src/share/vm/runtime/sharedRuntime.cpp

Mon, 28 Feb 2011 15:35:45 -0800

author
rottenha
date
Mon, 28 Feb 2011 15:35:45 -0800
changeset 2586
23ae54207126
parent 2508
b92c45f2bc75
child 2603
1b4e6a5d98e0
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/scopeDesc.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/abstractCompiler.hpp"
    32 #include "compiler/compileBroker.hpp"
    33 #include "compiler/compilerOracle.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "interpreter/interpreterRuntime.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/universe.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/forte.hpp"
    40 #include "prims/jvmtiExport.hpp"
    41 #include "prims/jvmtiRedefineClassesTrace.hpp"
    42 #include "prims/methodHandles.hpp"
    43 #include "prims/nativeLookup.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/biasedLocking.hpp"
    46 #include "runtime/handles.inline.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/interfaceSupport.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/sharedRuntime.hpp"
    51 #include "runtime/stubRoutines.hpp"
    52 #include "runtime/vframe.hpp"
    53 #include "runtime/vframeArray.hpp"
    54 #include "utilities/copy.hpp"
    55 #include "utilities/dtrace.hpp"
    56 #include "utilities/events.hpp"
    57 #include "utilities/hashtable.inline.hpp"
    58 #include "utilities/xmlstream.hpp"
    59 #ifdef TARGET_ARCH_x86
    60 # include "nativeInst_x86.hpp"
    61 # include "vmreg_x86.inline.hpp"
    62 #endif
    63 #ifdef TARGET_ARCH_sparc
    64 # include "nativeInst_sparc.hpp"
    65 # include "vmreg_sparc.inline.hpp"
    66 #endif
    67 #ifdef TARGET_ARCH_zero
    68 # include "nativeInst_zero.hpp"
    69 # include "vmreg_zero.inline.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_arm
    72 # include "nativeInst_arm.hpp"
    73 # include "vmreg_arm.inline.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_ppc
    76 # include "nativeInst_ppc.hpp"
    77 # include "vmreg_ppc.inline.hpp"
    78 #endif
    79 #ifdef COMPILER1
    80 #include "c1/c1_Runtime1.hpp"
    81 #endif
    83 #include <math.h>
    85 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
    86 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
    87                       char*, int, char*, int, char*, int);
    88 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
    89                       char*, int, char*, int, char*, int);
    91 // Implementation of SharedRuntime
    93 #ifndef PRODUCT
    94 // For statistics
    95 int SharedRuntime::_ic_miss_ctr = 0;
    96 int SharedRuntime::_wrong_method_ctr = 0;
    97 int SharedRuntime::_resolve_static_ctr = 0;
    98 int SharedRuntime::_resolve_virtual_ctr = 0;
    99 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   100 int SharedRuntime::_implicit_null_throws = 0;
   101 int SharedRuntime::_implicit_div0_throws = 0;
   102 int SharedRuntime::_throw_null_ctr = 0;
   104 int SharedRuntime::_nof_normal_calls = 0;
   105 int SharedRuntime::_nof_optimized_calls = 0;
   106 int SharedRuntime::_nof_inlined_calls = 0;
   107 int SharedRuntime::_nof_megamorphic_calls = 0;
   108 int SharedRuntime::_nof_static_calls = 0;
   109 int SharedRuntime::_nof_inlined_static_calls = 0;
   110 int SharedRuntime::_nof_interface_calls = 0;
   111 int SharedRuntime::_nof_optimized_interface_calls = 0;
   112 int SharedRuntime::_nof_inlined_interface_calls = 0;
   113 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   114 int SharedRuntime::_nof_removable_exceptions = 0;
   116 int SharedRuntime::_new_instance_ctr=0;
   117 int SharedRuntime::_new_array_ctr=0;
   118 int SharedRuntime::_multi1_ctr=0;
   119 int SharedRuntime::_multi2_ctr=0;
   120 int SharedRuntime::_multi3_ctr=0;
   121 int SharedRuntime::_multi4_ctr=0;
   122 int SharedRuntime::_multi5_ctr=0;
   123 int SharedRuntime::_mon_enter_stub_ctr=0;
   124 int SharedRuntime::_mon_exit_stub_ctr=0;
   125 int SharedRuntime::_mon_enter_ctr=0;
   126 int SharedRuntime::_mon_exit_ctr=0;
   127 int SharedRuntime::_partial_subtype_ctr=0;
   128 int SharedRuntime::_jbyte_array_copy_ctr=0;
   129 int SharedRuntime::_jshort_array_copy_ctr=0;
   130 int SharedRuntime::_jint_array_copy_ctr=0;
   131 int SharedRuntime::_jlong_array_copy_ctr=0;
   132 int SharedRuntime::_oop_array_copy_ctr=0;
   133 int SharedRuntime::_checkcast_array_copy_ctr=0;
   134 int SharedRuntime::_unsafe_array_copy_ctr=0;
   135 int SharedRuntime::_generic_array_copy_ctr=0;
   136 int SharedRuntime::_slow_array_copy_ctr=0;
   137 int SharedRuntime::_find_handler_ctr=0;
   138 int SharedRuntime::_rethrow_ctr=0;
   140 int     SharedRuntime::_ICmiss_index                    = 0;
   141 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   142 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   144 void SharedRuntime::trace_ic_miss(address at) {
   145   for (int i = 0; i < _ICmiss_index; i++) {
   146     if (_ICmiss_at[i] == at) {
   147       _ICmiss_count[i]++;
   148       return;
   149     }
   150   }
   151   int index = _ICmiss_index++;
   152   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   153   _ICmiss_at[index] = at;
   154   _ICmiss_count[index] = 1;
   155 }
   157 void SharedRuntime::print_ic_miss_histogram() {
   158   if (ICMissHistogram) {
   159     tty->print_cr ("IC Miss Histogram:");
   160     int tot_misses = 0;
   161     for (int i = 0; i < _ICmiss_index; i++) {
   162       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   163       tot_misses += _ICmiss_count[i];
   164     }
   165     tty->print_cr ("Total IC misses: %7d", tot_misses);
   166   }
   167 }
   168 #endif // PRODUCT
   170 #ifndef SERIALGC
   172 // G1 write-barrier pre: executed before a pointer store.
   173 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   174   if (orig == NULL) {
   175     assert(false, "should be optimized out");
   176     return;
   177   }
   178   assert(orig->is_oop(true /* ignore mark word */), "Error");
   179   // store the original value that was in the field reference
   180   thread->satb_mark_queue().enqueue(orig);
   181 JRT_END
   183 // G1 write-barrier post: executed after a pointer store.
   184 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   185   thread->dirty_card_queue().enqueue(card_addr);
   186 JRT_END
   188 #endif // !SERIALGC
   191 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   192   return x * y;
   193 JRT_END
   196 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   197   if (x == min_jlong && y == CONST64(-1)) {
   198     return x;
   199   } else {
   200     return x / y;
   201   }
   202 JRT_END
   205 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   206   if (x == min_jlong && y == CONST64(-1)) {
   207     return 0;
   208   } else {
   209     return x % y;
   210   }
   211 JRT_END
   214 const juint  float_sign_mask  = 0x7FFFFFFF;
   215 const juint  float_infinity   = 0x7F800000;
   216 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   217 const julong double_infinity  = CONST64(0x7FF0000000000000);
   219 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   220 #ifdef _WIN64
   221   // 64-bit Windows on amd64 returns the wrong values for
   222   // infinity operands.
   223   union { jfloat f; juint i; } xbits, ybits;
   224   xbits.f = x;
   225   ybits.f = y;
   226   // x Mod Infinity == x unless x is infinity
   227   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   228        ((ybits.i & float_sign_mask) == float_infinity) ) {
   229     return x;
   230   }
   231 #endif
   232   return ((jfloat)fmod((double)x,(double)y));
   233 JRT_END
   236 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   237 #ifdef _WIN64
   238   union { jdouble d; julong l; } xbits, ybits;
   239   xbits.d = x;
   240   ybits.d = y;
   241   // x Mod Infinity == x unless x is infinity
   242   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   243        ((ybits.l & double_sign_mask) == double_infinity) ) {
   244     return x;
   245   }
   246 #endif
   247   return ((jdouble)fmod((double)x,(double)y));
   248 JRT_END
   250 #ifdef __SOFTFP__
   251 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   252   return x + y;
   253 JRT_END
   255 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   256   return x - y;
   257 JRT_END
   259 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   260   return x * y;
   261 JRT_END
   263 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   264   return x / y;
   265 JRT_END
   267 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   268   return x + y;
   269 JRT_END
   271 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   272   return x - y;
   273 JRT_END
   275 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   276   return x * y;
   277 JRT_END
   279 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   280   return x / y;
   281 JRT_END
   283 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   284   return (jfloat)x;
   285 JRT_END
   287 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   288   return (jdouble)x;
   289 JRT_END
   291 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   292   return (jdouble)x;
   293 JRT_END
   295 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   296   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   297 JRT_END
   299 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   300   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   301 JRT_END
   303 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   304   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   305 JRT_END
   307 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   308   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   309 JRT_END
   311 // Functions to return the opposite of the aeabi functions for nan.
   312 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   313   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   314 JRT_END
   316 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   317   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   318 JRT_END
   320 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   321   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   322 JRT_END
   324 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   325   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   326 JRT_END
   328 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   329   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   330 JRT_END
   332 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   333   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   334 JRT_END
   336 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   337   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   338 JRT_END
   340 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   341   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   342 JRT_END
   344 // Intrinsics make gcc generate code for these.
   345 float  SharedRuntime::fneg(float f)   {
   346   return -f;
   347 }
   349 double SharedRuntime::dneg(double f)  {
   350   return -f;
   351 }
   353 #endif // __SOFTFP__
   355 #if defined(__SOFTFP__) || defined(E500V2)
   356 // Intrinsics make gcc generate code for these.
   357 double SharedRuntime::dabs(double f)  {
   358   return (f <= (double)0.0) ? (double)0.0 - f : f;
   359 }
   361 #endif
   363 #if defined(__SOFTFP__) || defined(PPC)
   364 double SharedRuntime::dsqrt(double f) {
   365   return sqrt(f);
   366 }
   367 #endif
   369 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   370   if (g_isnan(x))
   371     return 0;
   372   if (x >= (jfloat) max_jint)
   373     return max_jint;
   374   if (x <= (jfloat) min_jint)
   375     return min_jint;
   376   return (jint) x;
   377 JRT_END
   380 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   381   if (g_isnan(x))
   382     return 0;
   383   if (x >= (jfloat) max_jlong)
   384     return max_jlong;
   385   if (x <= (jfloat) min_jlong)
   386     return min_jlong;
   387   return (jlong) x;
   388 JRT_END
   391 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   392   if (g_isnan(x))
   393     return 0;
   394   if (x >= (jdouble) max_jint)
   395     return max_jint;
   396   if (x <= (jdouble) min_jint)
   397     return min_jint;
   398   return (jint) x;
   399 JRT_END
   402 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   403   if (g_isnan(x))
   404     return 0;
   405   if (x >= (jdouble) max_jlong)
   406     return max_jlong;
   407   if (x <= (jdouble) min_jlong)
   408     return min_jlong;
   409   return (jlong) x;
   410 JRT_END
   413 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   414   return (jfloat)x;
   415 JRT_END
   418 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   419   return (jfloat)x;
   420 JRT_END
   423 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   424   return (jdouble)x;
   425 JRT_END
   427 // Exception handling accross interpreter/compiler boundaries
   428 //
   429 // exception_handler_for_return_address(...) returns the continuation address.
   430 // The continuation address is the entry point of the exception handler of the
   431 // previous frame depending on the return address.
   433 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   434   assert(frame::verify_return_pc(return_address), "must be a return pc");
   436   // Reset MethodHandle flag.
   437   thread->set_is_method_handle_return(false);
   439   // the fastest case first
   440   CodeBlob* blob = CodeCache::find_blob(return_address);
   441   if (blob != NULL && blob->is_nmethod()) {
   442     nmethod* code = (nmethod*)blob;
   443     assert(code != NULL, "nmethod must be present");
   444     // Check if the return address is a MethodHandle call site.
   445     thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
   446     // native nmethods don't have exception handlers
   447     assert(!code->is_native_method(), "no exception handler");
   448     assert(code->header_begin() != code->exception_begin(), "no exception handler");
   449     if (code->is_deopt_pc(return_address)) {
   450       return SharedRuntime::deopt_blob()->unpack_with_exception();
   451     } else {
   452       return code->exception_begin();
   453     }
   454   }
   456   // Entry code
   457   if (StubRoutines::returns_to_call_stub(return_address)) {
   458     return StubRoutines::catch_exception_entry();
   459   }
   460   // Interpreted code
   461   if (Interpreter::contains(return_address)) {
   462     return Interpreter::rethrow_exception_entry();
   463   }
   465   // Compiled code
   466   if (CodeCache::contains(return_address)) {
   467     CodeBlob* blob = CodeCache::find_blob(return_address);
   468     if (blob->is_nmethod()) {
   469       nmethod* code = (nmethod*)blob;
   470       assert(code != NULL, "nmethod must be present");
   471       // Check if the return address is a MethodHandle call site.
   472       thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
   473       assert(code->header_begin() != code->exception_begin(), "no exception handler");
   474       return code->exception_begin();
   475     }
   476     if (blob->is_runtime_stub()) {
   477       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
   478     }
   479   }
   480   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   481 #ifndef PRODUCT
   482   { ResourceMark rm;
   483     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   484     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   485     tty->print_cr("b) other problem");
   486   }
   487 #endif // PRODUCT
   488   ShouldNotReachHere();
   489   return NULL;
   490 }
   493 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   494   return raw_exception_handler_for_return_address(thread, return_address);
   495 JRT_END
   498 address SharedRuntime::get_poll_stub(address pc) {
   499   address stub;
   500   // Look up the code blob
   501   CodeBlob *cb = CodeCache::find_blob(pc);
   503   // Should be an nmethod
   504   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   506   // Look up the relocation information
   507   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   508     "safepoint polling: type must be poll" );
   510   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   511     "Only polling locations are used for safepoint");
   513   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   514   if (at_poll_return) {
   515     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   516            "polling page return stub not created yet");
   517     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   518   } else {
   519     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   520            "polling page safepoint stub not created yet");
   521     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   522   }
   523 #ifndef PRODUCT
   524   if( TraceSafepoint ) {
   525     char buf[256];
   526     jio_snprintf(buf, sizeof(buf),
   527                  "... found polling page %s exception at pc = "
   528                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   529                  at_poll_return ? "return" : "loop",
   530                  (intptr_t)pc, (intptr_t)stub);
   531     tty->print_raw_cr(buf);
   532   }
   533 #endif // PRODUCT
   534   return stub;
   535 }
   538 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   539   assert(caller.is_interpreted_frame(), "");
   540   int args_size = ArgumentSizeComputer(sig).size() + 1;
   541   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   542   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   543   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   544   return result;
   545 }
   548 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   549   if (JvmtiExport::can_post_on_exceptions()) {
   550     vframeStream vfst(thread, true);
   551     methodHandle method = methodHandle(thread, vfst.method());
   552     address bcp = method()->bcp_from(vfst.bci());
   553     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   554   }
   555   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   556 }
   558 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   559   Handle h_exception = Exceptions::new_exception(thread, name, message);
   560   throw_and_post_jvmti_exception(thread, h_exception);
   561 }
   563 // The interpreter code to call this tracing function is only
   564 // called/generated when TraceRedefineClasses has the right bits
   565 // set. Since obsolete methods are never compiled, we don't have
   566 // to modify the compilers to generate calls to this function.
   567 //
   568 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   569     JavaThread* thread, methodOopDesc* method))
   570   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   572   if (method->is_obsolete()) {
   573     // We are calling an obsolete method, but this is not necessarily
   574     // an error. Our method could have been redefined just after we
   575     // fetched the methodOop from the constant pool.
   577     // RC_TRACE macro has an embedded ResourceMark
   578     RC_TRACE_WITH_THREAD(0x00001000, thread,
   579                          ("calling obsolete method '%s'",
   580                           method->name_and_sig_as_C_string()));
   581     if (RC_TRACE_ENABLED(0x00002000)) {
   582       // this option is provided to debug calls to obsolete methods
   583       guarantee(false, "faulting at call to an obsolete method.");
   584     }
   585   }
   586   return 0;
   587 JRT_END
   589 // ret_pc points into caller; we are returning caller's exception handler
   590 // for given exception
   591 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   592                                                     bool force_unwind, bool top_frame_only) {
   593   assert(nm != NULL, "must exist");
   594   ResourceMark rm;
   596   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   597   // determine handler bci, if any
   598   EXCEPTION_MARK;
   600   int handler_bci = -1;
   601   int scope_depth = 0;
   602   if (!force_unwind) {
   603     int bci = sd->bci();
   604     do {
   605       bool skip_scope_increment = false;
   606       // exception handler lookup
   607       KlassHandle ek (THREAD, exception->klass());
   608       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
   609       if (HAS_PENDING_EXCEPTION) {
   610         // We threw an exception while trying to find the exception handler.
   611         // Transfer the new exception to the exception handle which will
   612         // be set into thread local storage, and do another lookup for an
   613         // exception handler for this exception, this time starting at the
   614         // BCI of the exception handler which caused the exception to be
   615         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   616         // argument to ensure that the correct exception is thrown (4870175).
   617         exception = Handle(THREAD, PENDING_EXCEPTION);
   618         CLEAR_PENDING_EXCEPTION;
   619         if (handler_bci >= 0) {
   620           bci = handler_bci;
   621           handler_bci = -1;
   622           skip_scope_increment = true;
   623         }
   624       }
   625       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   626         sd = sd->sender();
   627         if (sd != NULL) {
   628           bci = sd->bci();
   629         }
   630         ++scope_depth;
   631       }
   632     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
   633   }
   635   // found handling method => lookup exception handler
   636   int catch_pco = ret_pc - nm->code_begin();
   638   ExceptionHandlerTable table(nm);
   639   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   640   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   641     // Allow abbreviated catch tables.  The idea is to allow a method
   642     // to materialize its exceptions without committing to the exact
   643     // routing of exceptions.  In particular this is needed for adding
   644     // a synthethic handler to unlock monitors when inlining
   645     // synchonized methods since the unlock path isn't represented in
   646     // the bytecodes.
   647     t = table.entry_for(catch_pco, -1, 0);
   648   }
   650 #ifdef COMPILER1
   651   if (t == NULL && nm->is_compiled_by_c1()) {
   652     assert(nm->unwind_handler_begin() != NULL, "");
   653     return nm->unwind_handler_begin();
   654   }
   655 #endif
   657   if (t == NULL) {
   658     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   659     tty->print_cr("   Exception:");
   660     exception->print();
   661     tty->cr();
   662     tty->print_cr(" Compiled exception table :");
   663     table.print();
   664     nm->print_code();
   665     guarantee(false, "missing exception handler");
   666     return NULL;
   667   }
   669   return nm->code_begin() + t->pco();
   670 }
   672 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   673   // These errors occur only at call sites
   674   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   675 JRT_END
   677 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   678   // These errors occur only at call sites
   679   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   680 JRT_END
   682 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   683   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   684 JRT_END
   686 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   687   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   688 JRT_END
   690 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   691   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   692   // cache sites (when the callee activation is not yet set up) so we are at a call site
   693   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   694 JRT_END
   696 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   697   // We avoid using the normal exception construction in this case because
   698   // it performs an upcall to Java, and we're already out of stack space.
   699   klassOop k = SystemDictionary::StackOverflowError_klass();
   700   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
   701   Handle exception (thread, exception_oop);
   702   if (StackTraceInThrowable) {
   703     java_lang_Throwable::fill_in_stack_trace(exception);
   704   }
   705   throw_and_post_jvmti_exception(thread, exception);
   706 JRT_END
   708 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   709                                                            address pc,
   710                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   711 {
   712   address target_pc = NULL;
   714   if (Interpreter::contains(pc)) {
   715 #ifdef CC_INTERP
   716     // C++ interpreter doesn't throw implicit exceptions
   717     ShouldNotReachHere();
   718 #else
   719     switch (exception_kind) {
   720       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   721       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   722       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   723       default:                      ShouldNotReachHere();
   724     }
   725 #endif // !CC_INTERP
   726   } else {
   727     switch (exception_kind) {
   728       case STACK_OVERFLOW: {
   729         // Stack overflow only occurs upon frame setup; the callee is
   730         // going to be unwound. Dispatch to a shared runtime stub
   731         // which will cause the StackOverflowError to be fabricated
   732         // and processed.
   733         // For stack overflow in deoptimization blob, cleanup thread.
   734         if (thread->deopt_mark() != NULL) {
   735           Deoptimization::cleanup_deopt_info(thread, NULL);
   736         }
   737         return StubRoutines::throw_StackOverflowError_entry();
   738       }
   740       case IMPLICIT_NULL: {
   741         if (VtableStubs::contains(pc)) {
   742           // We haven't yet entered the callee frame. Fabricate an
   743           // exception and begin dispatching it in the caller. Since
   744           // the caller was at a call site, it's safe to destroy all
   745           // caller-saved registers, as these entry points do.
   746           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   748           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   749           if (vt_stub == NULL) return NULL;
   751           if (vt_stub->is_abstract_method_error(pc)) {
   752             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   753             return StubRoutines::throw_AbstractMethodError_entry();
   754           } else {
   755             return StubRoutines::throw_NullPointerException_at_call_entry();
   756           }
   757         } else {
   758           CodeBlob* cb = CodeCache::find_blob(pc);
   760           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   761           if (cb == NULL) return NULL;
   763           // Exception happened in CodeCache. Must be either:
   764           // 1. Inline-cache check in C2I handler blob,
   765           // 2. Inline-cache check in nmethod, or
   766           // 3. Implict null exception in nmethod
   768           if (!cb->is_nmethod()) {
   769             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
   770                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
   771             // There is no handler here, so we will simply unwind.
   772             return StubRoutines::throw_NullPointerException_at_call_entry();
   773           }
   775           // Otherwise, it's an nmethod.  Consult its exception handlers.
   776           nmethod* nm = (nmethod*)cb;
   777           if (nm->inlinecache_check_contains(pc)) {
   778             // exception happened inside inline-cache check code
   779             // => the nmethod is not yet active (i.e., the frame
   780             // is not set up yet) => use return address pushed by
   781             // caller => don't push another return address
   782             return StubRoutines::throw_NullPointerException_at_call_entry();
   783           }
   785 #ifndef PRODUCT
   786           _implicit_null_throws++;
   787 #endif
   788           target_pc = nm->continuation_for_implicit_exception(pc);
   789           // If there's an unexpected fault, target_pc might be NULL,
   790           // in which case we want to fall through into the normal
   791           // error handling code.
   792         }
   794         break; // fall through
   795       }
   798       case IMPLICIT_DIVIDE_BY_ZERO: {
   799         nmethod* nm = CodeCache::find_nmethod(pc);
   800         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   801 #ifndef PRODUCT
   802         _implicit_div0_throws++;
   803 #endif
   804         target_pc = nm->continuation_for_implicit_exception(pc);
   805         // If there's an unexpected fault, target_pc might be NULL,
   806         // in which case we want to fall through into the normal
   807         // error handling code.
   808         break; // fall through
   809       }
   811       default: ShouldNotReachHere();
   812     }
   814     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   816     // for AbortVMOnException flag
   817     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   818     if (exception_kind == IMPLICIT_NULL) {
   819       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   820     } else {
   821       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   822     }
   823     return target_pc;
   824   }
   826   ShouldNotReachHere();
   827   return NULL;
   828 }
   831 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   832 {
   833   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   834 }
   835 JNI_END
   838 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   839   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   840 }
   843 #ifndef PRODUCT
   844 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   845   const frame f = thread->last_frame();
   846   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   847 #ifndef PRODUCT
   848   methodHandle mh(THREAD, f.interpreter_frame_method());
   849   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   850 #endif // !PRODUCT
   851   return preserve_this_value;
   852 JRT_END
   853 #endif // !PRODUCT
   856 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   857   os::yield_all(attempts);
   858 JRT_END
   861 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   862   assert(obj->is_oop(), "must be a valid oop");
   863   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
   864   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
   865 JRT_END
   868 jlong SharedRuntime::get_java_tid(Thread* thread) {
   869   if (thread != NULL) {
   870     if (thread->is_Java_thread()) {
   871       oop obj = ((JavaThread*)thread)->threadObj();
   872       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   873     }
   874   }
   875   return 0;
   876 }
   878 /**
   879  * This function ought to be a void function, but cannot be because
   880  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   881  * 6254741.  Once that is fixed we can remove the dummy return value.
   882  */
   883 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   884   return dtrace_object_alloc_base(Thread::current(), o);
   885 }
   887 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   888   assert(DTraceAllocProbes, "wrong call");
   889   Klass* klass = o->blueprint();
   890   int size = o->size();
   891   Symbol* name = klass->name();
   892   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   893                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   894   return 0;
   895 }
   897 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   898     JavaThread* thread, methodOopDesc* method))
   899   assert(DTraceMethodProbes, "wrong call");
   900   Symbol* kname = method->klass_name();
   901   Symbol* name = method->name();
   902   Symbol* sig = method->signature();
   903   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   904       kname->bytes(), kname->utf8_length(),
   905       name->bytes(), name->utf8_length(),
   906       sig->bytes(), sig->utf8_length());
   907   return 0;
   908 JRT_END
   910 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   911     JavaThread* thread, methodOopDesc* method))
   912   assert(DTraceMethodProbes, "wrong call");
   913   Symbol* kname = method->klass_name();
   914   Symbol* name = method->name();
   915   Symbol* sig = method->signature();
   916   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
   917       kname->bytes(), kname->utf8_length(),
   918       name->bytes(), name->utf8_length(),
   919       sig->bytes(), sig->utf8_length());
   920   return 0;
   921 JRT_END
   924 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
   925 // for a call current in progress, i.e., arguments has been pushed on stack
   926 // put callee has not been invoked yet.  Used by: resolve virtual/static,
   927 // vtable updates, etc.  Caller frame must be compiled.
   928 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
   929   ResourceMark rm(THREAD);
   931   // last java frame on stack (which includes native call frames)
   932   vframeStream vfst(thread, true);  // Do not skip and javaCalls
   934   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
   935 }
   938 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
   939 // for a call current in progress, i.e., arguments has been pushed on stack
   940 // but callee has not been invoked yet.  Caller frame must be compiled.
   941 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
   942                                               vframeStream& vfst,
   943                                               Bytecodes::Code& bc,
   944                                               CallInfo& callinfo, TRAPS) {
   945   Handle receiver;
   946   Handle nullHandle;  //create a handy null handle for exception returns
   948   assert(!vfst.at_end(), "Java frame must exist");
   950   // Find caller and bci from vframe
   951   methodHandle caller (THREAD, vfst.method());
   952   int          bci    = vfst.bci();
   954   // Find bytecode
   955   Bytecode_invoke bytecode(caller, bci);
   956   bc = bytecode.java_code();
   957   int bytecode_index = bytecode.index();
   959   // Find receiver for non-static call
   960   if (bc != Bytecodes::_invokestatic) {
   961     // This register map must be update since we need to find the receiver for
   962     // compiled frames. The receiver might be in a register.
   963     RegisterMap reg_map2(thread);
   964     frame stubFrame   = thread->last_frame();
   965     // Caller-frame is a compiled frame
   966     frame callerFrame = stubFrame.sender(&reg_map2);
   968     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
   969     if (callee.is_null()) {
   970       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
   971     }
   972     // Retrieve from a compiled argument list
   973     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
   975     if (receiver.is_null()) {
   976       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
   977     }
   978   }
   980   // Resolve method. This is parameterized by bytecode.
   981   constantPoolHandle constants (THREAD, caller->constants());
   982   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
   983   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
   985 #ifdef ASSERT
   986   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
   987   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
   988     assert(receiver.not_null(), "should have thrown exception");
   989     KlassHandle receiver_klass (THREAD, receiver->klass());
   990     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
   991                             // klass is already loaded
   992     KlassHandle static_receiver_klass (THREAD, rk);
   993     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
   994     if (receiver_klass->oop_is_instance()) {
   995       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
   996         tty->print_cr("ERROR: Klass not yet initialized!!");
   997         receiver_klass.print();
   998       }
   999       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
  1002 #endif
  1004   return receiver;
  1007 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  1008   ResourceMark rm(THREAD);
  1009   // We need first to check if any Java activations (compiled, interpreted)
  1010   // exist on the stack since last JavaCall.  If not, we need
  1011   // to get the target method from the JavaCall wrapper.
  1012   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1013   methodHandle callee_method;
  1014   if (vfst.at_end()) {
  1015     // No Java frames were found on stack since we did the JavaCall.
  1016     // Hence the stack can only contain an entry_frame.  We need to
  1017     // find the target method from the stub frame.
  1018     RegisterMap reg_map(thread, false);
  1019     frame fr = thread->last_frame();
  1020     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1021     fr = fr.sender(&reg_map);
  1022     assert(fr.is_entry_frame(), "must be");
  1023     // fr is now pointing to the entry frame.
  1024     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1025     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1026   } else {
  1027     Bytecodes::Code bc;
  1028     CallInfo callinfo;
  1029     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1030     callee_method = callinfo.selected_method();
  1032   assert(callee_method()->is_method(), "must be");
  1033   return callee_method;
  1036 // Resolves a call.
  1037 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1038                                            bool is_virtual,
  1039                                            bool is_optimized, TRAPS) {
  1040   methodHandle callee_method;
  1041   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1042   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1043     int retry_count = 0;
  1044     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1045            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1046       // If has a pending exception then there is no need to re-try to
  1047       // resolve this method.
  1048       // If the method has been redefined, we need to try again.
  1049       // Hack: we have no way to update the vtables of arrays, so don't
  1050       // require that java.lang.Object has been updated.
  1052       // It is very unlikely that method is redefined more than 100 times
  1053       // in the middle of resolve. If it is looping here more than 100 times
  1054       // means then there could be a bug here.
  1055       guarantee((retry_count++ < 100),
  1056                 "Could not resolve to latest version of redefined method");
  1057       // method is redefined in the middle of resolve so re-try.
  1058       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1061   return callee_method;
  1064 // Resolves a call.  The compilers generate code for calls that go here
  1065 // and are patched with the real destination of the call.
  1066 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1067                                            bool is_virtual,
  1068                                            bool is_optimized, TRAPS) {
  1070   ResourceMark rm(thread);
  1071   RegisterMap cbl_map(thread, false);
  1072   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1074   CodeBlob* caller_cb = caller_frame.cb();
  1075   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1076   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1077   // make sure caller is not getting deoptimized
  1078   // and removed before we are done with it.
  1079   // CLEANUP - with lazy deopt shouldn't need this lock
  1080   nmethodLocker caller_lock(caller_nm);
  1083   // determine call info & receiver
  1084   // note: a) receiver is NULL for static calls
  1085   //       b) an exception is thrown if receiver is NULL for non-static calls
  1086   CallInfo call_info;
  1087   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1088   Handle receiver = find_callee_info(thread, invoke_code,
  1089                                      call_info, CHECK_(methodHandle()));
  1090   methodHandle callee_method = call_info.selected_method();
  1092   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
  1093          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
  1095 #ifndef PRODUCT
  1096   // tracing/debugging/statistics
  1097   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1098                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1099                                (&_resolve_static_ctr);
  1100   Atomic::inc(addr);
  1102   if (TraceCallFixup) {
  1103     ResourceMark rm(thread);
  1104     tty->print("resolving %s%s (%s) call to",
  1105       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1106       Bytecodes::name(invoke_code));
  1107     callee_method->print_short_name(tty);
  1108     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1110 #endif
  1112   // JSR 292
  1113   // If the resolved method is a MethodHandle invoke target the call
  1114   // site must be a MethodHandle call site.
  1115   if (callee_method->is_method_handle_invoke()) {
  1116     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1119   // Compute entry points. This might require generation of C2I converter
  1120   // frames, so we cannot be holding any locks here. Furthermore, the
  1121   // computation of the entry points is independent of patching the call.  We
  1122   // always return the entry-point, but we only patch the stub if the call has
  1123   // not been deoptimized.  Return values: For a virtual call this is an
  1124   // (cached_oop, destination address) pair. For a static call/optimized
  1125   // virtual this is just a destination address.
  1127   StaticCallInfo static_call_info;
  1128   CompiledICInfo virtual_call_info;
  1130   // Make sure the callee nmethod does not get deoptimized and removed before
  1131   // we are done patching the code.
  1132   nmethod* callee_nm = callee_method->code();
  1133   nmethodLocker nl_callee(callee_nm);
  1134 #ifdef ASSERT
  1135   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1136 #endif
  1138   if (is_virtual) {
  1139     assert(receiver.not_null(), "sanity check");
  1140     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1141     KlassHandle h_klass(THREAD, receiver->klass());
  1142     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1143                      is_optimized, static_bound, virtual_call_info,
  1144                      CHECK_(methodHandle()));
  1145   } else {
  1146     // static call
  1147     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1150   // grab lock, check for deoptimization and potentially patch caller
  1152     MutexLocker ml_patch(CompiledIC_lock);
  1154     // Now that we are ready to patch if the methodOop was redefined then
  1155     // don't update call site and let the caller retry.
  1157     if (!callee_method->is_old()) {
  1158 #ifdef ASSERT
  1159       // We must not try to patch to jump to an already unloaded method.
  1160       if (dest_entry_point != 0) {
  1161         assert(CodeCache::find_blob(dest_entry_point) != NULL,
  1162                "should not unload nmethod while locked");
  1164 #endif
  1165       if (is_virtual) {
  1166         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1167         if (inline_cache->is_clean()) {
  1168           inline_cache->set_to_monomorphic(virtual_call_info);
  1170       } else {
  1171         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1172         if (ssc->is_clean()) ssc->set(static_call_info);
  1176   } // unlock CompiledIC_lock
  1178   return callee_method;
  1182 // Inline caches exist only in compiled code
  1183 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1184 #ifdef ASSERT
  1185   RegisterMap reg_map(thread, false);
  1186   frame stub_frame = thread->last_frame();
  1187   assert(stub_frame.is_runtime_frame(), "sanity check");
  1188   frame caller_frame = stub_frame.sender(&reg_map);
  1189   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1190 #endif /* ASSERT */
  1192   methodHandle callee_method;
  1193   JRT_BLOCK
  1194     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1195     // Return methodOop through TLS
  1196     thread->set_vm_result(callee_method());
  1197   JRT_BLOCK_END
  1198   // return compiled code entry point after potential safepoints
  1199   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1200   return callee_method->verified_code_entry();
  1201 JRT_END
  1204 // Handle call site that has been made non-entrant
  1205 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1206   // 6243940 We might end up in here if the callee is deoptimized
  1207   // as we race to call it.  We don't want to take a safepoint if
  1208   // the caller was interpreted because the caller frame will look
  1209   // interpreted to the stack walkers and arguments are now
  1210   // "compiled" so it is much better to make this transition
  1211   // invisible to the stack walking code. The i2c path will
  1212   // place the callee method in the callee_target. It is stashed
  1213   // there because if we try and find the callee by normal means a
  1214   // safepoint is possible and have trouble gc'ing the compiled args.
  1215   RegisterMap reg_map(thread, false);
  1216   frame stub_frame = thread->last_frame();
  1217   assert(stub_frame.is_runtime_frame(), "sanity check");
  1218   frame caller_frame = stub_frame.sender(&reg_map);
  1220   // MethodHandle invokes don't have a CompiledIC and should always
  1221   // simply redispatch to the callee_target.
  1222   address   sender_pc = caller_frame.pc();
  1223   CodeBlob* sender_cb = caller_frame.cb();
  1224   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
  1225   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
  1226   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
  1227     // If the callee_target is set, then we have come here via an i2c
  1228     // adapter.
  1229     methodOop callee = thread->callee_target();
  1230     if (callee != NULL) {
  1231       assert(callee->is_method(), "sanity");
  1232       is_mh_invoke_via_adapter = true;
  1236   if (caller_frame.is_interpreted_frame() ||
  1237       caller_frame.is_entry_frame()       ||
  1238       is_mh_invoke_via_adapter) {
  1239     methodOop callee = thread->callee_target();
  1240     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1241     thread->set_vm_result(callee);
  1242     thread->set_callee_target(NULL);
  1243     return callee->get_c2i_entry();
  1246   // Must be compiled to compiled path which is safe to stackwalk
  1247   methodHandle callee_method;
  1248   JRT_BLOCK
  1249     // Force resolving of caller (if we called from compiled frame)
  1250     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1251     thread->set_vm_result(callee_method());
  1252   JRT_BLOCK_END
  1253   // return compiled code entry point after potential safepoints
  1254   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1255   return callee_method->verified_code_entry();
  1256 JRT_END
  1259 // resolve a static call and patch code
  1260 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1261   methodHandle callee_method;
  1262   JRT_BLOCK
  1263     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1264     thread->set_vm_result(callee_method());
  1265   JRT_BLOCK_END
  1266   // return compiled code entry point after potential safepoints
  1267   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1268   return callee_method->verified_code_entry();
  1269 JRT_END
  1272 // resolve virtual call and update inline cache to monomorphic
  1273 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1274   methodHandle callee_method;
  1275   JRT_BLOCK
  1276     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1277     thread->set_vm_result(callee_method());
  1278   JRT_BLOCK_END
  1279   // return compiled code entry point after potential safepoints
  1280   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1281   return callee_method->verified_code_entry();
  1282 JRT_END
  1285 // Resolve a virtual call that can be statically bound (e.g., always
  1286 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1287 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1288   methodHandle callee_method;
  1289   JRT_BLOCK
  1290     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1291     thread->set_vm_result(callee_method());
  1292   JRT_BLOCK_END
  1293   // return compiled code entry point after potential safepoints
  1294   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1295   return callee_method->verified_code_entry();
  1296 JRT_END
  1302 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1303   ResourceMark rm(thread);
  1304   CallInfo call_info;
  1305   Bytecodes::Code bc;
  1307   // receiver is NULL for static calls. An exception is thrown for NULL
  1308   // receivers for non-static calls
  1309   Handle receiver = find_callee_info(thread, bc, call_info,
  1310                                      CHECK_(methodHandle()));
  1311   // Compiler1 can produce virtual call sites that can actually be statically bound
  1312   // If we fell thru to below we would think that the site was going megamorphic
  1313   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1314   // we'd try and do a vtable dispatch however methods that can be statically bound
  1315   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1316   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1317   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1318   // never to miss again. I don't believe C2 will produce code like this but if it
  1319   // did this would still be the correct thing to do for it too, hence no ifdef.
  1320   //
  1321   if (call_info.resolved_method()->can_be_statically_bound()) {
  1322     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1323     if (TraceCallFixup) {
  1324       RegisterMap reg_map(thread, false);
  1325       frame caller_frame = thread->last_frame().sender(&reg_map);
  1326       ResourceMark rm(thread);
  1327       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1328       callee_method->print_short_name(tty);
  1329       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1330       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1332     return callee_method;
  1335   methodHandle callee_method = call_info.selected_method();
  1337   bool should_be_mono = false;
  1339 #ifndef PRODUCT
  1340   Atomic::inc(&_ic_miss_ctr);
  1342   // Statistics & Tracing
  1343   if (TraceCallFixup) {
  1344     ResourceMark rm(thread);
  1345     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1346     callee_method->print_short_name(tty);
  1347     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1350   if (ICMissHistogram) {
  1351     MutexLocker m(VMStatistic_lock);
  1352     RegisterMap reg_map(thread, false);
  1353     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1354     // produce statistics under the lock
  1355     trace_ic_miss(f.pc());
  1357 #endif
  1359   // install an event collector so that when a vtable stub is created the
  1360   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1361   // event can't be posted when the stub is created as locks are held
  1362   // - instead the event will be deferred until the event collector goes
  1363   // out of scope.
  1364   JvmtiDynamicCodeEventCollector event_collector;
  1366   // Update inline cache to megamorphic. Skip update if caller has been
  1367   // made non-entrant or we are called from interpreted.
  1368   { MutexLocker ml_patch (CompiledIC_lock);
  1369     RegisterMap reg_map(thread, false);
  1370     frame caller_frame = thread->last_frame().sender(&reg_map);
  1371     CodeBlob* cb = caller_frame.cb();
  1372     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1373       // Not a non-entrant nmethod, so find inline_cache
  1374       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1375       bool should_be_mono = false;
  1376       if (inline_cache->is_optimized()) {
  1377         if (TraceCallFixup) {
  1378           ResourceMark rm(thread);
  1379           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1380           callee_method->print_short_name(tty);
  1381           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1383         should_be_mono = true;
  1384       } else {
  1385         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
  1386         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
  1388           if (receiver()->klass() == ic_oop->holder_klass()) {
  1389             // This isn't a real miss. We must have seen that compiled code
  1390             // is now available and we want the call site converted to a
  1391             // monomorphic compiled call site.
  1392             // We can't assert for callee_method->code() != NULL because it
  1393             // could have been deoptimized in the meantime
  1394             if (TraceCallFixup) {
  1395               ResourceMark rm(thread);
  1396               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1397               callee_method->print_short_name(tty);
  1398               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1400             should_be_mono = true;
  1405       if (should_be_mono) {
  1407         // We have a path that was monomorphic but was going interpreted
  1408         // and now we have (or had) a compiled entry. We correct the IC
  1409         // by using a new icBuffer.
  1410         CompiledICInfo info;
  1411         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1412         inline_cache->compute_monomorphic_entry(callee_method,
  1413                                                 receiver_klass,
  1414                                                 inline_cache->is_optimized(),
  1415                                                 false,
  1416                                                 info, CHECK_(methodHandle()));
  1417         inline_cache->set_to_monomorphic(info);
  1418       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1419         // Change to megamorphic
  1420         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1421       } else {
  1422         // Either clean or megamorphic
  1425   } // Release CompiledIC_lock
  1427   return callee_method;
  1430 //
  1431 // Resets a call-site in compiled code so it will get resolved again.
  1432 // This routines handles both virtual call sites, optimized virtual call
  1433 // sites, and static call sites. Typically used to change a call sites
  1434 // destination from compiled to interpreted.
  1435 //
  1436 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1437   ResourceMark rm(thread);
  1438   RegisterMap reg_map(thread, false);
  1439   frame stub_frame = thread->last_frame();
  1440   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1441   frame caller = stub_frame.sender(&reg_map);
  1443   // Do nothing if the frame isn't a live compiled frame.
  1444   // nmethod could be deoptimized by the time we get here
  1445   // so no update to the caller is needed.
  1447   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1449     address pc = caller.pc();
  1450     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
  1452     // Default call_addr is the location of the "basic" call.
  1453     // Determine the address of the call we a reresolving. With
  1454     // Inline Caches we will always find a recognizable call.
  1455     // With Inline Caches disabled we may or may not find a
  1456     // recognizable call. We will always find a call for static
  1457     // calls and for optimized virtual calls. For vanilla virtual
  1458     // calls it depends on the state of the UseInlineCaches switch.
  1459     //
  1460     // With Inline Caches disabled we can get here for a virtual call
  1461     // for two reasons:
  1462     //   1 - calling an abstract method. The vtable for abstract methods
  1463     //       will run us thru handle_wrong_method and we will eventually
  1464     //       end up in the interpreter to throw the ame.
  1465     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1466     //       call and between the time we fetch the entry address and
  1467     //       we jump to it the target gets deoptimized. Similar to 1
  1468     //       we will wind up in the interprter (thru a c2i with c2).
  1469     //
  1470     address call_addr = NULL;
  1472       // Get call instruction under lock because another thread may be
  1473       // busy patching it.
  1474       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1475       // Location of call instruction
  1476       if (NativeCall::is_call_before(pc)) {
  1477         NativeCall *ncall = nativeCall_before(pc);
  1478         call_addr = ncall->instruction_address();
  1482     // Check for static or virtual call
  1483     bool is_static_call = false;
  1484     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1485     // Make sure nmethod doesn't get deoptimized and removed until
  1486     // this is done with it.
  1487     // CLEANUP - with lazy deopt shouldn't need this lock
  1488     nmethodLocker nmlock(caller_nm);
  1490     if (call_addr != NULL) {
  1491       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1492       int ret = iter.next(); // Get item
  1493       if (ret) {
  1494         assert(iter.addr() == call_addr, "must find call");
  1495         if (iter.type() == relocInfo::static_call_type) {
  1496           is_static_call = true;
  1497         } else {
  1498           assert(iter.type() == relocInfo::virtual_call_type ||
  1499                  iter.type() == relocInfo::opt_virtual_call_type
  1500                 , "unexpected relocInfo. type");
  1502       } else {
  1503         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1506       // Cleaning the inline cache will force a new resolve. This is more robust
  1507       // than directly setting it to the new destination, since resolving of calls
  1508       // is always done through the same code path. (experience shows that it
  1509       // leads to very hard to track down bugs, if an inline cache gets updated
  1510       // to a wrong method). It should not be performance critical, since the
  1511       // resolve is only done once.
  1513       MutexLocker ml(CompiledIC_lock);
  1514       //
  1515       // We do not patch the call site if the nmethod has been made non-entrant
  1516       // as it is a waste of time
  1517       //
  1518       if (caller_nm->is_in_use()) {
  1519         if (is_static_call) {
  1520           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1521           ssc->set_to_clean();
  1522         } else {
  1523           // compiled, dispatched call (which used to call an interpreted method)
  1524           CompiledIC* inline_cache = CompiledIC_at(call_addr);
  1525           inline_cache->set_to_clean();
  1532   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1535 #ifndef PRODUCT
  1536   Atomic::inc(&_wrong_method_ctr);
  1538   if (TraceCallFixup) {
  1539     ResourceMark rm(thread);
  1540     tty->print("handle_wrong_method reresolving call to");
  1541     callee_method->print_short_name(tty);
  1542     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1544 #endif
  1546   return callee_method;
  1549 // ---------------------------------------------------------------------------
  1550 // We are calling the interpreter via a c2i. Normally this would mean that
  1551 // we were called by a compiled method. However we could have lost a race
  1552 // where we went int -> i2c -> c2i and so the caller could in fact be
  1553 // interpreted. If the caller is compiled we attempt to patch the caller
  1554 // so he no longer calls into the interpreter.
  1555 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
  1556   methodOop moop(method);
  1558   address entry_point = moop->from_compiled_entry();
  1560   // It's possible that deoptimization can occur at a call site which hasn't
  1561   // been resolved yet, in which case this function will be called from
  1562   // an nmethod that has been patched for deopt and we can ignore the
  1563   // request for a fixup.
  1564   // Also it is possible that we lost a race in that from_compiled_entry
  1565   // is now back to the i2c in that case we don't need to patch and if
  1566   // we did we'd leap into space because the callsite needs to use
  1567   // "to interpreter" stub in order to load up the methodOop. Don't
  1568   // ask me how I know this...
  1570   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1571   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1572     return;
  1575   // The check above makes sure this is a nmethod.
  1576   nmethod* nm = cb->as_nmethod_or_null();
  1577   assert(nm, "must be");
  1579   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
  1580   // to implement MethodHandle actions.
  1581   if (nm->is_method_handle_return(caller_pc)) {
  1582     return;
  1585   // There is a benign race here. We could be attempting to patch to a compiled
  1586   // entry point at the same time the callee is being deoptimized. If that is
  1587   // the case then entry_point may in fact point to a c2i and we'd patch the
  1588   // call site with the same old data. clear_code will set code() to NULL
  1589   // at the end of it. If we happen to see that NULL then we can skip trying
  1590   // to patch. If we hit the window where the callee has a c2i in the
  1591   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1592   // and patch the code with the same old data. Asi es la vida.
  1594   if (moop->code() == NULL) return;
  1596   if (nm->is_in_use()) {
  1598     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1599     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1600     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
  1601       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
  1602       //
  1603       // bug 6281185. We might get here after resolving a call site to a vanilla
  1604       // virtual call. Because the resolvee uses the verified entry it may then
  1605       // see compiled code and attempt to patch the site by calling us. This would
  1606       // then incorrectly convert the call site to optimized and its downhill from
  1607       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1608       // just made a call site that could be megamorphic into a monomorphic site
  1609       // for the rest of its life! Just another racing bug in the life of
  1610       // fixup_callers_callsite ...
  1611       //
  1612       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1613       iter.next();
  1614       assert(iter.has_current(), "must have a reloc at java call site");
  1615       relocInfo::relocType typ = iter.reloc()->type();
  1616       if ( typ != relocInfo::static_call_type &&
  1617            typ != relocInfo::opt_virtual_call_type &&
  1618            typ != relocInfo::static_stub_type) {
  1619         return;
  1621       address destination = call->destination();
  1622       if (destination != entry_point) {
  1623         CodeBlob* callee = CodeCache::find_blob(destination);
  1624         // callee == cb seems weird. It means calling interpreter thru stub.
  1625         if (callee == cb || callee->is_adapter_blob()) {
  1626           // static call or optimized virtual
  1627           if (TraceCallFixup) {
  1628             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1629             moop->print_short_name(tty);
  1630             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1632           call->set_destination_mt_safe(entry_point);
  1633         } else {
  1634           if (TraceCallFixup) {
  1635             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1636             moop->print_short_name(tty);
  1637             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1639           // assert is too strong could also be resolve destinations.
  1640           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1642       } else {
  1643           if (TraceCallFixup) {
  1644             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1645             moop->print_short_name(tty);
  1646             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1652 IRT_END
  1655 // same as JVM_Arraycopy, but called directly from compiled code
  1656 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1657                                                 oopDesc* dest, jint dest_pos,
  1658                                                 jint length,
  1659                                                 JavaThread* thread)) {
  1660 #ifndef PRODUCT
  1661   _slow_array_copy_ctr++;
  1662 #endif
  1663   // Check if we have null pointers
  1664   if (src == NULL || dest == NULL) {
  1665     THROW(vmSymbols::java_lang_NullPointerException());
  1667   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1668   // even though the copy_array API also performs dynamic checks to ensure
  1669   // that src and dest are truly arrays (and are conformable).
  1670   // The copy_array mechanism is awkward and could be removed, but
  1671   // the compilers don't call this function except as a last resort,
  1672   // so it probably doesn't matter.
  1673   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
  1674                                         (arrayOopDesc*)dest, dest_pos,
  1675                                         length, thread);
  1677 JRT_END
  1679 char* SharedRuntime::generate_class_cast_message(
  1680     JavaThread* thread, const char* objName) {
  1682   // Get target class name from the checkcast instruction
  1683   vframeStream vfst(thread, true);
  1684   assert(!vfst.at_end(), "Java frame must exist");
  1685   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1686   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
  1687     cc.index(), thread));
  1688   return generate_class_cast_message(objName, targetKlass->external_name());
  1691 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
  1692                                                         oopDesc* required,
  1693                                                         oopDesc* actual) {
  1694   if (TraceMethodHandles) {
  1695     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
  1696                   thread, required, actual);
  1698   assert(EnableMethodHandles, "");
  1699   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
  1700   char* message = NULL;
  1701   if (singleKlass != NULL) {
  1702     const char* objName = "argument or return value";
  1703     if (actual != NULL) {
  1704       // be flexible about the junk passed in:
  1705       klassOop ak = (actual->is_klass()
  1706                      ? (klassOop)actual
  1707                      : actual->klass());
  1708       objName = Klass::cast(ak)->external_name();
  1710     Klass* targetKlass = Klass::cast(required->is_klass()
  1711                                      ? (klassOop)required
  1712                                      : java_lang_Class::as_klassOop(required));
  1713     message = generate_class_cast_message(objName, targetKlass->external_name());
  1714   } else {
  1715     // %%% need to get the MethodType string, without messing around too much
  1716     // Get a signature from the invoke instruction
  1717     const char* mhName = "method handle";
  1718     const char* targetType = "the required signature";
  1719     vframeStream vfst(thread, true);
  1720     if (!vfst.at_end()) {
  1721       Bytecode_invoke call(vfst.method(), vfst.bci());
  1722       methodHandle target;
  1724         EXCEPTION_MARK;
  1725         target = call.static_target(THREAD);
  1726         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
  1728       if (target.not_null()
  1729           && target->is_method_handle_invoke()
  1730           && required == target->method_handle_type()) {
  1731         targetType = target->signature()->as_C_string();
  1734     klassOop kignore; int fignore;
  1735     methodOop actual_method = MethodHandles::decode_method(actual,
  1736                                                           kignore, fignore);
  1737     if (actual_method != NULL) {
  1738       if (methodOopDesc::is_method_handle_invoke_name(actual_method->name()))
  1739         mhName = "$";
  1740       else
  1741         mhName = actual_method->signature()->as_C_string();
  1742       if (mhName[0] == '$')
  1743         mhName = actual_method->signature()->as_C_string();
  1745     message = generate_class_cast_message(mhName, targetType,
  1746                                           " cannot be called as ");
  1748   if (TraceMethodHandles) {
  1749     tty->print_cr("WrongMethodType => message=%s", message);
  1751   return message;
  1754 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
  1755                                                             oopDesc* required) {
  1756   if (required == NULL)  return NULL;
  1757   if (required->klass() == SystemDictionary::Class_klass())
  1758     return required;
  1759   if (required->is_klass())
  1760     return Klass::cast(klassOop(required))->java_mirror();
  1761   return NULL;
  1765 char* SharedRuntime::generate_class_cast_message(
  1766     const char* objName, const char* targetKlassName, const char* desc) {
  1767   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1769   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1770   if (NULL == message) {
  1771     // Shouldn't happen, but don't cause even more problems if it does
  1772     message = const_cast<char*>(objName);
  1773   } else {
  1774     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1776   return message;
  1779 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1780   (void) JavaThread::current()->reguard_stack();
  1781 JRT_END
  1784 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1785 #ifndef PRODUCT
  1786 int SharedRuntime::_monitor_enter_ctr=0;
  1787 #endif
  1788 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1789   oop obj(_obj);
  1790 #ifndef PRODUCT
  1791   _monitor_enter_ctr++;             // monitor enter slow
  1792 #endif
  1793   if (PrintBiasedLockingStatistics) {
  1794     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1796   Handle h_obj(THREAD, obj);
  1797   if (UseBiasedLocking) {
  1798     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1799     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1800   } else {
  1801     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1803   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1804 JRT_END
  1806 #ifndef PRODUCT
  1807 int SharedRuntime::_monitor_exit_ctr=0;
  1808 #endif
  1809 // Handles the uncommon cases of monitor unlocking in compiled code
  1810 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1811    oop obj(_obj);
  1812 #ifndef PRODUCT
  1813   _monitor_exit_ctr++;              // monitor exit slow
  1814 #endif
  1815   Thread* THREAD = JavaThread::current();
  1816   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1817   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1818   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1819 #undef MIGHT_HAVE_PENDING
  1820 #ifdef MIGHT_HAVE_PENDING
  1821   // Save and restore any pending_exception around the exception mark.
  1822   // While the slow_exit must not throw an exception, we could come into
  1823   // this routine with one set.
  1824   oop pending_excep = NULL;
  1825   const char* pending_file;
  1826   int pending_line;
  1827   if (HAS_PENDING_EXCEPTION) {
  1828     pending_excep = PENDING_EXCEPTION;
  1829     pending_file  = THREAD->exception_file();
  1830     pending_line  = THREAD->exception_line();
  1831     CLEAR_PENDING_EXCEPTION;
  1833 #endif /* MIGHT_HAVE_PENDING */
  1836     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1837     EXCEPTION_MARK;
  1838     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1841 #ifdef MIGHT_HAVE_PENDING
  1842   if (pending_excep != NULL) {
  1843     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1845 #endif /* MIGHT_HAVE_PENDING */
  1846 JRT_END
  1848 #ifndef PRODUCT
  1850 void SharedRuntime::print_statistics() {
  1851   ttyLocker ttyl;
  1852   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1854   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1855   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1856   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1858   SharedRuntime::print_ic_miss_histogram();
  1860   if (CountRemovableExceptions) {
  1861     if (_nof_removable_exceptions > 0) {
  1862       Unimplemented(); // this counter is not yet incremented
  1863       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1867   // Dump the JRT_ENTRY counters
  1868   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1869   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1870   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1871   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1872   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1873   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1874   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1876   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1877   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1878   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1879   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1880   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1882   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1883   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1884   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1885   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1886   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1887   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1888   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1889   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1890   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1891   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1892   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1893   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1894   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1895   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1896   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1897   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1899   AdapterHandlerLibrary::print_statistics();
  1901   if (xtty != NULL)  xtty->tail("statistics");
  1904 inline double percent(int x, int y) {
  1905   return 100.0 * x / MAX2(y, 1);
  1908 class MethodArityHistogram {
  1909  public:
  1910   enum { MAX_ARITY = 256 };
  1911  private:
  1912   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1913   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1914   static int _max_arity;                      // max. arity seen
  1915   static int _max_size;                       // max. arg size seen
  1917   static void add_method_to_histogram(nmethod* nm) {
  1918     methodOop m = nm->method();
  1919     ArgumentCount args(m->signature());
  1920     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1921     int argsize = m->size_of_parameters();
  1922     arity   = MIN2(arity, MAX_ARITY-1);
  1923     argsize = MIN2(argsize, MAX_ARITY-1);
  1924     int count = nm->method()->compiled_invocation_count();
  1925     _arity_histogram[arity]  += count;
  1926     _size_histogram[argsize] += count;
  1927     _max_arity = MAX2(_max_arity, arity);
  1928     _max_size  = MAX2(_max_size, argsize);
  1931   void print_histogram_helper(int n, int* histo, const char* name) {
  1932     const int N = MIN2(5, n);
  1933     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1934     double sum = 0;
  1935     double weighted_sum = 0;
  1936     int i;
  1937     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  1938     double rest = sum;
  1939     double percent = sum / 100;
  1940     for (i = 0; i <= N; i++) {
  1941       rest -= histo[i];
  1942       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  1944     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  1945     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  1948   void print_histogram() {
  1949     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1950     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  1951     tty->print_cr("\nSame for parameter size (in words):");
  1952     print_histogram_helper(_max_size, _size_histogram, "size");
  1953     tty->cr();
  1956  public:
  1957   MethodArityHistogram() {
  1958     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1959     _max_arity = _max_size = 0;
  1960     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  1961     CodeCache::nmethods_do(add_method_to_histogram);
  1962     print_histogram();
  1964 };
  1966 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  1967 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  1968 int MethodArityHistogram::_max_arity;
  1969 int MethodArityHistogram::_max_size;
  1971 void SharedRuntime::print_call_statistics(int comp_total) {
  1972   tty->print_cr("Calls from compiled code:");
  1973   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  1974   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  1975   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  1976   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  1977   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  1978   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  1979   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  1980   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  1981   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  1982   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  1983   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  1984   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  1985   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  1986   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  1987   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  1988   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  1989   tty->cr();
  1990   tty->print_cr("Note 1: counter updates are not MT-safe.");
  1991   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  1992   tty->print_cr("        %% in nested categories are relative to their category");
  1993   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  1994   tty->cr();
  1996   MethodArityHistogram h;
  1998 #endif
  2001 // A simple wrapper class around the calling convention information
  2002 // that allows sharing of adapters for the same calling convention.
  2003 class AdapterFingerPrint : public CHeapObj {
  2004  private:
  2005   union {
  2006     int  _compact[3];
  2007     int* _fingerprint;
  2008   } _value;
  2009   int _length; // A negative length indicates the fingerprint is in the compact form,
  2010                // Otherwise _value._fingerprint is the array.
  2012   // Remap BasicTypes that are handled equivalently by the adapters.
  2013   // These are correct for the current system but someday it might be
  2014   // necessary to make this mapping platform dependent.
  2015   static BasicType adapter_encoding(BasicType in) {
  2016     assert((~0xf & in) == 0, "must fit in 4 bits");
  2017     switch(in) {
  2018       case T_BOOLEAN:
  2019       case T_BYTE:
  2020       case T_SHORT:
  2021       case T_CHAR:
  2022         // There are all promoted to T_INT in the calling convention
  2023         return T_INT;
  2025       case T_OBJECT:
  2026       case T_ARRAY:
  2027 #ifdef _LP64
  2028         return T_LONG;
  2029 #else
  2030         return T_INT;
  2031 #endif
  2033       case T_INT:
  2034       case T_LONG:
  2035       case T_FLOAT:
  2036       case T_DOUBLE:
  2037       case T_VOID:
  2038         return in;
  2040       default:
  2041         ShouldNotReachHere();
  2042         return T_CONFLICT;
  2046  public:
  2047   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2048     // The fingerprint is based on the BasicType signature encoded
  2049     // into an array of ints with four entries per int.
  2050     int* ptr;
  2051     int len = (total_args_passed + 3) >> 2;
  2052     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
  2053       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2054       // Storing the signature encoded as signed chars hits about 98%
  2055       // of the time.
  2056       _length = -len;
  2057       ptr = _value._compact;
  2058     } else {
  2059       _length = len;
  2060       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
  2061       ptr = _value._fingerprint;
  2064     // Now pack the BasicTypes with 4 per int
  2065     int sig_index = 0;
  2066     for (int index = 0; index < len; index++) {
  2067       int value = 0;
  2068       for (int byte = 0; byte < 4; byte++) {
  2069         if (sig_index < total_args_passed) {
  2070           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
  2073       ptr[index] = value;
  2077   ~AdapterFingerPrint() {
  2078     if (_length > 0) {
  2079       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
  2083   int value(int index) {
  2084     if (_length < 0) {
  2085       return _value._compact[index];
  2087     return _value._fingerprint[index];
  2089   int length() {
  2090     if (_length < 0) return -_length;
  2091     return _length;
  2094   bool is_compact() {
  2095     return _length <= 0;
  2098   unsigned int compute_hash() {
  2099     int hash = 0;
  2100     for (int i = 0; i < length(); i++) {
  2101       int v = value(i);
  2102       hash = (hash << 8) ^ v ^ (hash >> 5);
  2104     return (unsigned int)hash;
  2107   const char* as_string() {
  2108     stringStream st;
  2109     for (int i = 0; i < length(); i++) {
  2110       st.print(PTR_FORMAT, value(i));
  2112     return st.as_string();
  2115   bool equals(AdapterFingerPrint* other) {
  2116     if (other->_length != _length) {
  2117       return false;
  2119     if (_length < 0) {
  2120       return _value._compact[0] == other->_value._compact[0] &&
  2121              _value._compact[1] == other->_value._compact[1] &&
  2122              _value._compact[2] == other->_value._compact[2];
  2123     } else {
  2124       for (int i = 0; i < _length; i++) {
  2125         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2126           return false;
  2130     return true;
  2132 };
  2135 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2136 class AdapterHandlerTable : public BasicHashtable {
  2137   friend class AdapterHandlerTableIterator;
  2139  private:
  2141 #ifndef PRODUCT
  2142   static int _lookups; // number of calls to lookup
  2143   static int _buckets; // number of buckets checked
  2144   static int _equals;  // number of buckets checked with matching hash
  2145   static int _hits;    // number of successful lookups
  2146   static int _compact; // number of equals calls with compact signature
  2147 #endif
  2149   AdapterHandlerEntry* bucket(int i) {
  2150     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
  2153  public:
  2154   AdapterHandlerTable()
  2155     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
  2157   // Create a new entry suitable for insertion in the table
  2158   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2159     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
  2160     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2161     return entry;
  2164   // Insert an entry into the table
  2165   void add(AdapterHandlerEntry* entry) {
  2166     int index = hash_to_index(entry->hash());
  2167     add_entry(index, entry);
  2170   void free_entry(AdapterHandlerEntry* entry) {
  2171     entry->deallocate();
  2172     BasicHashtable::free_entry(entry);
  2175   // Find a entry with the same fingerprint if it exists
  2176   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2177     NOT_PRODUCT(_lookups++);
  2178     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2179     unsigned int hash = fp.compute_hash();
  2180     int index = hash_to_index(hash);
  2181     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2182       NOT_PRODUCT(_buckets++);
  2183       if (e->hash() == hash) {
  2184         NOT_PRODUCT(_equals++);
  2185         if (fp.equals(e->fingerprint())) {
  2186 #ifndef PRODUCT
  2187           if (fp.is_compact()) _compact++;
  2188           _hits++;
  2189 #endif
  2190           return e;
  2194     return NULL;
  2197 #ifndef PRODUCT
  2198   void print_statistics() {
  2199     ResourceMark rm;
  2200     int longest = 0;
  2201     int empty = 0;
  2202     int total = 0;
  2203     int nonempty = 0;
  2204     for (int index = 0; index < table_size(); index++) {
  2205       int count = 0;
  2206       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2207         count++;
  2209       if (count != 0) nonempty++;
  2210       if (count == 0) empty++;
  2211       if (count > longest) longest = count;
  2212       total += count;
  2214     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2215                   empty, longest, total, total / (double)nonempty);
  2216     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2217                   _lookups, _buckets, _equals, _hits, _compact);
  2219 #endif
  2220 };
  2223 #ifndef PRODUCT
  2225 int AdapterHandlerTable::_lookups;
  2226 int AdapterHandlerTable::_buckets;
  2227 int AdapterHandlerTable::_equals;
  2228 int AdapterHandlerTable::_hits;
  2229 int AdapterHandlerTable::_compact;
  2231 #endif
  2233 class AdapterHandlerTableIterator : public StackObj {
  2234  private:
  2235   AdapterHandlerTable* _table;
  2236   int _index;
  2237   AdapterHandlerEntry* _current;
  2239   void scan() {
  2240     while (_index < _table->table_size()) {
  2241       AdapterHandlerEntry* a = _table->bucket(_index);
  2242       _index++;
  2243       if (a != NULL) {
  2244         _current = a;
  2245         return;
  2250  public:
  2251   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2252     scan();
  2254   bool has_next() {
  2255     return _current != NULL;
  2257   AdapterHandlerEntry* next() {
  2258     if (_current != NULL) {
  2259       AdapterHandlerEntry* result = _current;
  2260       _current = _current->next();
  2261       if (_current == NULL) scan();
  2262       return result;
  2263     } else {
  2264       return NULL;
  2267 };
  2270 // ---------------------------------------------------------------------------
  2271 // Implementation of AdapterHandlerLibrary
  2272 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2273 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2274 const int AdapterHandlerLibrary_size = 16*K;
  2275 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2277 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2278   // Should be called only when AdapterHandlerLibrary_lock is active.
  2279   if (_buffer == NULL) // Initialize lazily
  2280       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2281   return _buffer;
  2284 void AdapterHandlerLibrary::initialize() {
  2285   if (_adapters != NULL) return;
  2286   _adapters = new AdapterHandlerTable();
  2288   // Create a special handler for abstract methods.  Abstract methods
  2289   // are never compiled so an i2c entry is somewhat meaningless, but
  2290   // fill it in with something appropriate just in case.  Pass handle
  2291   // wrong method for the c2i transitions.
  2292   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  2293   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2294                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2295                                                               wrong_method, wrong_method);
  2298 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2299                                                       address i2c_entry,
  2300                                                       address c2i_entry,
  2301                                                       address c2i_unverified_entry) {
  2302   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2305 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2306   // Use customized signature handler.  Need to lock around updates to
  2307   // the AdapterHandlerTable (it is not safe for concurrent readers
  2308   // and a single writer: this could be fixed if it becomes a
  2309   // problem).
  2311   // Get the address of the ic_miss handlers before we grab the
  2312   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2313   // was caused by the initialization of the stubs happening
  2314   // while we held the lock and then notifying jvmti while
  2315   // holding it. This just forces the initialization to be a little
  2316   // earlier.
  2317   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2318   assert(ic_miss != NULL, "must have handler");
  2320   ResourceMark rm;
  2322   NOT_PRODUCT(int insts_size);
  2323   AdapterBlob* B = NULL;
  2324   AdapterHandlerEntry* entry = NULL;
  2325   AdapterFingerPrint* fingerprint = NULL;
  2327     MutexLocker mu(AdapterHandlerLibrary_lock);
  2328     // make sure data structure is initialized
  2329     initialize();
  2331     if (method->is_abstract()) {
  2332       return _abstract_method_handler;
  2335     // Fill in the signature array, for the calling-convention call.
  2336     int total_args_passed = method->size_of_parameters(); // All args on stack
  2338     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2339     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2340     int i = 0;
  2341     if (!method->is_static())  // Pass in receiver first
  2342       sig_bt[i++] = T_OBJECT;
  2343     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2344       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2345       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2346         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2348     assert(i == total_args_passed, "");
  2350     // Lookup method signature's fingerprint
  2351     entry = _adapters->lookup(total_args_passed, sig_bt);
  2353 #ifdef ASSERT
  2354     AdapterHandlerEntry* shared_entry = NULL;
  2355     if (VerifyAdapterSharing && entry != NULL) {
  2356       shared_entry = entry;
  2357       entry = NULL;
  2359 #endif
  2361     if (entry != NULL) {
  2362       return entry;
  2365     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2366     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2368     // Make a C heap allocated version of the fingerprint to store in the adapter
  2369     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2371     // Create I2C & C2I handlers
  2373     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2374     if (buf != NULL) {
  2375       CodeBuffer buffer(buf);
  2376       short buffer_locs[20];
  2377       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2378                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2379       MacroAssembler _masm(&buffer);
  2381       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2382                                                      total_args_passed,
  2383                                                      comp_args_on_stack,
  2384                                                      sig_bt,
  2385                                                      regs,
  2386                                                      fingerprint);
  2388 #ifdef ASSERT
  2389       if (VerifyAdapterSharing) {
  2390         if (shared_entry != NULL) {
  2391           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
  2392                  "code must match");
  2393           // Release the one just created and return the original
  2394           _adapters->free_entry(entry);
  2395           return shared_entry;
  2396         } else  {
  2397           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
  2400 #endif
  2402       B = AdapterBlob::create(&buffer);
  2403       NOT_PRODUCT(insts_size = buffer.insts_size());
  2405     if (B == NULL) {
  2406       // CodeCache is full, disable compilation
  2407       // Ought to log this but compile log is only per compile thread
  2408       // and we're some non descript Java thread.
  2409       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2410       CompileBroker::handle_full_code_cache();
  2411       return NULL; // Out of CodeCache space
  2413     entry->relocate(B->content_begin());
  2414 #ifndef PRODUCT
  2415     // debugging suppport
  2416     if (PrintAdapterHandlers) {
  2417       tty->cr();
  2418       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
  2419                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2420                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
  2421       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2422       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
  2424 #endif
  2426     _adapters->add(entry);
  2428   // Outside of the lock
  2429   if (B != NULL) {
  2430     char blob_id[256];
  2431     jio_snprintf(blob_id,
  2432                  sizeof(blob_id),
  2433                  "%s(%s)@" PTR_FORMAT,
  2434                  B->name(),
  2435                  fingerprint->as_string(),
  2436                  B->content_begin());
  2437     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
  2439     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2440       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
  2443   return entry;
  2446 void AdapterHandlerEntry::relocate(address new_base) {
  2447     ptrdiff_t delta = new_base - _i2c_entry;
  2448     _i2c_entry += delta;
  2449     _c2i_entry += delta;
  2450     _c2i_unverified_entry += delta;
  2454 void AdapterHandlerEntry::deallocate() {
  2455   delete _fingerprint;
  2456 #ifdef ASSERT
  2457   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
  2458   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
  2459 #endif
  2463 #ifdef ASSERT
  2464 // Capture the code before relocation so that it can be compared
  2465 // against other versions.  If the code is captured after relocation
  2466 // then relative instructions won't be equivalent.
  2467 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2468   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
  2469   _code_length = length;
  2470   memcpy(_saved_code, buffer, length);
  2471   _total_args_passed = total_args_passed;
  2472   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
  2473   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
  2477 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2478   if (length != _code_length) {
  2479     return false;
  2481   for (int i = 0; i < length; i++) {
  2482     if (buffer[i] != _saved_code[i]) {
  2483       return false;
  2486   return true;
  2488 #endif
  2491 // Create a native wrapper for this native method.  The wrapper converts the
  2492 // java compiled calling convention to the native convention, handlizes
  2493 // arguments, and transitions to native.  On return from the native we transition
  2494 // back to java blocking if a safepoint is in progress.
  2495 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
  2496   ResourceMark rm;
  2497   nmethod* nm = NULL;
  2499   if (PrintCompilation) {
  2500     ttyLocker ttyl;
  2501     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
  2502     method->print_short_name(tty);
  2503     if (method->is_static()) {
  2504       tty->print(" (static)");
  2506     tty->cr();
  2509   assert(method->has_native_function(), "must have something valid to call!");
  2512     // perform the work while holding the lock, but perform any printing outside the lock
  2513     MutexLocker mu(AdapterHandlerLibrary_lock);
  2514     // See if somebody beat us to it
  2515     nm = method->code();
  2516     if (nm) {
  2517       return nm;
  2520     ResourceMark rm;
  2522     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2523     if (buf != NULL) {
  2524       CodeBuffer buffer(buf);
  2525       double locs_buf[20];
  2526       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2527       MacroAssembler _masm(&buffer);
  2529       // Fill in the signature array, for the calling-convention call.
  2530       int total_args_passed = method->size_of_parameters();
  2532       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  2533       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
  2534       int i=0;
  2535       if( !method->is_static() )  // Pass in receiver first
  2536         sig_bt[i++] = T_OBJECT;
  2537       SignatureStream ss(method->signature());
  2538       for( ; !ss.at_return_type(); ss.next()) {
  2539         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2540         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2541           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2543       assert( i==total_args_passed, "" );
  2544       BasicType ret_type = ss.type();
  2546       // Now get the compiled-Java layout as input arguments
  2547       int comp_args_on_stack;
  2548       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2550       // Generate the compiled-to-native wrapper code
  2551       nm = SharedRuntime::generate_native_wrapper(&_masm,
  2552                                                   method,
  2553                                                   total_args_passed,
  2554                                                   comp_args_on_stack,
  2555                                                   sig_bt,regs,
  2556                                                   ret_type);
  2560   // Must unlock before calling set_code
  2562   // Install the generated code.
  2563   if (nm != NULL) {
  2564     method->set_code(method, nm);
  2565     nm->post_compiled_method_load_event();
  2566   } else {
  2567     // CodeCache is full, disable compilation
  2568     CompileBroker::handle_full_code_cache();
  2570   return nm;
  2573 #ifdef HAVE_DTRACE_H
  2574 // Create a dtrace nmethod for this method.  The wrapper converts the
  2575 // java compiled calling convention to the native convention, makes a dummy call
  2576 // (actually nops for the size of the call instruction, which become a trap if
  2577 // probe is enabled). The returns to the caller. Since this all looks like a
  2578 // leaf no thread transition is needed.
  2580 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2581   ResourceMark rm;
  2582   nmethod* nm = NULL;
  2584   if (PrintCompilation) {
  2585     ttyLocker ttyl;
  2586     tty->print("---   n%s  ");
  2587     method->print_short_name(tty);
  2588     if (method->is_static()) {
  2589       tty->print(" (static)");
  2591     tty->cr();
  2595     // perform the work while holding the lock, but perform any printing
  2596     // outside the lock
  2597     MutexLocker mu(AdapterHandlerLibrary_lock);
  2598     // See if somebody beat us to it
  2599     nm = method->code();
  2600     if (nm) {
  2601       return nm;
  2604     ResourceMark rm;
  2606     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2607     if (buf != NULL) {
  2608       CodeBuffer buffer(buf);
  2609       // Need a few relocation entries
  2610       double locs_buf[20];
  2611       buffer.insts()->initialize_shared_locs(
  2612         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2613       MacroAssembler _masm(&buffer);
  2615       // Generate the compiled-to-native wrapper code
  2616       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2619   return nm;
  2622 // the dtrace method needs to convert java lang string to utf8 string.
  2623 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2624   typeArrayOop jlsValue  = java_lang_String::value(src);
  2625   int          jlsOffset = java_lang_String::offset(src);
  2626   int          jlsLen    = java_lang_String::length(src);
  2627   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2628                                            jlsValue->char_at_addr(jlsOffset);
  2629   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2630   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2632 #endif // ndef HAVE_DTRACE_H
  2634 // -------------------------------------------------------------------------
  2635 // Java-Java calling convention
  2636 // (what you use when Java calls Java)
  2638 //------------------------------name_for_receiver----------------------------------
  2639 // For a given signature, return the VMReg for parameter 0.
  2640 VMReg SharedRuntime::name_for_receiver() {
  2641   VMRegPair regs;
  2642   BasicType sig_bt = T_OBJECT;
  2643   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2644   // Return argument 0 register.  In the LP64 build pointers
  2645   // take 2 registers, but the VM wants only the 'main' name.
  2646   return regs.first();
  2649 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
  2650   // This method is returning a data structure allocating as a
  2651   // ResourceObject, so do not put any ResourceMarks in here.
  2652   char *s = sig->as_C_string();
  2653   int len = (int)strlen(s);
  2654   *s++; len--;                  // Skip opening paren
  2655   char *t = s+len;
  2656   while( *(--t) != ')' ) ;      // Find close paren
  2658   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2659   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2660   int cnt = 0;
  2661   if (has_receiver) {
  2662     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2665   while( s < t ) {
  2666     switch( *s++ ) {            // Switch on signature character
  2667     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2668     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2669     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2670     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2671     case 'I': sig_bt[cnt++] = T_INT;     break;
  2672     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2673     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2674     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2675     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2676     case 'L':                   // Oop
  2677       while( *s++ != ';'  ) ;   // Skip signature
  2678       sig_bt[cnt++] = T_OBJECT;
  2679       break;
  2680     case '[': {                 // Array
  2681       do {                      // Skip optional size
  2682         while( *s >= '0' && *s <= '9' ) s++;
  2683       } while( *s++ == '[' );   // Nested arrays?
  2684       // Skip element type
  2685       if( s[-1] == 'L' )
  2686         while( *s++ != ';'  ) ; // Skip signature
  2687       sig_bt[cnt++] = T_ARRAY;
  2688       break;
  2690     default : ShouldNotReachHere();
  2693   assert( cnt < 256, "grow table size" );
  2695   int comp_args_on_stack;
  2696   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2698   // the calling convention doesn't count out_preserve_stack_slots so
  2699   // we must add that in to get "true" stack offsets.
  2701   if (comp_args_on_stack) {
  2702     for (int i = 0; i < cnt; i++) {
  2703       VMReg reg1 = regs[i].first();
  2704       if( reg1->is_stack()) {
  2705         // Yuck
  2706         reg1 = reg1->bias(out_preserve_stack_slots());
  2708       VMReg reg2 = regs[i].second();
  2709       if( reg2->is_stack()) {
  2710         // Yuck
  2711         reg2 = reg2->bias(out_preserve_stack_slots());
  2713       regs[i].set_pair(reg2, reg1);
  2717   // results
  2718   *arg_size = cnt;
  2719   return regs;
  2722 // OSR Migration Code
  2723 //
  2724 // This code is used convert interpreter frames into compiled frames.  It is
  2725 // called from very start of a compiled OSR nmethod.  A temp array is
  2726 // allocated to hold the interesting bits of the interpreter frame.  All
  2727 // active locks are inflated to allow them to move.  The displaced headers and
  2728 // active interpeter locals are copied into the temp buffer.  Then we return
  2729 // back to the compiled code.  The compiled code then pops the current
  2730 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2731 // copies the interpreter locals and displaced headers where it wants.
  2732 // Finally it calls back to free the temp buffer.
  2733 //
  2734 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2736 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2738 #ifdef IA64
  2739   ShouldNotReachHere(); // NYI
  2740 #endif /* IA64 */
  2742   //
  2743   // This code is dependent on the memory layout of the interpreter local
  2744   // array and the monitors. On all of our platforms the layout is identical
  2745   // so this code is shared. If some platform lays the their arrays out
  2746   // differently then this code could move to platform specific code or
  2747   // the code here could be modified to copy items one at a time using
  2748   // frame accessor methods and be platform independent.
  2750   frame fr = thread->last_frame();
  2751   assert( fr.is_interpreted_frame(), "" );
  2752   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2754   // Figure out how many monitors are active.
  2755   int active_monitor_count = 0;
  2756   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2757        kptr < fr.interpreter_frame_monitor_begin();
  2758        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2759     if( kptr->obj() != NULL ) active_monitor_count++;
  2762   // QQQ we could place number of active monitors in the array so that compiled code
  2763   // could double check it.
  2765   methodOop moop = fr.interpreter_frame_method();
  2766   int max_locals = moop->max_locals();
  2767   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2768   int buf_size_words = max_locals + active_monitor_count*2;
  2769   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
  2771   // Copy the locals.  Order is preserved so that loading of longs works.
  2772   // Since there's no GC I can copy the oops blindly.
  2773   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2774   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2775                        (HeapWord*)&buf[0],
  2776                        max_locals);
  2778   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2779   int i = max_locals;
  2780   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2781        kptr2 < fr.interpreter_frame_monitor_begin();
  2782        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2783     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2784       BasicLock *lock = kptr2->lock();
  2785       // Inflate so the displaced header becomes position-independent
  2786       if (lock->displaced_header()->is_unlocked())
  2787         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2788       // Now the displaced header is free to move
  2789       buf[i++] = (intptr_t)lock->displaced_header();
  2790       buf[i++] = (intptr_t)kptr2->obj();
  2793   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2795   return buf;
  2796 JRT_END
  2798 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2799   FREE_C_HEAP_ARRAY(intptr_t,buf);
  2800 JRT_END
  2802 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2803   AdapterHandlerTableIterator iter(_adapters);
  2804   while (iter.has_next()) {
  2805     AdapterHandlerEntry* a = iter.next();
  2806     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2808   return false;
  2811 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  2812   AdapterHandlerTableIterator iter(_adapters);
  2813   while (iter.has_next()) {
  2814     AdapterHandlerEntry* a = iter.next();
  2815     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
  2816       st->print("Adapter for signature: ");
  2817       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2818                    a->fingerprint()->as_string(),
  2819                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
  2821       return;
  2824   assert(false, "Should have found handler");
  2827 #ifndef PRODUCT
  2829 void AdapterHandlerLibrary::print_statistics() {
  2830   _adapters->print_statistics();
  2833 #endif /* PRODUCT */

mercurial