src/cpu/x86/vm/stubGenerator_x86_32.cpp

Fri, 06 Jan 2012 20:09:20 -0800

author
kvn
date
Fri, 06 Jan 2012 20:09:20 -0800
changeset 3400
22cee0ee8927
parent 3372
dca455dea3a7
parent 3391
069ab3f976d3
child 3787
6759698e3140
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_x86.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/methodOop.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/top.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "thread_windows.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_FAMILY_bsd
    51 # include "thread_bsd.inline.hpp"
    52 #endif
    53 #ifdef COMPILER2
    54 #include "opto/runtime.hpp"
    55 #endif
    57 // Declaration and definition of StubGenerator (no .hpp file).
    58 // For a more detailed description of the stub routine structure
    59 // see the comment in stubRoutines.hpp
    61 #define __ _masm->
    62 #define a__ ((Assembler*)_masm)->
    64 #ifdef PRODUCT
    65 #define BLOCK_COMMENT(str) /* nothing */
    66 #else
    67 #define BLOCK_COMMENT(str) __ block_comment(str)
    68 #endif
    70 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    72 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
    73 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
    75 // -------------------------------------------------------------------------------------------------------------------------
    76 // Stub Code definitions
    78 static address handle_unsafe_access() {
    79   JavaThread* thread = JavaThread::current();
    80   address pc  = thread->saved_exception_pc();
    81   // pc is the instruction which we must emulate
    82   // doing a no-op is fine:  return garbage from the load
    83   // therefore, compute npc
    84   address npc = Assembler::locate_next_instruction(pc);
    86   // request an async exception
    87   thread->set_pending_unsafe_access_error();
    89   // return address of next instruction to execute
    90   return npc;
    91 }
    93 class StubGenerator: public StubCodeGenerator {
    94  private:
    96 #ifdef PRODUCT
    97 #define inc_counter_np(counter) (0)
    98 #else
    99   void inc_counter_np_(int& counter) {
   100     __ incrementl(ExternalAddress((address)&counter));
   101   }
   102 #define inc_counter_np(counter) \
   103   BLOCK_COMMENT("inc_counter " #counter); \
   104   inc_counter_np_(counter);
   105 #endif //PRODUCT
   107   void inc_copy_counter_np(BasicType t) {
   108 #ifndef PRODUCT
   109     switch (t) {
   110     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
   111     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
   112     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
   113     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
   114     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
   115     }
   116     ShouldNotReachHere();
   117 #endif //PRODUCT
   118   }
   120   //------------------------------------------------------------------------------------------------------------------------
   121   // Call stubs are used to call Java from C
   122   //
   123   //    [ return_from_Java     ] <--- rsp
   124   //    [ argument word n      ]
   125   //      ...
   126   // -N [ argument word 1      ]
   127   // -7 [ Possible padding for stack alignment ]
   128   // -6 [ Possible padding for stack alignment ]
   129   // -5 [ Possible padding for stack alignment ]
   130   // -4 [ mxcsr save           ] <--- rsp_after_call
   131   // -3 [ saved rbx,            ]
   132   // -2 [ saved rsi            ]
   133   // -1 [ saved rdi            ]
   134   //  0 [ saved rbp,            ] <--- rbp,
   135   //  1 [ return address       ]
   136   //  2 [ ptr. to call wrapper ]
   137   //  3 [ result               ]
   138   //  4 [ result_type          ]
   139   //  5 [ method               ]
   140   //  6 [ entry_point          ]
   141   //  7 [ parameters           ]
   142   //  8 [ parameter_size       ]
   143   //  9 [ thread               ]
   146   address generate_call_stub(address& return_address) {
   147     StubCodeMark mark(this, "StubRoutines", "call_stub");
   148     address start = __ pc();
   150     // stub code parameters / addresses
   151     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
   152     bool  sse_save = false;
   153     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
   154     const int     locals_count_in_bytes  (4*wordSize);
   155     const Address mxcsr_save    (rbp, -4 * wordSize);
   156     const Address saved_rbx     (rbp, -3 * wordSize);
   157     const Address saved_rsi     (rbp, -2 * wordSize);
   158     const Address saved_rdi     (rbp, -1 * wordSize);
   159     const Address result        (rbp,  3 * wordSize);
   160     const Address result_type   (rbp,  4 * wordSize);
   161     const Address method        (rbp,  5 * wordSize);
   162     const Address entry_point   (rbp,  6 * wordSize);
   163     const Address parameters    (rbp,  7 * wordSize);
   164     const Address parameter_size(rbp,  8 * wordSize);
   165     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
   166     sse_save =  UseSSE > 0;
   168     // stub code
   169     __ enter();
   170     __ movptr(rcx, parameter_size);              // parameter counter
   171     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
   172     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
   173     __ subptr(rsp, rcx);
   174     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
   176     // save rdi, rsi, & rbx, according to C calling conventions
   177     __ movptr(saved_rdi, rdi);
   178     __ movptr(saved_rsi, rsi);
   179     __ movptr(saved_rbx, rbx);
   180     // save and initialize %mxcsr
   181     if (sse_save) {
   182       Label skip_ldmx;
   183       __ stmxcsr(mxcsr_save);
   184       __ movl(rax, mxcsr_save);
   185       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   186       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   187       __ cmp32(rax, mxcsr_std);
   188       __ jcc(Assembler::equal, skip_ldmx);
   189       __ ldmxcsr(mxcsr_std);
   190       __ bind(skip_ldmx);
   191     }
   193     // make sure the control word is correct.
   194     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   196 #ifdef ASSERT
   197     // make sure we have no pending exceptions
   198     { Label L;
   199       __ movptr(rcx, thread);
   200       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   201       __ jcc(Assembler::equal, L);
   202       __ stop("StubRoutines::call_stub: entered with pending exception");
   203       __ bind(L);
   204     }
   205 #endif
   207     // pass parameters if any
   208     BLOCK_COMMENT("pass parameters if any");
   209     Label parameters_done;
   210     __ movl(rcx, parameter_size);  // parameter counter
   211     __ testl(rcx, rcx);
   212     __ jcc(Assembler::zero, parameters_done);
   214     // parameter passing loop
   216     Label loop;
   217     // Copy Java parameters in reverse order (receiver last)
   218     // Note that the argument order is inverted in the process
   219     // source is rdx[rcx: N-1..0]
   220     // dest   is rsp[rbx: 0..N-1]
   222     __ movptr(rdx, parameters);          // parameter pointer
   223     __ xorptr(rbx, rbx);
   225     __ BIND(loop);
   227     // get parameter
   228     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
   229     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   230                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
   231     __ increment(rbx);
   232     __ decrement(rcx);
   233     __ jcc(Assembler::notZero, loop);
   235     // call Java function
   236     __ BIND(parameters_done);
   237     __ movptr(rbx, method);           // get methodOop
   238     __ movptr(rax, entry_point);      // get entry_point
   239     __ mov(rsi, rsp);                 // set sender sp
   240     BLOCK_COMMENT("call Java function");
   241     __ call(rax);
   243     BLOCK_COMMENT("call_stub_return_address:");
   244     return_address = __ pc();
   246 #ifdef COMPILER2
   247     {
   248       Label L_skip;
   249       if (UseSSE >= 2) {
   250         __ verify_FPU(0, "call_stub_return");
   251       } else {
   252         for (int i = 1; i < 8; i++) {
   253           __ ffree(i);
   254         }
   256         // UseSSE <= 1 so double result should be left on TOS
   257         __ movl(rsi, result_type);
   258         __ cmpl(rsi, T_DOUBLE);
   259         __ jcc(Assembler::equal, L_skip);
   260         if (UseSSE == 0) {
   261           // UseSSE == 0 so float result should be left on TOS
   262           __ cmpl(rsi, T_FLOAT);
   263           __ jcc(Assembler::equal, L_skip);
   264         }
   265         __ ffree(0);
   266       }
   267       __ BIND(L_skip);
   268     }
   269 #endif // COMPILER2
   271     // store result depending on type
   272     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   273     __ movptr(rdi, result);
   274     Label is_long, is_float, is_double, exit;
   275     __ movl(rsi, result_type);
   276     __ cmpl(rsi, T_LONG);
   277     __ jcc(Assembler::equal, is_long);
   278     __ cmpl(rsi, T_FLOAT);
   279     __ jcc(Assembler::equal, is_float);
   280     __ cmpl(rsi, T_DOUBLE);
   281     __ jcc(Assembler::equal, is_double);
   283     // handle T_INT case
   284     __ movl(Address(rdi, 0), rax);
   285     __ BIND(exit);
   287     // check that FPU stack is empty
   288     __ verify_FPU(0, "generate_call_stub");
   290     // pop parameters
   291     __ lea(rsp, rsp_after_call);
   293     // restore %mxcsr
   294     if (sse_save) {
   295       __ ldmxcsr(mxcsr_save);
   296     }
   298     // restore rdi, rsi and rbx,
   299     __ movptr(rbx, saved_rbx);
   300     __ movptr(rsi, saved_rsi);
   301     __ movptr(rdi, saved_rdi);
   302     __ addptr(rsp, 4*wordSize);
   304     // return
   305     __ pop(rbp);
   306     __ ret(0);
   308     // handle return types different from T_INT
   309     __ BIND(is_long);
   310     __ movl(Address(rdi, 0 * wordSize), rax);
   311     __ movl(Address(rdi, 1 * wordSize), rdx);
   312     __ jmp(exit);
   314     __ BIND(is_float);
   315     // interpreter uses xmm0 for return values
   316     if (UseSSE >= 1) {
   317       __ movflt(Address(rdi, 0), xmm0);
   318     } else {
   319       __ fstp_s(Address(rdi, 0));
   320     }
   321     __ jmp(exit);
   323     __ BIND(is_double);
   324     // interpreter uses xmm0 for return values
   325     if (UseSSE >= 2) {
   326       __ movdbl(Address(rdi, 0), xmm0);
   327     } else {
   328       __ fstp_d(Address(rdi, 0));
   329     }
   330     __ jmp(exit);
   332     return start;
   333   }
   336   //------------------------------------------------------------------------------------------------------------------------
   337   // Return point for a Java call if there's an exception thrown in Java code.
   338   // The exception is caught and transformed into a pending exception stored in
   339   // JavaThread that can be tested from within the VM.
   340   //
   341   // Note: Usually the parameters are removed by the callee. In case of an exception
   342   //       crossing an activation frame boundary, that is not the case if the callee
   343   //       is compiled code => need to setup the rsp.
   344   //
   345   // rax,: exception oop
   347   address generate_catch_exception() {
   348     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   349     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
   350     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
   351     address start = __ pc();
   353     // get thread directly
   354     __ movptr(rcx, thread);
   355 #ifdef ASSERT
   356     // verify that threads correspond
   357     { Label L;
   358       __ get_thread(rbx);
   359       __ cmpptr(rbx, rcx);
   360       __ jcc(Assembler::equal, L);
   361       __ stop("StubRoutines::catch_exception: threads must correspond");
   362       __ bind(L);
   363     }
   364 #endif
   365     // set pending exception
   366     __ verify_oop(rax);
   367     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
   368     __ lea(Address(rcx, Thread::exception_file_offset   ()),
   369            ExternalAddress((address)__FILE__));
   370     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
   371     // complete return to VM
   372     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
   373     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   375     return start;
   376   }
   379   //------------------------------------------------------------------------------------------------------------------------
   380   // Continuation point for runtime calls returning with a pending exception.
   381   // The pending exception check happened in the runtime or native call stub.
   382   // The pending exception in Thread is converted into a Java-level exception.
   383   //
   384   // Contract with Java-level exception handlers:
   385   // rax: exception
   386   // rdx: throwing pc
   387   //
   388   // NOTE: At entry of this stub, exception-pc must be on stack !!
   390   address generate_forward_exception() {
   391     StubCodeMark mark(this, "StubRoutines", "forward exception");
   392     address start = __ pc();
   393     const Register thread = rcx;
   395     // other registers used in this stub
   396     const Register exception_oop = rax;
   397     const Register handler_addr  = rbx;
   398     const Register exception_pc  = rdx;
   400     // Upon entry, the sp points to the return address returning into Java
   401     // (interpreted or compiled) code; i.e., the return address becomes the
   402     // throwing pc.
   403     //
   404     // Arguments pushed before the runtime call are still on the stack but
   405     // the exception handler will reset the stack pointer -> ignore them.
   406     // A potential result in registers can be ignored as well.
   408 #ifdef ASSERT
   409     // make sure this code is only executed if there is a pending exception
   410     { Label L;
   411       __ get_thread(thread);
   412       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   413       __ jcc(Assembler::notEqual, L);
   414       __ stop("StubRoutines::forward exception: no pending exception (1)");
   415       __ bind(L);
   416     }
   417 #endif
   419     // compute exception handler into rbx,
   420     __ get_thread(thread);
   421     __ movptr(exception_pc, Address(rsp, 0));
   422     BLOCK_COMMENT("call exception_handler_for_return_address");
   423     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   424     __ mov(handler_addr, rax);
   426     // setup rax & rdx, remove return address & clear pending exception
   427     __ get_thread(thread);
   428     __ pop(exception_pc);
   429     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   430     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   432 #ifdef ASSERT
   433     // make sure exception is set
   434     { Label L;
   435       __ testptr(exception_oop, exception_oop);
   436       __ jcc(Assembler::notEqual, L);
   437       __ stop("StubRoutines::forward exception: no pending exception (2)");
   438       __ bind(L);
   439     }
   440 #endif
   442     // Verify that there is really a valid exception in RAX.
   443     __ verify_oop(exception_oop);
   445     // continue at exception handler (return address removed)
   446     // rax: exception
   447     // rbx: exception handler
   448     // rdx: throwing pc
   449     __ jmp(handler_addr);
   451     return start;
   452   }
   455   //----------------------------------------------------------------------------------------------------
   456   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
   457   //
   458   // xchg exists as far back as 8086, lock needed for MP only
   459   // Stack layout immediately after call:
   460   //
   461   // 0 [ret addr ] <--- rsp
   462   // 1 [  ex     ]
   463   // 2 [  dest   ]
   464   //
   465   // Result:   *dest <- ex, return (old *dest)
   466   //
   467   // Note: win32 does not currently use this code
   469   address generate_atomic_xchg() {
   470     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   471     address start = __ pc();
   473     __ push(rdx);
   474     Address exchange(rsp, 2 * wordSize);
   475     Address dest_addr(rsp, 3 * wordSize);
   476     __ movl(rax, exchange);
   477     __ movptr(rdx, dest_addr);
   478     __ xchgl(rax, Address(rdx, 0));
   479     __ pop(rdx);
   480     __ ret(0);
   482     return start;
   483   }
   485   //----------------------------------------------------------------------------------------------------
   486   // Support for void verify_mxcsr()
   487   //
   488   // This routine is used with -Xcheck:jni to verify that native
   489   // JNI code does not return to Java code without restoring the
   490   // MXCSR register to our expected state.
   493   address generate_verify_mxcsr() {
   494     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   495     address start = __ pc();
   497     const Address mxcsr_save(rsp, 0);
   499     if (CheckJNICalls && UseSSE > 0 ) {
   500       Label ok_ret;
   501       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   502       __ push(rax);
   503       __ subptr(rsp, wordSize);      // allocate a temp location
   504       __ stmxcsr(mxcsr_save);
   505       __ movl(rax, mxcsr_save);
   506       __ andl(rax, MXCSR_MASK);
   507       __ cmp32(rax, mxcsr_std);
   508       __ jcc(Assembler::equal, ok_ret);
   510       __ warn("MXCSR changed by native JNI code.");
   512       __ ldmxcsr(mxcsr_std);
   514       __ bind(ok_ret);
   515       __ addptr(rsp, wordSize);
   516       __ pop(rax);
   517     }
   519     __ ret(0);
   521     return start;
   522   }
   525   //---------------------------------------------------------------------------
   526   // Support for void verify_fpu_cntrl_wrd()
   527   //
   528   // This routine is used with -Xcheck:jni to verify that native
   529   // JNI code does not return to Java code without restoring the
   530   // FP control word to our expected state.
   532   address generate_verify_fpu_cntrl_wrd() {
   533     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
   534     address start = __ pc();
   536     const Address fpu_cntrl_wrd_save(rsp, 0);
   538     if (CheckJNICalls) {
   539       Label ok_ret;
   540       __ push(rax);
   541       __ subptr(rsp, wordSize);      // allocate a temp location
   542       __ fnstcw(fpu_cntrl_wrd_save);
   543       __ movl(rax, fpu_cntrl_wrd_save);
   544       __ andl(rax, FPU_CNTRL_WRD_MASK);
   545       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
   546       __ cmp32(rax, fpu_std);
   547       __ jcc(Assembler::equal, ok_ret);
   549       __ warn("Floating point control word changed by native JNI code.");
   551       __ fldcw(fpu_std);
   553       __ bind(ok_ret);
   554       __ addptr(rsp, wordSize);
   555       __ pop(rax);
   556     }
   558     __ ret(0);
   560     return start;
   561   }
   563   //---------------------------------------------------------------------------
   564   // Wrapper for slow-case handling of double-to-integer conversion
   565   // d2i or f2i fast case failed either because it is nan or because
   566   // of under/overflow.
   567   // Input:  FPU TOS: float value
   568   // Output: rax, (rdx): integer (long) result
   570   address generate_d2i_wrapper(BasicType t, address fcn) {
   571     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
   572     address start = __ pc();
   574   // Capture info about frame layout
   575   enum layout { FPUState_off         = 0,
   576                 rbp_off              = FPUStateSizeInWords,
   577                 rdi_off,
   578                 rsi_off,
   579                 rcx_off,
   580                 rbx_off,
   581                 saved_argument_off,
   582                 saved_argument_off2, // 2nd half of double
   583                 framesize
   584   };
   586   assert(FPUStateSizeInWords == 27, "update stack layout");
   588     // Save outgoing argument to stack across push_FPU_state()
   589     __ subptr(rsp, wordSize * 2);
   590     __ fstp_d(Address(rsp, 0));
   592     // Save CPU & FPU state
   593     __ push(rbx);
   594     __ push(rcx);
   595     __ push(rsi);
   596     __ push(rdi);
   597     __ push(rbp);
   598     __ push_FPU_state();
   600     // push_FPU_state() resets the FP top of stack
   601     // Load original double into FP top of stack
   602     __ fld_d(Address(rsp, saved_argument_off * wordSize));
   603     // Store double into stack as outgoing argument
   604     __ subptr(rsp, wordSize*2);
   605     __ fst_d(Address(rsp, 0));
   607     // Prepare FPU for doing math in C-land
   608     __ empty_FPU_stack();
   609     // Call the C code to massage the double.  Result in EAX
   610     if (t == T_INT)
   611       { BLOCK_COMMENT("SharedRuntime::d2i"); }
   612     else if (t == T_LONG)
   613       { BLOCK_COMMENT("SharedRuntime::d2l"); }
   614     __ call_VM_leaf( fcn, 2 );
   616     // Restore CPU & FPU state
   617     __ pop_FPU_state();
   618     __ pop(rbp);
   619     __ pop(rdi);
   620     __ pop(rsi);
   621     __ pop(rcx);
   622     __ pop(rbx);
   623     __ addptr(rsp, wordSize * 2);
   625     __ ret(0);
   627     return start;
   628   }
   631   //---------------------------------------------------------------------------
   632   // The following routine generates a subroutine to throw an asynchronous
   633   // UnknownError when an unsafe access gets a fault that could not be
   634   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   635   address generate_handler_for_unsafe_access() {
   636     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   637     address start = __ pc();
   639     __ push(0);                       // hole for return address-to-be
   640     __ pusha();                       // push registers
   641     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   642     BLOCK_COMMENT("call handle_unsafe_access");
   643     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   644     __ movptr(next_pc, rax);          // stuff next address
   645     __ popa();
   646     __ ret(0);                        // jump to next address
   648     return start;
   649   }
   652   //----------------------------------------------------------------------------------------------------
   653   // Non-destructive plausibility checks for oops
   655   address generate_verify_oop() {
   656     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   657     address start = __ pc();
   659     // Incoming arguments on stack after saving rax,:
   660     //
   661     // [tos    ]: saved rdx
   662     // [tos + 1]: saved EFLAGS
   663     // [tos + 2]: return address
   664     // [tos + 3]: char* error message
   665     // [tos + 4]: oop   object to verify
   666     // [tos + 5]: saved rax, - saved by caller and bashed
   668     Label exit, error;
   669     __ pushf();
   670     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   671     __ push(rdx);                                // save rdx
   672     // make sure object is 'reasonable'
   673     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
   674     __ testptr(rax, rax);
   675     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
   677     // Check if the oop is in the right area of memory
   678     const int oop_mask = Universe::verify_oop_mask();
   679     const int oop_bits = Universe::verify_oop_bits();
   680     __ mov(rdx, rax);
   681     __ andptr(rdx, oop_mask);
   682     __ cmpptr(rdx, oop_bits);
   683     __ jcc(Assembler::notZero, error);
   685     // make sure klass is 'reasonable'
   686     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   687     __ testptr(rax, rax);
   688     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
   690     // Check if the klass is in the right area of memory
   691     const int klass_mask = Universe::verify_klass_mask();
   692     const int klass_bits = Universe::verify_klass_bits();
   693     __ mov(rdx, rax);
   694     __ andptr(rdx, klass_mask);
   695     __ cmpptr(rdx, klass_bits);
   696     __ jcc(Assembler::notZero, error);
   698     // make sure klass' klass is 'reasonable'
   699     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
   700     __ testptr(rax, rax);
   701     __ jcc(Assembler::zero, error);              // if klass' klass is NULL it is broken
   703     __ mov(rdx, rax);
   704     __ andptr(rdx, klass_mask);
   705     __ cmpptr(rdx, klass_bits);
   706     __ jcc(Assembler::notZero, error);           // if klass not in right area
   707                                                  // of memory it is broken too.
   709     // return if everything seems ok
   710     __ bind(exit);
   711     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   712     __ pop(rdx);                                 // restore rdx
   713     __ popf();                                   // restore EFLAGS
   714     __ ret(3 * wordSize);                        // pop arguments
   716     // handle errors
   717     __ bind(error);
   718     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   719     __ pop(rdx);                                 // get saved rdx back
   720     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
   721     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
   722     BLOCK_COMMENT("call MacroAssembler::debug");
   723     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   724     __ popa();
   725     __ ret(3 * wordSize);                        // pop arguments
   726     return start;
   727   }
   729   //
   730   //  Generate pre-barrier for array stores
   731   //
   732   //  Input:
   733   //     start   -  starting address
   734   //     count   -  element count
   735   void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
   736     assert_different_registers(start, count);
   737     BarrierSet* bs = Universe::heap()->barrier_set();
   738     switch (bs->kind()) {
   739       case BarrierSet::G1SATBCT:
   740       case BarrierSet::G1SATBCTLogging:
   741         // With G1, don't generate the call if we statically know that the target in uninitialized
   742         if (!uninitialized_target) {
   743            __ pusha();                      // push registers
   744            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
   745                            start, count);
   746            __ popa();
   747          }
   748         break;
   749       case BarrierSet::CardTableModRef:
   750       case BarrierSet::CardTableExtension:
   751       case BarrierSet::ModRef:
   752         break;
   753       default      :
   754         ShouldNotReachHere();
   756     }
   757   }
   760   //
   761   // Generate a post-barrier for an array store
   762   //
   763   //     start    -  starting address
   764   //     count    -  element count
   765   //
   766   //  The two input registers are overwritten.
   767   //
   768   void  gen_write_ref_array_post_barrier(Register start, Register count) {
   769     BarrierSet* bs = Universe::heap()->barrier_set();
   770     assert_different_registers(start, count);
   771     switch (bs->kind()) {
   772       case BarrierSet::G1SATBCT:
   773       case BarrierSet::G1SATBCTLogging:
   774         {
   775           __ pusha();                      // push registers
   776           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
   777                           start, count);
   778           __ popa();
   779         }
   780         break;
   782       case BarrierSet::CardTableModRef:
   783       case BarrierSet::CardTableExtension:
   784         {
   785           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   786           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   788           Label L_loop;
   789           const Register end = count;  // elements count; end == start+count-1
   790           assert_different_registers(start, end);
   792           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
   793           __ shrptr(start, CardTableModRefBS::card_shift);
   794           __ shrptr(end,   CardTableModRefBS::card_shift);
   795           __ subptr(end, start); // end --> count
   796         __ BIND(L_loop);
   797           intptr_t disp = (intptr_t) ct->byte_map_base;
   798           Address cardtable(start, count, Address::times_1, disp);
   799           __ movb(cardtable, 0);
   800           __ decrement(count);
   801           __ jcc(Assembler::greaterEqual, L_loop);
   802         }
   803         break;
   804       case BarrierSet::ModRef:
   805         break;
   806       default      :
   807         ShouldNotReachHere();
   809     }
   810   }
   813   // Copy 64 bytes chunks
   814   //
   815   // Inputs:
   816   //   from        - source array address
   817   //   to_from     - destination array address - from
   818   //   qword_count - 8-bytes element count, negative
   819   //
   820   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
   821     assert( UseSSE >= 2, "supported cpu only" );
   822     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   823     // Copy 64-byte chunks
   824     __ jmpb(L_copy_64_bytes);
   825     __ align(OptoLoopAlignment);
   826   __ BIND(L_copy_64_bytes_loop);
   828     if(UseUnalignedLoadStores) {
   829       __ movdqu(xmm0, Address(from, 0));
   830       __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
   831       __ movdqu(xmm1, Address(from, 16));
   832       __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
   833       __ movdqu(xmm2, Address(from, 32));
   834       __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
   835       __ movdqu(xmm3, Address(from, 48));
   836       __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
   838     } else {
   839       __ movq(xmm0, Address(from, 0));
   840       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
   841       __ movq(xmm1, Address(from, 8));
   842       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
   843       __ movq(xmm2, Address(from, 16));
   844       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
   845       __ movq(xmm3, Address(from, 24));
   846       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
   847       __ movq(xmm4, Address(from, 32));
   848       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
   849       __ movq(xmm5, Address(from, 40));
   850       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
   851       __ movq(xmm6, Address(from, 48));
   852       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
   853       __ movq(xmm7, Address(from, 56));
   854       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
   855     }
   857     __ addl(from, 64);
   858   __ BIND(L_copy_64_bytes);
   859     __ subl(qword_count, 8);
   860     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   861     __ addl(qword_count, 8);
   862     __ jccb(Assembler::zero, L_exit);
   863     //
   864     // length is too short, just copy qwords
   865     //
   866   __ BIND(L_copy_8_bytes);
   867     __ movq(xmm0, Address(from, 0));
   868     __ movq(Address(from, to_from, Address::times_1), xmm0);
   869     __ addl(from, 8);
   870     __ decrement(qword_count);
   871     __ jcc(Assembler::greater, L_copy_8_bytes);
   872   __ BIND(L_exit);
   873   }
   875   // Copy 64 bytes chunks
   876   //
   877   // Inputs:
   878   //   from        - source array address
   879   //   to_from     - destination array address - from
   880   //   qword_count - 8-bytes element count, negative
   881   //
   882   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
   883     assert( VM_Version::supports_mmx(), "supported cpu only" );
   884     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   885     // Copy 64-byte chunks
   886     __ jmpb(L_copy_64_bytes);
   887     __ align(OptoLoopAlignment);
   888   __ BIND(L_copy_64_bytes_loop);
   889     __ movq(mmx0, Address(from, 0));
   890     __ movq(mmx1, Address(from, 8));
   891     __ movq(mmx2, Address(from, 16));
   892     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
   893     __ movq(mmx3, Address(from, 24));
   894     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
   895     __ movq(mmx4, Address(from, 32));
   896     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
   897     __ movq(mmx5, Address(from, 40));
   898     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
   899     __ movq(mmx6, Address(from, 48));
   900     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
   901     __ movq(mmx7, Address(from, 56));
   902     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
   903     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
   904     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
   905     __ addptr(from, 64);
   906   __ BIND(L_copy_64_bytes);
   907     __ subl(qword_count, 8);
   908     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   909     __ addl(qword_count, 8);
   910     __ jccb(Assembler::zero, L_exit);
   911     //
   912     // length is too short, just copy qwords
   913     //
   914   __ BIND(L_copy_8_bytes);
   915     __ movq(mmx0, Address(from, 0));
   916     __ movq(Address(from, to_from, Address::times_1), mmx0);
   917     __ addptr(from, 8);
   918     __ decrement(qword_count);
   919     __ jcc(Assembler::greater, L_copy_8_bytes);
   920   __ BIND(L_exit);
   921     __ emms();
   922   }
   924   address generate_disjoint_copy(BasicType t, bool aligned,
   925                                  Address::ScaleFactor sf,
   926                                  address* entry, const char *name,
   927                                  bool dest_uninitialized = false) {
   928     __ align(CodeEntryAlignment);
   929     StubCodeMark mark(this, "StubRoutines", name);
   930     address start = __ pc();
   932     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   933     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
   935     int shift = Address::times_ptr - sf;
   937     const Register from     = rsi;  // source array address
   938     const Register to       = rdi;  // destination array address
   939     const Register count    = rcx;  // elements count
   940     const Register to_from  = to;   // (to - from)
   941     const Register saved_to = rdx;  // saved destination array address
   943     __ enter(); // required for proper stackwalking of RuntimeStub frame
   944     __ push(rsi);
   945     __ push(rdi);
   946     __ movptr(from , Address(rsp, 12+ 4));
   947     __ movptr(to   , Address(rsp, 12+ 8));
   948     __ movl(count, Address(rsp, 12+ 12));
   950     if (entry != NULL) {
   951       *entry = __ pc(); // Entry point from conjoint arraycopy stub.
   952       BLOCK_COMMENT("Entry:");
   953     }
   955     if (t == T_OBJECT) {
   956       __ testl(count, count);
   957       __ jcc(Assembler::zero, L_0_count);
   958       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
   959       __ mov(saved_to, to);          // save 'to'
   960     }
   962     __ subptr(to, from); // to --> to_from
   963     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
   964     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
   965     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
   966       // align source address at 4 bytes address boundary
   967       if (t == T_BYTE) {
   968         // One byte misalignment happens only for byte arrays
   969         __ testl(from, 1);
   970         __ jccb(Assembler::zero, L_skip_align1);
   971         __ movb(rax, Address(from, 0));
   972         __ movb(Address(from, to_from, Address::times_1, 0), rax);
   973         __ increment(from);
   974         __ decrement(count);
   975       __ BIND(L_skip_align1);
   976       }
   977       // Two bytes misalignment happens only for byte and short (char) arrays
   978       __ testl(from, 2);
   979       __ jccb(Assembler::zero, L_skip_align2);
   980       __ movw(rax, Address(from, 0));
   981       __ movw(Address(from, to_from, Address::times_1, 0), rax);
   982       __ addptr(from, 2);
   983       __ subl(count, 1<<(shift-1));
   984     __ BIND(L_skip_align2);
   985     }
   986     if (!VM_Version::supports_mmx()) {
   987       __ mov(rax, count);      // save 'count'
   988       __ shrl(count, shift); // bytes count
   989       __ addptr(to_from, from);// restore 'to'
   990       __ rep_mov();
   991       __ subptr(to_from, from);// restore 'to_from'
   992       __ mov(count, rax);      // restore 'count'
   993       __ jmpb(L_copy_2_bytes); // all dwords were copied
   994     } else {
   995       if (!UseUnalignedLoadStores) {
   996         // align to 8 bytes, we know we are 4 byte aligned to start
   997         __ testptr(from, 4);
   998         __ jccb(Assembler::zero, L_copy_64_bytes);
   999         __ movl(rax, Address(from, 0));
  1000         __ movl(Address(from, to_from, Address::times_1, 0), rax);
  1001         __ addptr(from, 4);
  1002         __ subl(count, 1<<shift);
  1004     __ BIND(L_copy_64_bytes);
  1005       __ mov(rax, count);
  1006       __ shrl(rax, shift+1);  // 8 bytes chunk count
  1007       //
  1008       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
  1009       //
  1010       if (UseXMMForArrayCopy) {
  1011         xmm_copy_forward(from, to_from, rax);
  1012       } else {
  1013         mmx_copy_forward(from, to_from, rax);
  1016     // copy tailing dword
  1017   __ BIND(L_copy_4_bytes);
  1018     __ testl(count, 1<<shift);
  1019     __ jccb(Assembler::zero, L_copy_2_bytes);
  1020     __ movl(rax, Address(from, 0));
  1021     __ movl(Address(from, to_from, Address::times_1, 0), rax);
  1022     if (t == T_BYTE || t == T_SHORT) {
  1023       __ addptr(from, 4);
  1024     __ BIND(L_copy_2_bytes);
  1025       // copy tailing word
  1026       __ testl(count, 1<<(shift-1));
  1027       __ jccb(Assembler::zero, L_copy_byte);
  1028       __ movw(rax, Address(from, 0));
  1029       __ movw(Address(from, to_from, Address::times_1, 0), rax);
  1030       if (t == T_BYTE) {
  1031         __ addptr(from, 2);
  1032       __ BIND(L_copy_byte);
  1033         // copy tailing byte
  1034         __ testl(count, 1);
  1035         __ jccb(Assembler::zero, L_exit);
  1036         __ movb(rax, Address(from, 0));
  1037         __ movb(Address(from, to_from, Address::times_1, 0), rax);
  1038       __ BIND(L_exit);
  1039       } else {
  1040       __ BIND(L_copy_byte);
  1042     } else {
  1043     __ BIND(L_copy_2_bytes);
  1046     if (t == T_OBJECT) {
  1047       __ movl(count, Address(rsp, 12+12)); // reread 'count'
  1048       __ mov(to, saved_to); // restore 'to'
  1049       gen_write_ref_array_post_barrier(to, count);
  1050     __ BIND(L_0_count);
  1052     inc_copy_counter_np(t);
  1053     __ pop(rdi);
  1054     __ pop(rsi);
  1055     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1056     __ xorptr(rax, rax); // return 0
  1057     __ ret(0);
  1058     return start;
  1062   address generate_fill(BasicType t, bool aligned, const char *name) {
  1063     __ align(CodeEntryAlignment);
  1064     StubCodeMark mark(this, "StubRoutines", name);
  1065     address start = __ pc();
  1067     BLOCK_COMMENT("Entry:");
  1069     const Register to       = rdi;  // source array address
  1070     const Register value    = rdx;  // value
  1071     const Register count    = rsi;  // elements count
  1073     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1074     __ push(rsi);
  1075     __ push(rdi);
  1076     __ movptr(to   , Address(rsp, 12+ 4));
  1077     __ movl(value, Address(rsp, 12+ 8));
  1078     __ movl(count, Address(rsp, 12+ 12));
  1080     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1082     __ pop(rdi);
  1083     __ pop(rsi);
  1084     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1085     __ ret(0);
  1086     return start;
  1089   address generate_conjoint_copy(BasicType t, bool aligned,
  1090                                  Address::ScaleFactor sf,
  1091                                  address nooverlap_target,
  1092                                  address* entry, const char *name,
  1093                                  bool dest_uninitialized = false) {
  1094     __ align(CodeEntryAlignment);
  1095     StubCodeMark mark(this, "StubRoutines", name);
  1096     address start = __ pc();
  1098     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
  1099     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
  1101     int shift = Address::times_ptr - sf;
  1103     const Register src   = rax;  // source array address
  1104     const Register dst   = rdx;  // destination array address
  1105     const Register from  = rsi;  // source array address
  1106     const Register to    = rdi;  // destination array address
  1107     const Register count = rcx;  // elements count
  1108     const Register end   = rax;  // array end address
  1110     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1111     __ push(rsi);
  1112     __ push(rdi);
  1113     __ movptr(src  , Address(rsp, 12+ 4));   // from
  1114     __ movptr(dst  , Address(rsp, 12+ 8));   // to
  1115     __ movl2ptr(count, Address(rsp, 12+12)); // count
  1117     if (entry != NULL) {
  1118       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1119       BLOCK_COMMENT("Entry:");
  1122     // nooverlap_target expects arguments in rsi and rdi.
  1123     __ mov(from, src);
  1124     __ mov(to  , dst);
  1126     // arrays overlap test: dispatch to disjoint stub if necessary.
  1127     RuntimeAddress nooverlap(nooverlap_target);
  1128     __ cmpptr(dst, src);
  1129     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
  1130     __ jump_cc(Assembler::belowEqual, nooverlap);
  1131     __ cmpptr(dst, end);
  1132     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1134     if (t == T_OBJECT) {
  1135       __ testl(count, count);
  1136       __ jcc(Assembler::zero, L_0_count);
  1137       gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
  1140     // copy from high to low
  1141     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1142     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
  1143     if (t == T_BYTE || t == T_SHORT) {
  1144       // Align the end of destination array at 4 bytes address boundary
  1145       __ lea(end, Address(dst, count, sf, 0));
  1146       if (t == T_BYTE) {
  1147         // One byte misalignment happens only for byte arrays
  1148         __ testl(end, 1);
  1149         __ jccb(Assembler::zero, L_skip_align1);
  1150         __ decrement(count);
  1151         __ movb(rdx, Address(from, count, sf, 0));
  1152         __ movb(Address(to, count, sf, 0), rdx);
  1153       __ BIND(L_skip_align1);
  1155       // Two bytes misalignment happens only for byte and short (char) arrays
  1156       __ testl(end, 2);
  1157       __ jccb(Assembler::zero, L_skip_align2);
  1158       __ subptr(count, 1<<(shift-1));
  1159       __ movw(rdx, Address(from, count, sf, 0));
  1160       __ movw(Address(to, count, sf, 0), rdx);
  1161     __ BIND(L_skip_align2);
  1162       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1163       __ jcc(Assembler::below, L_copy_4_bytes);
  1166     if (!VM_Version::supports_mmx()) {
  1167       __ std();
  1168       __ mov(rax, count); // Save 'count'
  1169       __ mov(rdx, to);    // Save 'to'
  1170       __ lea(rsi, Address(from, count, sf, -4));
  1171       __ lea(rdi, Address(to  , count, sf, -4));
  1172       __ shrptr(count, shift); // bytes count
  1173       __ rep_mov();
  1174       __ cld();
  1175       __ mov(count, rax); // restore 'count'
  1176       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
  1177       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
  1178       __ mov(to, rdx);   // restore 'to'
  1179       __ jmpb(L_copy_2_bytes); // all dword were copied
  1180    } else {
  1181       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
  1182       __ testptr(end, 4);
  1183       __ jccb(Assembler::zero, L_copy_8_bytes);
  1184       __ subl(count, 1<<shift);
  1185       __ movl(rdx, Address(from, count, sf, 0));
  1186       __ movl(Address(to, count, sf, 0), rdx);
  1187       __ jmpb(L_copy_8_bytes);
  1189       __ align(OptoLoopAlignment);
  1190       // Move 8 bytes
  1191     __ BIND(L_copy_8_bytes_loop);
  1192       if (UseXMMForArrayCopy) {
  1193         __ movq(xmm0, Address(from, count, sf, 0));
  1194         __ movq(Address(to, count, sf, 0), xmm0);
  1195       } else {
  1196         __ movq(mmx0, Address(from, count, sf, 0));
  1197         __ movq(Address(to, count, sf, 0), mmx0);
  1199     __ BIND(L_copy_8_bytes);
  1200       __ subl(count, 2<<shift);
  1201       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1202       __ addl(count, 2<<shift);
  1203       if (!UseXMMForArrayCopy) {
  1204         __ emms();
  1207   __ BIND(L_copy_4_bytes);
  1208     // copy prefix qword
  1209     __ testl(count, 1<<shift);
  1210     __ jccb(Assembler::zero, L_copy_2_bytes);
  1211     __ movl(rdx, Address(from, count, sf, -4));
  1212     __ movl(Address(to, count, sf, -4), rdx);
  1214     if (t == T_BYTE || t == T_SHORT) {
  1215         __ subl(count, (1<<shift));
  1216       __ BIND(L_copy_2_bytes);
  1217         // copy prefix dword
  1218         __ testl(count, 1<<(shift-1));
  1219         __ jccb(Assembler::zero, L_copy_byte);
  1220         __ movw(rdx, Address(from, count, sf, -2));
  1221         __ movw(Address(to, count, sf, -2), rdx);
  1222         if (t == T_BYTE) {
  1223           __ subl(count, 1<<(shift-1));
  1224         __ BIND(L_copy_byte);
  1225           // copy prefix byte
  1226           __ testl(count, 1);
  1227           __ jccb(Assembler::zero, L_exit);
  1228           __ movb(rdx, Address(from, 0));
  1229           __ movb(Address(to, 0), rdx);
  1230         __ BIND(L_exit);
  1231         } else {
  1232         __ BIND(L_copy_byte);
  1234     } else {
  1235     __ BIND(L_copy_2_bytes);
  1237     if (t == T_OBJECT) {
  1238       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
  1239       gen_write_ref_array_post_barrier(to, count);
  1240     __ BIND(L_0_count);
  1242     inc_copy_counter_np(t);
  1243     __ pop(rdi);
  1244     __ pop(rsi);
  1245     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1246     __ xorptr(rax, rax); // return 0
  1247     __ ret(0);
  1248     return start;
  1252   address generate_disjoint_long_copy(address* entry, const char *name) {
  1253     __ align(CodeEntryAlignment);
  1254     StubCodeMark mark(this, "StubRoutines", name);
  1255     address start = __ pc();
  1257     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1258     const Register from       = rax;  // source array address
  1259     const Register to         = rdx;  // destination array address
  1260     const Register count      = rcx;  // elements count
  1261     const Register to_from    = rdx;  // (to - from)
  1263     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1264     __ movptr(from , Address(rsp, 8+0));       // from
  1265     __ movptr(to   , Address(rsp, 8+4));       // to
  1266     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1268     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
  1269     BLOCK_COMMENT("Entry:");
  1271     __ subptr(to, from); // to --> to_from
  1272     if (VM_Version::supports_mmx()) {
  1273       if (UseXMMForArrayCopy) {
  1274         xmm_copy_forward(from, to_from, count);
  1275       } else {
  1276         mmx_copy_forward(from, to_from, count);
  1278     } else {
  1279       __ jmpb(L_copy_8_bytes);
  1280       __ align(OptoLoopAlignment);
  1281     __ BIND(L_copy_8_bytes_loop);
  1282       __ fild_d(Address(from, 0));
  1283       __ fistp_d(Address(from, to_from, Address::times_1));
  1284       __ addptr(from, 8);
  1285     __ BIND(L_copy_8_bytes);
  1286       __ decrement(count);
  1287       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1289     inc_copy_counter_np(T_LONG);
  1290     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1291     __ xorptr(rax, rax); // return 0
  1292     __ ret(0);
  1293     return start;
  1296   address generate_conjoint_long_copy(address nooverlap_target,
  1297                                       address* entry, const char *name) {
  1298     __ align(CodeEntryAlignment);
  1299     StubCodeMark mark(this, "StubRoutines", name);
  1300     address start = __ pc();
  1302     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1303     const Register from       = rax;  // source array address
  1304     const Register to         = rdx;  // destination array address
  1305     const Register count      = rcx;  // elements count
  1306     const Register end_from   = rax;  // source array end address
  1308     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1309     __ movptr(from , Address(rsp, 8+0));       // from
  1310     __ movptr(to   , Address(rsp, 8+4));       // to
  1311     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1313     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1314     BLOCK_COMMENT("Entry:");
  1316     // arrays overlap test
  1317     __ cmpptr(to, from);
  1318     RuntimeAddress nooverlap(nooverlap_target);
  1319     __ jump_cc(Assembler::belowEqual, nooverlap);
  1320     __ lea(end_from, Address(from, count, Address::times_8, 0));
  1321     __ cmpptr(to, end_from);
  1322     __ movptr(from, Address(rsp, 8));  // from
  1323     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1325     __ jmpb(L_copy_8_bytes);
  1327     __ align(OptoLoopAlignment);
  1328   __ BIND(L_copy_8_bytes_loop);
  1329     if (VM_Version::supports_mmx()) {
  1330       if (UseXMMForArrayCopy) {
  1331         __ movq(xmm0, Address(from, count, Address::times_8));
  1332         __ movq(Address(to, count, Address::times_8), xmm0);
  1333       } else {
  1334         __ movq(mmx0, Address(from, count, Address::times_8));
  1335         __ movq(Address(to, count, Address::times_8), mmx0);
  1337     } else {
  1338       __ fild_d(Address(from, count, Address::times_8));
  1339       __ fistp_d(Address(to, count, Address::times_8));
  1341   __ BIND(L_copy_8_bytes);
  1342     __ decrement(count);
  1343     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1345     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
  1346       __ emms();
  1348     inc_copy_counter_np(T_LONG);
  1349     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1350     __ xorptr(rax, rax); // return 0
  1351     __ ret(0);
  1352     return start;
  1356   // Helper for generating a dynamic type check.
  1357   // The sub_klass must be one of {rbx, rdx, rsi}.
  1358   // The temp is killed.
  1359   void generate_type_check(Register sub_klass,
  1360                            Address& super_check_offset_addr,
  1361                            Address& super_klass_addr,
  1362                            Register temp,
  1363                            Label* L_success, Label* L_failure) {
  1364     BLOCK_COMMENT("type_check:");
  1366     Label L_fallthrough;
  1367 #define LOCAL_JCC(assembler_con, label_ptr)                             \
  1368     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
  1369     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
  1371     // The following is a strange variation of the fast path which requires
  1372     // one less register, because needed values are on the argument stack.
  1373     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
  1374     //                                  L_success, L_failure, NULL);
  1375     assert_different_registers(sub_klass, temp);
  1377     int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  1379     // if the pointers are equal, we are done (e.g., String[] elements)
  1380     __ cmpptr(sub_klass, super_klass_addr);
  1381     LOCAL_JCC(Assembler::equal, L_success);
  1383     // check the supertype display:
  1384     __ movl2ptr(temp, super_check_offset_addr);
  1385     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
  1386     __ movptr(temp, super_check_addr); // load displayed supertype
  1387     __ cmpptr(temp, super_klass_addr); // test the super type
  1388     LOCAL_JCC(Assembler::equal, L_success);
  1390     // if it was a primary super, we can just fail immediately
  1391     __ cmpl(super_check_offset_addr, sc_offset);
  1392     LOCAL_JCC(Assembler::notEqual, L_failure);
  1394     // The repne_scan instruction uses fixed registers, which will get spilled.
  1395     // We happen to know this works best when super_klass is in rax.
  1396     Register super_klass = temp;
  1397     __ movptr(super_klass, super_klass_addr);
  1398     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
  1399                                      L_success, L_failure);
  1401     __ bind(L_fallthrough);
  1403     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
  1404     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
  1406 #undef LOCAL_JCC
  1409   //
  1410   //  Generate checkcasting array copy stub
  1411   //
  1412   //  Input:
  1413   //    4(rsp)   - source array address
  1414   //    8(rsp)   - destination array address
  1415   //   12(rsp)   - element count, can be zero
  1416   //   16(rsp)   - size_t ckoff (super_check_offset)
  1417   //   20(rsp)   - oop ckval (super_klass)
  1418   //
  1419   //  Output:
  1420   //    rax, ==  0  -  success
  1421   //    rax, == -1^K - failure, where K is partial transfer count
  1422   //
  1423   address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
  1424     __ align(CodeEntryAlignment);
  1425     StubCodeMark mark(this, "StubRoutines", name);
  1426     address start = __ pc();
  1428     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  1430     // register use:
  1431     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
  1432     //  rdi, rsi      -- element access (oop, klass)
  1433     //  rbx,           -- temp
  1434     const Register from       = rax;    // source array address
  1435     const Register to         = rdx;    // destination array address
  1436     const Register length     = rcx;    // elements count
  1437     const Register elem       = rdi;    // each oop copied
  1438     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
  1439     const Register temp       = rbx;    // lone remaining temp
  1441     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1443     __ push(rsi);
  1444     __ push(rdi);
  1445     __ push(rbx);
  1447     Address   from_arg(rsp, 16+ 4);     // from
  1448     Address     to_arg(rsp, 16+ 8);     // to
  1449     Address length_arg(rsp, 16+12);     // elements count
  1450     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
  1451     Address  ckval_arg(rsp, 16+20);     // super_klass
  1453     // Load up:
  1454     __ movptr(from,     from_arg);
  1455     __ movptr(to,         to_arg);
  1456     __ movl2ptr(length, length_arg);
  1458     if (entry != NULL) {
  1459       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1460       BLOCK_COMMENT("Entry:");
  1463     //---------------------------------------------------------------
  1464     // Assembler stub will be used for this call to arraycopy
  1465     // if the two arrays are subtypes of Object[] but the
  1466     // destination array type is not equal to or a supertype
  1467     // of the source type.  Each element must be separately
  1468     // checked.
  1470     // Loop-invariant addresses.  They are exclusive end pointers.
  1471     Address end_from_addr(from, length, Address::times_ptr, 0);
  1472     Address   end_to_addr(to,   length, Address::times_ptr, 0);
  1474     Register end_from = from;           // re-use
  1475     Register end_to   = to;             // re-use
  1476     Register count    = length;         // re-use
  1478     // Loop-variant addresses.  They assume post-incremented count < 0.
  1479     Address from_element_addr(end_from, count, Address::times_ptr, 0);
  1480     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
  1481     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
  1483     // Copy from low to high addresses, indexed from the end of each array.
  1484     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  1485     __ lea(end_from, end_from_addr);
  1486     __ lea(end_to,   end_to_addr);
  1487     assert(length == count, "");        // else fix next line:
  1488     __ negptr(count);                   // negate and test the length
  1489     __ jccb(Assembler::notZero, L_load_element);
  1491     // Empty array:  Nothing to do.
  1492     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  1493     __ jmp(L_done);
  1495     // ======== begin loop ========
  1496     // (Loop is rotated; its entry is L_load_element.)
  1497     // Loop control:
  1498     //   for (count = -count; count != 0; count++)
  1499     // Base pointers src, dst are biased by 8*count,to last element.
  1500     __ align(OptoLoopAlignment);
  1502     __ BIND(L_store_element);
  1503     __ movptr(to_element_addr, elem);     // store the oop
  1504     __ increment(count);                // increment the count toward zero
  1505     __ jccb(Assembler::zero, L_do_card_marks);
  1507     // ======== loop entry is here ========
  1508     __ BIND(L_load_element);
  1509     __ movptr(elem, from_element_addr);   // load the oop
  1510     __ testptr(elem, elem);
  1511     __ jccb(Assembler::zero, L_store_element);
  1513     // (Could do a trick here:  Remember last successful non-null
  1514     // element stored and make a quick oop equality check on it.)
  1516     __ movptr(elem_klass, elem_klass_addr); // query the object klass
  1517     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
  1518                         &L_store_element, NULL);
  1519       // (On fall-through, we have failed the element type check.)
  1520     // ======== end loop ========
  1522     // It was a real error; we must depend on the caller to finish the job.
  1523     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
  1524     // Emit GC store barriers for the oops we have copied (length_arg + count),
  1525     // and report their number to the caller.
  1526     __ addl(count, length_arg);         // transfers = (length - remaining)
  1527     __ movl2ptr(rax, count);            // save the value
  1528     __ notptr(rax);                     // report (-1^K) to caller
  1529     __ movptr(to, to_arg);              // reload
  1530     assert_different_registers(to, count, rax);
  1531     gen_write_ref_array_post_barrier(to, count);
  1532     __ jmpb(L_done);
  1534     // Come here on success only.
  1535     __ BIND(L_do_card_marks);
  1536     __ movl2ptr(count, length_arg);
  1537     __ movptr(to, to_arg);                // reload
  1538     gen_write_ref_array_post_barrier(to, count);
  1539     __ xorptr(rax, rax);                  // return 0 on success
  1541     // Common exit point (success or failure).
  1542     __ BIND(L_done);
  1543     __ pop(rbx);
  1544     __ pop(rdi);
  1545     __ pop(rsi);
  1546     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  1547     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1548     __ ret(0);
  1550     return start;
  1553   //
  1554   //  Generate 'unsafe' array copy stub
  1555   //  Though just as safe as the other stubs, it takes an unscaled
  1556   //  size_t argument instead of an element count.
  1557   //
  1558   //  Input:
  1559   //    4(rsp)   - source array address
  1560   //    8(rsp)   - destination array address
  1561   //   12(rsp)   - byte count, can be zero
  1562   //
  1563   //  Output:
  1564   //    rax, ==  0  -  success
  1565   //    rax, == -1  -  need to call System.arraycopy
  1566   //
  1567   // Examines the alignment of the operands and dispatches
  1568   // to a long, int, short, or byte copy loop.
  1569   //
  1570   address generate_unsafe_copy(const char *name,
  1571                                address byte_copy_entry,
  1572                                address short_copy_entry,
  1573                                address int_copy_entry,
  1574                                address long_copy_entry) {
  1576     Label L_long_aligned, L_int_aligned, L_short_aligned;
  1578     __ align(CodeEntryAlignment);
  1579     StubCodeMark mark(this, "StubRoutines", name);
  1580     address start = __ pc();
  1582     const Register from       = rax;  // source array address
  1583     const Register to         = rdx;  // destination array address
  1584     const Register count      = rcx;  // elements count
  1586     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1587     __ push(rsi);
  1588     __ push(rdi);
  1589     Address  from_arg(rsp, 12+ 4);      // from
  1590     Address    to_arg(rsp, 12+ 8);      // to
  1591     Address count_arg(rsp, 12+12);      // byte count
  1593     // Load up:
  1594     __ movptr(from ,  from_arg);
  1595     __ movptr(to   ,    to_arg);
  1596     __ movl2ptr(count, count_arg);
  1598     // bump this on entry, not on exit:
  1599     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  1601     const Register bits = rsi;
  1602     __ mov(bits, from);
  1603     __ orptr(bits, to);
  1604     __ orptr(bits, count);
  1606     __ testl(bits, BytesPerLong-1);
  1607     __ jccb(Assembler::zero, L_long_aligned);
  1609     __ testl(bits, BytesPerInt-1);
  1610     __ jccb(Assembler::zero, L_int_aligned);
  1612     __ testl(bits, BytesPerShort-1);
  1613     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  1615     __ BIND(L_short_aligned);
  1616     __ shrptr(count, LogBytesPerShort); // size => short_count
  1617     __ movl(count_arg, count);          // update 'count'
  1618     __ jump(RuntimeAddress(short_copy_entry));
  1620     __ BIND(L_int_aligned);
  1621     __ shrptr(count, LogBytesPerInt); // size => int_count
  1622     __ movl(count_arg, count);          // update 'count'
  1623     __ jump(RuntimeAddress(int_copy_entry));
  1625     __ BIND(L_long_aligned);
  1626     __ shrptr(count, LogBytesPerLong); // size => qword_count
  1627     __ movl(count_arg, count);          // update 'count'
  1628     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1629     __ pop(rsi);
  1630     __ jump(RuntimeAddress(long_copy_entry));
  1632     return start;
  1636   // Perform range checks on the proposed arraycopy.
  1637   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  1638   void arraycopy_range_checks(Register src,
  1639                               Register src_pos,
  1640                               Register dst,
  1641                               Register dst_pos,
  1642                               Address& length,
  1643                               Label& L_failed) {
  1644     BLOCK_COMMENT("arraycopy_range_checks:");
  1645     const Register src_end = src_pos;   // source array end position
  1646     const Register dst_end = dst_pos;   // destination array end position
  1647     __ addl(src_end, length); // src_pos + length
  1648     __ addl(dst_end, length); // dst_pos + length
  1650     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  1651     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
  1652     __ jcc(Assembler::above, L_failed);
  1654     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  1655     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  1656     __ jcc(Assembler::above, L_failed);
  1658     BLOCK_COMMENT("arraycopy_range_checks done");
  1662   //
  1663   //  Generate generic array copy stubs
  1664   //
  1665   //  Input:
  1666   //     4(rsp)    -  src oop
  1667   //     8(rsp)    -  src_pos
  1668   //    12(rsp)    -  dst oop
  1669   //    16(rsp)    -  dst_pos
  1670   //    20(rsp)    -  element count
  1671   //
  1672   //  Output:
  1673   //    rax, ==  0  -  success
  1674   //    rax, == -1^K - failure, where K is partial transfer count
  1675   //
  1676   address generate_generic_copy(const char *name,
  1677                                 address entry_jbyte_arraycopy,
  1678                                 address entry_jshort_arraycopy,
  1679                                 address entry_jint_arraycopy,
  1680                                 address entry_oop_arraycopy,
  1681                                 address entry_jlong_arraycopy,
  1682                                 address entry_checkcast_arraycopy) {
  1683     Label L_failed, L_failed_0, L_objArray;
  1685     { int modulus = CodeEntryAlignment;
  1686       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  1687       int advance = target - (__ offset() % modulus);
  1688       if (advance < 0)  advance += modulus;
  1689       if (advance > 0)  __ nop(advance);
  1691     StubCodeMark mark(this, "StubRoutines", name);
  1693     // Short-hop target to L_failed.  Makes for denser prologue code.
  1694     __ BIND(L_failed_0);
  1695     __ jmp(L_failed);
  1696     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  1698     __ align(CodeEntryAlignment);
  1699     address start = __ pc();
  1701     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1702     __ push(rsi);
  1703     __ push(rdi);
  1705     // bump this on entry, not on exit:
  1706     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  1708     // Input values
  1709     Address SRC     (rsp, 12+ 4);
  1710     Address SRC_POS (rsp, 12+ 8);
  1711     Address DST     (rsp, 12+12);
  1712     Address DST_POS (rsp, 12+16);
  1713     Address LENGTH  (rsp, 12+20);
  1715     //-----------------------------------------------------------------------
  1716     // Assembler stub will be used for this call to arraycopy
  1717     // if the following conditions are met:
  1718     //
  1719     // (1) src and dst must not be null.
  1720     // (2) src_pos must not be negative.
  1721     // (3) dst_pos must not be negative.
  1722     // (4) length  must not be negative.
  1723     // (5) src klass and dst klass should be the same and not NULL.
  1724     // (6) src and dst should be arrays.
  1725     // (7) src_pos + length must not exceed length of src.
  1726     // (8) dst_pos + length must not exceed length of dst.
  1727     //
  1729     const Register src     = rax;       // source array oop
  1730     const Register src_pos = rsi;
  1731     const Register dst     = rdx;       // destination array oop
  1732     const Register dst_pos = rdi;
  1733     const Register length  = rcx;       // transfer count
  1735     //  if (src == NULL) return -1;
  1736     __ movptr(src, SRC);      // src oop
  1737     __ testptr(src, src);
  1738     __ jccb(Assembler::zero, L_failed_0);
  1740     //  if (src_pos < 0) return -1;
  1741     __ movl2ptr(src_pos, SRC_POS);  // src_pos
  1742     __ testl(src_pos, src_pos);
  1743     __ jccb(Assembler::negative, L_failed_0);
  1745     //  if (dst == NULL) return -1;
  1746     __ movptr(dst, DST);      // dst oop
  1747     __ testptr(dst, dst);
  1748     __ jccb(Assembler::zero, L_failed_0);
  1750     //  if (dst_pos < 0) return -1;
  1751     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
  1752     __ testl(dst_pos, dst_pos);
  1753     __ jccb(Assembler::negative, L_failed_0);
  1755     //  if (length < 0) return -1;
  1756     __ movl2ptr(length, LENGTH);   // length
  1757     __ testl(length, length);
  1758     __ jccb(Assembler::negative, L_failed_0);
  1760     //  if (src->klass() == NULL) return -1;
  1761     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  1762     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  1763     const Register rcx_src_klass = rcx;    // array klass
  1764     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
  1766 #ifdef ASSERT
  1767     //  assert(src->klass() != NULL);
  1768     BLOCK_COMMENT("assert klasses not null");
  1769     { Label L1, L2;
  1770       __ testptr(rcx_src_klass, rcx_src_klass);
  1771       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
  1772       __ bind(L1);
  1773       __ stop("broken null klass");
  1774       __ bind(L2);
  1775       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
  1776       __ jccb(Assembler::equal, L1);      // this would be broken also
  1777       BLOCK_COMMENT("assert done");
  1779 #endif //ASSERT
  1781     // Load layout helper (32-bits)
  1782     //
  1783     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  1784     // 32        30    24            16              8     2                 0
  1785     //
  1786     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  1787     //
  1789     int lh_offset = in_bytes(Klass::layout_helper_offset());
  1790     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
  1792     // Handle objArrays completely differently...
  1793     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1794     __ cmpl(src_klass_lh_addr, objArray_lh);
  1795     __ jcc(Assembler::equal, L_objArray);
  1797     //  if (src->klass() != dst->klass()) return -1;
  1798     __ cmpptr(rcx_src_klass, dst_klass_addr);
  1799     __ jccb(Assembler::notEqual, L_failed_0);
  1801     const Register rcx_lh = rcx;  // layout helper
  1802     assert(rcx_lh == rcx_src_klass, "known alias");
  1803     __ movl(rcx_lh, src_klass_lh_addr);
  1805     //  if (!src->is_Array()) return -1;
  1806     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
  1807     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
  1809     // At this point, it is known to be a typeArray (array_tag 0x3).
  1810 #ifdef ASSERT
  1811     { Label L;
  1812       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  1813       __ jcc(Assembler::greaterEqual, L); // signed cmp
  1814       __ stop("must be a primitive array");
  1815       __ bind(L);
  1817 #endif
  1819     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
  1820     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1822     // typeArrayKlass
  1823     //
  1824     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  1825     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  1826     //
  1827     const Register rsi_offset = rsi; // array offset
  1828     const Register src_array  = src; // src array offset
  1829     const Register dst_array  = dst; // dst array offset
  1830     const Register rdi_elsize = rdi; // log2 element size
  1832     __ mov(rsi_offset, rcx_lh);
  1833     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
  1834     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
  1835     __ addptr(src_array, rsi_offset);  // src array offset
  1836     __ addptr(dst_array, rsi_offset);  // dst array offset
  1837     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
  1839     // next registers should be set before the jump to corresponding stub
  1840     const Register from       = src; // source array address
  1841     const Register to         = dst; // destination array address
  1842     const Register count      = rcx; // elements count
  1843     // some of them should be duplicated on stack
  1844 #define FROM   Address(rsp, 12+ 4)
  1845 #define TO     Address(rsp, 12+ 8)   // Not used now
  1846 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
  1848     BLOCK_COMMENT("scale indexes to element size");
  1849     __ movl2ptr(rsi, SRC_POS);  // src_pos
  1850     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
  1851     assert(src_array == from, "");
  1852     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
  1853     __ movl2ptr(rdi, DST_POS);  // dst_pos
  1854     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
  1855     assert(dst_array == to, "");
  1856     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
  1857     __ movptr(FROM, from);      // src_addr
  1858     __ mov(rdi_elsize, rcx_lh); // log2 elsize
  1859     __ movl2ptr(count, LENGTH); // elements count
  1861     BLOCK_COMMENT("choose copy loop based on element size");
  1862     __ cmpl(rdi_elsize, 0);
  1864     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
  1865     __ cmpl(rdi_elsize, LogBytesPerShort);
  1866     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
  1867     __ cmpl(rdi_elsize, LogBytesPerInt);
  1868     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
  1869 #ifdef ASSERT
  1870     __ cmpl(rdi_elsize, LogBytesPerLong);
  1871     __ jccb(Assembler::notEqual, L_failed);
  1872 #endif
  1873     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1874     __ pop(rsi);
  1875     __ jump(RuntimeAddress(entry_jlong_arraycopy));
  1877   __ BIND(L_failed);
  1878     __ xorptr(rax, rax);
  1879     __ notptr(rax); // return -1
  1880     __ pop(rdi);
  1881     __ pop(rsi);
  1882     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1883     __ ret(0);
  1885     // objArrayKlass
  1886   __ BIND(L_objArray);
  1887     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
  1889     Label L_plain_copy, L_checkcast_copy;
  1890     //  test array classes for subtyping
  1891     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
  1892     __ jccb(Assembler::notEqual, L_checkcast_copy);
  1894     // Identically typed arrays can be copied without element-wise checks.
  1895     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
  1896     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1898   __ BIND(L_plain_copy);
  1899     __ movl2ptr(count, LENGTH); // elements count
  1900     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
  1901     __ lea(from, Address(src, src_pos, Address::times_ptr,
  1902                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  1903     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
  1904     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
  1905                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  1906     __ movptr(FROM,  from);   // src_addr
  1907     __ movptr(TO,    to);     // dst_addr
  1908     __ movl(COUNT, count);  // count
  1909     __ jump(RuntimeAddress(entry_oop_arraycopy));
  1911   __ BIND(L_checkcast_copy);
  1912     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
  1914       // Handy offsets:
  1915       int  ek_offset = in_bytes(objArrayKlass::element_klass_offset());
  1916       int sco_offset = in_bytes(Klass::super_check_offset_offset());
  1918       Register rsi_dst_klass = rsi;
  1919       Register rdi_temp      = rdi;
  1920       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
  1921       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
  1922       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
  1924       // Before looking at dst.length, make sure dst is also an objArray.
  1925       __ movptr(rsi_dst_klass, dst_klass_addr);
  1926       __ cmpl(dst_klass_lh_addr, objArray_lh);
  1927       __ jccb(Assembler::notEqual, L_failed);
  1929       // It is safe to examine both src.length and dst.length.
  1930       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
  1931       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1932       // (Now src_pos and dst_pos are killed, but not src and dst.)
  1934       // We'll need this temp (don't forget to pop it after the type check).
  1935       __ push(rbx);
  1936       Register rbx_src_klass = rbx;
  1938       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
  1939       __ movptr(rsi_dst_klass, dst_klass_addr);
  1940       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
  1941       Label L_fail_array_check;
  1942       generate_type_check(rbx_src_klass,
  1943                           super_check_offset_addr, dst_klass_addr,
  1944                           rdi_temp, NULL, &L_fail_array_check);
  1945       // (On fall-through, we have passed the array type check.)
  1946       __ pop(rbx);
  1947       __ jmp(L_plain_copy);
  1949       __ BIND(L_fail_array_check);
  1950       // Reshuffle arguments so we can call checkcast_arraycopy:
  1952       // match initial saves for checkcast_arraycopy
  1953       // push(rsi);    // already done; see above
  1954       // push(rdi);    // already done; see above
  1955       // push(rbx);    // already done; see above
  1957       // Marshal outgoing arguments now, freeing registers.
  1958       Address   from_arg(rsp, 16+ 4);   // from
  1959       Address     to_arg(rsp, 16+ 8);   // to
  1960       Address length_arg(rsp, 16+12);   // elements count
  1961       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
  1962       Address  ckval_arg(rsp, 16+20);   // super_klass
  1964       Address SRC_POS_arg(rsp, 16+ 8);
  1965       Address DST_POS_arg(rsp, 16+16);
  1966       Address  LENGTH_arg(rsp, 16+20);
  1967       // push rbx, changed the incoming offsets (why not just use rbp,??)
  1968       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
  1970       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
  1971       __ movl2ptr(length, LENGTH_arg);    // reload elements count
  1972       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
  1973       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
  1975       __ movptr(ckval_arg, rbx);          // destination element type
  1976       __ movl(rbx, Address(rbx, sco_offset));
  1977       __ movl(ckoff_arg, rbx);          // corresponding class check offset
  1979       __ movl(length_arg, length);      // outgoing length argument
  1981       __ lea(from, Address(src, src_pos, Address::times_ptr,
  1982                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1983       __ movptr(from_arg, from);
  1985       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
  1986                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1987       __ movptr(to_arg, to);
  1988       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
  1991     return start;
  1994   void generate_arraycopy_stubs() {
  1995     address entry;
  1996     address entry_jbyte_arraycopy;
  1997     address entry_jshort_arraycopy;
  1998     address entry_jint_arraycopy;
  1999     address entry_oop_arraycopy;
  2000     address entry_jlong_arraycopy;
  2001     address entry_checkcast_arraycopy;
  2003     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
  2004         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
  2005                                "arrayof_jbyte_disjoint_arraycopy");
  2006     StubRoutines::_arrayof_jbyte_arraycopy =
  2007         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
  2008                                NULL, "arrayof_jbyte_arraycopy");
  2009     StubRoutines::_jbyte_disjoint_arraycopy =
  2010         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
  2011                                "jbyte_disjoint_arraycopy");
  2012     StubRoutines::_jbyte_arraycopy =
  2013         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
  2014                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
  2016     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
  2017         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
  2018                                "arrayof_jshort_disjoint_arraycopy");
  2019     StubRoutines::_arrayof_jshort_arraycopy =
  2020         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
  2021                                NULL, "arrayof_jshort_arraycopy");
  2022     StubRoutines::_jshort_disjoint_arraycopy =
  2023         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
  2024                                "jshort_disjoint_arraycopy");
  2025     StubRoutines::_jshort_arraycopy =
  2026         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
  2027                                &entry_jshort_arraycopy, "jshort_arraycopy");
  2029     // Next arrays are always aligned on 4 bytes at least.
  2030     StubRoutines::_jint_disjoint_arraycopy =
  2031         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
  2032                                "jint_disjoint_arraycopy");
  2033     StubRoutines::_jint_arraycopy =
  2034         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
  2035                                &entry_jint_arraycopy, "jint_arraycopy");
  2037     StubRoutines::_oop_disjoint_arraycopy =
  2038         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  2039                                "oop_disjoint_arraycopy");
  2040     StubRoutines::_oop_arraycopy =
  2041         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2042                                &entry_oop_arraycopy, "oop_arraycopy");
  2044     StubRoutines::_oop_disjoint_arraycopy_uninit =
  2045         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  2046                                "oop_disjoint_arraycopy_uninit",
  2047                                /*dest_uninitialized*/true);
  2048     StubRoutines::_oop_arraycopy_uninit =
  2049         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2050                                NULL, "oop_arraycopy_uninit",
  2051                                /*dest_uninitialized*/true);
  2053     StubRoutines::_jlong_disjoint_arraycopy =
  2054         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
  2055     StubRoutines::_jlong_arraycopy =
  2056         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
  2057                                     "jlong_arraycopy");
  2059     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  2060     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  2061     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  2062     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  2063     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  2064     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  2066     StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
  2067     StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
  2068     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
  2069     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
  2071     StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
  2072     StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
  2073     StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
  2074     StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
  2076     StubRoutines::_checkcast_arraycopy =
  2077         generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
  2078     StubRoutines::_checkcast_arraycopy_uninit =
  2079         generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
  2081     StubRoutines::_unsafe_arraycopy =
  2082         generate_unsafe_copy("unsafe_arraycopy",
  2083                                entry_jbyte_arraycopy,
  2084                                entry_jshort_arraycopy,
  2085                                entry_jint_arraycopy,
  2086                                entry_jlong_arraycopy);
  2088     StubRoutines::_generic_arraycopy =
  2089         generate_generic_copy("generic_arraycopy",
  2090                                entry_jbyte_arraycopy,
  2091                                entry_jshort_arraycopy,
  2092                                entry_jint_arraycopy,
  2093                                entry_oop_arraycopy,
  2094                                entry_jlong_arraycopy,
  2095                                entry_checkcast_arraycopy);
  2098   void generate_math_stubs() {
  2100       StubCodeMark mark(this, "StubRoutines", "log");
  2101       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2103       __ fld_d(Address(rsp, 4));
  2104       __ flog();
  2105       __ ret(0);
  2108       StubCodeMark mark(this, "StubRoutines", "log10");
  2109       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2111       __ fld_d(Address(rsp, 4));
  2112       __ flog10();
  2113       __ ret(0);
  2116       StubCodeMark mark(this, "StubRoutines", "sin");
  2117       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
  2119       __ fld_d(Address(rsp, 4));
  2120       __ trigfunc('s');
  2121       __ ret(0);
  2124       StubCodeMark mark(this, "StubRoutines", "cos");
  2125       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2127       __ fld_d(Address(rsp, 4));
  2128       __ trigfunc('c');
  2129       __ ret(0);
  2132       StubCodeMark mark(this, "StubRoutines", "tan");
  2133       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2135       __ fld_d(Address(rsp, 4));
  2136       __ trigfunc('t');
  2137       __ ret(0);
  2140     // The intrinsic version of these seem to return the same value as
  2141     // the strict version.
  2142     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
  2143     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
  2146  public:
  2147   // Information about frame layout at time of blocking runtime call.
  2148   // Note that we only have to preserve callee-saved registers since
  2149   // the compilers are responsible for supplying a continuation point
  2150   // if they expect all registers to be preserved.
  2151   enum layout {
  2152     thread_off,    // last_java_sp
  2153     arg1_off,
  2154     arg2_off,
  2155     rbp_off,       // callee saved register
  2156     ret_pc,
  2157     framesize
  2158   };
  2160  private:
  2162 #undef  __
  2163 #define __ masm->
  2165   //------------------------------------------------------------------------------------------------------------------------
  2166   // Continuation point for throwing of implicit exceptions that are not handled in
  2167   // the current activation. Fabricates an exception oop and initiates normal
  2168   // exception dispatching in this frame.
  2169   //
  2170   // Previously the compiler (c2) allowed for callee save registers on Java calls.
  2171   // This is no longer true after adapter frames were removed but could possibly
  2172   // be brought back in the future if the interpreter code was reworked and it
  2173   // was deemed worthwhile. The comment below was left to describe what must
  2174   // happen here if callee saves were resurrected. As it stands now this stub
  2175   // could actually be a vanilla BufferBlob and have now oopMap at all.
  2176   // Since it doesn't make much difference we've chosen to leave it the
  2177   // way it was in the callee save days and keep the comment.
  2179   // If we need to preserve callee-saved values we need a callee-saved oop map and
  2180   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  2181   // If the compiler needs all registers to be preserved between the fault
  2182   // point and the exception handler then it must assume responsibility for that in
  2183   // AbstractCompiler::continuation_for_implicit_null_exception or
  2184   // continuation_for_implicit_division_by_zero_exception. All other implicit
  2185   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  2186   // either at call sites or otherwise assume that stack unwinding will be initiated,
  2187   // so caller saved registers were assumed volatile in the compiler.
  2188   address generate_throw_exception(const char* name, address runtime_entry,
  2189                                    Register arg1 = noreg, Register arg2 = noreg) {
  2191     int insts_size = 256;
  2192     int locs_size  = 32;
  2194     CodeBuffer code(name, insts_size, locs_size);
  2195     OopMapSet* oop_maps  = new OopMapSet();
  2196     MacroAssembler* masm = new MacroAssembler(&code);
  2198     address start = __ pc();
  2200     // This is an inlined and slightly modified version of call_VM
  2201     // which has the ability to fetch the return PC out of
  2202     // thread-local storage and also sets up last_Java_sp slightly
  2203     // differently than the real call_VM
  2204     Register java_thread = rbx;
  2205     __ get_thread(java_thread);
  2207     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2209     // pc and rbp, already pushed
  2210     __ subptr(rsp, (framesize-2) * wordSize); // prolog
  2212     // Frame is now completed as far as size and linkage.
  2214     int frame_complete = __ pc() - start;
  2216     // push java thread (becomes first argument of C function)
  2217     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
  2218     if (arg1 != noreg) {
  2219       __ movptr(Address(rsp, arg1_off * wordSize), arg1);
  2221     if (arg2 != noreg) {
  2222       assert(arg1 != noreg, "missing reg arg");
  2223       __ movptr(Address(rsp, arg2_off * wordSize), arg2);
  2226     // Set up last_Java_sp and last_Java_fp
  2227     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
  2229     // Call runtime
  2230     BLOCK_COMMENT("call runtime_entry");
  2231     __ call(RuntimeAddress(runtime_entry));
  2232     // Generate oop map
  2233     OopMap* map =  new OopMap(framesize, 0);
  2234     oop_maps->add_gc_map(__ pc() - start, map);
  2236     // restore the thread (cannot use the pushed argument since arguments
  2237     // may be overwritten by C code generated by an optimizing compiler);
  2238     // however can use the register value directly if it is callee saved.
  2239     __ get_thread(java_thread);
  2241     __ reset_last_Java_frame(java_thread, true, false);
  2243     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2245     // check for pending exceptions
  2246 #ifdef ASSERT
  2247     Label L;
  2248     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2249     __ jcc(Assembler::notEqual, L);
  2250     __ should_not_reach_here();
  2251     __ bind(L);
  2252 #endif /* ASSERT */
  2253     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2256     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
  2257     return stub->entry_point();
  2261   void create_control_words() {
  2262     // Round to nearest, 53-bit mode, exceptions masked
  2263     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
  2264     // Round to zero, 53-bit mode, exception mased
  2265     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
  2266     // Round to nearest, 24-bit mode, exceptions masked
  2267     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
  2268     // Round to nearest, 64-bit mode, exceptions masked
  2269     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
  2270     // Round to nearest, 64-bit mode, exceptions masked
  2271     StubRoutines::_mxcsr_std           = 0x1F80;
  2272     // Note: the following two constants are 80-bit values
  2273     //       layout is critical for correct loading by FPU.
  2274     // Bias for strict fp multiply/divide
  2275     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
  2276     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
  2277     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
  2278     // Un-Bias for strict fp multiply/divide
  2279     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
  2280     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
  2281     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  2284   //---------------------------------------------------------------------------
  2285   // Initialization
  2287   void generate_initial() {
  2288     // Generates all stubs and initializes the entry points
  2290     //------------------------------------------------------------------------------------------------------------------------
  2291     // entry points that exist in all platforms
  2292     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2293     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2294     StubRoutines::_forward_exception_entry      = generate_forward_exception();
  2296     StubRoutines::_call_stub_entry              =
  2297       generate_call_stub(StubRoutines::_call_stub_return_address);
  2298     // is referenced by megamorphic call
  2299     StubRoutines::_catch_exception_entry        = generate_catch_exception();
  2301     // These are currently used by Solaris/Intel
  2302     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
  2304     StubRoutines::_handler_for_unsafe_access_entry =
  2305       generate_handler_for_unsafe_access();
  2307     // platform dependent
  2308     create_control_words();
  2310     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
  2311     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
  2312     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
  2313                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
  2314     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
  2315                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  2317     // Build this early so it's available for the interpreter
  2318     StubRoutines::_throw_WrongMethodTypeException_entry =
  2319       generate_throw_exception("WrongMethodTypeException throw_exception",
  2320                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
  2321                                rax, rcx);
  2323     // Build this early so it's available for the interpreter
  2324     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
  2328   void generate_all() {
  2329     // Generates all stubs and initializes the entry points
  2331     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2332     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
  2333     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
  2334     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
  2335     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
  2337     //------------------------------------------------------------------------------------------------------------------------
  2338     // entry points that are platform specific
  2340     // support for verify_oop (must happen after universe_init)
  2341     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
  2343     // arraycopy stubs used by compilers
  2344     generate_arraycopy_stubs();
  2346     generate_math_stubs();
  2350  public:
  2351   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2352     if (all) {
  2353       generate_all();
  2354     } else {
  2355       generate_initial();
  2358 }; // end class declaration
  2361 void StubGenerator_generate(CodeBuffer* code, bool all) {
  2362   StubGenerator g(code, all);

mercurial