src/share/vm/gc_implementation/g1/g1BlockOffsetTable.hpp

Mon, 02 Jul 2012 13:11:28 -0400

author
coleenp
date
Mon, 02 Jul 2012 13:11:28 -0400
changeset 3901
24b9c7f4cae6
parent 3900
d2a62e0f25eb
child 3997
f99a36499b8c
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP
    28 #include "memory/memRegion.hpp"
    29 #include "runtime/virtualspace.hpp"
    30 #include "utilities/globalDefinitions.hpp"
    32 // The CollectedHeap type requires subtypes to implement a method
    33 // "block_start".  For some subtypes, notably generational
    34 // systems using card-table-based write barriers, the efficiency of this
    35 // operation may be important.  Implementations of the "BlockOffsetArray"
    36 // class may be useful in providing such efficient implementations.
    37 //
    38 // While generally mirroring the structure of the BOT for GenCollectedHeap,
    39 // the following types are tailored more towards G1's uses; these should,
    40 // however, be merged back into a common BOT to avoid code duplication
    41 // and reduce maintenance overhead.
    42 //
    43 //    G1BlockOffsetTable (abstract)
    44 //    -- G1BlockOffsetArray                (uses G1BlockOffsetSharedArray)
    45 //       -- G1BlockOffsetArrayContigSpace
    46 //
    47 // A main impediment to the consolidation of this code might be the
    48 // effect of making some of the block_start*() calls non-const as
    49 // below. Whether that might adversely affect performance optimizations
    50 // that compilers might normally perform in the case of non-G1
    51 // collectors needs to be carefully investigated prior to any such
    52 // consolidation.
    54 // Forward declarations
    55 class ContiguousSpace;
    56 class G1BlockOffsetSharedArray;
    58 class G1BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
    59   friend class VMStructs;
    60 protected:
    61   // These members describe the region covered by the table.
    63   // The space this table is covering.
    64   HeapWord* _bottom;    // == reserved.start
    65   HeapWord* _end;       // End of currently allocated region.
    67 public:
    68   // Initialize the table to cover the given space.
    69   // The contents of the initial table are undefined.
    70   G1BlockOffsetTable(HeapWord* bottom, HeapWord* end) :
    71     _bottom(bottom), _end(end)
    72     {
    73       assert(_bottom <= _end, "arguments out of order");
    74     }
    76   // Note that the committed size of the covered space may have changed,
    77   // so the table size might also wish to change.
    78   virtual void resize(size_t new_word_size) = 0;
    80   virtual void set_bottom(HeapWord* new_bottom) {
    81     assert(new_bottom <= _end, "new_bottom > _end");
    82     _bottom = new_bottom;
    83     resize(pointer_delta(_end, _bottom));
    84   }
    86   // Requires "addr" to be contained by a block, and returns the address of
    87   // the start of that block.  (May have side effects, namely updating of
    88   // shared array entries that "point" too far backwards.  This can occur,
    89   // for example, when LAB allocation is used in a space covered by the
    90   // table.)
    91   virtual HeapWord* block_start_unsafe(const void* addr) = 0;
    92   // Same as above, but does not have any of the possible side effects
    93   // discussed above.
    94   virtual HeapWord* block_start_unsafe_const(const void* addr) const = 0;
    96   // Returns the address of the start of the block containing "addr", or
    97   // else "null" if it is covered by no block.  (May have side effects,
    98   // namely updating of shared array entries that "point" too far
    99   // backwards.  This can occur, for example, when lab allocation is used
   100   // in a space covered by the table.)
   101   inline HeapWord* block_start(const void* addr);
   102   // Same as above, but does not have any of the possible side effects
   103   // discussed above.
   104   inline HeapWord* block_start_const(const void* addr) const;
   105 };
   107 // This implementation of "G1BlockOffsetTable" divides the covered region
   108 // into "N"-word subregions (where "N" = 2^"LogN".  An array with an entry
   109 // for each such subregion indicates how far back one must go to find the
   110 // start of the chunk that includes the first word of the subregion.
   111 //
   112 // Each BlockOffsetArray is owned by a Space.  However, the actual array
   113 // may be shared by several BlockOffsetArrays; this is useful
   114 // when a single resizable area (such as a generation) is divided up into
   115 // several spaces in which contiguous allocation takes place,
   116 // such as, for example, in G1 or in the train generation.)
   118 // Here is the shared array type.
   120 class G1BlockOffsetSharedArray: public CHeapObj<mtGC> {
   121   friend class G1BlockOffsetArray;
   122   friend class G1BlockOffsetArrayContigSpace;
   123   friend class VMStructs;
   125 private:
   126   // The reserved region covered by the shared array.
   127   MemRegion _reserved;
   129   // End of the current committed region.
   130   HeapWord* _end;
   132   // Array for keeping offsets for retrieving object start fast given an
   133   // address.
   134   VirtualSpace _vs;
   135   u_char* _offset_array;          // byte array keeping backwards offsets
   137   // Bounds checking accessors:
   138   // For performance these have to devolve to array accesses in product builds.
   139   u_char offset_array(size_t index) const {
   140     assert(index < _vs.committed_size(), "index out of range");
   141     return _offset_array[index];
   142   }
   144   void set_offset_array(size_t index, u_char offset) {
   145     assert(index < _vs.committed_size(), "index out of range");
   146     assert(offset <= N_words, "offset too large");
   147     _offset_array[index] = offset;
   148   }
   150   void set_offset_array(size_t index, HeapWord* high, HeapWord* low) {
   151     assert(index < _vs.committed_size(), "index out of range");
   152     assert(high >= low, "addresses out of order");
   153     assert(pointer_delta(high, low) <= N_words, "offset too large");
   154     _offset_array[index] = (u_char) pointer_delta(high, low);
   155   }
   157   void set_offset_array(HeapWord* left, HeapWord* right, u_char offset) {
   158     assert(index_for(right - 1) < _vs.committed_size(),
   159            "right address out of range");
   160     assert(left  < right, "Heap addresses out of order");
   161     size_t num_cards = pointer_delta(right, left) >> LogN_words;
   162     memset(&_offset_array[index_for(left)], offset, num_cards);
   163   }
   165   void set_offset_array(size_t left, size_t right, u_char offset) {
   166     assert(right < _vs.committed_size(), "right address out of range");
   167     assert(left  <= right, "indexes out of order");
   168     size_t num_cards = right - left + 1;
   169     memset(&_offset_array[left], offset, num_cards);
   170   }
   172   void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
   173     assert(index < _vs.committed_size(), "index out of range");
   174     assert(high >= low, "addresses out of order");
   175     assert(pointer_delta(high, low) <= N_words, "offset too large");
   176     assert(_offset_array[index] == pointer_delta(high, low),
   177            "Wrong offset");
   178   }
   180   bool is_card_boundary(HeapWord* p) const;
   182   // Return the number of slots needed for an offset array
   183   // that covers mem_region_words words.
   184   // We always add an extra slot because if an object
   185   // ends on a card boundary we put a 0 in the next
   186   // offset array slot, so we want that slot always
   187   // to be reserved.
   189   size_t compute_size(size_t mem_region_words) {
   190     size_t number_of_slots = (mem_region_words / N_words) + 1;
   191     return ReservedSpace::page_align_size_up(number_of_slots);
   192   }
   194 public:
   195   enum SomePublicConstants {
   196     LogN = 9,
   197     LogN_words = LogN - LogHeapWordSize,
   198     N_bytes = 1 << LogN,
   199     N_words = 1 << LogN_words
   200   };
   202   // Initialize the table to cover from "base" to (at least)
   203   // "base + init_word_size".  In the future, the table may be expanded
   204   // (see "resize" below) up to the size of "_reserved" (which must be at
   205   // least "init_word_size".) The contents of the initial table are
   206   // undefined; it is the responsibility of the constituent
   207   // G1BlockOffsetTable(s) to initialize cards.
   208   G1BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
   210   // Notes a change in the committed size of the region covered by the
   211   // table.  The "new_word_size" may not be larger than the size of the
   212   // reserved region this table covers.
   213   void resize(size_t new_word_size);
   215   void set_bottom(HeapWord* new_bottom);
   217   // Updates all the BlockOffsetArray's sharing this shared array to
   218   // reflect the current "top"'s of their spaces.
   219   void update_offset_arrays();
   221   // Return the appropriate index into "_offset_array" for "p".
   222   inline size_t index_for(const void* p) const;
   224   // Return the address indicating the start of the region corresponding to
   225   // "index" in "_offset_array".
   226   inline HeapWord* address_for_index(size_t index) const;
   227 };
   229 // And here is the G1BlockOffsetTable subtype that uses the array.
   231 class G1BlockOffsetArray: public G1BlockOffsetTable {
   232   friend class G1BlockOffsetSharedArray;
   233   friend class G1BlockOffsetArrayContigSpace;
   234   friend class VMStructs;
   235 private:
   236   enum SomePrivateConstants {
   237     N_words = G1BlockOffsetSharedArray::N_words,
   238     LogN    = G1BlockOffsetSharedArray::LogN
   239   };
   241   // The following enums are used by do_block_helper
   242   enum Action {
   243     Action_single,      // BOT records a single block (see single_block())
   244     Action_mark,        // BOT marks the start of a block (see mark_block())
   245     Action_check        // Check that BOT records block correctly
   246                         // (see verify_single_block()).
   247   };
   249   // This is the array, which can be shared by several BlockOffsetArray's
   250   // servicing different
   251   G1BlockOffsetSharedArray* _array;
   253   // The space that owns this subregion.
   254   Space* _sp;
   256   // If "_sp" is a contiguous space, the field below is the view of "_sp"
   257   // as a contiguous space, else NULL.
   258   ContiguousSpace* _csp;
   260   // If true, array entries are initialized to 0; otherwise, they are
   261   // initialized to point backwards to the beginning of the covered region.
   262   bool _init_to_zero;
   264   // The portion [_unallocated_block, _sp.end()) of the space that
   265   // is a single block known not to contain any objects.
   266   // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
   267   HeapWord* _unallocated_block;
   269   // Sets the entries
   270   // corresponding to the cards starting at "start" and ending at "end"
   271   // to point back to the card before "start": the interval [start, end)
   272   // is right-open.
   273   void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end);
   274   // Same as above, except that the args here are a card _index_ interval
   275   // that is closed: [start_index, end_index]
   276   void set_remainder_to_point_to_start_incl(size_t start, size_t end);
   278   // A helper function for BOT adjustment/verification work
   279   void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action);
   281 protected:
   283   ContiguousSpace* csp() const { return _csp; }
   285   // Returns the address of a block whose start is at most "addr".
   286   // If "has_max_index" is true, "assumes "max_index" is the last valid one
   287   // in the array.
   288   inline HeapWord* block_at_or_preceding(const void* addr,
   289                                          bool has_max_index,
   290                                          size_t max_index) const;
   292   // "q" is a block boundary that is <= "addr"; "n" is the address of the
   293   // next block (or the end of the space.)  Return the address of the
   294   // beginning of the block that contains "addr".  Does so without side
   295   // effects (see, e.g., spec of  block_start.)
   296   inline HeapWord*
   297   forward_to_block_containing_addr_const(HeapWord* q, HeapWord* n,
   298                                          const void* addr) const;
   300   // "q" is a block boundary that is <= "addr"; return the address of the
   301   // beginning of the block that contains "addr".  May have side effects
   302   // on "this", by updating imprecise entries.
   303   inline HeapWord* forward_to_block_containing_addr(HeapWord* q,
   304                                                     const void* addr);
   306   // "q" is a block boundary that is <= "addr"; "n" is the address of the
   307   // next block (or the end of the space.)  Return the address of the
   308   // beginning of the block that contains "addr".  May have side effects
   309   // on "this", by updating imprecise entries.
   310   HeapWord* forward_to_block_containing_addr_slow(HeapWord* q,
   311                                                   HeapWord* n,
   312                                                   const void* addr);
   314   // Requires that "*threshold_" be the first array entry boundary at or
   315   // above "blk_start", and that "*index_" be the corresponding array
   316   // index.  If the block starts at or crosses "*threshold_", records
   317   // "blk_start" as the appropriate block start for the array index
   318   // starting at "*threshold_", and for any other indices crossed by the
   319   // block.  Updates "*threshold_" and "*index_" to correspond to the first
   320   // index after the block end.
   321   void alloc_block_work2(HeapWord** threshold_, size_t* index_,
   322                          HeapWord* blk_start, HeapWord* blk_end);
   324 public:
   325   // The space may not have it's bottom and top set yet, which is why the
   326   // region is passed as a parameter.  If "init_to_zero" is true, the
   327   // elements of the array are initialized to zero.  Otherwise, they are
   328   // initialized to point backwards to the beginning.
   329   G1BlockOffsetArray(G1BlockOffsetSharedArray* array, MemRegion mr,
   330                      bool init_to_zero);
   332   // Note: this ought to be part of the constructor, but that would require
   333   // "this" to be passed as a parameter to a member constructor for
   334   // the containing concrete subtype of Space.
   335   // This would be legal C++, but MS VC++ doesn't allow it.
   336   void set_space(Space* sp);
   338   // Resets the covered region to the given "mr".
   339   void set_region(MemRegion mr);
   341   // Resets the covered region to one with the same _bottom as before but
   342   // the "new_word_size".
   343   void resize(size_t new_word_size);
   345   // These must be guaranteed to work properly (i.e., do nothing)
   346   // when "blk_start" ("blk" for second version) is "NULL".
   347   virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
   348   virtual void alloc_block(HeapWord* blk, size_t size) {
   349     alloc_block(blk, blk + size);
   350   }
   352   // The following methods are useful and optimized for a
   353   // general, non-contiguous space.
   355   // Given a block [blk_start, blk_start + full_blk_size), and
   356   // a left_blk_size < full_blk_size, adjust the BOT to show two
   357   // blocks [blk_start, blk_start + left_blk_size) and
   358   // [blk_start + left_blk_size, blk_start + full_blk_size).
   359   // It is assumed (and verified in the non-product VM) that the
   360   // BOT was correct for the original block.
   361   void split_block(HeapWord* blk_start, size_t full_blk_size,
   362                            size_t left_blk_size);
   364   // Adjust the BOT to show that it has a single block in the
   365   // range [blk_start, blk_start + size). All necessary BOT
   366   // cards are adjusted, but _unallocated_block isn't.
   367   void single_block(HeapWord* blk_start, HeapWord* blk_end);
   368   void single_block(HeapWord* blk, size_t size) {
   369     single_block(blk, blk + size);
   370   }
   372   // Adjust BOT to show that it has a block in the range
   373   // [blk_start, blk_start + size). Only the first card
   374   // of BOT is touched. It is assumed (and verified in the
   375   // non-product VM) that the remaining cards of the block
   376   // are correct.
   377   void mark_block(HeapWord* blk_start, HeapWord* blk_end);
   378   void mark_block(HeapWord* blk, size_t size) {
   379     mark_block(blk, blk + size);
   380   }
   382   // Adjust _unallocated_block to indicate that a particular
   383   // block has been newly allocated or freed. It is assumed (and
   384   // verified in the non-product VM) that the BOT is correct for
   385   // the given block.
   386   inline void allocated(HeapWord* blk_start, HeapWord* blk_end) {
   387     // Verify that the BOT shows [blk, blk + blk_size) to be one block.
   388     verify_single_block(blk_start, blk_end);
   389     if (BlockOffsetArrayUseUnallocatedBlock) {
   390       _unallocated_block = MAX2(_unallocated_block, blk_end);
   391     }
   392   }
   394   inline void allocated(HeapWord* blk, size_t size) {
   395     allocated(blk, blk + size);
   396   }
   398   inline void freed(HeapWord* blk_start, HeapWord* blk_end);
   400   inline void freed(HeapWord* blk, size_t size);
   402   virtual HeapWord* block_start_unsafe(const void* addr);
   403   virtual HeapWord* block_start_unsafe_const(const void* addr) const;
   405   // Requires "addr" to be the start of a card and returns the
   406   // start of the block that contains the given address.
   407   HeapWord* block_start_careful(const void* addr) const;
   409   // If true, initialize array slots with no allocated blocks to zero.
   410   // Otherwise, make them point back to the front.
   411   bool init_to_zero() { return _init_to_zero; }
   413   // Verification & debugging - ensure that the offset table reflects the fact
   414   // that the block [blk_start, blk_end) or [blk, blk + size) is a
   415   // single block of storage. NOTE: can;t const this because of
   416   // call to non-const do_block_internal() below.
   417   inline void verify_single_block(HeapWord* blk_start, HeapWord* blk_end) {
   418     if (VerifyBlockOffsetArray) {
   419       do_block_internal(blk_start, blk_end, Action_check);
   420     }
   421   }
   423   inline void verify_single_block(HeapWord* blk, size_t size) {
   424     verify_single_block(blk, blk + size);
   425   }
   427   // Used by region verification. Checks that the contents of the
   428   // BOT reflect that there's a single object that spans the address
   429   // range [obj_start, obj_start + word_size); returns true if this is
   430   // the case, returns false if it's not.
   431   bool verify_for_object(HeapWord* obj_start, size_t word_size) const;
   433   // Verify that the given block is before _unallocated_block
   434   inline void verify_not_unallocated(HeapWord* blk_start,
   435                                      HeapWord* blk_end) const {
   436     if (BlockOffsetArrayUseUnallocatedBlock) {
   437       assert(blk_start < blk_end, "Block inconsistency?");
   438       assert(blk_end <= _unallocated_block, "_unallocated_block problem");
   439     }
   440   }
   442   inline void verify_not_unallocated(HeapWord* blk, size_t size) const {
   443     verify_not_unallocated(blk, blk + size);
   444   }
   446   void check_all_cards(size_t left_card, size_t right_card) const;
   448   virtual void print_on(outputStream* out) PRODUCT_RETURN;
   449 };
   451 // A subtype of BlockOffsetArray that takes advantage of the fact
   452 // that its underlying space is a ContiguousSpace, so that its "active"
   453 // region can be more efficiently tracked (than for a non-contiguous space).
   454 class G1BlockOffsetArrayContigSpace: public G1BlockOffsetArray {
   455   friend class VMStructs;
   457   // allocation boundary at which offset array must be updated
   458   HeapWord* _next_offset_threshold;
   459   size_t    _next_offset_index;      // index corresponding to that boundary
   461   // Work function to be called when allocation start crosses the next
   462   // threshold in the contig space.
   463   void alloc_block_work1(HeapWord* blk_start, HeapWord* blk_end) {
   464     alloc_block_work2(&_next_offset_threshold, &_next_offset_index,
   465                       blk_start, blk_end);
   466   }
   469  public:
   470   G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array, MemRegion mr);
   472   // Initialize the threshold to reflect the first boundary after the
   473   // bottom of the covered region.
   474   HeapWord* initialize_threshold();
   476   // Zero out the entry for _bottom (offset will be zero).
   477   void      zero_bottom_entry();
   479   // Return the next threshold, the point at which the table should be
   480   // updated.
   481   HeapWord* threshold() const { return _next_offset_threshold; }
   483   // These must be guaranteed to work properly (i.e., do nothing)
   484   // when "blk_start" ("blk" for second version) is "NULL".  In this
   485   // implementation, that's true because NULL is represented as 0, and thus
   486   // never exceeds the "_next_offset_threshold".
   487   void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
   488     if (blk_end > _next_offset_threshold)
   489       alloc_block_work1(blk_start, blk_end);
   490   }
   491   void alloc_block(HeapWord* blk, size_t size) {
   492      alloc_block(blk, blk+size);
   493   }
   495   HeapWord* block_start_unsafe(const void* addr);
   496   HeapWord* block_start_unsafe_const(const void* addr) const;
   498   void set_for_starts_humongous(HeapWord* new_top);
   500   virtual void print_on(outputStream* out) PRODUCT_RETURN;
   501 };
   503 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP

mercurial