src/share/vm/interpreter/bytecodeInterpreter.cpp

Fri, 30 Apr 2010 08:37:24 -0700

author
twisti
date
Fri, 30 Apr 2010 08:37:24 -0700
changeset 1861
2338d41fbd81
parent 1782
f61d795ce6de
child 1864
68d6683eaef7
permissions
-rw-r--r--

6943304: remove tagged stack interpreter
Reviewed-by: coleenp, never, gbenson

     1 /*
     2  * Copyright 2002-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    26 // no precompiled headers
    27 #include "incls/_bytecodeInterpreter.cpp.incl"
    29 #ifdef CC_INTERP
    31 /*
    32  * USELABELS - If using GCC, then use labels for the opcode dispatching
    33  * rather -then a switch statement. This improves performance because it
    34  * gives us the oportunity to have the instructions that calculate the
    35  * next opcode to jump to be intermixed with the rest of the instructions
    36  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
    37  */
    38 #undef USELABELS
    39 #ifdef __GNUC__
    40 /*
    41    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
    42    don't use the computed goto approach.
    43 */
    44 #ifndef ASSERT
    45 #define USELABELS
    46 #endif
    47 #endif
    49 #undef CASE
    50 #ifdef USELABELS
    51 #define CASE(opcode) opc ## opcode
    52 #define DEFAULT opc_default
    53 #else
    54 #define CASE(opcode) case Bytecodes:: opcode
    55 #define DEFAULT default
    56 #endif
    58 /*
    59  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
    60  * opcode before going back to the top of the while loop, rather then having
    61  * the top of the while loop handle it. This provides a better opportunity
    62  * for instruction scheduling. Some compilers just do this prefetch
    63  * automatically. Some actually end up with worse performance if you
    64  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
    65  */
    66 #undef PREFETCH_OPCCODE
    67 #define PREFETCH_OPCCODE
    69 /*
    70   Interpreter safepoint: it is expected that the interpreter will have no live
    71   handles of its own creation live at an interpreter safepoint. Therefore we
    72   run a HandleMarkCleaner and trash all handles allocated in the call chain
    73   since the JavaCalls::call_helper invocation that initiated the chain.
    74   There really shouldn't be any handles remaining to trash but this is cheap
    75   in relation to a safepoint.
    76 */
    77 #define SAFEPOINT                                                                 \
    78     if ( SafepointSynchronize::is_synchronizing()) {                              \
    79         {                                                                         \
    80           /* zap freed handles rather than GC'ing them */                         \
    81           HandleMarkCleaner __hmc(THREAD);                                        \
    82         }                                                                         \
    83         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
    84     }
    86 /*
    87  * VM_JAVA_ERROR - Macro for throwing a java exception from
    88  * the interpreter loop. Should really be a CALL_VM but there
    89  * is no entry point to do the transition to vm so we just
    90  * do it by hand here.
    91  */
    92 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
    93     DECACHE_STATE();                                                              \
    94     SET_LAST_JAVA_FRAME();                                                        \
    95     {                                                                             \
    96        ThreadInVMfromJava trans(THREAD);                                          \
    97        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
    98     }                                                                             \
    99     RESET_LAST_JAVA_FRAME();                                                      \
   100     CACHE_STATE();
   102 // Normal throw of a java error
   103 #define VM_JAVA_ERROR(name, msg)                                                  \
   104     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
   105     goto handle_exception;
   107 #ifdef PRODUCT
   108 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
   109 #else
   110 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
   111 {                                                                                                    \
   112     BytecodeCounter::_counter_value++;                                                               \
   113     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
   114     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
   115     if (TraceBytecodes) {                                                                            \
   116       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
   117                                    topOfStack[Interpreter::expr_index_at(1)],   \
   118                                    topOfStack[Interpreter::expr_index_at(2)]),  \
   119                                    handle_exception);                      \
   120     }                                                                      \
   121 }
   122 #endif
   124 #undef DEBUGGER_SINGLE_STEP_NOTIFY
   125 #ifdef VM_JVMTI
   126 /* NOTE: (kbr) This macro must be called AFTER the PC has been
   127    incremented. JvmtiExport::at_single_stepping_point() may cause a
   128    breakpoint opcode to get inserted at the current PC to allow the
   129    debugger to coalesce single-step events.
   131    As a result if we call at_single_stepping_point() we refetch opcode
   132    to get the current opcode. This will override any other prefetching
   133    that might have occurred.
   134 */
   135 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
   136 {                                                                                \
   137       if (_jvmti_interp_events) {                                                \
   138         if (JvmtiExport::should_post_single_step()) {                            \
   139           DECACHE_STATE();                                                       \
   140           SET_LAST_JAVA_FRAME();                                                 \
   141           ThreadInVMfromJava trans(THREAD);                                      \
   142           JvmtiExport::at_single_stepping_point(THREAD,                          \
   143                                           istate->method(),                      \
   144                                           pc);                                   \
   145           RESET_LAST_JAVA_FRAME();                                               \
   146           CACHE_STATE();                                                         \
   147           if (THREAD->pop_frame_pending() &&                                     \
   148               !THREAD->pop_frame_in_process()) {                                 \
   149             goto handle_Pop_Frame;                                               \
   150           }                                                                      \
   151           opcode = *pc;                                                          \
   152         }                                                                        \
   153       }                                                                          \
   154 }
   155 #else
   156 #define DEBUGGER_SINGLE_STEP_NOTIFY()
   157 #endif
   159 /*
   160  * CONTINUE - Macro for executing the next opcode.
   161  */
   162 #undef CONTINUE
   163 #ifdef USELABELS
   164 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
   165 // initialization (which is is the initialization of the table pointer...)
   166 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
   167 #define CONTINUE {                              \
   168         opcode = *pc;                           \
   169         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   170         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   171         DISPATCH(opcode);                       \
   172     }
   173 #else
   174 #ifdef PREFETCH_OPCCODE
   175 #define CONTINUE {                              \
   176         opcode = *pc;                           \
   177         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   178         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   179         continue;                               \
   180     }
   181 #else
   182 #define CONTINUE {                              \
   183         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   184         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   185         continue;                               \
   186     }
   187 #endif
   188 #endif
   190 // JavaStack Implementation
   191 #define MORE_STACK(count)  \
   192     (topOfStack -= ((count) * Interpreter::stackElementWords()))
   195 #define UPDATE_PC(opsize) {pc += opsize; }
   196 /*
   197  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
   198  */
   199 #undef UPDATE_PC_AND_TOS
   200 #define UPDATE_PC_AND_TOS(opsize, stack) \
   201     {pc += opsize; MORE_STACK(stack); }
   203 /*
   204  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
   205  * and executing the next opcode. It's somewhat similar to the combination
   206  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
   207  */
   208 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
   209 #ifdef USELABELS
   210 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   211         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   212         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   213         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   214         DISPATCH(opcode);                                       \
   215     }
   217 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   218         pc += opsize; opcode = *pc;                             \
   219         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   220         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   221         DISPATCH(opcode);                                       \
   222     }
   223 #else
   224 #ifdef PREFETCH_OPCCODE
   225 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   226         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   227         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   228         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   229         goto do_continue;                                       \
   230     }
   232 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   233         pc += opsize; opcode = *pc;                             \
   234         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   235         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   236         goto do_continue;                                       \
   237     }
   238 #else
   239 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
   240         pc += opsize; MORE_STACK(stack);                \
   241         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   242         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   243         goto do_continue;                               \
   244     }
   246 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
   247         pc += opsize;                                   \
   248         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   249         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   250         goto do_continue;                               \
   251     }
   252 #endif /* PREFETCH_OPCCODE */
   253 #endif /* USELABELS */
   255 // About to call a new method, update the save the adjusted pc and return to frame manager
   256 #define UPDATE_PC_AND_RETURN(opsize)  \
   257    DECACHE_TOS();                     \
   258    istate->set_bcp(pc+opsize);        \
   259    return;
   262 #define METHOD istate->method()
   263 #define INVOCATION_COUNT METHOD->invocation_counter()
   264 #define BACKEDGE_COUNT METHOD->backedge_counter()
   267 #define INCR_INVOCATION_COUNT INVOCATION_COUNT->increment()
   268 #define OSR_REQUEST(res, branch_pc) \
   269             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
   270 /*
   271  * For those opcodes that need to have a GC point on a backwards branch
   272  */
   274 // Backedge counting is kind of strange. The asm interpreter will increment
   275 // the backedge counter as a separate counter but it does it's comparisons
   276 // to the sum (scaled) of invocation counter and backedge count to make
   277 // a decision. Seems kind of odd to sum them together like that
   279 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
   282 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
   283     if ((skip) <= 0) {                                                                              \
   284       if (UseLoopCounter) {                                                                         \
   285         bool do_OSR = UseOnStackReplacement;                                                        \
   286         BACKEDGE_COUNT->increment();                                                                \
   287         if (do_OSR) do_OSR = BACKEDGE_COUNT->reached_InvocationLimit();                             \
   288         if (do_OSR) {                                                                               \
   289           nmethod*  osr_nmethod;                                                                    \
   290           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
   291           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
   292             intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
   293             istate->set_msg(do_osr);                                                                \
   294             istate->set_osr_buf((address)buf);                                                      \
   295             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
   296             return;                                                                                 \
   297           }                                                                                         \
   298         }                                                                                           \
   299       }  /* UseCompiler ... */                                                                      \
   300       INCR_INVOCATION_COUNT;                                                                        \
   301       SAFEPOINT;                                                                                    \
   302     }
   304 /*
   305  * For those opcodes that need to have a GC point on a backwards branch
   306  */
   308 /*
   309  * Macros for caching and flushing the interpreter state. Some local
   310  * variables need to be flushed out to the frame before we do certain
   311  * things (like pushing frames or becomming gc safe) and some need to
   312  * be recached later (like after popping a frame). We could use one
   313  * macro to cache or decache everything, but this would be less then
   314  * optimal because we don't always need to cache or decache everything
   315  * because some things we know are already cached or decached.
   316  */
   317 #undef DECACHE_TOS
   318 #undef CACHE_TOS
   319 #undef CACHE_PREV_TOS
   320 #define DECACHE_TOS()    istate->set_stack(topOfStack);
   322 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
   324 #undef DECACHE_PC
   325 #undef CACHE_PC
   326 #define DECACHE_PC()    istate->set_bcp(pc);
   327 #define CACHE_PC()      pc = istate->bcp();
   328 #define CACHE_CP()      cp = istate->constants();
   329 #define CACHE_LOCALS()  locals = istate->locals();
   330 #undef CACHE_FRAME
   331 #define CACHE_FRAME()
   333 /*
   334  * CHECK_NULL - Macro for throwing a NullPointerException if the object
   335  * passed is a null ref.
   336  * On some architectures/platforms it should be possible to do this implicitly
   337  */
   338 #undef CHECK_NULL
   339 #define CHECK_NULL(obj_)                                                 \
   340     if ((obj_) == NULL) {                                                \
   341         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
   342     }
   344 #define VMdoubleConstZero() 0.0
   345 #define VMdoubleConstOne() 1.0
   346 #define VMlongConstZero() (max_jlong-max_jlong)
   347 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
   349 /*
   350  * Alignment
   351  */
   352 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
   354 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
   355 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
   357 // Reload interpreter state after calling the VM or a possible GC
   358 #define CACHE_STATE()   \
   359         CACHE_TOS();    \
   360         CACHE_PC();     \
   361         CACHE_CP();     \
   362         CACHE_LOCALS();
   364 // Call the VM don't check for pending exceptions
   365 #define CALL_VM_NOCHECK(func)                                     \
   366           DECACHE_STATE();                                        \
   367           SET_LAST_JAVA_FRAME();                                  \
   368           func;                                                   \
   369           RESET_LAST_JAVA_FRAME();                                \
   370           CACHE_STATE();                                          \
   371           if (THREAD->pop_frame_pending() &&                      \
   372               !THREAD->pop_frame_in_process()) {                  \
   373             goto handle_Pop_Frame;                                \
   374           }
   376 // Call the VM and check for pending exceptions
   377 #define CALL_VM(func, label) {                                    \
   378           CALL_VM_NOCHECK(func);                                  \
   379           if (THREAD->has_pending_exception()) goto label;        \
   380         }
   382 /*
   383  * BytecodeInterpreter::run(interpreterState istate)
   384  * BytecodeInterpreter::runWithChecks(interpreterState istate)
   385  *
   386  * The real deal. This is where byte codes actually get interpreted.
   387  * Basically it's a big while loop that iterates until we return from
   388  * the method passed in.
   389  *
   390  * The runWithChecks is used if JVMTI is enabled.
   391  *
   392  */
   393 #if defined(VM_JVMTI)
   394 void
   395 BytecodeInterpreter::runWithChecks(interpreterState istate) {
   396 #else
   397 void
   398 BytecodeInterpreter::run(interpreterState istate) {
   399 #endif
   401   // In order to simplify some tests based on switches set at runtime
   402   // we invoke the interpreter a single time after switches are enabled
   403   // and set simpler to to test variables rather than method calls or complex
   404   // boolean expressions.
   406   static int initialized = 0;
   407   static int checkit = 0;
   408   static intptr_t* c_addr = NULL;
   409   static intptr_t  c_value;
   411   if (checkit && *c_addr != c_value) {
   412     os::breakpoint();
   413   }
   414 #ifdef VM_JVMTI
   415   static bool _jvmti_interp_events = 0;
   416 #endif
   418   static int _compiling;  // (UseCompiler || CountCompiledCalls)
   420 #ifdef ASSERT
   421   if (istate->_msg != initialize) {
   422     assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
   423   IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
   424   }
   425   // Verify linkages.
   426   interpreterState l = istate;
   427   do {
   428     assert(l == l->_self_link, "bad link");
   429     l = l->_prev_link;
   430   } while (l != NULL);
   431   // Screwups with stack management usually cause us to overwrite istate
   432   // save a copy so we can verify it.
   433   interpreterState orig = istate;
   434 #endif
   436   static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
   438   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
   439   register address          pc = istate->bcp();
   440   register jubyte opcode;
   441   register intptr_t*        locals = istate->locals();
   442   register constantPoolCacheOop  cp = istate->constants(); // method()->constants()->cache()
   443 #ifdef LOTS_OF_REGS
   444   register JavaThread*      THREAD = istate->thread();
   445   register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
   446 #else
   447 #undef THREAD
   448 #define THREAD istate->thread()
   449 #undef BYTE_MAP_BASE
   450 #define BYTE_MAP_BASE _byte_map_base
   451 #endif
   453 #ifdef USELABELS
   454   const static void* const opclabels_data[256] = {
   455 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
   456 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
   457 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
   458 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
   460 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
   461 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
   462 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
   463 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
   465 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
   466 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
   467 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
   468 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
   470 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
   471 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
   472 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
   473 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
   475 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
   476 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
   477 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
   478 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
   480 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
   481 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
   482 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
   483 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
   485 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
   486 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
   487 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
   488 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
   490 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
   491 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
   492 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
   493 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
   495 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
   496 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
   497 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
   498 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
   500 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
   501 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
   502 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
   503 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
   505 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
   506 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
   507 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
   508 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
   510 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
   511 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
   512 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,NULL,               &&opc_new,
   513 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
   515 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
   516 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
   517 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
   518 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   520 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   521 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   522 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   523 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   525 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   526 /* 0xE4 */ &&opc_default,     &&opc_return_register_finalizer,        &&opc_default,      &&opc_default,
   527 /* 0xE8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   528 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   530 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   531 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   532 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   533 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
   534   };
   535   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
   536 #endif /* USELABELS */
   538 #ifdef ASSERT
   539   // this will trigger a VERIFY_OOP on entry
   540   if (istate->msg() != initialize && ! METHOD->is_static()) {
   541     oop rcvr = LOCALS_OBJECT(0);
   542   }
   543 #endif
   544 // #define HACK
   545 #ifdef HACK
   546   bool interesting = false;
   547 #endif // HACK
   549   /* QQQ this should be a stack method so we don't know actual direction */
   550   assert(istate->msg() == initialize ||
   551          topOfStack >= istate->stack_limit() &&
   552          topOfStack < istate->stack_base(),
   553          "Stack top out of range");
   555   switch (istate->msg()) {
   556     case initialize: {
   557       if (initialized++) ShouldNotReachHere(); // Only one initialize call
   558       _compiling = (UseCompiler || CountCompiledCalls);
   559 #ifdef VM_JVMTI
   560       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
   561 #endif
   562       BarrierSet* bs = Universe::heap()->barrier_set();
   563       assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   564       _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
   565       return;
   566     }
   567     break;
   568     case method_entry: {
   569       THREAD->set_do_not_unlock();
   570       // count invocations
   571       assert(initialized, "Interpreter not initialized");
   572       if (_compiling) {
   573         if (ProfileInterpreter) {
   574           METHOD->increment_interpreter_invocation_count();
   575         }
   576         INCR_INVOCATION_COUNT;
   577         if (INVOCATION_COUNT->reached_InvocationLimit()) {
   578             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
   580             // We no longer retry on a counter overflow
   582             // istate->set_msg(retry_method);
   583             // THREAD->clr_do_not_unlock();
   584             // return;
   585         }
   586         SAFEPOINT;
   587       }
   589       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   590         // initialize
   591         os::breakpoint();
   592       }
   594 #ifdef HACK
   595       {
   596         ResourceMark rm;
   597         char *method_name = istate->method()->name_and_sig_as_C_string();
   598         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   599           tty->print_cr("entering: depth %d bci: %d",
   600                          (istate->_stack_base - istate->_stack),
   601                          istate->_bcp - istate->_method->code_base());
   602           interesting = true;
   603         }
   604       }
   605 #endif // HACK
   608       // lock method if synchronized
   609       if (METHOD->is_synchronized()) {
   610           // oop rcvr = locals[0].j.r;
   611           oop rcvr;
   612           if (METHOD->is_static()) {
   613             rcvr = METHOD->constants()->pool_holder()->klass_part()->java_mirror();
   614           } else {
   615             rcvr = LOCALS_OBJECT(0);
   616           }
   617           // The initial monitor is ours for the taking
   618           BasicObjectLock* mon = &istate->monitor_base()[-1];
   619           oop monobj = mon->obj();
   620           assert(mon->obj() == rcvr, "method monitor mis-initialized");
   622           bool success = UseBiasedLocking;
   623           if (UseBiasedLocking) {
   624             markOop mark = rcvr->mark();
   625             if (mark->has_bias_pattern()) {
   626               // The bias pattern is present in the object's header. Need to check
   627               // whether the bias owner and the epoch are both still current.
   628               intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
   629               xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() ^ xx;
   630               intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
   631               if (yy != 0 ) {
   632                 // At this point we know that the header has the bias pattern and
   633                 // that we are not the bias owner in the current epoch. We need to
   634                 // figure out more details about the state of the header in order to
   635                 // know what operations can be legally performed on the object's
   636                 // header.
   638                 // If the low three bits in the xor result aren't clear, that means
   639                 // the prototype header is no longer biased and we have to revoke
   640                 // the bias on this object.
   642                 if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
   643                   // Biasing is still enabled for this data type. See whether the
   644                   // epoch of the current bias is still valid, meaning that the epoch
   645                   // bits of the mark word are equal to the epoch bits of the
   646                   // prototype header. (Note that the prototype header's epoch bits
   647                   // only change at a safepoint.) If not, attempt to rebias the object
   648                   // toward the current thread. Note that we must be absolutely sure
   649                   // that the current epoch is invalid in order to do this because
   650                   // otherwise the manipulations it performs on the mark word are
   651                   // illegal.
   652                   if (yy & markOopDesc::epoch_mask_in_place == 0) {
   653                     // The epoch of the current bias is still valid but we know nothing
   654                     // about the owner; it might be set or it might be clear. Try to
   655                     // acquire the bias of the object using an atomic operation. If this
   656                     // fails we will go in to the runtime to revoke the object's bias.
   657                     // Note that we first construct the presumed unbiased header so we
   658                     // don't accidentally blow away another thread's valid bias.
   659                     intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
   660                                                            markOopDesc::age_mask_in_place |
   661                                                            markOopDesc::epoch_mask_in_place);
   662                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
   663                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   664                     }
   665                   } else {
   666                     try_rebias:
   667                     // At this point we know the epoch has expired, meaning that the
   668                     // current "bias owner", if any, is actually invalid. Under these
   669                     // circumstances _only_, we are allowed to use the current header's
   670                     // value as the comparison value when doing the cas to acquire the
   671                     // bias in the current epoch. In other words, we allow transfer of
   672                     // the bias from one thread to another directly in this situation.
   673                     xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
   674                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->klass_part()->prototype_header(),
   675                                             (intptr_t*) rcvr->mark_addr(),
   676                                             (intptr_t) mark) != (intptr_t) mark) {
   677                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   678                     }
   679                   }
   680                 } else {
   681                   try_revoke_bias:
   682                   // The prototype mark in the klass doesn't have the bias bit set any
   683                   // more, indicating that objects of this data type are not supposed
   684                   // to be biased any more. We are going to try to reset the mark of
   685                   // this object to the prototype value and fall through to the
   686                   // CAS-based locking scheme. Note that if our CAS fails, it means
   687                   // that another thread raced us for the privilege of revoking the
   688                   // bias of this particular object, so it's okay to continue in the
   689                   // normal locking code.
   690                   //
   691                   xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
   692                   if (Atomic::cmpxchg_ptr(rcvr->klass()->klass_part()->prototype_header(),
   693                                           (intptr_t*) rcvr->mark_addr(),
   694                                           mark) == mark) {
   695                     // (*counters->revoked_lock_entry_count_addr())++;
   696                   success = false;
   697                   }
   698                 }
   699               }
   700             } else {
   701               cas_label:
   702               success = false;
   703             }
   704           }
   705           if (!success) {
   706             markOop displaced = rcvr->mark()->set_unlocked();
   707             mon->lock()->set_displaced_header(displaced);
   708             if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
   709               // Is it simple recursive case?
   710               if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   711                 mon->lock()->set_displaced_header(NULL);
   712               } else {
   713                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   714               }
   715             }
   716           }
   717       }
   718       THREAD->clr_do_not_unlock();
   720       // Notify jvmti
   721 #ifdef VM_JVMTI
   722       if (_jvmti_interp_events) {
   723         // Whenever JVMTI puts a thread in interp_only_mode, method
   724         // entry/exit events are sent for that thread to track stack depth.
   725         if (THREAD->is_interp_only_mode()) {
   726           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
   727                   handle_exception);
   728         }
   729       }
   730 #endif /* VM_JVMTI */
   732       goto run;
   733     }
   735     case popping_frame: {
   736       // returned from a java call to pop the frame, restart the call
   737       // clear the message so we don't confuse ourselves later
   738       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
   739       istate->set_msg(no_request);
   740       THREAD->clr_pop_frame_in_process();
   741       goto run;
   742     }
   744     case method_resume: {
   745       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   746         // resume
   747         os::breakpoint();
   748       }
   749 #ifdef HACK
   750       {
   751         ResourceMark rm;
   752         char *method_name = istate->method()->name_and_sig_as_C_string();
   753         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   754           tty->print_cr("resume: depth %d bci: %d",
   755                          (istate->_stack_base - istate->_stack) ,
   756                          istate->_bcp - istate->_method->code_base());
   757           interesting = true;
   758         }
   759       }
   760 #endif // HACK
   761       // returned from a java call, continue executing.
   762       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
   763         goto handle_Pop_Frame;
   764       }
   766       if (THREAD->has_pending_exception()) goto handle_exception;
   767       // Update the pc by the saved amount of the invoke bytecode size
   768       UPDATE_PC(istate->bcp_advance());
   769       goto run;
   770     }
   772     case deopt_resume2: {
   773       // Returned from an opcode that will reexecute. Deopt was
   774       // a result of a PopFrame request.
   775       //
   776       goto run;
   777     }
   779     case deopt_resume: {
   780       // Returned from an opcode that has completed. The stack has
   781       // the result all we need to do is skip across the bytecode
   782       // and continue (assuming there is no exception pending)
   783       //
   784       // compute continuation length
   785       //
   786       // Note: it is possible to deopt at a return_register_finalizer opcode
   787       // because this requires entering the vm to do the registering. While the
   788       // opcode is complete we can't advance because there are no more opcodes
   789       // much like trying to deopt at a poll return. In that has we simply
   790       // get out of here
   791       //
   792       if ( Bytecodes::code_at(pc, METHOD) == Bytecodes::_return_register_finalizer) {
   793         // this will do the right thing even if an exception is pending.
   794         goto handle_return;
   795       }
   796       UPDATE_PC(Bytecodes::length_at(pc));
   797       if (THREAD->has_pending_exception()) goto handle_exception;
   798       goto run;
   799     }
   800     case got_monitors: {
   801       // continue locking now that we have a monitor to use
   802       // we expect to find newly allocated monitor at the "top" of the monitor stack.
   803       oop lockee = STACK_OBJECT(-1);
   804       // derefing's lockee ought to provoke implicit null check
   805       // find a free monitor
   806       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
   807       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
   808       entry->set_obj(lockee);
   810       markOop displaced = lockee->mark()->set_unlocked();
   811       entry->lock()->set_displaced_header(displaced);
   812       if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
   813         // Is it simple recursive case?
   814         if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   815           entry->lock()->set_displaced_header(NULL);
   816         } else {
   817           CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
   818         }
   819       }
   820       UPDATE_PC_AND_TOS(1, -1);
   821       goto run;
   822     }
   823     default: {
   824       fatal("Unexpected message from frame manager");
   825     }
   826   }
   828 run:
   830   DO_UPDATE_INSTRUCTION_COUNT(*pc)
   831   DEBUGGER_SINGLE_STEP_NOTIFY();
   832 #ifdef PREFETCH_OPCCODE
   833   opcode = *pc;  /* prefetch first opcode */
   834 #endif
   836 #ifndef USELABELS
   837   while (1)
   838 #endif
   839   {
   840 #ifndef PREFETCH_OPCCODE
   841       opcode = *pc;
   842 #endif
   843       // Seems like this happens twice per opcode. At worst this is only
   844       // need at entry to the loop.
   845       // DEBUGGER_SINGLE_STEP_NOTIFY();
   846       /* Using this labels avoids double breakpoints when quickening and
   847        * when returing from transition frames.
   848        */
   849   opcode_switch:
   850       assert(istate == orig, "Corrupted istate");
   851       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
   852       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
   853       assert(topOfStack < istate->stack_base(), "Stack underrun");
   855 #ifdef USELABELS
   856       DISPATCH(opcode);
   857 #else
   858       switch (opcode)
   859 #endif
   860       {
   861       CASE(_nop):
   862           UPDATE_PC_AND_CONTINUE(1);
   864           /* Push miscellaneous constants onto the stack. */
   866       CASE(_aconst_null):
   867           SET_STACK_OBJECT(NULL, 0);
   868           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
   870 #undef  OPC_CONST_n
   871 #define OPC_CONST_n(opcode, const_type, value)                          \
   872       CASE(opcode):                                                     \
   873           SET_STACK_ ## const_type(value, 0);                           \
   874           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
   876           OPC_CONST_n(_iconst_m1,   INT,       -1);
   877           OPC_CONST_n(_iconst_0,    INT,        0);
   878           OPC_CONST_n(_iconst_1,    INT,        1);
   879           OPC_CONST_n(_iconst_2,    INT,        2);
   880           OPC_CONST_n(_iconst_3,    INT,        3);
   881           OPC_CONST_n(_iconst_4,    INT,        4);
   882           OPC_CONST_n(_iconst_5,    INT,        5);
   883           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
   884           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
   885           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
   887 #undef  OPC_CONST2_n
   888 #define OPC_CONST2_n(opcname, value, key, kind)                         \
   889       CASE(_##opcname):                                                 \
   890       {                                                                 \
   891           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
   892           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
   893       }
   894          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
   895          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
   896          OPC_CONST2_n(lconst_0, Zero, long, LONG);
   897          OPC_CONST2_n(lconst_1, One,  long, LONG);
   899          /* Load constant from constant pool: */
   901           /* Push a 1-byte signed integer value onto the stack. */
   902       CASE(_bipush):
   903           SET_STACK_INT((jbyte)(pc[1]), 0);
   904           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   906           /* Push a 2-byte signed integer constant onto the stack. */
   907       CASE(_sipush):
   908           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
   909           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
   911           /* load from local variable */
   913       CASE(_aload):
   914           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
   915           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   917       CASE(_iload):
   918       CASE(_fload):
   919           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
   920           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   922       CASE(_lload):
   923           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
   924           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
   926       CASE(_dload):
   927           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
   928           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
   930 #undef  OPC_LOAD_n
   931 #define OPC_LOAD_n(num)                                                 \
   932       CASE(_aload_##num):                                               \
   933           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
   934           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
   935                                                                         \
   936       CASE(_iload_##num):                                               \
   937       CASE(_fload_##num):                                               \
   938           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
   939           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
   940                                                                         \
   941       CASE(_lload_##num):                                               \
   942           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
   943           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
   944       CASE(_dload_##num):                                               \
   945           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
   946           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
   948           OPC_LOAD_n(0);
   949           OPC_LOAD_n(1);
   950           OPC_LOAD_n(2);
   951           OPC_LOAD_n(3);
   953           /* store to a local variable */
   955       CASE(_astore):
   956           astore(topOfStack, -1, locals, pc[1]);
   957           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
   959       CASE(_istore):
   960       CASE(_fstore):
   961           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
   962           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
   964       CASE(_lstore):
   965           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
   966           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
   968       CASE(_dstore):
   969           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
   970           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
   972       CASE(_wide): {
   973           uint16_t reg = Bytes::get_Java_u2(pc + 2);
   975           opcode = pc[1];
   976           switch(opcode) {
   977               case Bytecodes::_aload:
   978                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
   979                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
   981               case Bytecodes::_iload:
   982               case Bytecodes::_fload:
   983                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
   984                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
   986               case Bytecodes::_lload:
   987                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
   988                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
   990               case Bytecodes::_dload:
   991                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
   992                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
   994               case Bytecodes::_astore:
   995                   astore(topOfStack, -1, locals, reg);
   996                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
   998               case Bytecodes::_istore:
   999               case Bytecodes::_fstore:
  1000                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
  1001                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
  1003               case Bytecodes::_lstore:
  1004                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
  1005                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1007               case Bytecodes::_dstore:
  1008                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
  1009                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1011               case Bytecodes::_iinc: {
  1012                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
  1013                   // Be nice to see what this generates.... QQQ
  1014                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
  1015                   UPDATE_PC_AND_CONTINUE(6);
  1017               case Bytecodes::_ret:
  1018                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
  1019                   UPDATE_PC_AND_CONTINUE(0);
  1020               default:
  1021                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
  1026 #undef  OPC_STORE_n
  1027 #define OPC_STORE_n(num)                                                \
  1028       CASE(_astore_##num):                                              \
  1029           astore(topOfStack, -1, locals, num);                          \
  1030           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1031       CASE(_istore_##num):                                              \
  1032       CASE(_fstore_##num):                                              \
  1033           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
  1034           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1036           OPC_STORE_n(0);
  1037           OPC_STORE_n(1);
  1038           OPC_STORE_n(2);
  1039           OPC_STORE_n(3);
  1041 #undef  OPC_DSTORE_n
  1042 #define OPC_DSTORE_n(num)                                               \
  1043       CASE(_dstore_##num):                                              \
  1044           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
  1045           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1046       CASE(_lstore_##num):                                              \
  1047           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
  1048           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1050           OPC_DSTORE_n(0);
  1051           OPC_DSTORE_n(1);
  1052           OPC_DSTORE_n(2);
  1053           OPC_DSTORE_n(3);
  1055           /* stack pop, dup, and insert opcodes */
  1058       CASE(_pop):                /* Discard the top item on the stack */
  1059           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1062       CASE(_pop2):               /* Discard the top 2 items on the stack */
  1063           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1066       CASE(_dup):               /* Duplicate the top item on the stack */
  1067           dup(topOfStack);
  1068           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1070       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
  1071           dup2(topOfStack);
  1072           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1074       CASE(_dup_x1):    /* insert top word two down */
  1075           dup_x1(topOfStack);
  1076           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1078       CASE(_dup_x2):    /* insert top word three down  */
  1079           dup_x2(topOfStack);
  1080           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1082       CASE(_dup2_x1):   /* insert top 2 slots three down */
  1083           dup2_x1(topOfStack);
  1084           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1086       CASE(_dup2_x2):   /* insert top 2 slots four down */
  1087           dup2_x2(topOfStack);
  1088           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1090       CASE(_swap): {        /* swap top two elements on the stack */
  1091           swap(topOfStack);
  1092           UPDATE_PC_AND_CONTINUE(1);
  1095           /* Perform various binary integer operations */
  1097 #undef  OPC_INT_BINARY
  1098 #define OPC_INT_BINARY(opcname, opname, test)                           \
  1099       CASE(_i##opcname):                                                \
  1100           if (test && (STACK_INT(-1) == 0)) {                           \
  1101               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1102                             "/ by int zero");                           \
  1103           }                                                             \
  1104           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
  1105                                       STACK_INT(-1)),                   \
  1106                                       -2);                              \
  1107           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1108       CASE(_l##opcname):                                                \
  1109       {                                                                 \
  1110           if (test) {                                                   \
  1111             jlong l1 = STACK_LONG(-1);                                  \
  1112             if (VMlongEqz(l1)) {                                        \
  1113               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1114                             "/ by long zero");                          \
  1115             }                                                           \
  1116           }                                                             \
  1117           /* First long at (-1,-2) next long at (-3,-4) */              \
  1118           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
  1119                                         STACK_LONG(-1)),                \
  1120                                         -3);                            \
  1121           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1124       OPC_INT_BINARY(add, Add, 0);
  1125       OPC_INT_BINARY(sub, Sub, 0);
  1126       OPC_INT_BINARY(mul, Mul, 0);
  1127       OPC_INT_BINARY(and, And, 0);
  1128       OPC_INT_BINARY(or,  Or,  0);
  1129       OPC_INT_BINARY(xor, Xor, 0);
  1130       OPC_INT_BINARY(div, Div, 1);
  1131       OPC_INT_BINARY(rem, Rem, 1);
  1134       /* Perform various binary floating number operations */
  1135       /* On some machine/platforms/compilers div zero check can be implicit */
  1137 #undef  OPC_FLOAT_BINARY
  1138 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
  1139       CASE(_d##opcname): {                                                 \
  1140           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
  1141                                             STACK_DOUBLE(-1)),             \
  1142                                             -3);                           \
  1143           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
  1144       }                                                                    \
  1145       CASE(_f##opcname):                                                   \
  1146           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
  1147                                           STACK_FLOAT(-1)),                \
  1148                                           -2);                             \
  1149           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1152      OPC_FLOAT_BINARY(add, Add);
  1153      OPC_FLOAT_BINARY(sub, Sub);
  1154      OPC_FLOAT_BINARY(mul, Mul);
  1155      OPC_FLOAT_BINARY(div, Div);
  1156      OPC_FLOAT_BINARY(rem, Rem);
  1158       /* Shift operations
  1159        * Shift left int and long: ishl, lshl
  1160        * Logical shift right int and long w/zero extension: iushr, lushr
  1161        * Arithmetic shift right int and long w/sign extension: ishr, lshr
  1162        */
  1164 #undef  OPC_SHIFT_BINARY
  1165 #define OPC_SHIFT_BINARY(opcname, opname)                               \
  1166       CASE(_i##opcname):                                                \
  1167          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
  1168                                      STACK_INT(-1)),                    \
  1169                                      -2);                               \
  1170          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1171       CASE(_l##opcname):                                                \
  1172       {                                                                 \
  1173          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
  1174                                        STACK_INT(-1)),                  \
  1175                                        -2);                             \
  1176          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1179       OPC_SHIFT_BINARY(shl, Shl);
  1180       OPC_SHIFT_BINARY(shr, Shr);
  1181       OPC_SHIFT_BINARY(ushr, Ushr);
  1183      /* Increment local variable by constant */
  1184       CASE(_iinc):
  1186           // locals[pc[1]].j.i += (jbyte)(pc[2]);
  1187           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
  1188           UPDATE_PC_AND_CONTINUE(3);
  1191      /* negate the value on the top of the stack */
  1193       CASE(_ineg):
  1194          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
  1195          UPDATE_PC_AND_CONTINUE(1);
  1197       CASE(_fneg):
  1198          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
  1199          UPDATE_PC_AND_CONTINUE(1);
  1201       CASE(_lneg):
  1203          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
  1204          UPDATE_PC_AND_CONTINUE(1);
  1207       CASE(_dneg):
  1209          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
  1210          UPDATE_PC_AND_CONTINUE(1);
  1213       /* Conversion operations */
  1215       CASE(_i2f):       /* convert top of stack int to float */
  1216          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
  1217          UPDATE_PC_AND_CONTINUE(1);
  1219       CASE(_i2l):       /* convert top of stack int to long */
  1221           // this is ugly QQQ
  1222           jlong r = VMint2Long(STACK_INT(-1));
  1223           MORE_STACK(-1); // Pop
  1224           SET_STACK_LONG(r, 1);
  1226           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1229       CASE(_i2d):       /* convert top of stack int to double */
  1231           // this is ugly QQQ (why cast to jlong?? )
  1232           jdouble r = (jlong)STACK_INT(-1);
  1233           MORE_STACK(-1); // Pop
  1234           SET_STACK_DOUBLE(r, 1);
  1236           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1239       CASE(_l2i):       /* convert top of stack long to int */
  1241           jint r = VMlong2Int(STACK_LONG(-1));
  1242           MORE_STACK(-2); // Pop
  1243           SET_STACK_INT(r, 0);
  1244           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1247       CASE(_l2f):   /* convert top of stack long to float */
  1249           jlong r = STACK_LONG(-1);
  1250           MORE_STACK(-2); // Pop
  1251           SET_STACK_FLOAT(VMlong2Float(r), 0);
  1252           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1255       CASE(_l2d):       /* convert top of stack long to double */
  1257           jlong r = STACK_LONG(-1);
  1258           MORE_STACK(-2); // Pop
  1259           SET_STACK_DOUBLE(VMlong2Double(r), 1);
  1260           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1263       CASE(_f2i):  /* Convert top of stack float to int */
  1264           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
  1265           UPDATE_PC_AND_CONTINUE(1);
  1267       CASE(_f2l):  /* convert top of stack float to long */
  1269           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
  1270           MORE_STACK(-1); // POP
  1271           SET_STACK_LONG(r, 1);
  1272           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1275       CASE(_f2d):  /* convert top of stack float to double */
  1277           jfloat f;
  1278           jdouble r;
  1279           f = STACK_FLOAT(-1);
  1280           r = (jdouble) f;
  1281           MORE_STACK(-1); // POP
  1282           SET_STACK_DOUBLE(r, 1);
  1283           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1286       CASE(_d2i): /* convert top of stack double to int */
  1288           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
  1289           MORE_STACK(-2);
  1290           SET_STACK_INT(r1, 0);
  1291           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1294       CASE(_d2f): /* convert top of stack double to float */
  1296           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
  1297           MORE_STACK(-2);
  1298           SET_STACK_FLOAT(r1, 0);
  1299           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1302       CASE(_d2l): /* convert top of stack double to long */
  1304           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
  1305           MORE_STACK(-2);
  1306           SET_STACK_LONG(r1, 1);
  1307           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1310       CASE(_i2b):
  1311           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
  1312           UPDATE_PC_AND_CONTINUE(1);
  1314       CASE(_i2c):
  1315           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
  1316           UPDATE_PC_AND_CONTINUE(1);
  1318       CASE(_i2s):
  1319           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
  1320           UPDATE_PC_AND_CONTINUE(1);
  1322       /* comparison operators */
  1325 #define COMPARISON_OP(name, comparison)                                      \
  1326       CASE(_if_icmp##name): {                                                \
  1327           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
  1328                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1329           address branch_pc = pc;                                            \
  1330           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1331           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1332           CONTINUE;                                                          \
  1333       }                                                                      \
  1334       CASE(_if##name): {                                                     \
  1335           int skip = (STACK_INT(-1) comparison 0)                            \
  1336                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1337           address branch_pc = pc;                                            \
  1338           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1339           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1340           CONTINUE;                                                          \
  1343 #define COMPARISON_OP2(name, comparison)                                     \
  1344       COMPARISON_OP(name, comparison)                                        \
  1345       CASE(_if_acmp##name): {                                                \
  1346           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
  1347                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
  1348           address branch_pc = pc;                                            \
  1349           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1350           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1351           CONTINUE;                                                          \
  1354 #define NULL_COMPARISON_NOT_OP(name)                                         \
  1355       CASE(_if##name): {                                                     \
  1356           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
  1357                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1358           address branch_pc = pc;                                            \
  1359           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1360           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1361           CONTINUE;                                                          \
  1364 #define NULL_COMPARISON_OP(name)                                             \
  1365       CASE(_if##name): {                                                     \
  1366           int skip = ((STACK_OBJECT(-1) == NULL))                            \
  1367                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1368           address branch_pc = pc;                                            \
  1369           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1370           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1371           CONTINUE;                                                          \
  1373       COMPARISON_OP(lt, <);
  1374       COMPARISON_OP(gt, >);
  1375       COMPARISON_OP(le, <=);
  1376       COMPARISON_OP(ge, >=);
  1377       COMPARISON_OP2(eq, ==);  /* include ref comparison */
  1378       COMPARISON_OP2(ne, !=);  /* include ref comparison */
  1379       NULL_COMPARISON_OP(null);
  1380       NULL_COMPARISON_NOT_OP(nonnull);
  1382       /* Goto pc at specified offset in switch table. */
  1384       CASE(_tableswitch): {
  1385           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1386           int32_t  key  = STACK_INT(-1);
  1387           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
  1388           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
  1389           int32_t  skip;
  1390           key -= low;
  1391           skip = ((uint32_t) key > (uint32_t)(high - low))
  1392                       ? Bytes::get_Java_u4((address)&lpc[0])
  1393                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
  1394           // Does this really need a full backedge check (osr?)
  1395           address branch_pc = pc;
  1396           UPDATE_PC_AND_TOS(skip, -1);
  1397           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1398           CONTINUE;
  1401       /* Goto pc whose table entry matches specified key */
  1403       CASE(_lookupswitch): {
  1404           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1405           int32_t  key  = STACK_INT(-1);
  1406           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
  1407           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
  1408           while (--npairs >= 0) {
  1409               lpc += 2;
  1410               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
  1411                   skip = Bytes::get_Java_u4((address)&lpc[1]);
  1412                   break;
  1415           address branch_pc = pc;
  1416           UPDATE_PC_AND_TOS(skip, -1);
  1417           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1418           CONTINUE;
  1421       CASE(_fcmpl):
  1422       CASE(_fcmpg):
  1424           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
  1425                                         STACK_FLOAT(-1),
  1426                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
  1427                         -2);
  1428           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1431       CASE(_dcmpl):
  1432       CASE(_dcmpg):
  1434           int r = VMdoubleCompare(STACK_DOUBLE(-3),
  1435                                   STACK_DOUBLE(-1),
  1436                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
  1437           MORE_STACK(-4); // Pop
  1438           SET_STACK_INT(r, 0);
  1439           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1442       CASE(_lcmp):
  1444           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
  1445           MORE_STACK(-4);
  1446           SET_STACK_INT(r, 0);
  1447           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1451       /* Return from a method */
  1453       CASE(_areturn):
  1454       CASE(_ireturn):
  1455       CASE(_freturn):
  1457           // Allow a safepoint before returning to frame manager.
  1458           SAFEPOINT;
  1460           goto handle_return;
  1463       CASE(_lreturn):
  1464       CASE(_dreturn):
  1466           // Allow a safepoint before returning to frame manager.
  1467           SAFEPOINT;
  1468           goto handle_return;
  1471       CASE(_return_register_finalizer): {
  1473           oop rcvr = LOCALS_OBJECT(0);
  1474           if (rcvr->klass()->klass_part()->has_finalizer()) {
  1475             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
  1477           goto handle_return;
  1479       CASE(_return): {
  1481           // Allow a safepoint before returning to frame manager.
  1482           SAFEPOINT;
  1483           goto handle_return;
  1486       /* Array access byte-codes */
  1488       /* Every array access byte-code starts out like this */
  1489 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
  1490 #define ARRAY_INTRO(arrayOff)                                                  \
  1491       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
  1492       jint     index  = STACK_INT(arrayOff + 1);                               \
  1493       char message[jintAsStringSize];                                          \
  1494       CHECK_NULL(arrObj);                                                      \
  1495       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
  1496           sprintf(message, "%d", index);                                       \
  1497           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
  1498                         message);                                              \
  1501       /* 32-bit loads. These handle conversion from < 32-bit types */
  1502 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
  1503       {                                                                               \
  1504           ARRAY_INTRO(-2);                                                            \
  1505           extra;                                                                      \
  1506           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
  1507                            -2);                                                       \
  1508           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
  1511       /* 64-bit loads */
  1512 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
  1513       {                                                                                    \
  1514           ARRAY_INTRO(-2);                                                                 \
  1515           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
  1516           extra;                                                                           \
  1517           UPDATE_PC_AND_CONTINUE(1);                                            \
  1520       CASE(_iaload):
  1521           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
  1522       CASE(_faload):
  1523           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1524       CASE(_aaload):
  1525           ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
  1526       CASE(_baload):
  1527           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1528       CASE(_caload):
  1529           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
  1530       CASE(_saload):
  1531           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1532       CASE(_laload):
  1533           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
  1534       CASE(_daload):
  1535           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1537       /* 32-bit stores. These handle conversion to < 32-bit types */
  1538 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
  1539       {                                                                              \
  1540           ARRAY_INTRO(-3);                                                           \
  1541           extra;                                                                     \
  1542           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1543           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
  1546       /* 64-bit stores */
  1547 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
  1548       {                                                                              \
  1549           ARRAY_INTRO(-4);                                                           \
  1550           extra;                                                                     \
  1551           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1552           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
  1555       CASE(_iastore):
  1556           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
  1557       CASE(_fastore):
  1558           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1559       /*
  1560        * This one looks different because of the assignability check
  1561        */
  1562       CASE(_aastore): {
  1563           oop rhsObject = STACK_OBJECT(-1);
  1564           ARRAY_INTRO( -3);
  1565           // arrObj, index are set
  1566           if (rhsObject != NULL) {
  1567             /* Check assignability of rhsObject into arrObj */
  1568             klassOop rhsKlassOop = rhsObject->klass(); // EBX (subclass)
  1569             assert(arrObj->klass()->klass()->klass_part()->oop_is_objArrayKlass(), "Ack not an objArrayKlass");
  1570             klassOop elemKlassOop = ((objArrayKlass*) arrObj->klass()->klass_part())->element_klass(); // superklass EAX
  1571             //
  1572             // Check for compatibilty. This check must not GC!!
  1573             // Seems way more expensive now that we must dispatch
  1574             //
  1575             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->klass_part()->is_subtype_of(elemKlassOop)) { // ebx->is...
  1576               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
  1579           oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
  1580           // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
  1581           *elem_loc = rhsObject;
  1582           // Mark the card
  1583           OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
  1584           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
  1586       CASE(_bastore):
  1587           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1588       CASE(_castore):
  1589           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
  1590       CASE(_sastore):
  1591           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1592       CASE(_lastore):
  1593           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
  1594       CASE(_dastore):
  1595           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1597       CASE(_arraylength):
  1599           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
  1600           CHECK_NULL(ary);
  1601           SET_STACK_INT(ary->length(), -1);
  1602           UPDATE_PC_AND_CONTINUE(1);
  1605       /* monitorenter and monitorexit for locking/unlocking an object */
  1607       CASE(_monitorenter): {
  1608         oop lockee = STACK_OBJECT(-1);
  1609         // derefing's lockee ought to provoke implicit null check
  1610         CHECK_NULL(lockee);
  1611         // find a free monitor or one already allocated for this object
  1612         // if we find a matching object then we need a new monitor
  1613         // since this is recursive enter
  1614         BasicObjectLock* limit = istate->monitor_base();
  1615         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1616         BasicObjectLock* entry = NULL;
  1617         while (most_recent != limit ) {
  1618           if (most_recent->obj() == NULL) entry = most_recent;
  1619           else if (most_recent->obj() == lockee) break;
  1620           most_recent++;
  1622         if (entry != NULL) {
  1623           entry->set_obj(lockee);
  1624           markOop displaced = lockee->mark()->set_unlocked();
  1625           entry->lock()->set_displaced_header(displaced);
  1626           if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
  1627             // Is it simple recursive case?
  1628             if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
  1629               entry->lock()->set_displaced_header(NULL);
  1630             } else {
  1631               CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
  1634           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1635         } else {
  1636           istate->set_msg(more_monitors);
  1637           UPDATE_PC_AND_RETURN(0); // Re-execute
  1641       CASE(_monitorexit): {
  1642         oop lockee = STACK_OBJECT(-1);
  1643         CHECK_NULL(lockee);
  1644         // derefing's lockee ought to provoke implicit null check
  1645         // find our monitor slot
  1646         BasicObjectLock* limit = istate->monitor_base();
  1647         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1648         while (most_recent != limit ) {
  1649           if ((most_recent)->obj() == lockee) {
  1650             BasicLock* lock = most_recent->lock();
  1651             markOop header = lock->displaced_header();
  1652             most_recent->set_obj(NULL);
  1653             // If it isn't recursive we either must swap old header or call the runtime
  1654             if (header != NULL) {
  1655               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  1656                 // restore object for the slow case
  1657                 most_recent->set_obj(lockee);
  1658                 CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
  1661             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1663           most_recent++;
  1665         // Need to throw illegal monitor state exception
  1666         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
  1667         // Should never reach here...
  1668         assert(false, "Should have thrown illegal monitor exception");
  1671       /* All of the non-quick opcodes. */
  1673       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
  1674        *  constant pool index in the instruction.
  1675        */
  1676       CASE(_getfield):
  1677       CASE(_getstatic):
  1679           u2 index;
  1680           ConstantPoolCacheEntry* cache;
  1681           index = Bytes::get_native_u2(pc+1);
  1683           // QQQ Need to make this as inlined as possible. Probably need to
  1684           // split all the bytecode cases out so c++ compiler has a chance
  1685           // for constant prop to fold everything possible away.
  1687           cache = cp->entry_at(index);
  1688           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1689             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1690                     handle_exception);
  1691             cache = cp->entry_at(index);
  1694 #ifdef VM_JVMTI
  1695           if (_jvmti_interp_events) {
  1696             int *count_addr;
  1697             oop obj;
  1698             // Check to see if a field modification watch has been set
  1699             // before we take the time to call into the VM.
  1700             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
  1701             if ( *count_addr > 0 ) {
  1702               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1703                 obj = (oop)NULL;
  1704               } else {
  1705                 obj = (oop) STACK_OBJECT(-1);
  1707               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
  1708                                           obj,
  1709                                           cache),
  1710                                           handle_exception);
  1713 #endif /* VM_JVMTI */
  1715           oop obj;
  1716           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1717             obj = (oop) cache->f1();
  1718             MORE_STACK(1);  // Assume single slot push
  1719           } else {
  1720             obj = (oop) STACK_OBJECT(-1);
  1721             CHECK_NULL(obj);
  1724           //
  1725           // Now store the result on the stack
  1726           //
  1727           TosState tos_type = cache->flag_state();
  1728           int field_offset = cache->f2();
  1729           if (cache->is_volatile()) {
  1730             if (tos_type == atos) {
  1731               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
  1732             } else if (tos_type == itos) {
  1733               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
  1734             } else if (tos_type == ltos) {
  1735               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
  1736               MORE_STACK(1);
  1737             } else if (tos_type == btos) {
  1738               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
  1739             } else if (tos_type == ctos) {
  1740               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
  1741             } else if (tos_type == stos) {
  1742               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
  1743             } else if (tos_type == ftos) {
  1744               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
  1745             } else {
  1746               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
  1747               MORE_STACK(1);
  1749           } else {
  1750             if (tos_type == atos) {
  1751               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
  1752             } else if (tos_type == itos) {
  1753               SET_STACK_INT(obj->int_field(field_offset), -1);
  1754             } else if (tos_type == ltos) {
  1755               SET_STACK_LONG(obj->long_field(field_offset), 0);
  1756               MORE_STACK(1);
  1757             } else if (tos_type == btos) {
  1758               SET_STACK_INT(obj->byte_field(field_offset), -1);
  1759             } else if (tos_type == ctos) {
  1760               SET_STACK_INT(obj->char_field(field_offset), -1);
  1761             } else if (tos_type == stos) {
  1762               SET_STACK_INT(obj->short_field(field_offset), -1);
  1763             } else if (tos_type == ftos) {
  1764               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
  1765             } else {
  1766               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
  1767               MORE_STACK(1);
  1771           UPDATE_PC_AND_CONTINUE(3);
  1774       CASE(_putfield):
  1775       CASE(_putstatic):
  1777           u2 index = Bytes::get_native_u2(pc+1);
  1778           ConstantPoolCacheEntry* cache = cp->entry_at(index);
  1779           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1780             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1781                     handle_exception);
  1782             cache = cp->entry_at(index);
  1785 #ifdef VM_JVMTI
  1786           if (_jvmti_interp_events) {
  1787             int *count_addr;
  1788             oop obj;
  1789             // Check to see if a field modification watch has been set
  1790             // before we take the time to call into the VM.
  1791             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
  1792             if ( *count_addr > 0 ) {
  1793               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  1794                 obj = (oop)NULL;
  1796               else {
  1797                 if (cache->is_long() || cache->is_double()) {
  1798                   obj = (oop) STACK_OBJECT(-3);
  1799                 } else {
  1800                   obj = (oop) STACK_OBJECT(-2);
  1804               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
  1805                                           obj,
  1806                                           cache,
  1807                                           (jvalue *)STACK_SLOT(-1)),
  1808                                           handle_exception);
  1811 #endif /* VM_JVMTI */
  1813           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  1814           // out so c++ compiler has a chance for constant prop to fold everything possible away.
  1816           oop obj;
  1817           int count;
  1818           TosState tos_type = cache->flag_state();
  1820           count = -1;
  1821           if (tos_type == ltos || tos_type == dtos) {
  1822             --count;
  1824           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  1825             obj = (oop) cache->f1();
  1826           } else {
  1827             --count;
  1828             obj = (oop) STACK_OBJECT(count);
  1829             CHECK_NULL(obj);
  1832           //
  1833           // Now store the result
  1834           //
  1835           int field_offset = cache->f2();
  1836           if (cache->is_volatile()) {
  1837             if (tos_type == itos) {
  1838               obj->release_int_field_put(field_offset, STACK_INT(-1));
  1839             } else if (tos_type == atos) {
  1840               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
  1841               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  1842             } else if (tos_type == btos) {
  1843               obj->release_byte_field_put(field_offset, STACK_INT(-1));
  1844             } else if (tos_type == ltos) {
  1845               obj->release_long_field_put(field_offset, STACK_LONG(-1));
  1846             } else if (tos_type == ctos) {
  1847               obj->release_char_field_put(field_offset, STACK_INT(-1));
  1848             } else if (tos_type == stos) {
  1849               obj->release_short_field_put(field_offset, STACK_INT(-1));
  1850             } else if (tos_type == ftos) {
  1851               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
  1852             } else {
  1853               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
  1855             OrderAccess::storeload();
  1856           } else {
  1857             if (tos_type == itos) {
  1858               obj->int_field_put(field_offset, STACK_INT(-1));
  1859             } else if (tos_type == atos) {
  1860               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
  1861               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  1862             } else if (tos_type == btos) {
  1863               obj->byte_field_put(field_offset, STACK_INT(-1));
  1864             } else if (tos_type == ltos) {
  1865               obj->long_field_put(field_offset, STACK_LONG(-1));
  1866             } else if (tos_type == ctos) {
  1867               obj->char_field_put(field_offset, STACK_INT(-1));
  1868             } else if (tos_type == stos) {
  1869               obj->short_field_put(field_offset, STACK_INT(-1));
  1870             } else if (tos_type == ftos) {
  1871               obj->float_field_put(field_offset, STACK_FLOAT(-1));
  1872             } else {
  1873               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
  1877           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
  1880       CASE(_new): {
  1881         u2 index = Bytes::get_Java_u2(pc+1);
  1882         constantPoolOop constants = istate->method()->constants();
  1883         if (!constants->tag_at(index).is_unresolved_klass()) {
  1884           // Make sure klass is initialized and doesn't have a finalizer
  1885           oop entry = (klassOop) *constants->obj_at_addr(index);
  1886           assert(entry->is_klass(), "Should be resolved klass");
  1887           klassOop k_entry = (klassOop) entry;
  1888           assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
  1889           instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
  1890           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
  1891             size_t obj_size = ik->size_helper();
  1892             oop result = NULL;
  1893             // If the TLAB isn't pre-zeroed then we'll have to do it
  1894             bool need_zero = !ZeroTLAB;
  1895             if (UseTLAB) {
  1896               result = (oop) THREAD->tlab().allocate(obj_size);
  1898             if (result == NULL) {
  1899               need_zero = true;
  1900               // Try allocate in shared eden
  1901         retry:
  1902               HeapWord* compare_to = *Universe::heap()->top_addr();
  1903               HeapWord* new_top = compare_to + obj_size;
  1904               if (new_top <= *Universe::heap()->end_addr()) {
  1905                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
  1906                   goto retry;
  1908                 result = (oop) compare_to;
  1911             if (result != NULL) {
  1912               // Initialize object (if nonzero size and need) and then the header
  1913               if (need_zero ) {
  1914                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
  1915                 obj_size -= sizeof(oopDesc) / oopSize;
  1916                 if (obj_size > 0 ) {
  1917                   memset(to_zero, 0, obj_size * HeapWordSize);
  1920               if (UseBiasedLocking) {
  1921                 result->set_mark(ik->prototype_header());
  1922               } else {
  1923                 result->set_mark(markOopDesc::prototype());
  1925               result->set_klass_gap(0);
  1926               result->set_klass(k_entry);
  1927               SET_STACK_OBJECT(result, 0);
  1928               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  1932         // Slow case allocation
  1933         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
  1934                 handle_exception);
  1935         SET_STACK_OBJECT(THREAD->vm_result(), 0);
  1936         THREAD->set_vm_result(NULL);
  1937         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  1939       CASE(_anewarray): {
  1940         u2 index = Bytes::get_Java_u2(pc+1);
  1941         jint size = STACK_INT(-1);
  1942         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
  1943                 handle_exception);
  1944         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  1945         THREAD->set_vm_result(NULL);
  1946         UPDATE_PC_AND_CONTINUE(3);
  1948       CASE(_multianewarray): {
  1949         jint dims = *(pc+3);
  1950         jint size = STACK_INT(-1);
  1951         // stack grows down, dimensions are up!
  1952         jint *dimarray =
  1953                    (jint*)&topOfStack[dims * Interpreter::stackElementWords()+
  1954                                       Interpreter::stackElementWords()-1];
  1955         //adjust pointer to start of stack element
  1956         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
  1957                 handle_exception);
  1958         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
  1959         THREAD->set_vm_result(NULL);
  1960         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
  1962       CASE(_checkcast):
  1963           if (STACK_OBJECT(-1) != NULL) {
  1964             u2 index = Bytes::get_Java_u2(pc+1);
  1965             if (ProfileInterpreter) {
  1966               // needs Profile_checkcast QQQ
  1967               ShouldNotReachHere();
  1969             // Constant pool may have actual klass or unresolved klass. If it is
  1970             // unresolved we must resolve it
  1971             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  1972               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  1974             klassOop klassOf = (klassOop) *(METHOD->constants()->obj_at_addr(index));
  1975             klassOop objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
  1976             //
  1977             // Check for compatibilty. This check must not GC!!
  1978             // Seems way more expensive now that we must dispatch
  1979             //
  1980             if (objKlassOop != klassOf &&
  1981                 !objKlassOop->klass_part()->is_subtype_of(klassOf)) {
  1982               ResourceMark rm(THREAD);
  1983               const char* objName = Klass::cast(objKlassOop)->external_name();
  1984               const char* klassName = Klass::cast(klassOf)->external_name();
  1985               char* message = SharedRuntime::generate_class_cast_message(
  1986                 objName, klassName);
  1987               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
  1989           } else {
  1990             if (UncommonNullCast) {
  1991 //              istate->method()->set_null_cast_seen();
  1992 // [RGV] Not sure what to do here!
  1996           UPDATE_PC_AND_CONTINUE(3);
  1998       CASE(_instanceof):
  1999           if (STACK_OBJECT(-1) == NULL) {
  2000             SET_STACK_INT(0, -1);
  2001           } else {
  2002             u2 index = Bytes::get_Java_u2(pc+1);
  2003             // Constant pool may have actual klass or unresolved klass. If it is
  2004             // unresolved we must resolve it
  2005             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  2006               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  2008             klassOop klassOf = (klassOop) *(METHOD->constants()->obj_at_addr(index));
  2009             klassOop objKlassOop = STACK_OBJECT(-1)->klass();
  2010             //
  2011             // Check for compatibilty. This check must not GC!!
  2012             // Seems way more expensive now that we must dispatch
  2013             //
  2014             if ( objKlassOop == klassOf || objKlassOop->klass_part()->is_subtype_of(klassOf)) {
  2015               SET_STACK_INT(1, -1);
  2016             } else {
  2017               SET_STACK_INT(0, -1);
  2020           UPDATE_PC_AND_CONTINUE(3);
  2022       CASE(_ldc_w):
  2023       CASE(_ldc):
  2025           u2 index;
  2026           bool wide = false;
  2027           int incr = 2; // frequent case
  2028           if (opcode == Bytecodes::_ldc) {
  2029             index = pc[1];
  2030           } else {
  2031             index = Bytes::get_Java_u2(pc+1);
  2032             incr = 3;
  2033             wide = true;
  2036           constantPoolOop constants = METHOD->constants();
  2037           switch (constants->tag_at(index).value()) {
  2038           case JVM_CONSTANT_Integer:
  2039             SET_STACK_INT(constants->int_at(index), 0);
  2040             break;
  2042           case JVM_CONSTANT_Float:
  2043             SET_STACK_FLOAT(constants->float_at(index), 0);
  2044             break;
  2046           case JVM_CONSTANT_String:
  2047             SET_STACK_OBJECT(constants->resolved_string_at(index), 0);
  2048             break;
  2050           case JVM_CONSTANT_Class:
  2051             SET_STACK_OBJECT(constants->resolved_klass_at(index)->klass_part()->java_mirror(), 0);
  2052             break;
  2054           case JVM_CONSTANT_UnresolvedString:
  2055           case JVM_CONSTANT_UnresolvedClass:
  2056           case JVM_CONSTANT_UnresolvedClassInError:
  2057             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
  2058             SET_STACK_OBJECT(THREAD->vm_result(), 0);
  2059             THREAD->set_vm_result(NULL);
  2060             break;
  2062 #if 0
  2063           CASE(_fast_igetfield):
  2064           CASE(_fastagetfield):
  2065           CASE(_fast_aload_0):
  2066           CASE(_fast_iaccess_0):
  2067           CASE(__fast_aaccess_0):
  2068           CASE(_fast_linearswitch):
  2069           CASE(_fast_binaryswitch):
  2070             fatal("unsupported fast bytecode");
  2071 #endif
  2073           default:  ShouldNotReachHere();
  2075           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
  2078       CASE(_ldc2_w):
  2080           u2 index = Bytes::get_Java_u2(pc+1);
  2082           constantPoolOop constants = METHOD->constants();
  2083           switch (constants->tag_at(index).value()) {
  2085           case JVM_CONSTANT_Long:
  2086              SET_STACK_LONG(constants->long_at(index), 1);
  2087             break;
  2089           case JVM_CONSTANT_Double:
  2090              SET_STACK_DOUBLE(constants->double_at(index), 1);
  2091             break;
  2092           default:  ShouldNotReachHere();
  2094           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
  2097       CASE(_invokeinterface): {
  2098         u2 index = Bytes::get_native_u2(pc+1);
  2100         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2101         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2103         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2104         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2105           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2106                   handle_exception);
  2107           cache = cp->entry_at(index);
  2110         istate->set_msg(call_method);
  2112         // Special case of invokeinterface called for virtual method of
  2113         // java.lang.Object.  See cpCacheOop.cpp for details.
  2114         // This code isn't produced by javac, but could be produced by
  2115         // another compliant java compiler.
  2116         if (cache->is_methodInterface()) {
  2117           methodOop callee;
  2118           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2119           if (cache->is_vfinal()) {
  2120             callee = (methodOop) cache->f2();
  2121           } else {
  2122             // get receiver
  2123             int parms = cache->parameter_size();
  2124             // Same comments as invokevirtual apply here
  2125             instanceKlass* rcvrKlass = (instanceKlass*)
  2126                                  STACK_OBJECT(-parms)->klass()->klass_part();
  2127             callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
  2129           istate->set_callee(callee);
  2130           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2131 #ifdef VM_JVMTI
  2132           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2133             istate->set_callee_entry_point(callee->interpreter_entry());
  2135 #endif /* VM_JVMTI */
  2136           istate->set_bcp_advance(5);
  2137           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2140         // this could definitely be cleaned up QQQ
  2141         methodOop callee;
  2142         klassOop iclass = (klassOop)cache->f1();
  2143         // instanceKlass* interface = (instanceKlass*) iclass->klass_part();
  2144         // get receiver
  2145         int parms = cache->parameter_size();
  2146         oop rcvr = STACK_OBJECT(-parms);
  2147         CHECK_NULL(rcvr);
  2148         instanceKlass* int2 = (instanceKlass*) rcvr->klass()->klass_part();
  2149         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
  2150         int i;
  2151         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
  2152           if (ki->interface_klass() == iclass) break;
  2154         // If the interface isn't found, this class doesn't implement this
  2155         // interface.  The link resolver checks this but only for the first
  2156         // time this interface is called.
  2157         if (i == int2->itable_length()) {
  2158           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
  2160         int mindex = cache->f2();
  2161         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
  2162         callee = im[mindex].method();
  2163         if (callee == NULL) {
  2164           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
  2167         istate->set_callee(callee);
  2168         istate->set_callee_entry_point(callee->from_interpreted_entry());
  2169 #ifdef VM_JVMTI
  2170         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2171           istate->set_callee_entry_point(callee->interpreter_entry());
  2173 #endif /* VM_JVMTI */
  2174         istate->set_bcp_advance(5);
  2175         UPDATE_PC_AND_RETURN(0); // I'll be back...
  2178       CASE(_invokevirtual):
  2179       CASE(_invokespecial):
  2180       CASE(_invokestatic): {
  2181         u2 index = Bytes::get_native_u2(pc+1);
  2183         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2184         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2185         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2187         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2188           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2189                   handle_exception);
  2190           cache = cp->entry_at(index);
  2193         istate->set_msg(call_method);
  2195           methodOop callee;
  2196           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
  2197             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2198             if (cache->is_vfinal()) callee = (methodOop) cache->f2();
  2199             else {
  2200               // get receiver
  2201               int parms = cache->parameter_size();
  2202               // this works but needs a resourcemark and seems to create a vtable on every call:
  2203               // methodOop callee = rcvr->klass()->klass_part()->vtable()->method_at(cache->f2());
  2204               //
  2205               // this fails with an assert
  2206               // instanceKlass* rcvrKlass = instanceKlass::cast(STACK_OBJECT(-parms)->klass());
  2207               // but this works
  2208               instanceKlass* rcvrKlass = (instanceKlass*) STACK_OBJECT(-parms)->klass()->klass_part();
  2209               /*
  2210                 Executing this code in java.lang.String:
  2211                     public String(char value[]) {
  2212                           this.count = value.length;
  2213                           this.value = (char[])value.clone();
  2216                  a find on rcvr->klass()->klass_part() reports:
  2217                  {type array char}{type array class}
  2218                   - klass: {other class}
  2220                   but using instanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
  2221                   because rcvr->klass()->klass_part()->oop_is_instance() == 0
  2222                   However it seems to have a vtable in the right location. Huh?
  2224               */
  2225               callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
  2227           } else {
  2228             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
  2229               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2231             callee = (methodOop) cache->f1();
  2234           istate->set_callee(callee);
  2235           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2236 #ifdef VM_JVMTI
  2237           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2238             istate->set_callee_entry_point(callee->interpreter_entry());
  2240 #endif /* VM_JVMTI */
  2241           istate->set_bcp_advance(3);
  2242           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2246       /* Allocate memory for a new java object. */
  2248       CASE(_newarray): {
  2249         BasicType atype = (BasicType) *(pc+1);
  2250         jint size = STACK_INT(-1);
  2251         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
  2252                 handle_exception);
  2253         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  2254         THREAD->set_vm_result(NULL);
  2256         UPDATE_PC_AND_CONTINUE(2);
  2259       /* Throw an exception. */
  2261       CASE(_athrow): {
  2262           oop except_oop = STACK_OBJECT(-1);
  2263           CHECK_NULL(except_oop);
  2264           // set pending_exception so we use common code
  2265           THREAD->set_pending_exception(except_oop, NULL, 0);
  2266           goto handle_exception;
  2269       /* goto and jsr. They are exactly the same except jsr pushes
  2270        * the address of the next instruction first.
  2271        */
  2273       CASE(_jsr): {
  2274           /* push bytecode index on stack */
  2275           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
  2276           MORE_STACK(1);
  2277           /* FALL THROUGH */
  2280       CASE(_goto):
  2282           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
  2283           address branch_pc = pc;
  2284           UPDATE_PC(offset);
  2285           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2286           CONTINUE;
  2289       CASE(_jsr_w): {
  2290           /* push return address on the stack */
  2291           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
  2292           MORE_STACK(1);
  2293           /* FALL THROUGH */
  2296       CASE(_goto_w):
  2298           int32_t offset = Bytes::get_Java_u4(pc + 1);
  2299           address branch_pc = pc;
  2300           UPDATE_PC(offset);
  2301           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2302           CONTINUE;
  2305       /* return from a jsr or jsr_w */
  2307       CASE(_ret): {
  2308           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
  2309           UPDATE_PC_AND_CONTINUE(0);
  2312       /* debugger breakpoint */
  2314       CASE(_breakpoint): {
  2315           Bytecodes::Code original_bytecode;
  2316           DECACHE_STATE();
  2317           SET_LAST_JAVA_FRAME();
  2318           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
  2319                               METHOD, pc);
  2320           RESET_LAST_JAVA_FRAME();
  2321           CACHE_STATE();
  2322           if (THREAD->has_pending_exception()) goto handle_exception;
  2323             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
  2324                                                     handle_exception);
  2326           opcode = (jubyte)original_bytecode;
  2327           goto opcode_switch;
  2330       DEFAULT:
  2331 #ifdef ZERO
  2332           // Some zero configurations use the C++ interpreter as a
  2333           // fallback interpreter and have support for platform
  2334           // specific fast bytecodes which aren't supported here, so
  2335           // redispatch to the equivalent non-fast bytecode when they
  2336           // are encountered.
  2337           if (Bytecodes::is_defined((Bytecodes::Code)opcode)) {
  2338               opcode = (jubyte)Bytecodes::java_code((Bytecodes::Code)opcode);
  2339               goto opcode_switch;
  2341 #endif
  2342           fatal2("\t*** Unimplemented opcode: %d = %s\n",
  2343                  opcode, Bytecodes::name((Bytecodes::Code)opcode));
  2344           goto finish;
  2346       } /* switch(opc) */
  2349 #ifdef USELABELS
  2350     check_for_exception:
  2351 #endif
  2353       if (!THREAD->has_pending_exception()) {
  2354         CONTINUE;
  2356       /* We will be gcsafe soon, so flush our state. */
  2357       DECACHE_PC();
  2358       goto handle_exception;
  2360   do_continue: ;
  2362   } /* while (1) interpreter loop */
  2365   // An exception exists in the thread state see whether this activation can handle it
  2366   handle_exception: {
  2368     HandleMarkCleaner __hmc(THREAD);
  2369     Handle except_oop(THREAD, THREAD->pending_exception());
  2370     // Prevent any subsequent HandleMarkCleaner in the VM
  2371     // from freeing the except_oop handle.
  2372     HandleMark __hm(THREAD);
  2374     THREAD->clear_pending_exception();
  2375     assert(except_oop(), "No exception to process");
  2376     intptr_t continuation_bci;
  2377     // expression stack is emptied
  2378     topOfStack = istate->stack_base() - Interpreter::stackElementWords();
  2379     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
  2380             handle_exception);
  2382     except_oop = (oop) THREAD->vm_result();
  2383     THREAD->set_vm_result(NULL);
  2384     if (continuation_bci >= 0) {
  2385       // Place exception on top of stack
  2386       SET_STACK_OBJECT(except_oop(), 0);
  2387       MORE_STACK(1);
  2388       pc = METHOD->code_base() + continuation_bci;
  2389       if (TraceExceptions) {
  2390         ttyLocker ttyl;
  2391         ResourceMark rm;
  2392         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2393         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2394         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
  2395                       pc - (intptr_t)METHOD->code_base(),
  2396                       continuation_bci, THREAD);
  2398       // for AbortVMOnException flag
  2399       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2400       goto run;
  2402     if (TraceExceptions) {
  2403       ttyLocker ttyl;
  2404       ResourceMark rm;
  2405       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2406       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2407       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
  2408                     pc  - (intptr_t) METHOD->code_base(),
  2409                     THREAD);
  2411     // for AbortVMOnException flag
  2412     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2413     // No handler in this activation, unwind and try again
  2414     THREAD->set_pending_exception(except_oop(), NULL, 0);
  2415     goto handle_return;
  2416   }  /* handle_exception: */
  2420   // Return from an interpreter invocation with the result of the interpretation
  2421   // on the top of the Java Stack (or a pending exception)
  2423 handle_Pop_Frame:
  2425   // We don't really do anything special here except we must be aware
  2426   // that we can get here without ever locking the method (if sync).
  2427   // Also we skip the notification of the exit.
  2429   istate->set_msg(popping_frame);
  2430   // Clear pending so while the pop is in process
  2431   // we don't start another one if a call_vm is done.
  2432   THREAD->clr_pop_frame_pending();
  2433   // Let interpreter (only) see the we're in the process of popping a frame
  2434   THREAD->set_pop_frame_in_process();
  2436 handle_return:
  2438     DECACHE_STATE();
  2440     bool suppress_error = istate->msg() == popping_frame;
  2441     bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
  2442     Handle original_exception(THREAD, THREAD->pending_exception());
  2443     Handle illegal_state_oop(THREAD, NULL);
  2445     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
  2446     // in any following VM entries from freeing our live handles, but illegal_state_oop
  2447     // isn't really allocated yet and so doesn't become live until later and
  2448     // in unpredicatable places. Instead we must protect the places where we enter the
  2449     // VM. It would be much simpler (and safer) if we could allocate a real handle with
  2450     // a NULL oop in it and then overwrite the oop later as needed. This isn't
  2451     // unfortunately isn't possible.
  2453     THREAD->clear_pending_exception();
  2455     //
  2456     // As far as we are concerned we have returned. If we have a pending exception
  2457     // that will be returned as this invocation's result. However if we get any
  2458     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
  2459     // will be our final result (i.e. monitor exception trumps a pending exception).
  2460     //
  2462     // If we never locked the method (or really passed the point where we would have),
  2463     // there is no need to unlock it (or look for other monitors), since that
  2464     // could not have happened.
  2466     if (THREAD->do_not_unlock()) {
  2468       // Never locked, reset the flag now because obviously any caller must
  2469       // have passed their point of locking for us to have gotten here.
  2471       THREAD->clr_do_not_unlock();
  2472     } else {
  2473       // At this point we consider that we have returned. We now check that the
  2474       // locks were properly block structured. If we find that they were not
  2475       // used properly we will return with an illegal monitor exception.
  2476       // The exception is checked by the caller not the callee since this
  2477       // checking is considered to be part of the invocation and therefore
  2478       // in the callers scope (JVM spec 8.13).
  2479       //
  2480       // Another weird thing to watch for is if the method was locked
  2481       // recursively and then not exited properly. This means we must
  2482       // examine all the entries in reverse time(and stack) order and
  2483       // unlock as we find them. If we find the method monitor before
  2484       // we are at the initial entry then we should throw an exception.
  2485       // It is not clear the template based interpreter does this
  2486       // correctly
  2488       BasicObjectLock* base = istate->monitor_base();
  2489       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
  2490       bool method_unlock_needed = METHOD->is_synchronized();
  2491       // We know the initial monitor was used for the method don't check that
  2492       // slot in the loop
  2493       if (method_unlock_needed) base--;
  2495       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
  2496       while (end < base) {
  2497         oop lockee = end->obj();
  2498         if (lockee != NULL) {
  2499           BasicLock* lock = end->lock();
  2500           markOop header = lock->displaced_header();
  2501           end->set_obj(NULL);
  2502           // If it isn't recursive we either must swap old header or call the runtime
  2503           if (header != NULL) {
  2504             if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  2505               // restore object for the slow case
  2506               end->set_obj(lockee);
  2508                 // Prevent any HandleMarkCleaner from freeing our live handles
  2509                 HandleMark __hm(THREAD);
  2510                 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
  2514           // One error is plenty
  2515           if (illegal_state_oop() == NULL && !suppress_error) {
  2517               // Prevent any HandleMarkCleaner from freeing our live handles
  2518               HandleMark __hm(THREAD);
  2519               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2521             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2522             illegal_state_oop = THREAD->pending_exception();
  2523             THREAD->clear_pending_exception();
  2526         end++;
  2528       // Unlock the method if needed
  2529       if (method_unlock_needed) {
  2530         if (base->obj() == NULL) {
  2531           // The method is already unlocked this is not good.
  2532           if (illegal_state_oop() == NULL && !suppress_error) {
  2534               // Prevent any HandleMarkCleaner from freeing our live handles
  2535               HandleMark __hm(THREAD);
  2536               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2538             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2539             illegal_state_oop = THREAD->pending_exception();
  2540             THREAD->clear_pending_exception();
  2542         } else {
  2543           //
  2544           // The initial monitor is always used for the method
  2545           // However if that slot is no longer the oop for the method it was unlocked
  2546           // and reused by something that wasn't unlocked!
  2547           //
  2548           // deopt can come in with rcvr dead because c2 knows
  2549           // its value is preserved in the monitor. So we can't use locals[0] at all
  2550           // and must use first monitor slot.
  2551           //
  2552           oop rcvr = base->obj();
  2553           if (rcvr == NULL) {
  2554             if (!suppress_error) {
  2555               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
  2556               illegal_state_oop = THREAD->pending_exception();
  2557               THREAD->clear_pending_exception();
  2559           } else {
  2560             BasicLock* lock = base->lock();
  2561             markOop header = lock->displaced_header();
  2562             base->set_obj(NULL);
  2563             // If it isn't recursive we either must swap old header or call the runtime
  2564             if (header != NULL) {
  2565               if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
  2566                 // restore object for the slow case
  2567                 base->set_obj(rcvr);
  2569                   // Prevent any HandleMarkCleaner from freeing our live handles
  2570                   HandleMark __hm(THREAD);
  2571                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
  2573                 if (THREAD->has_pending_exception()) {
  2574                   if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
  2575                   THREAD->clear_pending_exception();
  2584     //
  2585     // Notify jvmti/jvmdi
  2586     //
  2587     // NOTE: we do not notify a method_exit if we have a pending exception,
  2588     // including an exception we generate for unlocking checks.  In the former
  2589     // case, JVMDI has already been notified by our call for the exception handler
  2590     // and in both cases as far as JVMDI is concerned we have already returned.
  2591     // If we notify it again JVMDI will be all confused about how many frames
  2592     // are still on the stack (4340444).
  2593     //
  2594     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
  2595     // method_exit events whenever we leave an activation unless it was done
  2596     // for popframe. This is nothing like jvmdi. However we are passing the
  2597     // tests at the moment (apparently because they are jvmdi based) so rather
  2598     // than change this code and possibly fail tests we will leave it alone
  2599     // (with this note) in anticipation of changing the vm and the tests
  2600     // simultaneously.
  2603     //
  2604     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
  2608 #ifdef VM_JVMTI
  2609       if (_jvmti_interp_events) {
  2610         // Whenever JVMTI puts a thread in interp_only_mode, method
  2611         // entry/exit events are sent for that thread to track stack depth.
  2612         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
  2614             // Prevent any HandleMarkCleaner from freeing our live handles
  2615             HandleMark __hm(THREAD);
  2616             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
  2620 #endif /* VM_JVMTI */
  2622     //
  2623     // See if we are returning any exception
  2624     // A pending exception that was pending prior to a possible popping frame
  2625     // overrides the popping frame.
  2626     //
  2627     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
  2628     if (illegal_state_oop() != NULL || original_exception() != NULL) {
  2629       // inform the frame manager we have no result
  2630       istate->set_msg(throwing_exception);
  2631       if (illegal_state_oop() != NULL)
  2632         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
  2633       else
  2634         THREAD->set_pending_exception(original_exception(), NULL, 0);
  2635       istate->set_return_kind((Bytecodes::Code)opcode);
  2636       UPDATE_PC_AND_RETURN(0);
  2639     if (istate->msg() == popping_frame) {
  2640       // Make it simpler on the assembly code and set the message for the frame pop.
  2641       // returns
  2642       if (istate->prev() == NULL) {
  2643         // We must be returning to a deoptimized frame (because popframe only happens between
  2644         // two interpreted frames). We need to save the current arguments in C heap so that
  2645         // the deoptimized frame when it restarts can copy the arguments to its expression
  2646         // stack and re-execute the call. We also have to notify deoptimization that this
  2647         // has occurred and to pick the preserved args copy them to the deoptimized frame's
  2648         // java expression stack. Yuck.
  2649         //
  2650         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
  2651                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
  2652         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
  2654       UPDATE_PC_AND_RETURN(1);
  2655     } else {
  2656       // Normal return
  2657       // Advance the pc and return to frame manager
  2658       istate->set_msg(return_from_method);
  2659       istate->set_return_kind((Bytecodes::Code)opcode);
  2660       UPDATE_PC_AND_RETURN(1);
  2662   } /* handle_return: */
  2664 // This is really a fatal error return
  2666 finish:
  2667   DECACHE_TOS();
  2668   DECACHE_PC();
  2670   return;
  2673 /*
  2674  * All the code following this point is only produced once and is not present
  2675  * in the JVMTI version of the interpreter
  2676 */
  2678 #ifndef VM_JVMTI
  2680 // This constructor should only be used to contruct the object to signal
  2681 // interpreter initialization. All other instances should be created by
  2682 // the frame manager.
  2683 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
  2684   if (msg != initialize) ShouldNotReachHere();
  2685   _msg = msg;
  2686   _self_link = this;
  2687   _prev_link = NULL;
  2690 // Inline static functions for Java Stack and Local manipulation
  2692 // The implementations are platform dependent. We have to worry about alignment
  2693 // issues on some machines which can change on the same platform depending on
  2694 // whether it is an LP64 machine also.
  2695 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
  2696   return (address) tos[Interpreter::expr_index_at(-offset)];
  2699 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
  2700   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
  2703 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
  2704   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
  2707 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
  2708   return (oop)tos [Interpreter::expr_index_at(-offset)];
  2711 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
  2712   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
  2715 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
  2716   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
  2719 // only used for value types
  2720 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
  2721                                                         int offset) {
  2722   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2725 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
  2726                                                        int offset) {
  2727   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2730 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
  2731                                                          int offset) {
  2732   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2735 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
  2736                                                           int offset) {
  2737   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2740 // needs to be platform dep for the 32 bit platforms.
  2741 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
  2742                                                           int offset) {
  2743   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
  2746 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
  2747                                               address addr, int offset) {
  2748   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
  2749                         ((VMJavaVal64*)addr)->d);
  2752 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
  2753                                                         int offset) {
  2754   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  2755   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
  2758 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
  2759                                             address addr, int offset) {
  2760   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  2761   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
  2762                         ((VMJavaVal64*)addr)->l;
  2765 // Locals
  2767 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
  2768   return (address)locals[Interpreter::local_index_at(-offset)];
  2770 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
  2771   return (jint)locals[Interpreter::local_index_at(-offset)];
  2773 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
  2774   return (jfloat)locals[Interpreter::local_index_at(-offset)];
  2776 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
  2777   return (oop)locals[Interpreter::local_index_at(-offset)];
  2779 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
  2780   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
  2782 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
  2783   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
  2786 // Returns the address of locals value.
  2787 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
  2788   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  2790 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
  2791   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  2794 // Used for local value or returnAddress
  2795 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
  2796                                    address value, int offset) {
  2797   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
  2799 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
  2800                                    jint value, int offset) {
  2801   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2803 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
  2804                                    jfloat value, int offset) {
  2805   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2807 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
  2808                                    oop value, int offset) {
  2809   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2811 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
  2812                                    jdouble value, int offset) {
  2813   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
  2815 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
  2816                                    jlong value, int offset) {
  2817   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
  2819 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
  2820                                    address addr, int offset) {
  2821   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
  2823 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
  2824                                    address addr, int offset) {
  2825   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
  2828 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
  2829                           intptr_t* locals, int locals_offset) {
  2830   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
  2831   locals[Interpreter::local_index_at(-locals_offset)] = value;
  2835 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
  2836                                    int to_offset) {
  2837   tos[Interpreter::expr_index_at(-to_offset)] =
  2838                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
  2841 void BytecodeInterpreter::dup(intptr_t *tos) {
  2842   copy_stack_slot(tos, -1, 0);
  2844 void BytecodeInterpreter::dup2(intptr_t *tos) {
  2845   copy_stack_slot(tos, -2, 0);
  2846   copy_stack_slot(tos, -1, 1);
  2849 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
  2850   /* insert top word two down */
  2851   copy_stack_slot(tos, -1, 0);
  2852   copy_stack_slot(tos, -2, -1);
  2853   copy_stack_slot(tos, 0, -2);
  2856 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
  2857   /* insert top word three down  */
  2858   copy_stack_slot(tos, -1, 0);
  2859   copy_stack_slot(tos, -2, -1);
  2860   copy_stack_slot(tos, -3, -2);
  2861   copy_stack_slot(tos, 0, -3);
  2863 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
  2864   /* insert top 2 slots three down */
  2865   copy_stack_slot(tos, -1, 1);
  2866   copy_stack_slot(tos, -2, 0);
  2867   copy_stack_slot(tos, -3, -1);
  2868   copy_stack_slot(tos, 1, -2);
  2869   copy_stack_slot(tos, 0, -3);
  2871 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
  2872   /* insert top 2 slots four down */
  2873   copy_stack_slot(tos, -1, 1);
  2874   copy_stack_slot(tos, -2, 0);
  2875   copy_stack_slot(tos, -3, -1);
  2876   copy_stack_slot(tos, -4, -2);
  2877   copy_stack_slot(tos, 1, -3);
  2878   copy_stack_slot(tos, 0, -4);
  2882 void BytecodeInterpreter::swap(intptr_t *tos) {
  2883   // swap top two elements
  2884   intptr_t val = tos[Interpreter::expr_index_at(1)];
  2885   // Copy -2 entry to -1
  2886   copy_stack_slot(tos, -2, -1);
  2887   // Store saved -1 entry into -2
  2888   tos[Interpreter::expr_index_at(2)] = val;
  2890 // --------------------------------------------------------------------------------
  2891 // Non-product code
  2892 #ifndef PRODUCT
  2894 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
  2895   switch (msg) {
  2896      case BytecodeInterpreter::no_request:  return("no_request");
  2897      case BytecodeInterpreter::initialize:  return("initialize");
  2898      // status message to C++ interpreter
  2899      case BytecodeInterpreter::method_entry:  return("method_entry");
  2900      case BytecodeInterpreter::method_resume:  return("method_resume");
  2901      case BytecodeInterpreter::got_monitors:  return("got_monitors");
  2902      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
  2903      // requests to frame manager from C++ interpreter
  2904      case BytecodeInterpreter::call_method:  return("call_method");
  2905      case BytecodeInterpreter::return_from_method:  return("return_from_method");
  2906      case BytecodeInterpreter::more_monitors:  return("more_monitors");
  2907      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
  2908      case BytecodeInterpreter::popping_frame:  return("popping_frame");
  2909      case BytecodeInterpreter::do_osr:  return("do_osr");
  2910      // deopt
  2911      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
  2912      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
  2913      default: return("BAD MSG");
  2916 void
  2917 BytecodeInterpreter::print() {
  2918   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
  2919   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
  2920   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
  2921   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
  2923     ResourceMark rm;
  2924     char *method_name = _method->name_and_sig_as_C_string();
  2925     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
  2927   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
  2928   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
  2929   tty->print_cr("msg: %s", C_msg(this->_msg));
  2930   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
  2931   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
  2932   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
  2933   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
  2934   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
  2935   tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
  2936   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
  2937   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
  2938   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
  2939   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
  2940   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
  2941 #ifdef SPARC
  2942   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
  2943   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
  2944   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
  2945   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
  2946 #endif
  2947 #if defined(IA64) && !defined(ZERO)
  2948   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
  2949 #endif // IA64 && !ZERO
  2950   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
  2953 extern "C" {
  2954     void PI(uintptr_t arg) {
  2955         ((BytecodeInterpreter*)arg)->print();
  2958 #endif // PRODUCT
  2960 #endif // JVMTI
  2961 #endif // CC_INTERP

mercurial