src/share/vm/opto/gcm.cpp

Mon, 27 Jan 2014 10:20:51 -0800

author
kvn
date
Mon, 27 Jan 2014 10:20:51 -0800
changeset 6293
2185d483f5f8
parent 6198
55fb97c4c58d
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8032566: Crash in JIT when running Scala compiler (and compiling Scala std lib)
Summary: Switch off EliminateAutoBox flag by default in jdk8 release.
Reviewed-by: iveresov

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/block.hpp"
    29 #include "opto/c2compiler.hpp"
    30 #include "opto/callnode.hpp"
    31 #include "opto/cfgnode.hpp"
    32 #include "opto/machnode.hpp"
    33 #include "opto/opcodes.hpp"
    34 #include "opto/phaseX.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "opto/runtime.hpp"
    37 #include "runtime/deoptimization.hpp"
    38 #ifdef TARGET_ARCH_MODEL_x86_32
    39 # include "adfiles/ad_x86_32.hpp"
    40 #endif
    41 #ifdef TARGET_ARCH_MODEL_x86_64
    42 # include "adfiles/ad_x86_64.hpp"
    43 #endif
    44 #ifdef TARGET_ARCH_MODEL_sparc
    45 # include "adfiles/ad_sparc.hpp"
    46 #endif
    47 #ifdef TARGET_ARCH_MODEL_zero
    48 # include "adfiles/ad_zero.hpp"
    49 #endif
    50 #ifdef TARGET_ARCH_MODEL_arm
    51 # include "adfiles/ad_arm.hpp"
    52 #endif
    53 #ifdef TARGET_ARCH_MODEL_ppc
    54 # include "adfiles/ad_ppc.hpp"
    55 #endif
    57 // Portions of code courtesy of Clifford Click
    59 // Optimization - Graph Style
    61 // To avoid float value underflow
    62 #define MIN_BLOCK_FREQUENCY 1.e-35f
    64 //----------------------------schedule_node_into_block-------------------------
    65 // Insert node n into block b. Look for projections of n and make sure they
    66 // are in b also.
    67 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
    68   // Set basic block of n, Add n to b,
    69   map_node_to_block(n, b);
    70   b->add_inst(n);
    72   // After Matching, nearly any old Node may have projections trailing it.
    73   // These are usually machine-dependent flags.  In any case, they might
    74   // float to another block below this one.  Move them up.
    75   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
    76     Node*  use  = n->fast_out(i);
    77     if (use->is_Proj()) {
    78       Block* buse = get_block_for_node(use);
    79       if (buse != b) {              // In wrong block?
    80         if (buse != NULL) {
    81           buse->find_remove(use);   // Remove from wrong block
    82         }
    83         map_node_to_block(use, b);
    84         b->add_inst(use);
    85       }
    86     }
    87   }
    88 }
    90 //----------------------------replace_block_proj_ctrl-------------------------
    91 // Nodes that have is_block_proj() nodes as their control need to use
    92 // the appropriate Region for their actual block as their control since
    93 // the projection will be in a predecessor block.
    94 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
    95   const Node *in0 = n->in(0);
    96   assert(in0 != NULL, "Only control-dependent");
    97   const Node *p = in0->is_block_proj();
    98   if (p != NULL && p != n) {    // Control from a block projection?
    99     assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
   100     // Find trailing Region
   101     Block *pb = get_block_for_node(in0); // Block-projection already has basic block
   102     uint j = 0;
   103     if (pb->_num_succs != 1) {  // More then 1 successor?
   104       // Search for successor
   105       uint max = pb->number_of_nodes();
   106       assert( max > 1, "" );
   107       uint start = max - pb->_num_succs;
   108       // Find which output path belongs to projection
   109       for (j = start; j < max; j++) {
   110         if( pb->get_node(j) == in0 )
   111           break;
   112       }
   113       assert( j < max, "must find" );
   114       // Change control to match head of successor basic block
   115       j -= start;
   116     }
   117     n->set_req(0, pb->_succs[j]->head());
   118   }
   119 }
   122 //------------------------------schedule_pinned_nodes--------------------------
   123 // Set the basic block for Nodes pinned into blocks
   124 void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
   125   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
   126   GrowableArray <Node *> spstack(C->unique() + 8);
   127   spstack.push(_root);
   128   while (spstack.is_nonempty()) {
   129     Node* node = spstack.pop();
   130     if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
   131       if (node->pinned() && !has_block(node)) {  // Pinned?  Nail it down!
   132         assert(node->in(0), "pinned Node must have Control");
   133         // Before setting block replace block_proj control edge
   134         replace_block_proj_ctrl(node);
   135         Node* input = node->in(0);
   136         while (!input->is_block_start()) {
   137           input = input->in(0);
   138         }
   139         Block* block = get_block_for_node(input); // Basic block of controlling input
   140         schedule_node_into_block(node, block);
   141       }
   143       // process all inputs that are non NULL
   144       for (int i = node->req() - 1; i >= 0; --i) {
   145         if (node->in(i) != NULL) {
   146           spstack.push(node->in(i));
   147         }
   148       }
   149     }
   150   }
   151 }
   153 #ifdef ASSERT
   154 // Assert that new input b2 is dominated by all previous inputs.
   155 // Check this by by seeing that it is dominated by b1, the deepest
   156 // input observed until b2.
   157 static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
   158   if (b1 == NULL)  return;
   159   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
   160   Block* tmp = b2;
   161   while (tmp != b1 && tmp != NULL) {
   162     tmp = tmp->_idom;
   163   }
   164   if (tmp != b1) {
   165     // Detected an unschedulable graph.  Print some nice stuff and die.
   166     tty->print_cr("!!! Unschedulable graph !!!");
   167     for (uint j=0; j<n->len(); j++) { // For all inputs
   168       Node* inn = n->in(j); // Get input
   169       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
   170       Block* inb = cfg->get_block_for_node(inn);
   171       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
   172                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
   173       inn->dump();
   174     }
   175     tty->print("Failing node: ");
   176     n->dump();
   177     assert(false, "unscheduable graph");
   178   }
   179 }
   180 #endif
   182 static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
   183   // Find the last input dominated by all other inputs.
   184   Block* deepb           = NULL;        // Deepest block so far
   185   int    deepb_dom_depth = 0;
   186   for (uint k = 0; k < n->len(); k++) { // For all inputs
   187     Node* inn = n->in(k);               // Get input
   188     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
   189     Block* inb = cfg->get_block_for_node(inn);
   190     assert(inb != NULL, "must already have scheduled this input");
   191     if (deepb_dom_depth < (int) inb->_dom_depth) {
   192       // The new inb must be dominated by the previous deepb.
   193       // The various inputs must be linearly ordered in the dom
   194       // tree, or else there will not be a unique deepest block.
   195       DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
   196       deepb = inb;                      // Save deepest block
   197       deepb_dom_depth = deepb->_dom_depth;
   198     }
   199   }
   200   assert(deepb != NULL, "must be at least one input to n");
   201   return deepb;
   202 }
   205 //------------------------------schedule_early---------------------------------
   206 // Find the earliest Block any instruction can be placed in.  Some instructions
   207 // are pinned into Blocks.  Unpinned instructions can appear in last block in
   208 // which all their inputs occur.
   209 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
   210   // Allocate stack with enough space to avoid frequent realloc
   211   Node_Stack nstack(roots.Size() + 8);
   212   // _root will be processed among C->top() inputs
   213   roots.push(C->top());
   214   visited.set(C->top()->_idx);
   216   while (roots.size() != 0) {
   217     // Use local variables nstack_top_n & nstack_top_i to cache values
   218     // on stack's top.
   219     Node* parent_node = roots.pop();
   220     uint  input_index = 0;
   222     while (true) {
   223       if (input_index == 0) {
   224         // Fixup some control.  Constants without control get attached
   225         // to root and nodes that use is_block_proj() nodes should be attached
   226         // to the region that starts their block.
   227         const Node* control_input = parent_node->in(0);
   228         if (control_input != NULL) {
   229           replace_block_proj_ctrl(parent_node);
   230         } else {
   231           // Is a constant with NO inputs?
   232           if (parent_node->req() == 1) {
   233             parent_node->set_req(0, _root);
   234           }
   235         }
   236       }
   238       // First, visit all inputs and force them to get a block.  If an
   239       // input is already in a block we quit following inputs (to avoid
   240       // cycles). Instead we put that Node on a worklist to be handled
   241       // later (since IT'S inputs may not have a block yet).
   243       // Assume all n's inputs will be processed
   244       bool done = true;
   246       while (input_index < parent_node->len()) {
   247         Node* in = parent_node->in(input_index++);
   248         if (in == NULL) {
   249           continue;
   250         }
   252         int is_visited = visited.test_set(in->_idx);
   253         if (!has_block(in)) {
   254           if (is_visited) {
   255             return false;
   256           }
   257           // Save parent node and next input's index.
   258           nstack.push(parent_node, input_index);
   259           // Process current input now.
   260           parent_node = in;
   261           input_index = 0;
   262           // Not all n's inputs processed.
   263           done = false;
   264           break;
   265         } else if (!is_visited) {
   266           // Visit this guy later, using worklist
   267           roots.push(in);
   268         }
   269       }
   271       if (done) {
   272         // All of n's inputs have been processed, complete post-processing.
   274         // Some instructions are pinned into a block.  These include Region,
   275         // Phi, Start, Return, and other control-dependent instructions and
   276         // any projections which depend on them.
   277         if (!parent_node->pinned()) {
   278           // Set earliest legal block.
   279           Block* earliest_block = find_deepest_input(parent_node, this);
   280           map_node_to_block(parent_node, earliest_block);
   281         } else {
   282           assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
   283         }
   285         if (nstack.is_empty()) {
   286           // Finished all nodes on stack.
   287           // Process next node on the worklist 'roots'.
   288           break;
   289         }
   290         // Get saved parent node and next input's index.
   291         parent_node = nstack.node();
   292         input_index = nstack.index();
   293         nstack.pop();
   294       }
   295     }
   296   }
   297   return true;
   298 }
   300 //------------------------------dom_lca----------------------------------------
   301 // Find least common ancestor in dominator tree
   302 // LCA is a current notion of LCA, to be raised above 'this'.
   303 // As a convenient boundary condition, return 'this' if LCA is NULL.
   304 // Find the LCA of those two nodes.
   305 Block* Block::dom_lca(Block* LCA) {
   306   if (LCA == NULL || LCA == this)  return this;
   308   Block* anc = this;
   309   while (anc->_dom_depth > LCA->_dom_depth)
   310     anc = anc->_idom;           // Walk up till anc is as high as LCA
   312   while (LCA->_dom_depth > anc->_dom_depth)
   313     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
   315   while (LCA != anc) {          // Walk both up till they are the same
   316     LCA = LCA->_idom;
   317     anc = anc->_idom;
   318   }
   320   return LCA;
   321 }
   323 //--------------------------raise_LCA_above_use--------------------------------
   324 // We are placing a definition, and have been given a def->use edge.
   325 // The definition must dominate the use, so move the LCA upward in the
   326 // dominator tree to dominate the use.  If the use is a phi, adjust
   327 // the LCA only with the phi input paths which actually use this def.
   328 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
   329   Block* buse = cfg->get_block_for_node(use);
   330   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
   331   if (!use->is_Phi())  return buse->dom_lca(LCA);
   332   uint pmax = use->req();       // Number of Phi inputs
   333   // Why does not this loop just break after finding the matching input to
   334   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
   335   // chains.  Means I cannot distinguish, from the def-use direction, which
   336   // of many use-defs lead from the same use to the same def.  That is, this
   337   // Phi might have several uses of the same def.  Each use appears in a
   338   // different predecessor block.  But when I enter here, I cannot distinguish
   339   // which use-def edge I should find the predecessor block for.  So I find
   340   // them all.  Means I do a little extra work if a Phi uses the same value
   341   // more than once.
   342   for (uint j=1; j<pmax; j++) { // For all inputs
   343     if (use->in(j) == def) {    // Found matching input?
   344       Block* pred = cfg->get_block_for_node(buse->pred(j));
   345       LCA = pred->dom_lca(LCA);
   346     }
   347   }
   348   return LCA;
   349 }
   351 //----------------------------raise_LCA_above_marks----------------------------
   352 // Return a new LCA that dominates LCA and any of its marked predecessors.
   353 // Search all my parents up to 'early' (exclusive), looking for predecessors
   354 // which are marked with the given index.  Return the LCA (in the dom tree)
   355 // of all marked blocks.  If there are none marked, return the original
   356 // LCA.
   357 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
   358   Block_List worklist;
   359   worklist.push(LCA);
   360   while (worklist.size() > 0) {
   361     Block* mid = worklist.pop();
   362     if (mid == early)  continue;  // stop searching here
   364     // Test and set the visited bit.
   365     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
   367     // Don't process the current LCA, otherwise the search may terminate early
   368     if (mid != LCA && mid->raise_LCA_mark() == mark) {
   369       // Raise the LCA.
   370       LCA = mid->dom_lca(LCA);
   371       if (LCA == early)  break;   // stop searching everywhere
   372       assert(early->dominates(LCA), "early is high enough");
   373       // Resume searching at that point, skipping intermediate levels.
   374       worklist.push(LCA);
   375       if (LCA == mid)
   376         continue; // Don't mark as visited to avoid early termination.
   377     } else {
   378       // Keep searching through this block's predecessors.
   379       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
   380         Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
   381         worklist.push(mid_parent);
   382       }
   383     }
   384     mid->set_raise_LCA_visited(mark);
   385   }
   386   return LCA;
   387 }
   389 //--------------------------memory_early_block--------------------------------
   390 // This is a variation of find_deepest_input, the heart of schedule_early.
   391 // Find the "early" block for a load, if we considered only memory and
   392 // address inputs, that is, if other data inputs were ignored.
   393 //
   394 // Because a subset of edges are considered, the resulting block will
   395 // be earlier (at a shallower dom_depth) than the true schedule_early
   396 // point of the node. We compute this earlier block as a more permissive
   397 // site for anti-dependency insertion, but only if subsume_loads is enabled.
   398 static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
   399   Node* base;
   400   Node* index;
   401   Node* store = load->in(MemNode::Memory);
   402   load->as_Mach()->memory_inputs(base, index);
   404   assert(base != NodeSentinel && index != NodeSentinel,
   405          "unexpected base/index inputs");
   407   Node* mem_inputs[4];
   408   int mem_inputs_length = 0;
   409   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
   410   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
   411   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
   413   // In the comparision below, add one to account for the control input,
   414   // which may be null, but always takes up a spot in the in array.
   415   if (mem_inputs_length + 1 < (int) load->req()) {
   416     // This "load" has more inputs than just the memory, base and index inputs.
   417     // For purposes of checking anti-dependences, we need to start
   418     // from the early block of only the address portion of the instruction,
   419     // and ignore other blocks that may have factored into the wider
   420     // schedule_early calculation.
   421     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
   423     Block* deepb           = NULL;        // Deepest block so far
   424     int    deepb_dom_depth = 0;
   425     for (int i = 0; i < mem_inputs_length; i++) {
   426       Block* inb = cfg->get_block_for_node(mem_inputs[i]);
   427       if (deepb_dom_depth < (int) inb->_dom_depth) {
   428         // The new inb must be dominated by the previous deepb.
   429         // The various inputs must be linearly ordered in the dom
   430         // tree, or else there will not be a unique deepest block.
   431         DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
   432         deepb = inb;                      // Save deepest block
   433         deepb_dom_depth = deepb->_dom_depth;
   434       }
   435     }
   436     early = deepb;
   437   }
   439   return early;
   440 }
   442 //--------------------------insert_anti_dependences---------------------------
   443 // A load may need to witness memory that nearby stores can overwrite.
   444 // For each nearby store, either insert an "anti-dependence" edge
   445 // from the load to the store, or else move LCA upward to force the
   446 // load to (eventually) be scheduled in a block above the store.
   447 //
   448 // Do not add edges to stores on distinct control-flow paths;
   449 // only add edges to stores which might interfere.
   450 //
   451 // Return the (updated) LCA.  There will not be any possibly interfering
   452 // store between the load's "early block" and the updated LCA.
   453 // Any stores in the updated LCA will have new precedence edges
   454 // back to the load.  The caller is expected to schedule the load
   455 // in the LCA, in which case the precedence edges will make LCM
   456 // preserve anti-dependences.  The caller may also hoist the load
   457 // above the LCA, if it is not the early block.
   458 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
   459   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
   460   assert(LCA != NULL, "");
   461   DEBUG_ONLY(Block* LCA_orig = LCA);
   463   // Compute the alias index.  Loads and stores with different alias indices
   464   // do not need anti-dependence edges.
   465   uint load_alias_idx = C->get_alias_index(load->adr_type());
   466 #ifdef ASSERT
   467   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
   468       (PrintOpto || VerifyAliases ||
   469        PrintMiscellaneous && (WizardMode || Verbose))) {
   470     // Load nodes should not consume all of memory.
   471     // Reporting a bottom type indicates a bug in adlc.
   472     // If some particular type of node validly consumes all of memory,
   473     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
   474     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
   475     load->dump(2);
   476     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
   477   }
   478 #endif
   479   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
   480          "String compare is only known 'load' that does not conflict with any stores");
   481   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
   482          "String equals is a 'load' that does not conflict with any stores");
   483   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
   484          "String indexOf is a 'load' that does not conflict with any stores");
   485   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
   486          "Arrays equals is a 'load' that do not conflict with any stores");
   488   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
   489     // It is impossible to spoil this load by putting stores before it,
   490     // because we know that the stores will never update the value
   491     // which 'load' must witness.
   492     return LCA;
   493   }
   495   node_idx_t load_index = load->_idx;
   497   // Note the earliest legal placement of 'load', as determined by
   498   // by the unique point in the dom tree where all memory effects
   499   // and other inputs are first available.  (Computed by schedule_early.)
   500   // For normal loads, 'early' is the shallowest place (dom graph wise)
   501   // to look for anti-deps between this load and any store.
   502   Block* early = get_block_for_node(load);
   504   // If we are subsuming loads, compute an "early" block that only considers
   505   // memory or address inputs. This block may be different than the
   506   // schedule_early block in that it could be at an even shallower depth in the
   507   // dominator tree, and allow for a broader discovery of anti-dependences.
   508   if (C->subsume_loads()) {
   509     early = memory_early_block(load, early, this);
   510   }
   512   ResourceArea *area = Thread::current()->resource_area();
   513   Node_List worklist_mem(area);     // prior memory state to store
   514   Node_List worklist_store(area);   // possible-def to explore
   515   Node_List worklist_visited(area); // visited mergemem nodes
   516   Node_List non_early_stores(area); // all relevant stores outside of early
   517   bool must_raise_LCA = false;
   519 #ifdef TRACK_PHI_INPUTS
   520   // %%% This extra checking fails because MergeMem nodes are not GVNed.
   521   // Provide "phi_inputs" to check if every input to a PhiNode is from the
   522   // original memory state.  This indicates a PhiNode for which should not
   523   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
   524   // may be overly conservative.
   525   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
   526   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
   527 #endif
   529   // 'load' uses some memory state; look for users of the same state.
   530   // Recurse through MergeMem nodes to the stores that use them.
   532   // Each of these stores is a possible definition of memory
   533   // that 'load' needs to use.  We need to force 'load'
   534   // to occur before each such store.  When the store is in
   535   // the same block as 'load', we insert an anti-dependence
   536   // edge load->store.
   538   // The relevant stores "nearby" the load consist of a tree rooted
   539   // at initial_mem, with internal nodes of type MergeMem.
   540   // Therefore, the branches visited by the worklist are of this form:
   541   //    initial_mem -> (MergeMem ->)* store
   542   // The anti-dependence constraints apply only to the fringe of this tree.
   544   Node* initial_mem = load->in(MemNode::Memory);
   545   worklist_store.push(initial_mem);
   546   worklist_visited.push(initial_mem);
   547   worklist_mem.push(NULL);
   548   while (worklist_store.size() > 0) {
   549     // Examine a nearby store to see if it might interfere with our load.
   550     Node* mem   = worklist_mem.pop();
   551     Node* store = worklist_store.pop();
   552     uint op = store->Opcode();
   554     // MergeMems do not directly have anti-deps.
   555     // Treat them as internal nodes in a forward tree of memory states,
   556     // the leaves of which are each a 'possible-def'.
   557     if (store == initial_mem    // root (exclusive) of tree we are searching
   558         || op == Op_MergeMem    // internal node of tree we are searching
   559         ) {
   560       mem = store;   // It's not a possibly interfering store.
   561       if (store == initial_mem)
   562         initial_mem = NULL;  // only process initial memory once
   564       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
   565         store = mem->fast_out(i);
   566         if (store->is_MergeMem()) {
   567           // Be sure we don't get into combinatorial problems.
   568           // (Allow phis to be repeated; they can merge two relevant states.)
   569           uint j = worklist_visited.size();
   570           for (; j > 0; j--) {
   571             if (worklist_visited.at(j-1) == store)  break;
   572           }
   573           if (j > 0)  continue; // already on work list; do not repeat
   574           worklist_visited.push(store);
   575         }
   576         worklist_mem.push(mem);
   577         worklist_store.push(store);
   578       }
   579       continue;
   580     }
   582     if (op == Op_MachProj || op == Op_Catch)   continue;
   583     if (store->needs_anti_dependence_check())  continue;  // not really a store
   585     // Compute the alias index.  Loads and stores with different alias
   586     // indices do not need anti-dependence edges.  Wide MemBar's are
   587     // anti-dependent on everything (except immutable memories).
   588     const TypePtr* adr_type = store->adr_type();
   589     if (!C->can_alias(adr_type, load_alias_idx))  continue;
   591     // Most slow-path runtime calls do NOT modify Java memory, but
   592     // they can block and so write Raw memory.
   593     if (store->is_Mach()) {
   594       MachNode* mstore = store->as_Mach();
   595       if (load_alias_idx != Compile::AliasIdxRaw) {
   596         // Check for call into the runtime using the Java calling
   597         // convention (and from there into a wrapper); it has no
   598         // _method.  Can't do this optimization for Native calls because
   599         // they CAN write to Java memory.
   600         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
   601           assert(mstore->is_MachSafePoint(), "");
   602           MachSafePointNode* ms = (MachSafePointNode*) mstore;
   603           assert(ms->is_MachCallJava(), "");
   604           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
   605           if (mcj->_method == NULL) {
   606             // These runtime calls do not write to Java visible memory
   607             // (other than Raw) and so do not require anti-dependence edges.
   608             continue;
   609           }
   610         }
   611         // Same for SafePoints: they read/write Raw but only read otherwise.
   612         // This is basically a workaround for SafePoints only defining control
   613         // instead of control + memory.
   614         if (mstore->ideal_Opcode() == Op_SafePoint)
   615           continue;
   616       } else {
   617         // Some raw memory, such as the load of "top" at an allocation,
   618         // can be control dependent on the previous safepoint. See
   619         // comments in GraphKit::allocate_heap() about control input.
   620         // Inserting an anti-dep between such a safepoint and a use
   621         // creates a cycle, and will cause a subsequent failure in
   622         // local scheduling.  (BugId 4919904)
   623         // (%%% How can a control input be a safepoint and not a projection??)
   624         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
   625           continue;
   626       }
   627     }
   629     // Identify a block that the current load must be above,
   630     // or else observe that 'store' is all the way up in the
   631     // earliest legal block for 'load'.  In the latter case,
   632     // immediately insert an anti-dependence edge.
   633     Block* store_block = get_block_for_node(store);
   634     assert(store_block != NULL, "unused killing projections skipped above");
   636     if (store->is_Phi()) {
   637       // 'load' uses memory which is one (or more) of the Phi's inputs.
   638       // It must be scheduled not before the Phi, but rather before
   639       // each of the relevant Phi inputs.
   640       //
   641       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
   642       // we mark each corresponding predecessor block and do a combined
   643       // hoisting operation later (raise_LCA_above_marks).
   644       //
   645       // Do not assert(store_block != early, "Phi merging memory after access")
   646       // PhiNode may be at start of block 'early' with backedge to 'early'
   647       DEBUG_ONLY(bool found_match = false);
   648       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
   649         if (store->in(j) == mem) {   // Found matching input?
   650           DEBUG_ONLY(found_match = true);
   651           Block* pred_block = get_block_for_node(store_block->pred(j));
   652           if (pred_block != early) {
   653             // If any predecessor of the Phi matches the load's "early block",
   654             // we do not need a precedence edge between the Phi and 'load'
   655             // since the load will be forced into a block preceding the Phi.
   656             pred_block->set_raise_LCA_mark(load_index);
   657             assert(!LCA_orig->dominates(pred_block) ||
   658                    early->dominates(pred_block), "early is high enough");
   659             must_raise_LCA = true;
   660           } else {
   661             // anti-dependent upon PHI pinned below 'early', no edge needed
   662             LCA = early;             // but can not schedule below 'early'
   663           }
   664         }
   665       }
   666       assert(found_match, "no worklist bug");
   667 #ifdef TRACK_PHI_INPUTS
   668 #ifdef ASSERT
   669       // This assert asks about correct handling of PhiNodes, which may not
   670       // have all input edges directly from 'mem'. See BugId 4621264
   671       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
   672       // Increment by exactly one even if there are multiple copies of 'mem'
   673       // coming into the phi, because we will run this block several times
   674       // if there are several copies of 'mem'.  (That's how DU iterators work.)
   675       phi_inputs.at_put(store->_idx, num_mem_inputs);
   676       assert(PhiNode::Input + num_mem_inputs < store->req(),
   677              "Expect at least one phi input will not be from original memory state");
   678 #endif //ASSERT
   679 #endif //TRACK_PHI_INPUTS
   680     } else if (store_block != early) {
   681       // 'store' is between the current LCA and earliest possible block.
   682       // Label its block, and decide later on how to raise the LCA
   683       // to include the effect on LCA of this store.
   684       // If this store's block gets chosen as the raised LCA, we
   685       // will find him on the non_early_stores list and stick him
   686       // with a precedence edge.
   687       // (But, don't bother if LCA is already raised all the way.)
   688       if (LCA != early) {
   689         store_block->set_raise_LCA_mark(load_index);
   690         must_raise_LCA = true;
   691         non_early_stores.push(store);
   692       }
   693     } else {
   694       // Found a possibly-interfering store in the load's 'early' block.
   695       // This means 'load' cannot sink at all in the dominator tree.
   696       // Add an anti-dep edge, and squeeze 'load' into the highest block.
   697       assert(store != load->in(0), "dependence cycle found");
   698       if (verify) {
   699         assert(store->find_edge(load) != -1, "missing precedence edge");
   700       } else {
   701         store->add_prec(load);
   702       }
   703       LCA = early;
   704       // This turns off the process of gathering non_early_stores.
   705     }
   706   }
   707   // (Worklist is now empty; all nearby stores have been visited.)
   709   // Finished if 'load' must be scheduled in its 'early' block.
   710   // If we found any stores there, they have already been given
   711   // precedence edges.
   712   if (LCA == early)  return LCA;
   714   // We get here only if there are no possibly-interfering stores
   715   // in the load's 'early' block.  Move LCA up above all predecessors
   716   // which contain stores we have noted.
   717   //
   718   // The raised LCA block can be a home to such interfering stores,
   719   // but its predecessors must not contain any such stores.
   720   //
   721   // The raised LCA will be a lower bound for placing the load,
   722   // preventing the load from sinking past any block containing
   723   // a store that may invalidate the memory state required by 'load'.
   724   if (must_raise_LCA)
   725     LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
   726   if (LCA == early)  return LCA;
   728   // Insert anti-dependence edges from 'load' to each store
   729   // in the non-early LCA block.
   730   // Mine the non_early_stores list for such stores.
   731   if (LCA->raise_LCA_mark() == load_index) {
   732     while (non_early_stores.size() > 0) {
   733       Node* store = non_early_stores.pop();
   734       Block* store_block = get_block_for_node(store);
   735       if (store_block == LCA) {
   736         // add anti_dependence from store to load in its own block
   737         assert(store != load->in(0), "dependence cycle found");
   738         if (verify) {
   739           assert(store->find_edge(load) != -1, "missing precedence edge");
   740         } else {
   741           store->add_prec(load);
   742         }
   743       } else {
   744         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
   745         // Any other stores we found must be either inside the new LCA
   746         // or else outside the original LCA.  In the latter case, they
   747         // did not interfere with any use of 'load'.
   748         assert(LCA->dominates(store_block)
   749                || !LCA_orig->dominates(store_block), "no stray stores");
   750       }
   751     }
   752   }
   754   // Return the highest block containing stores; any stores
   755   // within that block have been given anti-dependence edges.
   756   return LCA;
   757 }
   759 // This class is used to iterate backwards over the nodes in the graph.
   761 class Node_Backward_Iterator {
   763 private:
   764   Node_Backward_Iterator();
   766 public:
   767   // Constructor for the iterator
   768   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg);
   770   // Postincrement operator to iterate over the nodes
   771   Node *next();
   773 private:
   774   VectorSet   &_visited;
   775   Node_List   &_stack;
   776   PhaseCFG &_cfg;
   777 };
   779 // Constructor for the Node_Backward_Iterator
   780 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg)
   781   : _visited(visited), _stack(stack), _cfg(cfg) {
   782   // The stack should contain exactly the root
   783   stack.clear();
   784   stack.push(root);
   786   // Clear the visited bits
   787   visited.Clear();
   788 }
   790 // Iterator for the Node_Backward_Iterator
   791 Node *Node_Backward_Iterator::next() {
   793   // If the _stack is empty, then just return NULL: finished.
   794   if ( !_stack.size() )
   795     return NULL;
   797   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
   798   // made stateless, so I do not need to record the index 'i' on my _stack.
   799   // Instead I visit all users each time, scanning for unvisited users.
   800   // I visit unvisited not-anti-dependence users first, then anti-dependent
   801   // children next.
   802   Node *self = _stack.pop();
   804   // I cycle here when I am entering a deeper level of recursion.
   805   // The key variable 'self' was set prior to jumping here.
   806   while( 1 ) {
   808     _visited.set(self->_idx);
   810     // Now schedule all uses as late as possible.
   811     const Node* src = self->is_Proj() ? self->in(0) : self;
   812     uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
   814     // Schedule all nodes in a post-order visit
   815     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
   817     // Scan for unvisited nodes
   818     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
   819       // For all uses, schedule late
   820       Node* n = self->fast_out(i); // Use
   822       // Skip already visited children
   823       if ( _visited.test(n->_idx) )
   824         continue;
   826       // do not traverse backward control edges
   827       Node *use = n->is_Proj() ? n->in(0) : n;
   828       uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
   830       if ( use_rpo < src_rpo )
   831         continue;
   833       // Phi nodes always precede uses in a basic block
   834       if ( use_rpo == src_rpo && use->is_Phi() )
   835         continue;
   837       unvisited = n;      // Found unvisited
   839       // Check for possible-anti-dependent
   840       if( !n->needs_anti_dependence_check() )
   841         break;            // Not visited, not anti-dep; schedule it NOW
   842     }
   844     // Did I find an unvisited not-anti-dependent Node?
   845     if ( !unvisited )
   846       break;                  // All done with children; post-visit 'self'
   848     // Visit the unvisited Node.  Contains the obvious push to
   849     // indicate I'm entering a deeper level of recursion.  I push the
   850     // old state onto the _stack and set a new state and loop (recurse).
   851     _stack.push(self);
   852     self = unvisited;
   853   } // End recursion loop
   855   return self;
   856 }
   858 //------------------------------ComputeLatenciesBackwards----------------------
   859 // Compute the latency of all the instructions.
   860 void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_List &stack) {
   861 #ifndef PRODUCT
   862   if (trace_opto_pipelining())
   863     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
   864 #endif
   866   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
   867   Node *n;
   869   // Walk over all the nodes from last to first
   870   while (n = iter.next()) {
   871     // Set the latency for the definitions of this instruction
   872     partial_latency_of_defs(n);
   873   }
   874 } // end ComputeLatenciesBackwards
   876 //------------------------------partial_latency_of_defs------------------------
   877 // Compute the latency impact of this node on all defs.  This computes
   878 // a number that increases as we approach the beginning of the routine.
   879 void PhaseCFG::partial_latency_of_defs(Node *n) {
   880   // Set the latency for this instruction
   881 #ifndef PRODUCT
   882   if (trace_opto_pipelining()) {
   883     tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
   884     dump();
   885   }
   886 #endif
   888   if (n->is_Proj()) {
   889     n = n->in(0);
   890   }
   892   if (n->is_Root()) {
   893     return;
   894   }
   896   uint nlen = n->len();
   897   uint use_latency = get_latency_for_node(n);
   898   uint use_pre_order = get_block_for_node(n)->_pre_order;
   900   for (uint j = 0; j < nlen; j++) {
   901     Node *def = n->in(j);
   903     if (!def || def == n) {
   904       continue;
   905     }
   907     // Walk backwards thru projections
   908     if (def->is_Proj()) {
   909       def = def->in(0);
   910     }
   912 #ifndef PRODUCT
   913     if (trace_opto_pipelining()) {
   914       tty->print("#    in(%2d): ", j);
   915       def->dump();
   916     }
   917 #endif
   919     // If the defining block is not known, assume it is ok
   920     Block *def_block = get_block_for_node(def);
   921     uint def_pre_order = def_block ? def_block->_pre_order : 0;
   923     if ((use_pre_order <  def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
   924       continue;
   925     }
   927     uint delta_latency = n->latency(j);
   928     uint current_latency = delta_latency + use_latency;
   930     if (get_latency_for_node(def) < current_latency) {
   931       set_latency_for_node(def, current_latency);
   932     }
   934 #ifndef PRODUCT
   935     if (trace_opto_pipelining()) {
   936       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
   937     }
   938 #endif
   939   }
   940 }
   942 //------------------------------latency_from_use-------------------------------
   943 // Compute the latency of a specific use
   944 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
   945   // If self-reference, return no latency
   946   if (use == n || use->is_Root()) {
   947     return 0;
   948   }
   950   uint def_pre_order = get_block_for_node(def)->_pre_order;
   951   uint latency = 0;
   953   // If the use is not a projection, then it is simple...
   954   if (!use->is_Proj()) {
   955 #ifndef PRODUCT
   956     if (trace_opto_pipelining()) {
   957       tty->print("#    out(): ");
   958       use->dump();
   959     }
   960 #endif
   962     uint use_pre_order = get_block_for_node(use)->_pre_order;
   964     if (use_pre_order < def_pre_order)
   965       return 0;
   967     if (use_pre_order == def_pre_order && use->is_Phi())
   968       return 0;
   970     uint nlen = use->len();
   971     uint nl = get_latency_for_node(use);
   973     for ( uint j=0; j<nlen; j++ ) {
   974       if (use->in(j) == n) {
   975         // Change this if we want local latencies
   976         uint ul = use->latency(j);
   977         uint  l = ul + nl;
   978         if (latency < l) latency = l;
   979 #ifndef PRODUCT
   980         if (trace_opto_pipelining()) {
   981           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
   982                         nl, j, ul, l, latency);
   983         }
   984 #endif
   985       }
   986     }
   987   } else {
   988     // This is a projection, just grab the latency of the use(s)
   989     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
   990       uint l = latency_from_use(use, def, use->fast_out(j));
   991       if (latency < l) latency = l;
   992     }
   993   }
   995   return latency;
   996 }
   998 //------------------------------latency_from_uses------------------------------
   999 // Compute the latency of this instruction relative to all of it's uses.
  1000 // This computes a number that increases as we approach the beginning of the
  1001 // routine.
  1002 void PhaseCFG::latency_from_uses(Node *n) {
  1003   // Set the latency for this instruction
  1004 #ifndef PRODUCT
  1005   if (trace_opto_pipelining()) {
  1006     tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
  1007     dump();
  1009 #endif
  1010   uint latency=0;
  1011   const Node *def = n->is_Proj() ? n->in(0): n;
  1013   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1014     uint l = latency_from_use(n, def, n->fast_out(i));
  1016     if (latency < l) latency = l;
  1019   set_latency_for_node(n, latency);
  1022 //------------------------------hoist_to_cheaper_block-------------------------
  1023 // Pick a block for node self, between early and LCA, that is a cheaper
  1024 // alternative to LCA.
  1025 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
  1026   const double delta = 1+PROB_UNLIKELY_MAG(4);
  1027   Block* least       = LCA;
  1028   double least_freq  = least->_freq;
  1029   uint target        = get_latency_for_node(self);
  1030   uint start_latency = get_latency_for_node(LCA->head());
  1031   uint end_latency   = get_latency_for_node(LCA->get_node(LCA->end_idx()));
  1032   bool in_latency    = (target <= start_latency);
  1033   const Block* root_block = get_block_for_node(_root);
  1035   // Turn off latency scheduling if scheduling is just plain off
  1036   if (!C->do_scheduling())
  1037     in_latency = true;
  1039   // Do not hoist (to cover latency) instructions which target a
  1040   // single register.  Hoisting stretches the live range of the
  1041   // single register and may force spilling.
  1042   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
  1043   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
  1044     in_latency = true;
  1046 #ifndef PRODUCT
  1047   if (trace_opto_pipelining()) {
  1048     tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
  1049     self->dump();
  1050     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
  1051       LCA->_pre_order,
  1052       LCA->head()->_idx,
  1053       start_latency,
  1054       LCA->get_node(LCA->end_idx())->_idx,
  1055       end_latency,
  1056       least_freq);
  1058 #endif
  1060   int cand_cnt = 0;  // number of candidates tried
  1062   // Walk up the dominator tree from LCA (Lowest common ancestor) to
  1063   // the earliest legal location.  Capture the least execution frequency.
  1064   while (LCA != early) {
  1065     LCA = LCA->_idom;         // Follow up the dominator tree
  1067     if (LCA == NULL) {
  1068       // Bailout without retry
  1069       C->record_method_not_compilable("late schedule failed: LCA == NULL");
  1070       return least;
  1073     // Don't hoist machine instructions to the root basic block
  1074     if (mach && LCA == root_block)
  1075       break;
  1077     uint start_lat = get_latency_for_node(LCA->head());
  1078     uint end_idx   = LCA->end_idx();
  1079     uint end_lat   = get_latency_for_node(LCA->get_node(end_idx));
  1080     double LCA_freq = LCA->_freq;
  1081 #ifndef PRODUCT
  1082     if (trace_opto_pipelining()) {
  1083       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
  1084         LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
  1086 #endif
  1087     cand_cnt++;
  1088     if (LCA_freq < least_freq              || // Better Frequency
  1089         (StressGCM && Compile::randomized_select(cand_cnt)) || // Should be randomly accepted in stress mode
  1090          (!StressGCM                    &&    // Otherwise, choose with latency
  1091           !in_latency                   &&    // No block containing latency
  1092           LCA_freq < least_freq * delta &&    // No worse frequency
  1093           target >= end_lat             &&    // within latency range
  1094           !self->is_iteratively_computed() )  // But don't hoist IV increments
  1095              // because they may end up above other uses of their phi forcing
  1096              // their result register to be different from their input.
  1097        ) {
  1098       least = LCA;            // Found cheaper block
  1099       least_freq = LCA_freq;
  1100       start_latency = start_lat;
  1101       end_latency = end_lat;
  1102       if (target <= start_lat)
  1103         in_latency = true;
  1107 #ifndef PRODUCT
  1108   if (trace_opto_pipelining()) {
  1109     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
  1110       least->_pre_order, start_latency, least_freq);
  1112 #endif
  1114   // See if the latency needs to be updated
  1115   if (target < end_latency) {
  1116 #ifndef PRODUCT
  1117     if (trace_opto_pipelining()) {
  1118       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
  1120 #endif
  1121     set_latency_for_node(self, end_latency);
  1122     partial_latency_of_defs(self);
  1125   return least;
  1129 //------------------------------schedule_late-----------------------------------
  1130 // Now schedule all codes as LATE as possible.  This is the LCA in the
  1131 // dominator tree of all USES of a value.  Pick the block with the least
  1132 // loop nesting depth that is lowest in the dominator tree.
  1133 extern const char must_clone[];
  1134 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
  1135 #ifndef PRODUCT
  1136   if (trace_opto_pipelining())
  1137     tty->print("\n#---- schedule_late ----\n");
  1138 #endif
  1140   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
  1141   Node *self;
  1143   // Walk over all the nodes from last to first
  1144   while (self = iter.next()) {
  1145     Block* early = get_block_for_node(self); // Earliest legal placement
  1147     if (self->is_top()) {
  1148       // Top node goes in bb #2 with other constants.
  1149       // It must be special-cased, because it has no out edges.
  1150       early->add_inst(self);
  1151       continue;
  1154     // No uses, just terminate
  1155     if (self->outcnt() == 0) {
  1156       assert(self->is_MachProj(), "sanity");
  1157       continue;                   // Must be a dead machine projection
  1160     // If node is pinned in the block, then no scheduling can be done.
  1161     if( self->pinned() )          // Pinned in block?
  1162       continue;
  1164     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
  1165     if (mach) {
  1166       switch (mach->ideal_Opcode()) {
  1167       case Op_CreateEx:
  1168         // Don't move exception creation
  1169         early->add_inst(self);
  1170         continue;
  1171         break;
  1172       case Op_CheckCastPP:
  1173         // Don't move CheckCastPP nodes away from their input, if the input
  1174         // is a rawptr (5071820).
  1175         Node *def = self->in(1);
  1176         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
  1177           early->add_inst(self);
  1178 #ifdef ASSERT
  1179           _raw_oops.push(def);
  1180 #endif
  1181           continue;
  1183         break;
  1187     // Gather LCA of all uses
  1188     Block *LCA = NULL;
  1190       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
  1191         // For all uses, find LCA
  1192         Node* use = self->fast_out(i);
  1193         LCA = raise_LCA_above_use(LCA, use, self, this);
  1195     }  // (Hide defs of imax, i from rest of block.)
  1197     // Place temps in the block of their use.  This isn't a
  1198     // requirement for correctness but it reduces useless
  1199     // interference between temps and other nodes.
  1200     if (mach != NULL && mach->is_MachTemp()) {
  1201       map_node_to_block(self, LCA);
  1202       LCA->add_inst(self);
  1203       continue;
  1206     // Check if 'self' could be anti-dependent on memory
  1207     if (self->needs_anti_dependence_check()) {
  1208       // Hoist LCA above possible-defs and insert anti-dependences to
  1209       // defs in new LCA block.
  1210       LCA = insert_anti_dependences(LCA, self);
  1213     if (early->_dom_depth > LCA->_dom_depth) {
  1214       // Somehow the LCA has moved above the earliest legal point.
  1215       // (One way this can happen is via memory_early_block.)
  1216       if (C->subsume_loads() == true && !C->failing()) {
  1217         // Retry with subsume_loads == false
  1218         // If this is the first failure, the sentinel string will "stick"
  1219         // to the Compile object, and the C2Compiler will see it and retry.
  1220         C->record_failure(C2Compiler::retry_no_subsuming_loads());
  1221       } else {
  1222         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
  1223         C->record_method_not_compilable("late schedule failed: incorrect graph");
  1225       return;
  1228     // If there is no opportunity to hoist, then we're done.
  1229     // In stress mode, try to hoist even the single operations.
  1230     bool try_to_hoist = StressGCM || (LCA != early);
  1232     // Must clone guys stay next to use; no hoisting allowed.
  1233     // Also cannot hoist guys that alter memory or are otherwise not
  1234     // allocatable (hoisting can make a value live longer, leading to
  1235     // anti and output dependency problems which are normally resolved
  1236     // by the register allocator giving everyone a different register).
  1237     if (mach != NULL && must_clone[mach->ideal_Opcode()])
  1238       try_to_hoist = false;
  1240     Block* late = NULL;
  1241     if (try_to_hoist) {
  1242       // Now find the block with the least execution frequency.
  1243       // Start at the latest schedule and work up to the earliest schedule
  1244       // in the dominator tree.  Thus the Node will dominate all its uses.
  1245       late = hoist_to_cheaper_block(LCA, early, self);
  1246     } else {
  1247       // Just use the LCA of the uses.
  1248       late = LCA;
  1251     // Put the node into target block
  1252     schedule_node_into_block(self, late);
  1254 #ifdef ASSERT
  1255     if (self->needs_anti_dependence_check()) {
  1256       // since precedence edges are only inserted when we're sure they
  1257       // are needed make sure that after placement in a block we don't
  1258       // need any new precedence edges.
  1259       verify_anti_dependences(late, self);
  1261 #endif
  1262   } // Loop until all nodes have been visited
  1264 } // end ScheduleLate
  1266 //------------------------------GlobalCodeMotion-------------------------------
  1267 void PhaseCFG::global_code_motion() {
  1268   ResourceMark rm;
  1270 #ifndef PRODUCT
  1271   if (trace_opto_pipelining()) {
  1272     tty->print("\n---- Start GlobalCodeMotion ----\n");
  1274 #endif
  1276   // Initialize the node to block mapping for things on the proj_list
  1277   for (uint i = 0; i < _matcher.number_of_projections(); i++) {
  1278     unmap_node_from_block(_matcher.get_projection(i));
  1281   // Set the basic block for Nodes pinned into blocks
  1282   Arena* arena = Thread::current()->resource_area();
  1283   VectorSet visited(arena);
  1284   schedule_pinned_nodes(visited);
  1286   // Find the earliest Block any instruction can be placed in.  Some
  1287   // instructions are pinned into Blocks.  Unpinned instructions can
  1288   // appear in last block in which all their inputs occur.
  1289   visited.Clear();
  1290   Node_List stack(arena);
  1291   // Pre-grow the list
  1292   stack.map((C->unique() >> 1) + 16, NULL);
  1293   if (!schedule_early(visited, stack)) {
  1294     // Bailout without retry
  1295     C->record_method_not_compilable("early schedule failed");
  1296     return;
  1299   // Build Def-Use edges.
  1300   // Compute the latency information (via backwards walk) for all the
  1301   // instructions in the graph
  1302   _node_latency = new GrowableArray<uint>(); // resource_area allocation
  1304   if (C->do_scheduling()) {
  1305     compute_latencies_backwards(visited, stack);
  1308   // Now schedule all codes as LATE as possible.  This is the LCA in the
  1309   // dominator tree of all USES of a value.  Pick the block with the least
  1310   // loop nesting depth that is lowest in the dominator tree.
  1311   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
  1312   schedule_late(visited, stack);
  1313   if (C->failing()) {
  1314     // schedule_late fails only when graph is incorrect.
  1315     assert(!VerifyGraphEdges, "verification should have failed");
  1316     return;
  1319 #ifndef PRODUCT
  1320   if (trace_opto_pipelining()) {
  1321     tty->print("\n---- Detect implicit null checks ----\n");
  1323 #endif
  1325   // Detect implicit-null-check opportunities.  Basically, find NULL checks
  1326   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  1327   // I can generate a memory op if there is not one nearby.
  1328   if (C->is_method_compilation()) {
  1329     // Don't do it for natives, adapters, or runtime stubs
  1330     int allowed_reasons = 0;
  1331     // ...and don't do it when there have been too many traps, globally.
  1332     for (int reason = (int)Deoptimization::Reason_none+1;
  1333          reason < Compile::trapHistLength; reason++) {
  1334       assert(reason < BitsPerInt, "recode bit map");
  1335       if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
  1336         allowed_reasons |= nth_bit(reason);
  1338     // By reversing the loop direction we get a very minor gain on mpegaudio.
  1339     // Feel free to revert to a forward loop for clarity.
  1340     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
  1341     for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
  1342       Node* proj = _matcher._null_check_tests[i];
  1343       Node* val  = _matcher._null_check_tests[i + 1];
  1344       Block* block = get_block_for_node(proj);
  1345       implicit_null_check(block, proj, val, allowed_reasons);
  1346       // The implicit_null_check will only perform the transformation
  1347       // if the null branch is truly uncommon, *and* it leads to an
  1348       // uncommon trap.  Combined with the too_many_traps guards
  1349       // above, this prevents SEGV storms reported in 6366351,
  1350       // by recompiling offending methods without this optimization.
  1354 #ifndef PRODUCT
  1355   if (trace_opto_pipelining()) {
  1356     tty->print("\n---- Start Local Scheduling ----\n");
  1358 #endif
  1360   // Schedule locally.  Right now a simple topological sort.
  1361   // Later, do a real latency aware scheduler.
  1362   GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
  1363   visited.Clear();
  1364   for (uint i = 0; i < number_of_blocks(); i++) {
  1365     Block* block = get_block(i);
  1366     if (!schedule_local(block, ready_cnt, visited)) {
  1367       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  1368         C->record_method_not_compilable("local schedule failed");
  1370       return;
  1374   // If we inserted any instructions between a Call and his CatchNode,
  1375   // clone the instructions on all paths below the Catch.
  1376   for (uint i = 0; i < number_of_blocks(); i++) {
  1377     Block* block = get_block(i);
  1378     call_catch_cleanup(block);
  1381 #ifndef PRODUCT
  1382   if (trace_opto_pipelining()) {
  1383     tty->print("\n---- After GlobalCodeMotion ----\n");
  1384     for (uint i = 0; i < number_of_blocks(); i++) {
  1385       Block* block = get_block(i);
  1386       block->dump();
  1389 #endif
  1390   // Dead.
  1391   _node_latency = (GrowableArray<uint> *)0xdeadbeef;
  1394 bool PhaseCFG::do_global_code_motion() {
  1396   build_dominator_tree();
  1397   if (C->failing()) {
  1398     return false;
  1401   NOT_PRODUCT( C->verify_graph_edges(); )
  1403   estimate_block_frequency();
  1405   global_code_motion();
  1407   if (C->failing()) {
  1408     return false;
  1411   return true;
  1414 //------------------------------Estimate_Block_Frequency-----------------------
  1415 // Estimate block frequencies based on IfNode probabilities.
  1416 void PhaseCFG::estimate_block_frequency() {
  1418   // Force conditional branches leading to uncommon traps to be unlikely,
  1419   // not because we get to the uncommon_trap with less relative frequency,
  1420   // but because an uncommon_trap typically causes a deopt, so we only get
  1421   // there once.
  1422   if (C->do_freq_based_layout()) {
  1423     Block_List worklist;
  1424     Block* root_blk = get_block(0);
  1425     for (uint i = 1; i < root_blk->num_preds(); i++) {
  1426       Block *pb = get_block_for_node(root_blk->pred(i));
  1427       if (pb->has_uncommon_code()) {
  1428         worklist.push(pb);
  1431     while (worklist.size() > 0) {
  1432       Block* uct = worklist.pop();
  1433       if (uct == get_root_block()) {
  1434         continue;
  1436       for (uint i = 1; i < uct->num_preds(); i++) {
  1437         Block *pb = get_block_for_node(uct->pred(i));
  1438         if (pb->_num_succs == 1) {
  1439           worklist.push(pb);
  1440         } else if (pb->num_fall_throughs() == 2) {
  1441           pb->update_uncommon_branch(uct);
  1447   // Create the loop tree and calculate loop depth.
  1448   _root_loop = create_loop_tree();
  1449   _root_loop->compute_loop_depth(0);
  1451   // Compute block frequency of each block, relative to a single loop entry.
  1452   _root_loop->compute_freq();
  1454   // Adjust all frequencies to be relative to a single method entry
  1455   _root_loop->_freq = 1.0;
  1456   _root_loop->scale_freq();
  1458   // Save outmost loop frequency for LRG frequency threshold
  1459   _outer_loop_frequency = _root_loop->outer_loop_freq();
  1461   // force paths ending at uncommon traps to be infrequent
  1462   if (!C->do_freq_based_layout()) {
  1463     Block_List worklist;
  1464     Block* root_blk = get_block(0);
  1465     for (uint i = 1; i < root_blk->num_preds(); i++) {
  1466       Block *pb = get_block_for_node(root_blk->pred(i));
  1467       if (pb->has_uncommon_code()) {
  1468         worklist.push(pb);
  1471     while (worklist.size() > 0) {
  1472       Block* uct = worklist.pop();
  1473       uct->_freq = PROB_MIN;
  1474       for (uint i = 1; i < uct->num_preds(); i++) {
  1475         Block *pb = get_block_for_node(uct->pred(i));
  1476         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
  1477           worklist.push(pb);
  1483 #ifdef ASSERT
  1484   for (uint i = 0; i < number_of_blocks(); i++) {
  1485     Block* b = get_block(i);
  1486     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
  1488 #endif
  1490 #ifndef PRODUCT
  1491   if (PrintCFGBlockFreq) {
  1492     tty->print_cr("CFG Block Frequencies");
  1493     _root_loop->dump_tree();
  1494     if (Verbose) {
  1495       tty->print_cr("PhaseCFG dump");
  1496       dump();
  1497       tty->print_cr("Node dump");
  1498       _root->dump(99999);
  1501 #endif
  1504 //----------------------------create_loop_tree--------------------------------
  1505 // Create a loop tree from the CFG
  1506 CFGLoop* PhaseCFG::create_loop_tree() {
  1508 #ifdef ASSERT
  1509   assert(get_block(0) == get_root_block(), "first block should be root block");
  1510   for (uint i = 0; i < number_of_blocks(); i++) {
  1511     Block* block = get_block(i);
  1512     // Check that _loop field are clear...we could clear them if not.
  1513     assert(block->_loop == NULL, "clear _loop expected");
  1514     // Sanity check that the RPO numbering is reflected in the _blocks array.
  1515     // It doesn't have to be for the loop tree to be built, but if it is not,
  1516     // then the blocks have been reordered since dom graph building...which
  1517     // may question the RPO numbering
  1518     assert(block->_rpo == i, "unexpected reverse post order number");
  1520 #endif
  1522   int idct = 0;
  1523   CFGLoop* root_loop = new CFGLoop(idct++);
  1525   Block_List worklist;
  1527   // Assign blocks to loops
  1528   for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
  1529     Block* block = get_block(i);
  1531     if (block->head()->is_Loop()) {
  1532       Block* loop_head = block;
  1533       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
  1534       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
  1535       Block* tail = get_block_for_node(tail_n);
  1537       // Defensively filter out Loop nodes for non-single-entry loops.
  1538       // For all reasonable loops, the head occurs before the tail in RPO.
  1539       if (i <= tail->_rpo) {
  1541         // The tail and (recursive) predecessors of the tail
  1542         // are made members of a new loop.
  1544         assert(worklist.size() == 0, "nonempty worklist");
  1545         CFGLoop* nloop = new CFGLoop(idct++);
  1546         assert(loop_head->_loop == NULL, "just checking");
  1547         loop_head->_loop = nloop;
  1548         // Add to nloop so push_pred() will skip over inner loops
  1549         nloop->add_member(loop_head);
  1550         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
  1552         while (worklist.size() > 0) {
  1553           Block* member = worklist.pop();
  1554           if (member != loop_head) {
  1555             for (uint j = 1; j < member->num_preds(); j++) {
  1556               nloop->push_pred(member, j, worklist, this);
  1564   // Create a member list for each loop consisting
  1565   // of both blocks and (immediate child) loops.
  1566   for (uint i = 0; i < number_of_blocks(); i++) {
  1567     Block* block = get_block(i);
  1568     CFGLoop* lp = block->_loop;
  1569     if (lp == NULL) {
  1570       // Not assigned to a loop. Add it to the method's pseudo loop.
  1571       block->_loop = root_loop;
  1572       lp = root_loop;
  1574     if (lp == root_loop || block != lp->head()) { // loop heads are already members
  1575       lp->add_member(block);
  1577     if (lp != root_loop) {
  1578       if (lp->parent() == NULL) {
  1579         // Not a nested loop. Make it a child of the method's pseudo loop.
  1580         root_loop->add_nested_loop(lp);
  1582       if (block == lp->head()) {
  1583         // Add nested loop to member list of parent loop.
  1584         lp->parent()->add_member(lp);
  1589   return root_loop;
  1592 //------------------------------push_pred--------------------------------------
  1593 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
  1594   Node* pred_n = blk->pred(i);
  1595   Block* pred = cfg->get_block_for_node(pred_n);
  1596   CFGLoop *pred_loop = pred->_loop;
  1597   if (pred_loop == NULL) {
  1598     // Filter out blocks for non-single-entry loops.
  1599     // For all reasonable loops, the head occurs before the tail in RPO.
  1600     if (pred->_rpo > head()->_rpo) {
  1601       pred->_loop = this;
  1602       worklist.push(pred);
  1604   } else if (pred_loop != this) {
  1605     // Nested loop.
  1606     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
  1607       pred_loop = pred_loop->_parent;
  1609     // Make pred's loop be a child
  1610     if (pred_loop->_parent == NULL) {
  1611       add_nested_loop(pred_loop);
  1612       // Continue with loop entry predecessor.
  1613       Block* pred_head = pred_loop->head();
  1614       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
  1615       assert(pred_head != head(), "loop head in only one loop");
  1616       push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
  1617     } else {
  1618       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
  1623 //------------------------------add_nested_loop--------------------------------
  1624 // Make cl a child of the current loop in the loop tree.
  1625 void CFGLoop::add_nested_loop(CFGLoop* cl) {
  1626   assert(_parent == NULL, "no parent yet");
  1627   assert(cl != this, "not my own parent");
  1628   cl->_parent = this;
  1629   CFGLoop* ch = _child;
  1630   if (ch == NULL) {
  1631     _child = cl;
  1632   } else {
  1633     while (ch->_sibling != NULL) { ch = ch->_sibling; }
  1634     ch->_sibling = cl;
  1638 //------------------------------compute_loop_depth-----------------------------
  1639 // Store the loop depth in each CFGLoop object.
  1640 // Recursively walk the children to do the same for them.
  1641 void CFGLoop::compute_loop_depth(int depth) {
  1642   _depth = depth;
  1643   CFGLoop* ch = _child;
  1644   while (ch != NULL) {
  1645     ch->compute_loop_depth(depth + 1);
  1646     ch = ch->_sibling;
  1650 //------------------------------compute_freq-----------------------------------
  1651 // Compute the frequency of each block and loop, relative to a single entry
  1652 // into the dominating loop head.
  1653 void CFGLoop::compute_freq() {
  1654   // Bottom up traversal of loop tree (visit inner loops first.)
  1655   // Set loop head frequency to 1.0, then transitively
  1656   // compute frequency for all successors in the loop,
  1657   // as well as for each exit edge.  Inner loops are
  1658   // treated as single blocks with loop exit targets
  1659   // as the successor blocks.
  1661   // Nested loops first
  1662   CFGLoop* ch = _child;
  1663   while (ch != NULL) {
  1664     ch->compute_freq();
  1665     ch = ch->_sibling;
  1667   assert (_members.length() > 0, "no empty loops");
  1668   Block* hd = head();
  1669   hd->_freq = 1.0f;
  1670   for (int i = 0; i < _members.length(); i++) {
  1671     CFGElement* s = _members.at(i);
  1672     float freq = s->_freq;
  1673     if (s->is_block()) {
  1674       Block* b = s->as_Block();
  1675       for (uint j = 0; j < b->_num_succs; j++) {
  1676         Block* sb = b->_succs[j];
  1677         update_succ_freq(sb, freq * b->succ_prob(j));
  1679     } else {
  1680       CFGLoop* lp = s->as_CFGLoop();
  1681       assert(lp->_parent == this, "immediate child");
  1682       for (int k = 0; k < lp->_exits.length(); k++) {
  1683         Block* eb = lp->_exits.at(k).get_target();
  1684         float prob = lp->_exits.at(k).get_prob();
  1685         update_succ_freq(eb, freq * prob);
  1690   // For all loops other than the outer, "method" loop,
  1691   // sum and normalize the exit probability. The "method" loop
  1692   // should keep the initial exit probability of 1, so that
  1693   // inner blocks do not get erroneously scaled.
  1694   if (_depth != 0) {
  1695     // Total the exit probabilities for this loop.
  1696     float exits_sum = 0.0f;
  1697     for (int i = 0; i < _exits.length(); i++) {
  1698       exits_sum += _exits.at(i).get_prob();
  1701     // Normalize the exit probabilities. Until now, the
  1702     // probabilities estimate the possibility of exit per
  1703     // a single loop iteration; afterward, they estimate
  1704     // the probability of exit per loop entry.
  1705     for (int i = 0; i < _exits.length(); i++) {
  1706       Block* et = _exits.at(i).get_target();
  1707       float new_prob = 0.0f;
  1708       if (_exits.at(i).get_prob() > 0.0f) {
  1709         new_prob = _exits.at(i).get_prob() / exits_sum;
  1711       BlockProbPair bpp(et, new_prob);
  1712       _exits.at_put(i, bpp);
  1715     // Save the total, but guard against unreasonable probability,
  1716     // as the value is used to estimate the loop trip count.
  1717     // An infinite trip count would blur relative block
  1718     // frequencies.
  1719     if (exits_sum > 1.0f) exits_sum = 1.0;
  1720     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
  1721     _exit_prob = exits_sum;
  1725 //------------------------------succ_prob-------------------------------------
  1726 // Determine the probability of reaching successor 'i' from the receiver block.
  1727 float Block::succ_prob(uint i) {
  1728   int eidx = end_idx();
  1729   Node *n = get_node(eidx);  // Get ending Node
  1731   int op = n->Opcode();
  1732   if (n->is_Mach()) {
  1733     if (n->is_MachNullCheck()) {
  1734       // Can only reach here if called after lcm. The original Op_If is gone,
  1735       // so we attempt to infer the probability from one or both of the
  1736       // successor blocks.
  1737       assert(_num_succs == 2, "expecting 2 successors of a null check");
  1738       // If either successor has only one predecessor, then the
  1739       // probability estimate can be derived using the
  1740       // relative frequency of the successor and this block.
  1741       if (_succs[i]->num_preds() == 2) {
  1742         return _succs[i]->_freq / _freq;
  1743       } else if (_succs[1-i]->num_preds() == 2) {
  1744         return 1 - (_succs[1-i]->_freq / _freq);
  1745       } else {
  1746         // Estimate using both successor frequencies
  1747         float freq = _succs[i]->_freq;
  1748         return freq / (freq + _succs[1-i]->_freq);
  1751     op = n->as_Mach()->ideal_Opcode();
  1755   // Switch on branch type
  1756   switch( op ) {
  1757   case Op_CountedLoopEnd:
  1758   case Op_If: {
  1759     assert (i < 2, "just checking");
  1760     // Conditionals pass on only part of their frequency
  1761     float prob  = n->as_MachIf()->_prob;
  1762     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
  1763     // If succ[i] is the FALSE branch, invert path info
  1764     if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
  1765       return 1.0f - prob; // not taken
  1766     } else {
  1767       return prob; // taken
  1771   case Op_Jump:
  1772     // Divide the frequency between all successors evenly
  1773     return 1.0f/_num_succs;
  1775   case Op_Catch: {
  1776     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
  1777     if (ci->_con == CatchProjNode::fall_through_index) {
  1778       // Fall-thru path gets the lion's share.
  1779       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
  1780     } else {
  1781       // Presume exceptional paths are equally unlikely
  1782       return PROB_UNLIKELY_MAG(5);
  1786   case Op_Root:
  1787   case Op_Goto:
  1788     // Pass frequency straight thru to target
  1789     return 1.0f;
  1791   case Op_NeverBranch:
  1792     return 0.0f;
  1794   case Op_TailCall:
  1795   case Op_TailJump:
  1796   case Op_Return:
  1797   case Op_Halt:
  1798   case Op_Rethrow:
  1799     // Do not push out freq to root block
  1800     return 0.0f;
  1802   default:
  1803     ShouldNotReachHere();
  1806   return 0.0f;
  1809 //------------------------------num_fall_throughs-----------------------------
  1810 // Return the number of fall-through candidates for a block
  1811 int Block::num_fall_throughs() {
  1812   int eidx = end_idx();
  1813   Node *n = get_node(eidx);  // Get ending Node
  1815   int op = n->Opcode();
  1816   if (n->is_Mach()) {
  1817     if (n->is_MachNullCheck()) {
  1818       // In theory, either side can fall-thru, for simplicity sake,
  1819       // let's say only the false branch can now.
  1820       return 1;
  1822     op = n->as_Mach()->ideal_Opcode();
  1825   // Switch on branch type
  1826   switch( op ) {
  1827   case Op_CountedLoopEnd:
  1828   case Op_If:
  1829     return 2;
  1831   case Op_Root:
  1832   case Op_Goto:
  1833     return 1;
  1835   case Op_Catch: {
  1836     for (uint i = 0; i < _num_succs; i++) {
  1837       const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
  1838       if (ci->_con == CatchProjNode::fall_through_index) {
  1839         return 1;
  1842     return 0;
  1845   case Op_Jump:
  1846   case Op_NeverBranch:
  1847   case Op_TailCall:
  1848   case Op_TailJump:
  1849   case Op_Return:
  1850   case Op_Halt:
  1851   case Op_Rethrow:
  1852     return 0;
  1854   default:
  1855     ShouldNotReachHere();
  1858   return 0;
  1861 //------------------------------succ_fall_through-----------------------------
  1862 // Return true if a specific successor could be fall-through target.
  1863 bool Block::succ_fall_through(uint i) {
  1864   int eidx = end_idx();
  1865   Node *n = get_node(eidx);  // Get ending Node
  1867   int op = n->Opcode();
  1868   if (n->is_Mach()) {
  1869     if (n->is_MachNullCheck()) {
  1870       // In theory, either side can fall-thru, for simplicity sake,
  1871       // let's say only the false branch can now.
  1872       return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
  1874     op = n->as_Mach()->ideal_Opcode();
  1877   // Switch on branch type
  1878   switch( op ) {
  1879   case Op_CountedLoopEnd:
  1880   case Op_If:
  1881   case Op_Root:
  1882   case Op_Goto:
  1883     return true;
  1885   case Op_Catch: {
  1886     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
  1887     return ci->_con == CatchProjNode::fall_through_index;
  1890   case Op_Jump:
  1891   case Op_NeverBranch:
  1892   case Op_TailCall:
  1893   case Op_TailJump:
  1894   case Op_Return:
  1895   case Op_Halt:
  1896   case Op_Rethrow:
  1897     return false;
  1899   default:
  1900     ShouldNotReachHere();
  1903   return false;
  1906 //------------------------------update_uncommon_branch------------------------
  1907 // Update the probability of a two-branch to be uncommon
  1908 void Block::update_uncommon_branch(Block* ub) {
  1909   int eidx = end_idx();
  1910   Node *n = get_node(eidx);  // Get ending Node
  1912   int op = n->as_Mach()->ideal_Opcode();
  1914   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
  1915   assert(num_fall_throughs() == 2, "must be a two way branch block");
  1917   // Which successor is ub?
  1918   uint s;
  1919   for (s = 0; s <_num_succs; s++) {
  1920     if (_succs[s] == ub) break;
  1922   assert(s < 2, "uncommon successor must be found");
  1924   // If ub is the true path, make the proability small, else
  1925   // ub is the false path, and make the probability large
  1926   bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
  1928   // Get existing probability
  1929   float p = n->as_MachIf()->_prob;
  1931   if (invert) p = 1.0 - p;
  1932   if (p > PROB_MIN) {
  1933     p = PROB_MIN;
  1935   if (invert) p = 1.0 - p;
  1937   n->as_MachIf()->_prob = p;
  1940 //------------------------------update_succ_freq-------------------------------
  1941 // Update the appropriate frequency associated with block 'b', a successor of
  1942 // a block in this loop.
  1943 void CFGLoop::update_succ_freq(Block* b, float freq) {
  1944   if (b->_loop == this) {
  1945     if (b == head()) {
  1946       // back branch within the loop
  1947       // Do nothing now, the loop carried frequency will be
  1948       // adjust later in scale_freq().
  1949     } else {
  1950       // simple branch within the loop
  1951       b->_freq += freq;
  1953   } else if (!in_loop_nest(b)) {
  1954     // branch is exit from this loop
  1955     BlockProbPair bpp(b, freq);
  1956     _exits.append(bpp);
  1957   } else {
  1958     // branch into nested loop
  1959     CFGLoop* ch = b->_loop;
  1960     ch->_freq += freq;
  1964 //------------------------------in_loop_nest-----------------------------------
  1965 // Determine if block b is in the receiver's loop nest.
  1966 bool CFGLoop::in_loop_nest(Block* b) {
  1967   int depth = _depth;
  1968   CFGLoop* b_loop = b->_loop;
  1969   int b_depth = b_loop->_depth;
  1970   if (depth == b_depth) {
  1971     return true;
  1973   while (b_depth > depth) {
  1974     b_loop = b_loop->_parent;
  1975     b_depth = b_loop->_depth;
  1977   return b_loop == this;
  1980 //------------------------------scale_freq-------------------------------------
  1981 // Scale frequency of loops and blocks by trip counts from outer loops
  1982 // Do a top down traversal of loop tree (visit outer loops first.)
  1983 void CFGLoop::scale_freq() {
  1984   float loop_freq = _freq * trip_count();
  1985   _freq = loop_freq;
  1986   for (int i = 0; i < _members.length(); i++) {
  1987     CFGElement* s = _members.at(i);
  1988     float block_freq = s->_freq * loop_freq;
  1989     if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
  1990       block_freq = MIN_BLOCK_FREQUENCY;
  1991     s->_freq = block_freq;
  1993   CFGLoop* ch = _child;
  1994   while (ch != NULL) {
  1995     ch->scale_freq();
  1996     ch = ch->_sibling;
  2000 // Frequency of outer loop
  2001 float CFGLoop::outer_loop_freq() const {
  2002   if (_child != NULL) {
  2003     return _child->_freq;
  2005   return _freq;
  2008 #ifndef PRODUCT
  2009 //------------------------------dump_tree--------------------------------------
  2010 void CFGLoop::dump_tree() const {
  2011   dump();
  2012   if (_child != NULL)   _child->dump_tree();
  2013   if (_sibling != NULL) _sibling->dump_tree();
  2016 //------------------------------dump-------------------------------------------
  2017 void CFGLoop::dump() const {
  2018   for (int i = 0; i < _depth; i++) tty->print("   ");
  2019   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
  2020              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
  2021   for (int i = 0; i < _depth; i++) tty->print("   ");
  2022   tty->print("         members:", _id);
  2023   int k = 0;
  2024   for (int i = 0; i < _members.length(); i++) {
  2025     if (k++ >= 6) {
  2026       tty->print("\n              ");
  2027       for (int j = 0; j < _depth+1; j++) tty->print("   ");
  2028       k = 0;
  2030     CFGElement *s = _members.at(i);
  2031     if (s->is_block()) {
  2032       Block *b = s->as_Block();
  2033       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
  2034     } else {
  2035       CFGLoop* lp = s->as_CFGLoop();
  2036       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
  2039   tty->print("\n");
  2040   for (int i = 0; i < _depth; i++) tty->print("   ");
  2041   tty->print("         exits:  ");
  2042   k = 0;
  2043   for (int i = 0; i < _exits.length(); i++) {
  2044     if (k++ >= 7) {
  2045       tty->print("\n              ");
  2046       for (int j = 0; j < _depth+1; j++) tty->print("   ");
  2047       k = 0;
  2049     Block *blk = _exits.at(i).get_target();
  2050     float prob = _exits.at(i).get_prob();
  2051     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
  2053   tty->print("\n");
  2055 #endif

mercurial