src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Fri, 23 Mar 2012 10:53:19 -0400

author
tonyp
date
Fri, 23 Mar 2012 10:53:19 -0400
changeset 3667
21595f05bc93
parent 3539
a9647476d1a4
child 3689
500023bd0818
permissions
-rw-r--r--

7146246: G1: expose some of the -XX flags that drive which old regions to collect during mixed GCs
Summary: Make two G1 cmd line flags available in product builds: G1HeapWastePercent (previously called: G1OldReclaimableThresholdPercent) and G1MixedGCCountTarget (previous called: G1MaxMixedGCNum). Also changed the default of the former from 1% to 5% and the default for G1OldCSetRegionLiveThresholdPercent to 90%.
Reviewed-by: azeemj, jwilhelm, johnc

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    34 #include "runtime/arguments.hpp"
    35 #include "runtime/java.hpp"
    36 #include "runtime/mutexLocker.hpp"
    37 #include "utilities/debug.hpp"
    39 // Different defaults for different number of GC threads
    40 // They were chosen by running GCOld and SPECjbb on debris with different
    41 //   numbers of GC threads and choosing them based on the results
    43 // all the same
    44 static double rs_length_diff_defaults[] = {
    45   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    46 };
    48 static double cost_per_card_ms_defaults[] = {
    49   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    50 };
    52 // all the same
    53 static double young_cards_per_entry_ratio_defaults[] = {
    54   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    55 };
    57 static double cost_per_entry_ms_defaults[] = {
    58   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    59 };
    61 static double cost_per_byte_ms_defaults[] = {
    62   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    63 };
    65 // these should be pretty consistent
    66 static double constant_other_time_ms_defaults[] = {
    67   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    68 };
    71 static double young_other_cost_per_region_ms_defaults[] = {
    72   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    73 };
    75 static double non_young_other_cost_per_region_ms_defaults[] = {
    76   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    77 };
    79 // Help class for avoiding interleaved logging
    80 class LineBuffer: public StackObj {
    82 private:
    83   static const int BUFFER_LEN = 1024;
    84   static const int INDENT_CHARS = 3;
    85   char _buffer[BUFFER_LEN];
    86   int _indent_level;
    87   int _cur;
    89   void vappend(const char* format, va_list ap) {
    90     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
    91     if (res != -1) {
    92       _cur += res;
    93     } else {
    94       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
    95       _buffer[BUFFER_LEN -1] = 0;
    96       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
    97     }
    98   }
   100 public:
   101   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
   102     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
   103       _buffer[_cur] = ' ';
   104     }
   105   }
   107 #ifndef PRODUCT
   108   ~LineBuffer() {
   109     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
   110   }
   111 #endif
   113   void append(const char* format, ...) {
   114     va_list ap;
   115     va_start(ap, format);
   116     vappend(format, ap);
   117     va_end(ap);
   118   }
   120   void append_and_print_cr(const char* format, ...) {
   121     va_list ap;
   122     va_start(ap, format);
   123     vappend(format, ap);
   124     va_end(ap);
   125     gclog_or_tty->print_cr("%s", _buffer);
   126     _cur = _indent_level * INDENT_CHARS;
   127   }
   128 };
   130 G1CollectorPolicy::G1CollectorPolicy() :
   131   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
   132                         ? ParallelGCThreads : 1),
   134   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   135   _all_pause_times_ms(new NumberSeq()),
   136   _stop_world_start(0.0),
   137   _all_stop_world_times_ms(new NumberSeq()),
   138   _all_yield_times_ms(new NumberSeq()),
   140   _summary(new Summary()),
   142   _cur_clear_ct_time_ms(0.0),
   143   _mark_closure_time_ms(0.0),
   144   _root_region_scan_wait_time_ms(0.0),
   146   _cur_ref_proc_time_ms(0.0),
   147   _cur_ref_enq_time_ms(0.0),
   149 #ifndef PRODUCT
   150   _min_clear_cc_time_ms(-1.0),
   151   _max_clear_cc_time_ms(-1.0),
   152   _cur_clear_cc_time_ms(0.0),
   153   _cum_clear_cc_time_ms(0.0),
   154   _num_cc_clears(0L),
   155 #endif
   157   _aux_num(10),
   158   _all_aux_times_ms(new NumberSeq[_aux_num]),
   159   _cur_aux_start_times_ms(new double[_aux_num]),
   160   _cur_aux_times_ms(new double[_aux_num]),
   161   _cur_aux_times_set(new bool[_aux_num]),
   163   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   164   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   166   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   167   _prev_collection_pause_end_ms(0.0),
   168   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   169   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   170   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   171   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   172   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   173   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   174   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   175   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   176   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   177   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   178   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   179   _non_young_other_cost_per_region_ms_seq(
   180                                          new TruncatedSeq(TruncatedSeqLength)),
   182   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   183   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   185   _pause_time_target_ms((double) MaxGCPauseMillis),
   187   _gcs_are_young(true),
   188   _young_pause_num(0),
   189   _mixed_pause_num(0),
   191   _during_marking(false),
   192   _in_marking_window(false),
   193   _in_marking_window_im(false),
   195   _known_garbage_ratio(0.0),
   196   _known_garbage_bytes(0),
   198   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
   200   _recent_prev_end_times_for_all_gcs_sec(
   201                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   203   _recent_avg_pause_time_ratio(0.0),
   205   _all_full_gc_times_ms(new NumberSeq()),
   207   _initiate_conc_mark_if_possible(false),
   208   _during_initial_mark_pause(false),
   209   _last_young_gc(false),
   210   _last_gc_was_young(false),
   212   _eden_bytes_before_gc(0),
   213   _survivor_bytes_before_gc(0),
   214   _capacity_before_gc(0),
   216   _eden_cset_region_length(0),
   217   _survivor_cset_region_length(0),
   218   _old_cset_region_length(0),
   220   _collection_set(NULL),
   221   _collection_set_bytes_used_before(0),
   223   // Incremental CSet attributes
   224   _inc_cset_build_state(Inactive),
   225   _inc_cset_head(NULL),
   226   _inc_cset_tail(NULL),
   227   _inc_cset_bytes_used_before(0),
   228   _inc_cset_max_finger(NULL),
   229   _inc_cset_recorded_rs_lengths(0),
   230   _inc_cset_recorded_rs_lengths_diffs(0),
   231   _inc_cset_predicted_elapsed_time_ms(0.0),
   232   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   234 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   235 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   236 #endif // _MSC_VER
   238   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   239                                                  G1YoungSurvRateNumRegionsSummary)),
   240   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   241                                               G1YoungSurvRateNumRegionsSummary)),
   242   // add here any more surv rate groups
   243   _recorded_survivor_regions(0),
   244   _recorded_survivor_head(NULL),
   245   _recorded_survivor_tail(NULL),
   246   _survivors_age_table(true),
   248   _gc_overhead_perc(0.0) {
   250   // Set up the region size and associated fields. Given that the
   251   // policy is created before the heap, we have to set this up here,
   252   // so it's done as soon as possible.
   253   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   254   HeapRegionRemSet::setup_remset_size();
   256   G1ErgoVerbose::initialize();
   257   if (PrintAdaptiveSizePolicy) {
   258     // Currently, we only use a single switch for all the heuristics.
   259     G1ErgoVerbose::set_enabled(true);
   260     // Given that we don't currently have a verboseness level
   261     // parameter, we'll hardcode this to high. This can be easily
   262     // changed in the future.
   263     G1ErgoVerbose::set_level(ErgoHigh);
   264   } else {
   265     G1ErgoVerbose::set_enabled(false);
   266   }
   268   // Verify PLAB sizes
   269   const size_t region_size = HeapRegion::GrainWords;
   270   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   271     char buffer[128];
   272     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   273                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   274     vm_exit_during_initialization(buffer);
   275   }
   277   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   278   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   280   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
   281   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
   282   _par_last_satb_filtering_times_ms = new double[_parallel_gc_threads];
   284   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
   285   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
   287   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
   289   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
   291   _par_last_termination_times_ms = new double[_parallel_gc_threads];
   292   _par_last_termination_attempts = new double[_parallel_gc_threads];
   293   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
   294   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
   295   _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
   297   int index;
   298   if (ParallelGCThreads == 0)
   299     index = 0;
   300   else if (ParallelGCThreads > 8)
   301     index = 7;
   302   else
   303     index = ParallelGCThreads - 1;
   305   _pending_card_diff_seq->add(0.0);
   306   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   307   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   308   _young_cards_per_entry_ratio_seq->add(
   309                                   young_cards_per_entry_ratio_defaults[index]);
   310   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   311   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   312   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   313   _young_other_cost_per_region_ms_seq->add(
   314                                young_other_cost_per_region_ms_defaults[index]);
   315   _non_young_other_cost_per_region_ms_seq->add(
   316                            non_young_other_cost_per_region_ms_defaults[index]);
   318   // Below, we might need to calculate the pause time target based on
   319   // the pause interval. When we do so we are going to give G1 maximum
   320   // flexibility and allow it to do pauses when it needs to. So, we'll
   321   // arrange that the pause interval to be pause time target + 1 to
   322   // ensure that a) the pause time target is maximized with respect to
   323   // the pause interval and b) we maintain the invariant that pause
   324   // time target < pause interval. If the user does not want this
   325   // maximum flexibility, they will have to set the pause interval
   326   // explicitly.
   328   // First make sure that, if either parameter is set, its value is
   329   // reasonable.
   330   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   331     if (MaxGCPauseMillis < 1) {
   332       vm_exit_during_initialization("MaxGCPauseMillis should be "
   333                                     "greater than 0");
   334     }
   335   }
   336   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   337     if (GCPauseIntervalMillis < 1) {
   338       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   339                                     "greater than 0");
   340     }
   341   }
   343   // Then, if the pause time target parameter was not set, set it to
   344   // the default value.
   345   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   346     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   347       // The default pause time target in G1 is 200ms
   348       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   349     } else {
   350       // We do not allow the pause interval to be set without the
   351       // pause time target
   352       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   353                                     "without setting MaxGCPauseMillis");
   354     }
   355   }
   357   // Then, if the interval parameter was not set, set it according to
   358   // the pause time target (this will also deal with the case when the
   359   // pause time target is the default value).
   360   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   361     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   362   }
   364   // Finally, make sure that the two parameters are consistent.
   365   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   366     char buffer[256];
   367     jio_snprintf(buffer, 256,
   368                  "MaxGCPauseMillis (%u) should be less than "
   369                  "GCPauseIntervalMillis (%u)",
   370                  MaxGCPauseMillis, GCPauseIntervalMillis);
   371     vm_exit_during_initialization(buffer);
   372   }
   374   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   375   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   376   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   377   _sigma = (double) G1ConfidencePercent / 100.0;
   379   // start conservatively (around 50ms is about right)
   380   _concurrent_mark_remark_times_ms->add(0.05);
   381   _concurrent_mark_cleanup_times_ms->add(0.20);
   382   _tenuring_threshold = MaxTenuringThreshold;
   383   // _max_survivor_regions will be calculated by
   384   // update_young_list_target_length() during initialization.
   385   _max_survivor_regions = 0;
   387   assert(GCTimeRatio > 0,
   388          "we should have set it to a default value set_g1_gc_flags() "
   389          "if a user set it to 0");
   390   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   392   uintx reserve_perc = G1ReservePercent;
   393   // Put an artificial ceiling on this so that it's not set to a silly value.
   394   if (reserve_perc > 50) {
   395     reserve_perc = 50;
   396     warning("G1ReservePercent is set to a value that is too large, "
   397             "it's been updated to %u", reserve_perc);
   398   }
   399   _reserve_factor = (double) reserve_perc / 100.0;
   400   // This will be set when the heap is expanded
   401   // for the first time during initialization.
   402   _reserve_regions = 0;
   404   initialize_all();
   405   _collectionSetChooser = new CollectionSetChooser();
   406   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
   407 }
   409 void G1CollectorPolicy::initialize_flags() {
   410   set_min_alignment(HeapRegion::GrainBytes);
   411   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   412   if (SurvivorRatio < 1) {
   413     vm_exit_during_initialization("Invalid survivor ratio specified");
   414   }
   415   CollectorPolicy::initialize_flags();
   416 }
   418 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
   419   assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max");
   420   assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds");
   421   assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds");
   423   if (FLAG_IS_CMDLINE(NewRatio)) {
   424     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   425       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   426     } else {
   427       _sizer_kind = SizerNewRatio;
   428       _adaptive_size = false;
   429       return;
   430     }
   431   }
   433   if (FLAG_IS_CMDLINE(NewSize)) {
   434      _min_desired_young_length = MAX2((size_t) 1, NewSize / HeapRegion::GrainBytes);
   435     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   436       _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
   437       _sizer_kind = SizerMaxAndNewSize;
   438       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
   439     } else {
   440       _sizer_kind = SizerNewSizeOnly;
   441     }
   442   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
   443     _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
   444     _sizer_kind = SizerMaxNewSizeOnly;
   445   }
   446 }
   448 size_t G1YoungGenSizer::calculate_default_min_length(size_t new_number_of_heap_regions) {
   449   size_t default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100;
   450   return MAX2((size_t)1, default_value);
   451 }
   453 size_t G1YoungGenSizer::calculate_default_max_length(size_t new_number_of_heap_regions) {
   454   size_t default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100;
   455   return MAX2((size_t)1, default_value);
   456 }
   458 void G1YoungGenSizer::heap_size_changed(size_t new_number_of_heap_regions) {
   459   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
   461   switch (_sizer_kind) {
   462     case SizerDefaults:
   463       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   464       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   465       break;
   466     case SizerNewSizeOnly:
   467       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   468       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
   469       break;
   470     case SizerMaxNewSizeOnly:
   471       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   472       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
   473       break;
   474     case SizerMaxAndNewSize:
   475       // Do nothing. Values set on the command line, don't update them at runtime.
   476       break;
   477     case SizerNewRatio:
   478       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
   479       _max_desired_young_length = _min_desired_young_length;
   480       break;
   481     default:
   482       ShouldNotReachHere();
   483   }
   485   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   486 }
   488 void G1CollectorPolicy::init() {
   489   // Set aside an initial future to_space.
   490   _g1 = G1CollectedHeap::heap();
   492   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   494   initialize_gc_policy_counters();
   496   if (adaptive_young_list_length()) {
   497     _young_list_fixed_length = 0;
   498   } else {
   499     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
   500   }
   501   _free_regions_at_end_of_collection = _g1->free_regions();
   502   update_young_list_target_length();
   503   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
   505   // We may immediately start allocating regions and placing them on the
   506   // collection set list. Initialize the per-collection set info
   507   start_incremental_cset_building();
   508 }
   510 // Create the jstat counters for the policy.
   511 void G1CollectorPolicy::initialize_gc_policy_counters() {
   512   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   513 }
   515 bool G1CollectorPolicy::predict_will_fit(size_t young_length,
   516                                          double base_time_ms,
   517                                          size_t base_free_regions,
   518                                          double target_pause_time_ms) {
   519   if (young_length >= base_free_regions) {
   520     // end condition 1: not enough space for the young regions
   521     return false;
   522   }
   524   double accum_surv_rate = accum_yg_surv_rate_pred((int)(young_length - 1));
   525   size_t bytes_to_copy =
   526                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   527   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   528   double young_other_time_ms = predict_young_other_time_ms(young_length);
   529   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   530   if (pause_time_ms > target_pause_time_ms) {
   531     // end condition 2: prediction is over the target pause time
   532     return false;
   533   }
   535   size_t free_bytes =
   536                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
   537   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   538     // end condition 3: out-of-space (conservatively!)
   539     return false;
   540   }
   542   // success!
   543   return true;
   544 }
   546 void G1CollectorPolicy::record_new_heap_size(size_t new_number_of_regions) {
   547   // re-calculate the necessary reserve
   548   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   549   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   550   // smaller than 1.0) we'll get 1.
   551   _reserve_regions = (size_t) ceil(reserve_regions_d);
   553   _young_gen_sizer->heap_size_changed(new_number_of_regions);
   554 }
   556 size_t G1CollectorPolicy::calculate_young_list_desired_min_length(
   557                                                      size_t base_min_length) {
   558   size_t desired_min_length = 0;
   559   if (adaptive_young_list_length()) {
   560     if (_alloc_rate_ms_seq->num() > 3) {
   561       double now_sec = os::elapsedTime();
   562       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   563       double alloc_rate_ms = predict_alloc_rate_ms();
   564       desired_min_length = (size_t) ceil(alloc_rate_ms * when_ms);
   565     } else {
   566       // otherwise we don't have enough info to make the prediction
   567     }
   568   }
   569   desired_min_length += base_min_length;
   570   // make sure we don't go below any user-defined minimum bound
   571   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
   572 }
   574 size_t G1CollectorPolicy::calculate_young_list_desired_max_length() {
   575   // Here, we might want to also take into account any additional
   576   // constraints (i.e., user-defined minimum bound). Currently, we
   577   // effectively don't set this bound.
   578   return _young_gen_sizer->max_desired_young_length();
   579 }
   581 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   582   if (rs_lengths == (size_t) -1) {
   583     // if it's set to the default value (-1), we should predict it;
   584     // otherwise, use the given value.
   585     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   586   }
   588   // Calculate the absolute and desired min bounds.
   590   // This is how many young regions we already have (currently: the survivors).
   591   size_t base_min_length = recorded_survivor_regions();
   592   // This is the absolute minimum young length, which ensures that we
   593   // can allocate one eden region in the worst-case.
   594   size_t absolute_min_length = base_min_length + 1;
   595   size_t desired_min_length =
   596                      calculate_young_list_desired_min_length(base_min_length);
   597   if (desired_min_length < absolute_min_length) {
   598     desired_min_length = absolute_min_length;
   599   }
   601   // Calculate the absolute and desired max bounds.
   603   // We will try our best not to "eat" into the reserve.
   604   size_t absolute_max_length = 0;
   605   if (_free_regions_at_end_of_collection > _reserve_regions) {
   606     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   607   }
   608   size_t desired_max_length = calculate_young_list_desired_max_length();
   609   if (desired_max_length > absolute_max_length) {
   610     desired_max_length = absolute_max_length;
   611   }
   613   size_t young_list_target_length = 0;
   614   if (adaptive_young_list_length()) {
   615     if (gcs_are_young()) {
   616       young_list_target_length =
   617                         calculate_young_list_target_length(rs_lengths,
   618                                                            base_min_length,
   619                                                            desired_min_length,
   620                                                            desired_max_length);
   621       _rs_lengths_prediction = rs_lengths;
   622     } else {
   623       // Don't calculate anything and let the code below bound it to
   624       // the desired_min_length, i.e., do the next GC as soon as
   625       // possible to maximize how many old regions we can add to it.
   626     }
   627   } else {
   628     // The user asked for a fixed young gen so we'll fix the young gen
   629     // whether the next GC is young or mixed.
   630     young_list_target_length = _young_list_fixed_length;
   631   }
   633   // Make sure we don't go over the desired max length, nor under the
   634   // desired min length. In case they clash, desired_min_length wins
   635   // which is why that test is second.
   636   if (young_list_target_length > desired_max_length) {
   637     young_list_target_length = desired_max_length;
   638   }
   639   if (young_list_target_length < desired_min_length) {
   640     young_list_target_length = desired_min_length;
   641   }
   643   assert(young_list_target_length > recorded_survivor_regions(),
   644          "we should be able to allocate at least one eden region");
   645   assert(young_list_target_length >= absolute_min_length, "post-condition");
   646   _young_list_target_length = young_list_target_length;
   648   update_max_gc_locker_expansion();
   649 }
   651 size_t
   652 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   653                                                    size_t base_min_length,
   654                                                    size_t desired_min_length,
   655                                                    size_t desired_max_length) {
   656   assert(adaptive_young_list_length(), "pre-condition");
   657   assert(gcs_are_young(), "only call this for young GCs");
   659   // In case some edge-condition makes the desired max length too small...
   660   if (desired_max_length <= desired_min_length) {
   661     return desired_min_length;
   662   }
   664   // We'll adjust min_young_length and max_young_length not to include
   665   // the already allocated young regions (i.e., so they reflect the
   666   // min and max eden regions we'll allocate). The base_min_length
   667   // will be reflected in the predictions by the
   668   // survivor_regions_evac_time prediction.
   669   assert(desired_min_length > base_min_length, "invariant");
   670   size_t min_young_length = desired_min_length - base_min_length;
   671   assert(desired_max_length > base_min_length, "invariant");
   672   size_t max_young_length = desired_max_length - base_min_length;
   674   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   675   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   676   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   677   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   678   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   679   double base_time_ms =
   680     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   681     survivor_regions_evac_time;
   682   size_t available_free_regions = _free_regions_at_end_of_collection;
   683   size_t base_free_regions = 0;
   684   if (available_free_regions > _reserve_regions) {
   685     base_free_regions = available_free_regions - _reserve_regions;
   686   }
   688   // Here, we will make sure that the shortest young length that
   689   // makes sense fits within the target pause time.
   691   if (predict_will_fit(min_young_length, base_time_ms,
   692                        base_free_regions, target_pause_time_ms)) {
   693     // The shortest young length will fit into the target pause time;
   694     // we'll now check whether the absolute maximum number of young
   695     // regions will fit in the target pause time. If not, we'll do
   696     // a binary search between min_young_length and max_young_length.
   697     if (predict_will_fit(max_young_length, base_time_ms,
   698                          base_free_regions, target_pause_time_ms)) {
   699       // The maximum young length will fit into the target pause time.
   700       // We are done so set min young length to the maximum length (as
   701       // the result is assumed to be returned in min_young_length).
   702       min_young_length = max_young_length;
   703     } else {
   704       // The maximum possible number of young regions will not fit within
   705       // the target pause time so we'll search for the optimal
   706       // length. The loop invariants are:
   707       //
   708       // min_young_length < max_young_length
   709       // min_young_length is known to fit into the target pause time
   710       // max_young_length is known not to fit into the target pause time
   711       //
   712       // Going into the loop we know the above hold as we've just
   713       // checked them. Every time around the loop we check whether
   714       // the middle value between min_young_length and
   715       // max_young_length fits into the target pause time. If it
   716       // does, it becomes the new min. If it doesn't, it becomes
   717       // the new max. This way we maintain the loop invariants.
   719       assert(min_young_length < max_young_length, "invariant");
   720       size_t diff = (max_young_length - min_young_length) / 2;
   721       while (diff > 0) {
   722         size_t young_length = min_young_length + diff;
   723         if (predict_will_fit(young_length, base_time_ms,
   724                              base_free_regions, target_pause_time_ms)) {
   725           min_young_length = young_length;
   726         } else {
   727           max_young_length = young_length;
   728         }
   729         assert(min_young_length <  max_young_length, "invariant");
   730         diff = (max_young_length - min_young_length) / 2;
   731       }
   732       // The results is min_young_length which, according to the
   733       // loop invariants, should fit within the target pause time.
   735       // These are the post-conditions of the binary search above:
   736       assert(min_young_length < max_young_length,
   737              "otherwise we should have discovered that max_young_length "
   738              "fits into the pause target and not done the binary search");
   739       assert(predict_will_fit(min_young_length, base_time_ms,
   740                               base_free_regions, target_pause_time_ms),
   741              "min_young_length, the result of the binary search, should "
   742              "fit into the pause target");
   743       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   744                                base_free_regions, target_pause_time_ms),
   745              "min_young_length, the result of the binary search, should be "
   746              "optimal, so no larger length should fit into the pause target");
   747     }
   748   } else {
   749     // Even the minimum length doesn't fit into the pause time
   750     // target, return it as the result nevertheless.
   751   }
   752   return base_min_length + min_young_length;
   753 }
   755 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   756   double survivor_regions_evac_time = 0.0;
   757   for (HeapRegion * r = _recorded_survivor_head;
   758        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   759        r = r->get_next_young_region()) {
   760     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
   761   }
   762   return survivor_regions_evac_time;
   763 }
   765 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   766   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   768   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   769   if (rs_lengths > _rs_lengths_prediction) {
   770     // add 10% to avoid having to recalculate often
   771     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   772     update_young_list_target_length(rs_lengths_prediction);
   773   }
   774 }
   778 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   779                                                bool is_tlab,
   780                                                bool* gc_overhead_limit_was_exceeded) {
   781   guarantee(false, "Not using this policy feature yet.");
   782   return NULL;
   783 }
   785 // This method controls how a collector handles one or more
   786 // of its generations being fully allocated.
   787 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   788                                                        bool is_tlab) {
   789   guarantee(false, "Not using this policy feature yet.");
   790   return NULL;
   791 }
   794 #ifndef PRODUCT
   795 bool G1CollectorPolicy::verify_young_ages() {
   796   HeapRegion* head = _g1->young_list()->first_region();
   797   return
   798     verify_young_ages(head, _short_lived_surv_rate_group);
   799   // also call verify_young_ages on any additional surv rate groups
   800 }
   802 bool
   803 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   804                                      SurvRateGroup *surv_rate_group) {
   805   guarantee( surv_rate_group != NULL, "pre-condition" );
   807   const char* name = surv_rate_group->name();
   808   bool ret = true;
   809   int prev_age = -1;
   811   for (HeapRegion* curr = head;
   812        curr != NULL;
   813        curr = curr->get_next_young_region()) {
   814     SurvRateGroup* group = curr->surv_rate_group();
   815     if (group == NULL && !curr->is_survivor()) {
   816       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   817       ret = false;
   818     }
   820     if (surv_rate_group == group) {
   821       int age = curr->age_in_surv_rate_group();
   823       if (age < 0) {
   824         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   825         ret = false;
   826       }
   828       if (age <= prev_age) {
   829         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   830                                "(%d, %d)", name, age, prev_age);
   831         ret = false;
   832       }
   833       prev_age = age;
   834     }
   835   }
   837   return ret;
   838 }
   839 #endif // PRODUCT
   841 void G1CollectorPolicy::record_full_collection_start() {
   842   _cur_collection_start_sec = os::elapsedTime();
   843   // Release the future to-space so that it is available for compaction into.
   844   _g1->set_full_collection();
   845 }
   847 void G1CollectorPolicy::record_full_collection_end() {
   848   // Consider this like a collection pause for the purposes of allocation
   849   // since last pause.
   850   double end_sec = os::elapsedTime();
   851   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
   852   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   854   _all_full_gc_times_ms->add(full_gc_time_ms);
   856   update_recent_gc_times(end_sec, full_gc_time_ms);
   858   _g1->clear_full_collection();
   860   // "Nuke" the heuristics that control the young/mixed GC
   861   // transitions and make sure we start with young GCs after the Full GC.
   862   set_gcs_are_young(true);
   863   _last_young_gc = false;
   864   clear_initiate_conc_mark_if_possible();
   865   clear_during_initial_mark_pause();
   866   _known_garbage_bytes = 0;
   867   _known_garbage_ratio = 0.0;
   868   _in_marking_window = false;
   869   _in_marking_window_im = false;
   871   _short_lived_surv_rate_group->start_adding_regions();
   872   // also call this on any additional surv rate groups
   874   record_survivor_regions(0, NULL, NULL);
   876   _free_regions_at_end_of_collection = _g1->free_regions();
   877   // Reset survivors SurvRateGroup.
   878   _survivor_surv_rate_group->reset();
   879   update_young_list_target_length();
   880   _collectionSetChooser->clearMarkedHeapRegions();
   881 }
   883 void G1CollectorPolicy::record_stop_world_start() {
   884   _stop_world_start = os::elapsedTime();
   885 }
   887 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
   888                                                       size_t start_used) {
   889   if (PrintGCDetails) {
   890     gclog_or_tty->stamp(PrintGCTimeStamps);
   891     gclog_or_tty->print("[GC pause");
   892     gclog_or_tty->print(" (%s)", gcs_are_young() ? "young" : "mixed");
   893   }
   895   // We only need to do this here as the policy will only be applied
   896   // to the GC we're about to start. so, no point is calculating this
   897   // every time we calculate / recalculate the target young length.
   898   update_survivors_policy();
   900   assert(_g1->used() == _g1->recalculate_used(),
   901          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   902                  _g1->used(), _g1->recalculate_used()));
   904   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   905   _all_stop_world_times_ms->add(s_w_t_ms);
   906   _stop_world_start = 0.0;
   908   _cur_collection_start_sec = start_time_sec;
   909   _cur_collection_pause_used_at_start_bytes = start_used;
   910   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
   911   _pending_cards = _g1->pending_card_num();
   912   _max_pending_cards = _g1->max_pending_card_num();
   914   _bytes_in_collection_set_before_gc = 0;
   915   _bytes_copied_during_gc = 0;
   917   YoungList* young_list = _g1->young_list();
   918   _eden_bytes_before_gc = young_list->eden_used_bytes();
   919   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
   920   _capacity_before_gc = _g1->capacity();
   922 #ifdef DEBUG
   923   // initialise these to something well known so that we can spot
   924   // if they are not set properly
   926   for (int i = 0; i < _parallel_gc_threads; ++i) {
   927     _par_last_gc_worker_start_times_ms[i] = -1234.0;
   928     _par_last_ext_root_scan_times_ms[i] = -1234.0;
   929     _par_last_satb_filtering_times_ms[i] = -1234.0;
   930     _par_last_update_rs_times_ms[i] = -1234.0;
   931     _par_last_update_rs_processed_buffers[i] = -1234.0;
   932     _par_last_scan_rs_times_ms[i] = -1234.0;
   933     _par_last_obj_copy_times_ms[i] = -1234.0;
   934     _par_last_termination_times_ms[i] = -1234.0;
   935     _par_last_termination_attempts[i] = -1234.0;
   936     _par_last_gc_worker_end_times_ms[i] = -1234.0;
   937     _par_last_gc_worker_times_ms[i] = -1234.0;
   938     _par_last_gc_worker_other_times_ms[i] = -1234.0;
   939   }
   940 #endif
   942   for (int i = 0; i < _aux_num; ++i) {
   943     _cur_aux_times_ms[i] = 0.0;
   944     _cur_aux_times_set[i] = false;
   945   }
   947   // This is initialized to zero here and is set during
   948   // the evacuation pause if marking is in progress.
   949   _cur_satb_drain_time_ms = 0.0;
   950   // This is initialized to zero here and is set during the evacuation
   951   // pause if we actually waited for the root region scanning to finish.
   952   _root_region_scan_wait_time_ms = 0.0;
   954   _last_gc_was_young = false;
   956   // do that for any other surv rate groups
   957   _short_lived_surv_rate_group->stop_adding_regions();
   958   _survivors_age_table.clear();
   960   assert( verify_young_ages(), "region age verification" );
   961 }
   963 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   964                                                    mark_init_elapsed_time_ms) {
   965   _during_marking = true;
   966   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   967   clear_during_initial_mark_pause();
   968   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   969 }
   971 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   972   _mark_remark_start_sec = os::elapsedTime();
   973   _during_marking = false;
   974 }
   976 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   977   double end_time_sec = os::elapsedTime();
   978   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   979   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   980   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   981   _prev_collection_pause_end_ms += elapsed_time_ms;
   983   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   984 }
   986 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   987   _mark_cleanup_start_sec = os::elapsedTime();
   988 }
   990 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   991   _last_young_gc = true;
   992   _in_marking_window = false;
   993 }
   995 void G1CollectorPolicy::record_concurrent_pause() {
   996   if (_stop_world_start > 0.0) {
   997     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
   998     _all_yield_times_ms->add(yield_ms);
   999   }
  1002 void G1CollectorPolicy::record_concurrent_pause_end() {
  1005 template<class T>
  1006 T sum_of(T* sum_arr, int start, int n, int N) {
  1007   T sum = (T)0;
  1008   for (int i = 0; i < n; i++) {
  1009     int j = (start + i) % N;
  1010     sum += sum_arr[j];
  1012   return sum;
  1015 void G1CollectorPolicy::print_par_stats(int level,
  1016                                         const char* str,
  1017                                         double* data) {
  1018   double min = data[0], max = data[0];
  1019   double total = 0.0;
  1020   LineBuffer buf(level);
  1021   buf.append("[%s (ms):", str);
  1022   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1023     double val = data[i];
  1024     if (val < min)
  1025       min = val;
  1026     if (val > max)
  1027       max = val;
  1028     total += val;
  1029     buf.append("  %3.1lf", val);
  1031   buf.append_and_print_cr("");
  1032   double avg = total / (double) no_of_gc_threads();
  1033   buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
  1034     avg, min, max, max - min);
  1037 void G1CollectorPolicy::print_par_sizes(int level,
  1038                                         const char* str,
  1039                                         double* data) {
  1040   double min = data[0], max = data[0];
  1041   double total = 0.0;
  1042   LineBuffer buf(level);
  1043   buf.append("[%s :", str);
  1044   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1045     double val = data[i];
  1046     if (val < min)
  1047       min = val;
  1048     if (val > max)
  1049       max = val;
  1050     total += val;
  1051     buf.append(" %d", (int) val);
  1053   buf.append_and_print_cr("");
  1054   double avg = total / (double) no_of_gc_threads();
  1055   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
  1056     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
  1059 void G1CollectorPolicy::print_stats(int level,
  1060                                     const char* str,
  1061                                     double value) {
  1062   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
  1065 void G1CollectorPolicy::print_stats(int level,
  1066                                     const char* str,
  1067                                     int value) {
  1068   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
  1071 double G1CollectorPolicy::avg_value(double* data) {
  1072   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1073     double ret = 0.0;
  1074     for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1075       ret += data[i];
  1077     return ret / (double) no_of_gc_threads();
  1078   } else {
  1079     return data[0];
  1083 double G1CollectorPolicy::max_value(double* data) {
  1084   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1085     double ret = data[0];
  1086     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1087       if (data[i] > ret) {
  1088         ret = data[i];
  1091     return ret;
  1092   } else {
  1093     return data[0];
  1097 double G1CollectorPolicy::sum_of_values(double* data) {
  1098   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1099     double sum = 0.0;
  1100     for (uint i = 0; i < no_of_gc_threads(); i++) {
  1101       sum += data[i];
  1103     return sum;
  1104   } else {
  1105     return data[0];
  1109 double G1CollectorPolicy::max_sum(double* data1, double* data2) {
  1110   double ret = data1[0] + data2[0];
  1112   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1113     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1114       double data = data1[i] + data2[i];
  1115       if (data > ret) {
  1116         ret = data;
  1120   return ret;
  1123 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
  1124   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
  1125     return false;
  1128   size_t marking_initiating_used_threshold =
  1129     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  1130   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
  1131   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
  1133   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
  1134     if (gcs_are_young()) {
  1135       ergo_verbose5(ErgoConcCycles,
  1136         "request concurrent cycle initiation",
  1137         ergo_format_reason("occupancy higher than threshold")
  1138         ergo_format_byte("occupancy")
  1139         ergo_format_byte("allocation request")
  1140         ergo_format_byte_perc("threshold")
  1141         ergo_format_str("source"),
  1142         cur_used_bytes,
  1143         alloc_byte_size,
  1144         marking_initiating_used_threshold,
  1145         (double) InitiatingHeapOccupancyPercent,
  1146         source);
  1147       return true;
  1148     } else {
  1149       ergo_verbose5(ErgoConcCycles,
  1150         "do not request concurrent cycle initiation",
  1151         ergo_format_reason("still doing mixed collections")
  1152         ergo_format_byte("occupancy")
  1153         ergo_format_byte("allocation request")
  1154         ergo_format_byte_perc("threshold")
  1155         ergo_format_str("source"),
  1156         cur_used_bytes,
  1157         alloc_byte_size,
  1158         marking_initiating_used_threshold,
  1159         (double) InitiatingHeapOccupancyPercent,
  1160         source);
  1164   return false;
  1167 // Anything below that is considered to be zero
  1168 #define MIN_TIMER_GRANULARITY 0.0000001
  1170 void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
  1171   double end_time_sec = os::elapsedTime();
  1172   double elapsed_ms = _last_pause_time_ms;
  1173   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1174   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
  1175          "otherwise, the subtraction below does not make sense");
  1176   size_t rs_size =
  1177             _cur_collection_pause_used_regions_at_start - cset_region_length();
  1178   size_t cur_used_bytes = _g1->used();
  1179   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  1180   bool last_pause_included_initial_mark = false;
  1181   bool update_stats = !_g1->evacuation_failed();
  1182   set_no_of_gc_threads(no_of_gc_threads);
  1184 #ifndef PRODUCT
  1185   if (G1YoungSurvRateVerbose) {
  1186     gclog_or_tty->print_cr("");
  1187     _short_lived_surv_rate_group->print();
  1188     // do that for any other surv rate groups too
  1190 #endif // PRODUCT
  1192   last_pause_included_initial_mark = during_initial_mark_pause();
  1193   if (last_pause_included_initial_mark) {
  1194     record_concurrent_mark_init_end(0.0);
  1195   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
  1196     // Note: this might have already been set, if during the last
  1197     // pause we decided to start a cycle but at the beginning of
  1198     // this pause we decided to postpone it. That's OK.
  1199     set_initiate_conc_mark_if_possible();
  1202   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
  1203                           end_time_sec, false);
  1205   // This assert is exempted when we're doing parallel collection pauses,
  1206   // because the fragmentation caused by the parallel GC allocation buffers
  1207   // can lead to more memory being used during collection than was used
  1208   // before. Best leave this out until the fragmentation problem is fixed.
  1209   // Pauses in which evacuation failed can also lead to negative
  1210   // collections, since no space is reclaimed from a region containing an
  1211   // object whose evacuation failed.
  1212   // Further, we're now always doing parallel collection.  But I'm still
  1213   // leaving this here as a placeholder for a more precise assertion later.
  1214   // (DLD, 10/05.)
  1215   assert((true || parallel) // Always using GC LABs now.
  1216          || _g1->evacuation_failed()
  1217          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
  1218          "Negative collection");
  1220   size_t freed_bytes =
  1221     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  1222   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
  1224   double survival_fraction =
  1225     (double)surviving_bytes/
  1226     (double)_collection_set_bytes_used_before;
  1228   // These values are used to update the summary information that is
  1229   // displayed when TraceGen0Time is enabled, and are output as part
  1230   // of the PrintGCDetails output, in the non-parallel case.
  1232   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  1233   double satb_filtering_time = avg_value(_par_last_satb_filtering_times_ms);
  1234   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  1235   double update_rs_processed_buffers =
  1236     sum_of_values(_par_last_update_rs_processed_buffers);
  1237   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  1238   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  1239   double termination_time = avg_value(_par_last_termination_times_ms);
  1241   double known_time = ext_root_scan_time +
  1242                       satb_filtering_time +
  1243                       update_rs_time +
  1244                       scan_rs_time +
  1245                       obj_copy_time;
  1247   double other_time_ms = elapsed_ms;
  1249   // Subtract the SATB drain time. It's initialized to zero at the
  1250   // start of the pause and is updated during the pause if marking
  1251   // is in progress.
  1252   other_time_ms -= _cur_satb_drain_time_ms;
  1254   // Subtract the root region scanning wait time. It's initialized to
  1255   // zero at the start of the pause.
  1256   other_time_ms -= _root_region_scan_wait_time_ms;
  1258   if (parallel) {
  1259     other_time_ms -= _cur_collection_par_time_ms;
  1260   } else {
  1261     other_time_ms -= known_time;
  1264   // Subtract the time taken to clean the card table from the
  1265   // current value of "other time"
  1266   other_time_ms -= _cur_clear_ct_time_ms;
  1268   // Subtract the time spent completing marking in the collection
  1269   // set. Note if marking is not in progress during the pause
  1270   // the value of _mark_closure_time_ms will be zero.
  1271   other_time_ms -= _mark_closure_time_ms;
  1273   // TraceGen0Time and TraceGen1Time summary info updating.
  1274   _all_pause_times_ms->add(elapsed_ms);
  1276   if (update_stats) {
  1277     _summary->record_total_time_ms(elapsed_ms);
  1278     _summary->record_other_time_ms(other_time_ms);
  1280     MainBodySummary* body_summary = _summary->main_body_summary();
  1281     assert(body_summary != NULL, "should not be null!");
  1283     // This will be non-zero iff marking is currently in progress (i.e.
  1284     // _g1->mark_in_progress() == true) and the currrent pause was not
  1285     // an initial mark pause. Since the body_summary items are NumberSeqs,
  1286     // however, they have to be consistent and updated in lock-step with
  1287     // each other. Therefore we unconditionally record the SATB drain
  1288     // time - even if it's zero.
  1289     body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
  1290     body_summary->record_root_region_scan_wait_time_ms(
  1291                                                _root_region_scan_wait_time_ms);
  1293     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
  1294     body_summary->record_satb_filtering_time_ms(satb_filtering_time);
  1295     body_summary->record_update_rs_time_ms(update_rs_time);
  1296     body_summary->record_scan_rs_time_ms(scan_rs_time);
  1297     body_summary->record_obj_copy_time_ms(obj_copy_time);
  1299     if (parallel) {
  1300       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
  1301       body_summary->record_termination_time_ms(termination_time);
  1303       double parallel_known_time = known_time + termination_time;
  1304       double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
  1305       body_summary->record_parallel_other_time_ms(parallel_other_time);
  1308     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
  1309     body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
  1311     // We exempt parallel collection from this check because Alloc Buffer
  1312     // fragmentation can produce negative collections.  Same with evac
  1313     // failure.
  1314     // Further, we're now always doing parallel collection.  But I'm still
  1315     // leaving this here as a placeholder for a more precise assertion later.
  1316     // (DLD, 10/05.
  1317     assert((true || parallel)
  1318            || _g1->evacuation_failed()
  1319            || surviving_bytes <= _collection_set_bytes_used_before,
  1320            "Or else negative collection!");
  1322     // this is where we update the allocation rate of the application
  1323     double app_time_ms =
  1324       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
  1325     if (app_time_ms < MIN_TIMER_GRANULARITY) {
  1326       // This usually happens due to the timer not having the required
  1327       // granularity. Some Linuxes are the usual culprits.
  1328       // We'll just set it to something (arbitrarily) small.
  1329       app_time_ms = 1.0;
  1331     // We maintain the invariant that all objects allocated by mutator
  1332     // threads will be allocated out of eden regions. So, we can use
  1333     // the eden region number allocated since the previous GC to
  1334     // calculate the application's allocate rate. The only exception
  1335     // to that is humongous objects that are allocated separately. But
  1336     // given that humongous object allocations do not really affect
  1337     // either the pause's duration nor when the next pause will take
  1338     // place we can safely ignore them here.
  1339     size_t regions_allocated = eden_cset_region_length();
  1340     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
  1341     _alloc_rate_ms_seq->add(alloc_rate_ms);
  1343     double interval_ms =
  1344       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
  1345     update_recent_gc_times(end_time_sec, elapsed_ms);
  1346     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
  1347     if (recent_avg_pause_time_ratio() < 0.0 ||
  1348         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
  1349 #ifndef PRODUCT
  1350       // Dump info to allow post-facto debugging
  1351       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
  1352       gclog_or_tty->print_cr("-------------------------------------------");
  1353       gclog_or_tty->print_cr("Recent GC Times (ms):");
  1354       _recent_gc_times_ms->dump();
  1355       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
  1356       _recent_prev_end_times_for_all_gcs_sec->dump();
  1357       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
  1358                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
  1359       // In debug mode, terminate the JVM if the user wants to debug at this point.
  1360       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
  1361 #endif  // !PRODUCT
  1362       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
  1363       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1364       if (_recent_avg_pause_time_ratio < 0.0) {
  1365         _recent_avg_pause_time_ratio = 0.0;
  1366       } else {
  1367         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1368         _recent_avg_pause_time_ratio = 1.0;
  1373   for (int i = 0; i < _aux_num; ++i) {
  1374     if (_cur_aux_times_set[i]) {
  1375       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
  1379   // PrintGCDetails output
  1380   if (PrintGCDetails) {
  1381     bool print_marking_info =
  1382       _g1->mark_in_progress() && !last_pause_included_initial_mark;
  1384     gclog_or_tty->print_cr("%s, %1.8lf secs]",
  1385                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
  1386                            elapsed_ms / 1000.0);
  1388     if (_root_region_scan_wait_time_ms > 0.0) {
  1389       print_stats(1, "Root Region Scan Waiting", _root_region_scan_wait_time_ms);
  1391     if (parallel) {
  1392       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
  1393       print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
  1394       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
  1395       if (print_marking_info) {
  1396         print_par_stats(2, "SATB Filtering", _par_last_satb_filtering_times_ms);
  1398       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
  1399       print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
  1400       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
  1401       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
  1402       print_par_stats(2, "Termination", _par_last_termination_times_ms);
  1403       print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
  1404       print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
  1406       for (int i = 0; i < _parallel_gc_threads; i++) {
  1407         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];
  1409         double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
  1410                                    _par_last_satb_filtering_times_ms[i] +
  1411                                    _par_last_update_rs_times_ms[i] +
  1412                                    _par_last_scan_rs_times_ms[i] +
  1413                                    _par_last_obj_copy_times_ms[i] +
  1414                                    _par_last_termination_times_ms[i];
  1416         _par_last_gc_worker_other_times_ms[i] = _cur_collection_par_time_ms - worker_known_time;
  1418       print_par_stats(2, "GC Worker", _par_last_gc_worker_times_ms);
  1419       print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
  1420     } else {
  1421       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
  1422       if (print_marking_info) {
  1423         print_stats(1, "SATB Filtering", satb_filtering_time);
  1425       print_stats(1, "Update RS", update_rs_time);
  1426       print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
  1427       print_stats(1, "Scan RS", scan_rs_time);
  1428       print_stats(1, "Object Copying", obj_copy_time);
  1430     if (print_marking_info) {
  1431       print_stats(1, "Complete CSet Marking", _mark_closure_time_ms);
  1433     print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
  1434 #ifndef PRODUCT
  1435     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
  1436     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
  1437     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
  1438     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
  1439     if (_num_cc_clears > 0) {
  1440       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
  1442 #endif
  1443     print_stats(1, "Other", other_time_ms);
  1444     print_stats(2, "Choose CSet",
  1445                    (_recorded_young_cset_choice_time_ms +
  1446                     _recorded_non_young_cset_choice_time_ms));
  1447     print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
  1448     print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
  1449     print_stats(2, "Free CSet",
  1450                    (_recorded_young_free_cset_time_ms +
  1451                     _recorded_non_young_free_cset_time_ms));
  1453     for (int i = 0; i < _aux_num; ++i) {
  1454       if (_cur_aux_times_set[i]) {
  1455         char buffer[96];
  1456         sprintf(buffer, "Aux%d", i);
  1457         print_stats(1, buffer, _cur_aux_times_ms[i]);
  1462   // Update the efficiency-since-mark vars.
  1463   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  1464   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
  1465     // This usually happens due to the timer not having the required
  1466     // granularity. Some Linuxes are the usual culprits.
  1467     // We'll just set it to something (arbitrarily) small.
  1468     proc_ms = 1.0;
  1470   double cur_efficiency = (double) freed_bytes / proc_ms;
  1472   bool new_in_marking_window = _in_marking_window;
  1473   bool new_in_marking_window_im = false;
  1474   if (during_initial_mark_pause()) {
  1475     new_in_marking_window = true;
  1476     new_in_marking_window_im = true;
  1479   if (_last_young_gc) {
  1480     // This is supposed to to be the "last young GC" before we start
  1481     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
  1483     if (!last_pause_included_initial_mark) {
  1484       if (next_gc_should_be_mixed("start mixed GCs",
  1485                                   "do not start mixed GCs")) {
  1486         set_gcs_are_young(false);
  1488     } else {
  1489       ergo_verbose0(ErgoMixedGCs,
  1490                     "do not start mixed GCs",
  1491                     ergo_format_reason("concurrent cycle is about to start"));
  1493     _last_young_gc = false;
  1496   if (!_last_gc_was_young) {
  1497     // This is a mixed GC. Here we decide whether to continue doing
  1498     // mixed GCs or not.
  1500     if (!next_gc_should_be_mixed("continue mixed GCs",
  1501                                  "do not continue mixed GCs")) {
  1502       set_gcs_are_young(true);
  1506   if (_last_gc_was_young && !_during_marking) {
  1507     _young_gc_eff_seq->add(cur_efficiency);
  1510   _short_lived_surv_rate_group->start_adding_regions();
  1511   // do that for any other surv rate groupsx
  1513   if (update_stats) {
  1514     double pause_time_ms = elapsed_ms;
  1516     size_t diff = 0;
  1517     if (_max_pending_cards >= _pending_cards)
  1518       diff = _max_pending_cards - _pending_cards;
  1519     _pending_card_diff_seq->add((double) diff);
  1521     double cost_per_card_ms = 0.0;
  1522     if (_pending_cards > 0) {
  1523       cost_per_card_ms = update_rs_time / (double) _pending_cards;
  1524       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1527     size_t cards_scanned = _g1->cards_scanned();
  1529     double cost_per_entry_ms = 0.0;
  1530     if (cards_scanned > 10) {
  1531       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
  1532       if (_last_gc_was_young) {
  1533         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1534       } else {
  1535         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1539     if (_max_rs_lengths > 0) {
  1540       double cards_per_entry_ratio =
  1541         (double) cards_scanned / (double) _max_rs_lengths;
  1542       if (_last_gc_was_young) {
  1543         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1544       } else {
  1545         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1549     // This is defensive. For a while _max_rs_lengths could get
  1550     // smaller than _recorded_rs_lengths which was causing
  1551     // rs_length_diff to get very large and mess up the RSet length
  1552     // predictions. The reason was unsafe concurrent updates to the
  1553     // _inc_cset_recorded_rs_lengths field which the code below guards
  1554     // against (see CR 7118202). This bug has now been fixed (see CR
  1555     // 7119027). However, I'm still worried that
  1556     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1557     // inaccurate. The concurrent refinement thread calculates an
  1558     // RSet's length concurrently with other CR threads updating it
  1559     // which might cause it to calculate the length incorrectly (if,
  1560     // say, it's in mid-coarsening). So I'll leave in the defensive
  1561     // conditional below just in case.
  1562     size_t rs_length_diff = 0;
  1563     if (_max_rs_lengths > _recorded_rs_lengths) {
  1564       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1566     _rs_length_diff_seq->add((double) rs_length_diff);
  1568     size_t copied_bytes = surviving_bytes;
  1569     double cost_per_byte_ms = 0.0;
  1570     if (copied_bytes > 0) {
  1571       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
  1572       if (_in_marking_window) {
  1573         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1574       } else {
  1575         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1579     double all_other_time_ms = pause_time_ms -
  1580       (update_rs_time + scan_rs_time + obj_copy_time +
  1581        _mark_closure_time_ms + termination_time);
  1583     double young_other_time_ms = 0.0;
  1584     if (young_cset_region_length() > 0) {
  1585       young_other_time_ms =
  1586         _recorded_young_cset_choice_time_ms +
  1587         _recorded_young_free_cset_time_ms;
  1588       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1589                                           (double) young_cset_region_length());
  1591     double non_young_other_time_ms = 0.0;
  1592     if (old_cset_region_length() > 0) {
  1593       non_young_other_time_ms =
  1594         _recorded_non_young_cset_choice_time_ms +
  1595         _recorded_non_young_free_cset_time_ms;
  1597       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1598                                             (double) old_cset_region_length());
  1601     double constant_other_time_ms = all_other_time_ms -
  1602       (young_other_time_ms + non_young_other_time_ms);
  1603     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1605     double survival_ratio = 0.0;
  1606     if (_bytes_in_collection_set_before_gc > 0) {
  1607       survival_ratio = (double) _bytes_copied_during_gc /
  1608                                    (double) _bytes_in_collection_set_before_gc;
  1611     _pending_cards_seq->add((double) _pending_cards);
  1612     _rs_lengths_seq->add((double) _max_rs_lengths);
  1615   _in_marking_window = new_in_marking_window;
  1616   _in_marking_window_im = new_in_marking_window_im;
  1617   _free_regions_at_end_of_collection = _g1->free_regions();
  1618   update_young_list_target_length();
  1620   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1621   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1622   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
  1624   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
  1627 #define EXT_SIZE_FORMAT "%d%s"
  1628 #define EXT_SIZE_PARAMS(bytes)                                  \
  1629   byte_size_in_proper_unit((bytes)),                            \
  1630   proper_unit_for_byte_size((bytes))
  1632 void G1CollectorPolicy::print_heap_transition() {
  1633   if (PrintGCDetails) {
  1634     YoungList* young_list = _g1->young_list();
  1635     size_t eden_bytes = young_list->eden_used_bytes();
  1636     size_t survivor_bytes = young_list->survivor_used_bytes();
  1637     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
  1638     size_t used = _g1->used();
  1639     size_t capacity = _g1->capacity();
  1640     size_t eden_capacity =
  1641       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
  1643     gclog_or_tty->print_cr(
  1644       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1645       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1646       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1647       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1648       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
  1649       EXT_SIZE_PARAMS(_prev_eden_capacity),
  1650       EXT_SIZE_PARAMS(eden_bytes),
  1651       EXT_SIZE_PARAMS(eden_capacity),
  1652       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
  1653       EXT_SIZE_PARAMS(survivor_bytes),
  1654       EXT_SIZE_PARAMS(used_before_gc),
  1655       EXT_SIZE_PARAMS(_capacity_before_gc),
  1656       EXT_SIZE_PARAMS(used),
  1657       EXT_SIZE_PARAMS(capacity));
  1659     _prev_eden_capacity = eden_capacity;
  1660   } else if (PrintGC) {
  1661     _g1->print_size_transition(gclog_or_tty,
  1662                                _cur_collection_pause_used_at_start_bytes,
  1663                                _g1->used(), _g1->capacity());
  1667 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1668                                                      double update_rs_processed_buffers,
  1669                                                      double goal_ms) {
  1670   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1671   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1673   if (G1UseAdaptiveConcRefinement) {
  1674     const int k_gy = 3, k_gr = 6;
  1675     const double inc_k = 1.1, dec_k = 0.9;
  1677     int g = cg1r->green_zone();
  1678     if (update_rs_time > goal_ms) {
  1679       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1680     } else {
  1681       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1682         g = (int)MAX2(g * inc_k, g + 1.0);
  1685     // Change the refinement threads params
  1686     cg1r->set_green_zone(g);
  1687     cg1r->set_yellow_zone(g * k_gy);
  1688     cg1r->set_red_zone(g * k_gr);
  1689     cg1r->reinitialize_threads();
  1691     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1692     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1693                                     cg1r->yellow_zone());
  1694     // Change the barrier params
  1695     dcqs.set_process_completed_threshold(processing_threshold);
  1696     dcqs.set_max_completed_queue(cg1r->red_zone());
  1699   int curr_queue_size = dcqs.completed_buffers_num();
  1700   if (curr_queue_size >= cg1r->yellow_zone()) {
  1701     dcqs.set_completed_queue_padding(curr_queue_size);
  1702   } else {
  1703     dcqs.set_completed_queue_padding(0);
  1705   dcqs.notify_if_necessary();
  1708 double
  1709 G1CollectorPolicy::
  1710 predict_young_collection_elapsed_time_ms(size_t adjustment) {
  1711   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
  1713   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1714   size_t young_num = g1h->young_list()->length();
  1715   if (young_num == 0)
  1716     return 0.0;
  1718   young_num += adjustment;
  1719   size_t pending_cards = predict_pending_cards();
  1720   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
  1721                       predict_rs_length_diff();
  1722   size_t card_num;
  1723   if (gcs_are_young()) {
  1724     card_num = predict_young_card_num(rs_lengths);
  1725   } else {
  1726     card_num = predict_non_young_card_num(rs_lengths);
  1728   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  1729   double accum_yg_surv_rate =
  1730     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
  1732   size_t bytes_to_copy =
  1733     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
  1735   return
  1736     predict_rs_update_time_ms(pending_cards) +
  1737     predict_rs_scan_time_ms(card_num) +
  1738     predict_object_copy_time_ms(bytes_to_copy) +
  1739     predict_young_other_time_ms(young_num) +
  1740     predict_constant_other_time_ms();
  1743 double
  1744 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1745   size_t rs_length = predict_rs_length_diff();
  1746   size_t card_num;
  1747   if (gcs_are_young()) {
  1748     card_num = predict_young_card_num(rs_length);
  1749   } else {
  1750     card_num = predict_non_young_card_num(rs_length);
  1752   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1755 double
  1756 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1757                                                 size_t scanned_cards) {
  1758   return
  1759     predict_rs_update_time_ms(pending_cards) +
  1760     predict_rs_scan_time_ms(scanned_cards) +
  1761     predict_constant_other_time_ms();
  1764 double
  1765 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1766                                                   bool young) {
  1767   size_t rs_length = hr->rem_set()->occupied();
  1768   size_t card_num;
  1769   if (gcs_are_young()) {
  1770     card_num = predict_young_card_num(rs_length);
  1771   } else {
  1772     card_num = predict_non_young_card_num(rs_length);
  1774   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1776   double region_elapsed_time_ms =
  1777     predict_rs_scan_time_ms(card_num) +
  1778     predict_object_copy_time_ms(bytes_to_copy);
  1780   if (young)
  1781     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1782   else
  1783     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1785   return region_elapsed_time_ms;
  1788 size_t
  1789 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1790   size_t bytes_to_copy;
  1791   if (hr->is_marked())
  1792     bytes_to_copy = hr->max_live_bytes();
  1793   else {
  1794     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
  1795     int age = hr->age_in_surv_rate_group();
  1796     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1797     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1799   return bytes_to_copy;
  1802 void
  1803 G1CollectorPolicy::init_cset_region_lengths(size_t eden_cset_region_length,
  1804                                           size_t survivor_cset_region_length) {
  1805   _eden_cset_region_length     = eden_cset_region_length;
  1806   _survivor_cset_region_length = survivor_cset_region_length;
  1807   _old_cset_region_length      = 0;
  1810 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1811   _recorded_rs_lengths = rs_lengths;
  1814 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1815                                                double elapsed_ms) {
  1816   _recent_gc_times_ms->add(elapsed_ms);
  1817   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1818   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1821 size_t G1CollectorPolicy::expansion_amount() {
  1822   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1823   double threshold = _gc_overhead_perc;
  1824   if (recent_gc_overhead > threshold) {
  1825     // We will double the existing space, or take
  1826     // G1ExpandByPercentOfAvailable % of the available expansion
  1827     // space, whichever is smaller, bounded below by a minimum
  1828     // expansion (unless that's all that's left.)
  1829     const size_t min_expand_bytes = 1*M;
  1830     size_t reserved_bytes = _g1->max_capacity();
  1831     size_t committed_bytes = _g1->capacity();
  1832     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1833     size_t expand_bytes;
  1834     size_t expand_bytes_via_pct =
  1835       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1836     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1837     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1838     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1840     ergo_verbose5(ErgoHeapSizing,
  1841                   "attempt heap expansion",
  1842                   ergo_format_reason("recent GC overhead higher than "
  1843                                      "threshold after GC")
  1844                   ergo_format_perc("recent GC overhead")
  1845                   ergo_format_perc("threshold")
  1846                   ergo_format_byte("uncommitted")
  1847                   ergo_format_byte_perc("calculated expansion amount"),
  1848                   recent_gc_overhead, threshold,
  1849                   uncommitted_bytes,
  1850                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1852     return expand_bytes;
  1853   } else {
  1854     return 0;
  1858 class CountCSClosure: public HeapRegionClosure {
  1859   G1CollectorPolicy* _g1_policy;
  1860 public:
  1861   CountCSClosure(G1CollectorPolicy* g1_policy) :
  1862     _g1_policy(g1_policy) {}
  1863   bool doHeapRegion(HeapRegion* r) {
  1864     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
  1865     return false;
  1867 };
  1869 void G1CollectorPolicy::count_CS_bytes_used() {
  1870   CountCSClosure cs_closure(this);
  1871   _g1->collection_set_iterate(&cs_closure);
  1874 void G1CollectorPolicy::print_summary(int level,
  1875                                       const char* str,
  1876                                       NumberSeq* seq) const {
  1877   double sum = seq->sum();
  1878   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
  1879                 str, sum / 1000.0, seq->avg());
  1882 void G1CollectorPolicy::print_summary_sd(int level,
  1883                                          const char* str,
  1884                                          NumberSeq* seq) const {
  1885   print_summary(level, str, seq);
  1886   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  1887                 seq->num(), seq->sd(), seq->maximum());
  1890 void G1CollectorPolicy::check_other_times(int level,
  1891                                         NumberSeq* other_times_ms,
  1892                                         NumberSeq* calc_other_times_ms) const {
  1893   bool should_print = false;
  1894   LineBuffer buf(level + 2);
  1896   double max_sum = MAX2(fabs(other_times_ms->sum()),
  1897                         fabs(calc_other_times_ms->sum()));
  1898   double min_sum = MIN2(fabs(other_times_ms->sum()),
  1899                         fabs(calc_other_times_ms->sum()));
  1900   double sum_ratio = max_sum / min_sum;
  1901   if (sum_ratio > 1.1) {
  1902     should_print = true;
  1903     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  1906   double max_avg = MAX2(fabs(other_times_ms->avg()),
  1907                         fabs(calc_other_times_ms->avg()));
  1908   double min_avg = MIN2(fabs(other_times_ms->avg()),
  1909                         fabs(calc_other_times_ms->avg()));
  1910   double avg_ratio = max_avg / min_avg;
  1911   if (avg_ratio > 1.1) {
  1912     should_print = true;
  1913     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  1916   if (other_times_ms->sum() < -0.01) {
  1917     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  1920   if (other_times_ms->avg() < -0.01) {
  1921     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  1924   if (calc_other_times_ms->sum() < -0.01) {
  1925     should_print = true;
  1926     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  1929   if (calc_other_times_ms->avg() < -0.01) {
  1930     should_print = true;
  1931     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  1934   if (should_print)
  1935     print_summary(level, "Other(Calc)", calc_other_times_ms);
  1938 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
  1939   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1940   MainBodySummary*    body_summary = summary->main_body_summary();
  1941   if (summary->get_total_seq()->num() > 0) {
  1942     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
  1943     if (body_summary != NULL) {
  1944       print_summary(1, "Root Region Scan Wait", body_summary->get_root_region_scan_wait_seq());
  1945       if (parallel) {
  1946         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
  1947         print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  1948         print_summary(2, "SATB Filtering", body_summary->get_satb_filtering_seq());
  1949         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
  1950         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
  1951         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
  1952         print_summary(2, "Termination", body_summary->get_termination_seq());
  1953         print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
  1955           NumberSeq* other_parts[] = {
  1956             body_summary->get_ext_root_scan_seq(),
  1957             body_summary->get_satb_filtering_seq(),
  1958             body_summary->get_update_rs_seq(),
  1959             body_summary->get_scan_rs_seq(),
  1960             body_summary->get_obj_copy_seq(),
  1961             body_summary->get_termination_seq()
  1962           };
  1963           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
  1964                                         6, other_parts);
  1965           check_other_times(2, body_summary->get_parallel_other_seq(),
  1966                             &calc_other_times_ms);
  1968       } else {
  1969         print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  1970         print_summary(1, "SATB Filtering", body_summary->get_satb_filtering_seq());
  1971         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
  1972         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
  1973         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
  1976     print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
  1977     print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
  1978     print_summary(1, "Other", summary->get_other_seq());
  1980       if (body_summary != NULL) {
  1981         NumberSeq calc_other_times_ms;
  1982         if (parallel) {
  1983           // parallel
  1984           NumberSeq* other_parts[] = {
  1985             body_summary->get_satb_drain_seq(),
  1986             body_summary->get_root_region_scan_wait_seq(),
  1987             body_summary->get_parallel_seq(),
  1988             body_summary->get_clear_ct_seq()
  1989           };
  1990           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  1991                                           4, other_parts);
  1992         } else {
  1993           // serial
  1994           NumberSeq* other_parts[] = {
  1995             body_summary->get_satb_drain_seq(),
  1996             body_summary->get_root_region_scan_wait_seq(),
  1997             body_summary->get_update_rs_seq(),
  1998             body_summary->get_ext_root_scan_seq(),
  1999             body_summary->get_satb_filtering_seq(),
  2000             body_summary->get_scan_rs_seq(),
  2001             body_summary->get_obj_copy_seq()
  2002           };
  2003           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2004                                           7, other_parts);
  2006         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
  2009   } else {
  2010     LineBuffer(1).append_and_print_cr("none");
  2012   LineBuffer(0).append_and_print_cr("");
  2015 void G1CollectorPolicy::print_tracing_info() const {
  2016   if (TraceGen0Time) {
  2017     gclog_or_tty->print_cr("ALL PAUSES");
  2018     print_summary_sd(0, "Total", _all_pause_times_ms);
  2019     gclog_or_tty->print_cr("");
  2020     gclog_or_tty->print_cr("");
  2021     gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  2022     gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  2023     gclog_or_tty->print_cr("");
  2025     gclog_or_tty->print_cr("EVACUATION PAUSES");
  2026     print_summary(_summary);
  2028     gclog_or_tty->print_cr("MISC");
  2029     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
  2030     print_summary_sd(0, "Yields", _all_yield_times_ms);
  2031     for (int i = 0; i < _aux_num; ++i) {
  2032       if (_all_aux_times_ms[i].num() > 0) {
  2033         char buffer[96];
  2034         sprintf(buffer, "Aux%d", i);
  2035         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
  2039   if (TraceGen1Time) {
  2040     if (_all_full_gc_times_ms->num() > 0) {
  2041       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2042                  _all_full_gc_times_ms->num(),
  2043                  _all_full_gc_times_ms->sum() / 1000.0);
  2044       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
  2045       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2046                     _all_full_gc_times_ms->sd(),
  2047                     _all_full_gc_times_ms->maximum());
  2052 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  2053 #ifndef PRODUCT
  2054   _short_lived_surv_rate_group->print_surv_rate_summary();
  2055   // add this call for any other surv rate groups
  2056 #endif // PRODUCT
  2059 #ifndef PRODUCT
  2060 // for debugging, bit of a hack...
  2061 static char*
  2062 region_num_to_mbs(int length) {
  2063   static char buffer[64];
  2064   double bytes = (double) (length * HeapRegion::GrainBytes);
  2065   double mbs = bytes / (double) (1024 * 1024);
  2066   sprintf(buffer, "%7.2lfMB", mbs);
  2067   return buffer;
  2069 #endif // PRODUCT
  2071 size_t G1CollectorPolicy::max_regions(int purpose) {
  2072   switch (purpose) {
  2073     case GCAllocForSurvived:
  2074       return _max_survivor_regions;
  2075     case GCAllocForTenured:
  2076       return REGIONS_UNLIMITED;
  2077     default:
  2078       ShouldNotReachHere();
  2079       return REGIONS_UNLIMITED;
  2080   };
  2083 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  2084   size_t expansion_region_num = 0;
  2085   if (GCLockerEdenExpansionPercent > 0) {
  2086     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  2087     double expansion_region_num_d = perc * (double) _young_list_target_length;
  2088     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  2089     // less than 1.0) we'll get 1.
  2090     expansion_region_num = (size_t) ceil(expansion_region_num_d);
  2091   } else {
  2092     assert(expansion_region_num == 0, "sanity");
  2094   _young_list_max_length = _young_list_target_length + expansion_region_num;
  2095   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  2098 // Calculates survivor space parameters.
  2099 void G1CollectorPolicy::update_survivors_policy() {
  2100   double max_survivor_regions_d =
  2101                  (double) _young_list_target_length / (double) SurvivorRatio;
  2102   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  2103   // smaller than 1.0) we'll get 1.
  2104   _max_survivor_regions = (size_t) ceil(max_survivor_regions_d);
  2106   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  2107         HeapRegion::GrainWords * _max_survivor_regions);
  2110 #ifndef PRODUCT
  2111 class HRSortIndexIsOKClosure: public HeapRegionClosure {
  2112   CollectionSetChooser* _chooser;
  2113 public:
  2114   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
  2115     _chooser(chooser) {}
  2117   bool doHeapRegion(HeapRegion* r) {
  2118     if (!r->continuesHumongous()) {
  2119       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
  2121     return false;
  2123 };
  2125 bool G1CollectorPolicy::assertMarkedBytesDataOK() {
  2126   HRSortIndexIsOKClosure cl(_collectionSetChooser);
  2127   _g1->heap_region_iterate(&cl);
  2128   return true;
  2130 #endif
  2132 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  2133                                                      GCCause::Cause gc_cause) {
  2134   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2135   if (!during_cycle) {
  2136     ergo_verbose1(ErgoConcCycles,
  2137                   "request concurrent cycle initiation",
  2138                   ergo_format_reason("requested by GC cause")
  2139                   ergo_format_str("GC cause"),
  2140                   GCCause::to_string(gc_cause));
  2141     set_initiate_conc_mark_if_possible();
  2142     return true;
  2143   } else {
  2144     ergo_verbose1(ErgoConcCycles,
  2145                   "do not request concurrent cycle initiation",
  2146                   ergo_format_reason("concurrent cycle already in progress")
  2147                   ergo_format_str("GC cause"),
  2148                   GCCause::to_string(gc_cause));
  2149     return false;
  2153 void
  2154 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  2155   // We are about to decide on whether this pause will be an
  2156   // initial-mark pause.
  2158   // First, during_initial_mark_pause() should not be already set. We
  2159   // will set it here if we have to. However, it should be cleared by
  2160   // the end of the pause (it's only set for the duration of an
  2161   // initial-mark pause).
  2162   assert(!during_initial_mark_pause(), "pre-condition");
  2164   if (initiate_conc_mark_if_possible()) {
  2165     // We had noticed on a previous pause that the heap occupancy has
  2166     // gone over the initiating threshold and we should start a
  2167     // concurrent marking cycle. So we might initiate one.
  2169     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2170     if (!during_cycle) {
  2171       // The concurrent marking thread is not "during a cycle", i.e.,
  2172       // it has completed the last one. So we can go ahead and
  2173       // initiate a new cycle.
  2175       set_during_initial_mark_pause();
  2176       // We do not allow mixed GCs during marking.
  2177       if (!gcs_are_young()) {
  2178         set_gcs_are_young(true);
  2179         ergo_verbose0(ErgoMixedGCs,
  2180                       "end mixed GCs",
  2181                       ergo_format_reason("concurrent cycle is about to start"));
  2184       // And we can now clear initiate_conc_mark_if_possible() as
  2185       // we've already acted on it.
  2186       clear_initiate_conc_mark_if_possible();
  2188       ergo_verbose0(ErgoConcCycles,
  2189                   "initiate concurrent cycle",
  2190                   ergo_format_reason("concurrent cycle initiation requested"));
  2191     } else {
  2192       // The concurrent marking thread is still finishing up the
  2193       // previous cycle. If we start one right now the two cycles
  2194       // overlap. In particular, the concurrent marking thread might
  2195       // be in the process of clearing the next marking bitmap (which
  2196       // we will use for the next cycle if we start one). Starting a
  2197       // cycle now will be bad given that parts of the marking
  2198       // information might get cleared by the marking thread. And we
  2199       // cannot wait for the marking thread to finish the cycle as it
  2200       // periodically yields while clearing the next marking bitmap
  2201       // and, if it's in a yield point, it's waiting for us to
  2202       // finish. So, at this point we will not start a cycle and we'll
  2203       // let the concurrent marking thread complete the last one.
  2204       ergo_verbose0(ErgoConcCycles,
  2205                     "do not initiate concurrent cycle",
  2206                     ergo_format_reason("concurrent cycle already in progress"));
  2211 class KnownGarbageClosure: public HeapRegionClosure {
  2212   G1CollectedHeap* _g1h;
  2213   CollectionSetChooser* _hrSorted;
  2215 public:
  2216   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  2217     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
  2219   bool doHeapRegion(HeapRegion* r) {
  2220     // We only include humongous regions in collection
  2221     // sets when concurrent mark shows that their contained object is
  2222     // unreachable.
  2224     // Do we have any marking information for this region?
  2225     if (r->is_marked()) {
  2226       // We will skip any region that's currently used as an old GC
  2227       // alloc region (we should not consider those for collection
  2228       // before we fill them up).
  2229       if (_hrSorted->shouldAdd(r) && !_g1h->is_old_gc_alloc_region(r)) {
  2230         _hrSorted->addMarkedHeapRegion(r);
  2233     return false;
  2235 };
  2237 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  2238   G1CollectedHeap* _g1h;
  2239   CollectionSetChooser* _hrSorted;
  2240   jint _marked_regions_added;
  2241   size_t _reclaimable_bytes_added;
  2242   jint _chunk_size;
  2243   jint _cur_chunk_idx;
  2244   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  2245   int _worker;
  2246   int _invokes;
  2248   void get_new_chunk() {
  2249     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
  2250     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  2252   void add_region(HeapRegion* r) {
  2253     if (_cur_chunk_idx == _cur_chunk_end) {
  2254       get_new_chunk();
  2256     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
  2257     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
  2258     _marked_regions_added++;
  2259     _reclaimable_bytes_added += r->reclaimable_bytes();
  2260     _cur_chunk_idx++;
  2263 public:
  2264   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  2265                            jint chunk_size,
  2266                            int worker) :
  2267       _g1h(G1CollectedHeap::heap()),
  2268       _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
  2269       _marked_regions_added(0), _reclaimable_bytes_added(0),
  2270       _cur_chunk_idx(0), _cur_chunk_end(0), _invokes(0) { }
  2272   bool doHeapRegion(HeapRegion* r) {
  2273     // We only include humongous regions in collection
  2274     // sets when concurrent mark shows that their contained object is
  2275     // unreachable.
  2276     _invokes++;
  2278     // Do we have any marking information for this region?
  2279     if (r->is_marked()) {
  2280       // We will skip any region that's currently used as an old GC
  2281       // alloc region (we should not consider those for collection
  2282       // before we fill them up).
  2283       if (_hrSorted->shouldAdd(r) && !_g1h->is_old_gc_alloc_region(r)) {
  2284         add_region(r);
  2287     return false;
  2289   jint marked_regions_added() { return _marked_regions_added; }
  2290   size_t reclaimable_bytes_added() { return _reclaimable_bytes_added; }
  2291   int invokes() { return _invokes; }
  2292 };
  2294 class ParKnownGarbageTask: public AbstractGangTask {
  2295   CollectionSetChooser* _hrSorted;
  2296   jint _chunk_size;
  2297   G1CollectedHeap* _g1;
  2298 public:
  2299   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
  2300     AbstractGangTask("ParKnownGarbageTask"),
  2301     _hrSorted(hrSorted), _chunk_size(chunk_size),
  2302     _g1(G1CollectedHeap::heap()) { }
  2304   void work(uint worker_id) {
  2305     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted,
  2306                                                _chunk_size,
  2307                                                worker_id);
  2308     // Back to zero for the claim value.
  2309     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  2310                                          _g1->workers()->active_workers(),
  2311                                          HeapRegion::InitialClaimValue);
  2312     jint regions_added = parKnownGarbageCl.marked_regions_added();
  2313     size_t reclaimable_bytes_added =
  2314                                    parKnownGarbageCl.reclaimable_bytes_added();
  2315     _hrSorted->updateTotals(regions_added, reclaimable_bytes_added);
  2316     if (G1PrintParCleanupStats) {
  2317       gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
  2318                  worker_id, parKnownGarbageCl.invokes(), regions_added);
  2321 };
  2323 void
  2324 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  2325   double start_sec;
  2326   if (G1PrintParCleanupStats) {
  2327     start_sec = os::elapsedTime();
  2330   _collectionSetChooser->clearMarkedHeapRegions();
  2331   double clear_marked_end_sec;
  2332   if (G1PrintParCleanupStats) {
  2333     clear_marked_end_sec = os::elapsedTime();
  2334     gclog_or_tty->print_cr("  clear marked regions: %8.3f ms.",
  2335                            (clear_marked_end_sec - start_sec) * 1000.0);
  2338   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2339     const size_t OverpartitionFactor = 4;
  2340     size_t WorkUnit;
  2341     // The use of MinChunkSize = 8 in the original code
  2342     // causes some assertion failures when the total number of
  2343     // region is less than 8.  The code here tries to fix that.
  2344     // Should the original code also be fixed?
  2345     if (no_of_gc_threads > 0) {
  2346       const size_t MinWorkUnit =
  2347         MAX2(_g1->n_regions() / no_of_gc_threads, (size_t) 1U);
  2348       WorkUnit =
  2349         MAX2(_g1->n_regions() / (no_of_gc_threads * OverpartitionFactor),
  2350              MinWorkUnit);
  2351     } else {
  2352       assert(no_of_gc_threads > 0,
  2353         "The active gc workers should be greater than 0");
  2354       // In a product build do something reasonable to avoid a crash.
  2355       const size_t MinWorkUnit =
  2356         MAX2(_g1->n_regions() / ParallelGCThreads, (size_t) 1U);
  2357       WorkUnit =
  2358         MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
  2359              MinWorkUnit);
  2361     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
  2362                                                              WorkUnit);
  2363     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  2364                                             (int) WorkUnit);
  2365     _g1->workers()->run_task(&parKnownGarbageTask);
  2367     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2368            "sanity check");
  2369   } else {
  2370     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  2371     _g1->heap_region_iterate(&knownGarbagecl);
  2373   double known_garbage_end_sec;
  2374   if (G1PrintParCleanupStats) {
  2375     known_garbage_end_sec = os::elapsedTime();
  2376     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
  2377                       (known_garbage_end_sec - clear_marked_end_sec) * 1000.0);
  2380   _collectionSetChooser->sortMarkedHeapRegions();
  2381   double end_sec = os::elapsedTime();
  2382   if (G1PrintParCleanupStats) {
  2383     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
  2384                            (end_sec - known_garbage_end_sec) * 1000.0);
  2387   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  2388   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  2389   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  2390   _prev_collection_pause_end_ms += elapsed_time_ms;
  2391   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  2394 // Add the heap region at the head of the non-incremental collection set
  2395 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  2396   assert(_inc_cset_build_state == Active, "Precondition");
  2397   assert(!hr->is_young(), "non-incremental add of young region");
  2399   assert(!hr->in_collection_set(), "should not already be in the CSet");
  2400   hr->set_in_collection_set(true);
  2401   hr->set_next_in_collection_set(_collection_set);
  2402   _collection_set = hr;
  2403   _collection_set_bytes_used_before += hr->used();
  2404   _g1->register_region_with_in_cset_fast_test(hr);
  2405   size_t rs_length = hr->rem_set()->occupied();
  2406   _recorded_rs_lengths += rs_length;
  2407   _old_cset_region_length += 1;
  2410 // Initialize the per-collection-set information
  2411 void G1CollectorPolicy::start_incremental_cset_building() {
  2412   assert(_inc_cset_build_state == Inactive, "Precondition");
  2414   _inc_cset_head = NULL;
  2415   _inc_cset_tail = NULL;
  2416   _inc_cset_bytes_used_before = 0;
  2418   _inc_cset_max_finger = 0;
  2419   _inc_cset_recorded_rs_lengths = 0;
  2420   _inc_cset_recorded_rs_lengths_diffs = 0;
  2421   _inc_cset_predicted_elapsed_time_ms = 0.0;
  2422   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  2423   _inc_cset_build_state = Active;
  2426 void G1CollectorPolicy::finalize_incremental_cset_building() {
  2427   assert(_inc_cset_build_state == Active, "Precondition");
  2428   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  2430   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  2431   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  2432   // that adds a new region to the CSet. Further updates by the
  2433   // concurrent refinement thread that samples the young RSet lengths
  2434   // are accumulated in the *_diffs fields. Here we add the diffs to
  2435   // the "main" fields.
  2437   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  2438     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  2439   } else {
  2440     // This is defensive. The diff should in theory be always positive
  2441     // as RSets can only grow between GCs. However, given that we
  2442     // sample their size concurrently with other threads updating them
  2443     // it's possible that we might get the wrong size back, which
  2444     // could make the calculations somewhat inaccurate.
  2445     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  2446     if (_inc_cset_recorded_rs_lengths >= diffs) {
  2447       _inc_cset_recorded_rs_lengths -= diffs;
  2448     } else {
  2449       _inc_cset_recorded_rs_lengths = 0;
  2452   _inc_cset_predicted_elapsed_time_ms +=
  2453                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  2455   _inc_cset_recorded_rs_lengths_diffs = 0;
  2456   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  2459 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  2460   // This routine is used when:
  2461   // * adding survivor regions to the incremental cset at the end of an
  2462   //   evacuation pause,
  2463   // * adding the current allocation region to the incremental cset
  2464   //   when it is retired, and
  2465   // * updating existing policy information for a region in the
  2466   //   incremental cset via young list RSet sampling.
  2467   // Therefore this routine may be called at a safepoint by the
  2468   // VM thread, or in-between safepoints by mutator threads (when
  2469   // retiring the current allocation region) or a concurrent
  2470   // refine thread (RSet sampling).
  2472   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2473   size_t used_bytes = hr->used();
  2474   _inc_cset_recorded_rs_lengths += rs_length;
  2475   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  2476   _inc_cset_bytes_used_before += used_bytes;
  2478   // Cache the values we have added to the aggregated informtion
  2479   // in the heap region in case we have to remove this region from
  2480   // the incremental collection set, or it is updated by the
  2481   // rset sampling code
  2482   hr->set_recorded_rs_length(rs_length);
  2483   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  2486 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  2487                                                      size_t new_rs_length) {
  2488   // Update the CSet information that is dependent on the new RS length
  2489   assert(hr->is_young(), "Precondition");
  2490   assert(!SafepointSynchronize::is_at_safepoint(),
  2491                                                "should not be at a safepoint");
  2493   // We could have updated _inc_cset_recorded_rs_lengths and
  2494   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  2495   // that atomically, as this code is executed by a concurrent
  2496   // refinement thread, potentially concurrently with a mutator thread
  2497   // allocating a new region and also updating the same fields. To
  2498   // avoid the atomic operations we accumulate these updates on two
  2499   // separate fields (*_diffs) and we'll just add them to the "main"
  2500   // fields at the start of a GC.
  2502   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  2503   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  2504   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  2506   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  2507   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2508   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  2509   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  2511   hr->set_recorded_rs_length(new_rs_length);
  2512   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  2515 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  2516   assert(hr->is_young(), "invariant");
  2517   assert(hr->young_index_in_cset() > -1, "should have already been set");
  2518   assert(_inc_cset_build_state == Active, "Precondition");
  2520   // We need to clear and set the cached recorded/cached collection set
  2521   // information in the heap region here (before the region gets added
  2522   // to the collection set). An individual heap region's cached values
  2523   // are calculated, aggregated with the policy collection set info,
  2524   // and cached in the heap region here (initially) and (subsequently)
  2525   // by the Young List sampling code.
  2527   size_t rs_length = hr->rem_set()->occupied();
  2528   add_to_incremental_cset_info(hr, rs_length);
  2530   HeapWord* hr_end = hr->end();
  2531   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  2533   assert(!hr->in_collection_set(), "invariant");
  2534   hr->set_in_collection_set(true);
  2535   assert( hr->next_in_collection_set() == NULL, "invariant");
  2537   _g1->register_region_with_in_cset_fast_test(hr);
  2540 // Add the region at the RHS of the incremental cset
  2541 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  2542   // We should only ever be appending survivors at the end of a pause
  2543   assert( hr->is_survivor(), "Logic");
  2545   // Do the 'common' stuff
  2546   add_region_to_incremental_cset_common(hr);
  2548   // Now add the region at the right hand side
  2549   if (_inc_cset_tail == NULL) {
  2550     assert(_inc_cset_head == NULL, "invariant");
  2551     _inc_cset_head = hr;
  2552   } else {
  2553     _inc_cset_tail->set_next_in_collection_set(hr);
  2555   _inc_cset_tail = hr;
  2558 // Add the region to the LHS of the incremental cset
  2559 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  2560   // Survivors should be added to the RHS at the end of a pause
  2561   assert(!hr->is_survivor(), "Logic");
  2563   // Do the 'common' stuff
  2564   add_region_to_incremental_cset_common(hr);
  2566   // Add the region at the left hand side
  2567   hr->set_next_in_collection_set(_inc_cset_head);
  2568   if (_inc_cset_head == NULL) {
  2569     assert(_inc_cset_tail == NULL, "Invariant");
  2570     _inc_cset_tail = hr;
  2572   _inc_cset_head = hr;
  2575 #ifndef PRODUCT
  2576 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  2577   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  2579   st->print_cr("\nCollection_set:");
  2580   HeapRegion* csr = list_head;
  2581   while (csr != NULL) {
  2582     HeapRegion* next = csr->next_in_collection_set();
  2583     assert(csr->in_collection_set(), "bad CS");
  2584     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
  2585                  "age: %4d, y: %d, surv: %d",
  2586                         csr->bottom(), csr->end(),
  2587                         csr->top(),
  2588                         csr->prev_top_at_mark_start(),
  2589                         csr->next_top_at_mark_start(),
  2590                         csr->top_at_conc_mark_count(),
  2591                         csr->age_in_surv_rate_group_cond(),
  2592                         csr->is_young(),
  2593                         csr->is_survivor());
  2594     csr = next;
  2597 #endif // !PRODUCT
  2599 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
  2600                                                 const char* false_action_str) {
  2601   CollectionSetChooser* cset_chooser = _collectionSetChooser;
  2602   if (cset_chooser->isEmpty()) {
  2603     ergo_verbose0(ErgoMixedGCs,
  2604                   false_action_str,
  2605                   ergo_format_reason("candidate old regions not available"));
  2606     return false;
  2608   size_t reclaimable_bytes = cset_chooser->remainingReclaimableBytes();
  2609   size_t capacity_bytes = _g1->capacity();
  2610   double perc = (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
  2611   double threshold = (double) G1HeapWastePercent;
  2612   if (perc < threshold) {
  2613     ergo_verbose4(ErgoMixedGCs,
  2614               false_action_str,
  2615               ergo_format_reason("reclaimable percentage lower than threshold")
  2616               ergo_format_region("candidate old regions")
  2617               ergo_format_byte_perc("reclaimable")
  2618               ergo_format_perc("threshold"),
  2619               cset_chooser->remainingRegions(),
  2620               reclaimable_bytes, perc, threshold);
  2621     return false;
  2624   ergo_verbose4(ErgoMixedGCs,
  2625                 true_action_str,
  2626                 ergo_format_reason("candidate old regions available")
  2627                 ergo_format_region("candidate old regions")
  2628                 ergo_format_byte_perc("reclaimable")
  2629                 ergo_format_perc("threshold"),
  2630                 cset_chooser->remainingRegions(),
  2631                 reclaimable_bytes, perc, threshold);
  2632   return true;
  2635 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
  2636   // Set this here - in case we're not doing young collections.
  2637   double non_young_start_time_sec = os::elapsedTime();
  2639   YoungList* young_list = _g1->young_list();
  2640   finalize_incremental_cset_building();
  2642   guarantee(target_pause_time_ms > 0.0,
  2643             err_msg("target_pause_time_ms = %1.6lf should be positive",
  2644                     target_pause_time_ms));
  2645   guarantee(_collection_set == NULL, "Precondition");
  2647   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  2648   double predicted_pause_time_ms = base_time_ms;
  2649   double time_remaining_ms = target_pause_time_ms - base_time_ms;
  2651   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2652                 "start choosing CSet",
  2653                 ergo_format_ms("predicted base time")
  2654                 ergo_format_ms("remaining time")
  2655                 ergo_format_ms("target pause time"),
  2656                 base_time_ms, time_remaining_ms, target_pause_time_ms);
  2658   HeapRegion* hr;
  2659   double young_start_time_sec = os::elapsedTime();
  2661   _collection_set_bytes_used_before = 0;
  2662   _last_gc_was_young = gcs_are_young() ? true : false;
  2664   if (_last_gc_was_young) {
  2665     ++_young_pause_num;
  2666   } else {
  2667     ++_mixed_pause_num;
  2670   // The young list is laid with the survivor regions from the previous
  2671   // pause are appended to the RHS of the young list, i.e.
  2672   //   [Newly Young Regions ++ Survivors from last pause].
  2674   size_t survivor_region_length = young_list->survivor_length();
  2675   size_t eden_region_length = young_list->length() - survivor_region_length;
  2676   init_cset_region_lengths(eden_region_length, survivor_region_length);
  2677   hr = young_list->first_survivor_region();
  2678   while (hr != NULL) {
  2679     assert(hr->is_survivor(), "badly formed young list");
  2680     hr->set_young();
  2681     hr = hr->get_next_young_region();
  2684   // Clear the fields that point to the survivor list - they are all young now.
  2685   young_list->clear_survivors();
  2687   _collection_set = _inc_cset_head;
  2688   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  2689   time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  2690   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  2692   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2693                 "add young regions to CSet",
  2694                 ergo_format_region("eden")
  2695                 ergo_format_region("survivors")
  2696                 ergo_format_ms("predicted young region time"),
  2697                 eden_region_length, survivor_region_length,
  2698                 _inc_cset_predicted_elapsed_time_ms);
  2700   // The number of recorded young regions is the incremental
  2701   // collection set's current size
  2702   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  2704   double young_end_time_sec = os::elapsedTime();
  2705   _recorded_young_cset_choice_time_ms =
  2706     (young_end_time_sec - young_start_time_sec) * 1000.0;
  2708   // We are doing young collections so reset this.
  2709   non_young_start_time_sec = young_end_time_sec;
  2711   if (!gcs_are_young()) {
  2712     CollectionSetChooser* cset_chooser = _collectionSetChooser;
  2713     assert(cset_chooser->verify(), "CSet Chooser verification - pre");
  2714     const size_t min_old_cset_length = cset_chooser->calcMinOldCSetLength();
  2715     const size_t max_old_cset_length = cset_chooser->calcMaxOldCSetLength();
  2717     size_t expensive_region_num = 0;
  2718     bool check_time_remaining = adaptive_young_list_length();
  2719     HeapRegion* hr = cset_chooser->peek();
  2720     while (hr != NULL) {
  2721       if (old_cset_region_length() >= max_old_cset_length) {
  2722         // Added maximum number of old regions to the CSet.
  2723         ergo_verbose2(ErgoCSetConstruction,
  2724                       "finish adding old regions to CSet",
  2725                       ergo_format_reason("old CSet region num reached max")
  2726                       ergo_format_region("old")
  2727                       ergo_format_region("max"),
  2728                       old_cset_region_length(), max_old_cset_length);
  2729         break;
  2732       double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
  2733       if (check_time_remaining) {
  2734         if (predicted_time_ms > time_remaining_ms) {
  2735           // Too expensive for the current CSet.
  2737           if (old_cset_region_length() >= min_old_cset_length) {
  2738             // We have added the minimum number of old regions to the CSet,
  2739             // we are done with this CSet.
  2740             ergo_verbose4(ErgoCSetConstruction,
  2741                           "finish adding old regions to CSet",
  2742                           ergo_format_reason("predicted time is too high")
  2743                           ergo_format_ms("predicted time")
  2744                           ergo_format_ms("remaining time")
  2745                           ergo_format_region("old")
  2746                           ergo_format_region("min"),
  2747                           predicted_time_ms, time_remaining_ms,
  2748                           old_cset_region_length(), min_old_cset_length);
  2749             break;
  2752           // We'll add it anyway given that we haven't reached the
  2753           // minimum number of old regions.
  2754           expensive_region_num += 1;
  2756       } else {
  2757         if (old_cset_region_length() >= min_old_cset_length) {
  2758           // In the non-auto-tuning case, we'll finish adding regions
  2759           // to the CSet if we reach the minimum.
  2760           ergo_verbose2(ErgoCSetConstruction,
  2761                         "finish adding old regions to CSet",
  2762                         ergo_format_reason("old CSet region num reached min")
  2763                         ergo_format_region("old")
  2764                         ergo_format_region("min"),
  2765                         old_cset_region_length(), min_old_cset_length);
  2766           break;
  2770       // We will add this region to the CSet.
  2771       time_remaining_ms -= predicted_time_ms;
  2772       predicted_pause_time_ms += predicted_time_ms;
  2773       cset_chooser->remove_and_move_to_next(hr);
  2774       _g1->old_set_remove(hr);
  2775       add_old_region_to_cset(hr);
  2777       hr = cset_chooser->peek();
  2779     if (hr == NULL) {
  2780       ergo_verbose0(ErgoCSetConstruction,
  2781                     "finish adding old regions to CSet",
  2782                     ergo_format_reason("candidate old regions not available"));
  2785     if (expensive_region_num > 0) {
  2786       // We print the information once here at the end, predicated on
  2787       // whether we added any apparently expensive regions or not, to
  2788       // avoid generating output per region.
  2789       ergo_verbose4(ErgoCSetConstruction,
  2790                     "added expensive regions to CSet",
  2791                     ergo_format_reason("old CSet region num not reached min")
  2792                     ergo_format_region("old")
  2793                     ergo_format_region("expensive")
  2794                     ergo_format_region("min")
  2795                     ergo_format_ms("remaining time"),
  2796                     old_cset_region_length(),
  2797                     expensive_region_num,
  2798                     min_old_cset_length,
  2799                     time_remaining_ms);
  2802     assert(cset_chooser->verify(), "CSet Chooser verification - post");
  2805   stop_incremental_cset_building();
  2807   count_CS_bytes_used();
  2809   ergo_verbose5(ErgoCSetConstruction,
  2810                 "finish choosing CSet",
  2811                 ergo_format_region("eden")
  2812                 ergo_format_region("survivors")
  2813                 ergo_format_region("old")
  2814                 ergo_format_ms("predicted pause time")
  2815                 ergo_format_ms("target pause time"),
  2816                 eden_region_length, survivor_region_length,
  2817                 old_cset_region_length(),
  2818                 predicted_pause_time_ms, target_pause_time_ms);
  2820   double non_young_end_time_sec = os::elapsedTime();
  2821   _recorded_non_young_cset_choice_time_ms =
  2822     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;

mercurial