }
   464   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   465     if (_in_marking_window && !_in_marking_window_im) {
   466       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   467     } else {
   468       return (double) bytes_to_copy *
   469               get_new_prediction(_cost_per_byte_ms_seq);
   470     }
   471   }
   473   double predict_constant_other_time_ms() {
   474     return get_new_prediction(_constant_other_time_ms_seq);
   475   }
   477   double predict_young_other_time_ms(size_t young_num) {
   478     return (double) young_num *
   479            get_new_prediction(_young_other_cost_per_region_ms_seq);
   480   }
   482   double predict_non_young_other_time_ms(size_t non_young_num) {
   483     return (double) non_young_num *
   484            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   485   }
   487   double predict_base_elapsed_time_ms(size_t pending_cards);
   488   double predict_base_elapsed_time_ms(size_t pending_cards,
   489                                       size_t scanned_cards);
   490   size_t predict_bytes_to_copy(HeapRegion* hr);
   491   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   493   void set_recorded_rs_lengths(size_t rs_lengths);
   495   uint cset_region_length()       { return young_cset_region_length() +
   496                                            old_cset_region_length(); }
   497   uint young_cset_region_length() { return eden_cset_region_length() +
   498                                            survivor_cset_region_length(); }
   500   void record_young_free_cset_time_ms(double time_ms) {
   501     _recorded_young_free_cset_time_ms = time_ms;
   502   }
   504   void record_non_young_free_cset_time_ms(double time_ms) {
   505     _recorded_non_young_free_cset_time_ms = time_ms;
   506   }
   508   double predict_survivor_regions_evac_time();
   510   void cset_regions_freed() {
   511     bool propagate = _last_gc_was_young && !_in_marking_window;
   512     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   513     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   514     // also call it on any more surv rate groups
   515   }
   517   G1MMUTracker* mmu_tracker() {
   518     return _mmu_tracker;
   519   }
   521   double max_pause_time_ms() {
   522     return _mmu_tracker->max_gc_time() * 1000.0;
   523   }
   525   double predict_remark_time_ms() {
   526     return get_new_prediction(_concurrent_mark_remark_times_ms);
   527   }
   529   double predict_cleanup_time_ms() {
   530     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   531   }
   533   // Returns an estimate of the survival rate of the region at yg-age
   534   // "yg_age".
   535   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   536     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   537     if (seq->num() == 0)
   538       gclog_or_tty->print("BARF! age is %d", age);
   539     guarantee( seq->num() > 0, "invariant" );
   540     double pred = get_new_prediction(seq);
   541     if (pred > 1.0)
   542       pred = 1.0;
   543     return pred;
   544   }
   546   double predict_yg_surv_rate(int age) {
   547     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   548   }
   550   double accum_yg_surv_rate_pred(int age) {
   551     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   552   }
   554 private:
   555   void print_stats(int level, const char* str, double value);
   556   void print_stats(int level, const char* str, double value, int workers);
   557   void print_stats(int level, const char* str, int value);
   559   void print_par_stats(int level, const char* str, double* data, bool showDecimals = true);
   561   double avg_value (double* data);
   562   double max_value (double* data);
   563   double sum_of_values (double* data);
   564   double max_sum (double* data1, double* data2);
   566   double _last_pause_time_ms;
   568   size_t _bytes_in_collection_set_before_gc;
   569   size_t _bytes_copied_during_gc;
   571   // Used to count used bytes in CS.
   572   friend class CountCSClosure;
   574   // Statistics kept per GC stoppage, pause or full.
   575   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   577   // Add a new GC of the given duration and end time to the record.
   578   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   580   // The head of the list (via "next_in_collection_set()") representing the
   581   // current collection set. Set from the incrementally built collection
   582   // set at the start of the pause.
   583   HeapRegion* _collection_set;
   585   // The number of bytes in the collection set before the pause. Set from
   586   // the incrementally built collection set at the start of an evacuation
   587   // pause.
   588   size_t _collection_set_bytes_used_before;
   590   // The associated information that is maintained while the incremental
   591   // collection set is being built with young regions. Used to populate
   592   // the recorded info for the evacuation pause.
   594   enum CSetBuildType {
   595     Active,             // We are actively building the collection set
   596     Inactive            // We are not actively building the collection set
   597   };
   599   CSetBuildType _inc_cset_build_state;
   601   // The head of the incrementally built collection set.
   602   HeapRegion* _inc_cset_head;
   604   // The tail of the incrementally built collection set.
   605   HeapRegion* _inc_cset_tail;
   607   // The number of bytes in the incrementally built collection set.
   608   // Used to set _collection_set_bytes_used_before at the start of
   609   // an evacuation pause.
   610   size_t _inc_cset_bytes_used_before;
   612   // Used to record the highest end of heap region in collection set
   613   HeapWord* _inc_cset_max_finger;
   615   // The RSet lengths recorded for regions in the CSet. It is updated
   616   // by the thread that adds a new region to the CSet. We assume that
   617   // only one thread can be allocating a new CSet region (currently,
   618   // it does so after taking the Heap_lock) hence no need to
   619   // synchronize updates to this field.
   620   size_t _inc_cset_recorded_rs_lengths;
   622   // A concurrent refinement thread periodcially samples the young
   623   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
   624   // the RSets grow. Instead of having to syncronize updates to that
   625   // field we accumulate them in this field and add it to
   626   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
   627   ssize_t _inc_cset_recorded_rs_lengths_diffs;
   629   // The predicted elapsed time it will take to collect the regions in
   630   // the CSet. This is updated by the thread that adds a new region to
   631   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
   632   // MT-safety assumptions.
   633   double _inc_cset_predicted_elapsed_time_ms;
   635   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
   636   double _inc_cset_predicted_elapsed_time_ms_diffs;
   638   // Stash a pointer to the g1 heap.
   639   G1CollectedHeap* _g1;
   641   // The ratio of gc time to elapsed time, computed over recent pauses.
   642   double _recent_avg_pause_time_ratio;
   644   double recent_avg_pause_time_ratio() {
   645     return _recent_avg_pause_time_ratio;
   646   }
   648   // At the end of a pause we check the heap occupancy and we decide
   649   // whether we will start a marking cycle during the next pause. If
   650   // we decide that we want to do that, we will set this parameter to
   651   // true. So, this parameter will stay true between the end of a
   652   // pause and the beginning of a subsequent pause (not necessarily
   653   // the next one, see the comments on the next field) when we decide
   654   // that we will indeed start a marking cycle and do the initial-mark
   655   // work.
   656   volatile bool _initiate_conc_mark_if_possible;
   658   // If initiate_conc_mark_if_possible() is set at the beginning of a
   659   // pause, it is a suggestion that the pause should start a marking
   660   // cycle by doing the initial-mark work. However, it is possible
   661   // that the concurrent marking thread is still finishing up the
   662   // previous marking cycle (e.g., clearing the next marking
   663   // bitmap). If that is the case we cannot start a new cycle and
   664   // we'll have to wait for the concurrent marking thread to finish
   665   // what it is doing. In this case we will postpone the marking cycle
   666   // initiation decision for the next pause. When we eventually decide
   667   // to start a cycle, we will set _during_initial_mark_pause which
   668   // will stay true until the end of the initial-mark pause and it's
   669   // the condition that indicates that a pause is doing the
   670   // initial-mark work.
   671   volatile bool _during_initial_mark_pause;
   673   bool _last_young_gc;
   675   // This set of variables tracks the collector efficiency, in order to
   676   // determine whether we should initiate a new marking.
   677   double _cur_mark_stop_world_time_ms;
   678   double _mark_remark_start_sec;
   679   double _mark_cleanup_start_sec;
   680   double _root_region_scan_wait_time_ms;
   682   // Update the young list target length either by setting it to the
   683   // desired fixed value or by calculating it using G1's pause
   684   // prediction model. If no rs_lengths parameter is passed, predict
   685   // the RS lengths using the prediction model, otherwise use the
   686   // given rs_lengths as the prediction.
   687   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
   689   // Calculate and return the minimum desired young list target
   690   // length. This is the minimum desired young list length according
   691   // to the user's inputs.
   692   uint calculate_young_list_desired_min_length(uint base_min_length);
   694   // Calculate and return the maximum desired young list target
   695   // length. This is the maximum desired young list length according
   696   // to the user's inputs.
   697   uint calculate_young_list_desired_max_length();
   699   // Calculate and return the maximum young list target length that
   700   // can fit into the pause time goal. The parameters are: rs_lengths
   701   // represent the prediction of how large the young RSet lengths will
   702   // be, base_min_length is the alreay existing number of regions in
   703   // the young list, min_length and max_length are the desired min and
   704   // max young list length according to the user's inputs.
   705   uint calculate_young_list_target_length(size_t rs_lengths,
   706                                           uint base_min_length,
   707                                           uint desired_min_length,
   708                                           uint desired_max_length);
   710   // Check whether a given young length (young_length) fits into the
   711   // given target pause time and whether the prediction for the amount
   712   // of objects to be copied for the given length will fit into the
   713   // given free space (expressed by base_free_regions).  It is used by
   714   // calculate_young_list_target_length().
   715   bool predict_will_fit(uint young_length, double base_time_ms,
   716                         uint base_free_regions, double target_pause_time_ms);
   718   // Count the number of bytes used in the CS.
   719   void count_CS_bytes_used();
   721 public:
   723   G1CollectorPolicy();
   725   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   727   virtual CollectorPolicy::Name kind() {
   728     return CollectorPolicy::G1CollectorPolicyKind;
   729   }
   731   // Check the current value of the young list RSet lengths and
   732   // compare it against the last prediction. If the current value is
   733   // higher, recalculate the young list target length prediction.
   734   void revise_young_list_target_length_if_necessary();
   736   size_t bytes_in_collection_set() {
   737     return _bytes_in_collection_set_before_gc;
   738   }
   740   // This should be called after the heap is resized.
   741   void record_new_heap_size(uint new_number_of_regions);
   743   void init();
   745   // Create jstat counters for the policy.
   746   virtual void initialize_gc_policy_counters();
   748   virtual HeapWord* mem_allocate_work(size_t size,
   749                                       bool is_tlab,
   750                                       bool* gc_overhead_limit_was_exceeded);
   752   // This method controls how a collector handles one or more
   753   // of its generations being fully allocated.
   754   virtual HeapWord* satisfy_failed_allocation(size_t size,
   755                                               bool is_tlab);
   757   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   759   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   761   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
   763   // Update the heuristic info to record a collection pause of the given
   764   // start time, where the given number of bytes were used at the start.
   765   // This may involve changing the desired size of a collection set.
   767   void record_stop_world_start();
   769   void record_collection_pause_start(double start_time_sec, size_t start_used);
   771   // Must currently be called while the world is stopped.
   772   void record_concurrent_mark_init_end(double
   773                                            mark_init_elapsed_time_ms);
   775   void record_root_region_scan_wait_time(double time_ms) {
   776     _root_region_scan_wait_time_ms = time_ms;
   777   }
   779   void record_concurrent_mark_remark_start();
   780   void record_concurrent_mark_remark_end();
   782   void record_concurrent_mark_cleanup_start();
   783   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
   784   void record_concurrent_mark_cleanup_completed();
   786   void record_concurrent_pause();
   787   void record_concurrent_pause_end();
   789   void record_collection_pause_end(int no_of_gc_threads);
   790   void print_heap_transition();
   792   // Record the fact that a full collection occurred.
   793   void record_full_collection_start();
   794   void record_full_collection_end();
   796   void record_gc_worker_start_time(int worker_i, double ms) {
   797     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   798   }
   800   void record_ext_root_scan_time(int worker_i, double ms) {
   801     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   802   }
   804   void record_satb_filtering_time(int worker_i, double ms) {
   805     _par_last_satb_filtering_times_ms[worker_i] = ms;
   806   }
   808   void record_update_rs_time(int thread, double ms) {
   809     _par_last_update_rs_times_ms[thread] = ms;
   810   }
   812   void record_update_rs_processed_buffers (int thread,
   813                                            double processed_buffers) {
   814     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   815   }
   817   void record_scan_rs_time(int thread, double ms) {
   818     _par_last_scan_rs_times_ms[thread] = ms;
   819   }
   821   void reset_obj_copy_time(int thread) {
   822     _par_last_obj_copy_times_ms[thread] = 0.0;
   823   }
   825   void reset_obj_copy_time() {
   826     reset_obj_copy_time(0);
   827   }
   829   void record_obj_copy_time(int thread, double ms) {
   830     _par_last_obj_copy_times_ms[thread] += ms;
   831   }
   833   void record_termination(int thread, double ms, size_t attempts) {
   834     _par_last_termination_times_ms[thread] = ms;
   835     _par_last_termination_attempts[thread] = (double) attempts;
   836   }
   838   void record_gc_worker_end_time(int worker_i, double ms) {
   839     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   840   }
   842   void record_pause_time_ms(double ms) {
   843     _last_pause_time_ms = ms;
   844   }
   846   void record_clear_ct_time(double ms) {
   847     _cur_clear_ct_time_ms = ms;
   848   }
   850   void record_par_time(double ms) {
   851     _cur_collection_par_time_ms = ms;
   852   }
   854   void record_code_root_fixup_time(double ms) {
   855     _cur_collection_code_root_fixup_time_ms = ms;
   856   }
   858   void record_ref_proc_time(double ms) {
   859     _cur_ref_proc_time_ms = ms;
   860   }
   862   void record_ref_enq_time(double ms) {
   863     _cur_ref_enq_time_ms = ms;
   864   }
   866 #ifndef PRODUCT
   867   void record_cc_clear_time(double ms) {
   868     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   869       _min_clear_cc_time_ms = ms;
   870     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   871       _max_clear_cc_time_ms = ms;
   872     _cur_clear_cc_time_ms = ms;
   873     _cum_clear_cc_time_ms += ms;
   874     _num_cc_clears++;
   875   }
   876 #endif
   878   // Record how much space we copied during a GC. This is typically
   879   // called when a GC alloc region is being retired.
   880   void record_bytes_copied_during_gc(size_t bytes) {
   881     _bytes_copied_during_gc += bytes;
   882   }
   884   // The amount of space we copied during a GC.
   885   size_t bytes_copied_during_gc() {
   886     return _bytes_copied_during_gc;
   887   }
   889   // Determine whether there are candidate regions so that the
   890   // next GC should be mixed. The two action strings are used
   891   // in the ergo output when the method returns true or false.
   892   bool next_gc_should_be_mixed(const char* true_action_str,
   893                                const char* false_action_str);
   895   // Choose a new collection set.  Marks the chosen regions as being
   896   // "in_collection_set", and links them together.  The head and number of
   897   // the collection set are available via access methods.
   898   void finalize_cset(double target_pause_time_ms);
   900   // The head of the list (via "next_in_collection_set()") representing the
   901   // current collection set.
   902   HeapRegion* collection_set() { return _collection_set; }
   904   void clear_collection_set() { _collection_set = NULL; }
   906   // Add old region "hr" to the CSet.
   907   void add_old_region_to_cset(HeapRegion* hr);
   909   // Incremental CSet Support
   911   // The head of the incrementally built collection set.
   912   HeapRegion* inc_cset_head() { return _inc_cset_head; }
   914   // The tail of the incrementally built collection set.
   915   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
   917   // Initialize incremental collection set info.
   918   void start_incremental_cset_building();
   920   // Perform any final calculations on the incremental CSet fields
   921   // before we can use them.
   922   void finalize_incremental_cset_building();
   924   void clear_incremental_cset() {
   925     _inc_cset_head = NULL;
   926     _inc_cset_tail = NULL;
   927   }
   929   // Stop adding regions to the incremental collection set
   930   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
   932   // Add information about hr to the aggregated information for the
   933   // incrementally built collection set.
   934   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
   936   // Update information about hr in the aggregated information for
   937   // the incrementally built collection set.
   938   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
   940 private:
   941   // Update the incremental cset information when adding a region
   942   // (should not be called directly).
   943   void add_region_to_incremental_cset_common(HeapRegion* hr);
   945 public:
   946   // Add hr to the LHS of the incremental collection set.
   947   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
   949   // Add hr to the RHS of the incremental collection set.
   950   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
   952 #ifndef PRODUCT
   953   void print_collection_set(HeapRegion* list_head, outputStream* st);
   954 #endif // !PRODUCT
   956   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
   957   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
   958   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
   960   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
   961   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
   962   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
   964   // This sets the initiate_conc_mark_if_possible() flag to start a
   965   // new cycle, as long as we are not already in one. It's best if it
   966   // is called during a safepoint when the test whether a cycle is in
   967   // progress or not is stable.
   968   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
   970   // This is called at the very beginning of an evacuation pause (it
   971   // has to be the first thing that the pause does). If
   972   // initiate_conc_mark_if_possible() is true, and the concurrent
   973   // marking thread has completed its work during the previous cycle,
   974   // it will set during_initial_mark_pause() to so that the pause does
   975   // the initial-mark work and start a marking cycle.
   976   void decide_on_conc_mark_initiation();
   978   // If an expansion would be appropriate, because recent GC overhead had
   979   // exceeded the desired limit, return an amount to expand by.
   980   size_t expansion_amount();
   982   // Print tracing information.
   983   void print_tracing_info() const;
   985   // Print stats on young survival ratio
   986   void print_yg_surv_rate_info() const;
   988   void finished_recalculating_age_indexes(bool is_survivors) {
   989     if (is_survivors) {
   990       _survivor_surv_rate_group->finished_recalculating_age_indexes();
   991     } else {
   992       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
   993     }
   994     // do that for any other surv rate groups
   995   }
   997   bool is_young_list_full() {
   998     uint young_list_length = _g1->young_list()->length();
   999     uint young_list_target_length = _young_list_target_length;
  1000     return young_list_length >= young_list_target_length;
  1003   bool can_expand_young_list() {
  1004     uint young_list_length = _g1->young_list()->length();
  1005     uint young_list_max_length = _young_list_max_length;
  1006     return young_list_length < young_list_max_length;
  1009   uint young_list_max_length() {
  1010     return _young_list_max_length;
  1013   bool gcs_are_young() {
  1014     return _gcs_are_young;
  1016   void set_gcs_are_young(bool gcs_are_young) {
  1017     _gcs_are_young = gcs_are_young;
  1020   bool adaptive_young_list_length() {
  1021     return _young_gen_sizer->adaptive_young_list_length();
  1024 private:
  1025   //
  1026   // Survivor regions policy.
  1027   //
  1029   // Current tenuring threshold, set to 0 if the collector reaches the
  1030   // maximum amount of suvivors regions.
  1031   int _tenuring_threshold;
  1033   // The limit on the number of regions allocated for survivors.
  1034   uint _max_survivor_regions;
  1036   // For reporting purposes.
  1037   size_t _eden_bytes_before_gc;
  1038   size_t _survivor_bytes_before_gc;
  1039   size_t _capacity_before_gc;
  1041   // The amount of survor regions after a collection.
  1042   uint _recorded_survivor_regions;
  1043   // List of survivor regions.
  1044   HeapRegion* _recorded_survivor_head;
  1045   HeapRegion* _recorded_survivor_tail;
  1047   ageTable _survivors_age_table;
  1049 public:
  1051   inline GCAllocPurpose
  1052     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1053       if (age < _tenuring_threshold && src_region->is_young()) {
  1054         return GCAllocForSurvived;
  1055       } else {
  1056         return GCAllocForTenured;
  1060   inline bool track_object_age(GCAllocPurpose purpose) {
  1061     return purpose == GCAllocForSurvived;
  1064   static const uint REGIONS_UNLIMITED = (uint) -1;
  1066   uint max_regions(int purpose);
  1068   // The limit on regions for a particular purpose is reached.
  1069   void note_alloc_region_limit_reached(int purpose) {
  1070     if (purpose == GCAllocForSurvived) {
  1071       _tenuring_threshold = 0;
  1075   void note_start_adding_survivor_regions() {
  1076     _survivor_surv_rate_group->start_adding_regions();
  1079   void note_stop_adding_survivor_regions() {
  1080     _survivor_surv_rate_group->stop_adding_regions();
  1083   void record_survivor_regions(uint regions,
  1084                                HeapRegion* head,
  1085                                HeapRegion* tail) {
  1086     _recorded_survivor_regions = regions;
  1087     _recorded_survivor_head    = head;
  1088     _recorded_survivor_tail    = tail;
  1091   uint recorded_survivor_regions() {
  1092     return _recorded_survivor_regions;
  1095   void record_thread_age_table(ageTable* age_table) {
  1096     _survivors_age_table.merge_par(age_table);
  1099   void update_max_gc_locker_expansion();
  1101   // Calculates survivor space parameters.
  1102   void update_survivors_policy();
  1104 };
  1106 // This should move to some place more general...
  1108 // If we have "n" measurements, and we've kept track of their "sum" and the
  1109 // "sum_of_squares" of the measurements, this returns the variance of the
  1110 // sequence.
  1111 inline double variance(int n, double sum_of_squares, double sum) {
  1112   double n_d = (double)n;
  1113   double avg = sum/n_d;
  1114   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1117 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial