src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Mon, 02 Jul 2012 13:11:28 -0400

author
coleenp
date
Mon, 02 Jul 2012 13:11:28 -0400
changeset 3901
24b9c7f4cae6
parent 3891
7994a5a35fcf
parent 3900
d2a62e0f25eb
child 3924
3a431b605145
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    35 #include "gc_implementation/g1/g1EvacFailure.hpp"
    36 #include "gc_implementation/g1/g1Log.hpp"
    37 #include "gc_implementation/g1/g1MarkSweep.hpp"
    38 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    39 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    40 #include "gc_implementation/g1/heapRegion.inline.hpp"
    41 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    42 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    43 #include "gc_implementation/g1/vm_operations_g1.hpp"
    44 #include "gc_implementation/shared/isGCActiveMark.hpp"
    45 #include "memory/gcLocker.inline.hpp"
    46 #include "memory/genOopClosures.inline.hpp"
    47 #include "memory/generationSpec.hpp"
    48 #include "memory/referenceProcessor.hpp"
    49 #include "oops/oop.inline.hpp"
    50 #include "oops/oop.pcgc.inline.hpp"
    51 #include "runtime/aprofiler.hpp"
    52 #include "runtime/vmThread.hpp"
    54 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    56 // turn it on so that the contents of the young list (scan-only /
    57 // to-be-collected) are printed at "strategic" points before / during
    58 // / after the collection --- this is useful for debugging
    59 #define YOUNG_LIST_VERBOSE 0
    60 // CURRENT STATUS
    61 // This file is under construction.  Search for "FIXME".
    63 // INVARIANTS/NOTES
    64 //
    65 // All allocation activity covered by the G1CollectedHeap interface is
    66 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    67 // and allocate_new_tlab, which are the "entry" points to the
    68 // allocation code from the rest of the JVM.  (Note that this does not
    69 // apply to TLAB allocation, which is not part of this interface: it
    70 // is done by clients of this interface.)
    72 // Notes on implementation of parallelism in different tasks.
    73 //
    74 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    75 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    76 // It does use run_task() which sets _n_workers in the task.
    77 // G1ParTask executes g1_process_strong_roots() ->
    78 // SharedHeap::process_strong_roots() which calls eventuall to
    79 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    80 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    81 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    82 //
    84 // Local to this file.
    86 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    87   SuspendibleThreadSet* _sts;
    88   G1RemSet* _g1rs;
    89   ConcurrentG1Refine* _cg1r;
    90   bool _concurrent;
    91 public:
    92   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    93                               G1RemSet* g1rs,
    94                               ConcurrentG1Refine* cg1r) :
    95     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    96   {}
    97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    98     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    99     // This path is executed by the concurrent refine or mutator threads,
   100     // concurrently, and so we do not care if card_ptr contains references
   101     // that point into the collection set.
   102     assert(!oops_into_cset, "should be");
   104     if (_concurrent && _sts->should_yield()) {
   105       // Caller will actually yield.
   106       return false;
   107     }
   108     // Otherwise, we finished successfully; return true.
   109     return true;
   110   }
   111   void set_concurrent(bool b) { _concurrent = b; }
   112 };
   115 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   116   int _calls;
   117   G1CollectedHeap* _g1h;
   118   CardTableModRefBS* _ctbs;
   119   int _histo[256];
   120 public:
   121   ClearLoggedCardTableEntryClosure() :
   122     _calls(0)
   123   {
   124     _g1h = G1CollectedHeap::heap();
   125     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   126     for (int i = 0; i < 256; i++) _histo[i] = 0;
   127   }
   128   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   129     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   130       _calls++;
   131       unsigned char* ujb = (unsigned char*)card_ptr;
   132       int ind = (int)(*ujb);
   133       _histo[ind]++;
   134       *card_ptr = -1;
   135     }
   136     return true;
   137   }
   138   int calls() { return _calls; }
   139   void print_histo() {
   140     gclog_or_tty->print_cr("Card table value histogram:");
   141     for (int i = 0; i < 256; i++) {
   142       if (_histo[i] != 0) {
   143         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   144       }
   145     }
   146   }
   147 };
   149 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   150   int _calls;
   151   G1CollectedHeap* _g1h;
   152   CardTableModRefBS* _ctbs;
   153 public:
   154   RedirtyLoggedCardTableEntryClosure() :
   155     _calls(0)
   156   {
   157     _g1h = G1CollectedHeap::heap();
   158     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   159   }
   160   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   161     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   162       _calls++;
   163       *card_ptr = 0;
   164     }
   165     return true;
   166   }
   167   int calls() { return _calls; }
   168 };
   170 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   171 public:
   172   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   173     *card_ptr = CardTableModRefBS::dirty_card_val();
   174     return true;
   175   }
   176 };
   178 YoungList::YoungList(G1CollectedHeap* g1h) :
   179     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   180     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   181   guarantee(check_list_empty(false), "just making sure...");
   182 }
   184 void YoungList::push_region(HeapRegion *hr) {
   185   assert(!hr->is_young(), "should not already be young");
   186   assert(hr->get_next_young_region() == NULL, "cause it should!");
   188   hr->set_next_young_region(_head);
   189   _head = hr;
   191   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   192   ++_length;
   193 }
   195 void YoungList::add_survivor_region(HeapRegion* hr) {
   196   assert(hr->is_survivor(), "should be flagged as survivor region");
   197   assert(hr->get_next_young_region() == NULL, "cause it should!");
   199   hr->set_next_young_region(_survivor_head);
   200   if (_survivor_head == NULL) {
   201     _survivor_tail = hr;
   202   }
   203   _survivor_head = hr;
   204   ++_survivor_length;
   205 }
   207 void YoungList::empty_list(HeapRegion* list) {
   208   while (list != NULL) {
   209     HeapRegion* next = list->get_next_young_region();
   210     list->set_next_young_region(NULL);
   211     list->uninstall_surv_rate_group();
   212     list->set_not_young();
   213     list = next;
   214   }
   215 }
   217 void YoungList::empty_list() {
   218   assert(check_list_well_formed(), "young list should be well formed");
   220   empty_list(_head);
   221   _head = NULL;
   222   _length = 0;
   224   empty_list(_survivor_head);
   225   _survivor_head = NULL;
   226   _survivor_tail = NULL;
   227   _survivor_length = 0;
   229   _last_sampled_rs_lengths = 0;
   231   assert(check_list_empty(false), "just making sure...");
   232 }
   234 bool YoungList::check_list_well_formed() {
   235   bool ret = true;
   237   uint length = 0;
   238   HeapRegion* curr = _head;
   239   HeapRegion* last = NULL;
   240   while (curr != NULL) {
   241     if (!curr->is_young()) {
   242       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   243                              "incorrectly tagged (y: %d, surv: %d)",
   244                              curr->bottom(), curr->end(),
   245                              curr->is_young(), curr->is_survivor());
   246       ret = false;
   247     }
   248     ++length;
   249     last = curr;
   250     curr = curr->get_next_young_region();
   251   }
   252   ret = ret && (length == _length);
   254   if (!ret) {
   255     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   256     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   257                            length, _length);
   258   }
   260   return ret;
   261 }
   263 bool YoungList::check_list_empty(bool check_sample) {
   264   bool ret = true;
   266   if (_length != 0) {
   267     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   268                   _length);
   269     ret = false;
   270   }
   271   if (check_sample && _last_sampled_rs_lengths != 0) {
   272     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   273     ret = false;
   274   }
   275   if (_head != NULL) {
   276     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   277     ret = false;
   278   }
   279   if (!ret) {
   280     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   281   }
   283   return ret;
   284 }
   286 void
   287 YoungList::rs_length_sampling_init() {
   288   _sampled_rs_lengths = 0;
   289   _curr               = _head;
   290 }
   292 bool
   293 YoungList::rs_length_sampling_more() {
   294   return _curr != NULL;
   295 }
   297 void
   298 YoungList::rs_length_sampling_next() {
   299   assert( _curr != NULL, "invariant" );
   300   size_t rs_length = _curr->rem_set()->occupied();
   302   _sampled_rs_lengths += rs_length;
   304   // The current region may not yet have been added to the
   305   // incremental collection set (it gets added when it is
   306   // retired as the current allocation region).
   307   if (_curr->in_collection_set()) {
   308     // Update the collection set policy information for this region
   309     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   310   }
   312   _curr = _curr->get_next_young_region();
   313   if (_curr == NULL) {
   314     _last_sampled_rs_lengths = _sampled_rs_lengths;
   315     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   316   }
   317 }
   319 void
   320 YoungList::reset_auxilary_lists() {
   321   guarantee( is_empty(), "young list should be empty" );
   322   assert(check_list_well_formed(), "young list should be well formed");
   324   // Add survivor regions to SurvRateGroup.
   325   _g1h->g1_policy()->note_start_adding_survivor_regions();
   326   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   328   int young_index_in_cset = 0;
   329   for (HeapRegion* curr = _survivor_head;
   330        curr != NULL;
   331        curr = curr->get_next_young_region()) {
   332     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   334     // The region is a non-empty survivor so let's add it to
   335     // the incremental collection set for the next evacuation
   336     // pause.
   337     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   338     young_index_in_cset += 1;
   339   }
   340   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   341   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   343   _head   = _survivor_head;
   344   _length = _survivor_length;
   345   if (_survivor_head != NULL) {
   346     assert(_survivor_tail != NULL, "cause it shouldn't be");
   347     assert(_survivor_length > 0, "invariant");
   348     _survivor_tail->set_next_young_region(NULL);
   349   }
   351   // Don't clear the survivor list handles until the start of
   352   // the next evacuation pause - we need it in order to re-tag
   353   // the survivor regions from this evacuation pause as 'young'
   354   // at the start of the next.
   356   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   358   assert(check_list_well_formed(), "young list should be well formed");
   359 }
   361 void YoungList::print() {
   362   HeapRegion* lists[] = {_head,   _survivor_head};
   363   const char* names[] = {"YOUNG", "SURVIVOR"};
   365   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   366     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   367     HeapRegion *curr = lists[list];
   368     if (curr == NULL)
   369       gclog_or_tty->print_cr("  empty");
   370     while (curr != NULL) {
   371       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   372                              HR_FORMAT_PARAMS(curr),
   373                              curr->prev_top_at_mark_start(),
   374                              curr->next_top_at_mark_start(),
   375                              curr->age_in_surv_rate_group_cond());
   376       curr = curr->get_next_young_region();
   377     }
   378   }
   380   gclog_or_tty->print_cr("");
   381 }
   383 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   384 {
   385   // Claim the right to put the region on the dirty cards region list
   386   // by installing a self pointer.
   387   HeapRegion* next = hr->get_next_dirty_cards_region();
   388   if (next == NULL) {
   389     HeapRegion* res = (HeapRegion*)
   390       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   391                           NULL);
   392     if (res == NULL) {
   393       HeapRegion* head;
   394       do {
   395         // Put the region to the dirty cards region list.
   396         head = _dirty_cards_region_list;
   397         next = (HeapRegion*)
   398           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   399         if (next == head) {
   400           assert(hr->get_next_dirty_cards_region() == hr,
   401                  "hr->get_next_dirty_cards_region() != hr");
   402           if (next == NULL) {
   403             // The last region in the list points to itself.
   404             hr->set_next_dirty_cards_region(hr);
   405           } else {
   406             hr->set_next_dirty_cards_region(next);
   407           }
   408         }
   409       } while (next != head);
   410     }
   411   }
   412 }
   414 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   415 {
   416   HeapRegion* head;
   417   HeapRegion* hr;
   418   do {
   419     head = _dirty_cards_region_list;
   420     if (head == NULL) {
   421       return NULL;
   422     }
   423     HeapRegion* new_head = head->get_next_dirty_cards_region();
   424     if (head == new_head) {
   425       // The last region.
   426       new_head = NULL;
   427     }
   428     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   429                                           head);
   430   } while (hr != head);
   431   assert(hr != NULL, "invariant");
   432   hr->set_next_dirty_cards_region(NULL);
   433   return hr;
   434 }
   436 void G1CollectedHeap::stop_conc_gc_threads() {
   437   _cg1r->stop();
   438   _cmThread->stop();
   439 }
   441 #ifdef ASSERT
   442 // A region is added to the collection set as it is retired
   443 // so an address p can point to a region which will be in the
   444 // collection set but has not yet been retired.  This method
   445 // therefore is only accurate during a GC pause after all
   446 // regions have been retired.  It is used for debugging
   447 // to check if an nmethod has references to objects that can
   448 // be move during a partial collection.  Though it can be
   449 // inaccurate, it is sufficient for G1 because the conservative
   450 // implementation of is_scavengable() for G1 will indicate that
   451 // all nmethods must be scanned during a partial collection.
   452 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   453   HeapRegion* hr = heap_region_containing(p);
   454   return hr != NULL && hr->in_collection_set();
   455 }
   456 #endif
   458 // Returns true if the reference points to an object that
   459 // can move in an incremental collecction.
   460 bool G1CollectedHeap::is_scavengable(const void* p) {
   461   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   462   G1CollectorPolicy* g1p = g1h->g1_policy();
   463   HeapRegion* hr = heap_region_containing(p);
   464   if (hr == NULL) {
   465      // perm gen (or null)
   466      return false;
   467   } else {
   468     return !hr->isHumongous();
   469   }
   470 }
   472 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   473   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   474   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   476   // Count the dirty cards at the start.
   477   CountNonCleanMemRegionClosure count1(this);
   478   ct_bs->mod_card_iterate(&count1);
   479   int orig_count = count1.n();
   481   // First clear the logged cards.
   482   ClearLoggedCardTableEntryClosure clear;
   483   dcqs.set_closure(&clear);
   484   dcqs.apply_closure_to_all_completed_buffers();
   485   dcqs.iterate_closure_all_threads(false);
   486   clear.print_histo();
   488   // Now ensure that there's no dirty cards.
   489   CountNonCleanMemRegionClosure count2(this);
   490   ct_bs->mod_card_iterate(&count2);
   491   if (count2.n() != 0) {
   492     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   493                            count2.n(), orig_count);
   494   }
   495   guarantee(count2.n() == 0, "Card table should be clean.");
   497   RedirtyLoggedCardTableEntryClosure redirty;
   498   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   499   dcqs.apply_closure_to_all_completed_buffers();
   500   dcqs.iterate_closure_all_threads(false);
   501   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   502                          clear.calls(), orig_count);
   503   guarantee(redirty.calls() == clear.calls(),
   504             "Or else mechanism is broken.");
   506   CountNonCleanMemRegionClosure count3(this);
   507   ct_bs->mod_card_iterate(&count3);
   508   if (count3.n() != orig_count) {
   509     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   510                            orig_count, count3.n());
   511     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   512   }
   514   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   515 }
   517 // Private class members.
   519 G1CollectedHeap* G1CollectedHeap::_g1h;
   521 // Private methods.
   523 HeapRegion*
   524 G1CollectedHeap::new_region_try_secondary_free_list() {
   525   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   526   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   527     if (!_secondary_free_list.is_empty()) {
   528       if (G1ConcRegionFreeingVerbose) {
   529         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   530                                "secondary_free_list has %u entries",
   531                                _secondary_free_list.length());
   532       }
   533       // It looks as if there are free regions available on the
   534       // secondary_free_list. Let's move them to the free_list and try
   535       // again to allocate from it.
   536       append_secondary_free_list();
   538       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   539              "empty we should have moved at least one entry to the free_list");
   540       HeapRegion* res = _free_list.remove_head();
   541       if (G1ConcRegionFreeingVerbose) {
   542         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   543                                "allocated "HR_FORMAT" from secondary_free_list",
   544                                HR_FORMAT_PARAMS(res));
   545       }
   546       return res;
   547     }
   549     // Wait here until we get notifed either when (a) there are no
   550     // more free regions coming or (b) some regions have been moved on
   551     // the secondary_free_list.
   552     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   553   }
   555   if (G1ConcRegionFreeingVerbose) {
   556     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   557                            "could not allocate from secondary_free_list");
   558   }
   559   return NULL;
   560 }
   562 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   563   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   564          "the only time we use this to allocate a humongous region is "
   565          "when we are allocating a single humongous region");
   567   HeapRegion* res;
   568   if (G1StressConcRegionFreeing) {
   569     if (!_secondary_free_list.is_empty()) {
   570       if (G1ConcRegionFreeingVerbose) {
   571         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   572                                "forced to look at the secondary_free_list");
   573       }
   574       res = new_region_try_secondary_free_list();
   575       if (res != NULL) {
   576         return res;
   577       }
   578     }
   579   }
   580   res = _free_list.remove_head_or_null();
   581   if (res == NULL) {
   582     if (G1ConcRegionFreeingVerbose) {
   583       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   584                              "res == NULL, trying the secondary_free_list");
   585     }
   586     res = new_region_try_secondary_free_list();
   587   }
   588   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   589     // Currently, only attempts to allocate GC alloc regions set
   590     // do_expand to true. So, we should only reach here during a
   591     // safepoint. If this assumption changes we might have to
   592     // reconsider the use of _expand_heap_after_alloc_failure.
   593     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   595     ergo_verbose1(ErgoHeapSizing,
   596                   "attempt heap expansion",
   597                   ergo_format_reason("region allocation request failed")
   598                   ergo_format_byte("allocation request"),
   599                   word_size * HeapWordSize);
   600     if (expand(word_size * HeapWordSize)) {
   601       // Given that expand() succeeded in expanding the heap, and we
   602       // always expand the heap by an amount aligned to the heap
   603       // region size, the free list should in theory not be empty. So
   604       // it would probably be OK to use remove_head(). But the extra
   605       // check for NULL is unlikely to be a performance issue here (we
   606       // just expanded the heap!) so let's just be conservative and
   607       // use remove_head_or_null().
   608       res = _free_list.remove_head_or_null();
   609     } else {
   610       _expand_heap_after_alloc_failure = false;
   611     }
   612   }
   613   return res;
   614 }
   616 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   617                                                         size_t word_size) {
   618   assert(isHumongous(word_size), "word_size should be humongous");
   619   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   621   uint first = G1_NULL_HRS_INDEX;
   622   if (num_regions == 1) {
   623     // Only one region to allocate, no need to go through the slower
   624     // path. The caller will attempt the expasion if this fails, so
   625     // let's not try to expand here too.
   626     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   627     if (hr != NULL) {
   628       first = hr->hrs_index();
   629     } else {
   630       first = G1_NULL_HRS_INDEX;
   631     }
   632   } else {
   633     // We can't allocate humongous regions while cleanupComplete() is
   634     // running, since some of the regions we find to be empty might not
   635     // yet be added to the free list and it is not straightforward to
   636     // know which list they are on so that we can remove them. Note
   637     // that we only need to do this if we need to allocate more than
   638     // one region to satisfy the current humongous allocation
   639     // request. If we are only allocating one region we use the common
   640     // region allocation code (see above).
   641     wait_while_free_regions_coming();
   642     append_secondary_free_list_if_not_empty_with_lock();
   644     if (free_regions() >= num_regions) {
   645       first = _hrs.find_contiguous(num_regions);
   646       if (first != G1_NULL_HRS_INDEX) {
   647         for (uint i = first; i < first + num_regions; ++i) {
   648           HeapRegion* hr = region_at(i);
   649           assert(hr->is_empty(), "sanity");
   650           assert(is_on_master_free_list(hr), "sanity");
   651           hr->set_pending_removal(true);
   652         }
   653         _free_list.remove_all_pending(num_regions);
   654       }
   655     }
   656   }
   657   return first;
   658 }
   660 HeapWord*
   661 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   662                                                            uint num_regions,
   663                                                            size_t word_size) {
   664   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   665   assert(isHumongous(word_size), "word_size should be humongous");
   666   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   668   // Index of last region in the series + 1.
   669   uint last = first + num_regions;
   671   // We need to initialize the region(s) we just discovered. This is
   672   // a bit tricky given that it can happen concurrently with
   673   // refinement threads refining cards on these regions and
   674   // potentially wanting to refine the BOT as they are scanning
   675   // those cards (this can happen shortly after a cleanup; see CR
   676   // 6991377). So we have to set up the region(s) carefully and in
   677   // a specific order.
   679   // The word size sum of all the regions we will allocate.
   680   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   681   assert(word_size <= word_size_sum, "sanity");
   683   // This will be the "starts humongous" region.
   684   HeapRegion* first_hr = region_at(first);
   685   // The header of the new object will be placed at the bottom of
   686   // the first region.
   687   HeapWord* new_obj = first_hr->bottom();
   688   // This will be the new end of the first region in the series that
   689   // should also match the end of the last region in the seriers.
   690   HeapWord* new_end = new_obj + word_size_sum;
   691   // This will be the new top of the first region that will reflect
   692   // this allocation.
   693   HeapWord* new_top = new_obj + word_size;
   695   // First, we need to zero the header of the space that we will be
   696   // allocating. When we update top further down, some refinement
   697   // threads might try to scan the region. By zeroing the header we
   698   // ensure that any thread that will try to scan the region will
   699   // come across the zero klass word and bail out.
   700   //
   701   // NOTE: It would not have been correct to have used
   702   // CollectedHeap::fill_with_object() and make the space look like
   703   // an int array. The thread that is doing the allocation will
   704   // later update the object header to a potentially different array
   705   // type and, for a very short period of time, the klass and length
   706   // fields will be inconsistent. This could cause a refinement
   707   // thread to calculate the object size incorrectly.
   708   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   710   // We will set up the first region as "starts humongous". This
   711   // will also update the BOT covering all the regions to reflect
   712   // that there is a single object that starts at the bottom of the
   713   // first region.
   714   first_hr->set_startsHumongous(new_top, new_end);
   716   // Then, if there are any, we will set up the "continues
   717   // humongous" regions.
   718   HeapRegion* hr = NULL;
   719   for (uint i = first + 1; i < last; ++i) {
   720     hr = region_at(i);
   721     hr->set_continuesHumongous(first_hr);
   722   }
   723   // If we have "continues humongous" regions (hr != NULL), then the
   724   // end of the last one should match new_end.
   725   assert(hr == NULL || hr->end() == new_end, "sanity");
   727   // Up to this point no concurrent thread would have been able to
   728   // do any scanning on any region in this series. All the top
   729   // fields still point to bottom, so the intersection between
   730   // [bottom,top] and [card_start,card_end] will be empty. Before we
   731   // update the top fields, we'll do a storestore to make sure that
   732   // no thread sees the update to top before the zeroing of the
   733   // object header and the BOT initialization.
   734   OrderAccess::storestore();
   736   // Now that the BOT and the object header have been initialized,
   737   // we can update top of the "starts humongous" region.
   738   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   739          "new_top should be in this region");
   740   first_hr->set_top(new_top);
   741   if (_hr_printer.is_active()) {
   742     HeapWord* bottom = first_hr->bottom();
   743     HeapWord* end = first_hr->orig_end();
   744     if ((first + 1) == last) {
   745       // the series has a single humongous region
   746       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   747     } else {
   748       // the series has more than one humongous regions
   749       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   750     }
   751   }
   753   // Now, we will update the top fields of the "continues humongous"
   754   // regions. The reason we need to do this is that, otherwise,
   755   // these regions would look empty and this will confuse parts of
   756   // G1. For example, the code that looks for a consecutive number
   757   // of empty regions will consider them empty and try to
   758   // re-allocate them. We can extend is_empty() to also include
   759   // !continuesHumongous(), but it is easier to just update the top
   760   // fields here. The way we set top for all regions (i.e., top ==
   761   // end for all regions but the last one, top == new_top for the
   762   // last one) is actually used when we will free up the humongous
   763   // region in free_humongous_region().
   764   hr = NULL;
   765   for (uint i = first + 1; i < last; ++i) {
   766     hr = region_at(i);
   767     if ((i + 1) == last) {
   768       // last continues humongous region
   769       assert(hr->bottom() < new_top && new_top <= hr->end(),
   770              "new_top should fall on this region");
   771       hr->set_top(new_top);
   772       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   773     } else {
   774       // not last one
   775       assert(new_top > hr->end(), "new_top should be above this region");
   776       hr->set_top(hr->end());
   777       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   778     }
   779   }
   780   // If we have continues humongous regions (hr != NULL), then the
   781   // end of the last one should match new_end and its top should
   782   // match new_top.
   783   assert(hr == NULL ||
   784          (hr->end() == new_end && hr->top() == new_top), "sanity");
   786   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   787   _summary_bytes_used += first_hr->used();
   788   _humongous_set.add(first_hr);
   790   return new_obj;
   791 }
   793 // If could fit into free regions w/o expansion, try.
   794 // Otherwise, if can expand, do so.
   795 // Otherwise, if using ex regions might help, try with ex given back.
   796 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   797   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   799   verify_region_sets_optional();
   801   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   802   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   803   uint x_num = expansion_regions();
   804   uint fs = _hrs.free_suffix();
   805   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   806   if (first == G1_NULL_HRS_INDEX) {
   807     // The only thing we can do now is attempt expansion.
   808     if (fs + x_num >= num_regions) {
   809       // If the number of regions we're trying to allocate for this
   810       // object is at most the number of regions in the free suffix,
   811       // then the call to humongous_obj_allocate_find_first() above
   812       // should have succeeded and we wouldn't be here.
   813       //
   814       // We should only be trying to expand when the free suffix is
   815       // not sufficient for the object _and_ we have some expansion
   816       // room available.
   817       assert(num_regions > fs, "earlier allocation should have succeeded");
   819       ergo_verbose1(ErgoHeapSizing,
   820                     "attempt heap expansion",
   821                     ergo_format_reason("humongous allocation request failed")
   822                     ergo_format_byte("allocation request"),
   823                     word_size * HeapWordSize);
   824       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   825         // Even though the heap was expanded, it might not have
   826         // reached the desired size. So, we cannot assume that the
   827         // allocation will succeed.
   828         first = humongous_obj_allocate_find_first(num_regions, word_size);
   829       }
   830     }
   831   }
   833   HeapWord* result = NULL;
   834   if (first != G1_NULL_HRS_INDEX) {
   835     result =
   836       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   837     assert(result != NULL, "it should always return a valid result");
   839     // A successful humongous object allocation changes the used space
   840     // information of the old generation so we need to recalculate the
   841     // sizes and update the jstat counters here.
   842     g1mm()->update_sizes();
   843   }
   845   verify_region_sets_optional();
   847   return result;
   848 }
   850 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   851   assert_heap_not_locked_and_not_at_safepoint();
   852   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   854   unsigned int dummy_gc_count_before;
   855   return attempt_allocation(word_size, &dummy_gc_count_before);
   856 }
   858 HeapWord*
   859 G1CollectedHeap::mem_allocate(size_t word_size,
   860                               bool*  gc_overhead_limit_was_exceeded) {
   861   assert_heap_not_locked_and_not_at_safepoint();
   863   // Loop until the allocation is satisified, or unsatisfied after GC.
   864   for (int try_count = 1; /* we'll return */; try_count += 1) {
   865     unsigned int gc_count_before;
   867     HeapWord* result = NULL;
   868     if (!isHumongous(word_size)) {
   869       result = attempt_allocation(word_size, &gc_count_before);
   870     } else {
   871       result = attempt_allocation_humongous(word_size, &gc_count_before);
   872     }
   873     if (result != NULL) {
   874       return result;
   875     }
   877     // Create the garbage collection operation...
   878     VM_G1CollectForAllocation op(gc_count_before, word_size);
   879     // ...and get the VM thread to execute it.
   880     VMThread::execute(&op);
   882     if (op.prologue_succeeded() && op.pause_succeeded()) {
   883       // If the operation was successful we'll return the result even
   884       // if it is NULL. If the allocation attempt failed immediately
   885       // after a Full GC, it's unlikely we'll be able to allocate now.
   886       HeapWord* result = op.result();
   887       if (result != NULL && !isHumongous(word_size)) {
   888         // Allocations that take place on VM operations do not do any
   889         // card dirtying and we have to do it here. We only have to do
   890         // this for non-humongous allocations, though.
   891         dirty_young_block(result, word_size);
   892       }
   893       return result;
   894     } else {
   895       assert(op.result() == NULL,
   896              "the result should be NULL if the VM op did not succeed");
   897     }
   899     // Give a warning if we seem to be looping forever.
   900     if ((QueuedAllocationWarningCount > 0) &&
   901         (try_count % QueuedAllocationWarningCount == 0)) {
   902       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   903     }
   904   }
   906   ShouldNotReachHere();
   907   return NULL;
   908 }
   910 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   911                                            unsigned int *gc_count_before_ret) {
   912   // Make sure you read the note in attempt_allocation_humongous().
   914   assert_heap_not_locked_and_not_at_safepoint();
   915   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   916          "be called for humongous allocation requests");
   918   // We should only get here after the first-level allocation attempt
   919   // (attempt_allocation()) failed to allocate.
   921   // We will loop until a) we manage to successfully perform the
   922   // allocation or b) we successfully schedule a collection which
   923   // fails to perform the allocation. b) is the only case when we'll
   924   // return NULL.
   925   HeapWord* result = NULL;
   926   for (int try_count = 1; /* we'll return */; try_count += 1) {
   927     bool should_try_gc;
   928     unsigned int gc_count_before;
   930     {
   931       MutexLockerEx x(Heap_lock);
   933       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   934                                                       false /* bot_updates */);
   935       if (result != NULL) {
   936         return result;
   937       }
   939       // If we reach here, attempt_allocation_locked() above failed to
   940       // allocate a new region. So the mutator alloc region should be NULL.
   941       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   943       if (GC_locker::is_active_and_needs_gc()) {
   944         if (g1_policy()->can_expand_young_list()) {
   945           // No need for an ergo verbose message here,
   946           // can_expand_young_list() does this when it returns true.
   947           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   948                                                       false /* bot_updates */);
   949           if (result != NULL) {
   950             return result;
   951           }
   952         }
   953         should_try_gc = false;
   954       } else {
   955         // The GCLocker may not be active but the GCLocker initiated
   956         // GC may not yet have been performed (GCLocker::needs_gc()
   957         // returns true). In this case we do not try this GC and
   958         // wait until the GCLocker initiated GC is performed, and
   959         // then retry the allocation.
   960         if (GC_locker::needs_gc()) {
   961           should_try_gc = false;
   962         } else {
   963           // Read the GC count while still holding the Heap_lock.
   964           gc_count_before = total_collections();
   965           should_try_gc = true;
   966         }
   967       }
   968     }
   970     if (should_try_gc) {
   971       bool succeeded;
   972       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   973       if (result != NULL) {
   974         assert(succeeded, "only way to get back a non-NULL result");
   975         return result;
   976       }
   978       if (succeeded) {
   979         // If we get here we successfully scheduled a collection which
   980         // failed to allocate. No point in trying to allocate
   981         // further. We'll just return NULL.
   982         MutexLockerEx x(Heap_lock);
   983         *gc_count_before_ret = total_collections();
   984         return NULL;
   985       }
   986     } else {
   987       // The GCLocker is either active or the GCLocker initiated
   988       // GC has not yet been performed. Stall until it is and
   989       // then retry the allocation.
   990       GC_locker::stall_until_clear();
   991     }
   993     // We can reach here if we were unsuccessul in scheduling a
   994     // collection (because another thread beat us to it) or if we were
   995     // stalled due to the GC locker. In either can we should retry the
   996     // allocation attempt in case another thread successfully
   997     // performed a collection and reclaimed enough space. We do the
   998     // first attempt (without holding the Heap_lock) here and the
   999     // follow-on attempt will be at the start of the next loop
  1000     // iteration (after taking the Heap_lock).
  1001     result = _mutator_alloc_region.attempt_allocation(word_size,
  1002                                                       false /* bot_updates */);
  1003     if (result != NULL) {
  1004       return result;
  1007     // Give a warning if we seem to be looping forever.
  1008     if ((QueuedAllocationWarningCount > 0) &&
  1009         (try_count % QueuedAllocationWarningCount == 0)) {
  1010       warning("G1CollectedHeap::attempt_allocation_slow() "
  1011               "retries %d times", try_count);
  1015   ShouldNotReachHere();
  1016   return NULL;
  1019 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1020                                           unsigned int * gc_count_before_ret) {
  1021   // The structure of this method has a lot of similarities to
  1022   // attempt_allocation_slow(). The reason these two were not merged
  1023   // into a single one is that such a method would require several "if
  1024   // allocation is not humongous do this, otherwise do that"
  1025   // conditional paths which would obscure its flow. In fact, an early
  1026   // version of this code did use a unified method which was harder to
  1027   // follow and, as a result, it had subtle bugs that were hard to
  1028   // track down. So keeping these two methods separate allows each to
  1029   // be more readable. It will be good to keep these two in sync as
  1030   // much as possible.
  1032   assert_heap_not_locked_and_not_at_safepoint();
  1033   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1034          "should only be called for humongous allocations");
  1036   // Humongous objects can exhaust the heap quickly, so we should check if we
  1037   // need to start a marking cycle at each humongous object allocation. We do
  1038   // the check before we do the actual allocation. The reason for doing it
  1039   // before the allocation is that we avoid having to keep track of the newly
  1040   // allocated memory while we do a GC.
  1041   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1042                                            word_size)) {
  1043     collect(GCCause::_g1_humongous_allocation);
  1046   // We will loop until a) we manage to successfully perform the
  1047   // allocation or b) we successfully schedule a collection which
  1048   // fails to perform the allocation. b) is the only case when we'll
  1049   // return NULL.
  1050   HeapWord* result = NULL;
  1051   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1052     bool should_try_gc;
  1053     unsigned int gc_count_before;
  1056       MutexLockerEx x(Heap_lock);
  1058       // Given that humongous objects are not allocated in young
  1059       // regions, we'll first try to do the allocation without doing a
  1060       // collection hoping that there's enough space in the heap.
  1061       result = humongous_obj_allocate(word_size);
  1062       if (result != NULL) {
  1063         return result;
  1066       if (GC_locker::is_active_and_needs_gc()) {
  1067         should_try_gc = false;
  1068       } else {
  1069          // The GCLocker may not be active but the GCLocker initiated
  1070         // GC may not yet have been performed (GCLocker::needs_gc()
  1071         // returns true). In this case we do not try this GC and
  1072         // wait until the GCLocker initiated GC is performed, and
  1073         // then retry the allocation.
  1074         if (GC_locker::needs_gc()) {
  1075           should_try_gc = false;
  1076         } else {
  1077           // Read the GC count while still holding the Heap_lock.
  1078           gc_count_before = total_collections();
  1079           should_try_gc = true;
  1084     if (should_try_gc) {
  1085       // If we failed to allocate the humongous object, we should try to
  1086       // do a collection pause (if we're allowed) in case it reclaims
  1087       // enough space for the allocation to succeed after the pause.
  1089       bool succeeded;
  1090       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1091       if (result != NULL) {
  1092         assert(succeeded, "only way to get back a non-NULL result");
  1093         return result;
  1096       if (succeeded) {
  1097         // If we get here we successfully scheduled a collection which
  1098         // failed to allocate. No point in trying to allocate
  1099         // further. We'll just return NULL.
  1100         MutexLockerEx x(Heap_lock);
  1101         *gc_count_before_ret = total_collections();
  1102         return NULL;
  1104     } else {
  1105       // The GCLocker is either active or the GCLocker initiated
  1106       // GC has not yet been performed. Stall until it is and
  1107       // then retry the allocation.
  1108       GC_locker::stall_until_clear();
  1111     // We can reach here if we were unsuccessul in scheduling a
  1112     // collection (because another thread beat us to it) or if we were
  1113     // stalled due to the GC locker. In either can we should retry the
  1114     // allocation attempt in case another thread successfully
  1115     // performed a collection and reclaimed enough space.  Give a
  1116     // warning if we seem to be looping forever.
  1118     if ((QueuedAllocationWarningCount > 0) &&
  1119         (try_count % QueuedAllocationWarningCount == 0)) {
  1120       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1121               "retries %d times", try_count);
  1125   ShouldNotReachHere();
  1126   return NULL;
  1129 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1130                                        bool expect_null_mutator_alloc_region) {
  1131   assert_at_safepoint(true /* should_be_vm_thread */);
  1132   assert(_mutator_alloc_region.get() == NULL ||
  1133                                              !expect_null_mutator_alloc_region,
  1134          "the current alloc region was unexpectedly found to be non-NULL");
  1136   if (!isHumongous(word_size)) {
  1137     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1138                                                       false /* bot_updates */);
  1139   } else {
  1140     HeapWord* result = humongous_obj_allocate(word_size);
  1141     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1142       g1_policy()->set_initiate_conc_mark_if_possible();
  1144     return result;
  1147   ShouldNotReachHere();
  1150 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1151   ModRefBarrierSet* _mr_bs;
  1152 public:
  1153   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1154   bool doHeapRegion(HeapRegion* r) {
  1155     r->reset_gc_time_stamp();
  1156     if (r->continuesHumongous())
  1157       return false;
  1158     HeapRegionRemSet* hrrs = r->rem_set();
  1159     if (hrrs != NULL) hrrs->clear();
  1160     // You might think here that we could clear just the cards
  1161     // corresponding to the used region.  But no: if we leave a dirty card
  1162     // in a region we might allocate into, then it would prevent that card
  1163     // from being enqueued, and cause it to be missed.
  1164     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1165     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1166     return false;
  1168 };
  1171 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  1172   ModRefBarrierSet* _mr_bs;
  1173 public:
  1174   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1175   bool doHeapRegion(HeapRegion* r) {
  1176     if (r->continuesHumongous()) return false;
  1177     if (r->used_region().word_size() != 0) {
  1178       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
  1180     return false;
  1182 };
  1184 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1185   G1CollectedHeap*   _g1h;
  1186   UpdateRSOopClosure _cl;
  1187   int                _worker_i;
  1188 public:
  1189   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1190     _cl(g1->g1_rem_set(), worker_i),
  1191     _worker_i(worker_i),
  1192     _g1h(g1)
  1193   { }
  1195   bool doHeapRegion(HeapRegion* r) {
  1196     if (!r->continuesHumongous()) {
  1197       _cl.set_from(r);
  1198       r->oop_iterate(&_cl);
  1200     return false;
  1202 };
  1204 class ParRebuildRSTask: public AbstractGangTask {
  1205   G1CollectedHeap* _g1;
  1206 public:
  1207   ParRebuildRSTask(G1CollectedHeap* g1)
  1208     : AbstractGangTask("ParRebuildRSTask"),
  1209       _g1(g1)
  1210   { }
  1212   void work(uint worker_id) {
  1213     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1214     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1215                                           _g1->workers()->active_workers(),
  1216                                          HeapRegion::RebuildRSClaimValue);
  1218 };
  1220 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1221 private:
  1222   G1HRPrinter* _hr_printer;
  1223 public:
  1224   bool doHeapRegion(HeapRegion* hr) {
  1225     assert(!hr->is_young(), "not expecting to find young regions");
  1226     // We only generate output for non-empty regions.
  1227     if (!hr->is_empty()) {
  1228       if (!hr->isHumongous()) {
  1229         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1230       } else if (hr->startsHumongous()) {
  1231         if (hr->capacity() == HeapRegion::GrainBytes) {
  1232           // single humongous region
  1233           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1234         } else {
  1235           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1237       } else {
  1238         assert(hr->continuesHumongous(), "only way to get here");
  1239         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1242     return false;
  1245   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1246     : _hr_printer(hr_printer) { }
  1247 };
  1249 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1250                                     bool clear_all_soft_refs,
  1251                                     size_t word_size) {
  1252   assert_at_safepoint(true /* should_be_vm_thread */);
  1254   if (GC_locker::check_active_before_gc()) {
  1255     return false;
  1258   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1259   ResourceMark rm;
  1261   print_heap_before_gc();
  1263   HRSPhaseSetter x(HRSPhaseFullGC);
  1264   verify_region_sets_optional();
  1266   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1267                            collector_policy()->should_clear_all_soft_refs();
  1269   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1272     IsGCActiveMark x;
  1274     // Timing
  1275     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1276     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1277     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1279     TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
  1280     TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1281     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1283     double start = os::elapsedTime();
  1284     g1_policy()->record_full_collection_start();
  1286     // Note: When we have a more flexible GC logging framework that
  1287     // allows us to add optional attributes to a GC log record we
  1288     // could consider timing and reporting how long we wait in the
  1289     // following two methods.
  1290     wait_while_free_regions_coming();
  1291     // If we start the compaction before the CM threads finish
  1292     // scanning the root regions we might trip them over as we'll
  1293     // be moving objects / updating references. So let's wait until
  1294     // they are done. By telling them to abort, they should complete
  1295     // early.
  1296     _cm->root_regions()->abort();
  1297     _cm->root_regions()->wait_until_scan_finished();
  1298     append_secondary_free_list_if_not_empty_with_lock();
  1300     gc_prologue(true);
  1301     increment_total_collections(true /* full gc */);
  1302     increment_old_marking_cycles_started();
  1304     size_t g1h_prev_used = used();
  1305     assert(used() == recalculate_used(), "Should be equal");
  1307     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  1308       HandleMark hm;  // Discard invalid handles created during verification
  1309       gclog_or_tty->print(" VerifyBeforeGC:");
  1310       prepare_for_verify();
  1311       Universe::verify(/* silent      */ false,
  1312                        /* option      */ VerifyOption_G1UsePrevMarking);
  1315     pre_full_gc_dump();
  1317     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1319     // Disable discovery and empty the discovered lists
  1320     // for the CM ref processor.
  1321     ref_processor_cm()->disable_discovery();
  1322     ref_processor_cm()->abandon_partial_discovery();
  1323     ref_processor_cm()->verify_no_references_recorded();
  1325     // Abandon current iterations of concurrent marking and concurrent
  1326     // refinement, if any are in progress. We have to do this before
  1327     // wait_until_scan_finished() below.
  1328     concurrent_mark()->abort();
  1330     // Make sure we'll choose a new allocation region afterwards.
  1331     release_mutator_alloc_region();
  1332     abandon_gc_alloc_regions();
  1333     g1_rem_set()->cleanupHRRS();
  1335     // We should call this after we retire any currently active alloc
  1336     // regions so that all the ALLOC / RETIRE events are generated
  1337     // before the start GC event.
  1338     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1340     // We may have added regions to the current incremental collection
  1341     // set between the last GC or pause and now. We need to clear the
  1342     // incremental collection set and then start rebuilding it afresh
  1343     // after this full GC.
  1344     abandon_collection_set(g1_policy()->inc_cset_head());
  1345     g1_policy()->clear_incremental_cset();
  1346     g1_policy()->stop_incremental_cset_building();
  1348     tear_down_region_sets(false /* free_list_only */);
  1349     g1_policy()->set_gcs_are_young(true);
  1351     // See the comments in g1CollectedHeap.hpp and
  1352     // G1CollectedHeap::ref_processing_init() about
  1353     // how reference processing currently works in G1.
  1355     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1356     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1358     // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1359     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1361     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1362     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1364     // Do collection work
  1366       HandleMark hm;  // Discard invalid handles created during gc
  1367       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1370     assert(free_regions() == 0, "we should not have added any free regions");
  1371     rebuild_region_sets(false /* free_list_only */);
  1373     // Enqueue any discovered reference objects that have
  1374     // not been removed from the discovered lists.
  1375     ref_processor_stw()->enqueue_discovered_references();
  1377     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1379     MemoryService::track_memory_usage();
  1381     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1382       HandleMark hm;  // Discard invalid handles created during verification
  1383       gclog_or_tty->print(" VerifyAfterGC:");
  1384       prepare_for_verify();
  1385       Universe::verify(/* silent      */ false,
  1386                        /* option      */ VerifyOption_G1UsePrevMarking);
  1390     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1391     ref_processor_stw()->verify_no_references_recorded();
  1393     // Note: since we've just done a full GC, concurrent
  1394     // marking is no longer active. Therefore we need not
  1395     // re-enable reference discovery for the CM ref processor.
  1396     // That will be done at the start of the next marking cycle.
  1397     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1398     ref_processor_cm()->verify_no_references_recorded();
  1400     reset_gc_time_stamp();
  1401     // Since everything potentially moved, we will clear all remembered
  1402     // sets, and clear all cards.  Later we will rebuild remebered
  1403     // sets. We will also reset the GC time stamps of the regions.
  1404     PostMCRemSetClearClosure rs_clear(mr_bs());
  1405     heap_region_iterate(&rs_clear);
  1407     // Resize the heap if necessary.
  1408     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1410     if (_hr_printer.is_active()) {
  1411       // We should do this after we potentially resize the heap so
  1412       // that all the COMMIT / UNCOMMIT events are generated before
  1413       // the end GC event.
  1415       PostCompactionPrinterClosure cl(hr_printer());
  1416       heap_region_iterate(&cl);
  1418       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1421     if (_cg1r->use_cache()) {
  1422       _cg1r->clear_and_record_card_counts();
  1423       _cg1r->clear_hot_cache();
  1426     // Rebuild remembered sets of all regions.
  1427     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1428       uint n_workers =
  1429         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1430                                        workers()->active_workers(),
  1431                                        Threads::number_of_non_daemon_threads());
  1432       assert(UseDynamicNumberOfGCThreads ||
  1433              n_workers == workers()->total_workers(),
  1434              "If not dynamic should be using all the  workers");
  1435       workers()->set_active_workers(n_workers);
  1436       // Set parallel threads in the heap (_n_par_threads) only
  1437       // before a parallel phase and always reset it to 0 after
  1438       // the phase so that the number of parallel threads does
  1439       // no get carried forward to a serial phase where there
  1440       // may be code that is "possibly_parallel".
  1441       set_par_threads(n_workers);
  1443       ParRebuildRSTask rebuild_rs_task(this);
  1444       assert(check_heap_region_claim_values(
  1445              HeapRegion::InitialClaimValue), "sanity check");
  1446       assert(UseDynamicNumberOfGCThreads ||
  1447              workers()->active_workers() == workers()->total_workers(),
  1448         "Unless dynamic should use total workers");
  1449       // Use the most recent number of  active workers
  1450       assert(workers()->active_workers() > 0,
  1451         "Active workers not properly set");
  1452       set_par_threads(workers()->active_workers());
  1453       workers()->run_task(&rebuild_rs_task);
  1454       set_par_threads(0);
  1455       assert(check_heap_region_claim_values(
  1456              HeapRegion::RebuildRSClaimValue), "sanity check");
  1457       reset_heap_region_claim_values();
  1458     } else {
  1459       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1460       heap_region_iterate(&rebuild_rs);
  1463     if (G1Log::fine()) {
  1464       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1467     if (true) { // FIXME
  1468       // Ask the permanent generation to adjust size for full collections
  1469       perm()->compute_new_size();
  1472     // Start a new incremental collection set for the next pause
  1473     assert(g1_policy()->collection_set() == NULL, "must be");
  1474     g1_policy()->start_incremental_cset_building();
  1476     // Clear the _cset_fast_test bitmap in anticipation of adding
  1477     // regions to the incremental collection set for the next
  1478     // evacuation pause.
  1479     clear_cset_fast_test();
  1481     init_mutator_alloc_region();
  1483     double end = os::elapsedTime();
  1484     g1_policy()->record_full_collection_end();
  1486 #ifdef TRACESPINNING
  1487     ParallelTaskTerminator::print_termination_counts();
  1488 #endif
  1490     gc_epilogue(true);
  1492     // Discard all rset updates
  1493     JavaThread::dirty_card_queue_set().abandon_logs();
  1494     assert(!G1DeferredRSUpdate
  1495            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1497     _young_list->reset_sampled_info();
  1498     // At this point there should be no regions in the
  1499     // entire heap tagged as young.
  1500     assert( check_young_list_empty(true /* check_heap */),
  1501       "young list should be empty at this point");
  1503     // Update the number of full collections that have been completed.
  1504     increment_old_marking_cycles_completed(false /* concurrent */);
  1506     _hrs.verify_optional();
  1507     verify_region_sets_optional();
  1509     print_heap_after_gc();
  1511     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1512     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1513     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1514     // before any GC notifications are raised.
  1515     g1mm()->update_sizes();
  1518   post_full_gc_dump();
  1520   return true;
  1523 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1524   // do_collection() will return whether it succeeded in performing
  1525   // the GC. Currently, there is no facility on the
  1526   // do_full_collection() API to notify the caller than the collection
  1527   // did not succeed (e.g., because it was locked out by the GC
  1528   // locker). So, right now, we'll ignore the return value.
  1529   bool dummy = do_collection(true,                /* explicit_gc */
  1530                              clear_all_soft_refs,
  1531                              0                    /* word_size */);
  1534 // This code is mostly copied from TenuredGeneration.
  1535 void
  1536 G1CollectedHeap::
  1537 resize_if_necessary_after_full_collection(size_t word_size) {
  1538   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1540   // Include the current allocation, if any, and bytes that will be
  1541   // pre-allocated to support collections, as "used".
  1542   const size_t used_after_gc = used();
  1543   const size_t capacity_after_gc = capacity();
  1544   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1546   // This is enforced in arguments.cpp.
  1547   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1548          "otherwise the code below doesn't make sense");
  1550   // We don't have floating point command-line arguments
  1551   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1552   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1553   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1554   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1556   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1557   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1559   // We have to be careful here as these two calculations can overflow
  1560   // 32-bit size_t's.
  1561   double used_after_gc_d = (double) used_after_gc;
  1562   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1563   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1565   // Let's make sure that they are both under the max heap size, which
  1566   // by default will make them fit into a size_t.
  1567   double desired_capacity_upper_bound = (double) max_heap_size;
  1568   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1569                                     desired_capacity_upper_bound);
  1570   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1571                                     desired_capacity_upper_bound);
  1573   // We can now safely turn them into size_t's.
  1574   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1575   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1577   // This assert only makes sense here, before we adjust them
  1578   // with respect to the min and max heap size.
  1579   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1580          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1581                  "maximum_desired_capacity = "SIZE_FORMAT,
  1582                  minimum_desired_capacity, maximum_desired_capacity));
  1584   // Should not be greater than the heap max size. No need to adjust
  1585   // it with respect to the heap min size as it's a lower bound (i.e.,
  1586   // we'll try to make the capacity larger than it, not smaller).
  1587   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1588   // Should not be less than the heap min size. No need to adjust it
  1589   // with respect to the heap max size as it's an upper bound (i.e.,
  1590   // we'll try to make the capacity smaller than it, not greater).
  1591   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1593   if (capacity_after_gc < minimum_desired_capacity) {
  1594     // Don't expand unless it's significant
  1595     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1596     ergo_verbose4(ErgoHeapSizing,
  1597                   "attempt heap expansion",
  1598                   ergo_format_reason("capacity lower than "
  1599                                      "min desired capacity after Full GC")
  1600                   ergo_format_byte("capacity")
  1601                   ergo_format_byte("occupancy")
  1602                   ergo_format_byte_perc("min desired capacity"),
  1603                   capacity_after_gc, used_after_gc,
  1604                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1605     expand(expand_bytes);
  1607     // No expansion, now see if we want to shrink
  1608   } else if (capacity_after_gc > maximum_desired_capacity) {
  1609     // Capacity too large, compute shrinking size
  1610     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1611     ergo_verbose4(ErgoHeapSizing,
  1612                   "attempt heap shrinking",
  1613                   ergo_format_reason("capacity higher than "
  1614                                      "max desired capacity after Full GC")
  1615                   ergo_format_byte("capacity")
  1616                   ergo_format_byte("occupancy")
  1617                   ergo_format_byte_perc("max desired capacity"),
  1618                   capacity_after_gc, used_after_gc,
  1619                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1620     shrink(shrink_bytes);
  1625 HeapWord*
  1626 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1627                                            bool* succeeded) {
  1628   assert_at_safepoint(true /* should_be_vm_thread */);
  1630   *succeeded = true;
  1631   // Let's attempt the allocation first.
  1632   HeapWord* result =
  1633     attempt_allocation_at_safepoint(word_size,
  1634                                  false /* expect_null_mutator_alloc_region */);
  1635   if (result != NULL) {
  1636     assert(*succeeded, "sanity");
  1637     return result;
  1640   // In a G1 heap, we're supposed to keep allocation from failing by
  1641   // incremental pauses.  Therefore, at least for now, we'll favor
  1642   // expansion over collection.  (This might change in the future if we can
  1643   // do something smarter than full collection to satisfy a failed alloc.)
  1644   result = expand_and_allocate(word_size);
  1645   if (result != NULL) {
  1646     assert(*succeeded, "sanity");
  1647     return result;
  1650   // Expansion didn't work, we'll try to do a Full GC.
  1651   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1652                                     false, /* clear_all_soft_refs */
  1653                                     word_size);
  1654   if (!gc_succeeded) {
  1655     *succeeded = false;
  1656     return NULL;
  1659   // Retry the allocation
  1660   result = attempt_allocation_at_safepoint(word_size,
  1661                                   true /* expect_null_mutator_alloc_region */);
  1662   if (result != NULL) {
  1663     assert(*succeeded, "sanity");
  1664     return result;
  1667   // Then, try a Full GC that will collect all soft references.
  1668   gc_succeeded = do_collection(false, /* explicit_gc */
  1669                                true,  /* clear_all_soft_refs */
  1670                                word_size);
  1671   if (!gc_succeeded) {
  1672     *succeeded = false;
  1673     return NULL;
  1676   // Retry the allocation once more
  1677   result = attempt_allocation_at_safepoint(word_size,
  1678                                   true /* expect_null_mutator_alloc_region */);
  1679   if (result != NULL) {
  1680     assert(*succeeded, "sanity");
  1681     return result;
  1684   assert(!collector_policy()->should_clear_all_soft_refs(),
  1685          "Flag should have been handled and cleared prior to this point");
  1687   // What else?  We might try synchronous finalization later.  If the total
  1688   // space available is large enough for the allocation, then a more
  1689   // complete compaction phase than we've tried so far might be
  1690   // appropriate.
  1691   assert(*succeeded, "sanity");
  1692   return NULL;
  1695 // Attempting to expand the heap sufficiently
  1696 // to support an allocation of the given "word_size".  If
  1697 // successful, perform the allocation and return the address of the
  1698 // allocated block, or else "NULL".
  1700 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1701   assert_at_safepoint(true /* should_be_vm_thread */);
  1703   verify_region_sets_optional();
  1705   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1706   ergo_verbose1(ErgoHeapSizing,
  1707                 "attempt heap expansion",
  1708                 ergo_format_reason("allocation request failed")
  1709                 ergo_format_byte("allocation request"),
  1710                 word_size * HeapWordSize);
  1711   if (expand(expand_bytes)) {
  1712     _hrs.verify_optional();
  1713     verify_region_sets_optional();
  1714     return attempt_allocation_at_safepoint(word_size,
  1715                                  false /* expect_null_mutator_alloc_region */);
  1717   return NULL;
  1720 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1721                                              HeapWord* new_end) {
  1722   assert(old_end != new_end, "don't call this otherwise");
  1723   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1725   // Update the committed mem region.
  1726   _g1_committed.set_end(new_end);
  1727   // Tell the card table about the update.
  1728   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1729   // Tell the BOT about the update.
  1730   _bot_shared->resize(_g1_committed.word_size());
  1733 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1734   size_t old_mem_size = _g1_storage.committed_size();
  1735   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1736   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1737                                        HeapRegion::GrainBytes);
  1738   ergo_verbose2(ErgoHeapSizing,
  1739                 "expand the heap",
  1740                 ergo_format_byte("requested expansion amount")
  1741                 ergo_format_byte("attempted expansion amount"),
  1742                 expand_bytes, aligned_expand_bytes);
  1744   // First commit the memory.
  1745   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1746   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1747   if (successful) {
  1748     // Then propagate this update to the necessary data structures.
  1749     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1750     update_committed_space(old_end, new_end);
  1752     FreeRegionList expansion_list("Local Expansion List");
  1753     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1754     assert(mr.start() == old_end, "post-condition");
  1755     // mr might be a smaller region than what was requested if
  1756     // expand_by() was unable to allocate the HeapRegion instances
  1757     assert(mr.end() <= new_end, "post-condition");
  1759     size_t actual_expand_bytes = mr.byte_size();
  1760     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1761     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1762            "post-condition");
  1763     if (actual_expand_bytes < aligned_expand_bytes) {
  1764       // We could not expand _hrs to the desired size. In this case we
  1765       // need to shrink the committed space accordingly.
  1766       assert(mr.end() < new_end, "invariant");
  1768       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1769       // First uncommit the memory.
  1770       _g1_storage.shrink_by(diff_bytes);
  1771       // Then propagate this update to the necessary data structures.
  1772       update_committed_space(new_end, mr.end());
  1774     _free_list.add_as_tail(&expansion_list);
  1776     if (_hr_printer.is_active()) {
  1777       HeapWord* curr = mr.start();
  1778       while (curr < mr.end()) {
  1779         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1780         _hr_printer.commit(curr, curr_end);
  1781         curr = curr_end;
  1783       assert(curr == mr.end(), "post-condition");
  1785     g1_policy()->record_new_heap_size(n_regions());
  1786   } else {
  1787     ergo_verbose0(ErgoHeapSizing,
  1788                   "did not expand the heap",
  1789                   ergo_format_reason("heap expansion operation failed"));
  1790     // The expansion of the virtual storage space was unsuccessful.
  1791     // Let's see if it was because we ran out of swap.
  1792     if (G1ExitOnExpansionFailure &&
  1793         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1794       // We had head room...
  1795       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1798   return successful;
  1801 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1802   size_t old_mem_size = _g1_storage.committed_size();
  1803   size_t aligned_shrink_bytes =
  1804     ReservedSpace::page_align_size_down(shrink_bytes);
  1805   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1806                                          HeapRegion::GrainBytes);
  1807   uint num_regions_deleted = 0;
  1808   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1809   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1810   assert(mr.end() == old_end, "post-condition");
  1812   ergo_verbose3(ErgoHeapSizing,
  1813                 "shrink the heap",
  1814                 ergo_format_byte("requested shrinking amount")
  1815                 ergo_format_byte("aligned shrinking amount")
  1816                 ergo_format_byte("attempted shrinking amount"),
  1817                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
  1818   if (mr.byte_size() > 0) {
  1819     if (_hr_printer.is_active()) {
  1820       HeapWord* curr = mr.end();
  1821       while (curr > mr.start()) {
  1822         HeapWord* curr_end = curr;
  1823         curr -= HeapRegion::GrainWords;
  1824         _hr_printer.uncommit(curr, curr_end);
  1826       assert(curr == mr.start(), "post-condition");
  1829     _g1_storage.shrink_by(mr.byte_size());
  1830     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1831     assert(mr.start() == new_end, "post-condition");
  1833     _expansion_regions += num_regions_deleted;
  1834     update_committed_space(old_end, new_end);
  1835     HeapRegionRemSet::shrink_heap(n_regions());
  1836     g1_policy()->record_new_heap_size(n_regions());
  1837   } else {
  1838     ergo_verbose0(ErgoHeapSizing,
  1839                   "did not shrink the heap",
  1840                   ergo_format_reason("heap shrinking operation failed"));
  1844 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1845   verify_region_sets_optional();
  1847   // We should only reach here at the end of a Full GC which means we
  1848   // should not not be holding to any GC alloc regions. The method
  1849   // below will make sure of that and do any remaining clean up.
  1850   abandon_gc_alloc_regions();
  1852   // Instead of tearing down / rebuilding the free lists here, we
  1853   // could instead use the remove_all_pending() method on free_list to
  1854   // remove only the ones that we need to remove.
  1855   tear_down_region_sets(true /* free_list_only */);
  1856   shrink_helper(shrink_bytes);
  1857   rebuild_region_sets(true /* free_list_only */);
  1859   _hrs.verify_optional();
  1860   verify_region_sets_optional();
  1863 // Public methods.
  1865 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1866 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1867 #endif // _MSC_VER
  1870 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1871   SharedHeap(policy_),
  1872   _g1_policy(policy_),
  1873   _dirty_card_queue_set(false),
  1874   _into_cset_dirty_card_queue_set(false),
  1875   _is_alive_closure_cm(this),
  1876   _is_alive_closure_stw(this),
  1877   _ref_processor_cm(NULL),
  1878   _ref_processor_stw(NULL),
  1879   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1880   _bot_shared(NULL),
  1881   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1882   _evac_failure_scan_stack(NULL) ,
  1883   _mark_in_progress(false),
  1884   _cg1r(NULL), _summary_bytes_used(0),
  1885   _g1mm(NULL),
  1886   _refine_cte_cl(NULL),
  1887   _full_collection(false),
  1888   _free_list("Master Free List"),
  1889   _secondary_free_list("Secondary Free List"),
  1890   _old_set("Old Set"),
  1891   _humongous_set("Master Humongous Set"),
  1892   _free_regions_coming(false),
  1893   _young_list(new YoungList(this)),
  1894   _gc_time_stamp(0),
  1895   _retained_old_gc_alloc_region(NULL),
  1896   _expand_heap_after_alloc_failure(true),
  1897   _surviving_young_words(NULL),
  1898   _old_marking_cycles_started(0),
  1899   _old_marking_cycles_completed(0),
  1900   _in_cset_fast_test(NULL),
  1901   _in_cset_fast_test_base(NULL),
  1902   _dirty_cards_region_list(NULL),
  1903   _worker_cset_start_region(NULL),
  1904   _worker_cset_start_region_time_stamp(NULL) {
  1905   _g1h = this; // To catch bugs.
  1906   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1907     vm_exit_during_initialization("Failed necessary allocation.");
  1910   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1912   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1913   _task_queues = new RefToScanQueueSet(n_queues);
  1915   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1916   assert(n_rem_sets > 0, "Invariant.");
  1918   HeapRegionRemSetIterator** iter_arr =
  1919     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
  1920   for (int i = 0; i < n_queues; i++) {
  1921     iter_arr[i] = new HeapRegionRemSetIterator();
  1923   _rem_set_iterator = iter_arr;
  1925   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1926   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1928   for (int i = 0; i < n_queues; i++) {
  1929     RefToScanQueue* q = new RefToScanQueue();
  1930     q->initialize();
  1931     _task_queues->register_queue(i, q);
  1934   clear_cset_start_regions();
  1936   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1939 jint G1CollectedHeap::initialize() {
  1940   CollectedHeap::pre_initialize();
  1941   os::enable_vtime();
  1943   G1Log::init();
  1945   // Necessary to satisfy locking discipline assertions.
  1947   MutexLocker x(Heap_lock);
  1949   // We have to initialize the printer before committing the heap, as
  1950   // it will be used then.
  1951   _hr_printer.set_active(G1PrintHeapRegions);
  1953   // While there are no constraints in the GC code that HeapWordSize
  1954   // be any particular value, there are multiple other areas in the
  1955   // system which believe this to be true (e.g. oop->object_size in some
  1956   // cases incorrectly returns the size in wordSize units rather than
  1957   // HeapWordSize).
  1958   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1960   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1961   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1963   // Ensure that the sizes are properly aligned.
  1964   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1965   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1967   _cg1r = new ConcurrentG1Refine();
  1969   // Reserve the maximum.
  1970   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1971   // Includes the perm-gen.
  1973   // When compressed oops are enabled, the preferred heap base
  1974   // is calculated by subtracting the requested size from the
  1975   // 32Gb boundary and using the result as the base address for
  1976   // heap reservation. If the requested size is not aligned to
  1977   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1978   // into the ReservedHeapSpace constructor) then the actual
  1979   // base of the reserved heap may end up differing from the
  1980   // address that was requested (i.e. the preferred heap base).
  1981   // If this happens then we could end up using a non-optimal
  1982   // compressed oops mode.
  1984   // Since max_byte_size is aligned to the size of a heap region (checked
  1985   // above), we also need to align the perm gen size as it might not be.
  1986   const size_t total_reserved = max_byte_size +
  1987                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  1988   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
  1990   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1992   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
  1993                             UseLargePages, addr);
  1995   if (UseCompressedOops) {
  1996     if (addr != NULL && !heap_rs.is_reserved()) {
  1997       // Failed to reserve at specified address - the requested memory
  1998       // region is taken already, for example, by 'java' launcher.
  1999       // Try again to reserver heap higher.
  2000       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  2002       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  2003                                  UseLargePages, addr);
  2005       if (addr != NULL && !heap_rs0.is_reserved()) {
  2006         // Failed to reserve at specified address again - give up.
  2007         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  2008         assert(addr == NULL, "");
  2010         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  2011                                    UseLargePages, addr);
  2012         heap_rs = heap_rs1;
  2013       } else {
  2014         heap_rs = heap_rs0;
  2019   if (!heap_rs.is_reserved()) {
  2020     vm_exit_during_initialization("Could not reserve enough space for object heap");
  2021     return JNI_ENOMEM;
  2024   // It is important to do this in a way such that concurrent readers can't
  2025   // temporarily think somethings in the heap.  (I've actually seen this
  2026   // happen in asserts: DLD.)
  2027   _reserved.set_word_size(0);
  2028   _reserved.set_start((HeapWord*)heap_rs.base());
  2029   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2031   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2033   // Create the gen rem set (and barrier set) for the entire reserved region.
  2034   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2035   set_barrier_set(rem_set()->bs());
  2036   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  2037     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  2038   } else {
  2039     vm_exit_during_initialization("G1 requires a mod ref bs.");
  2040     return JNI_ENOMEM;
  2043   // Also create a G1 rem set.
  2044   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  2045     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  2046   } else {
  2047     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  2048     return JNI_ENOMEM;
  2051   // Carve out the G1 part of the heap.
  2053   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2054   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2055                            g1_rs.size()/HeapWordSize);
  2056   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  2058   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  2060   _g1_storage.initialize(g1_rs, 0);
  2061   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2062   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2063                   (HeapWord*) _g1_reserved.end(),
  2064                   _expansion_regions);
  2066   // 6843694 - ensure that the maximum region index can fit
  2067   // in the remembered set structures.
  2068   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2069   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2071   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2072   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2073   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2074             "too many cards per region");
  2076   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  2078   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2079                                              heap_word_size(init_byte_size));
  2081   _g1h = this;
  2083    _in_cset_fast_test_length = max_regions();
  2084    _in_cset_fast_test_base =
  2085                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
  2087    // We're biasing _in_cset_fast_test to avoid subtracting the
  2088    // beginning of the heap every time we want to index; basically
  2089    // it's the same with what we do with the card table.
  2090    _in_cset_fast_test = _in_cset_fast_test_base -
  2091                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2093    // Clear the _cset_fast_test bitmap in anticipation of adding
  2094    // regions to the incremental collection set for the first
  2095    // evacuation pause.
  2096    clear_cset_fast_test();
  2098   // Create the ConcurrentMark data structure and thread.
  2099   // (Must do this late, so that "max_regions" is defined.)
  2100   _cm       = new ConcurrentMark(heap_rs, max_regions());
  2101   _cmThread = _cm->cmThread();
  2103   // Initialize the from_card cache structure of HeapRegionRemSet.
  2104   HeapRegionRemSet::init_heap(max_regions());
  2106   // Now expand into the initial heap size.
  2107   if (!expand(init_byte_size)) {
  2108     vm_exit_during_initialization("Failed to allocate initial heap.");
  2109     return JNI_ENOMEM;
  2112   // Perform any initialization actions delegated to the policy.
  2113   g1_policy()->init();
  2115   _refine_cte_cl =
  2116     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2117                                     g1_rem_set(),
  2118                                     concurrent_g1_refine());
  2119   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2121   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2122                                                SATB_Q_FL_lock,
  2123                                                G1SATBProcessCompletedThreshold,
  2124                                                Shared_SATB_Q_lock);
  2126   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2127                                                 DirtyCardQ_FL_lock,
  2128                                                 concurrent_g1_refine()->yellow_zone(),
  2129                                                 concurrent_g1_refine()->red_zone(),
  2130                                                 Shared_DirtyCardQ_lock);
  2132   if (G1DeferredRSUpdate) {
  2133     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2134                                       DirtyCardQ_FL_lock,
  2135                                       -1, // never trigger processing
  2136                                       -1, // no limit on length
  2137                                       Shared_DirtyCardQ_lock,
  2138                                       &JavaThread::dirty_card_queue_set());
  2141   // Initialize the card queue set used to hold cards containing
  2142   // references into the collection set.
  2143   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2144                                              DirtyCardQ_FL_lock,
  2145                                              -1, // never trigger processing
  2146                                              -1, // no limit on length
  2147                                              Shared_DirtyCardQ_lock,
  2148                                              &JavaThread::dirty_card_queue_set());
  2150   // In case we're keeping closure specialization stats, initialize those
  2151   // counts and that mechanism.
  2152   SpecializationStats::clear();
  2154   // Do later initialization work for concurrent refinement.
  2155   _cg1r->init();
  2157   // Here we allocate the dummy full region that is required by the
  2158   // G1AllocRegion class. If we don't pass an address in the reserved
  2159   // space here, lots of asserts fire.
  2161   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2162                                              _g1_reserved.start());
  2163   // We'll re-use the same region whether the alloc region will
  2164   // require BOT updates or not and, if it doesn't, then a non-young
  2165   // region will complain that it cannot support allocations without
  2166   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2167   dummy_region->set_young();
  2168   // Make sure it's full.
  2169   dummy_region->set_top(dummy_region->end());
  2170   G1AllocRegion::setup(this, dummy_region);
  2172   init_mutator_alloc_region();
  2174   // Do create of the monitoring and management support so that
  2175   // values in the heap have been properly initialized.
  2176   _g1mm = new G1MonitoringSupport(this);
  2178   return JNI_OK;
  2181 void G1CollectedHeap::ref_processing_init() {
  2182   // Reference processing in G1 currently works as follows:
  2183   //
  2184   // * There are two reference processor instances. One is
  2185   //   used to record and process discovered references
  2186   //   during concurrent marking; the other is used to
  2187   //   record and process references during STW pauses
  2188   //   (both full and incremental).
  2189   // * Both ref processors need to 'span' the entire heap as
  2190   //   the regions in the collection set may be dotted around.
  2191   //
  2192   // * For the concurrent marking ref processor:
  2193   //   * Reference discovery is enabled at initial marking.
  2194   //   * Reference discovery is disabled and the discovered
  2195   //     references processed etc during remarking.
  2196   //   * Reference discovery is MT (see below).
  2197   //   * Reference discovery requires a barrier (see below).
  2198   //   * Reference processing may or may not be MT
  2199   //     (depending on the value of ParallelRefProcEnabled
  2200   //     and ParallelGCThreads).
  2201   //   * A full GC disables reference discovery by the CM
  2202   //     ref processor and abandons any entries on it's
  2203   //     discovered lists.
  2204   //
  2205   // * For the STW processor:
  2206   //   * Non MT discovery is enabled at the start of a full GC.
  2207   //   * Processing and enqueueing during a full GC is non-MT.
  2208   //   * During a full GC, references are processed after marking.
  2209   //
  2210   //   * Discovery (may or may not be MT) is enabled at the start
  2211   //     of an incremental evacuation pause.
  2212   //   * References are processed near the end of a STW evacuation pause.
  2213   //   * For both types of GC:
  2214   //     * Discovery is atomic - i.e. not concurrent.
  2215   //     * Reference discovery will not need a barrier.
  2217   SharedHeap::ref_processing_init();
  2218   MemRegion mr = reserved_region();
  2220   // Concurrent Mark ref processor
  2221   _ref_processor_cm =
  2222     new ReferenceProcessor(mr,    // span
  2223                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2224                                 // mt processing
  2225                            (int) ParallelGCThreads,
  2226                                 // degree of mt processing
  2227                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2228                                 // mt discovery
  2229                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2230                                 // degree of mt discovery
  2231                            false,
  2232                                 // Reference discovery is not atomic
  2233                            &_is_alive_closure_cm,
  2234                                 // is alive closure
  2235                                 // (for efficiency/performance)
  2236                            true);
  2237                                 // Setting next fields of discovered
  2238                                 // lists requires a barrier.
  2240   // STW ref processor
  2241   _ref_processor_stw =
  2242     new ReferenceProcessor(mr,    // span
  2243                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2244                                 // mt processing
  2245                            MAX2((int)ParallelGCThreads, 1),
  2246                                 // degree of mt processing
  2247                            (ParallelGCThreads > 1),
  2248                                 // mt discovery
  2249                            MAX2((int)ParallelGCThreads, 1),
  2250                                 // degree of mt discovery
  2251                            true,
  2252                                 // Reference discovery is atomic
  2253                            &_is_alive_closure_stw,
  2254                                 // is alive closure
  2255                                 // (for efficiency/performance)
  2256                            false);
  2257                                 // Setting next fields of discovered
  2258                                 // lists requires a barrier.
  2261 size_t G1CollectedHeap::capacity() const {
  2262   return _g1_committed.byte_size();
  2265 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2266                                                  DirtyCardQueue* into_cset_dcq,
  2267                                                  bool concurrent,
  2268                                                  int worker_i) {
  2269   // Clean cards in the hot card cache
  2270   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2272   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2273   int n_completed_buffers = 0;
  2274   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2275     n_completed_buffers++;
  2277   g1_policy()->record_update_rs_processed_buffers(worker_i,
  2278                                                   (double) n_completed_buffers);
  2279   dcqs.clear_n_completed_buffers();
  2280   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2284 // Computes the sum of the storage used by the various regions.
  2286 size_t G1CollectedHeap::used() const {
  2287   assert(Heap_lock->owner() != NULL,
  2288          "Should be owned on this thread's behalf.");
  2289   size_t result = _summary_bytes_used;
  2290   // Read only once in case it is set to NULL concurrently
  2291   HeapRegion* hr = _mutator_alloc_region.get();
  2292   if (hr != NULL)
  2293     result += hr->used();
  2294   return result;
  2297 size_t G1CollectedHeap::used_unlocked() const {
  2298   size_t result = _summary_bytes_used;
  2299   return result;
  2302 class SumUsedClosure: public HeapRegionClosure {
  2303   size_t _used;
  2304 public:
  2305   SumUsedClosure() : _used(0) {}
  2306   bool doHeapRegion(HeapRegion* r) {
  2307     if (!r->continuesHumongous()) {
  2308       _used += r->used();
  2310     return false;
  2312   size_t result() { return _used; }
  2313 };
  2315 size_t G1CollectedHeap::recalculate_used() const {
  2316   SumUsedClosure blk;
  2317   heap_region_iterate(&blk);
  2318   return blk.result();
  2321 size_t G1CollectedHeap::unsafe_max_alloc() {
  2322   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2323   // otherwise, is there space in the current allocation region?
  2325   // We need to store the current allocation region in a local variable
  2326   // here. The problem is that this method doesn't take any locks and
  2327   // there may be other threads which overwrite the current allocation
  2328   // region field. attempt_allocation(), for example, sets it to NULL
  2329   // and this can happen *after* the NULL check here but before the call
  2330   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2331   // to be a problem in the optimized build, since the two loads of the
  2332   // current allocation region field are optimized away.
  2333   HeapRegion* hr = _mutator_alloc_region.get();
  2334   if (hr == NULL) {
  2335     return 0;
  2337   return hr->free();
  2340 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2341   switch (cause) {
  2342     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2343     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2344     case GCCause::_g1_humongous_allocation: return true;
  2345     default:                                return false;
  2349 #ifndef PRODUCT
  2350 void G1CollectedHeap::allocate_dummy_regions() {
  2351   // Let's fill up most of the region
  2352   size_t word_size = HeapRegion::GrainWords - 1024;
  2353   // And as a result the region we'll allocate will be humongous.
  2354   guarantee(isHumongous(word_size), "sanity");
  2356   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2357     // Let's use the existing mechanism for the allocation
  2358     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2359     if (dummy_obj != NULL) {
  2360       MemRegion mr(dummy_obj, word_size);
  2361       CollectedHeap::fill_with_object(mr);
  2362     } else {
  2363       // If we can't allocate once, we probably cannot allocate
  2364       // again. Let's get out of the loop.
  2365       break;
  2369 #endif // !PRODUCT
  2371 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2372   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2373     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2374     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2375     _old_marking_cycles_started, _old_marking_cycles_completed));
  2377   _old_marking_cycles_started++;
  2380 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2381   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2383   // We assume that if concurrent == true, then the caller is a
  2384   // concurrent thread that was joined the Suspendible Thread
  2385   // Set. If there's ever a cheap way to check this, we should add an
  2386   // assert here.
  2388   // Given that this method is called at the end of a Full GC or of a
  2389   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2390   // interrupt a concurrent cycle), the number of full collections
  2391   // completed should be either one (in the case where there was no
  2392   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2393   // behind the number of full collections started.
  2395   // This is the case for the inner caller, i.e. a Full GC.
  2396   assert(concurrent ||
  2397          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2398          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2399          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2400                  "is inconsistent with _old_marking_cycles_completed = %u",
  2401                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2403   // This is the case for the outer caller, i.e. the concurrent cycle.
  2404   assert(!concurrent ||
  2405          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2406          err_msg("for outer caller (concurrent cycle): "
  2407                  "_old_marking_cycles_started = %u "
  2408                  "is inconsistent with _old_marking_cycles_completed = %u",
  2409                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2411   _old_marking_cycles_completed += 1;
  2413   // We need to clear the "in_progress" flag in the CM thread before
  2414   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2415   // is set) so that if a waiter requests another System.gc() it doesn't
  2416   // incorrectly see that a marking cyle is still in progress.
  2417   if (concurrent) {
  2418     _cmThread->clear_in_progress();
  2421   // This notify_all() will ensure that a thread that called
  2422   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2423   // and it's waiting for a full GC to finish will be woken up. It is
  2424   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2425   FullGCCount_lock->notify_all();
  2428 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  2429   assert_at_safepoint(true /* should_be_vm_thread */);
  2430   GCCauseSetter gcs(this, cause);
  2431   switch (cause) {
  2432     case GCCause::_heap_inspection:
  2433     case GCCause::_heap_dump: {
  2434       HandleMark hm;
  2435       do_full_collection(false);         // don't clear all soft refs
  2436       break;
  2438     default: // XXX FIX ME
  2439       ShouldNotReachHere(); // Unexpected use of this function
  2443 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2444   assert_heap_not_locked();
  2446   unsigned int gc_count_before;
  2447   unsigned int old_marking_count_before;
  2448   bool retry_gc;
  2450   do {
  2451     retry_gc = false;
  2454       MutexLocker ml(Heap_lock);
  2456       // Read the GC count while holding the Heap_lock
  2457       gc_count_before = total_collections();
  2458       old_marking_count_before = _old_marking_cycles_started;
  2461     if (should_do_concurrent_full_gc(cause)) {
  2462       // Schedule an initial-mark evacuation pause that will start a
  2463       // concurrent cycle. We're setting word_size to 0 which means that
  2464       // we are not requesting a post-GC allocation.
  2465       VM_G1IncCollectionPause op(gc_count_before,
  2466                                  0,     /* word_size */
  2467                                  true,  /* should_initiate_conc_mark */
  2468                                  g1_policy()->max_pause_time_ms(),
  2469                                  cause);
  2471       VMThread::execute(&op);
  2472       if (!op.pause_succeeded()) {
  2473         if (old_marking_count_before == _old_marking_cycles_started) {
  2474           retry_gc = op.should_retry_gc();
  2475         } else {
  2476           // A Full GC happened while we were trying to schedule the
  2477           // initial-mark GC. No point in starting a new cycle given
  2478           // that the whole heap was collected anyway.
  2481         if (retry_gc) {
  2482           if (GC_locker::is_active_and_needs_gc()) {
  2483             GC_locker::stall_until_clear();
  2487     } else {
  2488       if (cause == GCCause::_gc_locker
  2489           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2491         // Schedule a standard evacuation pause. We're setting word_size
  2492         // to 0 which means that we are not requesting a post-GC allocation.
  2493         VM_G1IncCollectionPause op(gc_count_before,
  2494                                    0,     /* word_size */
  2495                                    false, /* should_initiate_conc_mark */
  2496                                    g1_policy()->max_pause_time_ms(),
  2497                                    cause);
  2498         VMThread::execute(&op);
  2499       } else {
  2500         // Schedule a Full GC.
  2501         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2502         VMThread::execute(&op);
  2505   } while (retry_gc);
  2508 bool G1CollectedHeap::is_in(const void* p) const {
  2509   if (_g1_committed.contains(p)) {
  2510     // Given that we know that p is in the committed space,
  2511     // heap_region_containing_raw() should successfully
  2512     // return the containing region.
  2513     HeapRegion* hr = heap_region_containing_raw(p);
  2514     return hr->is_in(p);
  2515   } else {
  2516     return _perm_gen->as_gen()->is_in(p);
  2520 // Iteration functions.
  2522 // Iterates an OopClosure over all ref-containing fields of objects
  2523 // within a HeapRegion.
  2525 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2526   MemRegion _mr;
  2527   OopClosure* _cl;
  2528 public:
  2529   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  2530     : _mr(mr), _cl(cl) {}
  2531   bool doHeapRegion(HeapRegion* r) {
  2532     if (! r->continuesHumongous()) {
  2533       r->oop_iterate(_cl);
  2535     return false;
  2537 };
  2539 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  2540   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2541   heap_region_iterate(&blk);
  2542   if (do_perm) {
  2543     perm_gen()->oop_iterate(cl);
  2547 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  2548   IterateOopClosureRegionClosure blk(mr, cl);
  2549   heap_region_iterate(&blk);
  2550   if (do_perm) {
  2551     perm_gen()->oop_iterate(cl);
  2555 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2557 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2558   ObjectClosure* _cl;
  2559 public:
  2560   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2561   bool doHeapRegion(HeapRegion* r) {
  2562     if (! r->continuesHumongous()) {
  2563       r->object_iterate(_cl);
  2565     return false;
  2567 };
  2569 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  2570   IterateObjectClosureRegionClosure blk(cl);
  2571   heap_region_iterate(&blk);
  2572   if (do_perm) {
  2573     perm_gen()->object_iterate(cl);
  2577 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2578   // FIXME: is this right?
  2579   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2582 // Calls a SpaceClosure on a HeapRegion.
  2584 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2585   SpaceClosure* _cl;
  2586 public:
  2587   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2588   bool doHeapRegion(HeapRegion* r) {
  2589     _cl->do_space(r);
  2590     return false;
  2592 };
  2594 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2595   SpaceClosureRegionClosure blk(cl);
  2596   heap_region_iterate(&blk);
  2599 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2600   _hrs.iterate(cl);
  2603 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  2604                                                HeapRegionClosure* cl) const {
  2605   _hrs.iterate_from(r, cl);
  2608 void
  2609 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2610                                                  uint worker,
  2611                                                  uint no_of_par_workers,
  2612                                                  jint claim_value) {
  2613   const uint regions = n_regions();
  2614   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2615                              no_of_par_workers :
  2616                              1);
  2617   assert(UseDynamicNumberOfGCThreads ||
  2618          no_of_par_workers == workers()->total_workers(),
  2619          "Non dynamic should use fixed number of workers");
  2620   // try to spread out the starting points of the workers
  2621   const uint start_index = regions / max_workers * worker;
  2623   // each worker will actually look at all regions
  2624   for (uint count = 0; count < regions; ++count) {
  2625     const uint index = (start_index + count) % regions;
  2626     assert(0 <= index && index < regions, "sanity");
  2627     HeapRegion* r = region_at(index);
  2628     // we'll ignore "continues humongous" regions (we'll process them
  2629     // when we come across their corresponding "start humongous"
  2630     // region) and regions already claimed
  2631     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2632       continue;
  2634     // OK, try to claim it
  2635     if (r->claimHeapRegion(claim_value)) {
  2636       // success!
  2637       assert(!r->continuesHumongous(), "sanity");
  2638       if (r->startsHumongous()) {
  2639         // If the region is "starts humongous" we'll iterate over its
  2640         // "continues humongous" first; in fact we'll do them
  2641         // first. The order is important. In on case, calling the
  2642         // closure on the "starts humongous" region might de-allocate
  2643         // and clear all its "continues humongous" regions and, as a
  2644         // result, we might end up processing them twice. So, we'll do
  2645         // them first (notice: most closures will ignore them anyway) and
  2646         // then we'll do the "starts humongous" region.
  2647         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2648           HeapRegion* chr = region_at(ch_index);
  2650           // if the region has already been claimed or it's not
  2651           // "continues humongous" we're done
  2652           if (chr->claim_value() == claim_value ||
  2653               !chr->continuesHumongous()) {
  2654             break;
  2657           // Noone should have claimed it directly. We can given
  2658           // that we claimed its "starts humongous" region.
  2659           assert(chr->claim_value() != claim_value, "sanity");
  2660           assert(chr->humongous_start_region() == r, "sanity");
  2662           if (chr->claimHeapRegion(claim_value)) {
  2663             // we should always be able to claim it; noone else should
  2664             // be trying to claim this region
  2666             bool res2 = cl->doHeapRegion(chr);
  2667             assert(!res2, "Should not abort");
  2669             // Right now, this holds (i.e., no closure that actually
  2670             // does something with "continues humongous" regions
  2671             // clears them). We might have to weaken it in the future,
  2672             // but let's leave these two asserts here for extra safety.
  2673             assert(chr->continuesHumongous(), "should still be the case");
  2674             assert(chr->humongous_start_region() == r, "sanity");
  2675           } else {
  2676             guarantee(false, "we should not reach here");
  2681       assert(!r->continuesHumongous(), "sanity");
  2682       bool res = cl->doHeapRegion(r);
  2683       assert(!res, "Should not abort");
  2688 class ResetClaimValuesClosure: public HeapRegionClosure {
  2689 public:
  2690   bool doHeapRegion(HeapRegion* r) {
  2691     r->set_claim_value(HeapRegion::InitialClaimValue);
  2692     return false;
  2694 };
  2696 void G1CollectedHeap::reset_heap_region_claim_values() {
  2697   ResetClaimValuesClosure blk;
  2698   heap_region_iterate(&blk);
  2701 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2702   ResetClaimValuesClosure blk;
  2703   collection_set_iterate(&blk);
  2706 #ifdef ASSERT
  2707 // This checks whether all regions in the heap have the correct claim
  2708 // value. I also piggy-backed on this a check to ensure that the
  2709 // humongous_start_region() information on "continues humongous"
  2710 // regions is correct.
  2712 class CheckClaimValuesClosure : public HeapRegionClosure {
  2713 private:
  2714   jint _claim_value;
  2715   uint _failures;
  2716   HeapRegion* _sh_region;
  2718 public:
  2719   CheckClaimValuesClosure(jint claim_value) :
  2720     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2721   bool doHeapRegion(HeapRegion* r) {
  2722     if (r->claim_value() != _claim_value) {
  2723       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2724                              "claim value = %d, should be %d",
  2725                              HR_FORMAT_PARAMS(r),
  2726                              r->claim_value(), _claim_value);
  2727       ++_failures;
  2729     if (!r->isHumongous()) {
  2730       _sh_region = NULL;
  2731     } else if (r->startsHumongous()) {
  2732       _sh_region = r;
  2733     } else if (r->continuesHumongous()) {
  2734       if (r->humongous_start_region() != _sh_region) {
  2735         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2736                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2737                                HR_FORMAT_PARAMS(r),
  2738                                r->humongous_start_region(),
  2739                                _sh_region);
  2740         ++_failures;
  2743     return false;
  2745   uint failures() { return _failures; }
  2746 };
  2748 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2749   CheckClaimValuesClosure cl(claim_value);
  2750   heap_region_iterate(&cl);
  2751   return cl.failures() == 0;
  2754 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2755 private:
  2756   jint _claim_value;
  2757   uint _failures;
  2759 public:
  2760   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2761     _claim_value(claim_value), _failures(0) { }
  2763   uint failures() { return _failures; }
  2765   bool doHeapRegion(HeapRegion* hr) {
  2766     assert(hr->in_collection_set(), "how?");
  2767     assert(!hr->isHumongous(), "H-region in CSet");
  2768     if (hr->claim_value() != _claim_value) {
  2769       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2770                              "claim value = %d, should be %d",
  2771                              HR_FORMAT_PARAMS(hr),
  2772                              hr->claim_value(), _claim_value);
  2773       _failures += 1;
  2775     return false;
  2777 };
  2779 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2780   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2781   collection_set_iterate(&cl);
  2782   return cl.failures() == 0;
  2784 #endif // ASSERT
  2786 // Clear the cached CSet starting regions and (more importantly)
  2787 // the time stamps. Called when we reset the GC time stamp.
  2788 void G1CollectedHeap::clear_cset_start_regions() {
  2789   assert(_worker_cset_start_region != NULL, "sanity");
  2790   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2792   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2793   for (int i = 0; i < n_queues; i++) {
  2794     _worker_cset_start_region[i] = NULL;
  2795     _worker_cset_start_region_time_stamp[i] = 0;
  2799 // Given the id of a worker, obtain or calculate a suitable
  2800 // starting region for iterating over the current collection set.
  2801 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
  2802   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2804   HeapRegion* result = NULL;
  2805   unsigned gc_time_stamp = get_gc_time_stamp();
  2807   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2808     // Cached starting region for current worker was set
  2809     // during the current pause - so it's valid.
  2810     // Note: the cached starting heap region may be NULL
  2811     // (when the collection set is empty).
  2812     result = _worker_cset_start_region[worker_i];
  2813     assert(result == NULL || result->in_collection_set(), "sanity");
  2814     return result;
  2817   // The cached entry was not valid so let's calculate
  2818   // a suitable starting heap region for this worker.
  2820   // We want the parallel threads to start their collection
  2821   // set iteration at different collection set regions to
  2822   // avoid contention.
  2823   // If we have:
  2824   //          n collection set regions
  2825   //          p threads
  2826   // Then thread t will start at region floor ((t * n) / p)
  2828   result = g1_policy()->collection_set();
  2829   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2830     uint cs_size = g1_policy()->cset_region_length();
  2831     uint active_workers = workers()->active_workers();
  2832     assert(UseDynamicNumberOfGCThreads ||
  2833              active_workers == workers()->total_workers(),
  2834              "Unless dynamic should use total workers");
  2836     uint end_ind   = (cs_size * worker_i) / active_workers;
  2837     uint start_ind = 0;
  2839     if (worker_i > 0 &&
  2840         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2841       // Previous workers starting region is valid
  2842       // so let's iterate from there
  2843       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2844       result = _worker_cset_start_region[worker_i - 1];
  2847     for (uint i = start_ind; i < end_ind; i++) {
  2848       result = result->next_in_collection_set();
  2852   // Note: the calculated starting heap region may be NULL
  2853   // (when the collection set is empty).
  2854   assert(result == NULL || result->in_collection_set(), "sanity");
  2855   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2856          "should be updated only once per pause");
  2857   _worker_cset_start_region[worker_i] = result;
  2858   OrderAccess::storestore();
  2859   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2860   return result;
  2863 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2864   HeapRegion* r = g1_policy()->collection_set();
  2865   while (r != NULL) {
  2866     HeapRegion* next = r->next_in_collection_set();
  2867     if (cl->doHeapRegion(r)) {
  2868       cl->incomplete();
  2869       return;
  2871     r = next;
  2875 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2876                                                   HeapRegionClosure *cl) {
  2877   if (r == NULL) {
  2878     // The CSet is empty so there's nothing to do.
  2879     return;
  2882   assert(r->in_collection_set(),
  2883          "Start region must be a member of the collection set.");
  2884   HeapRegion* cur = r;
  2885   while (cur != NULL) {
  2886     HeapRegion* next = cur->next_in_collection_set();
  2887     if (cl->doHeapRegion(cur) && false) {
  2888       cl->incomplete();
  2889       return;
  2891     cur = next;
  2893   cur = g1_policy()->collection_set();
  2894   while (cur != r) {
  2895     HeapRegion* next = cur->next_in_collection_set();
  2896     if (cl->doHeapRegion(cur) && false) {
  2897       cl->incomplete();
  2898       return;
  2900     cur = next;
  2904 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2905   return n_regions() > 0 ? region_at(0) : NULL;
  2909 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2910   Space* res = heap_region_containing(addr);
  2911   if (res == NULL)
  2912     res = perm_gen()->space_containing(addr);
  2913   return res;
  2916 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2917   Space* sp = space_containing(addr);
  2918   if (sp != NULL) {
  2919     return sp->block_start(addr);
  2921   return NULL;
  2924 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2925   Space* sp = space_containing(addr);
  2926   assert(sp != NULL, "block_size of address outside of heap");
  2927   return sp->block_size(addr);
  2930 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2931   Space* sp = space_containing(addr);
  2932   return sp->block_is_obj(addr);
  2935 bool G1CollectedHeap::supports_tlab_allocation() const {
  2936   return true;
  2939 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2940   return HeapRegion::GrainBytes;
  2943 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2944   // Return the remaining space in the cur alloc region, but not less than
  2945   // the min TLAB size.
  2947   // Also, this value can be at most the humongous object threshold,
  2948   // since we can't allow tlabs to grow big enough to accomodate
  2949   // humongous objects.
  2951   HeapRegion* hr = _mutator_alloc_region.get();
  2952   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2953   if (hr == NULL) {
  2954     return max_tlab_size;
  2955   } else {
  2956     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  2960 size_t G1CollectedHeap::max_capacity() const {
  2961   return _g1_reserved.byte_size();
  2964 jlong G1CollectedHeap::millis_since_last_gc() {
  2965   // assert(false, "NYI");
  2966   return 0;
  2969 void G1CollectedHeap::prepare_for_verify() {
  2970   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2971     ensure_parsability(false);
  2973   g1_rem_set()->prepare_for_verify();
  2976 class VerifyLivenessOopClosure: public OopClosure {
  2977   G1CollectedHeap* _g1h;
  2978   VerifyOption _vo;
  2979 public:
  2980   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  2981     _g1h(g1h), _vo(vo)
  2982   { }
  2983   void do_oop(narrowOop *p) { do_oop_work(p); }
  2984   void do_oop(      oop *p) { do_oop_work(p); }
  2986   template <class T> void do_oop_work(T *p) {
  2987     oop obj = oopDesc::load_decode_heap_oop(p);
  2988     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  2989               "Dead object referenced by a not dead object");
  2991 };
  2993 class VerifyObjsInRegionClosure: public ObjectClosure {
  2994 private:
  2995   G1CollectedHeap* _g1h;
  2996   size_t _live_bytes;
  2997   HeapRegion *_hr;
  2998   VerifyOption _vo;
  2999 public:
  3000   // _vo == UsePrevMarking -> use "prev" marking information,
  3001   // _vo == UseNextMarking -> use "next" marking information,
  3002   // _vo == UseMarkWord    -> use mark word from object header.
  3003   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3004     : _live_bytes(0), _hr(hr), _vo(vo) {
  3005     _g1h = G1CollectedHeap::heap();
  3007   void do_object(oop o) {
  3008     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3009     assert(o != NULL, "Huh?");
  3010     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3011       // If the object is alive according to the mark word,
  3012       // then verify that the marking information agrees.
  3013       // Note we can't verify the contra-positive of the
  3014       // above: if the object is dead (according to the mark
  3015       // word), it may not be marked, or may have been marked
  3016       // but has since became dead, or may have been allocated
  3017       // since the last marking.
  3018       if (_vo == VerifyOption_G1UseMarkWord) {
  3019         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3022       o->oop_iterate(&isLive);
  3023       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3024         size_t obj_size = o->size();    // Make sure we don't overflow
  3025         _live_bytes += (obj_size * HeapWordSize);
  3029   size_t live_bytes() { return _live_bytes; }
  3030 };
  3032 class PrintObjsInRegionClosure : public ObjectClosure {
  3033   HeapRegion *_hr;
  3034   G1CollectedHeap *_g1;
  3035 public:
  3036   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3037     _g1 = G1CollectedHeap::heap();
  3038   };
  3040   void do_object(oop o) {
  3041     if (o != NULL) {
  3042       HeapWord *start = (HeapWord *) o;
  3043       size_t word_sz = o->size();
  3044       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3045                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3046                           (void*) o, word_sz,
  3047                           _g1->isMarkedPrev(o),
  3048                           _g1->isMarkedNext(o),
  3049                           _hr->obj_allocated_since_prev_marking(o));
  3050       HeapWord *end = start + word_sz;
  3051       HeapWord *cur;
  3052       int *val;
  3053       for (cur = start; cur < end; cur++) {
  3054         val = (int *) cur;
  3055         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3059 };
  3061 class VerifyRegionClosure: public HeapRegionClosure {
  3062 private:
  3063   bool         _par;
  3064   VerifyOption _vo;
  3065   bool         _failures;
  3066 public:
  3067   // _vo == UsePrevMarking -> use "prev" marking information,
  3068   // _vo == UseNextMarking -> use "next" marking information,
  3069   // _vo == UseMarkWord    -> use mark word from object header.
  3070   VerifyRegionClosure(bool par, VerifyOption vo)
  3071     : _par(par),
  3072       _vo(vo),
  3073       _failures(false) {}
  3075   bool failures() {
  3076     return _failures;
  3079   bool doHeapRegion(HeapRegion* r) {
  3080     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  3081               "Should be unclaimed at verify points.");
  3082     if (!r->continuesHumongous()) {
  3083       bool failures = false;
  3084       r->verify(_vo, &failures);
  3085       if (failures) {
  3086         _failures = true;
  3087       } else {
  3088         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3089         r->object_iterate(&not_dead_yet_cl);
  3090         if (_vo != VerifyOption_G1UseNextMarking) {
  3091           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3092             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3093                                    "max_live_bytes "SIZE_FORMAT" "
  3094                                    "< calculated "SIZE_FORMAT,
  3095                                    r->bottom(), r->end(),
  3096                                    r->max_live_bytes(),
  3097                                  not_dead_yet_cl.live_bytes());
  3098             _failures = true;
  3100         } else {
  3101           // When vo == UseNextMarking we cannot currently do a sanity
  3102           // check on the live bytes as the calculation has not been
  3103           // finalized yet.
  3107     return false; // stop the region iteration if we hit a failure
  3109 };
  3111 class VerifyRootsClosure: public OopsInGenClosure {
  3112 private:
  3113   G1CollectedHeap* _g1h;
  3114   VerifyOption     _vo;
  3115   bool             _failures;
  3116 public:
  3117   // _vo == UsePrevMarking -> use "prev" marking information,
  3118   // _vo == UseNextMarking -> use "next" marking information,
  3119   // _vo == UseMarkWord    -> use mark word from object header.
  3120   VerifyRootsClosure(VerifyOption vo) :
  3121     _g1h(G1CollectedHeap::heap()),
  3122     _vo(vo),
  3123     _failures(false) { }
  3125   bool failures() { return _failures; }
  3127   template <class T> void do_oop_nv(T* p) {
  3128     T heap_oop = oopDesc::load_heap_oop(p);
  3129     if (!oopDesc::is_null(heap_oop)) {
  3130       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3131       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3132         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3133                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3134         if (_vo == VerifyOption_G1UseMarkWord) {
  3135           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3137         obj->print_on(gclog_or_tty);
  3138         _failures = true;
  3143   void do_oop(oop* p)       { do_oop_nv(p); }
  3144   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3145 };
  3147 // This is the task used for parallel heap verification.
  3149 class G1ParVerifyTask: public AbstractGangTask {
  3150 private:
  3151   G1CollectedHeap* _g1h;
  3152   VerifyOption     _vo;
  3153   bool             _failures;
  3155 public:
  3156   // _vo == UsePrevMarking -> use "prev" marking information,
  3157   // _vo == UseNextMarking -> use "next" marking information,
  3158   // _vo == UseMarkWord    -> use mark word from object header.
  3159   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3160     AbstractGangTask("Parallel verify task"),
  3161     _g1h(g1h),
  3162     _vo(vo),
  3163     _failures(false) { }
  3165   bool failures() {
  3166     return _failures;
  3169   void work(uint worker_id) {
  3170     HandleMark hm;
  3171     VerifyRegionClosure blk(true, _vo);
  3172     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3173                                           _g1h->workers()->active_workers(),
  3174                                           HeapRegion::ParVerifyClaimValue);
  3175     if (blk.failures()) {
  3176       _failures = true;
  3179 };
  3181 void G1CollectedHeap::verify(bool silent) {
  3182   verify(silent, VerifyOption_G1UsePrevMarking);
  3185 void G1CollectedHeap::verify(bool silent,
  3186                              VerifyOption vo) {
  3187   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3188     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
  3189     VerifyRootsClosure rootsCl(vo);
  3191     assert(Thread::current()->is_VM_thread(),
  3192       "Expected to be executed serially by the VM thread at this point");
  3194     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  3196     // We apply the relevant closures to all the oops in the
  3197     // system dictionary, the string table and the code cache.
  3198     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
  3200     process_strong_roots(true,      // activate StrongRootsScope
  3201                          true,      // we set "collecting perm gen" to true,
  3202                                     // so we don't reset the dirty cards in the perm gen.
  3203                          ScanningOption(so),  // roots scanning options
  3204                          &rootsCl,
  3205                          &blobsCl,
  3206                          &rootsCl);
  3208     // If we're verifying after the marking phase of a Full GC then we can't
  3209     // treat the perm gen as roots into the G1 heap. Some of the objects in
  3210     // the perm gen may be dead and hence not marked. If one of these dead
  3211     // objects is considered to be a root then we may end up with a false
  3212     // "Root location <x> points to dead ob <y>" failure.
  3213     if (vo != VerifyOption_G1UseMarkWord) {
  3214       // Since we used "collecting_perm_gen" == true above, we will not have
  3215       // checked the refs from perm into the G1-collected heap. We check those
  3216       // references explicitly below. Whether the relevant cards are dirty
  3217       // is checked further below in the rem set verification.
  3218       if (!silent) { gclog_or_tty->print("Permgen roots "); }
  3219       perm_gen()->oop_iterate(&rootsCl);
  3221     bool failures = rootsCl.failures();
  3223     if (vo != VerifyOption_G1UseMarkWord) {
  3224       // If we're verifying during a full GC then the region sets
  3225       // will have been torn down at the start of the GC. Therefore
  3226       // verifying the region sets will fail. So we only verify
  3227       // the region sets when not in a full GC.
  3228       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3229       verify_region_sets();
  3232     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3233     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3234       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3235              "sanity check");
  3237       G1ParVerifyTask task(this, vo);
  3238       assert(UseDynamicNumberOfGCThreads ||
  3239         workers()->active_workers() == workers()->total_workers(),
  3240         "If not dynamic should be using all the workers");
  3241       int n_workers = workers()->active_workers();
  3242       set_par_threads(n_workers);
  3243       workers()->run_task(&task);
  3244       set_par_threads(0);
  3245       if (task.failures()) {
  3246         failures = true;
  3249       // Checks that the expected amount of parallel work was done.
  3250       // The implication is that n_workers is > 0.
  3251       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3252              "sanity check");
  3254       reset_heap_region_claim_values();
  3256       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3257              "sanity check");
  3258     } else {
  3259       VerifyRegionClosure blk(false, vo);
  3260       heap_region_iterate(&blk);
  3261       if (blk.failures()) {
  3262         failures = true;
  3265     if (!silent) gclog_or_tty->print("RemSet ");
  3266     rem_set()->verify();
  3268     if (failures) {
  3269       gclog_or_tty->print_cr("Heap:");
  3270       // It helps to have the per-region information in the output to
  3271       // help us track down what went wrong. This is why we call
  3272       // print_extended_on() instead of print_on().
  3273       print_extended_on(gclog_or_tty);
  3274       gclog_or_tty->print_cr("");
  3275 #ifndef PRODUCT
  3276       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3277         concurrent_mark()->print_reachable("at-verification-failure",
  3278                                            vo, false /* all */);
  3280 #endif
  3281       gclog_or_tty->flush();
  3283     guarantee(!failures, "there should not have been any failures");
  3284   } else {
  3285     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  3289 class PrintRegionClosure: public HeapRegionClosure {
  3290   outputStream* _st;
  3291 public:
  3292   PrintRegionClosure(outputStream* st) : _st(st) {}
  3293   bool doHeapRegion(HeapRegion* r) {
  3294     r->print_on(_st);
  3295     return false;
  3297 };
  3299 void G1CollectedHeap::print_on(outputStream* st) const {
  3300   st->print(" %-20s", "garbage-first heap");
  3301   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3302             capacity()/K, used_unlocked()/K);
  3303   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3304             _g1_storage.low_boundary(),
  3305             _g1_storage.high(),
  3306             _g1_storage.high_boundary());
  3307   st->cr();
  3308   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3309   uint young_regions = _young_list->length();
  3310   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3311             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3312   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3313   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3314             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3315   st->cr();
  3316   perm()->as_gen()->print_on(st);
  3319 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3320   print_on(st);
  3322   // Print the per-region information.
  3323   st->cr();
  3324   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3325                "HS=humongous(starts), HC=humongous(continues), "
  3326                "CS=collection set, F=free, TS=gc time stamp, "
  3327                "PTAMS=previous top-at-mark-start, "
  3328                "NTAMS=next top-at-mark-start)");
  3329   PrintRegionClosure blk(st);
  3330   heap_region_iterate(&blk);
  3333 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3334   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3335     workers()->print_worker_threads_on(st);
  3337   _cmThread->print_on(st);
  3338   st->cr();
  3339   _cm->print_worker_threads_on(st);
  3340   _cg1r->print_worker_threads_on(st);
  3341   st->cr();
  3344 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3345   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3346     workers()->threads_do(tc);
  3348   tc->do_thread(_cmThread);
  3349   _cg1r->threads_do(tc);
  3352 void G1CollectedHeap::print_tracing_info() const {
  3353   // We'll overload this to mean "trace GC pause statistics."
  3354   if (TraceGen0Time || TraceGen1Time) {
  3355     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3356     // to that.
  3357     g1_policy()->print_tracing_info();
  3359   if (G1SummarizeRSetStats) {
  3360     g1_rem_set()->print_summary_info();
  3362   if (G1SummarizeConcMark) {
  3363     concurrent_mark()->print_summary_info();
  3365   g1_policy()->print_yg_surv_rate_info();
  3366   SpecializationStats::print();
  3369 #ifndef PRODUCT
  3370 // Helpful for debugging RSet issues.
  3372 class PrintRSetsClosure : public HeapRegionClosure {
  3373 private:
  3374   const char* _msg;
  3375   size_t _occupied_sum;
  3377 public:
  3378   bool doHeapRegion(HeapRegion* r) {
  3379     HeapRegionRemSet* hrrs = r->rem_set();
  3380     size_t occupied = hrrs->occupied();
  3381     _occupied_sum += occupied;
  3383     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3384                            HR_FORMAT_PARAMS(r));
  3385     if (occupied == 0) {
  3386       gclog_or_tty->print_cr("  RSet is empty");
  3387     } else {
  3388       hrrs->print();
  3390     gclog_or_tty->print_cr("----------");
  3391     return false;
  3394   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3395     gclog_or_tty->cr();
  3396     gclog_or_tty->print_cr("========================================");
  3397     gclog_or_tty->print_cr(msg);
  3398     gclog_or_tty->cr();
  3401   ~PrintRSetsClosure() {
  3402     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3403     gclog_or_tty->print_cr("========================================");
  3404     gclog_or_tty->cr();
  3406 };
  3408 void G1CollectedHeap::print_cset_rsets() {
  3409   PrintRSetsClosure cl("Printing CSet RSets");
  3410   collection_set_iterate(&cl);
  3413 void G1CollectedHeap::print_all_rsets() {
  3414   PrintRSetsClosure cl("Printing All RSets");;
  3415   heap_region_iterate(&cl);
  3417 #endif // PRODUCT
  3419 G1CollectedHeap* G1CollectedHeap::heap() {
  3420   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3421          "not a garbage-first heap");
  3422   return _g1h;
  3425 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3426   // always_do_update_barrier = false;
  3427   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3428   // Call allocation profiler
  3429   AllocationProfiler::iterate_since_last_gc();
  3430   // Fill TLAB's and such
  3431   ensure_parsability(true);
  3434 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3435   // FIXME: what is this about?
  3436   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3437   // is set.
  3438   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3439                         "derived pointer present"));
  3440   // always_do_update_barrier = true;
  3442   // We have just completed a GC. Update the soft reference
  3443   // policy with the new heap occupancy
  3444   Universe::update_heap_info_at_gc();
  3447 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3448                                                unsigned int gc_count_before,
  3449                                                bool* succeeded) {
  3450   assert_heap_not_locked_and_not_at_safepoint();
  3451   g1_policy()->record_stop_world_start();
  3452   VM_G1IncCollectionPause op(gc_count_before,
  3453                              word_size,
  3454                              false, /* should_initiate_conc_mark */
  3455                              g1_policy()->max_pause_time_ms(),
  3456                              GCCause::_g1_inc_collection_pause);
  3457   VMThread::execute(&op);
  3459   HeapWord* result = op.result();
  3460   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3461   assert(result == NULL || ret_succeeded,
  3462          "the result should be NULL if the VM did not succeed");
  3463   *succeeded = ret_succeeded;
  3465   assert_heap_not_locked();
  3466   return result;
  3469 void
  3470 G1CollectedHeap::doConcurrentMark() {
  3471   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3472   if (!_cmThread->in_progress()) {
  3473     _cmThread->set_started();
  3474     CGC_lock->notify();
  3478 size_t G1CollectedHeap::pending_card_num() {
  3479   size_t extra_cards = 0;
  3480   JavaThread *curr = Threads::first();
  3481   while (curr != NULL) {
  3482     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3483     extra_cards += dcq.size();
  3484     curr = curr->next();
  3486   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3487   size_t buffer_size = dcqs.buffer_size();
  3488   size_t buffer_num = dcqs.completed_buffers_num();
  3489   return buffer_size * buffer_num + extra_cards;
  3492 size_t G1CollectedHeap::max_pending_card_num() {
  3493   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3494   size_t buffer_size = dcqs.buffer_size();
  3495   size_t buffer_num  = dcqs.completed_buffers_num();
  3496   int thread_num  = Threads::number_of_threads();
  3497   return (buffer_num + thread_num) * buffer_size;
  3500 size_t G1CollectedHeap::cards_scanned() {
  3501   return g1_rem_set()->cardsScanned();
  3504 void
  3505 G1CollectedHeap::setup_surviving_young_words() {
  3506   assert(_surviving_young_words == NULL, "pre-condition");
  3507   uint array_length = g1_policy()->young_cset_region_length();
  3508   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3509   if (_surviving_young_words == NULL) {
  3510     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3511                           "Not enough space for young surv words summary.");
  3513   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3514 #ifdef ASSERT
  3515   for (uint i = 0;  i < array_length; ++i) {
  3516     assert( _surviving_young_words[i] == 0, "memset above" );
  3518 #endif // !ASSERT
  3521 void
  3522 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3523   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3524   uint array_length = g1_policy()->young_cset_region_length();
  3525   for (uint i = 0; i < array_length; ++i) {
  3526     _surviving_young_words[i] += surv_young_words[i];
  3530 void
  3531 G1CollectedHeap::cleanup_surviving_young_words() {
  3532   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3533   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3534   _surviving_young_words = NULL;
  3537 #ifdef ASSERT
  3538 class VerifyCSetClosure: public HeapRegionClosure {
  3539 public:
  3540   bool doHeapRegion(HeapRegion* hr) {
  3541     // Here we check that the CSet region's RSet is ready for parallel
  3542     // iteration. The fields that we'll verify are only manipulated
  3543     // when the region is part of a CSet and is collected. Afterwards,
  3544     // we reset these fields when we clear the region's RSet (when the
  3545     // region is freed) so they are ready when the region is
  3546     // re-allocated. The only exception to this is if there's an
  3547     // evacuation failure and instead of freeing the region we leave
  3548     // it in the heap. In that case, we reset these fields during
  3549     // evacuation failure handling.
  3550     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3552     // Here's a good place to add any other checks we'd like to
  3553     // perform on CSet regions.
  3554     return false;
  3556 };
  3557 #endif // ASSERT
  3559 #if TASKQUEUE_STATS
  3560 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3561   st->print_raw_cr("GC Task Stats");
  3562   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3563   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3566 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3567   print_taskqueue_stats_hdr(st);
  3569   TaskQueueStats totals;
  3570   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3571   for (int i = 0; i < n; ++i) {
  3572     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3573     totals += task_queue(i)->stats;
  3575   st->print_raw("tot "); totals.print(st); st->cr();
  3577   DEBUG_ONLY(totals.verify());
  3580 void G1CollectedHeap::reset_taskqueue_stats() {
  3581   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3582   for (int i = 0; i < n; ++i) {
  3583     task_queue(i)->stats.reset();
  3586 #endif // TASKQUEUE_STATS
  3588 bool
  3589 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3590   assert_at_safepoint(true /* should_be_vm_thread */);
  3591   guarantee(!is_gc_active(), "collection is not reentrant");
  3593   if (GC_locker::check_active_before_gc()) {
  3594     return false;
  3597   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3598   ResourceMark rm;
  3600   print_heap_before_gc();
  3602   HRSPhaseSetter x(HRSPhaseEvacuation);
  3603   verify_region_sets_optional();
  3604   verify_dirty_young_regions();
  3606   // This call will decide whether this pause is an initial-mark
  3607   // pause. If it is, during_initial_mark_pause() will return true
  3608   // for the duration of this pause.
  3609   g1_policy()->decide_on_conc_mark_initiation();
  3611   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3612   assert(!g1_policy()->during_initial_mark_pause() ||
  3613           g1_policy()->gcs_are_young(), "sanity");
  3615   // We also do not allow mixed GCs during marking.
  3616   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3618   // Record whether this pause is an initial mark. When the current
  3619   // thread has completed its logging output and it's safe to signal
  3620   // the CM thread, the flag's value in the policy has been reset.
  3621   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3623   // Inner scope for scope based logging, timers, and stats collection
  3625     if (g1_policy()->during_initial_mark_pause()) {
  3626       // We are about to start a marking cycle, so we increment the
  3627       // full collection counter.
  3628       increment_old_marking_cycles_started();
  3630     // if the log level is "finer" is on, we'll print long statistics information
  3631     // in the collector policy code, so let's not print this as the output
  3632     // is messy if we do.
  3633     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  3634     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3636     GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3637       .append(g1_policy()->gcs_are_young() ? " (young)" : " (mixed)")
  3638       .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3639     TraceTime t(gc_cause_str, G1Log::fine() && !G1Log::finer(), true, gclog_or_tty);
  3641     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3642     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3644     // If the secondary_free_list is not empty, append it to the
  3645     // free_list. No need to wait for the cleanup operation to finish;
  3646     // the region allocation code will check the secondary_free_list
  3647     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3648     // set, skip this step so that the region allocation code has to
  3649     // get entries from the secondary_free_list.
  3650     if (!G1StressConcRegionFreeing) {
  3651       append_secondary_free_list_if_not_empty_with_lock();
  3654     assert(check_young_list_well_formed(),
  3655       "young list should be well formed");
  3657     // Don't dynamically change the number of GC threads this early.  A value of
  3658     // 0 is used to indicate serial work.  When parallel work is done,
  3659     // it will be set.
  3661     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3662       IsGCActiveMark x;
  3664       gc_prologue(false);
  3665       increment_total_collections(false /* full gc */);
  3666       increment_gc_time_stamp();
  3668       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  3669         HandleMark hm;  // Discard invalid handles created during verification
  3670         gclog_or_tty->print(" VerifyBeforeGC:");
  3671         prepare_for_verify();
  3672         Universe::verify(/* silent      */ false,
  3673                          /* option      */ VerifyOption_G1UsePrevMarking);
  3676       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3678       // Please see comment in g1CollectedHeap.hpp and
  3679       // G1CollectedHeap::ref_processing_init() to see how
  3680       // reference processing currently works in G1.
  3682       // Enable discovery in the STW reference processor
  3683       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3684                                             true /*verify_no_refs*/);
  3687         // We want to temporarily turn off discovery by the
  3688         // CM ref processor, if necessary, and turn it back on
  3689         // on again later if we do. Using a scoped
  3690         // NoRefDiscovery object will do this.
  3691         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3693         // Forget the current alloc region (we might even choose it to be part
  3694         // of the collection set!).
  3695         release_mutator_alloc_region();
  3697         // We should call this after we retire the mutator alloc
  3698         // region(s) so that all the ALLOC / RETIRE events are generated
  3699         // before the start GC event.
  3700         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3702         // The elapsed time induced by the start time below deliberately elides
  3703         // the possible verification above.
  3704         double start_time_sec = os::elapsedTime();
  3705         size_t start_used_bytes = used();
  3707 #if YOUNG_LIST_VERBOSE
  3708         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3709         _young_list->print();
  3710         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3711 #endif // YOUNG_LIST_VERBOSE
  3713         g1_policy()->record_collection_pause_start(start_time_sec,
  3714                                                    start_used_bytes);
  3716         double scan_wait_start = os::elapsedTime();
  3717         // We have to wait until the CM threads finish scanning the
  3718         // root regions as it's the only way to ensure that all the
  3719         // objects on them have been correctly scanned before we start
  3720         // moving them during the GC.
  3721         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3722         if (waited) {
  3723           double scan_wait_end = os::elapsedTime();
  3724           double wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3725           g1_policy()->record_root_region_scan_wait_time(wait_time_ms);
  3728 #if YOUNG_LIST_VERBOSE
  3729         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3730         _young_list->print();
  3731 #endif // YOUNG_LIST_VERBOSE
  3733         if (g1_policy()->during_initial_mark_pause()) {
  3734           concurrent_mark()->checkpointRootsInitialPre();
  3736         perm_gen()->save_marks();
  3738 #if YOUNG_LIST_VERBOSE
  3739         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3740         _young_list->print();
  3741         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3742 #endif // YOUNG_LIST_VERBOSE
  3744         g1_policy()->finalize_cset(target_pause_time_ms);
  3746         _cm->note_start_of_gc();
  3747         // We should not verify the per-thread SATB buffers given that
  3748         // we have not filtered them yet (we'll do so during the
  3749         // GC). We also call this after finalize_cset() to
  3750         // ensure that the CSet has been finalized.
  3751         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3752                                  true  /* verify_enqueued_buffers */,
  3753                                  false /* verify_thread_buffers */,
  3754                                  true  /* verify_fingers */);
  3756         if (_hr_printer.is_active()) {
  3757           HeapRegion* hr = g1_policy()->collection_set();
  3758           while (hr != NULL) {
  3759             G1HRPrinter::RegionType type;
  3760             if (!hr->is_young()) {
  3761               type = G1HRPrinter::Old;
  3762             } else if (hr->is_survivor()) {
  3763               type = G1HRPrinter::Survivor;
  3764             } else {
  3765               type = G1HRPrinter::Eden;
  3767             _hr_printer.cset(hr);
  3768             hr = hr->next_in_collection_set();
  3772 #ifdef ASSERT
  3773         VerifyCSetClosure cl;
  3774         collection_set_iterate(&cl);
  3775 #endif // ASSERT
  3777         setup_surviving_young_words();
  3779         // Initialize the GC alloc regions.
  3780         init_gc_alloc_regions();
  3782         // Actually do the work...
  3783         evacuate_collection_set();
  3785         // We do this to mainly verify the per-thread SATB buffers
  3786         // (which have been filtered by now) since we didn't verify
  3787         // them earlier. No point in re-checking the stacks / enqueued
  3788         // buffers given that the CSet has not changed since last time
  3789         // we checked.
  3790         _cm->verify_no_cset_oops(false /* verify_stacks */,
  3791                                  false /* verify_enqueued_buffers */,
  3792                                  true  /* verify_thread_buffers */,
  3793                                  true  /* verify_fingers */);
  3795         free_collection_set(g1_policy()->collection_set());
  3796         g1_policy()->clear_collection_set();
  3798         cleanup_surviving_young_words();
  3800         // Start a new incremental collection set for the next pause.
  3801         g1_policy()->start_incremental_cset_building();
  3803         // Clear the _cset_fast_test bitmap in anticipation of adding
  3804         // regions to the incremental collection set for the next
  3805         // evacuation pause.
  3806         clear_cset_fast_test();
  3808         _young_list->reset_sampled_info();
  3810         // Don't check the whole heap at this point as the
  3811         // GC alloc regions from this pause have been tagged
  3812         // as survivors and moved on to the survivor list.
  3813         // Survivor regions will fail the !is_young() check.
  3814         assert(check_young_list_empty(false /* check_heap */),
  3815           "young list should be empty");
  3817 #if YOUNG_LIST_VERBOSE
  3818         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3819         _young_list->print();
  3820 #endif // YOUNG_LIST_VERBOSE
  3822         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3823                                             _young_list->first_survivor_region(),
  3824                                             _young_list->last_survivor_region());
  3826         _young_list->reset_auxilary_lists();
  3828         if (evacuation_failed()) {
  3829           _summary_bytes_used = recalculate_used();
  3830         } else {
  3831           // The "used" of the the collection set have already been subtracted
  3832           // when they were freed.  Add in the bytes evacuated.
  3833           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3836         if (g1_policy()->during_initial_mark_pause()) {
  3837           // We have to do this before we notify the CM threads that
  3838           // they can start working to make sure that all the
  3839           // appropriate initialization is done on the CM object.
  3840           concurrent_mark()->checkpointRootsInitialPost();
  3841           set_marking_started();
  3842           // Note that we don't actually trigger the CM thread at
  3843           // this point. We do that later when we're sure that
  3844           // the current thread has completed its logging output.
  3847         allocate_dummy_regions();
  3849 #if YOUNG_LIST_VERBOSE
  3850         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3851         _young_list->print();
  3852         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3853 #endif // YOUNG_LIST_VERBOSE
  3855         init_mutator_alloc_region();
  3858           size_t expand_bytes = g1_policy()->expansion_amount();
  3859           if (expand_bytes > 0) {
  3860             size_t bytes_before = capacity();
  3861             // No need for an ergo verbose message here,
  3862             // expansion_amount() does this when it returns a value > 0.
  3863             if (!expand(expand_bytes)) {
  3864               // We failed to expand the heap so let's verify that
  3865               // committed/uncommitted amount match the backing store
  3866               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3867               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3872         // We redo the verificaiton but now wrt to the new CSet which
  3873         // has just got initialized after the previous CSet was freed.
  3874         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3875                                  true  /* verify_enqueued_buffers */,
  3876                                  true  /* verify_thread_buffers */,
  3877                                  true  /* verify_fingers */);
  3878         _cm->note_end_of_gc();
  3880         double end_time_sec = os::elapsedTime();
  3881         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  3882         g1_policy()->record_pause_time_ms(pause_time_ms);
  3883         int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3884                                 workers()->active_workers() : 1);
  3885         g1_policy()->record_collection_pause_end(active_workers);
  3887         MemoryService::track_memory_usage();
  3889         // In prepare_for_verify() below we'll need to scan the deferred
  3890         // update buffers to bring the RSets up-to-date if
  3891         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  3892         // the update buffers we'll probably need to scan cards on the
  3893         // regions we just allocated to (i.e., the GC alloc
  3894         // regions). However, during the last GC we called
  3895         // set_saved_mark() on all the GC alloc regions, so card
  3896         // scanning might skip the [saved_mark_word()...top()] area of
  3897         // those regions (i.e., the area we allocated objects into
  3898         // during the last GC). But it shouldn't. Given that
  3899         // saved_mark_word() is conditional on whether the GC time stamp
  3900         // on the region is current or not, by incrementing the GC time
  3901         // stamp here we invalidate all the GC time stamps on all the
  3902         // regions and saved_mark_word() will simply return top() for
  3903         // all the regions. This is a nicer way of ensuring this rather
  3904         // than iterating over the regions and fixing them. In fact, the
  3905         // GC time stamp increment here also ensures that
  3906         // saved_mark_word() will return top() between pauses, i.e.,
  3907         // during concurrent refinement. So we don't need the
  3908         // is_gc_active() check to decided which top to use when
  3909         // scanning cards (see CR 7039627).
  3910         increment_gc_time_stamp();
  3912         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  3913           HandleMark hm;  // Discard invalid handles created during verification
  3914           gclog_or_tty->print(" VerifyAfterGC:");
  3915           prepare_for_verify();
  3916           Universe::verify(/* silent      */ false,
  3917                            /* option      */ VerifyOption_G1UsePrevMarking);
  3920         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  3921         ref_processor_stw()->verify_no_references_recorded();
  3923         // CM reference discovery will be re-enabled if necessary.
  3926       // We should do this after we potentially expand the heap so
  3927       // that all the COMMIT events are generated before the end GC
  3928       // event, and after we retire the GC alloc regions so that all
  3929       // RETIRE events are generated before the end GC event.
  3930       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  3932       // We have to do this after we decide whether to expand the heap or not.
  3933       g1_policy()->print_heap_transition();
  3935       if (mark_in_progress()) {
  3936         concurrent_mark()->update_g1_committed();
  3939 #ifdef TRACESPINNING
  3940       ParallelTaskTerminator::print_termination_counts();
  3941 #endif
  3943       gc_epilogue(false);
  3946     // The closing of the inner scope, immediately above, will complete
  3947     // logging at the "fine" level. The record_collection_pause_end() call
  3948     // above will complete logging at the "finer" level.
  3949     //
  3950     // It is not yet to safe, however, to tell the concurrent mark to
  3951     // start as we have some optional output below. We don't want the
  3952     // output from the concurrent mark thread interfering with this
  3953     // logging output either.
  3955     _hrs.verify_optional();
  3956     verify_region_sets_optional();
  3958     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  3959     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  3961     print_heap_after_gc();
  3963     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  3964     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  3965     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  3966     // before any GC notifications are raised.
  3967     g1mm()->update_sizes();
  3970   if (G1SummarizeRSetStats &&
  3971       (G1SummarizeRSetStatsPeriod > 0) &&
  3972       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3973     g1_rem_set()->print_summary_info();
  3976   // It should now be safe to tell the concurrent mark thread to start
  3977   // without its logging output interfering with the logging output
  3978   // that came from the pause.
  3980   if (should_start_conc_mark) {
  3981     // CAUTION: after the doConcurrentMark() call below,
  3982     // the concurrent marking thread(s) could be running
  3983     // concurrently with us. Make sure that anything after
  3984     // this point does not assume that we are the only GC thread
  3985     // running. Note: of course, the actual marking work will
  3986     // not start until the safepoint itself is released in
  3987     // ConcurrentGCThread::safepoint_desynchronize().
  3988     doConcurrentMark();
  3991   return true;
  3994 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  3996   size_t gclab_word_size;
  3997   switch (purpose) {
  3998     case GCAllocForSurvived:
  3999       gclab_word_size = YoungPLABSize;
  4000       break;
  4001     case GCAllocForTenured:
  4002       gclab_word_size = OldPLABSize;
  4003       break;
  4004     default:
  4005       assert(false, "unknown GCAllocPurpose");
  4006       gclab_word_size = OldPLABSize;
  4007       break;
  4009   return gclab_word_size;
  4012 void G1CollectedHeap::init_mutator_alloc_region() {
  4013   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  4014   _mutator_alloc_region.init();
  4017 void G1CollectedHeap::release_mutator_alloc_region() {
  4018   _mutator_alloc_region.release();
  4019   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  4022 void G1CollectedHeap::init_gc_alloc_regions() {
  4023   assert_at_safepoint(true /* should_be_vm_thread */);
  4025   _survivor_gc_alloc_region.init();
  4026   _old_gc_alloc_region.init();
  4027   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4028   _retained_old_gc_alloc_region = NULL;
  4030   // We will discard the current GC alloc region if:
  4031   // a) it's in the collection set (it can happen!),
  4032   // b) it's already full (no point in using it),
  4033   // c) it's empty (this means that it was emptied during
  4034   // a cleanup and it should be on the free list now), or
  4035   // d) it's humongous (this means that it was emptied
  4036   // during a cleanup and was added to the free list, but
  4037   // has been subseqently used to allocate a humongous
  4038   // object that may be less than the region size).
  4039   if (retained_region != NULL &&
  4040       !retained_region->in_collection_set() &&
  4041       !(retained_region->top() == retained_region->end()) &&
  4042       !retained_region->is_empty() &&
  4043       !retained_region->isHumongous()) {
  4044     retained_region->set_saved_mark();
  4045     // The retained region was added to the old region set when it was
  4046     // retired. We have to remove it now, since we don't allow regions
  4047     // we allocate to in the region sets. We'll re-add it later, when
  4048     // it's retired again.
  4049     _old_set.remove(retained_region);
  4050     bool during_im = g1_policy()->during_initial_mark_pause();
  4051     retained_region->note_start_of_copying(during_im);
  4052     _old_gc_alloc_region.set(retained_region);
  4053     _hr_printer.reuse(retained_region);
  4057 void G1CollectedHeap::release_gc_alloc_regions() {
  4058   _survivor_gc_alloc_region.release();
  4059   // If we have an old GC alloc region to release, we'll save it in
  4060   // _retained_old_gc_alloc_region. If we don't
  4061   // _retained_old_gc_alloc_region will become NULL. This is what we
  4062   // want either way so no reason to check explicitly for either
  4063   // condition.
  4064   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4067 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4068   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4069   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4070   _retained_old_gc_alloc_region = NULL;
  4073 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4074   _drain_in_progress = false;
  4075   set_evac_failure_closure(cl);
  4076   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4079 void G1CollectedHeap::finalize_for_evac_failure() {
  4080   assert(_evac_failure_scan_stack != NULL &&
  4081          _evac_failure_scan_stack->length() == 0,
  4082          "Postcondition");
  4083   assert(!_drain_in_progress, "Postcondition");
  4084   delete _evac_failure_scan_stack;
  4085   _evac_failure_scan_stack = NULL;
  4088 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4089   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4091   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4093   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4094     set_par_threads();
  4095     workers()->run_task(&rsfp_task);
  4096     set_par_threads(0);
  4097   } else {
  4098     rsfp_task.work(0);
  4101   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4103   // Reset the claim values in the regions in the collection set.
  4104   reset_cset_heap_region_claim_values();
  4106   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4108   // Now restore saved marks, if any.
  4109   if (_objs_with_preserved_marks != NULL) {
  4110     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  4111     guarantee(_objs_with_preserved_marks->length() ==
  4112               _preserved_marks_of_objs->length(), "Both or none.");
  4113     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  4114       oop obj   = _objs_with_preserved_marks->at(i);
  4115       markOop m = _preserved_marks_of_objs->at(i);
  4116       obj->set_mark(m);
  4119     // Delete the preserved marks growable arrays (allocated on the C heap).
  4120     delete _objs_with_preserved_marks;
  4121     delete _preserved_marks_of_objs;
  4122     _objs_with_preserved_marks = NULL;
  4123     _preserved_marks_of_objs = NULL;
  4127 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4128   _evac_failure_scan_stack->push(obj);
  4131 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4132   assert(_evac_failure_scan_stack != NULL, "precondition");
  4134   while (_evac_failure_scan_stack->length() > 0) {
  4135      oop obj = _evac_failure_scan_stack->pop();
  4136      _evac_failure_closure->set_region(heap_region_containing(obj));
  4137      obj->oop_iterate_backwards(_evac_failure_closure);
  4141 oop
  4142 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  4143                                                oop old) {
  4144   assert(obj_in_cs(old),
  4145          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4146                  (HeapWord*) old));
  4147   markOop m = old->mark();
  4148   oop forward_ptr = old->forward_to_atomic(old);
  4149   if (forward_ptr == NULL) {
  4150     // Forward-to-self succeeded.
  4152     if (_evac_failure_closure != cl) {
  4153       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4154       assert(!_drain_in_progress,
  4155              "Should only be true while someone holds the lock.");
  4156       // Set the global evac-failure closure to the current thread's.
  4157       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4158       set_evac_failure_closure(cl);
  4159       // Now do the common part.
  4160       handle_evacuation_failure_common(old, m);
  4161       // Reset to NULL.
  4162       set_evac_failure_closure(NULL);
  4163     } else {
  4164       // The lock is already held, and this is recursive.
  4165       assert(_drain_in_progress, "This should only be the recursive case.");
  4166       handle_evacuation_failure_common(old, m);
  4168     return old;
  4169   } else {
  4170     // Forward-to-self failed. Either someone else managed to allocate
  4171     // space for this object (old != forward_ptr) or they beat us in
  4172     // self-forwarding it (old == forward_ptr).
  4173     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4174            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4175                    "should not be in the CSet",
  4176                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4177     return forward_ptr;
  4181 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4182   set_evacuation_failed(true);
  4184   preserve_mark_if_necessary(old, m);
  4186   HeapRegion* r = heap_region_containing(old);
  4187   if (!r->evacuation_failed()) {
  4188     r->set_evacuation_failed(true);
  4189     _hr_printer.evac_failure(r);
  4192   push_on_evac_failure_scan_stack(old);
  4194   if (!_drain_in_progress) {
  4195     // prevent recursion in copy_to_survivor_space()
  4196     _drain_in_progress = true;
  4197     drain_evac_failure_scan_stack();
  4198     _drain_in_progress = false;
  4202 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4203   assert(evacuation_failed(), "Oversaving!");
  4204   // We want to call the "for_promotion_failure" version only in the
  4205   // case of a promotion failure.
  4206   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4207     if (_objs_with_preserved_marks == NULL) {
  4208       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  4209       _objs_with_preserved_marks =
  4210         new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4211       _preserved_marks_of_objs =
  4212         new (ResourceObj::C_HEAP, mtGC) GrowableArray<markOop>(40, true);
  4214     _objs_with_preserved_marks->push(obj);
  4215     _preserved_marks_of_objs->push(m);
  4219 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4220                                                   size_t word_size) {
  4221   if (purpose == GCAllocForSurvived) {
  4222     HeapWord* result = survivor_attempt_allocation(word_size);
  4223     if (result != NULL) {
  4224       return result;
  4225     } else {
  4226       // Let's try to allocate in the old gen in case we can fit the
  4227       // object there.
  4228       return old_attempt_allocation(word_size);
  4230   } else {
  4231     assert(purpose ==  GCAllocForTenured, "sanity");
  4232     HeapWord* result = old_attempt_allocation(word_size);
  4233     if (result != NULL) {
  4234       return result;
  4235     } else {
  4236       // Let's try to allocate in the survivors in case we can fit the
  4237       // object there.
  4238       return survivor_attempt_allocation(word_size);
  4242   ShouldNotReachHere();
  4243   // Trying to keep some compilers happy.
  4244   return NULL;
  4247 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4248   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
  4250 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
  4251   : _g1h(g1h),
  4252     _refs(g1h->task_queue(queue_num)),
  4253     _dcq(&g1h->dirty_card_queue_set()),
  4254     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4255     _g1_rem(g1h->g1_rem_set()),
  4256     _hash_seed(17), _queue_num(queue_num),
  4257     _term_attempts(0),
  4258     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4259     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4260     _age_table(false),
  4261     _strong_roots_time(0), _term_time(0),
  4262     _alloc_buffer_waste(0), _undo_waste(0) {
  4263   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4264   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4265   // non-young regions (where the age is -1)
  4266   // We also add a few elements at the beginning and at the end in
  4267   // an attempt to eliminate cache contention
  4268   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  4269   uint array_length = PADDING_ELEM_NUM +
  4270                       real_length +
  4271                       PADDING_ELEM_NUM;
  4272   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  4273   if (_surviving_young_words_base == NULL)
  4274     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4275                           "Not enough space for young surv histo.");
  4276   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4277   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  4279   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4280   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4282   _start = os::elapsedTime();
  4285 void
  4286 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4288   st->print_raw_cr("GC Termination Stats");
  4289   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4290                    " ------waste (KiB)------");
  4291   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4292                    "  total   alloc    undo");
  4293   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4294                    " ------- ------- -------");
  4297 void
  4298 G1ParScanThreadState::print_termination_stats(int i,
  4299                                               outputStream* const st) const
  4301   const double elapsed_ms = elapsed_time() * 1000.0;
  4302   const double s_roots_ms = strong_roots_time() * 1000.0;
  4303   const double term_ms    = term_time() * 1000.0;
  4304   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4305                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4306                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4307                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4308                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4309                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4310                alloc_buffer_waste() * HeapWordSize / K,
  4311                undo_waste() * HeapWordSize / K);
  4314 #ifdef ASSERT
  4315 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4316   assert(ref != NULL, "invariant");
  4317   assert(UseCompressedOops, "sanity");
  4318   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4319   oop p = oopDesc::load_decode_heap_oop(ref);
  4320   assert(_g1h->is_in_g1_reserved(p),
  4321          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4322   return true;
  4325 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4326   assert(ref != NULL, "invariant");
  4327   if (has_partial_array_mask(ref)) {
  4328     // Must be in the collection set--it's already been copied.
  4329     oop p = clear_partial_array_mask(ref);
  4330     assert(_g1h->obj_in_cs(p),
  4331            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4332   } else {
  4333     oop p = oopDesc::load_decode_heap_oop(ref);
  4334     assert(_g1h->is_in_g1_reserved(p),
  4335            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4337   return true;
  4340 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4341   if (ref.is_narrow()) {
  4342     return verify_ref((narrowOop*) ref);
  4343   } else {
  4344     return verify_ref((oop*) ref);
  4347 #endif // ASSERT
  4349 void G1ParScanThreadState::trim_queue() {
  4350   assert(_evac_cl != NULL, "not set");
  4351   assert(_evac_failure_cl != NULL, "not set");
  4352   assert(_partial_scan_cl != NULL, "not set");
  4354   StarTask ref;
  4355   do {
  4356     // Drain the overflow stack first, so other threads can steal.
  4357     while (refs()->pop_overflow(ref)) {
  4358       deal_with_reference(ref);
  4361     while (refs()->pop_local(ref)) {
  4362       deal_with_reference(ref);
  4364   } while (!refs()->is_empty());
  4367 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
  4368                                      G1ParScanThreadState* par_scan_state) :
  4369   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4370   _par_scan_state(par_scan_state),
  4371   _worker_id(par_scan_state->queue_num()),
  4372   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4373   _mark_in_progress(_g1->mark_in_progress()) { }
  4375 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4376 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
  4377 #ifdef ASSERT
  4378   HeapRegion* hr = _g1->heap_region_containing(obj);
  4379   assert(hr != NULL, "sanity");
  4380   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4381 #endif // ASSERT
  4383   // We know that the object is not moving so it's safe to read its size.
  4384   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4387 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4388 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4389   ::mark_forwarded_object(oop from_obj, oop to_obj) {
  4390 #ifdef ASSERT
  4391   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4392   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4393   assert(from_obj != to_obj, "should not be self-forwarded");
  4395   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4396   assert(from_hr != NULL, "sanity");
  4397   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4399   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4400   assert(to_hr != NULL, "sanity");
  4401   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4402 #endif // ASSERT
  4404   // The object might be in the process of being copied by another
  4405   // worker so we cannot trust that its to-space image is
  4406   // well-formed. So we have to read its size from its from-space
  4407   // image which we know should not be changing.
  4408   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4411 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4412 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4413   ::copy_to_survivor_space(oop old) {
  4414   size_t word_sz = old->size();
  4415   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4416   // +1 to make the -1 indexes valid...
  4417   int       young_index = from_region->young_index_in_cset()+1;
  4418   assert( (from_region->is_young() && young_index >  0) ||
  4419          (!from_region->is_young() && young_index == 0), "invariant" );
  4420   G1CollectorPolicy* g1p = _g1->g1_policy();
  4421   markOop m = old->mark();
  4422   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4423                                            : m->age();
  4424   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4425                                                              word_sz);
  4426   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4427   oop       obj     = oop(obj_ptr);
  4429   if (obj_ptr == NULL) {
  4430     // This will either forward-to-self, or detect that someone else has
  4431     // installed a forwarding pointer.
  4432     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4433     return _g1->handle_evacuation_failure_par(cl, old);
  4436   // We're going to allocate linearly, so might as well prefetch ahead.
  4437   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4439   oop forward_ptr = old->forward_to_atomic(obj);
  4440   if (forward_ptr == NULL) {
  4441     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4442     if (g1p->track_object_age(alloc_purpose)) {
  4443       // We could simply do obj->incr_age(). However, this causes a
  4444       // performance issue. obj->incr_age() will first check whether
  4445       // the object has a displaced mark by checking its mark word;
  4446       // getting the mark word from the new location of the object
  4447       // stalls. So, given that we already have the mark word and we
  4448       // are about to install it anyway, it's better to increase the
  4449       // age on the mark word, when the object does not have a
  4450       // displaced mark word. We're not expecting many objects to have
  4451       // a displaced marked word, so that case is not optimized
  4452       // further (it could be...) and we simply call obj->incr_age().
  4454       if (m->has_displaced_mark_helper()) {
  4455         // in this case, we have to install the mark word first,
  4456         // otherwise obj looks to be forwarded (the old mark word,
  4457         // which contains the forward pointer, was copied)
  4458         obj->set_mark(m);
  4459         obj->incr_age();
  4460       } else {
  4461         m = m->incr_age();
  4462         obj->set_mark(m);
  4464       _par_scan_state->age_table()->add(obj, word_sz);
  4465     } else {
  4466       obj->set_mark(m);
  4469     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4470     surv_young_words[young_index] += word_sz;
  4472     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4473       // We keep track of the next start index in the length field of
  4474       // the to-space object. The actual length can be found in the
  4475       // length field of the from-space object.
  4476       arrayOop(obj)->set_length(0);
  4477       oop* old_p = set_partial_array_mask(old);
  4478       _par_scan_state->push_on_queue(old_p);
  4479     } else {
  4480       // No point in using the slower heap_region_containing() method,
  4481       // given that we know obj is in the heap.
  4482       _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4483       obj->oop_iterate_backwards(&_scanner);
  4485   } else {
  4486     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4487     obj = forward_ptr;
  4489   return obj;
  4492 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4493 template <class T>
  4494 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4495 ::do_oop_work(T* p) {
  4496   oop obj = oopDesc::load_decode_heap_oop(p);
  4497   assert(barrier != G1BarrierRS || obj != NULL,
  4498          "Precondition: G1BarrierRS implies obj is non-NULL");
  4500   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4502   // here the null check is implicit in the cset_fast_test() test
  4503   if (_g1->in_cset_fast_test(obj)) {
  4504     oop forwardee;
  4505     if (obj->is_forwarded()) {
  4506       forwardee = obj->forwardee();
  4507     } else {
  4508       forwardee = copy_to_survivor_space(obj);
  4510     assert(forwardee != NULL, "forwardee should not be NULL");
  4511     oopDesc::encode_store_heap_oop(p, forwardee);
  4512     if (do_mark_object && forwardee != obj) {
  4513       // If the object is self-forwarded we don't need to explicitly
  4514       // mark it, the evacuation failure protocol will do so.
  4515       mark_forwarded_object(obj, forwardee);
  4518     // When scanning the RS, we only care about objs in CS.
  4519     if (barrier == G1BarrierRS) {
  4520       _par_scan_state->update_rs(_from, p, _worker_id);
  4522   } else {
  4523     // The object is not in collection set. If we're a root scanning
  4524     // closure during an initial mark pause (i.e. do_mark_object will
  4525     // be true) then attempt to mark the object.
  4526     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
  4527       mark_object(obj);
  4531   if (barrier == G1BarrierEvac && obj != NULL) {
  4532     _par_scan_state->update_rs(_from, p, _worker_id);
  4535   if (do_gen_barrier && obj != NULL) {
  4536     par_do_barrier(p);
  4540 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4541 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4543 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4544   assert(has_partial_array_mask(p), "invariant");
  4545   oop from_obj = clear_partial_array_mask(p);
  4547   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  4548   assert(from_obj->is_objArray(), "must be obj array");
  4549   objArrayOop from_obj_array = objArrayOop(from_obj);
  4550   // The from-space object contains the real length.
  4551   int length                 = from_obj_array->length();
  4553   assert(from_obj->is_forwarded(), "must be forwarded");
  4554   oop to_obj                 = from_obj->forwardee();
  4555   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  4556   objArrayOop to_obj_array   = objArrayOop(to_obj);
  4557   // We keep track of the next start index in the length field of the
  4558   // to-space object.
  4559   int next_index             = to_obj_array->length();
  4560   assert(0 <= next_index && next_index < length,
  4561          err_msg("invariant, next index: %d, length: %d", next_index, length));
  4563   int start                  = next_index;
  4564   int end                    = length;
  4565   int remainder              = end - start;
  4566   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
  4567   if (remainder > 2 * ParGCArrayScanChunk) {
  4568     end = start + ParGCArrayScanChunk;
  4569     to_obj_array->set_length(end);
  4570     // Push the remainder before we process the range in case another
  4571     // worker has run out of things to do and can steal it.
  4572     oop* from_obj_p = set_partial_array_mask(from_obj);
  4573     _par_scan_state->push_on_queue(from_obj_p);
  4574   } else {
  4575     assert(length == end, "sanity");
  4576     // We'll process the final range for this object. Restore the length
  4577     // so that the heap remains parsable in case of evacuation failure.
  4578     to_obj_array->set_length(end);
  4580   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  4581   // Process indexes [start,end). It will also process the header
  4582   // along with the first chunk (i.e., the chunk with start == 0).
  4583   // Note that at this point the length field of to_obj_array is not
  4584   // correct given that we are using it to keep track of the next
  4585   // start index. oop_iterate_range() (thankfully!) ignores the length
  4586   // field and only relies on the start / end parameters.  It does
  4587   // however return the size of the object which will be incorrect. So
  4588   // we have to ignore it even if we wanted to use it.
  4589   to_obj_array->oop_iterate_range(&_scanner, start, end);
  4592 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4593 protected:
  4594   G1CollectedHeap*              _g1h;
  4595   G1ParScanThreadState*         _par_scan_state;
  4596   RefToScanQueueSet*            _queues;
  4597   ParallelTaskTerminator*       _terminator;
  4599   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4600   RefToScanQueueSet*      queues()         { return _queues; }
  4601   ParallelTaskTerminator* terminator()     { return _terminator; }
  4603 public:
  4604   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4605                                 G1ParScanThreadState* par_scan_state,
  4606                                 RefToScanQueueSet* queues,
  4607                                 ParallelTaskTerminator* terminator)
  4608     : _g1h(g1h), _par_scan_state(par_scan_state),
  4609       _queues(queues), _terminator(terminator) {}
  4611   void do_void();
  4613 private:
  4614   inline bool offer_termination();
  4615 };
  4617 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4618   G1ParScanThreadState* const pss = par_scan_state();
  4619   pss->start_term_time();
  4620   const bool res = terminator()->offer_termination();
  4621   pss->end_term_time();
  4622   return res;
  4625 void G1ParEvacuateFollowersClosure::do_void() {
  4626   StarTask stolen_task;
  4627   G1ParScanThreadState* const pss = par_scan_state();
  4628   pss->trim_queue();
  4630   do {
  4631     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4632       assert(pss->verify_task(stolen_task), "sanity");
  4633       if (stolen_task.is_narrow()) {
  4634         pss->deal_with_reference((narrowOop*) stolen_task);
  4635       } else {
  4636         pss->deal_with_reference((oop*) stolen_task);
  4639       // We've just processed a reference and we might have made
  4640       // available new entries on the queues. So we have to make sure
  4641       // we drain the queues as necessary.
  4642       pss->trim_queue();
  4644   } while (!offer_termination());
  4646   pss->retire_alloc_buffers();
  4649 class G1ParTask : public AbstractGangTask {
  4650 protected:
  4651   G1CollectedHeap*       _g1h;
  4652   RefToScanQueueSet      *_queues;
  4653   ParallelTaskTerminator _terminator;
  4654   uint _n_workers;
  4656   Mutex _stats_lock;
  4657   Mutex* stats_lock() { return &_stats_lock; }
  4659   size_t getNCards() {
  4660     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4661       / G1BlockOffsetSharedArray::N_bytes;
  4664 public:
  4665   G1ParTask(G1CollectedHeap* g1h,
  4666             RefToScanQueueSet *task_queues)
  4667     : AbstractGangTask("G1 collection"),
  4668       _g1h(g1h),
  4669       _queues(task_queues),
  4670       _terminator(0, _queues),
  4671       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4672   {}
  4674   RefToScanQueueSet* queues() { return _queues; }
  4676   RefToScanQueue *work_queue(int i) {
  4677     return queues()->queue(i);
  4680   ParallelTaskTerminator* terminator() { return &_terminator; }
  4682   virtual void set_for_termination(int active_workers) {
  4683     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4684     // in the young space (_par_seq_tasks) in the G1 heap
  4685     // for SequentialSubTasksDone.
  4686     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4687     // both of which need setting by set_n_termination().
  4688     _g1h->SharedHeap::set_n_termination(active_workers);
  4689     _g1h->set_n_termination(active_workers);
  4690     terminator()->reset_for_reuse(active_workers);
  4691     _n_workers = active_workers;
  4694   void work(uint worker_id) {
  4695     if (worker_id >= _n_workers) return;  // no work needed this round
  4697     double start_time_ms = os::elapsedTime() * 1000.0;
  4698     _g1h->g1_policy()->record_gc_worker_start_time(worker_id, start_time_ms);
  4701       ResourceMark rm;
  4702       HandleMark   hm;
  4704       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4706       G1ParScanThreadState            pss(_g1h, worker_id);
  4707       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
  4708       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4709       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
  4711       pss.set_evac_closure(&scan_evac_cl);
  4712       pss.set_evac_failure_closure(&evac_failure_cl);
  4713       pss.set_partial_scan_closure(&partial_scan_cl);
  4715       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  4716       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
  4718       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  4719       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
  4721       OopClosure*                    scan_root_cl = &only_scan_root_cl;
  4722       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
  4724       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4725         // We also need to mark copied objects.
  4726         scan_root_cl = &scan_mark_root_cl;
  4727         scan_perm_cl = &scan_mark_perm_cl;
  4730       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4732       pss.start_strong_roots();
  4733       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4734                                     SharedHeap::SO_AllClasses,
  4735                                     scan_root_cl,
  4736                                     &push_heap_rs_cl,
  4737                                     scan_perm_cl,
  4738                                     worker_id);
  4739       pss.end_strong_roots();
  4742         double start = os::elapsedTime();
  4743         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4744         evac.do_void();
  4745         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4746         double term_ms = pss.term_time()*1000.0;
  4747         _g1h->g1_policy()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4748         _g1h->g1_policy()->record_termination(worker_id, term_ms, pss.term_attempts());
  4750       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4751       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4753       if (ParallelGCVerbose) {
  4754         MutexLocker x(stats_lock());
  4755         pss.print_termination_stats(worker_id);
  4758       assert(pss.refs()->is_empty(), "should be empty");
  4760       // Close the inner scope so that the ResourceMark and HandleMark
  4761       // destructors are executed here and are included as part of the
  4762       // "GC Worker Time".
  4765     double end_time_ms = os::elapsedTime() * 1000.0;
  4766     _g1h->g1_policy()->record_gc_worker_end_time(worker_id, end_time_ms);
  4768 };
  4770 // *** Common G1 Evacuation Stuff
  4772 // Closures that support the filtering of CodeBlobs scanned during
  4773 // external root scanning.
  4775 // Closure applied to reference fields in code blobs (specifically nmethods)
  4776 // to determine whether an nmethod contains references that point into
  4777 // the collection set. Used as a predicate when walking code roots so
  4778 // that only nmethods that point into the collection set are added to the
  4779 // 'marked' list.
  4781 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
  4783   class G1PointsIntoCSOopClosure : public OopClosure {
  4784     G1CollectedHeap* _g1;
  4785     bool _points_into_cs;
  4786   public:
  4787     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
  4788       _g1(g1), _points_into_cs(false) { }
  4790     bool points_into_cs() const { return _points_into_cs; }
  4792     template <class T>
  4793     void do_oop_nv(T* p) {
  4794       if (!_points_into_cs) {
  4795         T heap_oop = oopDesc::load_heap_oop(p);
  4796         if (!oopDesc::is_null(heap_oop) &&
  4797             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
  4798           _points_into_cs = true;
  4803     virtual void do_oop(oop* p)        { do_oop_nv(p); }
  4804     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
  4805   };
  4807   G1CollectedHeap* _g1;
  4809 public:
  4810   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
  4811     CodeBlobToOopClosure(cl, true), _g1(g1) { }
  4813   virtual void do_code_blob(CodeBlob* cb) {
  4814     nmethod* nm = cb->as_nmethod_or_null();
  4815     if (nm != NULL && !(nm->test_oops_do_mark())) {
  4816       G1PointsIntoCSOopClosure predicate_cl(_g1);
  4817       nm->oops_do(&predicate_cl);
  4819       if (predicate_cl.points_into_cs()) {
  4820         // At least one of the reference fields or the oop relocations
  4821         // in the nmethod points into the collection set. We have to
  4822         // 'mark' this nmethod.
  4823         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
  4824         // or MarkingCodeBlobClosure::do_code_blob() change.
  4825         if (!nm->test_set_oops_do_mark()) {
  4826           do_newly_marked_nmethod(nm);
  4831 };
  4833 // This method is run in a GC worker.
  4835 void
  4836 G1CollectedHeap::
  4837 g1_process_strong_roots(bool collecting_perm_gen,
  4838                         ScanningOption so,
  4839                         OopClosure* scan_non_heap_roots,
  4840                         OopsInHeapRegionClosure* scan_rs,
  4841                         OopsInGenClosure* scan_perm,
  4842                         int worker_i) {
  4844   // First scan the strong roots, including the perm gen.
  4845   double ext_roots_start = os::elapsedTime();
  4846   double closure_app_time_sec = 0.0;
  4848   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4849   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4850   buf_scan_perm.set_generation(perm_gen());
  4852   // Walk the code cache w/o buffering, because StarTask cannot handle
  4853   // unaligned oop locations.
  4854   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
  4856   process_strong_roots(false, // no scoping; this is parallel code
  4857                        collecting_perm_gen, so,
  4858                        &buf_scan_non_heap_roots,
  4859                        &eager_scan_code_roots,
  4860                        &buf_scan_perm);
  4862   // Now the CM ref_processor roots.
  4863   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4864     // We need to treat the discovered reference lists of the
  4865     // concurrent mark ref processor as roots and keep entries
  4866     // (which are added by the marking threads) on them live
  4867     // until they can be processed at the end of marking.
  4868     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4871   // Finish up any enqueued closure apps (attributed as object copy time).
  4872   buf_scan_non_heap_roots.done();
  4873   buf_scan_perm.done();
  4875   double ext_roots_end = os::elapsedTime();
  4877   g1_policy()->reset_obj_copy_time(worker_i);
  4878   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
  4879                                 buf_scan_non_heap_roots.closure_app_seconds();
  4880   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4882   double ext_root_time_ms =
  4883     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4885   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4887   // During conc marking we have to filter the per-thread SATB buffers
  4888   // to make sure we remove any oops into the CSet (which will show up
  4889   // as implicitly live).
  4890   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  4891     if (mark_in_progress()) {
  4892       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  4895   double satb_filtering_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4896   g1_policy()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  4898   // Now scan the complement of the collection set.
  4899   if (scan_rs != NULL) {
  4900     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4903   _process_strong_tasks->all_tasks_completed();
  4906 void
  4907 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4908                                        OopClosure* non_root_closure) {
  4909   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4910   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4913 // Weak Reference Processing support
  4915 // An always "is_alive" closure that is used to preserve referents.
  4916 // If the object is non-null then it's alive.  Used in the preservation
  4917 // of referent objects that are pointed to by reference objects
  4918 // discovered by the CM ref processor.
  4919 class G1AlwaysAliveClosure: public BoolObjectClosure {
  4920   G1CollectedHeap* _g1;
  4921 public:
  4922   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4923   void do_object(oop p) { assert(false, "Do not call."); }
  4924   bool do_object_b(oop p) {
  4925     if (p != NULL) {
  4926       return true;
  4928     return false;
  4930 };
  4932 bool G1STWIsAliveClosure::do_object_b(oop p) {
  4933   // An object is reachable if it is outside the collection set,
  4934   // or is inside and copied.
  4935   return !_g1->obj_in_cs(p) || p->is_forwarded();
  4938 // Non Copying Keep Alive closure
  4939 class G1KeepAliveClosure: public OopClosure {
  4940   G1CollectedHeap* _g1;
  4941 public:
  4942   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4943   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  4944   void do_oop(      oop* p) {
  4945     oop obj = *p;
  4947     if (_g1->obj_in_cs(obj)) {
  4948       assert( obj->is_forwarded(), "invariant" );
  4949       *p = obj->forwardee();
  4952 };
  4954 // Copying Keep Alive closure - can be called from both
  4955 // serial and parallel code as long as different worker
  4956 // threads utilize different G1ParScanThreadState instances
  4957 // and different queues.
  4959 class G1CopyingKeepAliveClosure: public OopClosure {
  4960   G1CollectedHeap*         _g1h;
  4961   OopClosure*              _copy_non_heap_obj_cl;
  4962   OopsInHeapRegionClosure* _copy_perm_obj_cl;
  4963   G1ParScanThreadState*    _par_scan_state;
  4965 public:
  4966   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  4967                             OopClosure* non_heap_obj_cl,
  4968                             OopsInHeapRegionClosure* perm_obj_cl,
  4969                             G1ParScanThreadState* pss):
  4970     _g1h(g1h),
  4971     _copy_non_heap_obj_cl(non_heap_obj_cl),
  4972     _copy_perm_obj_cl(perm_obj_cl),
  4973     _par_scan_state(pss)
  4974   {}
  4976   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  4977   virtual void do_oop(      oop* p) { do_oop_work(p); }
  4979   template <class T> void do_oop_work(T* p) {
  4980     oop obj = oopDesc::load_decode_heap_oop(p);
  4982     if (_g1h->obj_in_cs(obj)) {
  4983       // If the referent object has been forwarded (either copied
  4984       // to a new location or to itself in the event of an
  4985       // evacuation failure) then we need to update the reference
  4986       // field and, if both reference and referent are in the G1
  4987       // heap, update the RSet for the referent.
  4988       //
  4989       // If the referent has not been forwarded then we have to keep
  4990       // it alive by policy. Therefore we have copy the referent.
  4991       //
  4992       // If the reference field is in the G1 heap then we can push
  4993       // on the PSS queue. When the queue is drained (after each
  4994       // phase of reference processing) the object and it's followers
  4995       // will be copied, the reference field set to point to the
  4996       // new location, and the RSet updated. Otherwise we need to
  4997       // use the the non-heap or perm closures directly to copy
  4998       // the refernt object and update the pointer, while avoiding
  4999       // updating the RSet.
  5001       if (_g1h->is_in_g1_reserved(p)) {
  5002         _par_scan_state->push_on_queue(p);
  5003       } else {
  5004         // The reference field is not in the G1 heap.
  5005         if (_g1h->perm_gen()->is_in(p)) {
  5006           _copy_perm_obj_cl->do_oop(p);
  5007         } else {
  5008           _copy_non_heap_obj_cl->do_oop(p);
  5013 };
  5015 // Serial drain queue closure. Called as the 'complete_gc'
  5016 // closure for each discovered list in some of the
  5017 // reference processing phases.
  5019 class G1STWDrainQueueClosure: public VoidClosure {
  5020 protected:
  5021   G1CollectedHeap* _g1h;
  5022   G1ParScanThreadState* _par_scan_state;
  5024   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5026 public:
  5027   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5028     _g1h(g1h),
  5029     _par_scan_state(pss)
  5030   { }
  5032   void do_void() {
  5033     G1ParScanThreadState* const pss = par_scan_state();
  5034     pss->trim_queue();
  5036 };
  5038 // Parallel Reference Processing closures
  5040 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5041 // processing during G1 evacuation pauses.
  5043 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5044 private:
  5045   G1CollectedHeap*   _g1h;
  5046   RefToScanQueueSet* _queues;
  5047   FlexibleWorkGang*  _workers;
  5048   int                _active_workers;
  5050 public:
  5051   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5052                         FlexibleWorkGang* workers,
  5053                         RefToScanQueueSet *task_queues,
  5054                         int n_workers) :
  5055     _g1h(g1h),
  5056     _queues(task_queues),
  5057     _workers(workers),
  5058     _active_workers(n_workers)
  5060     assert(n_workers > 0, "shouldn't call this otherwise");
  5063   // Executes the given task using concurrent marking worker threads.
  5064   virtual void execute(ProcessTask& task);
  5065   virtual void execute(EnqueueTask& task);
  5066 };
  5068 // Gang task for possibly parallel reference processing
  5070 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5071   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5072   ProcessTask&     _proc_task;
  5073   G1CollectedHeap* _g1h;
  5074   RefToScanQueueSet *_task_queues;
  5075   ParallelTaskTerminator* _terminator;
  5077 public:
  5078   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5079                      G1CollectedHeap* g1h,
  5080                      RefToScanQueueSet *task_queues,
  5081                      ParallelTaskTerminator* terminator) :
  5082     AbstractGangTask("Process reference objects in parallel"),
  5083     _proc_task(proc_task),
  5084     _g1h(g1h),
  5085     _task_queues(task_queues),
  5086     _terminator(terminator)
  5087   {}
  5089   virtual void work(uint worker_id) {
  5090     // The reference processing task executed by a single worker.
  5091     ResourceMark rm;
  5092     HandleMark   hm;
  5094     G1STWIsAliveClosure is_alive(_g1h);
  5096     G1ParScanThreadState pss(_g1h, worker_id);
  5098     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5099     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5100     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5102     pss.set_evac_closure(&scan_evac_cl);
  5103     pss.set_evac_failure_closure(&evac_failure_cl);
  5104     pss.set_partial_scan_closure(&partial_scan_cl);
  5106     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5107     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5109     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5110     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5112     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5113     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5115     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5116       // We also need to mark copied objects.
  5117       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5118       copy_perm_cl = &copy_mark_perm_cl;
  5121     // Keep alive closure.
  5122     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5124     // Complete GC closure
  5125     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5127     // Call the reference processing task's work routine.
  5128     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5130     // Note we cannot assert that the refs array is empty here as not all
  5131     // of the processing tasks (specifically phase2 - pp2_work) execute
  5132     // the complete_gc closure (which ordinarily would drain the queue) so
  5133     // the queue may not be empty.
  5135 };
  5137 // Driver routine for parallel reference processing.
  5138 // Creates an instance of the ref processing gang
  5139 // task and has the worker threads execute it.
  5140 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5141   assert(_workers != NULL, "Need parallel worker threads.");
  5143   ParallelTaskTerminator terminator(_active_workers, _queues);
  5144   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5146   _g1h->set_par_threads(_active_workers);
  5147   _workers->run_task(&proc_task_proxy);
  5148   _g1h->set_par_threads(0);
  5151 // Gang task for parallel reference enqueueing.
  5153 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5154   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5155   EnqueueTask& _enq_task;
  5157 public:
  5158   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5159     AbstractGangTask("Enqueue reference objects in parallel"),
  5160     _enq_task(enq_task)
  5161   { }
  5163   virtual void work(uint worker_id) {
  5164     _enq_task.work(worker_id);
  5166 };
  5168 // Driver routine for parallel reference enqueing.
  5169 // Creates an instance of the ref enqueueing gang
  5170 // task and has the worker threads execute it.
  5172 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5173   assert(_workers != NULL, "Need parallel worker threads.");
  5175   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5177   _g1h->set_par_threads(_active_workers);
  5178   _workers->run_task(&enq_task_proxy);
  5179   _g1h->set_par_threads(0);
  5182 // End of weak reference support closures
  5184 // Abstract task used to preserve (i.e. copy) any referent objects
  5185 // that are in the collection set and are pointed to by reference
  5186 // objects discovered by the CM ref processor.
  5188 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5189 protected:
  5190   G1CollectedHeap* _g1h;
  5191   RefToScanQueueSet      *_queues;
  5192   ParallelTaskTerminator _terminator;
  5193   uint _n_workers;
  5195 public:
  5196   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5197     AbstractGangTask("ParPreserveCMReferents"),
  5198     _g1h(g1h),
  5199     _queues(task_queues),
  5200     _terminator(workers, _queues),
  5201     _n_workers(workers)
  5202   { }
  5204   void work(uint worker_id) {
  5205     ResourceMark rm;
  5206     HandleMark   hm;
  5208     G1ParScanThreadState            pss(_g1h, worker_id);
  5209     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5210     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5211     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5213     pss.set_evac_closure(&scan_evac_cl);
  5214     pss.set_evac_failure_closure(&evac_failure_cl);
  5215     pss.set_partial_scan_closure(&partial_scan_cl);
  5217     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5220     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5221     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5223     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5224     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5226     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5227     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5229     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5230       // We also need to mark copied objects.
  5231       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5232       copy_perm_cl = &copy_mark_perm_cl;
  5235     // Is alive closure
  5236     G1AlwaysAliveClosure always_alive(_g1h);
  5238     // Copying keep alive closure. Applied to referent objects that need
  5239     // to be copied.
  5240     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5242     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5244     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5245     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5247     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5248     // So this must be true - but assert just in case someone decides to
  5249     // change the worker ids.
  5250     assert(0 <= worker_id && worker_id < limit, "sanity");
  5251     assert(!rp->discovery_is_atomic(), "check this code");
  5253     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5254     for (uint idx = worker_id; idx < limit; idx += stride) {
  5255       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5257       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5258       while (iter.has_next()) {
  5259         // Since discovery is not atomic for the CM ref processor, we
  5260         // can see some null referent objects.
  5261         iter.load_ptrs(DEBUG_ONLY(true));
  5262         oop ref = iter.obj();
  5264         // This will filter nulls.
  5265         if (iter.is_referent_alive()) {
  5266           iter.make_referent_alive();
  5268         iter.move_to_next();
  5272     // Drain the queue - which may cause stealing
  5273     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5274     drain_queue.do_void();
  5275     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5276     assert(pss.refs()->is_empty(), "should be");
  5278 };
  5280 // Weak Reference processing during an evacuation pause (part 1).
  5281 void G1CollectedHeap::process_discovered_references() {
  5282   double ref_proc_start = os::elapsedTime();
  5284   ReferenceProcessor* rp = _ref_processor_stw;
  5285   assert(rp->discovery_enabled(), "should have been enabled");
  5287   // Any reference objects, in the collection set, that were 'discovered'
  5288   // by the CM ref processor should have already been copied (either by
  5289   // applying the external root copy closure to the discovered lists, or
  5290   // by following an RSet entry).
  5291   //
  5292   // But some of the referents, that are in the collection set, that these
  5293   // reference objects point to may not have been copied: the STW ref
  5294   // processor would have seen that the reference object had already
  5295   // been 'discovered' and would have skipped discovering the reference,
  5296   // but would not have treated the reference object as a regular oop.
  5297   // As a reult the copy closure would not have been applied to the
  5298   // referent object.
  5299   //
  5300   // We need to explicitly copy these referent objects - the references
  5301   // will be processed at the end of remarking.
  5302   //
  5303   // We also need to do this copying before we process the reference
  5304   // objects discovered by the STW ref processor in case one of these
  5305   // referents points to another object which is also referenced by an
  5306   // object discovered by the STW ref processor.
  5308   uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5309                         workers()->active_workers() : 1);
  5311   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5312            active_workers == workers()->active_workers(),
  5313            "Need to reset active_workers");
  5315   set_par_threads(active_workers);
  5316   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
  5318   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5319     workers()->run_task(&keep_cm_referents);
  5320   } else {
  5321     keep_cm_referents.work(0);
  5324   set_par_threads(0);
  5326   // Closure to test whether a referent is alive.
  5327   G1STWIsAliveClosure is_alive(this);
  5329   // Even when parallel reference processing is enabled, the processing
  5330   // of JNI refs is serial and performed serially by the current thread
  5331   // rather than by a worker. The following PSS will be used for processing
  5332   // JNI refs.
  5334   // Use only a single queue for this PSS.
  5335   G1ParScanThreadState pss(this, 0);
  5337   // We do not embed a reference processor in the copying/scanning
  5338   // closures while we're actually processing the discovered
  5339   // reference objects.
  5340   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  5341   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5342   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
  5344   pss.set_evac_closure(&scan_evac_cl);
  5345   pss.set_evac_failure_closure(&evac_failure_cl);
  5346   pss.set_partial_scan_closure(&partial_scan_cl);
  5348   assert(pss.refs()->is_empty(), "pre-condition");
  5350   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5351   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
  5353   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5354   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
  5356   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5357   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5359   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5360     // We also need to mark copied objects.
  5361     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5362     copy_perm_cl = &copy_mark_perm_cl;
  5365   // Keep alive closure.
  5366   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
  5368   // Serial Complete GC closure
  5369   G1STWDrainQueueClosure drain_queue(this, &pss);
  5371   // Setup the soft refs policy...
  5372   rp->setup_policy(false);
  5374   if (!rp->processing_is_mt()) {
  5375     // Serial reference processing...
  5376     rp->process_discovered_references(&is_alive,
  5377                                       &keep_alive,
  5378                                       &drain_queue,
  5379                                       NULL);
  5380   } else {
  5381     // Parallel reference processing
  5382     assert(rp->num_q() == active_workers, "sanity");
  5383     assert(active_workers <= rp->max_num_q(), "sanity");
  5385     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5386     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  5389   // We have completed copying any necessary live referent objects
  5390   // (that were not copied during the actual pause) so we can
  5391   // retire any active alloc buffers
  5392   pss.retire_alloc_buffers();
  5393   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5395   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5396   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
  5399 // Weak Reference processing during an evacuation pause (part 2).
  5400 void G1CollectedHeap::enqueue_discovered_references() {
  5401   double ref_enq_start = os::elapsedTime();
  5403   ReferenceProcessor* rp = _ref_processor_stw;
  5404   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5406   // Now enqueue any remaining on the discovered lists on to
  5407   // the pending list.
  5408   if (!rp->processing_is_mt()) {
  5409     // Serial reference processing...
  5410     rp->enqueue_discovered_references();
  5411   } else {
  5412     // Parallel reference enqueuing
  5414     uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
  5415     assert(active_workers == workers()->active_workers(),
  5416            "Need to reset active_workers");
  5417     assert(rp->num_q() == active_workers, "sanity");
  5418     assert(active_workers <= rp->max_num_q(), "sanity");
  5420     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5421     rp->enqueue_discovered_references(&par_task_executor);
  5424   rp->verify_no_references_recorded();
  5425   assert(!rp->discovery_enabled(), "should have been disabled");
  5427   // FIXME
  5428   // CM's reference processing also cleans up the string and symbol tables.
  5429   // Should we do that here also? We could, but it is a serial operation
  5430   // and could signicantly increase the pause time.
  5432   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5433   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
  5436 void G1CollectedHeap::evacuate_collection_set() {
  5437   _expand_heap_after_alloc_failure = true;
  5438   set_evacuation_failed(false);
  5440   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5441   concurrent_g1_refine()->set_use_cache(false);
  5442   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  5444   uint n_workers;
  5445   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5446     n_workers =
  5447       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5448                                      workers()->active_workers(),
  5449                                      Threads::number_of_non_daemon_threads());
  5450     assert(UseDynamicNumberOfGCThreads ||
  5451            n_workers == workers()->total_workers(),
  5452            "If not dynamic should be using all the  workers");
  5453     workers()->set_active_workers(n_workers);
  5454     set_par_threads(n_workers);
  5455   } else {
  5456     assert(n_par_threads() == 0,
  5457            "Should be the original non-parallel value");
  5458     n_workers = 1;
  5461   G1ParTask g1_par_task(this, _task_queues);
  5463   init_for_evac_failure(NULL);
  5465   rem_set()->prepare_for_younger_refs_iterate(true);
  5467   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5468   double start_par_time_sec = os::elapsedTime();
  5469   double end_par_time_sec;
  5472     StrongRootsScope srs(this);
  5474     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5475       // The individual threads will set their evac-failure closures.
  5476       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5477       // These tasks use ShareHeap::_process_strong_tasks
  5478       assert(UseDynamicNumberOfGCThreads ||
  5479              workers()->active_workers() == workers()->total_workers(),
  5480              "If not dynamic should be using all the  workers");
  5481       workers()->run_task(&g1_par_task);
  5482     } else {
  5483       g1_par_task.set_for_termination(n_workers);
  5484       g1_par_task.work(0);
  5486     end_par_time_sec = os::elapsedTime();
  5488     // Closing the inner scope will execute the destructor
  5489     // for the StrongRootsScope object. We record the current
  5490     // elapsed time before closing the scope so that time
  5491     // taken for the SRS destructor is NOT included in the
  5492     // reported parallel time.
  5495   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5496   g1_policy()->record_par_time(par_time_ms);
  5498   double code_root_fixup_time_ms =
  5499         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5500   g1_policy()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5502   set_par_threads(0);
  5504   // Process any discovered reference objects - we have
  5505   // to do this _before_ we retire the GC alloc regions
  5506   // as we may have to copy some 'reachable' referent
  5507   // objects (and their reachable sub-graphs) that were
  5508   // not copied during the pause.
  5509   process_discovered_references();
  5511   // Weak root processing.
  5512   // Note: when JSR 292 is enabled and code blobs can contain
  5513   // non-perm oops then we will need to process the code blobs
  5514   // here too.
  5516     G1STWIsAliveClosure is_alive(this);
  5517     G1KeepAliveClosure keep_alive(this);
  5518     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5521   release_gc_alloc_regions();
  5522   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5524   concurrent_g1_refine()->clear_hot_cache();
  5525   concurrent_g1_refine()->set_use_cache(true);
  5527   finalize_for_evac_failure();
  5529   if (evacuation_failed()) {
  5530     remove_self_forwarding_pointers();
  5531     if (G1Log::finer()) {
  5532       gclog_or_tty->print(" (to-space exhausted)");
  5533     } else if (G1Log::fine()) {
  5534       gclog_or_tty->print("--");
  5538   // Enqueue any remaining references remaining on the STW
  5539   // reference processor's discovered lists. We need to do
  5540   // this after the card table is cleaned (and verified) as
  5541   // the act of enqueuing entries on to the pending list
  5542   // will log these updates (and dirty their associated
  5543   // cards). We need these updates logged to update any
  5544   // RSets.
  5545   enqueue_discovered_references();
  5547   if (G1DeferredRSUpdate) {
  5548     RedirtyLoggedCardTableEntryFastClosure redirty;
  5549     dirty_card_queue_set().set_closure(&redirty);
  5550     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5552     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5553     dcq.merge_bufferlists(&dirty_card_queue_set());
  5554     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5556   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5559 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  5560                                      size_t* pre_used,
  5561                                      FreeRegionList* free_list,
  5562                                      OldRegionSet* old_proxy_set,
  5563                                      HumongousRegionSet* humongous_proxy_set,
  5564                                      HRRSCleanupTask* hrrs_cleanup_task,
  5565                                      bool par) {
  5566   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  5567     if (hr->isHumongous()) {
  5568       assert(hr->startsHumongous(), "we should only see starts humongous");
  5569       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  5570     } else {
  5571       _old_set.remove_with_proxy(hr, old_proxy_set);
  5572       free_region(hr, pre_used, free_list, par);
  5574   } else {
  5575     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  5579 void G1CollectedHeap::free_region(HeapRegion* hr,
  5580                                   size_t* pre_used,
  5581                                   FreeRegionList* free_list,
  5582                                   bool par) {
  5583   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5584   assert(!hr->is_empty(), "the region should not be empty");
  5585   assert(free_list != NULL, "pre-condition");
  5587   *pre_used += hr->used();
  5588   hr->hr_clear(par, true /* clear_space */);
  5589   free_list->add_as_head(hr);
  5592 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5593                                      size_t* pre_used,
  5594                                      FreeRegionList* free_list,
  5595                                      HumongousRegionSet* humongous_proxy_set,
  5596                                      bool par) {
  5597   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5598   assert(free_list != NULL, "pre-condition");
  5599   assert(humongous_proxy_set != NULL, "pre-condition");
  5601   size_t hr_used = hr->used();
  5602   size_t hr_capacity = hr->capacity();
  5603   size_t hr_pre_used = 0;
  5604   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5605   hr->set_notHumongous();
  5606   free_region(hr, &hr_pre_used, free_list, par);
  5608   uint i = hr->hrs_index() + 1;
  5609   uint num = 1;
  5610   while (i < n_regions()) {
  5611     HeapRegion* curr_hr = region_at(i);
  5612     if (!curr_hr->continuesHumongous()) {
  5613       break;
  5615     curr_hr->set_notHumongous();
  5616     free_region(curr_hr, &hr_pre_used, free_list, par);
  5617     num += 1;
  5618     i += 1;
  5620   assert(hr_pre_used == hr_used,
  5621          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5622                  "should be the same", hr_pre_used, hr_used));
  5623   *pre_used += hr_pre_used;
  5626 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5627                                        FreeRegionList* free_list,
  5628                                        OldRegionSet* old_proxy_set,
  5629                                        HumongousRegionSet* humongous_proxy_set,
  5630                                        bool par) {
  5631   if (pre_used > 0) {
  5632     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5633     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5634     assert(_summary_bytes_used >= pre_used,
  5635            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5636                    "should be >= pre_used: "SIZE_FORMAT,
  5637                    _summary_bytes_used, pre_used));
  5638     _summary_bytes_used -= pre_used;
  5640   if (free_list != NULL && !free_list->is_empty()) {
  5641     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5642     _free_list.add_as_head(free_list);
  5644   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
  5645     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5646     _old_set.update_from_proxy(old_proxy_set);
  5648   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5649     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5650     _humongous_set.update_from_proxy(humongous_proxy_set);
  5654 class G1ParCleanupCTTask : public AbstractGangTask {
  5655   CardTableModRefBS* _ct_bs;
  5656   G1CollectedHeap* _g1h;
  5657   HeapRegion* volatile _su_head;
  5658 public:
  5659   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5660                      G1CollectedHeap* g1h) :
  5661     AbstractGangTask("G1 Par Cleanup CT Task"),
  5662     _ct_bs(ct_bs), _g1h(g1h) { }
  5664   void work(uint worker_id) {
  5665     HeapRegion* r;
  5666     while (r = _g1h->pop_dirty_cards_region()) {
  5667       clear_cards(r);
  5671   void clear_cards(HeapRegion* r) {
  5672     // Cards of the survivors should have already been dirtied.
  5673     if (!r->is_survivor()) {
  5674       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5677 };
  5679 #ifndef PRODUCT
  5680 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5681   G1CollectedHeap* _g1h;
  5682   CardTableModRefBS* _ct_bs;
  5683 public:
  5684   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  5685     : _g1h(g1h), _ct_bs(ct_bs) { }
  5686   virtual bool doHeapRegion(HeapRegion* r) {
  5687     if (r->is_survivor()) {
  5688       _g1h->verify_dirty_region(r);
  5689     } else {
  5690       _g1h->verify_not_dirty_region(r);
  5692     return false;
  5694 };
  5696 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5697   // All of the region should be clean.
  5698   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  5699   MemRegion mr(hr->bottom(), hr->end());
  5700   ct_bs->verify_not_dirty_region(mr);
  5703 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5704   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5705   // dirty allocated blocks as they allocate them. The thread that
  5706   // retires each region and replaces it with a new one will do a
  5707   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5708   // not dirty that area (one less thing to have to do while holding
  5709   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5710   // is dirty.
  5711   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5712   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5713   ct_bs->verify_dirty_region(mr);
  5716 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5717   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5718   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5719     verify_dirty_region(hr);
  5723 void G1CollectedHeap::verify_dirty_young_regions() {
  5724   verify_dirty_young_list(_young_list->first_region());
  5725   verify_dirty_young_list(_young_list->first_survivor_region());
  5727 #endif
  5729 void G1CollectedHeap::cleanUpCardTable() {
  5730   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  5731   double start = os::elapsedTime();
  5734     // Iterate over the dirty cards region list.
  5735     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  5737     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5738       set_par_threads();
  5739       workers()->run_task(&cleanup_task);
  5740       set_par_threads(0);
  5741     } else {
  5742       while (_dirty_cards_region_list) {
  5743         HeapRegion* r = _dirty_cards_region_list;
  5744         cleanup_task.clear_cards(r);
  5745         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5746         if (_dirty_cards_region_list == r) {
  5747           // The last region.
  5748           _dirty_cards_region_list = NULL;
  5750         r->set_next_dirty_cards_region(NULL);
  5753 #ifndef PRODUCT
  5754     if (G1VerifyCTCleanup || VerifyAfterGC) {
  5755       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  5756       heap_region_iterate(&cleanup_verifier);
  5758 #endif
  5761   double elapsed = os::elapsedTime() - start;
  5762   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
  5765 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5766   size_t pre_used = 0;
  5767   FreeRegionList local_free_list("Local List for CSet Freeing");
  5769   double young_time_ms     = 0.0;
  5770   double non_young_time_ms = 0.0;
  5772   // Since the collection set is a superset of the the young list,
  5773   // all we need to do to clear the young list is clear its
  5774   // head and length, and unlink any young regions in the code below
  5775   _young_list->clear();
  5777   G1CollectorPolicy* policy = g1_policy();
  5779   double start_sec = os::elapsedTime();
  5780   bool non_young = true;
  5782   HeapRegion* cur = cs_head;
  5783   int age_bound = -1;
  5784   size_t rs_lengths = 0;
  5786   while (cur != NULL) {
  5787     assert(!is_on_master_free_list(cur), "sanity");
  5788     if (non_young) {
  5789       if (cur->is_young()) {
  5790         double end_sec = os::elapsedTime();
  5791         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5792         non_young_time_ms += elapsed_ms;
  5794         start_sec = os::elapsedTime();
  5795         non_young = false;
  5797     } else {
  5798       if (!cur->is_young()) {
  5799         double end_sec = os::elapsedTime();
  5800         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5801         young_time_ms += elapsed_ms;
  5803         start_sec = os::elapsedTime();
  5804         non_young = true;
  5808     rs_lengths += cur->rem_set()->occupied();
  5810     HeapRegion* next = cur->next_in_collection_set();
  5811     assert(cur->in_collection_set(), "bad CS");
  5812     cur->set_next_in_collection_set(NULL);
  5813     cur->set_in_collection_set(false);
  5815     if (cur->is_young()) {
  5816       int index = cur->young_index_in_cset();
  5817       assert(index != -1, "invariant");
  5818       assert((uint) index < policy->young_cset_region_length(), "invariant");
  5819       size_t words_survived = _surviving_young_words[index];
  5820       cur->record_surv_words_in_group(words_survived);
  5822       // At this point the we have 'popped' cur from the collection set
  5823       // (linked via next_in_collection_set()) but it is still in the
  5824       // young list (linked via next_young_region()). Clear the
  5825       // _next_young_region field.
  5826       cur->set_next_young_region(NULL);
  5827     } else {
  5828       int index = cur->young_index_in_cset();
  5829       assert(index == -1, "invariant");
  5832     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5833             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5834             "invariant" );
  5836     if (!cur->evacuation_failed()) {
  5837       MemRegion used_mr = cur->used_region();
  5839       // And the region is empty.
  5840       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  5841       free_region(cur, &pre_used, &local_free_list, false /* par */);
  5842     } else {
  5843       cur->uninstall_surv_rate_group();
  5844       if (cur->is_young()) {
  5845         cur->set_young_index_in_cset(-1);
  5847       cur->set_not_young();
  5848       cur->set_evacuation_failed(false);
  5849       // The region is now considered to be old.
  5850       _old_set.add(cur);
  5852     cur = next;
  5855   policy->record_max_rs_lengths(rs_lengths);
  5856   policy->cset_regions_freed();
  5858   double end_sec = os::elapsedTime();
  5859   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5861   if (non_young) {
  5862     non_young_time_ms += elapsed_ms;
  5863   } else {
  5864     young_time_ms += elapsed_ms;
  5867   update_sets_after_freeing_regions(pre_used, &local_free_list,
  5868                                     NULL /* old_proxy_set */,
  5869                                     NULL /* humongous_proxy_set */,
  5870                                     false /* par */);
  5871   policy->record_young_free_cset_time_ms(young_time_ms);
  5872   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  5875 // This routine is similar to the above but does not record
  5876 // any policy statistics or update free lists; we are abandoning
  5877 // the current incremental collection set in preparation of a
  5878 // full collection. After the full GC we will start to build up
  5879 // the incremental collection set again.
  5880 // This is only called when we're doing a full collection
  5881 // and is immediately followed by the tearing down of the young list.
  5883 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  5884   HeapRegion* cur = cs_head;
  5886   while (cur != NULL) {
  5887     HeapRegion* next = cur->next_in_collection_set();
  5888     assert(cur->in_collection_set(), "bad CS");
  5889     cur->set_next_in_collection_set(NULL);
  5890     cur->set_in_collection_set(false);
  5891     cur->set_young_index_in_cset(-1);
  5892     cur = next;
  5896 void G1CollectedHeap::set_free_regions_coming() {
  5897   if (G1ConcRegionFreeingVerbose) {
  5898     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5899                            "setting free regions coming");
  5902   assert(!free_regions_coming(), "pre-condition");
  5903   _free_regions_coming = true;
  5906 void G1CollectedHeap::reset_free_regions_coming() {
  5907   assert(free_regions_coming(), "pre-condition");
  5910     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5911     _free_regions_coming = false;
  5912     SecondaryFreeList_lock->notify_all();
  5915   if (G1ConcRegionFreeingVerbose) {
  5916     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5917                            "reset free regions coming");
  5921 void G1CollectedHeap::wait_while_free_regions_coming() {
  5922   // Most of the time we won't have to wait, so let's do a quick test
  5923   // first before we take the lock.
  5924   if (!free_regions_coming()) {
  5925     return;
  5928   if (G1ConcRegionFreeingVerbose) {
  5929     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5930                            "waiting for free regions");
  5934     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5935     while (free_regions_coming()) {
  5936       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  5940   if (G1ConcRegionFreeingVerbose) {
  5941     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5942                            "done waiting for free regions");
  5946 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5947   assert(heap_lock_held_for_gc(),
  5948               "the heap lock should already be held by or for this thread");
  5949   _young_list->push_region(hr);
  5952 class NoYoungRegionsClosure: public HeapRegionClosure {
  5953 private:
  5954   bool _success;
  5955 public:
  5956   NoYoungRegionsClosure() : _success(true) { }
  5957   bool doHeapRegion(HeapRegion* r) {
  5958     if (r->is_young()) {
  5959       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5960                              r->bottom(), r->end());
  5961       _success = false;
  5963     return false;
  5965   bool success() { return _success; }
  5966 };
  5968 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  5969   bool ret = _young_list->check_list_empty(check_sample);
  5971   if (check_heap) {
  5972     NoYoungRegionsClosure closure;
  5973     heap_region_iterate(&closure);
  5974     ret = ret && closure.success();
  5977   return ret;
  5980 class TearDownRegionSetsClosure : public HeapRegionClosure {
  5981 private:
  5982   OldRegionSet *_old_set;
  5984 public:
  5985   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
  5987   bool doHeapRegion(HeapRegion* r) {
  5988     if (r->is_empty()) {
  5989       // We ignore empty regions, we'll empty the free list afterwards
  5990     } else if (r->is_young()) {
  5991       // We ignore young regions, we'll empty the young list afterwards
  5992     } else if (r->isHumongous()) {
  5993       // We ignore humongous regions, we're not tearing down the
  5994       // humongous region set
  5995     } else {
  5996       // The rest should be old
  5997       _old_set->remove(r);
  5999     return false;
  6002   ~TearDownRegionSetsClosure() {
  6003     assert(_old_set->is_empty(), "post-condition");
  6005 };
  6007 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6008   assert_at_safepoint(true /* should_be_vm_thread */);
  6010   if (!free_list_only) {
  6011     TearDownRegionSetsClosure cl(&_old_set);
  6012     heap_region_iterate(&cl);
  6014     // Need to do this after the heap iteration to be able to
  6015     // recognize the young regions and ignore them during the iteration.
  6016     _young_list->empty_list();
  6018   _free_list.remove_all();
  6021 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6022 private:
  6023   bool            _free_list_only;
  6024   OldRegionSet*   _old_set;
  6025   FreeRegionList* _free_list;
  6026   size_t          _total_used;
  6028 public:
  6029   RebuildRegionSetsClosure(bool free_list_only,
  6030                            OldRegionSet* old_set, FreeRegionList* free_list) :
  6031     _free_list_only(free_list_only),
  6032     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6033     assert(_free_list->is_empty(), "pre-condition");
  6034     if (!free_list_only) {
  6035       assert(_old_set->is_empty(), "pre-condition");
  6039   bool doHeapRegion(HeapRegion* r) {
  6040     if (r->continuesHumongous()) {
  6041       return false;
  6044     if (r->is_empty()) {
  6045       // Add free regions to the free list
  6046       _free_list->add_as_tail(r);
  6047     } else if (!_free_list_only) {
  6048       assert(!r->is_young(), "we should not come across young regions");
  6050       if (r->isHumongous()) {
  6051         // We ignore humongous regions, we left the humongous set unchanged
  6052       } else {
  6053         // The rest should be old, add them to the old set
  6054         _old_set->add(r);
  6056       _total_used += r->used();
  6059     return false;
  6062   size_t total_used() {
  6063     return _total_used;
  6065 };
  6067 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6068   assert_at_safepoint(true /* should_be_vm_thread */);
  6070   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6071   heap_region_iterate(&cl);
  6073   if (!free_list_only) {
  6074     _summary_bytes_used = cl.total_used();
  6076   assert(_summary_bytes_used == recalculate_used(),
  6077          err_msg("inconsistent _summary_bytes_used, "
  6078                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6079                  _summary_bytes_used, recalculate_used()));
  6082 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6083   _refine_cte_cl->set_concurrent(concurrent);
  6086 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6087   HeapRegion* hr = heap_region_containing(p);
  6088   if (hr == NULL) {
  6089     return is_in_permanent(p);
  6090   } else {
  6091     return hr->is_in(p);
  6095 // Methods for the mutator alloc region
  6097 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6098                                                       bool force) {
  6099   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6100   assert(!force || g1_policy()->can_expand_young_list(),
  6101          "if force is true we should be able to expand the young list");
  6102   bool young_list_full = g1_policy()->is_young_list_full();
  6103   if (force || !young_list_full) {
  6104     HeapRegion* new_alloc_region = new_region(word_size,
  6105                                               false /* do_expand */);
  6106     if (new_alloc_region != NULL) {
  6107       set_region_short_lived_locked(new_alloc_region);
  6108       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6109       return new_alloc_region;
  6112   return NULL;
  6115 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6116                                                   size_t allocated_bytes) {
  6117   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6118   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6120   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6121   _summary_bytes_used += allocated_bytes;
  6122   _hr_printer.retire(alloc_region);
  6123   // We update the eden sizes here, when the region is retired,
  6124   // instead of when it's allocated, since this is the point that its
  6125   // used space has been recored in _summary_bytes_used.
  6126   g1mm()->update_eden_size();
  6129 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6130                                                     bool force) {
  6131   return _g1h->new_mutator_alloc_region(word_size, force);
  6134 void G1CollectedHeap::set_par_threads() {
  6135   // Don't change the number of workers.  Use the value previously set
  6136   // in the workgroup.
  6137   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6138   uint n_workers = workers()->active_workers();
  6139   assert(UseDynamicNumberOfGCThreads ||
  6140            n_workers == workers()->total_workers(),
  6141       "Otherwise should be using the total number of workers");
  6142   if (n_workers == 0) {
  6143     assert(false, "Should have been set in prior evacuation pause.");
  6144     n_workers = ParallelGCThreads;
  6145     workers()->set_active_workers(n_workers);
  6147   set_par_threads(n_workers);
  6150 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6151                                        size_t allocated_bytes) {
  6152   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6155 // Methods for the GC alloc regions
  6157 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6158                                                  uint count,
  6159                                                  GCAllocPurpose ap) {
  6160   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6162   if (count < g1_policy()->max_regions(ap)) {
  6163     HeapRegion* new_alloc_region = new_region(word_size,
  6164                                               true /* do_expand */);
  6165     if (new_alloc_region != NULL) {
  6166       // We really only need to do this for old regions given that we
  6167       // should never scan survivors. But it doesn't hurt to do it
  6168       // for survivors too.
  6169       new_alloc_region->set_saved_mark();
  6170       if (ap == GCAllocForSurvived) {
  6171         new_alloc_region->set_survivor();
  6172         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6173       } else {
  6174         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6176       bool during_im = g1_policy()->during_initial_mark_pause();
  6177       new_alloc_region->note_start_of_copying(during_im);
  6178       return new_alloc_region;
  6179     } else {
  6180       g1_policy()->note_alloc_region_limit_reached(ap);
  6183   return NULL;
  6186 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6187                                              size_t allocated_bytes,
  6188                                              GCAllocPurpose ap) {
  6189   bool during_im = g1_policy()->during_initial_mark_pause();
  6190   alloc_region->note_end_of_copying(during_im);
  6191   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6192   if (ap == GCAllocForSurvived) {
  6193     young_list()->add_survivor_region(alloc_region);
  6194   } else {
  6195     _old_set.add(alloc_region);
  6197   _hr_printer.retire(alloc_region);
  6200 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6201                                                        bool force) {
  6202   assert(!force, "not supported for GC alloc regions");
  6203   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6206 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6207                                           size_t allocated_bytes) {
  6208   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6209                                GCAllocForSurvived);
  6212 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6213                                                   bool force) {
  6214   assert(!force, "not supported for GC alloc regions");
  6215   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6218 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6219                                      size_t allocated_bytes) {
  6220   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6221                                GCAllocForTenured);
  6223 // Heap region set verification
  6225 class VerifyRegionListsClosure : public HeapRegionClosure {
  6226 private:
  6227   FreeRegionList*     _free_list;
  6228   OldRegionSet*       _old_set;
  6229   HumongousRegionSet* _humongous_set;
  6230   uint                _region_count;
  6232 public:
  6233   VerifyRegionListsClosure(OldRegionSet* old_set,
  6234                            HumongousRegionSet* humongous_set,
  6235                            FreeRegionList* free_list) :
  6236     _old_set(old_set), _humongous_set(humongous_set),
  6237     _free_list(free_list), _region_count(0) { }
  6239   uint region_count() { return _region_count; }
  6241   bool doHeapRegion(HeapRegion* hr) {
  6242     _region_count += 1;
  6244     if (hr->continuesHumongous()) {
  6245       return false;
  6248     if (hr->is_young()) {
  6249       // TODO
  6250     } else if (hr->startsHumongous()) {
  6251       _humongous_set->verify_next_region(hr);
  6252     } else if (hr->is_empty()) {
  6253       _free_list->verify_next_region(hr);
  6254     } else {
  6255       _old_set->verify_next_region(hr);
  6257     return false;
  6259 };
  6261 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6262                                              HeapWord* bottom) {
  6263   HeapWord* end = bottom + HeapRegion::GrainWords;
  6264   MemRegion mr(bottom, end);
  6265   assert(_g1_reserved.contains(mr), "invariant");
  6266   // This might return NULL if the allocation fails
  6267   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
  6270 void G1CollectedHeap::verify_region_sets() {
  6271   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6273   // First, check the explicit lists.
  6274   _free_list.verify();
  6276     // Given that a concurrent operation might be adding regions to
  6277     // the secondary free list we have to take the lock before
  6278     // verifying it.
  6279     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6280     _secondary_free_list.verify();
  6282   _old_set.verify();
  6283   _humongous_set.verify();
  6285   // If a concurrent region freeing operation is in progress it will
  6286   // be difficult to correctly attributed any free regions we come
  6287   // across to the correct free list given that they might belong to
  6288   // one of several (free_list, secondary_free_list, any local lists,
  6289   // etc.). So, if that's the case we will skip the rest of the
  6290   // verification operation. Alternatively, waiting for the concurrent
  6291   // operation to complete will have a non-trivial effect on the GC's
  6292   // operation (no concurrent operation will last longer than the
  6293   // interval between two calls to verification) and it might hide
  6294   // any issues that we would like to catch during testing.
  6295   if (free_regions_coming()) {
  6296     return;
  6299   // Make sure we append the secondary_free_list on the free_list so
  6300   // that all free regions we will come across can be safely
  6301   // attributed to the free_list.
  6302   append_secondary_free_list_if_not_empty_with_lock();
  6304   // Finally, make sure that the region accounting in the lists is
  6305   // consistent with what we see in the heap.
  6306   _old_set.verify_start();
  6307   _humongous_set.verify_start();
  6308   _free_list.verify_start();
  6310   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6311   heap_region_iterate(&cl);
  6313   _old_set.verify_end();
  6314   _humongous_set.verify_end();
  6315   _free_list.verify_end();

mercurial