src/cpu/sparc/vm/assembler_sparc.inline.hpp

Fri, 30 Apr 2010 08:37:24 -0700

author
twisti
date
Fri, 30 Apr 2010 08:37:24 -0700
changeset 1861
2338d41fbd81
parent 1858
c640000b7cc1
child 1902
fb1a39993f69
permissions
-rw-r--r--

6943304: remove tagged stack interpreter
Reviewed-by: coleenp, never, gbenson

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
    26   jint& stub_inst = *(jint*) branch;
    27   stub_inst = patched_branch(target - branch, stub_inst, 0);
    28 }
    30 #ifndef PRODUCT
    31 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
    32   jint stub_inst = *(jint*) branch;
    33   print_instruction(stub_inst);
    34   ::tty->print("%s", " (unresolved)");
    35 }
    36 #endif // PRODUCT
    38 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
    41 inline int AddressLiteral::low10() const {
    42   return Assembler::low10(value());
    43 }
    46 // inlines for SPARC assembler -- dmu 5/97
    48 inline void Assembler::check_delay() {
    49 # ifdef CHECK_DELAY
    50   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
    51   delay_state = no_delay;
    52 # endif
    53 }
    55 inline void Assembler::emit_long(int x) {
    56   check_delay();
    57   AbstractAssembler::emit_long(x);
    58 }
    60 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
    61   relocate(rtype);
    62   emit_long(x);
    63 }
    65 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
    66   relocate(rspec);
    67   emit_long(x);
    68 }
    71 inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
    72 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
    73 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
    75 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
    76 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
    78 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    79 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
    81 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    82 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
    84 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    85 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
    87 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    88 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
    90 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    91 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
    93 inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
    94 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
    96 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
    97 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
    99 inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   100 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
   102 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
   103   if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
   104   else                  ldf(w, s1, s2.as_constant(), d);
   105 }
   107 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
   108 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
   110 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
   112 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   113 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   114 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   115 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   117 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
   118 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   119 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
   120 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   121 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
   122 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   124 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
   125 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   127 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
   128 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   129 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
   130 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   131 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
   132 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   133 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
   134 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   135 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
   136 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   138 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
   139 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   140 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
   141 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   143 #ifdef _LP64
   144 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
   145 inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
   146 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
   147 #else
   148 inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
   149 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
   150 #endif
   152 #ifdef ASSERT
   153   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   154 # ifdef _LP64
   155 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
   156 # else
   157 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
   158 # endif
   159 #endif
   161 inline void Assembler::ld(  const Address& a, Register d, int offset) {
   162   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
   163   else               {                          ld(  a.base(), a.disp() + offset, d); }
   164 }
   165 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
   166   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
   167   else               {                          ldsb(a.base(), a.disp() + offset, d); }
   168 }
   169 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
   170   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
   171   else               {                          ldsh(a.base(), a.disp() + offset, d); }
   172 }
   173 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
   174   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
   175   else               {                          ldsw(a.base(), a.disp() + offset, d); }
   176 }
   177 inline void Assembler::ldub(const Address& a, Register d, int offset) {
   178   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
   179   else               {                          ldub(a.base(), a.disp() + offset, d); }
   180 }
   181 inline void Assembler::lduh(const Address& a, Register d, int offset) {
   182   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
   183   else               {                          lduh(a.base(), a.disp() + offset, d); }
   184 }
   185 inline void Assembler::lduw(const Address& a, Register d, int offset) {
   186   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
   187   else               {                          lduw(a.base(), a.disp() + offset, d); }
   188 }
   189 inline void Assembler::ldd( const Address& a, Register d, int offset) {
   190   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
   191   else               {                          ldd( a.base(), a.disp() + offset, d); }
   192 }
   193 inline void Assembler::ldx( const Address& a, Register d, int offset) {
   194   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
   195   else               {                          ldx( a.base(), a.disp() + offset, d); }
   196 }
   198 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
   199 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
   200 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
   201 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
   202 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
   203 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
   204 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
   205 inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
   206 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
   208 // form effective addresses this way:
   209 inline void Assembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
   210   if (s2.is_register())  add(s1, s2.as_register(),          d);
   211   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
   212   if (offset != 0)       add(d,  offset,                    d);
   213 }
   215 inline void Assembler::andn(Register s1, RegisterOrConstant s2, Register d) {
   216   if (s2.is_register())  andn(s1, s2.as_register(), d);
   217   else                   andn(s1, s2.as_constant(), d);
   218 }
   220 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
   221 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   224 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
   225 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   227 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
   230 inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   231 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
   233 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
   235   // pp 222
   237 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
   238   if (s2.is_register()) stf(w, d, s1, s2.as_register());
   239   else                  stf(w, d, s1, s2.as_constant());
   240 }
   242 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
   243 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   245 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
   247 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   248 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   249 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   250 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   252   // p 226
   254 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
   255 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   256 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
   257 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   258 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
   259 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   262 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
   263 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   264 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
   265 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   267 inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
   268 inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
   270 #ifdef ASSERT
   271 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   272 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
   273 #endif
   275 inline void Assembler::stb(Register d, const Address& a, int offset) {
   276   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
   277   else               {                          stb(d, a.base(), a.disp() + offset); }
   278 }
   279 inline void Assembler::sth(Register d, const Address& a, int offset) {
   280   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
   281   else               {                          sth(d, a.base(), a.disp() + offset); }
   282 }
   283 inline void Assembler::stw(Register d, const Address& a, int offset) {
   284   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
   285   else               {                          stw(d, a.base(), a.disp() + offset); }
   286 }
   287 inline void Assembler::st( Register d, const Address& a, int offset) {
   288   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
   289   else               {                          st( d, a.base(), a.disp() + offset); }
   290 }
   291 inline void Assembler::std(Register d, const Address& a, int offset) {
   292   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
   293   else               {                          std(d, a.base(), a.disp() + offset); }
   294 }
   295 inline void Assembler::stx(Register d, const Address& a, int offset) {
   296   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
   297   else               {                          stx(d, a.base(), a.disp() + offset); }
   298 }
   300 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
   301 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
   302 inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
   303 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
   304 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
   305 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
   307 // v8 p 99
   309 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
   310 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   311 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
   312 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   313 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
   314 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   315 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
   316 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   319 // pp 231
   321 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
   322 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   324 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
   327 // Use the right loads/stores for the platform
   328 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
   329 #ifdef _LP64
   330   Assembler::ldx(s1, s2, d);
   331 #else
   332   Assembler::ld( s1, s2, d);
   333 #endif
   334 }
   336 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
   337 #ifdef _LP64
   338   Assembler::ldx(s1, simm13a, d);
   339 #else
   340   Assembler::ld( s1, simm13a, d);
   341 #endif
   342 }
   344 #ifdef ASSERT
   345 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   346 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
   347   ld_ptr(s1, in_bytes(simm13a), d);
   348 }
   349 #endif
   351 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   352 #ifdef _LP64
   353   Assembler::ldx(s1, s2, d);
   354 #else
   355   Assembler::ld( s1, s2, d);
   356 #endif
   357 }
   359 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
   360 #ifdef _LP64
   361   Assembler::ldx(a, d, offset);
   362 #else
   363   Assembler::ld( a, d, offset);
   364 #endif
   365 }
   367 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
   368 #ifdef _LP64
   369   Assembler::stx(d, s1, s2);
   370 #else
   371   Assembler::st( d, s1, s2);
   372 #endif
   373 }
   375 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
   376 #ifdef _LP64
   377   Assembler::stx(d, s1, simm13a);
   378 #else
   379   Assembler::st( d, s1, simm13a);
   380 #endif
   381 }
   383 #ifdef ASSERT
   384 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   385 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
   386   st_ptr(d, s1, in_bytes(simm13a));
   387 }
   388 #endif
   390 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
   391 #ifdef _LP64
   392   Assembler::stx(d, s1, s2);
   393 #else
   394   Assembler::st( d, s1, s2);
   395 #endif
   396 }
   398 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
   399 #ifdef _LP64
   400   Assembler::stx(d, a, offset);
   401 #else
   402   Assembler::st( d, a, offset);
   403 #endif
   404 }
   406 // Use the right loads/stores for the platform
   407 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
   408 #ifdef _LP64
   409   Assembler::ldx(s1, s2, d);
   410 #else
   411   Assembler::ldd(s1, s2, d);
   412 #endif
   413 }
   415 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
   416 #ifdef _LP64
   417   Assembler::ldx(s1, simm13a, d);
   418 #else
   419   Assembler::ldd(s1, simm13a, d);
   420 #endif
   421 }
   423 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
   424 #ifdef _LP64
   425   Assembler::ldx(s1, s2, d);
   426 #else
   427   Assembler::ldd(s1, s2, d);
   428 #endif
   429 }
   431 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
   432 #ifdef _LP64
   433   Assembler::ldx(a, d, offset);
   434 #else
   435   Assembler::ldd(a, d, offset);
   436 #endif
   437 }
   439 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
   440 #ifdef _LP64
   441   Assembler::stx(d, s1, s2);
   442 #else
   443   Assembler::std(d, s1, s2);
   444 #endif
   445 }
   447 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
   448 #ifdef _LP64
   449   Assembler::stx(d, s1, simm13a);
   450 #else
   451   Assembler::std(d, s1, simm13a);
   452 #endif
   453 }
   455 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
   456 #ifdef _LP64
   457   Assembler::stx(d, s1, s2);
   458 #else
   459   Assembler::std(d, s1, s2);
   460 #endif
   461 }
   463 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
   464 #ifdef _LP64
   465   Assembler::stx(d, a, offset);
   466 #else
   467   Assembler::std(d, a, offset);
   468 #endif
   469 }
   471 // Functions for isolating 64 bit shifts for LP64
   473 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
   474 #ifdef _LP64
   475   Assembler::sllx(s1, s2, d);
   476 #else
   477   Assembler::sll( s1, s2, d);
   478 #endif
   479 }
   481 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
   482 #ifdef _LP64
   483   Assembler::sllx(s1, imm6a, d);
   484 #else
   485   Assembler::sll( s1, imm6a, d);
   486 #endif
   487 }
   489 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
   490 #ifdef _LP64
   491   Assembler::srlx(s1, s2, d);
   492 #else
   493   Assembler::srl( s1, s2, d);
   494 #endif
   495 }
   497 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
   498 #ifdef _LP64
   499   Assembler::srlx(s1, imm6a, d);
   500 #else
   501   Assembler::srl( s1, imm6a, d);
   502 #endif
   503 }
   505 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   506   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
   507   else                   sll_ptr(s1, s2.as_constant(), d);
   508 }
   510 // Use the right branch for the platform
   512 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   513   if (VM_Version::v9_instructions_work())
   514     Assembler::bp(c, a, icc, p, d, rt);
   515   else
   516     Assembler::br(c, a, d, rt);
   517 }
   519 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
   520   br(c, a, p, target(L));
   521 }
   524 // Branch that tests either xcc or icc depending on the
   525 // architecture compiled (LP64 or not)
   526 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   527 #ifdef _LP64
   528     Assembler::bp(c, a, xcc, p, d, rt);
   529 #else
   530     MacroAssembler::br(c, a, p, d, rt);
   531 #endif
   532 }
   534 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
   535   brx(c, a, p, target(L));
   536 }
   538 inline void MacroAssembler::ba( bool a, Label& L ) {
   539   br(always, a, pt, L);
   540 }
   542 // Warning: V9 only functions
   543 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   544   Assembler::bp(c, a, cc, p, d, rt);
   545 }
   547 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   548   Assembler::bp(c, a, cc, p, L);
   549 }
   551 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   552   if (VM_Version::v9_instructions_work())
   553     fbp(c, a, fcc0, p, d, rt);
   554   else
   555     Assembler::fb(c, a, d, rt);
   556 }
   558 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
   559   fb(c, a, p, target(L));
   560 }
   562 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   563   Assembler::fbp(c, a, cc, p, d, rt);
   564 }
   566 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   567   Assembler::fbp(c, a, cc, p, L);
   568 }
   570 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
   571 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
   573 // Call with a check to see if we need to deal with the added
   574 // expense of relocation and if we overflow the displacement
   575 // of the quick call instruction./
   576 // Check to see if we have to deal with relocations
   577 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
   578 #ifdef _LP64
   579   intptr_t disp;
   580   // NULL is ok because it will be relocated later.
   581   // Must change NULL to a reachable address in order to
   582   // pass asserts here and in wdisp.
   583   if ( d == NULL )
   584     d = pc();
   586   // Is this address within range of the call instruction?
   587   // If not, use the expensive instruction sequence
   588   disp = (intptr_t)d - (intptr_t)pc();
   589   if ( disp != (intptr_t)(int32_t)disp ) {
   590     relocate(rt);
   591     AddressLiteral dest(d);
   592     jumpl_to(dest, O7, O7);
   593   }
   594   else {
   595     Assembler::call( d, rt );
   596   }
   597 #else
   598   Assembler::call( d, rt );
   599 #endif
   600 }
   602 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
   603   MacroAssembler::call( target(L), rt);
   604 }
   608 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
   609 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
   611 // prefetch instruction
   612 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
   613   if (VM_Version::v9_instructions_work())
   614     Assembler::bp( never, true, xcc, pt, d, rt );
   615 }
   616 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
   619 // clobbers o7 on V8!!
   620 // returns delta from gotten pc to addr after
   621 inline int MacroAssembler::get_pc( Register d ) {
   622   int x = offset();
   623   if (VM_Version::v9_instructions_work())
   624     rdpc(d);
   625   else {
   626     Label lbl;
   627     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
   628     if (d == O7)  delayed()->nop();
   629     else          delayed()->mov(O7, d);
   630     bind(lbl);
   631   }
   632   return offset() - x;
   633 }
   636 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
   639 // Loads the current PC of the following instruction as an immediate value in
   640 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
   641 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
   642   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
   643 #ifdef _LP64
   644   Unimplemented();
   645 #else
   646   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   647   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   648 #endif
   649   return thepc;
   650 }
   653 inline void MacroAssembler::load_contents(AddressLiteral& addrlit, Register d, int offset) {
   654   assert_not_delayed();
   655   sethi(addrlit, d);
   656   ld(d, addrlit.low10() + offset, d);
   657 }
   660 inline void MacroAssembler::load_ptr_contents(AddressLiteral& addrlit, Register d, int offset) {
   661   assert_not_delayed();
   662   sethi(addrlit, d);
   663   ld_ptr(d, addrlit.low10() + offset, d);
   664 }
   667 inline void MacroAssembler::store_contents(Register s, AddressLiteral& addrlit, Register temp, int offset) {
   668   assert_not_delayed();
   669   sethi(addrlit, temp);
   670   st(s, temp, addrlit.low10() + offset);
   671 }
   674 inline void MacroAssembler::store_ptr_contents(Register s, AddressLiteral& addrlit, Register temp, int offset) {
   675   assert_not_delayed();
   676   sethi(addrlit, temp);
   677   st_ptr(s, temp, addrlit.low10() + offset);
   678 }
   681 // This code sequence is relocatable to any address, even on LP64.
   682 inline void MacroAssembler::jumpl_to(AddressLiteral& addrlit, Register temp, Register d, int offset) {
   683   assert_not_delayed();
   684   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   685   // variable length instruction streams.
   686   patchable_sethi(addrlit, temp);
   687   jmpl(temp, addrlit.low10() + offset, d);
   688 }
   691 inline void MacroAssembler::jump_to(AddressLiteral& addrlit, Register temp, int offset) {
   692   jumpl_to(addrlit, temp, G0, offset);
   693 }
   696 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
   697                                              int ld_offset, int jmp_offset) {
   698   assert_not_delayed();
   699   //sethi(al);                   // sethi is caller responsibility for this one
   700   ld_ptr(a, temp, ld_offset);
   701   jmp(temp, jmp_offset);
   702 }
   705 inline void MacroAssembler::set_oop(jobject obj, Register d) {
   706   set_oop(allocate_oop_address(obj), d);
   707 }
   710 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
   711   set_oop(constant_oop_address(obj), d);
   712 }
   715 inline void MacroAssembler::set_oop(AddressLiteral& obj_addr, Register d) {
   716   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   717   set(obj_addr, d);
   718 }
   721 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
   722   if (a.is_register())
   723     mov(a.as_register(), d);
   724   else
   725     ld (a.as_address(),  d);
   726 }
   728 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
   729   if (a.is_register())
   730     mov(s, a.as_register());
   731   else
   732     st_ptr (s, a.as_address());         // ABI says everything is right justified.
   733 }
   735 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
   736   if (a.is_register())
   737     mov(s, a.as_register());
   738   else
   739     st_ptr (s, a.as_address());
   740 }
   743 #ifdef _LP64
   744 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
   745   if (a.is_float_register())
   746 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
   747     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
   748   else
   749     // Floats are stored in the high half of the stack entry
   750     // The low half is undefined per the ABI.
   751     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
   752 }
   754 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
   755   if (a.is_float_register())
   756 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
   757     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
   758   else
   759     stf(FloatRegisterImpl::D, s, a.as_address());
   760 }
   762 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
   763   if (a.is_register())
   764     mov(s, a.as_register());
   765   else
   766     stx(s, a.as_address());
   767 }
   768 #endif
   770 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
   771 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
   772 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
   773 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
   775 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
   776 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
   777 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
   778 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
   780 // returns if membar generates anything, obviously this code should mirror
   781 // membar below.
   782 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
   783   if( !os::is_MP() ) return false;  // Not needed on single CPU
   784   if( VM_Version::v9_instructions_work() ) {
   785     const Membar_mask_bits effective_mask =
   786         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   787     return (effective_mask != 0);
   788   } else {
   789     return true;
   790   }
   791 }
   793 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
   794   // Uniprocessors do not need memory barriers
   795   if (!os::is_MP()) return;
   796   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
   797   // 8.4.4.3, a.31 and a.50.
   798   if( VM_Version::v9_instructions_work() ) {
   799     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
   800     // of the mmask subfield of const7a that does anything that isn't done
   801     // implicitly is StoreLoad.
   802     const Membar_mask_bits effective_mask =
   803         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   804     if ( effective_mask != 0 ) {
   805       Assembler::membar( effective_mask );
   806     }
   807   } else {
   808     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
   809     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
   810     // which guarantees that all stores behave as if an stbar were issued just after
   811     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
   812     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
   813     // it can't be specified by stbar, nor have I come up with a way to simulate it.
   814     //
   815     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
   816     // space.  Put one here to be on the safe side.
   817     Assembler::ldstub(SP, 0, G0);
   818   }
   819 }

mercurial