src/cpu/sparc/vm/interp_masm_sparc.cpp

Fri, 30 Apr 2010 08:37:24 -0700

author
twisti
date
Fri, 30 Apr 2010 08:37:24 -0700
changeset 1861
2338d41fbd81
parent 1858
c640000b7cc1
child 1907
c18cbe5936b8
child 1920
ab102d5d923e
permissions
-rw-r--r--

6943304: remove tagged stack interpreter
Reviewed-by: coleenp, never, gbenson

     1 /*
     2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interp_masm_sparc.cpp.incl"
    28 #ifndef CC_INTERP
    29 #ifndef FAST_DISPATCH
    30 #define FAST_DISPATCH 1
    31 #endif
    32 #undef FAST_DISPATCH
    34 // Implementation of InterpreterMacroAssembler
    36 // This file specializes the assember with interpreter-specific macros
    38 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
    39 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
    41 #else // CC_INTERP
    42 #ifndef STATE
    43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
    44 #endif // STATE
    46 #endif // CC_INTERP
    48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
    49   // Note: this algorithm is also used by C1's OSR entry sequence.
    50   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
    51   assert_different_registers(args_size, locals_size);
    52   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
    53   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
    54   // Use br/mov combination because it works on both V8 and V9 and is
    55   // faster.
    56   Label skip_move;
    57   br(Assembler::negative, true, Assembler::pt, skip_move);
    58   delayed()->mov(G0, delta);
    59   bind(skip_move);
    60   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
    61   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
    62 }
    64 #ifndef CC_INTERP
    66 // Dispatch code executed in the prolog of a bytecode which does not do it's
    67 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
    68 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
    69   assert_not_delayed();
    70 #ifdef FAST_DISPATCH
    71   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
    72   // they both use I2.
    73   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
    74   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
    75   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
    76                                                         // add offset to correct dispatch table
    77   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
    78   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
    79 #else
    80   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
    81   // dispatch table to use
    82   AddressLiteral tbl(Interpreter::dispatch_table(state));
    83   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
    84   set(tbl, G3_scratch);                                 // compute addr of table
    85   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
    86 #endif
    87 }
    90 // Dispatch code executed in the epilog of a bytecode which does not do it's
    91 // own dispatch. The dispatch address in IdispatchAddress is used for the
    92 // dispatch.
    93 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
    94   assert_not_delayed();
    95   verify_FPU(1, state);
    96   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
    97   jmp( IdispatchAddress, 0 );
    98   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
    99   else                delayed()->nop();
   100 }
   103 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
   104   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   105   assert_not_delayed();
   106   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   107   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
   108 }
   111 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
   112   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   113   assert_not_delayed();
   114   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   115   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
   116 }
   119 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   120   // load current bytecode
   121   assert_not_delayed();
   122   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
   123   dispatch_base(state, table);
   124 }
   127 void InterpreterMacroAssembler::call_VM_leaf_base(
   128   Register java_thread,
   129   address  entry_point,
   130   int      number_of_arguments
   131 ) {
   132   if (!java_thread->is_valid())
   133     java_thread = L7_thread_cache;
   134   // super call
   135   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
   136 }
   139 void InterpreterMacroAssembler::call_VM_base(
   140   Register        oop_result,
   141   Register        java_thread,
   142   Register        last_java_sp,
   143   address         entry_point,
   144   int             number_of_arguments,
   145   bool            check_exception
   146 ) {
   147   if (!java_thread->is_valid())
   148     java_thread = L7_thread_cache;
   149   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
   150   // takes responsibility for setting its own thread-state on call-out.
   151   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
   153   //save_bcp();                                  // save bcp
   154   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
   155   //restore_bcp();                               // restore bcp
   156   //restore_locals();                            // restore locals pointer
   157 }
   160 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
   161   if (JvmtiExport::can_pop_frame()) {
   162     Label L;
   164     // Check the "pending popframe condition" flag in the current thread
   165     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
   167     // Initiate popframe handling only if it is not already being processed.  If the flag
   168     // has the popframe_processing bit set, it means that this code is called *during* popframe
   169     // handling - we don't want to reenter.
   170     btst(JavaThread::popframe_pending_bit, scratch_reg);
   171     br(zero, false, pt, L);
   172     delayed()->nop();
   173     btst(JavaThread::popframe_processing_bit, scratch_reg);
   174     br(notZero, false, pt, L);
   175     delayed()->nop();
   177     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   178     // address of the same-named entrypoint in the generated interpreter code.
   179     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   181     // Jump to Interpreter::_remove_activation_preserving_args_entry
   182     jmpl(O0, G0, G0);
   183     delayed()->nop();
   184     bind(L);
   185   }
   186 }
   189 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   190   Register thr_state = G4_scratch;
   191   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   192   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
   193   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
   194   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
   195   switch (state) {
   196   case ltos: ld_long(val_addr, Otos_l);                   break;
   197   case atos: ld_ptr(oop_addr, Otos_l);
   198              st_ptr(G0, oop_addr);                        break;
   199   case btos:                                           // fall through
   200   case ctos:                                           // fall through
   201   case stos:                                           // fall through
   202   case itos: ld(val_addr, Otos_l1);                       break;
   203   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
   204   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
   205   case vtos: /* nothing to do */                          break;
   206   default  : ShouldNotReachHere();
   207   }
   208   // Clean up tos value in the jvmti thread state
   209   or3(G0, ilgl, G3_scratch);
   210   stw(G3_scratch, tos_addr);
   211   st_long(G0, val_addr);
   212   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   213 }
   216 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
   217   if (JvmtiExport::can_force_early_return()) {
   218     Label L;
   219     Register thr_state = G3_scratch;
   220     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   221     tst(thr_state);
   222     br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
   223     delayed()->nop();
   225     // Initiate earlyret handling only if it is not already being processed.
   226     // If the flag has the earlyret_processing bit set, it means that this code
   227     // is called *during* earlyret handling - we don't want to reenter.
   228     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
   229     cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
   230     br(Assembler::notEqual, false, pt, L);
   231     delayed()->nop();
   233     // Call Interpreter::remove_activation_early_entry() to get the address of the
   234     // same-named entrypoint in the generated interpreter code
   235     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
   236     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
   238     // Jump to Interpreter::_remove_activation_early_entry
   239     jmpl(O0, G0, G0);
   240     delayed()->nop();
   241     bind(L);
   242   }
   243 }
   246 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
   247   mov(arg_1, O0);
   248   mov(arg_2, O1);
   249   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
   250 }
   251 #endif /* CC_INTERP */
   254 #ifndef CC_INTERP
   256 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
   257   assert_not_delayed();
   258   dispatch_Lbyte_code(state, table);
   259 }
   262 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
   263   dispatch_base(state, Interpreter::normal_table(state));
   264 }
   267 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   268   dispatch_base(state, Interpreter::dispatch_table(state));
   269 }
   272 // common code to dispatch and dispatch_only
   273 // dispatch value in Lbyte_code and increment Lbcp
   275 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
   276   verify_FPU(1, state);
   277   // %%%%% maybe implement +VerifyActivationFrameSize here
   278   //verify_thread(); //too slow; we will just verify on method entry & exit
   279   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   280 #ifdef FAST_DISPATCH
   281   if (table == Interpreter::dispatch_table(state)) {
   282     // use IdispatchTables
   283     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
   284                                                         // add offset to correct dispatch table
   285     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   286     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
   287   } else {
   288 #endif
   289     // dispatch table to use
   290     AddressLiteral tbl(table);
   291     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   292     set(tbl, G3_scratch);                               // compute addr of table
   293     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
   294 #ifdef FAST_DISPATCH
   295   }
   296 #endif
   297   jmp( G3_scratch, 0 );
   298   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   299   else                delayed()->nop();
   300 }
   303 // Helpers for expression stack
   305 // Longs and doubles are Category 2 computational types in the
   306 // JVM specification (section 3.11.1) and take 2 expression stack or
   307 // local slots.
   308 // Aligning them on 32 bit with tagged stacks is hard because the code generated
   309 // for the dup* bytecodes depends on what types are already on the stack.
   310 // If the types are split into the two stack/local slots, that is much easier
   311 // (and we can use 0 for non-reference tags).
   313 // Known good alignment in _LP64 but unknown otherwise
   314 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
   315   assert_not_delayed();
   317 #ifdef _LP64
   318   ldf(FloatRegisterImpl::D, r1, offset, d);
   319 #else
   320   ldf(FloatRegisterImpl::S, r1, offset, d);
   321   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
   322 #endif
   323 }
   325 // Known good alignment in _LP64 but unknown otherwise
   326 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
   327   assert_not_delayed();
   329 #ifdef _LP64
   330   stf(FloatRegisterImpl::D, d, r1, offset);
   331   // store something more useful here
   332   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
   333 #else
   334   stf(FloatRegisterImpl::S, d, r1, offset);
   335   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
   336 #endif
   337 }
   340 // Known good alignment in _LP64 but unknown otherwise
   341 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
   342   assert_not_delayed();
   343 #ifdef _LP64
   344   ldx(r1, offset, rd);
   345 #else
   346   ld(r1, offset, rd);
   347   ld(r1, offset + Interpreter::stackElementSize, rd->successor());
   348 #endif
   349 }
   351 // Known good alignment in _LP64 but unknown otherwise
   352 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
   353   assert_not_delayed();
   355 #ifdef _LP64
   356   stx(l, r1, offset);
   357   // store something more useful here
   358   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
   359 #else
   360   st(l, r1, offset);
   361   st(l->successor(), r1, offset + Interpreter::stackElementSize);
   362 #endif
   363 }
   365 void InterpreterMacroAssembler::pop_i(Register r) {
   366   assert_not_delayed();
   367   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   368   inc(Lesp, Interpreter::stackElementSize);
   369   debug_only(verify_esp(Lesp));
   370 }
   372 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
   373   assert_not_delayed();
   374   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   375   inc(Lesp, Interpreter::stackElementSize);
   376   debug_only(verify_esp(Lesp));
   377 }
   379 void InterpreterMacroAssembler::pop_l(Register r) {
   380   assert_not_delayed();
   381   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   382   inc(Lesp, 2*Interpreter::stackElementSize);
   383   debug_only(verify_esp(Lesp));
   384 }
   387 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
   388   assert_not_delayed();
   389   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
   390   inc(Lesp, Interpreter::stackElementSize);
   391   debug_only(verify_esp(Lesp));
   392 }
   395 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
   396   assert_not_delayed();
   397   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
   398   inc(Lesp, 2*Interpreter::stackElementSize);
   399   debug_only(verify_esp(Lesp));
   400 }
   403 void InterpreterMacroAssembler::push_i(Register r) {
   404   assert_not_delayed();
   405   debug_only(verify_esp(Lesp));
   406   st(r, Lesp, 0);
   407   dec(Lesp, Interpreter::stackElementSize);
   408 }
   410 void InterpreterMacroAssembler::push_ptr(Register r) {
   411   assert_not_delayed();
   412   st_ptr(r, Lesp, 0);
   413   dec(Lesp, Interpreter::stackElementSize);
   414 }
   416 // remember: our convention for longs in SPARC is:
   417 // O0 (Otos_l1) has high-order part in first word,
   418 // O1 (Otos_l2) has low-order part in second word
   420 void InterpreterMacroAssembler::push_l(Register r) {
   421   assert_not_delayed();
   422   debug_only(verify_esp(Lesp));
   423   // Longs are stored in memory-correct order, even if unaligned.
   424   int offset = -Interpreter::stackElementSize;
   425   store_unaligned_long(r, Lesp, offset);
   426   dec(Lesp, 2 * Interpreter::stackElementSize);
   427 }
   430 void InterpreterMacroAssembler::push_f(FloatRegister f) {
   431   assert_not_delayed();
   432   debug_only(verify_esp(Lesp));
   433   stf(FloatRegisterImpl::S, f, Lesp, 0);
   434   dec(Lesp, Interpreter::stackElementSize);
   435 }
   438 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
   439   assert_not_delayed();
   440   debug_only(verify_esp(Lesp));
   441   // Longs are stored in memory-correct order, even if unaligned.
   442   int offset = -Interpreter::stackElementSize;
   443   store_unaligned_double(d, Lesp, offset);
   444   dec(Lesp, 2 * Interpreter::stackElementSize);
   445 }
   448 void InterpreterMacroAssembler::push(TosState state) {
   449   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   450   switch (state) {
   451     case atos: push_ptr();            break;
   452     case btos: push_i();              break;
   453     case ctos:
   454     case stos: push_i();              break;
   455     case itos: push_i();              break;
   456     case ltos: push_l();              break;
   457     case ftos: push_f();              break;
   458     case dtos: push_d();              break;
   459     case vtos: /* nothing to do */    break;
   460     default  : ShouldNotReachHere();
   461   }
   462 }
   465 void InterpreterMacroAssembler::pop(TosState state) {
   466   switch (state) {
   467     case atos: pop_ptr();            break;
   468     case btos: pop_i();              break;
   469     case ctos:
   470     case stos: pop_i();              break;
   471     case itos: pop_i();              break;
   472     case ltos: pop_l();              break;
   473     case ftos: pop_f();              break;
   474     case dtos: pop_d();              break;
   475     case vtos: /* nothing to do */   break;
   476     default  : ShouldNotReachHere();
   477   }
   478   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   479 }
   482 // Helpers for swap and dup
   483 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
   484   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
   485 }
   486 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
   487   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
   488 }
   491 void InterpreterMacroAssembler::load_receiver(Register param_count,
   492                                               Register recv) {
   493   sll(param_count, Interpreter::logStackElementSize, param_count);
   494   ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
   495 }
   497 void InterpreterMacroAssembler::empty_expression_stack() {
   498   // Reset Lesp.
   499   sub( Lmonitors, wordSize, Lesp );
   501   // Reset SP by subtracting more space from Lesp.
   502   Label done;
   503   verify_oop(Lmethod);
   504   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
   506   // A native does not need to do this, since its callee does not change SP.
   507   ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size);  // Load access flags.
   508   btst(JVM_ACC_NATIVE, Gframe_size);
   509   br(Assembler::notZero, false, Assembler::pt, done);
   510   delayed()->nop();
   512   // Compute max expression stack+register save area
   513   lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size);  // Load max stack.
   514   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
   516   //
   517   // now set up a stack frame with the size computed above
   518   //
   519   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
   520   sll( Gframe_size, LogBytesPerWord, Gframe_size );
   521   sub( Lesp, Gframe_size, Gframe_size );
   522   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
   523   debug_only(verify_sp(Gframe_size, G4_scratch));
   524 #ifdef _LP64
   525   sub(Gframe_size, STACK_BIAS, Gframe_size );
   526 #endif
   527   mov(Gframe_size, SP);
   529   bind(done);
   530 }
   533 #ifdef ASSERT
   534 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
   535   Label Bad, OK;
   537   // Saved SP must be aligned.
   538 #ifdef _LP64
   539   btst(2*BytesPerWord-1, Rsp);
   540 #else
   541   btst(LongAlignmentMask, Rsp);
   542 #endif
   543   br(Assembler::notZero, false, Assembler::pn, Bad);
   544   delayed()->nop();
   546   // Saved SP, plus register window size, must not be above FP.
   547   add(Rsp, frame::register_save_words * wordSize, Rtemp);
   548 #ifdef _LP64
   549   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
   550 #endif
   551   cmp(Rtemp, FP);
   552   brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
   553   delayed()->nop();
   555   // Saved SP must not be ridiculously below current SP.
   556   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
   557   set(maxstack, Rtemp);
   558   sub(SP, Rtemp, Rtemp);
   559 #ifdef _LP64
   560   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
   561 #endif
   562   cmp(Rsp, Rtemp);
   563   brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
   564   delayed()->nop();
   566   br(Assembler::always, false, Assembler::pn, OK);
   567   delayed()->nop();
   569   bind(Bad);
   570   stop("on return to interpreted call, restored SP is corrupted");
   572   bind(OK);
   573 }
   576 void InterpreterMacroAssembler::verify_esp(Register Resp) {
   577   // about to read or write Resp[0]
   578   // make sure it is not in the monitors or the register save area
   579   Label OK1, OK2;
   581   cmp(Resp, Lmonitors);
   582   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
   583   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
   584   stop("too many pops:  Lesp points into monitor area");
   585   bind(OK1);
   586 #ifdef _LP64
   587   sub(Resp, STACK_BIAS, Resp);
   588 #endif
   589   cmp(Resp, SP);
   590   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
   591   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
   592   stop("too many pushes:  Lesp points into register window");
   593   bind(OK2);
   594 }
   595 #endif // ASSERT
   597 // Load compiled (i2c) or interpreter entry when calling from interpreted and
   598 // do the call. Centralized so that all interpreter calls will do the same actions.
   599 // If jvmti single stepping is on for a thread we must not call compiled code.
   600 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
   602   // Assume we want to go compiled if available
   604   ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
   606   if (JvmtiExport::can_post_interpreter_events()) {
   607     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   608     // compiled code in threads for which the event is enabled.  Check here for
   609     // interp_only_mode if these events CAN be enabled.
   610     verify_thread();
   611     Label skip_compiled_code;
   613     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
   614     ld(interp_only, scratch);
   615     tst(scratch);
   616     br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
   617     delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
   618     bind(skip_compiled_code);
   619   }
   621   // the i2c_adapters need methodOop in G5_method (right? %%%)
   622   // do the call
   623 #ifdef ASSERT
   624   {
   625     Label ok;
   626     br_notnull(target, false, Assembler::pt, ok);
   627     delayed()->nop();
   628     stop("null entry point");
   629     bind(ok);
   630   }
   631 #endif // ASSERT
   633   // Adjust Rret first so Llast_SP can be same as Rret
   634   add(Rret, -frame::pc_return_offset, O7);
   635   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
   636   // Record SP so we can remove any stack space allocated by adapter transition
   637   jmp(target, 0);
   638   delayed()->mov(SP, Llast_SP);
   639 }
   641 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
   642   assert_not_delayed();
   644   Label not_taken;
   645   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
   646   else             br (cc, false, Assembler::pn, not_taken);
   647   delayed()->nop();
   649   TemplateTable::branch(false,false);
   651   bind(not_taken);
   653   profile_not_taken_branch(G3_scratch);
   654 }
   657 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
   658                                   int         bcp_offset,
   659                                   Register    Rtmp,
   660                                   Register    Rdst,
   661                                   signedOrNot is_signed,
   662                                   setCCOrNot  should_set_CC ) {
   663   assert(Rtmp != Rdst, "need separate temp register");
   664   assert_not_delayed();
   665   switch (is_signed) {
   666    default: ShouldNotReachHere();
   668    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
   669    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
   670   }
   671   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
   672   sll( Rdst, BitsPerByte, Rdst);
   673   switch (should_set_CC ) {
   674    default: ShouldNotReachHere();
   676    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
   677    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
   678   }
   679 }
   682 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
   683                                   int        bcp_offset,
   684                                   Register   Rtmp,
   685                                   Register   Rdst,
   686                                   setCCOrNot should_set_CC ) {
   687   assert(Rtmp != Rdst, "need separate temp register");
   688   assert_not_delayed();
   689   add( Lbcp, bcp_offset, Rtmp);
   690   andcc( Rtmp, 3, G0);
   691   Label aligned;
   692   switch (should_set_CC ) {
   693    default: ShouldNotReachHere();
   695    case      set_CC: break;
   696    case dont_set_CC: break;
   697   }
   699   br(Assembler::zero, true, Assembler::pn, aligned);
   700 #ifdef _LP64
   701   delayed()->ldsw(Rtmp, 0, Rdst);
   702 #else
   703   delayed()->ld(Rtmp, 0, Rdst);
   704 #endif
   706   ldub(Lbcp, bcp_offset + 3, Rdst);
   707   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
   708   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
   709 #ifdef _LP64
   710   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   711 #else
   712   // Unsigned load is faster than signed on some implementations
   713   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   714 #endif
   715   or3(Rtmp, Rdst, Rdst );
   717   bind(aligned);
   718   if (should_set_CC == set_CC) tst(Rdst);
   719 }
   722 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register cache, Register tmp,
   723                                                        int bcp_offset, bool giant_index) {
   724   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   725   if (!giant_index) {
   726     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   727   } else {
   728     assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
   729     get_4_byte_integer_at_bcp(bcp_offset, cache, tmp);
   730     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
   731     xor3(tmp, -1, tmp);  // convert to plain index
   732   }
   733 }
   736 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
   737                                                            int bcp_offset, bool giant_index) {
   738   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   739   assert_different_registers(cache, tmp);
   740   assert_not_delayed();
   741   get_cache_index_at_bcp(cache, tmp, bcp_offset, giant_index);
   742   // convert from field index to ConstantPoolCacheEntry index and from
   743   // word index to byte offset
   744   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   745   add(LcpoolCache, tmp, cache);
   746 }
   749 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
   750                                                                int bcp_offset, bool giant_index) {
   751   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   752   assert_different_registers(cache, tmp);
   753   assert_not_delayed();
   754   assert(!giant_index,"NYI");
   755   get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   756               // convert from field index to ConstantPoolCacheEntry index
   757               // and from word index to byte offset
   758   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   759               // skip past the header
   760   add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
   761               // construct pointer to cache entry
   762   add(LcpoolCache, tmp, cache);
   763 }
   766 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   767 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
   768 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   769                                                   Register Rsuper_klass,
   770                                                   Register Rtmp1,
   771                                                   Register Rtmp2,
   772                                                   Register Rtmp3,
   773                                                   Label &ok_is_subtype ) {
   774   Label not_subtype;
   776   // Profile the not-null value's klass.
   777   profile_typecheck(Rsub_klass, Rtmp1);
   779   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
   780                                 Rtmp1, Rtmp2,
   781                                 &ok_is_subtype, &not_subtype, NULL);
   783   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
   784                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
   785                                 &ok_is_subtype, NULL);
   787   bind(not_subtype);
   788   profile_typecheck_failed(Rtmp1);
   789 }
   791 // Separate these two to allow for delay slot in middle
   792 // These are used to do a test and full jump to exception-throwing code.
   794 // %%%%% Could possibly reoptimize this by testing to see if could use
   795 // a single conditional branch (i.e. if span is small enough.
   796 // If you go that route, than get rid of the split and give up
   797 // on the delay-slot hack.
   799 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
   800                                                     Label&    ok ) {
   801   assert_not_delayed();
   802   br(ok_condition, true, pt, ok);
   803   // DELAY SLOT
   804 }
   806 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
   807                                                     Label&    ok ) {
   808   assert_not_delayed();
   809   bp( ok_condition, true, Assembler::xcc, pt, ok);
   810   // DELAY SLOT
   811 }
   813 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
   814                                                   Label&    ok ) {
   815   assert_not_delayed();
   816   brx(ok_condition, true, pt, ok);
   817   // DELAY SLOT
   818 }
   820 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
   821                                                 Register Rscratch,
   822                                                 Label&   ok ) {
   823   assert(throw_entry_point != NULL, "entry point must be generated by now");
   824   AddressLiteral dest(throw_entry_point);
   825   jump_to(dest, Rscratch);
   826   delayed()->nop();
   827   bind(ok);
   828 }
   831 // And if you cannot use the delay slot, here is a shorthand:
   833 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
   834                                                   address   throw_entry_point,
   835                                                   Register  Rscratch ) {
   836   Label ok;
   837   if (ok_condition != never) {
   838     throw_if_not_1_icc( ok_condition, ok);
   839     delayed()->nop();
   840   }
   841   throw_if_not_2( throw_entry_point, Rscratch, ok);
   842 }
   843 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
   844                                                   address   throw_entry_point,
   845                                                   Register  Rscratch ) {
   846   Label ok;
   847   if (ok_condition != never) {
   848     throw_if_not_1_xcc( ok_condition, ok);
   849     delayed()->nop();
   850   }
   851   throw_if_not_2( throw_entry_point, Rscratch, ok);
   852 }
   853 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
   854                                                 address   throw_entry_point,
   855                                                 Register  Rscratch ) {
   856   Label ok;
   857   if (ok_condition != never) {
   858     throw_if_not_1_x( ok_condition, ok);
   859     delayed()->nop();
   860   }
   861   throw_if_not_2( throw_entry_point, Rscratch, ok);
   862 }
   864 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
   865 // Note: res is still shy of address by array offset into object.
   867 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
   868   assert_not_delayed();
   870   verify_oop(array);
   871 #ifdef _LP64
   872   // sign extend since tos (index) can be a 32bit value
   873   sra(index, G0, index);
   874 #endif // _LP64
   876   // check array
   877   Label ptr_ok;
   878   tst(array);
   879   throw_if_not_1_x( notZero, ptr_ok );
   880   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
   881   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
   883   Label index_ok;
   884   cmp(index, tmp);
   885   throw_if_not_1_icc( lessUnsigned, index_ok );
   886   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
   887   else                  delayed()->add(array, index, res); // addr - const offset in index
   888   // convention: move aberrant index into G3_scratch for exception message
   889   mov(index, G3_scratch);
   890   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
   892   // add offset if didn't do it in delay slot
   893   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
   894 }
   897 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
   898   assert_not_delayed();
   900   // pop array
   901   pop_ptr(array);
   903   // check array
   904   index_check_without_pop(array, index, index_shift, tmp, res);
   905 }
   908 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
   909   ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
   910 }
   913 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
   914   get_constant_pool(Rdst);
   915   ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
   916 }
   919 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
   920   get_constant_pool(Rcpool);
   921   ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
   922 }
   925 // unlock if synchronized method
   926 //
   927 // Unlock the receiver if this is a synchronized method.
   928 // Unlock any Java monitors from syncronized blocks.
   929 //
   930 // If there are locked Java monitors
   931 //    If throw_monitor_exception
   932 //       throws IllegalMonitorStateException
   933 //    Else if install_monitor_exception
   934 //       installs IllegalMonitorStateException
   935 //    Else
   936 //       no error processing
   937 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
   938                                                               bool throw_monitor_exception,
   939                                                               bool install_monitor_exception) {
   940   Label unlocked, unlock, no_unlock;
   942   // get the value of _do_not_unlock_if_synchronized into G1_scratch
   943   const Address do_not_unlock_if_synchronized(G2_thread,
   944     JavaThread::do_not_unlock_if_synchronized_offset());
   945   ldbool(do_not_unlock_if_synchronized, G1_scratch);
   946   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
   948   // check if synchronized method
   949   const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
   950   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   951   push(state); // save tos
   952   ld(access_flags, G3_scratch); // Load access flags.
   953   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
   954   br(zero, false, pt, unlocked);
   955   delayed()->nop();
   957   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   958   // is set.
   959   tstbool(G1_scratch);
   960   br(Assembler::notZero, false, pn, no_unlock);
   961   delayed()->nop();
   963   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
   964   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
   966   //Intel: if (throw_monitor_exception) ... else ...
   967   // Entry already unlocked, need to throw exception
   968   //...
   970   // pass top-most monitor elem
   971   add( top_most_monitor(), O1 );
   973   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
   974   br_notnull(G3_scratch, false, pt, unlock);
   975   delayed()->nop();
   977   if (throw_monitor_exception) {
   978     // Entry already unlocked need to throw an exception
   979     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   980     should_not_reach_here();
   981   } else {
   982     // Monitor already unlocked during a stack unroll.
   983     // If requested, install an illegal_monitor_state_exception.
   984     // Continue with stack unrolling.
   985     if (install_monitor_exception) {
   986       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   987     }
   988     ba(false, unlocked);
   989     delayed()->nop();
   990   }
   992   bind(unlock);
   994   unlock_object(O1);
   996   bind(unlocked);
   998   // I0, I1: Might contain return value
  1000   // Check that all monitors are unlocked
  1001   { Label loop, exception, entry, restart;
  1003     Register Rmptr   = O0;
  1004     Register Rtemp   = O1;
  1005     Register Rlimit  = Lmonitors;
  1006     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1007     assert( (delta & LongAlignmentMask) == 0,
  1008             "sizeof BasicObjectLock must be even number of doublewords");
  1010     #ifdef ASSERT
  1011     add(top_most_monitor(), Rmptr, delta);
  1012     { Label L;
  1013       // ensure that Rmptr starts out above (or at) Rlimit
  1014       cmp(Rmptr, Rlimit);
  1015       brx(Assembler::greaterEqualUnsigned, false, pn, L);
  1016       delayed()->nop();
  1017       stop("monitor stack has negative size");
  1018       bind(L);
  1020     #endif
  1021     bind(restart);
  1022     ba(false, entry);
  1023     delayed()->
  1024     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
  1026     // Entry is still locked, need to throw exception
  1027     bind(exception);
  1028     if (throw_monitor_exception) {
  1029       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1030       should_not_reach_here();
  1031     } else {
  1032       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
  1033       // Unlock does not block, so don't have to worry about the frame
  1034       unlock_object(Rmptr);
  1035       if (install_monitor_exception) {
  1036         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1038       ba(false, restart);
  1039       delayed()->nop();
  1042     bind(loop);
  1043     cmp(Rtemp, G0);                             // check if current entry is used
  1044     brx(Assembler::notEqual, false, pn, exception);
  1045     delayed()->
  1046     dec(Rmptr, delta);                          // otherwise advance to next entry
  1047     #ifdef ASSERT
  1048     { Label L;
  1049       // ensure that Rmptr has not somehow stepped below Rlimit
  1050       cmp(Rmptr, Rlimit);
  1051       brx(Assembler::greaterEqualUnsigned, false, pn, L);
  1052       delayed()->nop();
  1053       stop("ran off the end of the monitor stack");
  1054       bind(L);
  1056     #endif
  1057     bind(entry);
  1058     cmp(Rmptr, Rlimit);                         // check if bottom reached
  1059     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
  1060     delayed()->
  1061     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
  1064   bind(no_unlock);
  1065   pop(state);
  1066   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1070 // remove activation
  1071 //
  1072 // Unlock the receiver if this is a synchronized method.
  1073 // Unlock any Java monitors from syncronized blocks.
  1074 // Remove the activation from the stack.
  1075 //
  1076 // If there are locked Java monitors
  1077 //    If throw_monitor_exception
  1078 //       throws IllegalMonitorStateException
  1079 //    Else if install_monitor_exception
  1080 //       installs IllegalMonitorStateException
  1081 //    Else
  1082 //       no error processing
  1083 void InterpreterMacroAssembler::remove_activation(TosState state,
  1084                                                   bool throw_monitor_exception,
  1085                                                   bool install_monitor_exception) {
  1087   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
  1089   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
  1090   notify_method_exit(false, state, NotifyJVMTI);
  1092   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1093   verify_oop(Lmethod);
  1094   verify_thread();
  1096   // return tos
  1097   assert(Otos_l1 == Otos_i, "adjust code below");
  1098   switch (state) {
  1099 #ifdef _LP64
  1100   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
  1101 #else
  1102   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
  1103 #endif
  1104   case btos:                                      // fall through
  1105   case ctos:
  1106   case stos:                                      // fall through
  1107   case atos:                                      // fall through
  1108   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
  1109   case ftos:                                      // fall through
  1110   case dtos:                                      // fall through
  1111   case vtos: /* nothing to do */                     break;
  1112   default  : ShouldNotReachHere();
  1115 #if defined(COMPILER2) && !defined(_LP64)
  1116   if (state == ltos) {
  1117     // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1118     // or compiled so just be safe use G1 and O0/O1
  1120     // Shift bits into high (msb) of G1
  1121     sllx(Otos_l1->after_save(), 32, G1);
  1122     // Zero extend low bits
  1123     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
  1124     or3 (Otos_l2->after_save(), G1, G1);
  1126 #endif /* COMPILER2 */
  1129 #endif /* CC_INTERP */
  1132 // Lock object
  1133 //
  1134 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
  1135 //            it must be initialized with the object to lock
  1136 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
  1137   if (UseHeavyMonitors) {
  1138     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1140   else {
  1141     Register obj_reg = Object;
  1142     Register mark_reg = G4_scratch;
  1143     Register temp_reg = G1_scratch;
  1144     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
  1145     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1146     Label    done;
  1148     Label slow_case;
  1150     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
  1152     // load markOop from object into mark_reg
  1153     ld_ptr(mark_addr, mark_reg);
  1155     if (UseBiasedLocking) {
  1156       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
  1159     // get the address of basicLock on stack that will be stored in the object
  1160     // we need a temporary register here as we do not want to clobber lock_reg
  1161     // (cas clobbers the destination register)
  1162     mov(lock_reg, temp_reg);
  1163     // set mark reg to be (markOop of object | UNLOCK_VALUE)
  1164     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
  1165     // initialize the box  (Must happen before we update the object mark!)
  1166     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1167     // compare and exchange object_addr, markOop | 1, stack address of basicLock
  1168     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1169     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  1170       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1172     // if the compare and exchange succeeded we are done (we saw an unlocked object)
  1173     cmp(mark_reg, temp_reg);
  1174     brx(Assembler::equal, true, Assembler::pt, done);
  1175     delayed()->nop();
  1177     // We did not see an unlocked object so try the fast recursive case
  1179     // Check if owner is self by comparing the value in the markOop of object
  1180     // with the stack pointer
  1181     sub(temp_reg, SP, temp_reg);
  1182 #ifdef _LP64
  1183     sub(temp_reg, STACK_BIAS, temp_reg);
  1184 #endif
  1185     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  1187     // Composite "andcc" test:
  1188     // (a) %sp -vs- markword proximity check, and,
  1189     // (b) verify mark word LSBs == 0 (Stack-locked).
  1190     //
  1191     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
  1192     // Note that the page size used for %sp proximity testing is arbitrary and is
  1193     // unrelated to the actual MMU page size.  We use a 'logical' page size of
  1194     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
  1195     // field of the andcc instruction.
  1196     andcc (temp_reg, 0xFFFFF003, G0) ;
  1198     // if condition is true we are done and hence we can store 0 in the displaced
  1199     // header indicating it is a recursive lock and be done
  1200     brx(Assembler::zero, true, Assembler::pt, done);
  1201     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1203     // none of the above fast optimizations worked so we have to get into the
  1204     // slow case of monitor enter
  1205     bind(slow_case);
  1206     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1208     bind(done);
  1212 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
  1213 //
  1214 // Argument - lock_reg points to the BasicObjectLock for lock
  1215 // Throw IllegalMonitorException if object is not locked by current thread
  1216 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
  1217   if (UseHeavyMonitors) {
  1218     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1219   } else {
  1220     Register obj_reg = G3_scratch;
  1221     Register mark_reg = G4_scratch;
  1222     Register displaced_header_reg = G1_scratch;
  1223     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
  1224     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1225     Label    done;
  1227     if (UseBiasedLocking) {
  1228       // load the object out of the BasicObjectLock
  1229       ld_ptr(lockobj_addr, obj_reg);
  1230       biased_locking_exit(mark_addr, mark_reg, done, true);
  1231       st_ptr(G0, lockobj_addr);  // free entry
  1234     // Test first if we are in the fast recursive case
  1235     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
  1236     ld_ptr(lock_addr, displaced_header_reg);
  1237     br_null(displaced_header_reg, true, Assembler::pn, done);
  1238     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1240     // See if it is still a light weight lock, if so we just unlock
  1241     // the object and we are done
  1243     if (!UseBiasedLocking) {
  1244       // load the object out of the BasicObjectLock
  1245       ld_ptr(lockobj_addr, obj_reg);
  1248     // we have the displaced header in displaced_header_reg
  1249     // we expect to see the stack address of the basicLock in case the
  1250     // lock is still a light weight lock (lock_reg)
  1251     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1252     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
  1253       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1254     cmp(lock_reg, displaced_header_reg);
  1255     brx(Assembler::equal, true, Assembler::pn, done);
  1256     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1258     // The lock has been converted into a heavy lock and hence
  1259     // we need to get into the slow case
  1261     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1263     bind(done);
  1267 #ifndef CC_INTERP
  1269 // Get the method data pointer from the methodOop and set the
  1270 // specified register to its value.
  1272 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
  1273   assert(ProfileInterpreter, "must be profiling interpreter");
  1274   Label get_continue;
  1276   ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
  1277   test_method_data_pointer(get_continue);
  1278   add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
  1279   if (Roff != noreg)
  1280     // Roff contains a method data index ("mdi").  It defaults to zero.
  1281     add(ImethodDataPtr, Roff, ImethodDataPtr);
  1282   bind(get_continue);
  1285 // Set the method data pointer for the current bcp.
  1287 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  1288   assert(ProfileInterpreter, "must be profiling interpreter");
  1289   Label zero_continue;
  1291   // Test MDO to avoid the call if it is NULL.
  1292   ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
  1293   test_method_data_pointer(zero_continue);
  1294   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
  1295   set_method_data_pointer_offset(O0);
  1296   bind(zero_continue);
  1299 // Test ImethodDataPtr.  If it is null, continue at the specified label
  1301 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
  1302   assert(ProfileInterpreter, "must be profiling interpreter");
  1303 #ifdef _LP64
  1304   bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
  1305 #else
  1306   tst(ImethodDataPtr);
  1307   br(Assembler::zero, false, Assembler::pn, zero_continue);
  1308 #endif
  1309   delayed()->nop();
  1312 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1313   assert(ProfileInterpreter, "must be profiling interpreter");
  1314 #ifdef ASSERT
  1315   Label verify_continue;
  1316   test_method_data_pointer(verify_continue);
  1318   // If the mdp is valid, it will point to a DataLayout header which is
  1319   // consistent with the bcp.  The converse is highly probable also.
  1320   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
  1321   ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
  1322   add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
  1323   add(G3_scratch, O5, G3_scratch);
  1324   cmp(Lbcp, G3_scratch);
  1325   brx(Assembler::equal, false, Assembler::pt, verify_continue);
  1327   Register temp_reg = O5;
  1328   delayed()->mov(ImethodDataPtr, temp_reg);
  1329   // %%% should use call_VM_leaf here?
  1330   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
  1331   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
  1332   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
  1333   stf(FloatRegisterImpl::D, Ftos_d, d_save);
  1334   mov(temp_reg->after_save(), O2);
  1335   save_thread(L7_thread_cache);
  1336   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
  1337   delayed()->nop();
  1338   restore_thread(L7_thread_cache);
  1339   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
  1340   restore();
  1341   bind(verify_continue);
  1342 #endif // ASSERT
  1345 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
  1346                                                                 Register cur_bcp,
  1347                                                                 Register Rtmp,
  1348                                                                 Label &profile_continue) {
  1349   assert(ProfileInterpreter, "must be profiling interpreter");
  1350   // Control will flow to "profile_continue" if the counter is less than the
  1351   // limit or if we call profile_method()
  1353   Label done;
  1355   // if no method data exists, and the counter is high enough, make one
  1356 #ifdef _LP64
  1357   bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
  1358 #else
  1359   tst(ImethodDataPtr);
  1360   br(Assembler::notZero, false, Assembler::pn, done);
  1361 #endif
  1363   // Test to see if we should create a method data oop
  1364   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
  1365 #ifdef _LP64
  1366   delayed()->nop();
  1367   sethi(profile_limit, Rtmp);
  1368 #else
  1369   delayed()->sethi(profile_limit, Rtmp);
  1370 #endif
  1371   ld(Rtmp, profile_limit.low10(), Rtmp);
  1372   cmp(invocation_count, Rtmp);
  1373   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
  1374   delayed()->nop();
  1376   // Build it now.
  1377   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
  1378   set_method_data_pointer_offset(O0);
  1379   ba(false, profile_continue);
  1380   delayed()->nop();
  1381   bind(done);
  1384 // Store a value at some constant offset from the method data pointer.
  1386 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
  1387   assert(ProfileInterpreter, "must be profiling interpreter");
  1388   st_ptr(value, ImethodDataPtr, constant);
  1391 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
  1392                                                       Register bumped_count,
  1393                                                       bool decrement) {
  1394   assert(ProfileInterpreter, "must be profiling interpreter");
  1396   // Load the counter.
  1397   ld_ptr(counter, bumped_count);
  1399   if (decrement) {
  1400     // Decrement the register.  Set condition codes.
  1401     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1403     // If the decrement causes the counter to overflow, stay negative
  1404     Label L;
  1405     brx(Assembler::negative, true, Assembler::pn, L);
  1407     // Store the decremented counter, if it is still negative.
  1408     delayed()->st_ptr(bumped_count, counter);
  1409     bind(L);
  1410   } else {
  1411     // Increment the register.  Set carry flag.
  1412     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1414     // If the increment causes the counter to overflow, pull back by 1.
  1415     assert(DataLayout::counter_increment == 1, "subc works");
  1416     subc(bumped_count, G0, bumped_count);
  1418     // Store the incremented counter.
  1419     st_ptr(bumped_count, counter);
  1423 // Increment the value at some constant offset from the method data pointer.
  1425 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
  1426                                                       Register bumped_count,
  1427                                                       bool decrement) {
  1428   // Locate the counter at a fixed offset from the mdp:
  1429   Address counter(ImethodDataPtr, constant);
  1430   increment_mdp_data_at(counter, bumped_count, decrement);
  1433 // Increment the value at some non-fixed (reg + constant) offset from
  1434 // the method data pointer.
  1436 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
  1437                                                       int constant,
  1438                                                       Register bumped_count,
  1439                                                       Register scratch2,
  1440                                                       bool decrement) {
  1441   // Add the constant to reg to get the offset.
  1442   add(ImethodDataPtr, reg, scratch2);
  1443   Address counter(scratch2, constant);
  1444   increment_mdp_data_at(counter, bumped_count, decrement);
  1447 // Set a flag value at the current method data pointer position.
  1448 // Updates a single byte of the header, to avoid races with other header bits.
  1450 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
  1451                                                 Register scratch) {
  1452   assert(ProfileInterpreter, "must be profiling interpreter");
  1453   // Load the data header
  1454   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
  1456   // Set the flag
  1457   or3(scratch, flag_constant, scratch);
  1459   // Store the modified header.
  1460   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
  1463 // Test the location at some offset from the method data pointer.
  1464 // If it is not equal to value, branch to the not_equal_continue Label.
  1465 // Set condition codes to match the nullness of the loaded value.
  1467 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
  1468                                                  Register value,
  1469                                                  Label& not_equal_continue,
  1470                                                  Register scratch) {
  1471   assert(ProfileInterpreter, "must be profiling interpreter");
  1472   ld_ptr(ImethodDataPtr, offset, scratch);
  1473   cmp(value, scratch);
  1474   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
  1475   delayed()->tst(scratch);
  1478 // Update the method data pointer by the displacement located at some fixed
  1479 // offset from the method data pointer.
  1481 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
  1482                                                      Register scratch) {
  1483   assert(ProfileInterpreter, "must be profiling interpreter");
  1484   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
  1485   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1488 // Update the method data pointer by the displacement located at the
  1489 // offset (reg + offset_of_disp).
  1491 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
  1492                                                      int offset_of_disp,
  1493                                                      Register scratch) {
  1494   assert(ProfileInterpreter, "must be profiling interpreter");
  1495   add(reg, offset_of_disp, scratch);
  1496   ld_ptr(ImethodDataPtr, scratch, scratch);
  1497   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1500 // Update the method data pointer by a simple constant displacement.
  1502 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
  1503   assert(ProfileInterpreter, "must be profiling interpreter");
  1504   add(ImethodDataPtr, constant, ImethodDataPtr);
  1507 // Update the method data pointer for a _ret bytecode whose target
  1508 // was not among our cached targets.
  1510 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
  1511                                                    Register return_bci) {
  1512   assert(ProfileInterpreter, "must be profiling interpreter");
  1513   push(state);
  1514   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
  1515   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  1516   ld_ptr(l_tmp, return_bci);
  1517   pop(state);
  1520 // Count a taken branch in the bytecodes.
  1522 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
  1523   if (ProfileInterpreter) {
  1524     Label profile_continue;
  1526     // If no method data exists, go to profile_continue.
  1527     test_method_data_pointer(profile_continue);
  1529     // We are taking a branch.  Increment the taken count.
  1530     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
  1532     // The method data pointer needs to be updated to reflect the new target.
  1533     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
  1534     bind (profile_continue);
  1539 // Count a not-taken branch in the bytecodes.
  1541 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
  1542   if (ProfileInterpreter) {
  1543     Label profile_continue;
  1545     // If no method data exists, go to profile_continue.
  1546     test_method_data_pointer(profile_continue);
  1548     // We are taking a branch.  Increment the not taken count.
  1549     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
  1551     // The method data pointer needs to be updated to correspond to the
  1552     // next bytecode.
  1553     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
  1554     bind (profile_continue);
  1559 // Count a non-virtual call in the bytecodes.
  1561 void InterpreterMacroAssembler::profile_call(Register scratch) {
  1562   if (ProfileInterpreter) {
  1563     Label profile_continue;
  1565     // If no method data exists, go to profile_continue.
  1566     test_method_data_pointer(profile_continue);
  1568     // We are making a call.  Increment the count.
  1569     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1571     // The method data pointer needs to be updated to reflect the new target.
  1572     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
  1573     bind (profile_continue);
  1578 // Count a final call in the bytecodes.
  1580 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
  1581   if (ProfileInterpreter) {
  1582     Label profile_continue;
  1584     // If no method data exists, go to profile_continue.
  1585     test_method_data_pointer(profile_continue);
  1587     // We are making a call.  Increment the count.
  1588     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1590     // The method data pointer needs to be updated to reflect the new target.
  1591     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1592     bind (profile_continue);
  1597 // Count a virtual call in the bytecodes.
  1599 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1600                                                      Register scratch,
  1601                                                      bool receiver_can_be_null) {
  1602   if (ProfileInterpreter) {
  1603     Label profile_continue;
  1605     // If no method data exists, go to profile_continue.
  1606     test_method_data_pointer(profile_continue);
  1609     Label skip_receiver_profile;
  1610     if (receiver_can_be_null) {
  1611       Label not_null;
  1612       tst(receiver);
  1613       brx(Assembler::notZero, false, Assembler::pt, not_null);
  1614       delayed()->nop();
  1615       // We are making a call.  Increment the count for null receiver.
  1616       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1617       ba(false, skip_receiver_profile);
  1618       delayed()->nop();
  1619       bind(not_null);
  1622     // Record the receiver type.
  1623     record_klass_in_profile(receiver, scratch, true);
  1624     bind(skip_receiver_profile);
  1626     // The method data pointer needs to be updated to reflect the new target.
  1627     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1628     bind (profile_continue);
  1632 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1633                                         Register receiver, Register scratch,
  1634                                         int start_row, Label& done, bool is_virtual_call) {
  1635   if (TypeProfileWidth == 0) {
  1636     if (is_virtual_call) {
  1637       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1639     return;
  1642   int last_row = VirtualCallData::row_limit() - 1;
  1643   assert(start_row <= last_row, "must be work left to do");
  1644   // Test this row for both the receiver and for null.
  1645   // Take any of three different outcomes:
  1646   //   1. found receiver => increment count and goto done
  1647   //   2. found null => keep looking for case 1, maybe allocate this cell
  1648   //   3. found something else => keep looking for cases 1 and 2
  1649   // Case 3 is handled by a recursive call.
  1650   for (int row = start_row; row <= last_row; row++) {
  1651     Label next_test;
  1652     bool test_for_null_also = (row == start_row);
  1654     // See if the receiver is receiver[n].
  1655     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1656     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
  1657     // delayed()->tst(scratch);
  1659     // The receiver is receiver[n].  Increment count[n].
  1660     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1661     increment_mdp_data_at(count_offset, scratch);
  1662     ba(false, done);
  1663     delayed()->nop();
  1664     bind(next_test);
  1666     if (test_for_null_also) {
  1667       Label found_null;
  1668       // Failed the equality check on receiver[n]...  Test for null.
  1669       if (start_row == last_row) {
  1670         // The only thing left to do is handle the null case.
  1671         if (is_virtual_call) {
  1672           brx(Assembler::zero, false, Assembler::pn, found_null);
  1673           delayed()->nop();
  1674           // Receiver did not match any saved receiver and there is no empty row for it.
  1675           // Increment total counter to indicate polymorphic case.
  1676           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1677           ba(false, done);
  1678           delayed()->nop();
  1679           bind(found_null);
  1680         } else {
  1681           brx(Assembler::notZero, false, Assembler::pt, done);
  1682           delayed()->nop();
  1684         break;
  1686       // Since null is rare, make it be the branch-taken case.
  1687       brx(Assembler::zero, false, Assembler::pn, found_null);
  1688       delayed()->nop();
  1690       // Put all the "Case 3" tests here.
  1691       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
  1693       // Found a null.  Keep searching for a matching receiver,
  1694       // but remember that this is an empty (unused) slot.
  1695       bind(found_null);
  1699   // In the fall-through case, we found no matching receiver, but we
  1700   // observed the receiver[start_row] is NULL.
  1702   // Fill in the receiver field and increment the count.
  1703   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1704   set_mdp_data_at(recvr_offset, receiver);
  1705   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1706   mov(DataLayout::counter_increment, scratch);
  1707   set_mdp_data_at(count_offset, scratch);
  1708   if (start_row > 0) {
  1709     ba(false, done);
  1710     delayed()->nop();
  1714 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1715                                                         Register scratch, bool is_virtual_call) {
  1716   assert(ProfileInterpreter, "must be profiling");
  1717   Label done;
  1719   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
  1721   bind (done);
  1725 // Count a ret in the bytecodes.
  1727 void InterpreterMacroAssembler::profile_ret(TosState state,
  1728                                             Register return_bci,
  1729                                             Register scratch) {
  1730   if (ProfileInterpreter) {
  1731     Label profile_continue;
  1732     uint row;
  1734     // If no method data exists, go to profile_continue.
  1735     test_method_data_pointer(profile_continue);
  1737     // Update the total ret count.
  1738     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1740     for (row = 0; row < RetData::row_limit(); row++) {
  1741       Label next_test;
  1743       // See if return_bci is equal to bci[n]:
  1744       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
  1745                        return_bci, next_test, scratch);
  1747       // return_bci is equal to bci[n].  Increment the count.
  1748       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
  1750       // The method data pointer needs to be updated to reflect the new target.
  1751       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
  1752       ba(false, profile_continue);
  1753       delayed()->nop();
  1754       bind(next_test);
  1757     update_mdp_for_ret(state, return_bci);
  1759     bind (profile_continue);
  1763 // Profile an unexpected null in the bytecodes.
  1764 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
  1765   if (ProfileInterpreter) {
  1766     Label profile_continue;
  1768     // If no method data exists, go to profile_continue.
  1769     test_method_data_pointer(profile_continue);
  1771     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
  1773     // The method data pointer needs to be updated.
  1774     int mdp_delta = in_bytes(BitData::bit_data_size());
  1775     if (TypeProfileCasts) {
  1776       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1778     update_mdp_by_constant(mdp_delta);
  1780     bind (profile_continue);
  1784 void InterpreterMacroAssembler::profile_typecheck(Register klass,
  1785                                                   Register scratch) {
  1786   if (ProfileInterpreter) {
  1787     Label profile_continue;
  1789     // If no method data exists, go to profile_continue.
  1790     test_method_data_pointer(profile_continue);
  1792     int mdp_delta = in_bytes(BitData::bit_data_size());
  1793     if (TypeProfileCasts) {
  1794       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1796       // Record the object type.
  1797       record_klass_in_profile(klass, scratch, false);
  1800     // The method data pointer needs to be updated.
  1801     update_mdp_by_constant(mdp_delta);
  1803     bind (profile_continue);
  1807 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
  1808   if (ProfileInterpreter && TypeProfileCasts) {
  1809     Label profile_continue;
  1811     // If no method data exists, go to profile_continue.
  1812     test_method_data_pointer(profile_continue);
  1814     int count_offset = in_bytes(CounterData::count_offset());
  1815     // Back up the address, since we have already bumped the mdp.
  1816     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1818     // *Decrement* the counter.  We expect to see zero or small negatives.
  1819     increment_mdp_data_at(count_offset, scratch, true);
  1821     bind (profile_continue);
  1825 // Count the default case of a switch construct.
  1827 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
  1828   if (ProfileInterpreter) {
  1829     Label profile_continue;
  1831     // If no method data exists, go to profile_continue.
  1832     test_method_data_pointer(profile_continue);
  1834     // Update the default case count
  1835     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
  1836                           scratch);
  1838     // The method data pointer needs to be updated.
  1839     update_mdp_by_offset(
  1840                     in_bytes(MultiBranchData::default_displacement_offset()),
  1841                     scratch);
  1843     bind (profile_continue);
  1847 // Count the index'th case of a switch construct.
  1849 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1850                                                     Register scratch,
  1851                                                     Register scratch2,
  1852                                                     Register scratch3) {
  1853   if (ProfileInterpreter) {
  1854     Label profile_continue;
  1856     // If no method data exists, go to profile_continue.
  1857     test_method_data_pointer(profile_continue);
  1859     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1860     set(in_bytes(MultiBranchData::per_case_size()), scratch);
  1861     smul(index, scratch, scratch);
  1862     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
  1864     // Update the case count
  1865     increment_mdp_data_at(scratch,
  1866                           in_bytes(MultiBranchData::relative_count_offset()),
  1867                           scratch2,
  1868                           scratch3);
  1870     // The method data pointer needs to be updated.
  1871     update_mdp_by_offset(scratch,
  1872                      in_bytes(MultiBranchData::relative_displacement_offset()),
  1873                      scratch2);
  1875     bind (profile_continue);
  1879 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
  1881 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
  1882                                                       Register Rtemp,
  1883                                                       Register Rtemp2 ) {
  1885   Register Rlimit = Lmonitors;
  1886   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1887   assert( (delta & LongAlignmentMask) == 0,
  1888           "sizeof BasicObjectLock must be even number of doublewords");
  1890   sub( SP,        delta, SP);
  1891   sub( Lesp,      delta, Lesp);
  1892   sub( Lmonitors, delta, Lmonitors);
  1894   if (!stack_is_empty) {
  1896     // must copy stack contents down
  1898     Label start_copying, next;
  1900     // untested("monitor stack expansion");
  1901     compute_stack_base(Rtemp);
  1902     ba( false, start_copying );
  1903     delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
  1905     // note: must copy from low memory upwards
  1906     // On entry to loop,
  1907     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
  1908     // Loop mutates Rtemp
  1910     bind( next);
  1912     st_ptr(Rtemp2, Rtemp, 0);
  1913     inc(Rtemp, wordSize);
  1914     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
  1916     bind( start_copying );
  1918     brx( notEqual, true, pn, next );
  1919     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
  1921     // done copying stack
  1925 // Locals
  1926 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
  1927   assert_not_delayed();
  1928   sll(index, Interpreter::logStackElementSize, index);
  1929   sub(Llocals, index, index);
  1930   ld_ptr(index, 0, dst);
  1931   // Note:  index must hold the effective address--the iinc template uses it
  1934 // Just like access_local_ptr but the tag is a returnAddress
  1935 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
  1936                                                            Register dst ) {
  1937   assert_not_delayed();
  1938   sll(index, Interpreter::logStackElementSize, index);
  1939   sub(Llocals, index, index);
  1940   ld_ptr(index, 0, dst);
  1943 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
  1944   assert_not_delayed();
  1945   sll(index, Interpreter::logStackElementSize, index);
  1946   sub(Llocals, index, index);
  1947   ld(index, 0, dst);
  1948   // Note:  index must hold the effective address--the iinc template uses it
  1952 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
  1953   assert_not_delayed();
  1954   sll(index, Interpreter::logStackElementSize, index);
  1955   sub(Llocals, index, index);
  1956   // First half stored at index n+1 (which grows down from Llocals[n])
  1957   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
  1961 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
  1962   assert_not_delayed();
  1963   sll(index, Interpreter::logStackElementSize, index);
  1964   sub(Llocals, index, index);
  1965   ldf(FloatRegisterImpl::S, index, 0, dst);
  1969 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
  1970   assert_not_delayed();
  1971   sll(index, Interpreter::logStackElementSize, index);
  1972   sub(Llocals, index, index);
  1973   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
  1977 #ifdef ASSERT
  1978 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
  1979   Label L;
  1981   assert(Rindex != Rscratch, "Registers cannot be same");
  1982   assert(Rindex != Rscratch1, "Registers cannot be same");
  1983   assert(Rlimit != Rscratch, "Registers cannot be same");
  1984   assert(Rlimit != Rscratch1, "Registers cannot be same");
  1985   assert(Rscratch1 != Rscratch, "Registers cannot be same");
  1987   // untested("reg area corruption");
  1988   add(Rindex, offset, Rscratch);
  1989   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
  1990   cmp(Rscratch, Rscratch1);
  1991   brx(Assembler::greaterEqualUnsigned, false, pn, L);
  1992   delayed()->nop();
  1993   stop("regsave area is being clobbered");
  1994   bind(L);
  1996 #endif // ASSERT
  1999 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
  2000   assert_not_delayed();
  2001   sll(index, Interpreter::logStackElementSize, index);
  2002   sub(Llocals, index, index);
  2003   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
  2004   st(src, index, 0);
  2007 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
  2008   assert_not_delayed();
  2009   sll(index, Interpreter::logStackElementSize, index);
  2010   sub(Llocals, index, index);
  2011 #ifdef ASSERT
  2012   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
  2013 #endif
  2014   st_ptr(src, index, 0);
  2019 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
  2020   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
  2023 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
  2024   assert_not_delayed();
  2025   sll(index, Interpreter::logStackElementSize, index);
  2026   sub(Llocals, index, index);
  2027 #ifdef ASSERT
  2028   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2029 #endif
  2030   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
  2034 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
  2035   assert_not_delayed();
  2036   sll(index, Interpreter::logStackElementSize, index);
  2037   sub(Llocals, index, index);
  2038 #ifdef ASSERT
  2039   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
  2040 #endif
  2041   stf(FloatRegisterImpl::S, src, index, 0);
  2045 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
  2046   assert_not_delayed();
  2047   sll(index, Interpreter::logStackElementSize, index);
  2048   sub(Llocals, index, index);
  2049 #ifdef ASSERT
  2050   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2051 #endif
  2052   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
  2056 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
  2057   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  2058   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
  2059   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
  2063 Address InterpreterMacroAssembler::top_most_monitor() {
  2064   return Address(FP, top_most_monitor_byte_offset());
  2068 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
  2069   add( Lesp,      wordSize,                                    Rdest );
  2072 #endif /* CC_INTERP */
  2074 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
  2075   assert(UseCompiler, "incrementing must be useful");
  2076 #ifdef CC_INTERP
  2077   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
  2078                                  InvocationCounter::counter_offset());
  2079   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
  2080                                  InvocationCounter::counter_offset());
  2081 #else
  2082   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
  2083                                InvocationCounter::counter_offset());
  2084   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
  2085                                InvocationCounter::counter_offset());
  2086 #endif /* CC_INTERP */
  2087   int delta = InvocationCounter::count_increment;
  2089   // Load each counter in a register
  2090   ld( inv_counter, Rtmp );
  2091   ld( be_counter, Rtmp2 );
  2093   assert( is_simm13( delta ), " delta too large.");
  2095   // Add the delta to the invocation counter and store the result
  2096   add( Rtmp, delta, Rtmp );
  2098   // Mask the backedge counter
  2099   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2101   // Store value
  2102   st( Rtmp, inv_counter);
  2104   // Add invocation counter + backedge counter
  2105   add( Rtmp, Rtmp2, Rtmp);
  2107   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
  2110 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
  2111   assert(UseCompiler, "incrementing must be useful");
  2112 #ifdef CC_INTERP
  2113   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
  2114                                  InvocationCounter::counter_offset());
  2115   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
  2116                                  InvocationCounter::counter_offset());
  2117 #else
  2118   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
  2119                                InvocationCounter::counter_offset());
  2120   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
  2121                                InvocationCounter::counter_offset());
  2122 #endif /* CC_INTERP */
  2123   int delta = InvocationCounter::count_increment;
  2124   // Load each counter in a register
  2125   ld( be_counter, Rtmp );
  2126   ld( inv_counter, Rtmp2 );
  2128   // Add the delta to the backedge counter
  2129   add( Rtmp, delta, Rtmp );
  2131   // Mask the invocation counter, add to backedge counter
  2132   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2134   // and store the result to memory
  2135   st( Rtmp, be_counter );
  2137   // Add backedge + invocation counter
  2138   add( Rtmp, Rtmp2, Rtmp );
  2140   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
  2143 #ifndef CC_INTERP
  2144 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
  2145                                                              Register branch_bcp,
  2146                                                              Register Rtmp ) {
  2147   Label did_not_overflow;
  2148   Label overflow_with_error;
  2149   assert_different_registers(backedge_count, Rtmp, branch_bcp);
  2150   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
  2152   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
  2153   load_contents(limit, Rtmp);
  2154   cmp(backedge_count, Rtmp);
  2155   br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
  2156   delayed()->nop();
  2158   // When ProfileInterpreter is on, the backedge_count comes from the
  2159   // methodDataOop, which value does not get reset on the call to
  2160   // frequency_counter_overflow().  To avoid excessive calls to the overflow
  2161   // routine while the method is being compiled, add a second test to make sure
  2162   // the overflow function is called only once every overflow_frequency.
  2163   if (ProfileInterpreter) {
  2164     const int overflow_frequency = 1024;
  2165     andcc(backedge_count, overflow_frequency-1, Rtmp);
  2166     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
  2167     delayed()->nop();
  2170   // overflow in loop, pass branch bytecode
  2171   set(6,Rtmp);
  2172   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
  2174   // Was an OSR adapter generated?
  2175   // O0 = osr nmethod
  2176   tst(O0);
  2177   brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
  2178   delayed()->nop();
  2180   // Has the nmethod been invalidated already?
  2181   ld(O0, nmethod::entry_bci_offset(), O2);
  2182   cmp(O2, InvalidOSREntryBci);
  2183   br(Assembler::equal, false, Assembler::pn, overflow_with_error);
  2184   delayed()->nop();
  2186   // migrate the interpreter frame off of the stack
  2188   mov(G2_thread, L7);
  2189   // save nmethod
  2190   mov(O0, L6);
  2191   set_last_Java_frame(SP, noreg);
  2192   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  2193   reset_last_Java_frame();
  2194   mov(L7, G2_thread);
  2196   // move OSR nmethod to I1
  2197   mov(L6, I1);
  2199   // OSR buffer to I0
  2200   mov(O0, I0);
  2202   // remove the interpreter frame
  2203   restore(I5_savedSP, 0, SP);
  2205   // Jump to the osr code.
  2206   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  2207   jmp(O2, G0);
  2208   delayed()->nop();
  2210   bind(overflow_with_error);
  2212   bind(did_not_overflow);
  2217 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
  2218   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
  2222 // local helper function for the verify_oop_or_return_address macro
  2223 static bool verify_return_address(methodOopDesc* m, int bci) {
  2224 #ifndef PRODUCT
  2225   address pc = (address)(m->constMethod())
  2226              + in_bytes(constMethodOopDesc::codes_offset()) + bci;
  2227   // assume it is a valid return address if it is inside m and is preceded by a jsr
  2228   if (!m->contains(pc))                                          return false;
  2229   address jsr_pc;
  2230   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
  2231   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
  2232   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
  2233   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
  2234 #endif // PRODUCT
  2235   return false;
  2239 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
  2240   if (!VerifyOops)  return;
  2241   // the VM documentation for the astore[_wide] bytecode allows
  2242   // the TOS to be not only an oop but also a return address
  2243   Label test;
  2244   Label skip;
  2245   // See if it is an address (in the current method):
  2247   mov(reg, Rtmp);
  2248   const int log2_bytecode_size_limit = 16;
  2249   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
  2250   br_notnull( Rtmp, false, pt, test );
  2251   delayed()->nop();
  2253   // %%% should use call_VM_leaf here?
  2254   save_frame_and_mov(0, Lmethod, O0, reg, O1);
  2255   save_thread(L7_thread_cache);
  2256   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
  2257   delayed()->nop();
  2258   restore_thread(L7_thread_cache);
  2259   br_notnull( O0, false, pt, skip );
  2260   delayed()->restore();
  2262   // Perform a more elaborate out-of-line call
  2263   // Not an address; verify it:
  2264   bind(test);
  2265   verify_oop(reg);
  2266   bind(skip);
  2270 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  2271   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  2273 #endif /* CC_INTERP */
  2275 // Inline assembly for:
  2276 //
  2277 // if (thread is in interp_only_mode) {
  2278 //   InterpreterRuntime::post_method_entry();
  2279 // }
  2280 // if (DTraceMethodProbes) {
  2281 //   SharedRuntime::dtrace_method_entry(method, receiver);
  2282 // }
  2283 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2284 //   SharedRuntime::rc_trace_method_entry(method, receiver);
  2285 // }
  2287 void InterpreterMacroAssembler::notify_method_entry() {
  2289   // C++ interpreter only uses this for native methods.
  2291   // Whenever JVMTI puts a thread in interp_only_mode, method
  2292   // entry/exit events are sent for that thread to track stack
  2293   // depth.  If it is possible to enter interp_only_mode we add
  2294   // the code to check if the event should be sent.
  2295   if (JvmtiExport::can_post_interpreter_events()) {
  2296     Label L;
  2297     Register temp_reg = O5;
  2298     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2299     ld(interp_only, temp_reg);
  2300     tst(temp_reg);
  2301     br(zero, false, pt, L);
  2302     delayed()->nop();
  2303     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  2304     bind(L);
  2308     Register temp_reg = O5;
  2309     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2310     call_VM_leaf(noreg,
  2311       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2312       G2_thread, Lmethod);
  2315   // RedefineClasses() tracing support for obsolete method entry
  2316   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2317     call_VM_leaf(noreg,
  2318       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2319       G2_thread, Lmethod);
  2324 // Inline assembly for:
  2325 //
  2326 // if (thread is in interp_only_mode) {
  2327 //   // save result
  2328 //   InterpreterRuntime::post_method_exit();
  2329 //   // restore result
  2330 // }
  2331 // if (DTraceMethodProbes) {
  2332 //   SharedRuntime::dtrace_method_exit(thread, method);
  2333 // }
  2334 //
  2335 // Native methods have their result stored in d_tmp and l_tmp
  2336 // Java methods have their result stored in the expression stack
  2338 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
  2339                                                    TosState state,
  2340                                                    NotifyMethodExitMode mode) {
  2341   // C++ interpreter only uses this for native methods.
  2343   // Whenever JVMTI puts a thread in interp_only_mode, method
  2344   // entry/exit events are sent for that thread to track stack
  2345   // depth.  If it is possible to enter interp_only_mode we add
  2346   // the code to check if the event should be sent.
  2347   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  2348     Label L;
  2349     Register temp_reg = O5;
  2350     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2351     ld(interp_only, temp_reg);
  2352     tst(temp_reg);
  2353     br(zero, false, pt, L);
  2354     delayed()->nop();
  2356     // Note: frame::interpreter_frame_result has a dependency on how the
  2357     // method result is saved across the call to post_method_exit. For
  2358     // native methods it assumes the result registers are saved to
  2359     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
  2360     // implementation will need to be updated too.
  2362     save_return_value(state, is_native_method);
  2363     call_VM(noreg,
  2364             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  2365     restore_return_value(state, is_native_method);
  2366     bind(L);
  2370     Register temp_reg = O5;
  2371     // Dtrace notification
  2372     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2373     save_return_value(state, is_native_method);
  2374     call_VM_leaf(
  2375       noreg,
  2376       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2377       G2_thread, Lmethod);
  2378     restore_return_value(state, is_native_method);
  2382 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
  2383 #ifdef CC_INTERP
  2384   // result potentially in O0/O1: save it across calls
  2385   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
  2386 #ifdef _LP64
  2387   stx(O0, STATE(_native_lresult));
  2388 #else
  2389   std(O0, STATE(_native_lresult));
  2390 #endif
  2391 #else // CC_INTERP
  2392   if (is_native_call) {
  2393     stf(FloatRegisterImpl::D, F0, d_tmp);
  2394 #ifdef _LP64
  2395     stx(O0, l_tmp);
  2396 #else
  2397     std(O0, l_tmp);
  2398 #endif
  2399   } else {
  2400     push(state);
  2402 #endif // CC_INTERP
  2405 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
  2406 #ifdef CC_INTERP
  2407   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
  2408 #ifdef _LP64
  2409   ldx(STATE(_native_lresult), O0);
  2410 #else
  2411   ldd(STATE(_native_lresult), O0);
  2412 #endif
  2413 #else // CC_INTERP
  2414   if (is_native_call) {
  2415     ldf(FloatRegisterImpl::D, d_tmp, F0);
  2416 #ifdef _LP64
  2417     ldx(l_tmp, O0);
  2418 #else
  2419     ldd(l_tmp, O0);
  2420 #endif
  2421   } else {
  2422     pop(state);
  2424 #endif // CC_INTERP

mercurial