src/cpu/sparc/vm/stubGenerator_sparc.cpp

Fri, 30 Apr 2010 08:37:24 -0700

author
twisti
date
Fri, 30 Apr 2010 08:37:24 -0700
changeset 1861
2338d41fbd81
parent 1858
c640000b7cc1
child 1907
c18cbe5936b8
child 1919
61b2245abf36
permissions
-rw-r--r--

6943304: remove tagged stack interpreter
Reviewed-by: coleenp, never, gbenson

     1 /*
     2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_stubGenerator_sparc.cpp.incl"
    28 // Declaration and definition of StubGenerator (no .hpp file).
    29 // For a more detailed description of the stub routine structure
    30 // see the comment in stubRoutines.hpp.
    32 #define __ _masm->
    34 #ifdef PRODUCT
    35 #define BLOCK_COMMENT(str) /* nothing */
    36 #else
    37 #define BLOCK_COMMENT(str) __ block_comment(str)
    38 #endif
    40 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    42 // Note:  The register L7 is used as L7_thread_cache, and may not be used
    43 //        any other way within this module.
    46 static const Register& Lstub_temp = L2;
    48 // -------------------------------------------------------------------------------------------------------------------------
    49 // Stub Code definitions
    51 static address handle_unsafe_access() {
    52   JavaThread* thread = JavaThread::current();
    53   address pc  = thread->saved_exception_pc();
    54   address npc = thread->saved_exception_npc();
    55   // pc is the instruction which we must emulate
    56   // doing a no-op is fine:  return garbage from the load
    58   // request an async exception
    59   thread->set_pending_unsafe_access_error();
    61   // return address of next instruction to execute
    62   return npc;
    63 }
    65 class StubGenerator: public StubCodeGenerator {
    66  private:
    68 #ifdef PRODUCT
    69 #define inc_counter_np(a,b,c) (0)
    70 #else
    71 #define inc_counter_np(counter, t1, t2) \
    72   BLOCK_COMMENT("inc_counter " #counter); \
    73   __ inc_counter(&counter, t1, t2);
    74 #endif
    76   //----------------------------------------------------------------------------------------------------
    77   // Call stubs are used to call Java from C
    79   address generate_call_stub(address& return_pc) {
    80     StubCodeMark mark(this, "StubRoutines", "call_stub");
    81     address start = __ pc();
    83     // Incoming arguments:
    84     //
    85     // o0         : call wrapper address
    86     // o1         : result (address)
    87     // o2         : result type
    88     // o3         : method
    89     // o4         : (interpreter) entry point
    90     // o5         : parameters (address)
    91     // [sp + 0x5c]: parameter size (in words)
    92     // [sp + 0x60]: thread
    93     //
    94     // +---------------+ <--- sp + 0
    95     // |               |
    96     // . reg save area .
    97     // |               |
    98     // +---------------+ <--- sp + 0x40
    99     // |               |
   100     // . extra 7 slots .
   101     // |               |
   102     // +---------------+ <--- sp + 0x5c
   103     // |  param. size  |
   104     // +---------------+ <--- sp + 0x60
   105     // |    thread     |
   106     // +---------------+
   107     // |               |
   109     // note: if the link argument position changes, adjust
   110     //       the code in frame::entry_frame_call_wrapper()
   112     const Argument link           = Argument(0, false); // used only for GC
   113     const Argument result         = Argument(1, false);
   114     const Argument result_type    = Argument(2, false);
   115     const Argument method         = Argument(3, false);
   116     const Argument entry_point    = Argument(4, false);
   117     const Argument parameters     = Argument(5, false);
   118     const Argument parameter_size = Argument(6, false);
   119     const Argument thread         = Argument(7, false);
   121     // setup thread register
   122     __ ld_ptr(thread.as_address(), G2_thread);
   123     __ reinit_heapbase();
   125 #ifdef ASSERT
   126     // make sure we have no pending exceptions
   127     { const Register t = G3_scratch;
   128       Label L;
   129       __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
   130       __ br_null(t, false, Assembler::pt, L);
   131       __ delayed()->nop();
   132       __ stop("StubRoutines::call_stub: entered with pending exception");
   133       __ bind(L);
   134     }
   135 #endif
   137     // create activation frame & allocate space for parameters
   138     { const Register t = G3_scratch;
   139       __ ld_ptr(parameter_size.as_address(), t);                // get parameter size (in words)
   140       __ add(t, frame::memory_parameter_word_sp_offset, t);     // add space for save area (in words)
   141       __ round_to(t, WordsPerLong);                             // make sure it is multiple of 2 (in words)
   142       __ sll(t, Interpreter::logStackElementSize, t);           // compute number of bytes
   143       __ neg(t);                                                // negate so it can be used with save
   144       __ save(SP, t, SP);                                       // setup new frame
   145     }
   147     // +---------------+ <--- sp + 0
   148     // |               |
   149     // . reg save area .
   150     // |               |
   151     // +---------------+ <--- sp + 0x40
   152     // |               |
   153     // . extra 7 slots .
   154     // |               |
   155     // +---------------+ <--- sp + 0x5c
   156     // |  empty slot   |      (only if parameter size is even)
   157     // +---------------+
   158     // |               |
   159     // .  parameters   .
   160     // |               |
   161     // +---------------+ <--- fp + 0
   162     // |               |
   163     // . reg save area .
   164     // |               |
   165     // +---------------+ <--- fp + 0x40
   166     // |               |
   167     // . extra 7 slots .
   168     // |               |
   169     // +---------------+ <--- fp + 0x5c
   170     // |  param. size  |
   171     // +---------------+ <--- fp + 0x60
   172     // |    thread     |
   173     // +---------------+
   174     // |               |
   176     // pass parameters if any
   177     BLOCK_COMMENT("pass parameters if any");
   178     { const Register src = parameters.as_in().as_register();
   179       const Register dst = Lentry_args;
   180       const Register tmp = G3_scratch;
   181       const Register cnt = G4_scratch;
   183       // test if any parameters & setup of Lentry_args
   184       Label exit;
   185       __ ld_ptr(parameter_size.as_in().as_address(), cnt);      // parameter counter
   186       __ add( FP, STACK_BIAS, dst );
   187       __ tst(cnt);
   188       __ br(Assembler::zero, false, Assembler::pn, exit);
   189       __ delayed()->sub(dst, BytesPerWord, dst);                 // setup Lentry_args
   191       // copy parameters if any
   192       Label loop;
   193       __ BIND(loop);
   194       // Store parameter value
   195       __ ld_ptr(src, 0, tmp);
   196       __ add(src, BytesPerWord, src);
   197       __ st_ptr(tmp, dst, 0);
   198       __ deccc(cnt);
   199       __ br(Assembler::greater, false, Assembler::pt, loop);
   200       __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
   202       // done
   203       __ BIND(exit);
   204     }
   206     // setup parameters, method & call Java function
   207 #ifdef ASSERT
   208     // layout_activation_impl checks it's notion of saved SP against
   209     // this register, so if this changes update it as well.
   210     const Register saved_SP = Lscratch;
   211     __ mov(SP, saved_SP);                               // keep track of SP before call
   212 #endif
   214     // setup parameters
   215     const Register t = G3_scratch;
   216     __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
   217     __ sll(t, Interpreter::logStackElementSize, t);    // compute number of bytes
   218     __ sub(FP, t, Gargs);                              // setup parameter pointer
   219 #ifdef _LP64
   220     __ add( Gargs, STACK_BIAS, Gargs );                // Account for LP64 stack bias
   221 #endif
   222     __ mov(SP, O5_savedSP);
   225     // do the call
   226     //
   227     // the following register must be setup:
   228     //
   229     // G2_thread
   230     // G5_method
   231     // Gargs
   232     BLOCK_COMMENT("call Java function");
   233     __ jmpl(entry_point.as_in().as_register(), G0, O7);
   234     __ delayed()->mov(method.as_in().as_register(), G5_method);   // setup method
   236     BLOCK_COMMENT("call_stub_return_address:");
   237     return_pc = __ pc();
   239     // The callee, if it wasn't interpreted, can return with SP changed so
   240     // we can no longer assert of change of SP.
   242     // store result depending on type
   243     // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
   244     //  is treated as T_INT)
   245     { const Register addr = result     .as_in().as_register();
   246       const Register type = result_type.as_in().as_register();
   247       Label is_long, is_float, is_double, is_object, exit;
   248       __            cmp(type, T_OBJECT);  __ br(Assembler::equal, false, Assembler::pn, is_object);
   249       __ delayed()->cmp(type, T_FLOAT);   __ br(Assembler::equal, false, Assembler::pn, is_float);
   250       __ delayed()->cmp(type, T_DOUBLE);  __ br(Assembler::equal, false, Assembler::pn, is_double);
   251       __ delayed()->cmp(type, T_LONG);    __ br(Assembler::equal, false, Assembler::pn, is_long);
   252       __ delayed()->nop();
   254       // store int result
   255       __ st(O0, addr, G0);
   257       __ BIND(exit);
   258       __ ret();
   259       __ delayed()->restore();
   261       __ BIND(is_object);
   262       __ ba(false, exit);
   263       __ delayed()->st_ptr(O0, addr, G0);
   265       __ BIND(is_float);
   266       __ ba(false, exit);
   267       __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
   269       __ BIND(is_double);
   270       __ ba(false, exit);
   271       __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
   273       __ BIND(is_long);
   274 #ifdef _LP64
   275       __ ba(false, exit);
   276       __ delayed()->st_long(O0, addr, G0);      // store entire long
   277 #else
   278 #if defined(COMPILER2)
   279   // All return values are where we want them, except for Longs.  C2 returns
   280   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   281   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   282   // build we simply always use G1.
   283   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   284   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   285   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   287       __ ba(false, exit);
   288       __ delayed()->stx(G1, addr, G0);  // store entire long
   289 #else
   290       __ st(O1, addr, BytesPerInt);
   291       __ ba(false, exit);
   292       __ delayed()->st(O0, addr, G0);
   293 #endif /* COMPILER2 */
   294 #endif /* _LP64 */
   295      }
   296      return start;
   297   }
   300   //----------------------------------------------------------------------------------------------------
   301   // Return point for a Java call if there's an exception thrown in Java code.
   302   // The exception is caught and transformed into a pending exception stored in
   303   // JavaThread that can be tested from within the VM.
   304   //
   305   // Oexception: exception oop
   307   address generate_catch_exception() {
   308     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   310     address start = __ pc();
   311     // verify that thread corresponds
   312     __ verify_thread();
   314     const Register& temp_reg = Gtemp;
   315     Address pending_exception_addr    (G2_thread, Thread::pending_exception_offset());
   316     Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset   ());
   317     Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset   ());
   319     // set pending exception
   320     __ verify_oop(Oexception);
   321     __ st_ptr(Oexception, pending_exception_addr);
   322     __ set((intptr_t)__FILE__, temp_reg);
   323     __ st_ptr(temp_reg, exception_file_offset_addr);
   324     __ set((intptr_t)__LINE__, temp_reg);
   325     __ st(temp_reg, exception_line_offset_addr);
   327     // complete return to VM
   328     assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
   330     AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
   331     __ jump_to(stub_ret, temp_reg);
   332     __ delayed()->nop();
   334     return start;
   335   }
   338   //----------------------------------------------------------------------------------------------------
   339   // Continuation point for runtime calls returning with a pending exception
   340   // The pending exception check happened in the runtime or native call stub
   341   // The pending exception in Thread is converted into a Java-level exception
   342   //
   343   // Contract with Java-level exception handler: O0 = exception
   344   //                                             O1 = throwing pc
   346   address generate_forward_exception() {
   347     StubCodeMark mark(this, "StubRoutines", "forward_exception");
   348     address start = __ pc();
   350     // Upon entry, O7 has the return address returning into Java
   351     // (interpreted or compiled) code; i.e. the return address
   352     // becomes the throwing pc.
   354     const Register& handler_reg = Gtemp;
   356     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   358 #ifdef ASSERT
   359     // make sure that this code is only executed if there is a pending exception
   360     { Label L;
   361       __ ld_ptr(exception_addr, Gtemp);
   362       __ br_notnull(Gtemp, false, Assembler::pt, L);
   363       __ delayed()->nop();
   364       __ stop("StubRoutines::forward exception: no pending exception (1)");
   365       __ bind(L);
   366     }
   367 #endif
   369     // compute exception handler into handler_reg
   370     __ get_thread();
   371     __ ld_ptr(exception_addr, Oexception);
   372     __ verify_oop(Oexception);
   373     __ save_frame(0);             // compensates for compiler weakness
   374     __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
   375     BLOCK_COMMENT("call exception_handler_for_return_address");
   376     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
   377     __ mov(O0, handler_reg);
   378     __ restore();                 // compensates for compiler weakness
   380     __ ld_ptr(exception_addr, Oexception);
   381     __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
   383 #ifdef ASSERT
   384     // make sure exception is set
   385     { Label L;
   386       __ br_notnull(Oexception, false, Assembler::pt, L);
   387       __ delayed()->nop();
   388       __ stop("StubRoutines::forward exception: no pending exception (2)");
   389       __ bind(L);
   390     }
   391 #endif
   392     // jump to exception handler
   393     __ jmp(handler_reg, 0);
   394     // clear pending exception
   395     __ delayed()->st_ptr(G0, exception_addr);
   397     return start;
   398   }
   401   //------------------------------------------------------------------------------------------------------------------------
   402   // Continuation point for throwing of implicit exceptions that are not handled in
   403   // the current activation. Fabricates an exception oop and initiates normal
   404   // exception dispatching in this frame. Only callee-saved registers are preserved
   405   // (through the normal register window / RegisterMap handling).
   406   // If the compiler needs all registers to be preserved between the fault
   407   // point and the exception handler then it must assume responsibility for that in
   408   // AbstractCompiler::continuation_for_implicit_null_exception or
   409   // continuation_for_implicit_division_by_zero_exception. All other implicit
   410   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
   411   // either at call sites or otherwise assume that stack unwinding will be initiated,
   412   // so caller saved registers were assumed volatile in the compiler.
   414   // Note that we generate only this stub into a RuntimeStub, because it needs to be
   415   // properly traversed and ignored during GC, so we change the meaning of the "__"
   416   // macro within this method.
   417 #undef __
   418 #define __ masm->
   420   address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
   421 #ifdef ASSERT
   422     int insts_size = VerifyThread ? 1 * K : 600;
   423 #else
   424     int insts_size = VerifyThread ? 1 * K : 256;
   425 #endif /* ASSERT */
   426     int locs_size  = 32;
   428     CodeBuffer      code(name, insts_size, locs_size);
   429     MacroAssembler* masm = new MacroAssembler(&code);
   431     __ verify_thread();
   433     // This is an inlined and slightly modified version of call_VM
   434     // which has the ability to fetch the return PC out of thread-local storage
   435     __ assert_not_delayed();
   437     // Note that we always push a frame because on the SPARC
   438     // architecture, for all of our implicit exception kinds at call
   439     // sites, the implicit exception is taken before the callee frame
   440     // is pushed.
   441     __ save_frame(0);
   443     int frame_complete = __ offset();
   445     if (restore_saved_exception_pc) {
   446       __ ld_ptr(G2_thread, JavaThread::saved_exception_pc_offset(), I7);
   447       __ sub(I7, frame::pc_return_offset, I7);
   448     }
   450     // Note that we always have a runtime stub frame on the top of stack by this point
   451     Register last_java_sp = SP;
   452     // 64-bit last_java_sp is biased!
   453     __ set_last_Java_frame(last_java_sp, G0);
   454     if (VerifyThread)  __ mov(G2_thread, O0); // about to be smashed; pass early
   455     __ save_thread(noreg);
   456     // do the call
   457     BLOCK_COMMENT("call runtime_entry");
   458     __ call(runtime_entry, relocInfo::runtime_call_type);
   459     if (!VerifyThread)
   460       __ delayed()->mov(G2_thread, O0);  // pass thread as first argument
   461     else
   462       __ delayed()->nop();             // (thread already passed)
   463     __ restore_thread(noreg);
   464     __ reset_last_Java_frame();
   466     // check for pending exceptions. use Gtemp as scratch register.
   467 #ifdef ASSERT
   468     Label L;
   470     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   471     Register scratch_reg = Gtemp;
   472     __ ld_ptr(exception_addr, scratch_reg);
   473     __ br_notnull(scratch_reg, false, Assembler::pt, L);
   474     __ delayed()->nop();
   475     __ should_not_reach_here();
   476     __ bind(L);
   477 #endif // ASSERT
   478     BLOCK_COMMENT("call forward_exception_entry");
   479     __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
   480     // we use O7 linkage so that forward_exception_entry has the issuing PC
   481     __ delayed()->restore();
   483     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
   484     return stub->entry_point();
   485   }
   487 #undef __
   488 #define __ _masm->
   491   // Generate a routine that sets all the registers so we
   492   // can tell if the stop routine prints them correctly.
   493   address generate_test_stop() {
   494     StubCodeMark mark(this, "StubRoutines", "test_stop");
   495     address start = __ pc();
   497     int i;
   499     __ save_frame(0);
   501     static jfloat zero = 0.0, one = 1.0;
   503     // put addr in L0, then load through L0 to F0
   504     __ set((intptr_t)&zero, L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F0);
   505     __ set((intptr_t)&one,  L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
   507     // use add to put 2..18 in F2..F18
   508     for ( i = 2;  i <= 18;  ++i ) {
   509       __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1),  as_FloatRegister(i));
   510     }
   512     // Now put double 2 in F16, double 18 in F18
   513     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
   514     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
   516     // use add to put 20..32 in F20..F32
   517     for (i = 20; i < 32; i += 2) {
   518       __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2),  as_FloatRegister(i));
   519     }
   521     // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
   522     for ( i = 0; i < 8; ++i ) {
   523       if (i < 6) {
   524         __ set(     i, as_iRegister(i));
   525         __ set(16 + i, as_oRegister(i));
   526         __ set(24 + i, as_gRegister(i));
   527       }
   528       __ set( 8 + i, as_lRegister(i));
   529     }
   531     __ stop("testing stop");
   534     __ ret();
   535     __ delayed()->restore();
   537     return start;
   538   }
   541   address generate_stop_subroutine() {
   542     StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
   543     address start = __ pc();
   545     __ stop_subroutine();
   547     return start;
   548   }
   550   address generate_flush_callers_register_windows() {
   551     StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
   552     address start = __ pc();
   554     __ flush_windows();
   555     __ retl(false);
   556     __ delayed()->add( FP, STACK_BIAS, O0 );
   557     // The returned value must be a stack pointer whose register save area
   558     // is flushed, and will stay flushed while the caller executes.
   560     return start;
   561   }
   563   // Helper functions for v8 atomic operations.
   564   //
   565   void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
   566     if (mark_oop_reg == noreg) {
   567       address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
   568       __ set((intptr_t)lock_ptr, lock_ptr_reg);
   569     } else {
   570       assert(scratch_reg != noreg, "just checking");
   571       address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
   572       __ set((intptr_t)lock_ptr, lock_ptr_reg);
   573       __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
   574       __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
   575     }
   576   }
   578   void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
   580     get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
   581     __ set(StubRoutines::Sparc::locked, lock_reg);
   582     // Initialize yield counter
   583     __ mov(G0,yield_reg);
   585     __ BIND(retry);
   586     __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
   587     __ br(Assembler::less, false, Assembler::pt, dontyield);
   588     __ delayed()->nop();
   590     // This code can only be called from inside the VM, this
   591     // stub is only invoked from Atomic::add().  We do not
   592     // want to use call_VM, because _last_java_sp and such
   593     // must already be set.
   594     //
   595     // Save the regs and make space for a C call
   596     __ save(SP, -96, SP);
   597     __ save_all_globals_into_locals();
   598     BLOCK_COMMENT("call os::naked_sleep");
   599     __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
   600     __ delayed()->nop();
   601     __ restore_globals_from_locals();
   602     __ restore();
   603     // reset the counter
   604     __ mov(G0,yield_reg);
   606     __ BIND(dontyield);
   608     // try to get lock
   609     __ swap(lock_ptr_reg, 0, lock_reg);
   611     // did we get the lock?
   612     __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
   613     __ br(Assembler::notEqual, true, Assembler::pn, retry);
   614     __ delayed()->add(yield_reg,1,yield_reg);
   616     // yes, got lock. do the operation here.
   617   }
   619   void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
   620     __ st(lock_reg, lock_ptr_reg, 0); // unlock
   621   }
   623   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
   624   //
   625   // Arguments :
   626   //
   627   //      exchange_value: O0
   628   //      dest:           O1
   629   //
   630   // Results:
   631   //
   632   //     O0: the value previously stored in dest
   633   //
   634   address generate_atomic_xchg() {
   635     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   636     address start = __ pc();
   638     if (UseCASForSwap) {
   639       // Use CAS instead of swap, just in case the MP hardware
   640       // prefers to work with just one kind of synch. instruction.
   641       Label retry;
   642       __ BIND(retry);
   643       __ mov(O0, O3);       // scratch copy of exchange value
   644       __ ld(O1, 0, O2);     // observe the previous value
   645       // try to replace O2 with O3
   646       __ cas_under_lock(O1, O2, O3,
   647       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
   648       __ cmp(O2, O3);
   649       __ br(Assembler::notEqual, false, Assembler::pn, retry);
   650       __ delayed()->nop();
   652       __ retl(false);
   653       __ delayed()->mov(O2, O0);  // report previous value to caller
   655     } else {
   656       if (VM_Version::v9_instructions_work()) {
   657         __ retl(false);
   658         __ delayed()->swap(O1, 0, O0);
   659       } else {
   660         const Register& lock_reg = O2;
   661         const Register& lock_ptr_reg = O3;
   662         const Register& yield_reg = O4;
   664         Label retry;
   665         Label dontyield;
   667         generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   668         // got the lock, do the swap
   669         __ swap(O1, 0, O0);
   671         generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   672         __ retl(false);
   673         __ delayed()->nop();
   674       }
   675     }
   677     return start;
   678   }
   681   // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
   682   //
   683   // Arguments :
   684   //
   685   //      exchange_value: O0
   686   //      dest:           O1
   687   //      compare_value:  O2
   688   //
   689   // Results:
   690   //
   691   //     O0: the value previously stored in dest
   692   //
   693   // Overwrites (v8): O3,O4,O5
   694   //
   695   address generate_atomic_cmpxchg() {
   696     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   697     address start = __ pc();
   699     // cmpxchg(dest, compare_value, exchange_value)
   700     __ cas_under_lock(O1, O2, O0,
   701       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
   702     __ retl(false);
   703     __ delayed()->nop();
   705     return start;
   706   }
   708   // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
   709   //
   710   // Arguments :
   711   //
   712   //      exchange_value: O1:O0
   713   //      dest:           O2
   714   //      compare_value:  O4:O3
   715   //
   716   // Results:
   717   //
   718   //     O1:O0: the value previously stored in dest
   719   //
   720   // This only works on V9, on V8 we don't generate any
   721   // code and just return NULL.
   722   //
   723   // Overwrites: G1,G2,G3
   724   //
   725   address generate_atomic_cmpxchg_long() {
   726     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   727     address start = __ pc();
   729     if (!VM_Version::supports_cx8())
   730         return NULL;;
   731     __ sllx(O0, 32, O0);
   732     __ srl(O1, 0, O1);
   733     __ or3(O0,O1,O0);      // O0 holds 64-bit value from compare_value
   734     __ sllx(O3, 32, O3);
   735     __ srl(O4, 0, O4);
   736     __ or3(O3,O4,O3);     // O3 holds 64-bit value from exchange_value
   737     __ casx(O2, O3, O0);
   738     __ srl(O0, 0, O1);    // unpacked return value in O1:O0
   739     __ retl(false);
   740     __ delayed()->srlx(O0, 32, O0);
   742     return start;
   743   }
   746   // Support for jint Atomic::add(jint add_value, volatile jint* dest).
   747   //
   748   // Arguments :
   749   //
   750   //      add_value: O0   (e.g., +1 or -1)
   751   //      dest:      O1
   752   //
   753   // Results:
   754   //
   755   //     O0: the new value stored in dest
   756   //
   757   // Overwrites (v9): O3
   758   // Overwrites (v8): O3,O4,O5
   759   //
   760   address generate_atomic_add() {
   761     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   762     address start = __ pc();
   763     __ BIND(_atomic_add_stub);
   765     if (VM_Version::v9_instructions_work()) {
   766       Label(retry);
   767       __ BIND(retry);
   769       __ lduw(O1, 0, O2);
   770       __ add(O0,   O2, O3);
   771       __ cas(O1,   O2, O3);
   772       __ cmp(      O2, O3);
   773       __ br(Assembler::notEqual, false, Assembler::pn, retry);
   774       __ delayed()->nop();
   775       __ retl(false);
   776       __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
   777     } else {
   778       const Register& lock_reg = O2;
   779       const Register& lock_ptr_reg = O3;
   780       const Register& value_reg = O4;
   781       const Register& yield_reg = O5;
   783       Label(retry);
   784       Label(dontyield);
   786       generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   787       // got lock, do the increment
   788       __ ld(O1, 0, value_reg);
   789       __ add(O0, value_reg, value_reg);
   790       __ st(value_reg, O1, 0);
   792       // %%% only for RMO and PSO
   793       __ membar(Assembler::StoreStore);
   795       generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   797       __ retl(false);
   798       __ delayed()->mov(value_reg, O0);
   799     }
   801     return start;
   802   }
   803   Label _atomic_add_stub;  // called from other stubs
   806   //------------------------------------------------------------------------------------------------------------------------
   807   // The following routine generates a subroutine to throw an asynchronous
   808   // UnknownError when an unsafe access gets a fault that could not be
   809   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   810   //
   811   // Arguments :
   812   //
   813   //      trapping PC:    O7
   814   //
   815   // Results:
   816   //     posts an asynchronous exception, skips the trapping instruction
   817   //
   819   address generate_handler_for_unsafe_access() {
   820     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   821     address start = __ pc();
   823     const int preserve_register_words = (64 * 2);
   824     Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
   826     Register Lthread = L7_thread_cache;
   827     int i;
   829     __ save_frame(0);
   830     __ mov(G1, L1);
   831     __ mov(G2, L2);
   832     __ mov(G3, L3);
   833     __ mov(G4, L4);
   834     __ mov(G5, L5);
   835     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
   836       __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
   837     }
   839     address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
   840     BLOCK_COMMENT("call handle_unsafe_access");
   841     __ call(entry_point, relocInfo::runtime_call_type);
   842     __ delayed()->nop();
   844     __ mov(L1, G1);
   845     __ mov(L2, G2);
   846     __ mov(L3, G3);
   847     __ mov(L4, G4);
   848     __ mov(L5, G5);
   849     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
   850       __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
   851     }
   853     __ verify_thread();
   855     __ jmp(O0, 0);
   856     __ delayed()->restore();
   858     return start;
   859   }
   862   // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
   863   // Arguments :
   864   //
   865   //      ret  : O0, returned
   866   //      icc/xcc: set as O0 (depending on wordSize)
   867   //      sub  : O1, argument, not changed
   868   //      super: O2, argument, not changed
   869   //      raddr: O7, blown by call
   870   address generate_partial_subtype_check() {
   871     __ align(CodeEntryAlignment);
   872     StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
   873     address start = __ pc();
   874     Label miss;
   876 #if defined(COMPILER2) && !defined(_LP64)
   877     // Do not use a 'save' because it blows the 64-bit O registers.
   878     __ add(SP,-4*wordSize,SP);  // Make space for 4 temps (stack must be 2 words aligned)
   879     __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
   880     __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
   881     __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
   882     __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
   883     Register Rret   = O0;
   884     Register Rsub   = O1;
   885     Register Rsuper = O2;
   886 #else
   887     __ save_frame(0);
   888     Register Rret   = I0;
   889     Register Rsub   = I1;
   890     Register Rsuper = I2;
   891 #endif
   893     Register L0_ary_len = L0;
   894     Register L1_ary_ptr = L1;
   895     Register L2_super   = L2;
   896     Register L3_index   = L3;
   898     __ check_klass_subtype_slow_path(Rsub, Rsuper,
   899                                      L0, L1, L2, L3,
   900                                      NULL, &miss);
   902     // Match falls through here.
   903     __ addcc(G0,0,Rret);        // set Z flags, Z result
   905 #if defined(COMPILER2) && !defined(_LP64)
   906     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
   907     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
   908     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
   909     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
   910     __ retl();                  // Result in Rret is zero; flags set to Z
   911     __ delayed()->add(SP,4*wordSize,SP);
   912 #else
   913     __ ret();                   // Result in Rret is zero; flags set to Z
   914     __ delayed()->restore();
   915 #endif
   917     __ BIND(miss);
   918     __ addcc(G0,1,Rret);        // set NZ flags, NZ result
   920 #if defined(COMPILER2) && !defined(_LP64)
   921     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
   922     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
   923     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
   924     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
   925     __ retl();                  // Result in Rret is != 0; flags set to NZ
   926     __ delayed()->add(SP,4*wordSize,SP);
   927 #else
   928     __ ret();                   // Result in Rret is != 0; flags set to NZ
   929     __ delayed()->restore();
   930 #endif
   932     return start;
   933   }
   936   // Called from MacroAssembler::verify_oop
   937   //
   938   address generate_verify_oop_subroutine() {
   939     StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
   941     address start = __ pc();
   943     __ verify_oop_subroutine();
   945     return start;
   946   }
   948   static address disjoint_byte_copy_entry;
   949   static address disjoint_short_copy_entry;
   950   static address disjoint_int_copy_entry;
   951   static address disjoint_long_copy_entry;
   952   static address disjoint_oop_copy_entry;
   954   static address byte_copy_entry;
   955   static address short_copy_entry;
   956   static address int_copy_entry;
   957   static address long_copy_entry;
   958   static address oop_copy_entry;
   960   static address checkcast_copy_entry;
   962   //
   963   // Verify that a register contains clean 32-bits positive value
   964   // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
   965   //
   966   //  Input:
   967   //    Rint  -  32-bits value
   968   //    Rtmp  -  scratch
   969   //
   970   void assert_clean_int(Register Rint, Register Rtmp) {
   971 #if defined(ASSERT) && defined(_LP64)
   972     __ signx(Rint, Rtmp);
   973     __ cmp(Rint, Rtmp);
   974     __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
   975 #endif
   976   }
   978   //
   979   //  Generate overlap test for array copy stubs
   980   //
   981   //  Input:
   982   //    O0    -  array1
   983   //    O1    -  array2
   984   //    O2    -  element count
   985   //
   986   //  Kills temps:  O3, O4
   987   //
   988   void array_overlap_test(address no_overlap_target, int log2_elem_size) {
   989     assert(no_overlap_target != NULL, "must be generated");
   990     array_overlap_test(no_overlap_target, NULL, log2_elem_size);
   991   }
   992   void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
   993     array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
   994   }
   995   void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
   996     const Register from       = O0;
   997     const Register to         = O1;
   998     const Register count      = O2;
   999     const Register to_from    = O3; // to - from
  1000     const Register byte_count = O4; // count << log2_elem_size
  1002       __ subcc(to, from, to_from);
  1003       __ sll_ptr(count, log2_elem_size, byte_count);
  1004       if (NOLp == NULL)
  1005         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
  1006       else
  1007         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
  1008       __ delayed()->cmp(to_from, byte_count);
  1009       if (NOLp == NULL)
  1010         __ brx(Assembler::greaterEqual, false, Assembler::pt, no_overlap_target);
  1011       else
  1012         __ brx(Assembler::greaterEqual, false, Assembler::pt, (*NOLp));
  1013       __ delayed()->nop();
  1016   //
  1017   //  Generate pre-write barrier for array.
  1018   //
  1019   //  Input:
  1020   //     addr     - register containing starting address
  1021   //     count    - register containing element count
  1022   //     tmp      - scratch register
  1023   //
  1024   //  The input registers are overwritten.
  1025   //
  1026   void gen_write_ref_array_pre_barrier(Register addr, Register count) {
  1027     BarrierSet* bs = Universe::heap()->barrier_set();
  1028     if (bs->has_write_ref_pre_barrier()) {
  1029       assert(bs->has_write_ref_array_pre_opt(),
  1030              "Else unsupported barrier set.");
  1032       __ save_frame(0);
  1033       // Save the necessary global regs... will be used after.
  1034       if (addr->is_global()) {
  1035         __ mov(addr, L0);
  1037       if (count->is_global()) {
  1038         __ mov(count, L1);
  1040       __ mov(addr->after_save(), O0);
  1041       // Get the count into O1
  1042       __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
  1043       __ delayed()->mov(count->after_save(), O1);
  1044       if (addr->is_global()) {
  1045         __ mov(L0, addr);
  1047       if (count->is_global()) {
  1048         __ mov(L1, count);
  1050       __ restore();
  1053   //
  1054   //  Generate post-write barrier for array.
  1055   //
  1056   //  Input:
  1057   //     addr     - register containing starting address
  1058   //     count    - register containing element count
  1059   //     tmp      - scratch register
  1060   //
  1061   //  The input registers are overwritten.
  1062   //
  1063   void gen_write_ref_array_post_barrier(Register addr, Register count,
  1064                                    Register tmp) {
  1065     BarrierSet* bs = Universe::heap()->barrier_set();
  1067     switch (bs->kind()) {
  1068       case BarrierSet::G1SATBCT:
  1069       case BarrierSet::G1SATBCTLogging:
  1071           // Get some new fresh output registers.
  1072           __ save_frame(0);
  1073           __ mov(addr->after_save(), O0);
  1074           __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
  1075           __ delayed()->mov(count->after_save(), O1);
  1076           __ restore();
  1078         break;
  1079       case BarrierSet::CardTableModRef:
  1080       case BarrierSet::CardTableExtension:
  1082           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1083           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1084           assert_different_registers(addr, count, tmp);
  1086           Label L_loop;
  1088           __ sll_ptr(count, LogBytesPerHeapOop, count);
  1089           __ sub(count, BytesPerHeapOop, count);
  1090           __ add(count, addr, count);
  1091           // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
  1092           __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
  1093           __ srl_ptr(count, CardTableModRefBS::card_shift, count);
  1094           __ sub(count, addr, count);
  1095           AddressLiteral rs(ct->byte_map_base);
  1096           __ set(rs, tmp);
  1097         __ BIND(L_loop);
  1098           __ stb(G0, tmp, addr);
  1099           __ subcc(count, 1, count);
  1100           __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1101           __ delayed()->add(addr, 1, addr);
  1103         break;
  1104       case BarrierSet::ModRef:
  1105         break;
  1106       default:
  1107         ShouldNotReachHere();
  1112   // Copy big chunks forward with shift
  1113   //
  1114   // Inputs:
  1115   //   from      - source arrays
  1116   //   to        - destination array aligned to 8-bytes
  1117   //   count     - elements count to copy >= the count equivalent to 16 bytes
  1118   //   count_dec - elements count's decrement equivalent to 16 bytes
  1119   //   L_copy_bytes - copy exit label
  1120   //
  1121   void copy_16_bytes_forward_with_shift(Register from, Register to,
  1122                      Register count, int count_dec, Label& L_copy_bytes) {
  1123     Label L_loop, L_aligned_copy, L_copy_last_bytes;
  1125     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
  1126       __ andcc(from, 7, G1); // misaligned bytes
  1127       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1128       __ delayed()->nop();
  1130     const Register left_shift  = G1; // left  shift bit counter
  1131     const Register right_shift = G5; // right shift bit counter
  1133       __ sll(G1, LogBitsPerByte, left_shift);
  1134       __ mov(64, right_shift);
  1135       __ sub(right_shift, left_shift, right_shift);
  1137     //
  1138     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1139     // to form 2 aligned 8-bytes chunks to store.
  1140     //
  1141       __ deccc(count, count_dec); // Pre-decrement 'count'
  1142       __ andn(from, 7, from);     // Align address
  1143       __ ldx(from, 0, O3);
  1144       __ inc(from, 8);
  1145       __ align(OptoLoopAlignment);
  1146     __ BIND(L_loop);
  1147       __ ldx(from, 0, O4);
  1148       __ deccc(count, count_dec); // Can we do next iteration after this one?
  1149       __ ldx(from, 8, G4);
  1150       __ inc(to, 16);
  1151       __ inc(from, 16);
  1152       __ sllx(O3, left_shift,  O3);
  1153       __ srlx(O4, right_shift, G3);
  1154       __ bset(G3, O3);
  1155       __ stx(O3, to, -16);
  1156       __ sllx(O4, left_shift,  O4);
  1157       __ srlx(G4, right_shift, G3);
  1158       __ bset(G3, O4);
  1159       __ stx(O4, to, -8);
  1160       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1161       __ delayed()->mov(G4, O3);
  1163       __ inccc(count, count_dec>>1 ); // + 8 bytes
  1164       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
  1165       __ delayed()->inc(count, count_dec>>1); // restore 'count'
  1167       // copy 8 bytes, part of them already loaded in O3
  1168       __ ldx(from, 0, O4);
  1169       __ inc(to, 8);
  1170       __ inc(from, 8);
  1171       __ sllx(O3, left_shift,  O3);
  1172       __ srlx(O4, right_shift, G3);
  1173       __ bset(O3, G3);
  1174       __ stx(G3, to, -8);
  1176     __ BIND(L_copy_last_bytes);
  1177       __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
  1178       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
  1179       __ delayed()->sub(from, right_shift, from);       // restore address
  1181     __ BIND(L_aligned_copy);
  1184   // Copy big chunks backward with shift
  1185   //
  1186   // Inputs:
  1187   //   end_from  - source arrays end address
  1188   //   end_to    - destination array end address aligned to 8-bytes
  1189   //   count     - elements count to copy >= the count equivalent to 16 bytes
  1190   //   count_dec - elements count's decrement equivalent to 16 bytes
  1191   //   L_aligned_copy - aligned copy exit label
  1192   //   L_copy_bytes   - copy exit label
  1193   //
  1194   void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
  1195                      Register count, int count_dec,
  1196                      Label& L_aligned_copy, Label& L_copy_bytes) {
  1197     Label L_loop, L_copy_last_bytes;
  1199     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
  1200       __ andcc(end_from, 7, G1); // misaligned bytes
  1201       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1202       __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
  1204     const Register left_shift  = G1; // left  shift bit counter
  1205     const Register right_shift = G5; // right shift bit counter
  1207       __ sll(G1, LogBitsPerByte, left_shift);
  1208       __ mov(64, right_shift);
  1209       __ sub(right_shift, left_shift, right_shift);
  1211     //
  1212     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1213     // to form 2 aligned 8-bytes chunks to store.
  1214     //
  1215       __ andn(end_from, 7, end_from);     // Align address
  1216       __ ldx(end_from, 0, O3);
  1217       __ align(OptoLoopAlignment);
  1218     __ BIND(L_loop);
  1219       __ ldx(end_from, -8, O4);
  1220       __ deccc(count, count_dec); // Can we do next iteration after this one?
  1221       __ ldx(end_from, -16, G4);
  1222       __ dec(end_to, 16);
  1223       __ dec(end_from, 16);
  1224       __ srlx(O3, right_shift, O3);
  1225       __ sllx(O4, left_shift,  G3);
  1226       __ bset(G3, O3);
  1227       __ stx(O3, end_to, 8);
  1228       __ srlx(O4, right_shift, O4);
  1229       __ sllx(G4, left_shift,  G3);
  1230       __ bset(G3, O4);
  1231       __ stx(O4, end_to, 0);
  1232       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1233       __ delayed()->mov(G4, O3);
  1235       __ inccc(count, count_dec>>1 ); // + 8 bytes
  1236       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
  1237       __ delayed()->inc(count, count_dec>>1); // restore 'count'
  1239       // copy 8 bytes, part of them already loaded in O3
  1240       __ ldx(end_from, -8, O4);
  1241       __ dec(end_to, 8);
  1242       __ dec(end_from, 8);
  1243       __ srlx(O3, right_shift, O3);
  1244       __ sllx(O4, left_shift,  G3);
  1245       __ bset(O3, G3);
  1246       __ stx(G3, end_to, 0);
  1248     __ BIND(L_copy_last_bytes);
  1249       __ srl(left_shift, LogBitsPerByte, left_shift);    // misaligned bytes
  1250       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
  1251       __ delayed()->add(end_from, left_shift, end_from); // restore address
  1254   //
  1255   //  Generate stub for disjoint byte copy.  If "aligned" is true, the
  1256   //  "from" and "to" addresses are assumed to be heapword aligned.
  1257   //
  1258   // Arguments for generated stub:
  1259   //      from:  O0
  1260   //      to:    O1
  1261   //      count: O2 treated as signed
  1262   //
  1263   address generate_disjoint_byte_copy(bool aligned, const char * name) {
  1264     __ align(CodeEntryAlignment);
  1265     StubCodeMark mark(this, "StubRoutines", name);
  1266     address start = __ pc();
  1268     Label L_skip_alignment, L_align;
  1269     Label L_copy_byte, L_copy_byte_loop, L_exit;
  1271     const Register from      = O0;   // source array address
  1272     const Register to        = O1;   // destination array address
  1273     const Register count     = O2;   // elements count
  1274     const Register offset    = O5;   // offset from start of arrays
  1275     // O3, O4, G3, G4 are used as temp registers
  1277     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1279     if (!aligned)  disjoint_byte_copy_entry = __ pc();
  1280     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1281     if (!aligned)  BLOCK_COMMENT("Entry:");
  1283     // for short arrays, just do single element copy
  1284     __ cmp(count, 23); // 16 + 7
  1285     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
  1286     __ delayed()->mov(G0, offset);
  1288     if (aligned) {
  1289       // 'aligned' == true when it is known statically during compilation
  1290       // of this arraycopy call site that both 'from' and 'to' addresses
  1291       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1292       //
  1293       // Aligned arrays have 4 bytes alignment in 32-bits VM
  1294       // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
  1295       //
  1296 #ifndef _LP64
  1297       // copy a 4-bytes word if necessary to align 'to' to 8 bytes
  1298       __ andcc(to, 7, G0);
  1299       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
  1300       __ delayed()->ld(from, 0, O3);
  1301       __ inc(from, 4);
  1302       __ inc(to, 4);
  1303       __ dec(count, 4);
  1304       __ st(O3, to, -4);
  1305     __ BIND(L_skip_alignment);
  1306 #endif
  1307     } else {
  1308       // copy bytes to align 'to' on 8 byte boundary
  1309       __ andcc(to, 7, G1); // misaligned bytes
  1310       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1311       __ delayed()->neg(G1);
  1312       __ inc(G1, 8);       // bytes need to copy to next 8-bytes alignment
  1313       __ sub(count, G1, count);
  1314     __ BIND(L_align);
  1315       __ ldub(from, 0, O3);
  1316       __ deccc(G1);
  1317       __ inc(from);
  1318       __ stb(O3, to, 0);
  1319       __ br(Assembler::notZero, false, Assembler::pt, L_align);
  1320       __ delayed()->inc(to);
  1321     __ BIND(L_skip_alignment);
  1323 #ifdef _LP64
  1324     if (!aligned)
  1325 #endif
  1327       // Copy with shift 16 bytes per iteration if arrays do not have
  1328       // the same alignment mod 8, otherwise fall through to the next
  1329       // code for aligned copy.
  1330       // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
  1331       // Also jump over aligned copy after the copy with shift completed.
  1333       copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
  1336     // Both array are 8 bytes aligned, copy 16 bytes at a time
  1337       __ and3(count, 7, G4); // Save count
  1338       __ srl(count, 3, count);
  1339      generate_disjoint_long_copy_core(aligned);
  1340       __ mov(G4, count);     // Restore count
  1342     // copy tailing bytes
  1343     __ BIND(L_copy_byte);
  1344       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1345       __ delayed()->nop();
  1346       __ align(OptoLoopAlignment);
  1347     __ BIND(L_copy_byte_loop);
  1348       __ ldub(from, offset, O3);
  1349       __ deccc(count);
  1350       __ stb(O3, to, offset);
  1351       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
  1352       __ delayed()->inc(offset);
  1354     __ BIND(L_exit);
  1355       // O3, O4 are used as temp registers
  1356       inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
  1357       __ retl();
  1358       __ delayed()->mov(G0, O0); // return 0
  1359     return start;
  1362   //
  1363   //  Generate stub for conjoint byte copy.  If "aligned" is true, the
  1364   //  "from" and "to" addresses are assumed to be heapword aligned.
  1365   //
  1366   // Arguments for generated stub:
  1367   //      from:  O0
  1368   //      to:    O1
  1369   //      count: O2 treated as signed
  1370   //
  1371   address generate_conjoint_byte_copy(bool aligned, const char * name) {
  1372     // Do reverse copy.
  1374     __ align(CodeEntryAlignment);
  1375     StubCodeMark mark(this, "StubRoutines", name);
  1376     address start = __ pc();
  1377     address nooverlap_target = aligned ?
  1378         StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
  1379         disjoint_byte_copy_entry;
  1381     Label L_skip_alignment, L_align, L_aligned_copy;
  1382     Label L_copy_byte, L_copy_byte_loop, L_exit;
  1384     const Register from      = O0;   // source array address
  1385     const Register to        = O1;   // destination array address
  1386     const Register count     = O2;   // elements count
  1387     const Register end_from  = from; // source array end address
  1388     const Register end_to    = to;   // destination array end address
  1390     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1392     if (!aligned)  byte_copy_entry = __ pc();
  1393     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1394     if (!aligned)  BLOCK_COMMENT("Entry:");
  1396     array_overlap_test(nooverlap_target, 0);
  1398     __ add(to, count, end_to);       // offset after last copied element
  1400     // for short arrays, just do single element copy
  1401     __ cmp(count, 23); // 16 + 7
  1402     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
  1403     __ delayed()->add(from, count, end_from);
  1406       // Align end of arrays since they could be not aligned even
  1407       // when arrays itself are aligned.
  1409       // copy bytes to align 'end_to' on 8 byte boundary
  1410       __ andcc(end_to, 7, G1); // misaligned bytes
  1411       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1412       __ delayed()->nop();
  1413       __ sub(count, G1, count);
  1414     __ BIND(L_align);
  1415       __ dec(end_from);
  1416       __ dec(end_to);
  1417       __ ldub(end_from, 0, O3);
  1418       __ deccc(G1);
  1419       __ brx(Assembler::notZero, false, Assembler::pt, L_align);
  1420       __ delayed()->stb(O3, end_to, 0);
  1421     __ BIND(L_skip_alignment);
  1423 #ifdef _LP64
  1424     if (aligned) {
  1425       // Both arrays are aligned to 8-bytes in 64-bits VM.
  1426       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
  1427       // in unaligned case.
  1428       __ dec(count, 16);
  1429     } else
  1430 #endif
  1432       // Copy with shift 16 bytes per iteration if arrays do not have
  1433       // the same alignment mod 8, otherwise jump to the next
  1434       // code for aligned copy (and substracting 16 from 'count' before jump).
  1435       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1436       // Also jump over aligned copy after the copy with shift completed.
  1438       copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
  1439                                         L_aligned_copy, L_copy_byte);
  1441     // copy 4 elements (16 bytes) at a time
  1442       __ align(OptoLoopAlignment);
  1443     __ BIND(L_aligned_copy);
  1444       __ dec(end_from, 16);
  1445       __ ldx(end_from, 8, O3);
  1446       __ ldx(end_from, 0, O4);
  1447       __ dec(end_to, 16);
  1448       __ deccc(count, 16);
  1449       __ stx(O3, end_to, 8);
  1450       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  1451       __ delayed()->stx(O4, end_to, 0);
  1452       __ inc(count, 16);
  1454     // copy 1 element (2 bytes) at a time
  1455     __ BIND(L_copy_byte);
  1456       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1457       __ delayed()->nop();
  1458       __ align(OptoLoopAlignment);
  1459     __ BIND(L_copy_byte_loop);
  1460       __ dec(end_from);
  1461       __ dec(end_to);
  1462       __ ldub(end_from, 0, O4);
  1463       __ deccc(count);
  1464       __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
  1465       __ delayed()->stb(O4, end_to, 0);
  1467     __ BIND(L_exit);
  1468     // O3, O4 are used as temp registers
  1469     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
  1470     __ retl();
  1471     __ delayed()->mov(G0, O0); // return 0
  1472     return start;
  1475   //
  1476   //  Generate stub for disjoint short copy.  If "aligned" is true, the
  1477   //  "from" and "to" addresses are assumed to be heapword aligned.
  1478   //
  1479   // Arguments for generated stub:
  1480   //      from:  O0
  1481   //      to:    O1
  1482   //      count: O2 treated as signed
  1483   //
  1484   address generate_disjoint_short_copy(bool aligned, const char * name) {
  1485     __ align(CodeEntryAlignment);
  1486     StubCodeMark mark(this, "StubRoutines", name);
  1487     address start = __ pc();
  1489     Label L_skip_alignment, L_skip_alignment2;
  1490     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
  1492     const Register from      = O0;   // source array address
  1493     const Register to        = O1;   // destination array address
  1494     const Register count     = O2;   // elements count
  1495     const Register offset    = O5;   // offset from start of arrays
  1496     // O3, O4, G3, G4 are used as temp registers
  1498     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1500     if (!aligned)  disjoint_short_copy_entry = __ pc();
  1501     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1502     if (!aligned)  BLOCK_COMMENT("Entry:");
  1504     // for short arrays, just do single element copy
  1505     __ cmp(count, 11); // 8 + 3  (22 bytes)
  1506     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
  1507     __ delayed()->mov(G0, offset);
  1509     if (aligned) {
  1510       // 'aligned' == true when it is known statically during compilation
  1511       // of this arraycopy call site that both 'from' and 'to' addresses
  1512       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1513       //
  1514       // Aligned arrays have 4 bytes alignment in 32-bits VM
  1515       // and 8 bytes - in 64-bits VM.
  1516       //
  1517 #ifndef _LP64
  1518       // copy a 2-elements word if necessary to align 'to' to 8 bytes
  1519       __ andcc(to, 7, G0);
  1520       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1521       __ delayed()->ld(from, 0, O3);
  1522       __ inc(from, 4);
  1523       __ inc(to, 4);
  1524       __ dec(count, 2);
  1525       __ st(O3, to, -4);
  1526     __ BIND(L_skip_alignment);
  1527 #endif
  1528     } else {
  1529       // copy 1 element if necessary to align 'to' on an 4 bytes
  1530       __ andcc(to, 3, G0);
  1531       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1532       __ delayed()->lduh(from, 0, O3);
  1533       __ inc(from, 2);
  1534       __ inc(to, 2);
  1535       __ dec(count);
  1536       __ sth(O3, to, -2);
  1537     __ BIND(L_skip_alignment);
  1539       // copy 2 elements to align 'to' on an 8 byte boundary
  1540       __ andcc(to, 7, G0);
  1541       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
  1542       __ delayed()->lduh(from, 0, O3);
  1543       __ dec(count, 2);
  1544       __ lduh(from, 2, O4);
  1545       __ inc(from, 4);
  1546       __ inc(to, 4);
  1547       __ sth(O3, to, -4);
  1548       __ sth(O4, to, -2);
  1549     __ BIND(L_skip_alignment2);
  1551 #ifdef _LP64
  1552     if (!aligned)
  1553 #endif
  1555       // Copy with shift 16 bytes per iteration if arrays do not have
  1556       // the same alignment mod 8, otherwise fall through to the next
  1557       // code for aligned copy.
  1558       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1559       // Also jump over aligned copy after the copy with shift completed.
  1561       copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
  1564     // Both array are 8 bytes aligned, copy 16 bytes at a time
  1565       __ and3(count, 3, G4); // Save
  1566       __ srl(count, 2, count);
  1567      generate_disjoint_long_copy_core(aligned);
  1568       __ mov(G4, count); // restore
  1570     // copy 1 element at a time
  1571     __ BIND(L_copy_2_bytes);
  1572       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1573       __ delayed()->nop();
  1574       __ align(OptoLoopAlignment);
  1575     __ BIND(L_copy_2_bytes_loop);
  1576       __ lduh(from, offset, O3);
  1577       __ deccc(count);
  1578       __ sth(O3, to, offset);
  1579       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
  1580       __ delayed()->inc(offset, 2);
  1582     __ BIND(L_exit);
  1583       // O3, O4 are used as temp registers
  1584       inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
  1585       __ retl();
  1586       __ delayed()->mov(G0, O0); // return 0
  1587     return start;
  1590   //
  1591   //  Generate stub for conjoint short copy.  If "aligned" is true, the
  1592   //  "from" and "to" addresses are assumed to be heapword aligned.
  1593   //
  1594   // Arguments for generated stub:
  1595   //      from:  O0
  1596   //      to:    O1
  1597   //      count: O2 treated as signed
  1598   //
  1599   address generate_conjoint_short_copy(bool aligned, const char * name) {
  1600     // Do reverse copy.
  1602     __ align(CodeEntryAlignment);
  1603     StubCodeMark mark(this, "StubRoutines", name);
  1604     address start = __ pc();
  1605     address nooverlap_target = aligned ?
  1606         StubRoutines::arrayof_jshort_disjoint_arraycopy() :
  1607         disjoint_short_copy_entry;
  1609     Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
  1610     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
  1612     const Register from      = O0;   // source array address
  1613     const Register to        = O1;   // destination array address
  1614     const Register count     = O2;   // elements count
  1615     const Register end_from  = from; // source array end address
  1616     const Register end_to    = to;   // destination array end address
  1618     const Register byte_count = O3;  // bytes count to copy
  1620     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1622     if (!aligned)  short_copy_entry = __ pc();
  1623     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1624     if (!aligned)  BLOCK_COMMENT("Entry:");
  1626     array_overlap_test(nooverlap_target, 1);
  1628     __ sllx(count, LogBytesPerShort, byte_count);
  1629     __ add(to, byte_count, end_to);  // offset after last copied element
  1631     // for short arrays, just do single element copy
  1632     __ cmp(count, 11); // 8 + 3  (22 bytes)
  1633     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
  1634     __ delayed()->add(from, byte_count, end_from);
  1637       // Align end of arrays since they could be not aligned even
  1638       // when arrays itself are aligned.
  1640       // copy 1 element if necessary to align 'end_to' on an 4 bytes
  1641       __ andcc(end_to, 3, G0);
  1642       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1643       __ delayed()->lduh(end_from, -2, O3);
  1644       __ dec(end_from, 2);
  1645       __ dec(end_to, 2);
  1646       __ dec(count);
  1647       __ sth(O3, end_to, 0);
  1648     __ BIND(L_skip_alignment);
  1650       // copy 2 elements to align 'end_to' on an 8 byte boundary
  1651       __ andcc(end_to, 7, G0);
  1652       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
  1653       __ delayed()->lduh(end_from, -2, O3);
  1654       __ dec(count, 2);
  1655       __ lduh(end_from, -4, O4);
  1656       __ dec(end_from, 4);
  1657       __ dec(end_to, 4);
  1658       __ sth(O3, end_to, 2);
  1659       __ sth(O4, end_to, 0);
  1660     __ BIND(L_skip_alignment2);
  1662 #ifdef _LP64
  1663     if (aligned) {
  1664       // Both arrays are aligned to 8-bytes in 64-bits VM.
  1665       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
  1666       // in unaligned case.
  1667       __ dec(count, 8);
  1668     } else
  1669 #endif
  1671       // Copy with shift 16 bytes per iteration if arrays do not have
  1672       // the same alignment mod 8, otherwise jump to the next
  1673       // code for aligned copy (and substracting 8 from 'count' before jump).
  1674       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1675       // Also jump over aligned copy after the copy with shift completed.
  1677       copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
  1678                                         L_aligned_copy, L_copy_2_bytes);
  1680     // copy 4 elements (16 bytes) at a time
  1681       __ align(OptoLoopAlignment);
  1682     __ BIND(L_aligned_copy);
  1683       __ dec(end_from, 16);
  1684       __ ldx(end_from, 8, O3);
  1685       __ ldx(end_from, 0, O4);
  1686       __ dec(end_to, 16);
  1687       __ deccc(count, 8);
  1688       __ stx(O3, end_to, 8);
  1689       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  1690       __ delayed()->stx(O4, end_to, 0);
  1691       __ inc(count, 8);
  1693     // copy 1 element (2 bytes) at a time
  1694     __ BIND(L_copy_2_bytes);
  1695       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1696       __ delayed()->nop();
  1697     __ BIND(L_copy_2_bytes_loop);
  1698       __ dec(end_from, 2);
  1699       __ dec(end_to, 2);
  1700       __ lduh(end_from, 0, O4);
  1701       __ deccc(count);
  1702       __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
  1703       __ delayed()->sth(O4, end_to, 0);
  1705     __ BIND(L_exit);
  1706     // O3, O4 are used as temp registers
  1707     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
  1708     __ retl();
  1709     __ delayed()->mov(G0, O0); // return 0
  1710     return start;
  1713   //
  1714   //  Generate core code for disjoint int copy (and oop copy on 32-bit).
  1715   //  If "aligned" is true, the "from" and "to" addresses are assumed
  1716   //  to be heapword aligned.
  1717   //
  1718   // Arguments:
  1719   //      from:  O0
  1720   //      to:    O1
  1721   //      count: O2 treated as signed
  1722   //
  1723   void generate_disjoint_int_copy_core(bool aligned) {
  1725     Label L_skip_alignment, L_aligned_copy;
  1726     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
  1728     const Register from      = O0;   // source array address
  1729     const Register to        = O1;   // destination array address
  1730     const Register count     = O2;   // elements count
  1731     const Register offset    = O5;   // offset from start of arrays
  1732     // O3, O4, G3, G4 are used as temp registers
  1734     // 'aligned' == true when it is known statically during compilation
  1735     // of this arraycopy call site that both 'from' and 'to' addresses
  1736     // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1737     //
  1738     // Aligned arrays have 4 bytes alignment in 32-bits VM
  1739     // and 8 bytes - in 64-bits VM.
  1740     //
  1741 #ifdef _LP64
  1742     if (!aligned)
  1743 #endif
  1745       // The next check could be put under 'ifndef' since the code in
  1746       // generate_disjoint_long_copy_core() has own checks and set 'offset'.
  1748       // for short arrays, just do single element copy
  1749       __ cmp(count, 5); // 4 + 1 (20 bytes)
  1750       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
  1751       __ delayed()->mov(G0, offset);
  1753       // copy 1 element to align 'to' on an 8 byte boundary
  1754       __ andcc(to, 7, G0);
  1755       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1756       __ delayed()->ld(from, 0, O3);
  1757       __ inc(from, 4);
  1758       __ inc(to, 4);
  1759       __ dec(count);
  1760       __ st(O3, to, -4);
  1761     __ BIND(L_skip_alignment);
  1763     // if arrays have same alignment mod 8, do 4 elements copy
  1764       __ andcc(from, 7, G0);
  1765       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1766       __ delayed()->ld(from, 0, O3);
  1768     //
  1769     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1770     // to form 2 aligned 8-bytes chunks to store.
  1771     //
  1772     // copy_16_bytes_forward_with_shift() is not used here since this
  1773     // code is more optimal.
  1775     // copy with shift 4 elements (16 bytes) at a time
  1776       __ dec(count, 4);   // The cmp at the beginning guaranty count >= 4
  1778       __ align(OptoLoopAlignment);
  1779     __ BIND(L_copy_16_bytes);
  1780       __ ldx(from, 4, O4);
  1781       __ deccc(count, 4); // Can we do next iteration after this one?
  1782       __ ldx(from, 12, G4);
  1783       __ inc(to, 16);
  1784       __ inc(from, 16);
  1785       __ sllx(O3, 32, O3);
  1786       __ srlx(O4, 32, G3);
  1787       __ bset(G3, O3);
  1788       __ stx(O3, to, -16);
  1789       __ sllx(O4, 32, O4);
  1790       __ srlx(G4, 32, G3);
  1791       __ bset(G3, O4);
  1792       __ stx(O4, to, -8);
  1793       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  1794       __ delayed()->mov(G4, O3);
  1796       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
  1797       __ delayed()->inc(count, 4); // restore 'count'
  1799     __ BIND(L_aligned_copy);
  1801     // copy 4 elements (16 bytes) at a time
  1802       __ and3(count, 1, G4); // Save
  1803       __ srl(count, 1, count);
  1804      generate_disjoint_long_copy_core(aligned);
  1805       __ mov(G4, count);     // Restore
  1807     // copy 1 element at a time
  1808     __ BIND(L_copy_4_bytes);
  1809       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1810       __ delayed()->nop();
  1811     __ BIND(L_copy_4_bytes_loop);
  1812       __ ld(from, offset, O3);
  1813       __ deccc(count);
  1814       __ st(O3, to, offset);
  1815       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
  1816       __ delayed()->inc(offset, 4);
  1817     __ BIND(L_exit);
  1820   //
  1821   //  Generate stub for disjoint int copy.  If "aligned" is true, the
  1822   //  "from" and "to" addresses are assumed to be heapword aligned.
  1823   //
  1824   // Arguments for generated stub:
  1825   //      from:  O0
  1826   //      to:    O1
  1827   //      count: O2 treated as signed
  1828   //
  1829   address generate_disjoint_int_copy(bool aligned, const char * name) {
  1830     __ align(CodeEntryAlignment);
  1831     StubCodeMark mark(this, "StubRoutines", name);
  1832     address start = __ pc();
  1834     const Register count = O2;
  1835     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1837     if (!aligned)  disjoint_int_copy_entry = __ pc();
  1838     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1839     if (!aligned)  BLOCK_COMMENT("Entry:");
  1841     generate_disjoint_int_copy_core(aligned);
  1843     // O3, O4 are used as temp registers
  1844     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
  1845     __ retl();
  1846     __ delayed()->mov(G0, O0); // return 0
  1847     return start;
  1850   //
  1851   //  Generate core code for conjoint int copy (and oop copy on 32-bit).
  1852   //  If "aligned" is true, the "from" and "to" addresses are assumed
  1853   //  to be heapword aligned.
  1854   //
  1855   // Arguments:
  1856   //      from:  O0
  1857   //      to:    O1
  1858   //      count: O2 treated as signed
  1859   //
  1860   void generate_conjoint_int_copy_core(bool aligned) {
  1861     // Do reverse copy.
  1863     Label L_skip_alignment, L_aligned_copy;
  1864     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
  1866     const Register from      = O0;   // source array address
  1867     const Register to        = O1;   // destination array address
  1868     const Register count     = O2;   // elements count
  1869     const Register end_from  = from; // source array end address
  1870     const Register end_to    = to;   // destination array end address
  1871     // O3, O4, O5, G3 are used as temp registers
  1873     const Register byte_count = O3;  // bytes count to copy
  1875       __ sllx(count, LogBytesPerInt, byte_count);
  1876       __ add(to, byte_count, end_to); // offset after last copied element
  1878       __ cmp(count, 5); // for short arrays, just do single element copy
  1879       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
  1880       __ delayed()->add(from, byte_count, end_from);
  1882     // copy 1 element to align 'to' on an 8 byte boundary
  1883       __ andcc(end_to, 7, G0);
  1884       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1885       __ delayed()->nop();
  1886       __ dec(count);
  1887       __ dec(end_from, 4);
  1888       __ dec(end_to,   4);
  1889       __ ld(end_from, 0, O4);
  1890       __ st(O4, end_to, 0);
  1891     __ BIND(L_skip_alignment);
  1893     // Check if 'end_from' and 'end_to' has the same alignment.
  1894       __ andcc(end_from, 7, G0);
  1895       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1896       __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
  1898     // copy with shift 4 elements (16 bytes) at a time
  1899     //
  1900     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1901     // to form 2 aligned 8-bytes chunks to store.
  1902     //
  1903       __ ldx(end_from, -4, O3);
  1904       __ align(OptoLoopAlignment);
  1905     __ BIND(L_copy_16_bytes);
  1906       __ ldx(end_from, -12, O4);
  1907       __ deccc(count, 4);
  1908       __ ldx(end_from, -20, O5);
  1909       __ dec(end_to, 16);
  1910       __ dec(end_from, 16);
  1911       __ srlx(O3, 32, O3);
  1912       __ sllx(O4, 32, G3);
  1913       __ bset(G3, O3);
  1914       __ stx(O3, end_to, 8);
  1915       __ srlx(O4, 32, O4);
  1916       __ sllx(O5, 32, G3);
  1917       __ bset(O4, G3);
  1918       __ stx(G3, end_to, 0);
  1919       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  1920       __ delayed()->mov(O5, O3);
  1922       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
  1923       __ delayed()->inc(count, 4);
  1925     // copy 4 elements (16 bytes) at a time
  1926       __ align(OptoLoopAlignment);
  1927     __ BIND(L_aligned_copy);
  1928       __ dec(end_from, 16);
  1929       __ ldx(end_from, 8, O3);
  1930       __ ldx(end_from, 0, O4);
  1931       __ dec(end_to, 16);
  1932       __ deccc(count, 4);
  1933       __ stx(O3, end_to, 8);
  1934       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  1935       __ delayed()->stx(O4, end_to, 0);
  1936       __ inc(count, 4);
  1938     // copy 1 element (4 bytes) at a time
  1939     __ BIND(L_copy_4_bytes);
  1940       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1941       __ delayed()->nop();
  1942     __ BIND(L_copy_4_bytes_loop);
  1943       __ dec(end_from, 4);
  1944       __ dec(end_to, 4);
  1945       __ ld(end_from, 0, O4);
  1946       __ deccc(count);
  1947       __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
  1948       __ delayed()->st(O4, end_to, 0);
  1949     __ BIND(L_exit);
  1952   //
  1953   //  Generate stub for conjoint int copy.  If "aligned" is true, the
  1954   //  "from" and "to" addresses are assumed to be heapword aligned.
  1955   //
  1956   // Arguments for generated stub:
  1957   //      from:  O0
  1958   //      to:    O1
  1959   //      count: O2 treated as signed
  1960   //
  1961   address generate_conjoint_int_copy(bool aligned, const char * name) {
  1962     __ align(CodeEntryAlignment);
  1963     StubCodeMark mark(this, "StubRoutines", name);
  1964     address start = __ pc();
  1966     address nooverlap_target = aligned ?
  1967         StubRoutines::arrayof_jint_disjoint_arraycopy() :
  1968         disjoint_int_copy_entry;
  1970     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  1972     if (!aligned)  int_copy_entry = __ pc();
  1973     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1974     if (!aligned)  BLOCK_COMMENT("Entry:");
  1976     array_overlap_test(nooverlap_target, 2);
  1978     generate_conjoint_int_copy_core(aligned);
  1980     // O3, O4 are used as temp registers
  1981     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
  1982     __ retl();
  1983     __ delayed()->mov(G0, O0); // return 0
  1984     return start;
  1987   //
  1988   //  Generate core code for disjoint long copy (and oop copy on 64-bit).
  1989   //  "aligned" is ignored, because we must make the stronger
  1990   //  assumption that both addresses are always 64-bit aligned.
  1991   //
  1992   // Arguments:
  1993   //      from:  O0
  1994   //      to:    O1
  1995   //      count: O2 treated as signed
  1996   //
  1997   // count -= 2;
  1998   // if ( count >= 0 ) { // >= 2 elements
  1999   //   if ( count > 6) { // >= 8 elements
  2000   //     count -= 6; // original count - 8
  2001   //     do {
  2002   //       copy_8_elements;
  2003   //       count -= 8;
  2004   //     } while ( count >= 0 );
  2005   //     count += 6;
  2006   //   }
  2007   //   if ( count >= 0 ) { // >= 2 elements
  2008   //     do {
  2009   //       copy_2_elements;
  2010   //     } while ( (count=count-2) >= 0 );
  2011   //   }
  2012   // }
  2013   // count += 2;
  2014   // if ( count != 0 ) { // 1 element left
  2015   //   copy_1_element;
  2016   // }
  2017   //
  2018   void generate_disjoint_long_copy_core(bool aligned) {
  2019     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
  2020     const Register from    = O0;  // source array address
  2021     const Register to      = O1;  // destination array address
  2022     const Register count   = O2;  // elements count
  2023     const Register offset0 = O4;  // element offset
  2024     const Register offset8 = O5;  // next element offset
  2026       __ deccc(count, 2);
  2027       __ mov(G0, offset0);   // offset from start of arrays (0)
  2028       __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
  2029       __ delayed()->add(offset0, 8, offset8);
  2031     // Copy by 64 bytes chunks
  2032     Label L_copy_64_bytes;
  2033     const Register from64 = O3;  // source address
  2034     const Register to64   = G3;  // destination address
  2035       __ subcc(count, 6, O3);
  2036       __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
  2037       __ delayed()->mov(to,   to64);
  2038       // Now we can use O4(offset0), O5(offset8) as temps
  2039       __ mov(O3, count);
  2040       __ mov(from, from64);
  2042       __ align(OptoLoopAlignment);
  2043     __ BIND(L_copy_64_bytes);
  2044       for( int off = 0; off < 64; off += 16 ) {
  2045         __ ldx(from64,  off+0, O4);
  2046         __ ldx(from64,  off+8, O5);
  2047         __ stx(O4, to64,  off+0);
  2048         __ stx(O5, to64,  off+8);
  2050       __ deccc(count, 8);
  2051       __ inc(from64, 64);
  2052       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_64_bytes);
  2053       __ delayed()->inc(to64, 64);
  2055       // Restore O4(offset0), O5(offset8)
  2056       __ sub(from64, from, offset0);
  2057       __ inccc(count, 6);
  2058       __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
  2059       __ delayed()->add(offset0, 8, offset8);
  2061       // Copy by 16 bytes chunks
  2062       __ align(OptoLoopAlignment);
  2063     __ BIND(L_copy_16_bytes);
  2064       __ ldx(from, offset0, O3);
  2065       __ ldx(from, offset8, G3);
  2066       __ deccc(count, 2);
  2067       __ stx(O3, to, offset0);
  2068       __ inc(offset0, 16);
  2069       __ stx(G3, to, offset8);
  2070       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  2071       __ delayed()->inc(offset8, 16);
  2073       // Copy last 8 bytes
  2074     __ BIND(L_copy_8_bytes);
  2075       __ inccc(count, 2);
  2076       __ brx(Assembler::zero, true, Assembler::pn, L_exit );
  2077       __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
  2078       __ ldx(from, offset0, O3);
  2079       __ stx(O3, to, offset0);
  2080     __ BIND(L_exit);
  2083   //
  2084   //  Generate stub for disjoint long copy.
  2085   //  "aligned" is ignored, because we must make the stronger
  2086   //  assumption that both addresses are always 64-bit aligned.
  2087   //
  2088   // Arguments for generated stub:
  2089   //      from:  O0
  2090   //      to:    O1
  2091   //      count: O2 treated as signed
  2092   //
  2093   address generate_disjoint_long_copy(bool aligned, const char * name) {
  2094     __ align(CodeEntryAlignment);
  2095     StubCodeMark mark(this, "StubRoutines", name);
  2096     address start = __ pc();
  2098     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2100     if (!aligned)  disjoint_long_copy_entry = __ pc();
  2101     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2102     if (!aligned)  BLOCK_COMMENT("Entry:");
  2104     generate_disjoint_long_copy_core(aligned);
  2106     // O3, O4 are used as temp registers
  2107     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
  2108     __ retl();
  2109     __ delayed()->mov(G0, O0); // return 0
  2110     return start;
  2113   //
  2114   //  Generate core code for conjoint long copy (and oop copy on 64-bit).
  2115   //  "aligned" is ignored, because we must make the stronger
  2116   //  assumption that both addresses are always 64-bit aligned.
  2117   //
  2118   // Arguments:
  2119   //      from:  O0
  2120   //      to:    O1
  2121   //      count: O2 treated as signed
  2122   //
  2123   void generate_conjoint_long_copy_core(bool aligned) {
  2124     // Do reverse copy.
  2125     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
  2126     const Register from    = O0;  // source array address
  2127     const Register to      = O1;  // destination array address
  2128     const Register count   = O2;  // elements count
  2129     const Register offset8 = O4;  // element offset
  2130     const Register offset0 = O5;  // previous element offset
  2132       __ subcc(count, 1, count);
  2133       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
  2134       __ delayed()->sllx(count, LogBytesPerLong, offset8);
  2135       __ sub(offset8, 8, offset0);
  2136       __ align(OptoLoopAlignment);
  2137     __ BIND(L_copy_16_bytes);
  2138       __ ldx(from, offset8, O2);
  2139       __ ldx(from, offset0, O3);
  2140       __ stx(O2, to, offset8);
  2141       __ deccc(offset8, 16);      // use offset8 as counter
  2142       __ stx(O3, to, offset0);
  2143       __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
  2144       __ delayed()->dec(offset0, 16);
  2146     __ BIND(L_copy_8_bytes);
  2147       __ brx(Assembler::negative, false, Assembler::pn, L_exit );
  2148       __ delayed()->nop();
  2149       __ ldx(from, 0, O3);
  2150       __ stx(O3, to, 0);
  2151     __ BIND(L_exit);
  2154   //  Generate stub for conjoint long copy.
  2155   //  "aligned" is ignored, because we must make the stronger
  2156   //  assumption that both addresses are always 64-bit aligned.
  2157   //
  2158   // Arguments for generated stub:
  2159   //      from:  O0
  2160   //      to:    O1
  2161   //      count: O2 treated as signed
  2162   //
  2163   address generate_conjoint_long_copy(bool aligned, const char * name) {
  2164     __ align(CodeEntryAlignment);
  2165     StubCodeMark mark(this, "StubRoutines", name);
  2166     address start = __ pc();
  2168     assert(!aligned, "usage");
  2169     address nooverlap_target = disjoint_long_copy_entry;
  2171     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2173     if (!aligned)  long_copy_entry = __ pc();
  2174     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2175     if (!aligned)  BLOCK_COMMENT("Entry:");
  2177     array_overlap_test(nooverlap_target, 3);
  2179     generate_conjoint_long_copy_core(aligned);
  2181     // O3, O4 are used as temp registers
  2182     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
  2183     __ retl();
  2184     __ delayed()->mov(G0, O0); // return 0
  2185     return start;
  2188   //  Generate stub for disjoint oop copy.  If "aligned" is true, the
  2189   //  "from" and "to" addresses are assumed to be heapword aligned.
  2190   //
  2191   // Arguments for generated stub:
  2192   //      from:  O0
  2193   //      to:    O1
  2194   //      count: O2 treated as signed
  2195   //
  2196   address generate_disjoint_oop_copy(bool aligned, const char * name) {
  2198     const Register from  = O0;  // source array address
  2199     const Register to    = O1;  // destination array address
  2200     const Register count = O2;  // elements count
  2202     __ align(CodeEntryAlignment);
  2203     StubCodeMark mark(this, "StubRoutines", name);
  2204     address start = __ pc();
  2206     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2208     if (!aligned)  disjoint_oop_copy_entry = __ pc();
  2209     // caller can pass a 64-bit byte count here
  2210     if (!aligned)  BLOCK_COMMENT("Entry:");
  2212     // save arguments for barrier generation
  2213     __ mov(to, G1);
  2214     __ mov(count, G5);
  2215     gen_write_ref_array_pre_barrier(G1, G5);
  2216   #ifdef _LP64
  2217     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2218     if (UseCompressedOops) {
  2219       generate_disjoint_int_copy_core(aligned);
  2220     } else {
  2221       generate_disjoint_long_copy_core(aligned);
  2223   #else
  2224     generate_disjoint_int_copy_core(aligned);
  2225   #endif
  2226     // O0 is used as temp register
  2227     gen_write_ref_array_post_barrier(G1, G5, O0);
  2229     // O3, O4 are used as temp registers
  2230     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
  2231     __ retl();
  2232     __ delayed()->mov(G0, O0); // return 0
  2233     return start;
  2236   //  Generate stub for conjoint oop copy.  If "aligned" is true, the
  2237   //  "from" and "to" addresses are assumed to be heapword aligned.
  2238   //
  2239   // Arguments for generated stub:
  2240   //      from:  O0
  2241   //      to:    O1
  2242   //      count: O2 treated as signed
  2243   //
  2244   address generate_conjoint_oop_copy(bool aligned, const char * name) {
  2246     const Register from  = O0;  // source array address
  2247     const Register to    = O1;  // destination array address
  2248     const Register count = O2;  // elements count
  2250     __ align(CodeEntryAlignment);
  2251     StubCodeMark mark(this, "StubRoutines", name);
  2252     address start = __ pc();
  2254     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2256     if (!aligned)  oop_copy_entry = __ pc();
  2257     // caller can pass a 64-bit byte count here
  2258     if (!aligned)  BLOCK_COMMENT("Entry:");
  2260     // save arguments for barrier generation
  2261     __ mov(to, G1);
  2262     __ mov(count, G5);
  2264     gen_write_ref_array_pre_barrier(G1, G5);
  2266     address nooverlap_target = aligned ?
  2267         StubRoutines::arrayof_oop_disjoint_arraycopy() :
  2268         disjoint_oop_copy_entry;
  2270     array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
  2272   #ifdef _LP64
  2273     if (UseCompressedOops) {
  2274       generate_conjoint_int_copy_core(aligned);
  2275     } else {
  2276       generate_conjoint_long_copy_core(aligned);
  2278   #else
  2279     generate_conjoint_int_copy_core(aligned);
  2280   #endif
  2282     // O0 is used as temp register
  2283     gen_write_ref_array_post_barrier(G1, G5, O0);
  2285     // O3, O4 are used as temp registers
  2286     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
  2287     __ retl();
  2288     __ delayed()->mov(G0, O0); // return 0
  2289     return start;
  2293   // Helper for generating a dynamic type check.
  2294   // Smashes only the given temp registers.
  2295   void generate_type_check(Register sub_klass,
  2296                            Register super_check_offset,
  2297                            Register super_klass,
  2298                            Register temp,
  2299                            Label& L_success) {
  2300     assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
  2302     BLOCK_COMMENT("type_check:");
  2304     Label L_miss, L_pop_to_miss;
  2306     assert_clean_int(super_check_offset, temp);
  2308     __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
  2309                                      &L_success, &L_miss, NULL,
  2310                                      super_check_offset);
  2312     BLOCK_COMMENT("type_check_slow_path:");
  2313     __ save_frame(0);
  2314     __ check_klass_subtype_slow_path(sub_klass->after_save(),
  2315                                      super_klass->after_save(),
  2316                                      L0, L1, L2, L4,
  2317                                      NULL, &L_pop_to_miss);
  2318     __ ba(false, L_success);
  2319     __ delayed()->restore();
  2321     __ bind(L_pop_to_miss);
  2322     __ restore();
  2324     // Fall through on failure!
  2325     __ BIND(L_miss);
  2329   //  Generate stub for checked oop copy.
  2330   //
  2331   // Arguments for generated stub:
  2332   //      from:  O0
  2333   //      to:    O1
  2334   //      count: O2 treated as signed
  2335   //      ckoff: O3 (super_check_offset)
  2336   //      ckval: O4 (super_klass)
  2337   //      ret:   O0 zero for success; (-1^K) where K is partial transfer count
  2338   //
  2339   address generate_checkcast_copy(const char* name) {
  2341     const Register O0_from   = O0;      // source array address
  2342     const Register O1_to     = O1;      // destination array address
  2343     const Register O2_count  = O2;      // elements count
  2344     const Register O3_ckoff  = O3;      // super_check_offset
  2345     const Register O4_ckval  = O4;      // super_klass
  2347     const Register O5_offset = O5;      // loop var, with stride wordSize
  2348     const Register G1_remain = G1;      // loop var, with stride -1
  2349     const Register G3_oop    = G3;      // actual oop copied
  2350     const Register G4_klass  = G4;      // oop._klass
  2351     const Register G5_super  = G5;      // oop._klass._primary_supers[ckval]
  2353     __ align(CodeEntryAlignment);
  2354     StubCodeMark mark(this, "StubRoutines", name);
  2355     address start = __ pc();
  2357     gen_write_ref_array_pre_barrier(O1, O2);
  2359 #ifdef ASSERT
  2360     // We sometimes save a frame (see generate_type_check below).
  2361     // If this will cause trouble, let's fail now instead of later.
  2362     __ save_frame(0);
  2363     __ restore();
  2364 #endif
  2366 #ifdef ASSERT
  2367     // caller guarantees that the arrays really are different
  2368     // otherwise, we would have to make conjoint checks
  2369     { Label L;
  2370       __ mov(O3, G1);           // spill: overlap test smashes O3
  2371       __ mov(O4, G4);           // spill: overlap test smashes O4
  2372       array_overlap_test(L, LogBytesPerHeapOop);
  2373       __ stop("checkcast_copy within a single array");
  2374       __ bind(L);
  2375       __ mov(G1, O3);
  2376       __ mov(G4, O4);
  2378 #endif //ASSERT
  2380     assert_clean_int(O2_count, G1);     // Make sure 'count' is clean int.
  2382     checkcast_copy_entry = __ pc();
  2383     // caller can pass a 64-bit byte count here (from generic stub)
  2384     BLOCK_COMMENT("Entry:");
  2386     Label load_element, store_element, do_card_marks, fail, done;
  2387     __ addcc(O2_count, 0, G1_remain);   // initialize loop index, and test it
  2388     __ brx(Assembler::notZero, false, Assembler::pt, load_element);
  2389     __ delayed()->mov(G0, O5_offset);   // offset from start of arrays
  2391     // Empty array:  Nothing to do.
  2392     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
  2393     __ retl();
  2394     __ delayed()->set(0, O0);           // return 0 on (trivial) success
  2396     // ======== begin loop ========
  2397     // (Loop is rotated; its entry is load_element.)
  2398     // Loop variables:
  2399     //   (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
  2400     //   (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
  2401     //   G3, G4, G5 --- current oop, oop.klass, oop.klass.super
  2402     __ align(OptoLoopAlignment);
  2404     __ BIND(store_element);
  2405     __ deccc(G1_remain);                // decrement the count
  2406     __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
  2407     __ inc(O5_offset, heapOopSize);     // step to next offset
  2408     __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
  2409     __ delayed()->set(0, O0);           // return -1 on success
  2411     // ======== loop entry is here ========
  2412     __ BIND(load_element);
  2413     __ load_heap_oop(O0_from, O5_offset, G3_oop);  // load the oop
  2414     __ br_null(G3_oop, true, Assembler::pt, store_element);
  2415     __ delayed()->nop();
  2417     __ load_klass(G3_oop, G4_klass); // query the object klass
  2419     generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
  2420                         // branch to this on success:
  2421                         store_element);
  2422     // ======== end loop ========
  2424     // It was a real error; we must depend on the caller to finish the job.
  2425     // Register G1 has number of *remaining* oops, O2 number of *total* oops.
  2426     // Emit GC store barriers for the oops we have copied (O2 minus G1),
  2427     // and report their number to the caller.
  2428     __ BIND(fail);
  2429     __ subcc(O2_count, G1_remain, O2_count);
  2430     __ brx(Assembler::zero, false, Assembler::pt, done);
  2431     __ delayed()->not1(O2_count, O0);   // report (-1^K) to caller
  2433     __ BIND(do_card_marks);
  2434     gen_write_ref_array_post_barrier(O1_to, O2_count, O3);   // store check on O1[0..O2]
  2436     __ BIND(done);
  2437     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
  2438     __ retl();
  2439     __ delayed()->nop();             // return value in 00
  2441     return start;
  2445   //  Generate 'unsafe' array copy stub
  2446   //  Though just as safe as the other stubs, it takes an unscaled
  2447   //  size_t argument instead of an element count.
  2448   //
  2449   // Arguments for generated stub:
  2450   //      from:  O0
  2451   //      to:    O1
  2452   //      count: O2 byte count, treated as ssize_t, can be zero
  2453   //
  2454   // Examines the alignment of the operands and dispatches
  2455   // to a long, int, short, or byte copy loop.
  2456   //
  2457   address generate_unsafe_copy(const char* name) {
  2459     const Register O0_from   = O0;      // source array address
  2460     const Register O1_to     = O1;      // destination array address
  2461     const Register O2_count  = O2;      // elements count
  2463     const Register G1_bits   = G1;      // test copy of low bits
  2465     __ align(CodeEntryAlignment);
  2466     StubCodeMark mark(this, "StubRoutines", name);
  2467     address start = __ pc();
  2469     // bump this on entry, not on exit:
  2470     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
  2472     __ or3(O0_from, O1_to, G1_bits);
  2473     __ or3(O2_count,       G1_bits, G1_bits);
  2475     __ btst(BytesPerLong-1, G1_bits);
  2476     __ br(Assembler::zero, true, Assembler::pt,
  2477           long_copy_entry, relocInfo::runtime_call_type);
  2478     // scale the count on the way out:
  2479     __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
  2481     __ btst(BytesPerInt-1, G1_bits);
  2482     __ br(Assembler::zero, true, Assembler::pt,
  2483           int_copy_entry, relocInfo::runtime_call_type);
  2484     // scale the count on the way out:
  2485     __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
  2487     __ btst(BytesPerShort-1, G1_bits);
  2488     __ br(Assembler::zero, true, Assembler::pt,
  2489           short_copy_entry, relocInfo::runtime_call_type);
  2490     // scale the count on the way out:
  2491     __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
  2493     __ br(Assembler::always, false, Assembler::pt,
  2494           byte_copy_entry, relocInfo::runtime_call_type);
  2495     __ delayed()->nop();
  2497     return start;
  2501   // Perform range checks on the proposed arraycopy.
  2502   // Kills the two temps, but nothing else.
  2503   // Also, clean the sign bits of src_pos and dst_pos.
  2504   void arraycopy_range_checks(Register src,     // source array oop (O0)
  2505                               Register src_pos, // source position (O1)
  2506                               Register dst,     // destination array oo (O2)
  2507                               Register dst_pos, // destination position (O3)
  2508                               Register length,  // length of copy (O4)
  2509                               Register temp1, Register temp2,
  2510                               Label& L_failed) {
  2511     BLOCK_COMMENT("arraycopy_range_checks:");
  2513     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  2515     const Register array_length = temp1;  // scratch
  2516     const Register end_pos      = temp2;  // scratch
  2518     // Note:  This next instruction may be in the delay slot of a branch:
  2519     __ add(length, src_pos, end_pos);  // src_pos + length
  2520     __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
  2521     __ cmp(end_pos, array_length);
  2522     __ br(Assembler::greater, false, Assembler::pn, L_failed);
  2524     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  2525     __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
  2526     __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
  2527     __ cmp(end_pos, array_length);
  2528     __ br(Assembler::greater, false, Assembler::pn, L_failed);
  2530     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2531     // Move with sign extension can be used since they are positive.
  2532     __ delayed()->signx(src_pos, src_pos);
  2533     __ signx(dst_pos, dst_pos);
  2535     BLOCK_COMMENT("arraycopy_range_checks done");
  2539   //
  2540   //  Generate generic array copy stubs
  2541   //
  2542   //  Input:
  2543   //    O0    -  src oop
  2544   //    O1    -  src_pos
  2545   //    O2    -  dst oop
  2546   //    O3    -  dst_pos
  2547   //    O4    -  element count
  2548   //
  2549   //  Output:
  2550   //    O0 ==  0  -  success
  2551   //    O0 == -1  -  need to call System.arraycopy
  2552   //
  2553   address generate_generic_copy(const char *name) {
  2555     Label L_failed, L_objArray;
  2557     // Input registers
  2558     const Register src      = O0;  // source array oop
  2559     const Register src_pos  = O1;  // source position
  2560     const Register dst      = O2;  // destination array oop
  2561     const Register dst_pos  = O3;  // destination position
  2562     const Register length   = O4;  // elements count
  2564     // registers used as temp
  2565     const Register G3_src_klass = G3; // source array klass
  2566     const Register G4_dst_klass = G4; // destination array klass
  2567     const Register G5_lh        = G5; // layout handler
  2568     const Register O5_temp      = O5;
  2570     __ align(CodeEntryAlignment);
  2571     StubCodeMark mark(this, "StubRoutines", name);
  2572     address start = __ pc();
  2574     // bump this on entry, not on exit:
  2575     inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
  2577     // In principle, the int arguments could be dirty.
  2578     //assert_clean_int(src_pos, G1);
  2579     //assert_clean_int(dst_pos, G1);
  2580     //assert_clean_int(length, G1);
  2582     //-----------------------------------------------------------------------
  2583     // Assembler stubs will be used for this call to arraycopy
  2584     // if the following conditions are met:
  2585     //
  2586     // (1) src and dst must not be null.
  2587     // (2) src_pos must not be negative.
  2588     // (3) dst_pos must not be negative.
  2589     // (4) length  must not be negative.
  2590     // (5) src klass and dst klass should be the same and not NULL.
  2591     // (6) src and dst should be arrays.
  2592     // (7) src_pos + length must not exceed length of src.
  2593     // (8) dst_pos + length must not exceed length of dst.
  2594     BLOCK_COMMENT("arraycopy initial argument checks");
  2596     //  if (src == NULL) return -1;
  2597     __ br_null(src, false, Assembler::pn, L_failed);
  2599     //  if (src_pos < 0) return -1;
  2600     __ delayed()->tst(src_pos);
  2601     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2602     __ delayed()->nop();
  2604     //  if (dst == NULL) return -1;
  2605     __ br_null(dst, false, Assembler::pn, L_failed);
  2607     //  if (dst_pos < 0) return -1;
  2608     __ delayed()->tst(dst_pos);
  2609     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2611     //  if (length < 0) return -1;
  2612     __ delayed()->tst(length);
  2613     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2615     BLOCK_COMMENT("arraycopy argument klass checks");
  2616     //  get src->klass()
  2617     if (UseCompressedOops) {
  2618       __ delayed()->nop(); // ??? not good
  2619       __ load_klass(src, G3_src_klass);
  2620     } else {
  2621       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
  2624 #ifdef ASSERT
  2625     //  assert(src->klass() != NULL);
  2626     BLOCK_COMMENT("assert klasses not null");
  2627     { Label L_a, L_b;
  2628       __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
  2629       __ delayed()->nop();
  2630       __ bind(L_a);
  2631       __ stop("broken null klass");
  2632       __ bind(L_b);
  2633       __ load_klass(dst, G4_dst_klass);
  2634       __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
  2635       __ delayed()->mov(G0, G4_dst_klass);      // scribble the temp
  2636       BLOCK_COMMENT("assert done");
  2638 #endif
  2640     // Load layout helper
  2641     //
  2642     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  2643     // 32        30    24            16              8     2                 0
  2644     //
  2645     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  2646     //
  2648     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  2649                     Klass::layout_helper_offset_in_bytes();
  2651     // Load 32-bits signed value. Use br() instruction with it to check icc.
  2652     __ lduw(G3_src_klass, lh_offset, G5_lh);
  2654     if (UseCompressedOops) {
  2655       __ load_klass(dst, G4_dst_klass);
  2657     // Handle objArrays completely differently...
  2658     juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2659     __ set(objArray_lh, O5_temp);
  2660     __ cmp(G5_lh,       O5_temp);
  2661     __ br(Assembler::equal, false, Assembler::pt, L_objArray);
  2662     if (UseCompressedOops) {
  2663       __ delayed()->nop();
  2664     } else {
  2665       __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
  2668     //  if (src->klass() != dst->klass()) return -1;
  2669     __ cmp(G3_src_klass, G4_dst_klass);
  2670     __ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
  2671     __ delayed()->nop();
  2673     //  if (!src->is_Array()) return -1;
  2674     __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
  2675     __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
  2677     // At this point, it is known to be a typeArray (array_tag 0x3).
  2678 #ifdef ASSERT
  2679     __ delayed()->nop();
  2680     { Label L;
  2681       jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
  2682       __ set(lh_prim_tag_in_place, O5_temp);
  2683       __ cmp(G5_lh,                O5_temp);
  2684       __ br(Assembler::greaterEqual, false, Assembler::pt, L);
  2685       __ delayed()->nop();
  2686       __ stop("must be a primitive array");
  2687       __ bind(L);
  2689 #else
  2690     __ delayed();                               // match next insn to prev branch
  2691 #endif
  2693     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  2694                            O5_temp, G4_dst_klass, L_failed);
  2696     // typeArrayKlass
  2697     //
  2698     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  2699     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  2700     //
  2702     const Register G4_offset = G4_dst_klass;    // array offset
  2703     const Register G3_elsize = G3_src_klass;    // log2 element size
  2705     __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
  2706     __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
  2707     __ add(src, G4_offset, src);       // src array offset
  2708     __ add(dst, G4_offset, dst);       // dst array offset
  2709     __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
  2711     // next registers should be set before the jump to corresponding stub
  2712     const Register from     = O0;  // source array address
  2713     const Register to       = O1;  // destination array address
  2714     const Register count    = O2;  // elements count
  2716     // 'from', 'to', 'count' registers should be set in this order
  2717     // since they are the same as 'src', 'src_pos', 'dst'.
  2719     BLOCK_COMMENT("scale indexes to element size");
  2720     __ sll_ptr(src_pos, G3_elsize, src_pos);
  2721     __ sll_ptr(dst_pos, G3_elsize, dst_pos);
  2722     __ add(src, src_pos, from);       // src_addr
  2723     __ add(dst, dst_pos, to);         // dst_addr
  2725     BLOCK_COMMENT("choose copy loop based on element size");
  2726     __ cmp(G3_elsize, 0);
  2727     __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jbyte_arraycopy);
  2728     __ delayed()->signx(length, count); // length
  2730     __ cmp(G3_elsize, LogBytesPerShort);
  2731     __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jshort_arraycopy);
  2732     __ delayed()->signx(length, count); // length
  2734     __ cmp(G3_elsize, LogBytesPerInt);
  2735     __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jint_arraycopy);
  2736     __ delayed()->signx(length, count); // length
  2737 #ifdef ASSERT
  2738     { Label L;
  2739       __ cmp(G3_elsize, LogBytesPerLong);
  2740       __ br(Assembler::equal, false, Assembler::pt, L);
  2741       __ delayed()->nop();
  2742       __ stop("must be long copy, but elsize is wrong");
  2743       __ bind(L);
  2745 #endif
  2746     __ br(Assembler::always,false,Assembler::pt,StubRoutines::_jlong_arraycopy);
  2747     __ delayed()->signx(length, count); // length
  2749     // objArrayKlass
  2750   __ BIND(L_objArray);
  2751     // live at this point:  G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
  2753     Label L_plain_copy, L_checkcast_copy;
  2754     //  test array classes for subtyping
  2755     __ cmp(G3_src_klass, G4_dst_klass);         // usual case is exact equality
  2756     __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
  2757     __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
  2759     // Identically typed arrays can be copied without element-wise checks.
  2760     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  2761                            O5_temp, G5_lh, L_failed);
  2763     __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
  2764     __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
  2765     __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
  2766     __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
  2767     __ add(src, src_pos, from);       // src_addr
  2768     __ add(dst, dst_pos, to);         // dst_addr
  2769   __ BIND(L_plain_copy);
  2770     __ br(Assembler::always, false, Assembler::pt,StubRoutines::_oop_arraycopy);
  2771     __ delayed()->signx(length, count); // length
  2773   __ BIND(L_checkcast_copy);
  2774     // live at this point:  G3_src_klass, G4_dst_klass
  2776       // Before looking at dst.length, make sure dst is also an objArray.
  2777       // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
  2778       __ cmp(G5_lh,                    O5_temp);
  2779       __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
  2781       // It is safe to examine both src.length and dst.length.
  2782       __ delayed();                             // match next insn to prev branch
  2783       arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  2784                              O5_temp, G5_lh, L_failed);
  2786       // Marshal the base address arguments now, freeing registers.
  2787       __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
  2788       __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
  2789       __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
  2790       __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
  2791       __ add(src, src_pos, from);               // src_addr
  2792       __ add(dst, dst_pos, to);                 // dst_addr
  2793       __ signx(length, count);                  // length (reloaded)
  2795       Register sco_temp = O3;                   // this register is free now
  2796       assert_different_registers(from, to, count, sco_temp,
  2797                                  G4_dst_klass, G3_src_klass);
  2799       // Generate the type check.
  2800       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2801                         Klass::super_check_offset_offset_in_bytes());
  2802       __ lduw(G4_dst_klass, sco_offset, sco_temp);
  2803       generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
  2804                           O5_temp, L_plain_copy);
  2806       // Fetch destination element klass from the objArrayKlass header.
  2807       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  2808                        objArrayKlass::element_klass_offset_in_bytes());
  2810       // the checkcast_copy loop needs two extra arguments:
  2811       __ ld_ptr(G4_dst_klass, ek_offset, O4);   // dest elem klass
  2812       // lduw(O4, sco_offset, O3);              // sco of elem klass
  2814       __ br(Assembler::always, false, Assembler::pt, checkcast_copy_entry);
  2815       __ delayed()->lduw(O4, sco_offset, O3);
  2818   __ BIND(L_failed);
  2819     __ retl();
  2820     __ delayed()->sub(G0, 1, O0); // return -1
  2821     return start;
  2824   void generate_arraycopy_stubs() {
  2826     // Note:  the disjoint stubs must be generated first, some of
  2827     //        the conjoint stubs use them.
  2828     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
  2829     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
  2830     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
  2831     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
  2832     StubRoutines::_oop_disjoint_arraycopy    = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy");
  2833     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
  2834     StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
  2835     StubRoutines::_arrayof_jint_disjoint_arraycopy   = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
  2836     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
  2837     StubRoutines::_arrayof_oop_disjoint_arraycopy    =  generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy");
  2839     StubRoutines::_jbyte_arraycopy  = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
  2840     StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
  2841     StubRoutines::_jint_arraycopy   = generate_conjoint_int_copy(false, "jint_arraycopy");
  2842     StubRoutines::_jlong_arraycopy  = generate_conjoint_long_copy(false, "jlong_arraycopy");
  2843     StubRoutines::_oop_arraycopy    = generate_conjoint_oop_copy(false, "oop_arraycopy");
  2844     StubRoutines::_arrayof_jbyte_arraycopy    = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
  2845     StubRoutines::_arrayof_jshort_arraycopy   = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
  2846 #ifdef _LP64
  2847     // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
  2848     StubRoutines::_arrayof_jint_arraycopy     = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
  2849   #else
  2850     StubRoutines::_arrayof_jint_arraycopy     = StubRoutines::_jint_arraycopy;
  2851 #endif
  2852     StubRoutines::_arrayof_jlong_arraycopy    = StubRoutines::_jlong_arraycopy;
  2853     StubRoutines::_arrayof_oop_arraycopy      = StubRoutines::_oop_arraycopy;
  2855     StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
  2856     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
  2857     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
  2860   void generate_initial() {
  2861     // Generates all stubs and initializes the entry points
  2863     //------------------------------------------------------------------------------------------------------------------------
  2864     // entry points that exist in all platforms
  2865     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2866     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2867     StubRoutines::_forward_exception_entry                 = generate_forward_exception();
  2869     StubRoutines::_call_stub_entry                         = generate_call_stub(StubRoutines::_call_stub_return_address);
  2870     StubRoutines::_catch_exception_entry                   = generate_catch_exception();
  2872     //------------------------------------------------------------------------------------------------------------------------
  2873     // entry points that are platform specific
  2874     StubRoutines::Sparc::_test_stop_entry                  = generate_test_stop();
  2876     StubRoutines::Sparc::_stop_subroutine_entry            = generate_stop_subroutine();
  2877     StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
  2879 #if !defined(COMPILER2) && !defined(_LP64)
  2880     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  2881     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  2882     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  2883     StubRoutines::_atomic_xchg_ptr_entry     = StubRoutines::_atomic_xchg_entry;
  2884     StubRoutines::_atomic_cmpxchg_ptr_entry  = StubRoutines::_atomic_cmpxchg_entry;
  2885     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  2886     StubRoutines::_atomic_add_ptr_entry      = StubRoutines::_atomic_add_entry;
  2887 #endif  // COMPILER2 !=> _LP64
  2891   void generate_all() {
  2892     // Generates all stubs and initializes the entry points
  2894     // Generate partial_subtype_check first here since its code depends on
  2895     // UseZeroBaseCompressedOops which is defined after heap initialization.
  2896     StubRoutines::Sparc::_partial_subtype_check                = generate_partial_subtype_check();
  2897     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2898     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
  2899     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
  2900     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
  2901     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
  2902     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
  2903     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
  2905     StubRoutines::_handler_for_unsafe_access_entry =
  2906       generate_handler_for_unsafe_access();
  2908     // support for verify_oop (must happen after universe_init)
  2909     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop_subroutine();
  2911     // arraycopy stubs used by compilers
  2912     generate_arraycopy_stubs();
  2914     // generic method handle stubs
  2915     if (EnableMethodHandles && SystemDictionary::MethodHandle_klass() != NULL) {
  2916       for (MethodHandles::EntryKind ek = MethodHandles::_EK_FIRST;
  2917            ek < MethodHandles::_EK_LIMIT;
  2918            ek = MethodHandles::EntryKind(1 + (int)ek)) {
  2919         StubCodeMark mark(this, "MethodHandle", MethodHandles::entry_name(ek));
  2920         MethodHandles::generate_method_handle_stub(_masm, ek);
  2924     // Don't initialize the platform math functions since sparc
  2925     // doesn't have intrinsics for these operations.
  2929  public:
  2930   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2931     // replace the standard masm with a special one:
  2932     _masm = new MacroAssembler(code);
  2934     _stub_count = !all ? 0x100 : 0x200;
  2935     if (all) {
  2936       generate_all();
  2937     } else {
  2938       generate_initial();
  2941     // make sure this stub is available for all local calls
  2942     if (_atomic_add_stub.is_unbound()) {
  2943       // generate a second time, if necessary
  2944       (void) generate_atomic_add();
  2949  private:
  2950   int _stub_count;
  2951   void stub_prolog(StubCodeDesc* cdesc) {
  2952     # ifdef ASSERT
  2953       // put extra information in the stub code, to make it more readable
  2954 #ifdef _LP64
  2955 // Write the high part of the address
  2956 // [RGV] Check if there is a dependency on the size of this prolog
  2957       __ emit_data((intptr_t)cdesc >> 32,    relocInfo::none);
  2958 #endif
  2959       __ emit_data((intptr_t)cdesc,    relocInfo::none);
  2960       __ emit_data(++_stub_count, relocInfo::none);
  2961     # endif
  2962     align(true);
  2965   void align(bool at_header = false) {
  2966     // %%%%% move this constant somewhere else
  2967     // UltraSPARC cache line size is 8 instructions:
  2968     const unsigned int icache_line_size = 32;
  2969     const unsigned int icache_half_line_size = 16;
  2971     if (at_header) {
  2972       while ((intptr_t)(__ pc()) % icache_line_size != 0) {
  2973         __ emit_data(0, relocInfo::none);
  2975     } else {
  2976       while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
  2977         __ nop();
  2982 }; // end class declaration
  2985 address StubGenerator::disjoint_byte_copy_entry  = NULL;
  2986 address StubGenerator::disjoint_short_copy_entry = NULL;
  2987 address StubGenerator::disjoint_int_copy_entry   = NULL;
  2988 address StubGenerator::disjoint_long_copy_entry  = NULL;
  2989 address StubGenerator::disjoint_oop_copy_entry   = NULL;
  2991 address StubGenerator::byte_copy_entry  = NULL;
  2992 address StubGenerator::short_copy_entry = NULL;
  2993 address StubGenerator::int_copy_entry   = NULL;
  2994 address StubGenerator::long_copy_entry  = NULL;
  2995 address StubGenerator::oop_copy_entry   = NULL;
  2997 address StubGenerator::checkcast_copy_entry = NULL;
  2999 void StubGenerator_generate(CodeBuffer* code, bool all) {
  3000   StubGenerator g(code, all);

mercurial