src/share/vm/opto/memnode.hpp

Mon, 27 Jan 2014 10:20:51 -0800

author
kvn
date
Mon, 27 Jan 2014 10:20:51 -0800
changeset 6293
2185d483f5f8
parent 6198
55fb97c4c58d
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8032566: Crash in JIT when running Scala compiler (and compiling Scala std lib)
Summary: Switch off EliminateAutoBox flag by default in jdk8 release.
Reviewed-by: iveresov

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
    26 #define SHARE_VM_OPTO_MEMNODE_HPP
    28 #include "opto/multnode.hpp"
    29 #include "opto/node.hpp"
    30 #include "opto/opcodes.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 class MultiNode;
    36 class PhaseCCP;
    37 class PhaseTransform;
    39 //------------------------------MemNode----------------------------------------
    40 // Load or Store, possibly throwing a NULL pointer exception
    41 class MemNode : public Node {
    42 protected:
    43 #ifdef ASSERT
    44   const TypePtr* _adr_type;     // What kind of memory is being addressed?
    45 #endif
    46   virtual uint size_of() const; // Size is bigger (ASSERT only)
    47 public:
    48   enum { Control,               // When is it safe to do this load?
    49          Memory,                // Chunk of memory is being loaded from
    50          Address,               // Actually address, derived from base
    51          ValueIn,               // Value to store
    52          OopStore               // Preceeding oop store, only in StoreCM
    53   };
    54 protected:
    55   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
    56     : Node(c0,c1,c2   ) {
    57     init_class_id(Class_Mem);
    58     debug_only(_adr_type=at; adr_type();)
    59   }
    60   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
    61     : Node(c0,c1,c2,c3) {
    62     init_class_id(Class_Mem);
    63     debug_only(_adr_type=at; adr_type();)
    64   }
    65   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
    66     : Node(c0,c1,c2,c3,c4) {
    67     init_class_id(Class_Mem);
    68     debug_only(_adr_type=at; adr_type();)
    69   }
    71 public:
    72   // Helpers for the optimizer.  Documented in memnode.cpp.
    73   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
    74                                       Node* p2, AllocateNode* a2,
    75                                       PhaseTransform* phase);
    76   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
    78   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
    79   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
    80   // This one should probably be a phase-specific function:
    81   static bool all_controls_dominate(Node* dom, Node* sub);
    83   // Find any cast-away of null-ness and keep its control.
    84   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
    85   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
    87   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
    89   // Shared code for Ideal methods:
    90   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
    92   // Helper function for adr_type() implementations.
    93   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
    95   // Raw access function, to allow copying of adr_type efficiently in
    96   // product builds and retain the debug info for debug builds.
    97   const TypePtr *raw_adr_type() const {
    98 #ifdef ASSERT
    99     return _adr_type;
   100 #else
   101     return 0;
   102 #endif
   103   }
   105   // Map a load or store opcode to its corresponding store opcode.
   106   // (Return -1 if unknown.)
   107   virtual int store_Opcode() const { return -1; }
   109   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
   110   virtual BasicType memory_type() const = 0;
   111   virtual int memory_size() const {
   112 #ifdef ASSERT
   113     return type2aelembytes(memory_type(), true);
   114 #else
   115     return type2aelembytes(memory_type());
   116 #endif
   117   }
   119   // Search through memory states which precede this node (load or store).
   120   // Look for an exact match for the address, with no intervening
   121   // aliased stores.
   122   Node* find_previous_store(PhaseTransform* phase);
   124   // Can this node (load or store) accurately see a stored value in
   125   // the given memory state?  (The state may or may not be in(Memory).)
   126   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
   128 #ifndef PRODUCT
   129   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
   130   virtual void dump_spec(outputStream *st) const;
   131 #endif
   132 };
   134 //------------------------------LoadNode---------------------------------------
   135 // Load value; requires Memory and Address
   136 class LoadNode : public MemNode {
   137 protected:
   138   virtual uint cmp( const Node &n ) const;
   139   virtual uint size_of() const; // Size is bigger
   140   const Type* const _type;      // What kind of value is loaded?
   141 public:
   143   LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
   144     : MemNode(c,mem,adr,at), _type(rt) {
   145     init_class_id(Class_Load);
   146   }
   148   // Polymorphic factory method:
   149   static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   150                      const TypePtr* at, const Type *rt, BasicType bt );
   152   virtual uint hash()   const;  // Check the type
   154   // Handle algebraic identities here.  If we have an identity, return the Node
   155   // we are equivalent to.  We look for Load of a Store.
   156   virtual Node *Identity( PhaseTransform *phase );
   158   // If the load is from Field memory and the pointer is non-null, we can
   159   // zero out the control input.
   160   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   162   // Split instance field load through Phi.
   163   Node* split_through_phi(PhaseGVN *phase);
   165   // Recover original value from boxed values
   166   Node *eliminate_autobox(PhaseGVN *phase);
   168   // Compute a new Type for this node.  Basically we just do the pre-check,
   169   // then call the virtual add() to set the type.
   170   virtual const Type *Value( PhaseTransform *phase ) const;
   172   // Common methods for LoadKlass and LoadNKlass nodes.
   173   const Type *klass_value_common( PhaseTransform *phase ) const;
   174   Node *klass_identity_common( PhaseTransform *phase );
   176   virtual uint ideal_reg() const;
   177   virtual const Type *bottom_type() const;
   178   // Following method is copied from TypeNode:
   179   void set_type(const Type* t) {
   180     assert(t != NULL, "sanity");
   181     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   182     *(const Type**)&_type = t;   // cast away const-ness
   183     // If this node is in the hash table, make sure it doesn't need a rehash.
   184     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
   185   }
   186   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
   188   // Do not match memory edge
   189   virtual uint match_edge(uint idx) const;
   191   // Map a load opcode to its corresponding store opcode.
   192   virtual int store_Opcode() const = 0;
   194   // Check if the load's memory input is a Phi node with the same control.
   195   bool is_instance_field_load_with_local_phi(Node* ctrl);
   197 #ifndef PRODUCT
   198   virtual void dump_spec(outputStream *st) const;
   199 #endif
   200 #ifdef ASSERT
   201   // Helper function to allow a raw load without control edge for some cases
   202   static bool is_immutable_value(Node* adr);
   203 #endif
   204 protected:
   205   const Type* load_array_final_field(const TypeKlassPtr *tkls,
   206                                      ciKlass* klass) const;
   207   // depends_only_on_test is almost always true, and needs to be almost always
   208   // true to enable key hoisting & commoning optimizations.  However, for the
   209   // special case of RawPtr loads from TLS top & end, and other loads performed by
   210   // GC barriers, the control edge carries the dependence preventing hoisting past
   211   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
   212   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
   213   // which produce results (new raw memory state) inside of loops preventing all
   214   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
   215   // See comment in macro.cpp, around line 125 expand_allocate_common().
   216   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
   218 };
   220 //------------------------------LoadBNode--------------------------------------
   221 // Load a byte (8bits signed) from memory
   222 class LoadBNode : public LoadNode {
   223 public:
   224   LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
   225     : LoadNode(c,mem,adr,at,ti) {}
   226   virtual int Opcode() const;
   227   virtual uint ideal_reg() const { return Op_RegI; }
   228   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   229   virtual const Type *Value(PhaseTransform *phase) const;
   230   virtual int store_Opcode() const { return Op_StoreB; }
   231   virtual BasicType memory_type() const { return T_BYTE; }
   232 };
   234 //------------------------------LoadUBNode-------------------------------------
   235 // Load a unsigned byte (8bits unsigned) from memory
   236 class LoadUBNode : public LoadNode {
   237 public:
   238   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
   239     : LoadNode(c, mem, adr, at, ti) {}
   240   virtual int Opcode() const;
   241   virtual uint ideal_reg() const { return Op_RegI; }
   242   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
   243   virtual const Type *Value(PhaseTransform *phase) const;
   244   virtual int store_Opcode() const { return Op_StoreB; }
   245   virtual BasicType memory_type() const { return T_BYTE; }
   246 };
   248 //------------------------------LoadUSNode-------------------------------------
   249 // Load an unsigned short/char (16bits unsigned) from memory
   250 class LoadUSNode : public LoadNode {
   251 public:
   252   LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
   253     : LoadNode(c,mem,adr,at,ti) {}
   254   virtual int Opcode() const;
   255   virtual uint ideal_reg() const { return Op_RegI; }
   256   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   257   virtual const Type *Value(PhaseTransform *phase) const;
   258   virtual int store_Opcode() const { return Op_StoreC; }
   259   virtual BasicType memory_type() const { return T_CHAR; }
   260 };
   262 //------------------------------LoadSNode--------------------------------------
   263 // Load a short (16bits signed) from memory
   264 class LoadSNode : public LoadNode {
   265 public:
   266   LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
   267     : LoadNode(c,mem,adr,at,ti) {}
   268   virtual int Opcode() const;
   269   virtual uint ideal_reg() const { return Op_RegI; }
   270   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   271   virtual const Type *Value(PhaseTransform *phase) const;
   272   virtual int store_Opcode() const { return Op_StoreC; }
   273   virtual BasicType memory_type() const { return T_SHORT; }
   274 };
   276 //------------------------------LoadINode--------------------------------------
   277 // Load an integer from memory
   278 class LoadINode : public LoadNode {
   279 public:
   280   LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
   281     : LoadNode(c,mem,adr,at,ti) {}
   282   virtual int Opcode() const;
   283   virtual uint ideal_reg() const { return Op_RegI; }
   284   virtual int store_Opcode() const { return Op_StoreI; }
   285   virtual BasicType memory_type() const { return T_INT; }
   286 };
   288 //------------------------------LoadRangeNode----------------------------------
   289 // Load an array length from the array
   290 class LoadRangeNode : public LoadINode {
   291 public:
   292   LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
   293     : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
   294   virtual int Opcode() const;
   295   virtual const Type *Value( PhaseTransform *phase ) const;
   296   virtual Node *Identity( PhaseTransform *phase );
   297   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   298 };
   300 //------------------------------LoadLNode--------------------------------------
   301 // Load a long from memory
   302 class LoadLNode : public LoadNode {
   303   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
   304   virtual uint cmp( const Node &n ) const {
   305     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
   306       && LoadNode::cmp(n);
   307   }
   308   virtual uint size_of() const { return sizeof(*this); }
   309   const bool _require_atomic_access;  // is piecewise load forbidden?
   311 public:
   312   LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
   313              const TypeLong *tl = TypeLong::LONG,
   314              bool require_atomic_access = false )
   315     : LoadNode(c,mem,adr,at,tl)
   316     , _require_atomic_access(require_atomic_access)
   317   {}
   318   virtual int Opcode() const;
   319   virtual uint ideal_reg() const { return Op_RegL; }
   320   virtual int store_Opcode() const { return Op_StoreL; }
   321   virtual BasicType memory_type() const { return T_LONG; }
   322   bool require_atomic_access() { return _require_atomic_access; }
   323   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
   324 #ifndef PRODUCT
   325   virtual void dump_spec(outputStream *st) const {
   326     LoadNode::dump_spec(st);
   327     if (_require_atomic_access)  st->print(" Atomic!");
   328   }
   329 #endif
   330 };
   332 //------------------------------LoadL_unalignedNode----------------------------
   333 // Load a long from unaligned memory
   334 class LoadL_unalignedNode : public LoadLNode {
   335 public:
   336   LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   337     : LoadLNode(c,mem,adr,at) {}
   338   virtual int Opcode() const;
   339 };
   341 //------------------------------LoadFNode--------------------------------------
   342 // Load a float (64 bits) from memory
   343 class LoadFNode : public LoadNode {
   344 public:
   345   LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
   346     : LoadNode(c,mem,adr,at,t) {}
   347   virtual int Opcode() const;
   348   virtual uint ideal_reg() const { return Op_RegF; }
   349   virtual int store_Opcode() const { return Op_StoreF; }
   350   virtual BasicType memory_type() const { return T_FLOAT; }
   351 };
   353 //------------------------------LoadDNode--------------------------------------
   354 // Load a double (64 bits) from memory
   355 class LoadDNode : public LoadNode {
   356 public:
   357   LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
   358     : LoadNode(c,mem,adr,at,t) {}
   359   virtual int Opcode() const;
   360   virtual uint ideal_reg() const { return Op_RegD; }
   361   virtual int store_Opcode() const { return Op_StoreD; }
   362   virtual BasicType memory_type() const { return T_DOUBLE; }
   363 };
   365 //------------------------------LoadD_unalignedNode----------------------------
   366 // Load a double from unaligned memory
   367 class LoadD_unalignedNode : public LoadDNode {
   368 public:
   369   LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   370     : LoadDNode(c,mem,adr,at) {}
   371   virtual int Opcode() const;
   372 };
   374 //------------------------------LoadPNode--------------------------------------
   375 // Load a pointer from memory (either object or array)
   376 class LoadPNode : public LoadNode {
   377 public:
   378   LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
   379     : LoadNode(c,mem,adr,at,t) {}
   380   virtual int Opcode() const;
   381   virtual uint ideal_reg() const { return Op_RegP; }
   382   virtual int store_Opcode() const { return Op_StoreP; }
   383   virtual BasicType memory_type() const { return T_ADDRESS; }
   384 };
   387 //------------------------------LoadNNode--------------------------------------
   388 // Load a narrow oop from memory (either object or array)
   389 class LoadNNode : public LoadNode {
   390 public:
   391   LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
   392     : LoadNode(c,mem,adr,at,t) {}
   393   virtual int Opcode() const;
   394   virtual uint ideal_reg() const { return Op_RegN; }
   395   virtual int store_Opcode() const { return Op_StoreN; }
   396   virtual BasicType memory_type() const { return T_NARROWOOP; }
   397 };
   399 //------------------------------LoadKlassNode----------------------------------
   400 // Load a Klass from an object
   401 class LoadKlassNode : public LoadPNode {
   402 public:
   403   LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
   404     : LoadPNode(c,mem,adr,at,tk) {}
   405   virtual int Opcode() const;
   406   virtual const Type *Value( PhaseTransform *phase ) const;
   407   virtual Node *Identity( PhaseTransform *phase );
   408   virtual bool depends_only_on_test() const { return true; }
   410   // Polymorphic factory method:
   411   static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
   412                      const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
   413 };
   415 //------------------------------LoadNKlassNode---------------------------------
   416 // Load a narrow Klass from an object.
   417 class LoadNKlassNode : public LoadNNode {
   418 public:
   419   LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk )
   420     : LoadNNode(c,mem,adr,at,tk) {}
   421   virtual int Opcode() const;
   422   virtual uint ideal_reg() const { return Op_RegN; }
   423   virtual int store_Opcode() const { return Op_StoreNKlass; }
   424   virtual BasicType memory_type() const { return T_NARROWKLASS; }
   426   virtual const Type *Value( PhaseTransform *phase ) const;
   427   virtual Node *Identity( PhaseTransform *phase );
   428   virtual bool depends_only_on_test() const { return true; }
   429 };
   432 //------------------------------StoreNode--------------------------------------
   433 // Store value; requires Store, Address and Value
   434 class StoreNode : public MemNode {
   435 protected:
   436   virtual uint cmp( const Node &n ) const;
   437   virtual bool depends_only_on_test() const { return false; }
   439   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
   440   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
   442 public:
   443   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
   444     : MemNode(c,mem,adr,at,val) {
   445     init_class_id(Class_Store);
   446   }
   447   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
   448     : MemNode(c,mem,adr,at,val,oop_store) {
   449     init_class_id(Class_Store);
   450   }
   452   // Polymorphic factory method:
   453   static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   454                           const TypePtr* at, Node *val, BasicType bt );
   456   virtual uint hash() const;    // Check the type
   458   // If the store is to Field memory and the pointer is non-null, we can
   459   // zero out the control input.
   460   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   462   // Compute a new Type for this node.  Basically we just do the pre-check,
   463   // then call the virtual add() to set the type.
   464   virtual const Type *Value( PhaseTransform *phase ) const;
   466   // Check for identity function on memory (Load then Store at same address)
   467   virtual Node *Identity( PhaseTransform *phase );
   469   // Do not match memory edge
   470   virtual uint match_edge(uint idx) const;
   472   virtual const Type *bottom_type() const;  // returns Type::MEMORY
   474   // Map a store opcode to its corresponding own opcode, trivially.
   475   virtual int store_Opcode() const { return Opcode(); }
   477   // have all possible loads of the value stored been optimized away?
   478   bool value_never_loaded(PhaseTransform *phase) const;
   479 };
   481 //------------------------------StoreBNode-------------------------------------
   482 // Store byte to memory
   483 class StoreBNode : public StoreNode {
   484 public:
   485   StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   486   virtual int Opcode() const;
   487   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   488   virtual BasicType memory_type() const { return T_BYTE; }
   489 };
   491 //------------------------------StoreCNode-------------------------------------
   492 // Store char/short to memory
   493 class StoreCNode : public StoreNode {
   494 public:
   495   StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   496   virtual int Opcode() const;
   497   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   498   virtual BasicType memory_type() const { return T_CHAR; }
   499 };
   501 //------------------------------StoreINode-------------------------------------
   502 // Store int to memory
   503 class StoreINode : public StoreNode {
   504 public:
   505   StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   506   virtual int Opcode() const;
   507   virtual BasicType memory_type() const { return T_INT; }
   508 };
   510 //------------------------------StoreLNode-------------------------------------
   511 // Store long to memory
   512 class StoreLNode : public StoreNode {
   513   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
   514   virtual uint cmp( const Node &n ) const {
   515     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
   516       && StoreNode::cmp(n);
   517   }
   518   virtual uint size_of() const { return sizeof(*this); }
   519   const bool _require_atomic_access;  // is piecewise store forbidden?
   521 public:
   522   StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
   523               bool require_atomic_access = false )
   524     : StoreNode(c,mem,adr,at,val)
   525     , _require_atomic_access(require_atomic_access)
   526   {}
   527   virtual int Opcode() const;
   528   virtual BasicType memory_type() const { return T_LONG; }
   529   bool require_atomic_access() { return _require_atomic_access; }
   530   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
   531 #ifndef PRODUCT
   532   virtual void dump_spec(outputStream *st) const {
   533     StoreNode::dump_spec(st);
   534     if (_require_atomic_access)  st->print(" Atomic!");
   535   }
   536 #endif
   537 };
   539 //------------------------------StoreFNode-------------------------------------
   540 // Store float to memory
   541 class StoreFNode : public StoreNode {
   542 public:
   543   StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   544   virtual int Opcode() const;
   545   virtual BasicType memory_type() const { return T_FLOAT; }
   546 };
   548 //------------------------------StoreDNode-------------------------------------
   549 // Store double to memory
   550 class StoreDNode : public StoreNode {
   551 public:
   552   StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   553   virtual int Opcode() const;
   554   virtual BasicType memory_type() const { return T_DOUBLE; }
   555 };
   557 //------------------------------StorePNode-------------------------------------
   558 // Store pointer to memory
   559 class StorePNode : public StoreNode {
   560 public:
   561   StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   562   virtual int Opcode() const;
   563   virtual BasicType memory_type() const { return T_ADDRESS; }
   564 };
   566 //------------------------------StoreNNode-------------------------------------
   567 // Store narrow oop to memory
   568 class StoreNNode : public StoreNode {
   569 public:
   570   StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   571   virtual int Opcode() const;
   572   virtual BasicType memory_type() const { return T_NARROWOOP; }
   573 };
   575 //------------------------------StoreNKlassNode--------------------------------------
   576 // Store narrow klass to memory
   577 class StoreNKlassNode : public StoreNNode {
   578 public:
   579   StoreNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNNode(c,mem,adr,at,val) {}
   580   virtual int Opcode() const;
   581   virtual BasicType memory_type() const { return T_NARROWKLASS; }
   582 };
   584 //------------------------------StoreCMNode-----------------------------------
   585 // Store card-mark byte to memory for CM
   586 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
   587 // Preceeding equivalent StoreCMs may be eliminated.
   588 class StoreCMNode : public StoreNode {
   589  private:
   590   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
   591   virtual uint cmp( const Node &n ) const {
   592     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
   593       && StoreNode::cmp(n);
   594   }
   595   virtual uint size_of() const { return sizeof(*this); }
   596   int _oop_alias_idx;   // The alias_idx of OopStore
   598 public:
   599   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
   600     StoreNode(c,mem,adr,at,val,oop_store),
   601     _oop_alias_idx(oop_alias_idx) {
   602     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
   603            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
   604            "bad oop alias idx");
   605   }
   606   virtual int Opcode() const;
   607   virtual Node *Identity( PhaseTransform *phase );
   608   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   609   virtual const Type *Value( PhaseTransform *phase ) const;
   610   virtual BasicType memory_type() const { return T_VOID; } // unspecific
   611   int oop_alias_idx() const { return _oop_alias_idx; }
   612 };
   614 //------------------------------LoadPLockedNode---------------------------------
   615 // Load-locked a pointer from memory (either object or array).
   616 // On Sparc & Intel this is implemented as a normal pointer load.
   617 // On PowerPC and friends it's a real load-locked.
   618 class LoadPLockedNode : public LoadPNode {
   619 public:
   620   LoadPLockedNode( Node *c, Node *mem, Node *adr )
   621     : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
   622   virtual int Opcode() const;
   623   virtual int store_Opcode() const { return Op_StorePConditional; }
   624   virtual bool depends_only_on_test() const { return true; }
   625 };
   627 //------------------------------SCMemProjNode---------------------------------------
   628 // This class defines a projection of the memory  state of a store conditional node.
   629 // These nodes return a value, but also update memory.
   630 class SCMemProjNode : public ProjNode {
   631 public:
   632   enum {SCMEMPROJCON = (uint)-2};
   633   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
   634   virtual int Opcode() const;
   635   virtual bool      is_CFG() const  { return false; }
   636   virtual const Type *bottom_type() const {return Type::MEMORY;}
   637   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
   638   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
   639   virtual const Type *Value( PhaseTransform *phase ) const;
   640 #ifndef PRODUCT
   641   virtual void dump_spec(outputStream *st) const {};
   642 #endif
   643 };
   645 //------------------------------LoadStoreNode---------------------------
   646 // Note: is_Mem() method returns 'true' for this class.
   647 class LoadStoreNode : public Node {
   648 private:
   649   const Type* const _type;      // What kind of value is loaded?
   650   const TypePtr* _adr_type;     // What kind of memory is being addressed?
   651   virtual uint size_of() const; // Size is bigger
   652 public:
   653   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
   654   virtual bool depends_only_on_test() const { return false; }
   655   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
   657   virtual const Type *bottom_type() const { return _type; }
   658   virtual uint ideal_reg() const;
   659   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
   661   bool result_not_used() const;
   662 };
   664 class LoadStoreConditionalNode : public LoadStoreNode {
   665 public:
   666   enum {
   667     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
   668   };
   669   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
   670 };
   672 //------------------------------StorePConditionalNode---------------------------
   673 // Conditionally store pointer to memory, if no change since prior
   674 // load-locked.  Sets flags for success or failure of the store.
   675 class StorePConditionalNode : public LoadStoreConditionalNode {
   676 public:
   677   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
   678   virtual int Opcode() const;
   679   // Produces flags
   680   virtual uint ideal_reg() const { return Op_RegFlags; }
   681 };
   683 //------------------------------StoreIConditionalNode---------------------------
   684 // Conditionally store int to memory, if no change since prior
   685 // load-locked.  Sets flags for success or failure of the store.
   686 class StoreIConditionalNode : public LoadStoreConditionalNode {
   687 public:
   688   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
   689   virtual int Opcode() const;
   690   // Produces flags
   691   virtual uint ideal_reg() const { return Op_RegFlags; }
   692 };
   694 //------------------------------StoreLConditionalNode---------------------------
   695 // Conditionally store long to memory, if no change since prior
   696 // load-locked.  Sets flags for success or failure of the store.
   697 class StoreLConditionalNode : public LoadStoreConditionalNode {
   698 public:
   699   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
   700   virtual int Opcode() const;
   701   // Produces flags
   702   virtual uint ideal_reg() const { return Op_RegFlags; }
   703 };
   706 //------------------------------CompareAndSwapLNode---------------------------
   707 class CompareAndSwapLNode : public LoadStoreConditionalNode {
   708 public:
   709   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   710   virtual int Opcode() const;
   711 };
   714 //------------------------------CompareAndSwapINode---------------------------
   715 class CompareAndSwapINode : public LoadStoreConditionalNode {
   716 public:
   717   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   718   virtual int Opcode() const;
   719 };
   722 //------------------------------CompareAndSwapPNode---------------------------
   723 class CompareAndSwapPNode : public LoadStoreConditionalNode {
   724 public:
   725   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   726   virtual int Opcode() const;
   727 };
   729 //------------------------------CompareAndSwapNNode---------------------------
   730 class CompareAndSwapNNode : public LoadStoreConditionalNode {
   731 public:
   732   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   733   virtual int Opcode() const;
   734 };
   736 //------------------------------GetAndAddINode---------------------------
   737 class GetAndAddINode : public LoadStoreNode {
   738 public:
   739   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
   740   virtual int Opcode() const;
   741 };
   743 //------------------------------GetAndAddLNode---------------------------
   744 class GetAndAddLNode : public LoadStoreNode {
   745 public:
   746   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
   747   virtual int Opcode() const;
   748 };
   751 //------------------------------GetAndSetINode---------------------------
   752 class GetAndSetINode : public LoadStoreNode {
   753 public:
   754   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
   755   virtual int Opcode() const;
   756 };
   758 //------------------------------GetAndSetINode---------------------------
   759 class GetAndSetLNode : public LoadStoreNode {
   760 public:
   761   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
   762   virtual int Opcode() const;
   763 };
   765 //------------------------------GetAndSetPNode---------------------------
   766 class GetAndSetPNode : public LoadStoreNode {
   767 public:
   768   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
   769   virtual int Opcode() const;
   770 };
   772 //------------------------------GetAndSetNNode---------------------------
   773 class GetAndSetNNode : public LoadStoreNode {
   774 public:
   775   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
   776   virtual int Opcode() const;
   777 };
   779 //------------------------------ClearArray-------------------------------------
   780 class ClearArrayNode: public Node {
   781 public:
   782   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
   783     : Node(ctrl,arymem,word_cnt,base) {
   784     init_class_id(Class_ClearArray);
   785   }
   786   virtual int         Opcode() const;
   787   virtual const Type *bottom_type() const { return Type::MEMORY; }
   788   // ClearArray modifies array elements, and so affects only the
   789   // array memory addressed by the bottom_type of its base address.
   790   virtual const class TypePtr *adr_type() const;
   791   virtual Node *Identity( PhaseTransform *phase );
   792   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   793   virtual uint match_edge(uint idx) const;
   795   // Clear the given area of an object or array.
   796   // The start offset must always be aligned mod BytesPerInt.
   797   // The end offset must always be aligned mod BytesPerLong.
   798   // Return the new memory.
   799   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   800                             intptr_t start_offset,
   801                             intptr_t end_offset,
   802                             PhaseGVN* phase);
   803   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   804                             intptr_t start_offset,
   805                             Node* end_offset,
   806                             PhaseGVN* phase);
   807   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   808                             Node* start_offset,
   809                             Node* end_offset,
   810                             PhaseGVN* phase);
   811   // Return allocation input memory edge if it is different instance
   812   // or itself if it is the one we are looking for.
   813   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
   814 };
   816 //------------------------------StrIntrinsic-------------------------------
   817 // Base class for Ideal nodes used in String instrinsic code.
   818 class StrIntrinsicNode: public Node {
   819 public:
   820   StrIntrinsicNode(Node* control, Node* char_array_mem,
   821                    Node* s1, Node* c1, Node* s2, Node* c2):
   822     Node(control, char_array_mem, s1, c1, s2, c2) {
   823   }
   825   StrIntrinsicNode(Node* control, Node* char_array_mem,
   826                    Node* s1, Node* s2, Node* c):
   827     Node(control, char_array_mem, s1, s2, c) {
   828   }
   830   StrIntrinsicNode(Node* control, Node* char_array_mem,
   831                    Node* s1, Node* s2):
   832     Node(control, char_array_mem, s1, s2) {
   833   }
   835   virtual bool depends_only_on_test() const { return false; }
   836   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
   837   virtual uint match_edge(uint idx) const;
   838   virtual uint ideal_reg() const { return Op_RegI; }
   839   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   840   virtual const Type *Value(PhaseTransform *phase) const;
   841 };
   843 //------------------------------StrComp-------------------------------------
   844 class StrCompNode: public StrIntrinsicNode {
   845 public:
   846   StrCompNode(Node* control, Node* char_array_mem,
   847               Node* s1, Node* c1, Node* s2, Node* c2):
   848     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
   849   virtual int Opcode() const;
   850   virtual const Type* bottom_type() const { return TypeInt::INT; }
   851 };
   853 //------------------------------StrEquals-------------------------------------
   854 class StrEqualsNode: public StrIntrinsicNode {
   855 public:
   856   StrEqualsNode(Node* control, Node* char_array_mem,
   857                 Node* s1, Node* s2, Node* c):
   858     StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
   859   virtual int Opcode() const;
   860   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
   861 };
   863 //------------------------------StrIndexOf-------------------------------------
   864 class StrIndexOfNode: public StrIntrinsicNode {
   865 public:
   866   StrIndexOfNode(Node* control, Node* char_array_mem,
   867               Node* s1, Node* c1, Node* s2, Node* c2):
   868     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
   869   virtual int Opcode() const;
   870   virtual const Type* bottom_type() const { return TypeInt::INT; }
   871 };
   873 //------------------------------AryEq---------------------------------------
   874 class AryEqNode: public StrIntrinsicNode {
   875 public:
   876   AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
   877     StrIntrinsicNode(control, char_array_mem, s1, s2) {};
   878   virtual int Opcode() const;
   879   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
   880 };
   883 //------------------------------EncodeISOArray--------------------------------
   884 // encode char[] to byte[] in ISO_8859_1
   885 class EncodeISOArrayNode: public Node {
   886 public:
   887   EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
   888   virtual int Opcode() const;
   889   virtual bool depends_only_on_test() const { return false; }
   890   virtual const Type* bottom_type() const { return TypeInt::INT; }
   891   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
   892   virtual uint match_edge(uint idx) const;
   893   virtual uint ideal_reg() const { return Op_RegI; }
   894   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   895   virtual const Type *Value(PhaseTransform *phase) const;
   896 };
   898 //------------------------------MemBar-----------------------------------------
   899 // There are different flavors of Memory Barriers to match the Java Memory
   900 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
   901 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
   902 // volatile-load.  Monitor-exit and volatile-store act as Release: no
   903 // preceding ref can be moved to after them.  We insert a MemBar-Release
   904 // before a FastUnlock or volatile-store.  All volatiles need to be
   905 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
   906 // separate it from any following volatile-load.
   907 class MemBarNode: public MultiNode {
   908   virtual uint hash() const ;                  // { return NO_HASH; }
   909   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
   911   virtual uint size_of() const { return sizeof(*this); }
   912   // Memory type this node is serializing.  Usually either rawptr or bottom.
   913   const TypePtr* _adr_type;
   915 public:
   916   enum {
   917     Precedent = TypeFunc::Parms  // optional edge to force precedence
   918   };
   919   MemBarNode(Compile* C, int alias_idx, Node* precedent);
   920   virtual int Opcode() const = 0;
   921   virtual const class TypePtr *adr_type() const { return _adr_type; }
   922   virtual const Type *Value( PhaseTransform *phase ) const;
   923   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   924   virtual uint match_edge(uint idx) const { return 0; }
   925   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
   926   virtual Node *match( const ProjNode *proj, const Matcher *m );
   927   // Factory method.  Builds a wide or narrow membar.
   928   // Optional 'precedent' becomes an extra edge if not null.
   929   static MemBarNode* make(Compile* C, int opcode,
   930                           int alias_idx = Compile::AliasIdxBot,
   931                           Node* precedent = NULL);
   932 };
   934 // "Acquire" - no following ref can move before (but earlier refs can
   935 // follow, like an early Load stalled in cache).  Requires multi-cpu
   936 // visibility.  Inserted after a volatile load.
   937 class MemBarAcquireNode: public MemBarNode {
   938 public:
   939   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
   940     : MemBarNode(C, alias_idx, precedent) {}
   941   virtual int Opcode() const;
   942 };
   944 // "Release" - no earlier ref can move after (but later refs can move
   945 // up, like a speculative pipelined cache-hitting Load).  Requires
   946 // multi-cpu visibility.  Inserted before a volatile store.
   947 class MemBarReleaseNode: public MemBarNode {
   948 public:
   949   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
   950     : MemBarNode(C, alias_idx, precedent) {}
   951   virtual int Opcode() const;
   952 };
   954 // "Acquire" - no following ref can move before (but earlier refs can
   955 // follow, like an early Load stalled in cache).  Requires multi-cpu
   956 // visibility.  Inserted after a FastLock.
   957 class MemBarAcquireLockNode: public MemBarNode {
   958 public:
   959   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
   960     : MemBarNode(C, alias_idx, precedent) {}
   961   virtual int Opcode() const;
   962 };
   964 // "Release" - no earlier ref can move after (but later refs can move
   965 // up, like a speculative pipelined cache-hitting Load).  Requires
   966 // multi-cpu visibility.  Inserted before a FastUnLock.
   967 class MemBarReleaseLockNode: public MemBarNode {
   968 public:
   969   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
   970     : MemBarNode(C, alias_idx, precedent) {}
   971   virtual int Opcode() const;
   972 };
   974 class MemBarStoreStoreNode: public MemBarNode {
   975 public:
   976   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
   977     : MemBarNode(C, alias_idx, precedent) {
   978     init_class_id(Class_MemBarStoreStore);
   979   }
   980   virtual int Opcode() const;
   981 };
   983 // Ordering between a volatile store and a following volatile load.
   984 // Requires multi-CPU visibility?
   985 class MemBarVolatileNode: public MemBarNode {
   986 public:
   987   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
   988     : MemBarNode(C, alias_idx, precedent) {}
   989   virtual int Opcode() const;
   990 };
   992 // Ordering within the same CPU.  Used to order unsafe memory references
   993 // inside the compiler when we lack alias info.  Not needed "outside" the
   994 // compiler because the CPU does all the ordering for us.
   995 class MemBarCPUOrderNode: public MemBarNode {
   996 public:
   997   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
   998     : MemBarNode(C, alias_idx, precedent) {}
   999   virtual int Opcode() const;
  1000   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
  1001 };
  1003 // Isolation of object setup after an AllocateNode and before next safepoint.
  1004 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
  1005 class InitializeNode: public MemBarNode {
  1006   friend class AllocateNode;
  1008   enum {
  1009     Incomplete    = 0,
  1010     Complete      = 1,
  1011     WithArraycopy = 2
  1012   };
  1013   int _is_complete;
  1015   bool _does_not_escape;
  1017 public:
  1018   enum {
  1019     Control    = TypeFunc::Control,
  1020     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
  1021     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
  1022     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
  1023   };
  1025   InitializeNode(Compile* C, int adr_type, Node* rawoop);
  1026   virtual int Opcode() const;
  1027   virtual uint size_of() const { return sizeof(*this); }
  1028   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
  1029   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
  1031   // Manage incoming memory edges via a MergeMem on in(Memory):
  1032   Node* memory(uint alias_idx);
  1034   // The raw memory edge coming directly from the Allocation.
  1035   // The contents of this memory are *always* all-zero-bits.
  1036   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
  1038   // Return the corresponding allocation for this initialization (or null if none).
  1039   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
  1040   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
  1041   AllocateNode* allocation();
  1043   // Anything other than zeroing in this init?
  1044   bool is_non_zero();
  1046   // An InitializeNode must completed before macro expansion is done.
  1047   // Completion requires that the AllocateNode must be followed by
  1048   // initialization of the new memory to zero, then to any initializers.
  1049   bool is_complete() { return _is_complete != Incomplete; }
  1050   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
  1052   // Mark complete.  (Must not yet be complete.)
  1053   void set_complete(PhaseGVN* phase);
  1054   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
  1056   bool does_not_escape() { return _does_not_escape; }
  1057   void set_does_not_escape() { _does_not_escape = true; }
  1059 #ifdef ASSERT
  1060   // ensure all non-degenerate stores are ordered and non-overlapping
  1061   bool stores_are_sane(PhaseTransform* phase);
  1062 #endif //ASSERT
  1064   // See if this store can be captured; return offset where it initializes.
  1065   // Return 0 if the store cannot be moved (any sort of problem).
  1066   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
  1068   // Capture another store; reformat it to write my internal raw memory.
  1069   // Return the captured copy, else NULL if there is some sort of problem.
  1070   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
  1072   // Find captured store which corresponds to the range [start..start+size).
  1073   // Return my own memory projection (meaning the initial zero bits)
  1074   // if there is no such store.  Return NULL if there is a problem.
  1075   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
  1077   // Called when the associated AllocateNode is expanded into CFG.
  1078   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  1079                         intptr_t header_size, Node* size_in_bytes,
  1080                         PhaseGVN* phase);
  1082  private:
  1083   void remove_extra_zeroes();
  1085   // Find out where a captured store should be placed (or already is placed).
  1086   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
  1087                                      PhaseTransform* phase);
  1089   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
  1091   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
  1093   bool detect_init_independence(Node* n, int& count);
  1095   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
  1096                                PhaseGVN* phase);
  1098   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
  1099 };
  1101 //------------------------------MergeMem---------------------------------------
  1102 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
  1103 class MergeMemNode: public Node {
  1104   virtual uint hash() const ;                  // { return NO_HASH; }
  1105   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
  1106   friend class MergeMemStream;
  1107   MergeMemNode(Node* def);  // clients use MergeMemNode::make
  1109 public:
  1110   // If the input is a whole memory state, clone it with all its slices intact.
  1111   // Otherwise, make a new memory state with just that base memory input.
  1112   // In either case, the result is a newly created MergeMem.
  1113   static MergeMemNode* make(Compile* C, Node* base_memory);
  1115   virtual int Opcode() const;
  1116   virtual Node *Identity( PhaseTransform *phase );
  1117   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1118   virtual uint ideal_reg() const { return NotAMachineReg; }
  1119   virtual uint match_edge(uint idx) const { return 0; }
  1120   virtual const RegMask &out_RegMask() const;
  1121   virtual const Type *bottom_type() const { return Type::MEMORY; }
  1122   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  1123   // sparse accessors
  1124   // Fetch the previously stored "set_memory_at", or else the base memory.
  1125   // (Caller should clone it if it is a phi-nest.)
  1126   Node* memory_at(uint alias_idx) const;
  1127   // set the memory, regardless of its previous value
  1128   void set_memory_at(uint alias_idx, Node* n);
  1129   // the "base" is the memory that provides the non-finite support
  1130   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
  1131   // warning: setting the base can implicitly set any of the other slices too
  1132   void set_base_memory(Node* def);
  1133   // sentinel value which denotes a copy of the base memory:
  1134   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
  1135   static Node* make_empty_memory(); // where the sentinel comes from
  1136   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
  1137   // hook for the iterator, to perform any necessary setup
  1138   void iteration_setup(const MergeMemNode* other = NULL);
  1139   // push sentinels until I am at least as long as the other (semantic no-op)
  1140   void grow_to_match(const MergeMemNode* other);
  1141   bool verify_sparse() const PRODUCT_RETURN0;
  1142 #ifndef PRODUCT
  1143   virtual void dump_spec(outputStream *st) const;
  1144 #endif
  1145 };
  1147 class MergeMemStream : public StackObj {
  1148  private:
  1149   MergeMemNode*       _mm;
  1150   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
  1151   Node*               _mm_base;  // loop-invariant base memory of _mm
  1152   int                 _idx;
  1153   int                 _cnt;
  1154   Node*               _mem;
  1155   Node*               _mem2;
  1156   int                 _cnt2;
  1158   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
  1159     // subsume_node will break sparseness at times, whenever a memory slice
  1160     // folds down to a copy of the base ("fat") memory.  In such a case,
  1161     // the raw edge will update to base, although it should be top.
  1162     // This iterator will recognize either top or base_memory as an
  1163     // "empty" slice.  See is_empty, is_empty2, and next below.
  1164     //
  1165     // The sparseness property is repaired in MergeMemNode::Ideal.
  1166     // As long as access to a MergeMem goes through this iterator
  1167     // or the memory_at accessor, flaws in the sparseness will
  1168     // never be observed.
  1169     //
  1170     // Also, iteration_setup repairs sparseness.
  1171     assert(mm->verify_sparse(), "please, no dups of base");
  1172     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
  1174     _mm  = mm;
  1175     _mm_base = mm->base_memory();
  1176     _mm2 = mm2;
  1177     _cnt = mm->req();
  1178     _idx = Compile::AliasIdxBot-1; // start at the base memory
  1179     _mem = NULL;
  1180     _mem2 = NULL;
  1183 #ifdef ASSERT
  1184   Node* check_memory() const {
  1185     if (at_base_memory())
  1186       return _mm->base_memory();
  1187     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
  1188       return _mm->memory_at(_idx);
  1189     else
  1190       return _mm_base;
  1192   Node* check_memory2() const {
  1193     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
  1195 #endif
  1197   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
  1198   void assert_synch() const {
  1199     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
  1200            "no side-effects except through the stream");
  1203  public:
  1205   // expected usages:
  1206   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
  1207   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
  1209   // iterate over one merge
  1210   MergeMemStream(MergeMemNode* mm) {
  1211     mm->iteration_setup();
  1212     init(mm);
  1213     debug_only(_cnt2 = 999);
  1215   // iterate in parallel over two merges
  1216   // only iterates through non-empty elements of mm2
  1217   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
  1218     assert(mm2, "second argument must be a MergeMem also");
  1219     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
  1220     mm->iteration_setup(mm2);
  1221     init(mm, mm2);
  1222     _cnt2 = mm2->req();
  1224 #ifdef ASSERT
  1225   ~MergeMemStream() {
  1226     assert_synch();
  1228 #endif
  1230   MergeMemNode* all_memory() const {
  1231     return _mm;
  1233   Node* base_memory() const {
  1234     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
  1235     return _mm_base;
  1237   const MergeMemNode* all_memory2() const {
  1238     assert(_mm2 != NULL, "");
  1239     return _mm2;
  1241   bool at_base_memory() const {
  1242     return _idx == Compile::AliasIdxBot;
  1244   int alias_idx() const {
  1245     assert(_mem, "must call next 1st");
  1246     return _idx;
  1249   const TypePtr* adr_type() const {
  1250     return Compile::current()->get_adr_type(alias_idx());
  1253   const TypePtr* adr_type(Compile* C) const {
  1254     return C->get_adr_type(alias_idx());
  1256   bool is_empty() const {
  1257     assert(_mem, "must call next 1st");
  1258     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
  1259     return _mem->is_top();
  1261   bool is_empty2() const {
  1262     assert(_mem2, "must call next 1st");
  1263     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
  1264     return _mem2->is_top();
  1266   Node* memory() const {
  1267     assert(!is_empty(), "must not be empty");
  1268     assert_synch();
  1269     return _mem;
  1271   // get the current memory, regardless of empty or non-empty status
  1272   Node* force_memory() const {
  1273     assert(!is_empty() || !at_base_memory(), "");
  1274     // Use _mm_base to defend against updates to _mem->base_memory().
  1275     Node *mem = _mem->is_top() ? _mm_base : _mem;
  1276     assert(mem == check_memory(), "");
  1277     return mem;
  1279   Node* memory2() const {
  1280     assert(_mem2 == check_memory2(), "");
  1281     return _mem2;
  1283   void set_memory(Node* mem) {
  1284     if (at_base_memory()) {
  1285       // Note that this does not change the invariant _mm_base.
  1286       _mm->set_base_memory(mem);
  1287     } else {
  1288       _mm->set_memory_at(_idx, mem);
  1290     _mem = mem;
  1291     assert_synch();
  1294   // Recover from a side effect to the MergeMemNode.
  1295   void set_memory() {
  1296     _mem = _mm->in(_idx);
  1299   bool next()  { return next(false); }
  1300   bool next2() { return next(true); }
  1302   bool next_non_empty()  { return next_non_empty(false); }
  1303   bool next_non_empty2() { return next_non_empty(true); }
  1304   // next_non_empty2 can yield states where is_empty() is true
  1306  private:
  1307   // find the next item, which might be empty
  1308   bool next(bool have_mm2) {
  1309     assert((_mm2 != NULL) == have_mm2, "use other next");
  1310     assert_synch();
  1311     if (++_idx < _cnt) {
  1312       // Note:  This iterator allows _mm to be non-sparse.
  1313       // It behaves the same whether _mem is top or base_memory.
  1314       _mem = _mm->in(_idx);
  1315       if (have_mm2)
  1316         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
  1317       return true;
  1319     return false;
  1322   // find the next non-empty item
  1323   bool next_non_empty(bool have_mm2) {
  1324     while (next(have_mm2)) {
  1325       if (!is_empty()) {
  1326         // make sure _mem2 is filled in sensibly
  1327         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
  1328         return true;
  1329       } else if (have_mm2 && !is_empty2()) {
  1330         return true;   // is_empty() == true
  1333     return false;
  1335 };
  1337 //------------------------------Prefetch---------------------------------------
  1339 // Non-faulting prefetch load.  Prefetch for many reads.
  1340 class PrefetchReadNode : public Node {
  1341 public:
  1342   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1343   virtual int Opcode() const;
  1344   virtual uint ideal_reg() const { return NotAMachineReg; }
  1345   virtual uint match_edge(uint idx) const { return idx==2; }
  1346   virtual const Type *bottom_type() const { return Type::ABIO; }
  1347 };
  1349 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
  1350 class PrefetchWriteNode : public Node {
  1351 public:
  1352   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1353   virtual int Opcode() const;
  1354   virtual uint ideal_reg() const { return NotAMachineReg; }
  1355   virtual uint match_edge(uint idx) const { return idx==2; }
  1356   virtual const Type *bottom_type() const { return Type::ABIO; }
  1357 };
  1359 // Allocation prefetch which may fault, TLAB size have to be adjusted.
  1360 class PrefetchAllocationNode : public Node {
  1361 public:
  1362   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
  1363   virtual int Opcode() const;
  1364   virtual uint ideal_reg() const { return NotAMachineReg; }
  1365   virtual uint match_edge(uint idx) const { return idx==2; }
  1366   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
  1367 };
  1369 #endif // SHARE_VM_OPTO_MEMNODE_HPP

mercurial