src/share/vm/opto/compile.cpp

Fri, 15 Nov 2013 11:05:32 -0800

author
goetz
date
Fri, 15 Nov 2013 11:05:32 -0800
changeset 6479
2113136690bc
parent 6472
2b8e28fdf503
child 6478
044b28168e20
permissions
-rw-r--r--

8024921: PPC64 (part 113): Extend Load and Store nodes to know about memory ordering
Summary: Add a field to C2 LoadNode and StoreNode classes which indicates whether the load/store should do an acquire/release on platforms which support it.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "code/exceptionHandlerTable.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "compiler/oopMap.hpp"
    34 #include "opto/addnode.hpp"
    35 #include "opto/block.hpp"
    36 #include "opto/c2compiler.hpp"
    37 #include "opto/callGenerator.hpp"
    38 #include "opto/callnode.hpp"
    39 #include "opto/cfgnode.hpp"
    40 #include "opto/chaitin.hpp"
    41 #include "opto/compile.hpp"
    42 #include "opto/connode.hpp"
    43 #include "opto/divnode.hpp"
    44 #include "opto/escape.hpp"
    45 #include "opto/idealGraphPrinter.hpp"
    46 #include "opto/loopnode.hpp"
    47 #include "opto/machnode.hpp"
    48 #include "opto/macro.hpp"
    49 #include "opto/matcher.hpp"
    50 #include "opto/mathexactnode.hpp"
    51 #include "opto/memnode.hpp"
    52 #include "opto/mulnode.hpp"
    53 #include "opto/node.hpp"
    54 #include "opto/opcodes.hpp"
    55 #include "opto/output.hpp"
    56 #include "opto/parse.hpp"
    57 #include "opto/phaseX.hpp"
    58 #include "opto/rootnode.hpp"
    59 #include "opto/runtime.hpp"
    60 #include "opto/stringopts.hpp"
    61 #include "opto/type.hpp"
    62 #include "opto/vectornode.hpp"
    63 #include "runtime/arguments.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/stubRoutines.hpp"
    66 #include "runtime/timer.hpp"
    67 #include "trace/tracing.hpp"
    68 #include "utilities/copy.hpp"
    69 #ifdef TARGET_ARCH_MODEL_x86_32
    70 # include "adfiles/ad_x86_32.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_MODEL_x86_64
    73 # include "adfiles/ad_x86_64.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_MODEL_sparc
    76 # include "adfiles/ad_sparc.hpp"
    77 #endif
    78 #ifdef TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_MODEL_arm
    82 # include "adfiles/ad_arm.hpp"
    83 #endif
    84 #ifdef TARGET_ARCH_MODEL_ppc_32
    85 # include "adfiles/ad_ppc_32.hpp"
    86 #endif
    87 #ifdef TARGET_ARCH_MODEL_ppc_64
    88 # include "adfiles/ad_ppc_64.hpp"
    89 #endif
    92 // -------------------- Compile::mach_constant_base_node -----------------------
    93 // Constant table base node singleton.
    94 MachConstantBaseNode* Compile::mach_constant_base_node() {
    95   if (_mach_constant_base_node == NULL) {
    96     _mach_constant_base_node = new (C) MachConstantBaseNode();
    97     _mach_constant_base_node->add_req(C->root());
    98   }
    99   return _mach_constant_base_node;
   100 }
   103 /// Support for intrinsics.
   105 // Return the index at which m must be inserted (or already exists).
   106 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   107 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   108 #ifdef ASSERT
   109   for (int i = 1; i < _intrinsics->length(); i++) {
   110     CallGenerator* cg1 = _intrinsics->at(i-1);
   111     CallGenerator* cg2 = _intrinsics->at(i);
   112     assert(cg1->method() != cg2->method()
   113            ? cg1->method()     < cg2->method()
   114            : cg1->is_virtual() < cg2->is_virtual(),
   115            "compiler intrinsics list must stay sorted");
   116   }
   117 #endif
   118   // Binary search sorted list, in decreasing intervals [lo, hi].
   119   int lo = 0, hi = _intrinsics->length()-1;
   120   while (lo <= hi) {
   121     int mid = (uint)(hi + lo) / 2;
   122     ciMethod* mid_m = _intrinsics->at(mid)->method();
   123     if (m < mid_m) {
   124       hi = mid-1;
   125     } else if (m > mid_m) {
   126       lo = mid+1;
   127     } else {
   128       // look at minor sort key
   129       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   130       if (is_virtual < mid_virt) {
   131         hi = mid-1;
   132       } else if (is_virtual > mid_virt) {
   133         lo = mid+1;
   134       } else {
   135         return mid;  // exact match
   136       }
   137     }
   138   }
   139   return lo;  // inexact match
   140 }
   142 void Compile::register_intrinsic(CallGenerator* cg) {
   143   if (_intrinsics == NULL) {
   144     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
   145   }
   146   // This code is stolen from ciObjectFactory::insert.
   147   // Really, GrowableArray should have methods for
   148   // insert_at, remove_at, and binary_search.
   149   int len = _intrinsics->length();
   150   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   151   if (index == len) {
   152     _intrinsics->append(cg);
   153   } else {
   154 #ifdef ASSERT
   155     CallGenerator* oldcg = _intrinsics->at(index);
   156     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   157 #endif
   158     _intrinsics->append(_intrinsics->at(len-1));
   159     int pos;
   160     for (pos = len-2; pos >= index; pos--) {
   161       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   162     }
   163     _intrinsics->at_put(index, cg);
   164   }
   165   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   166 }
   168 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   169   assert(m->is_loaded(), "don't try this on unloaded methods");
   170   if (_intrinsics != NULL) {
   171     int index = intrinsic_insertion_index(m, is_virtual);
   172     if (index < _intrinsics->length()
   173         && _intrinsics->at(index)->method() == m
   174         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   175       return _intrinsics->at(index);
   176     }
   177   }
   178   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   179   if (m->intrinsic_id() != vmIntrinsics::_none &&
   180       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   181     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   182     if (cg != NULL) {
   183       // Save it for next time:
   184       register_intrinsic(cg);
   185       return cg;
   186     } else {
   187       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   188     }
   189   }
   190   return NULL;
   191 }
   193 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   194 // in library_call.cpp.
   197 #ifndef PRODUCT
   198 // statistics gathering...
   200 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   201 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   203 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   204   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   205   int oflags = _intrinsic_hist_flags[id];
   206   assert(flags != 0, "what happened?");
   207   if (is_virtual) {
   208     flags |= _intrinsic_virtual;
   209   }
   210   bool changed = (flags != oflags);
   211   if ((flags & _intrinsic_worked) != 0) {
   212     juint count = (_intrinsic_hist_count[id] += 1);
   213     if (count == 1) {
   214       changed = true;           // first time
   215     }
   216     // increment the overall count also:
   217     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   218   }
   219   if (changed) {
   220     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   221       // Something changed about the intrinsic's virtuality.
   222       if ((flags & _intrinsic_virtual) != 0) {
   223         // This is the first use of this intrinsic as a virtual call.
   224         if (oflags != 0) {
   225           // We already saw it as a non-virtual, so note both cases.
   226           flags |= _intrinsic_both;
   227         }
   228       } else if ((oflags & _intrinsic_both) == 0) {
   229         // This is the first use of this intrinsic as a non-virtual
   230         flags |= _intrinsic_both;
   231       }
   232     }
   233     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   234   }
   235   // update the overall flags also:
   236   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   237   return changed;
   238 }
   240 static char* format_flags(int flags, char* buf) {
   241   buf[0] = 0;
   242   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   243   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   244   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   245   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   246   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   247   if (buf[0] == 0)  strcat(buf, ",");
   248   assert(buf[0] == ',', "must be");
   249   return &buf[1];
   250 }
   252 void Compile::print_intrinsic_statistics() {
   253   char flagsbuf[100];
   254   ttyLocker ttyl;
   255   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   256   tty->print_cr("Compiler intrinsic usage:");
   257   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   258   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   259   #define PRINT_STAT_LINE(name, c, f) \
   260     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   261   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   262     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   263     int   flags = _intrinsic_hist_flags[id];
   264     juint count = _intrinsic_hist_count[id];
   265     if ((flags | count) != 0) {
   266       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   267     }
   268   }
   269   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   270   if (xtty != NULL)  xtty->tail("statistics");
   271 }
   273 void Compile::print_statistics() {
   274   { ttyLocker ttyl;
   275     if (xtty != NULL)  xtty->head("statistics type='opto'");
   276     Parse::print_statistics();
   277     PhaseCCP::print_statistics();
   278     PhaseRegAlloc::print_statistics();
   279     Scheduling::print_statistics();
   280     PhasePeephole::print_statistics();
   281     PhaseIdealLoop::print_statistics();
   282     if (xtty != NULL)  xtty->tail("statistics");
   283   }
   284   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   285     // put this under its own <statistics> element.
   286     print_intrinsic_statistics();
   287   }
   288 }
   289 #endif //PRODUCT
   291 // Support for bundling info
   292 Bundle* Compile::node_bundling(const Node *n) {
   293   assert(valid_bundle_info(n), "oob");
   294   return &_node_bundling_base[n->_idx];
   295 }
   297 bool Compile::valid_bundle_info(const Node *n) {
   298   return (_node_bundling_limit > n->_idx);
   299 }
   302 void Compile::gvn_replace_by(Node* n, Node* nn) {
   303   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   304     Node* use = n->last_out(i);
   305     bool is_in_table = initial_gvn()->hash_delete(use);
   306     uint uses_found = 0;
   307     for (uint j = 0; j < use->len(); j++) {
   308       if (use->in(j) == n) {
   309         if (j < use->req())
   310           use->set_req(j, nn);
   311         else
   312           use->set_prec(j, nn);
   313         uses_found++;
   314       }
   315     }
   316     if (is_in_table) {
   317       // reinsert into table
   318       initial_gvn()->hash_find_insert(use);
   319     }
   320     record_for_igvn(use);
   321     i -= uses_found;    // we deleted 1 or more copies of this edge
   322   }
   323 }
   326 static inline bool not_a_node(const Node* n) {
   327   if (n == NULL)                   return true;
   328   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
   329   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
   330   return false;
   331 }
   333 // Identify all nodes that are reachable from below, useful.
   334 // Use breadth-first pass that records state in a Unique_Node_List,
   335 // recursive traversal is slower.
   336 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   337   int estimated_worklist_size = unique();
   338   useful.map( estimated_worklist_size, NULL );  // preallocate space
   340   // Initialize worklist
   341   if (root() != NULL)     { useful.push(root()); }
   342   // If 'top' is cached, declare it useful to preserve cached node
   343   if( cached_top_node() ) { useful.push(cached_top_node()); }
   345   // Push all useful nodes onto the list, breadthfirst
   346   for( uint next = 0; next < useful.size(); ++next ) {
   347     assert( next < unique(), "Unique useful nodes < total nodes");
   348     Node *n  = useful.at(next);
   349     uint max = n->len();
   350     for( uint i = 0; i < max; ++i ) {
   351       Node *m = n->in(i);
   352       if (not_a_node(m))  continue;
   353       useful.push(m);
   354     }
   355   }
   356 }
   358 // Update dead_node_list with any missing dead nodes using useful
   359 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
   360 void Compile::update_dead_node_list(Unique_Node_List &useful) {
   361   uint max_idx = unique();
   362   VectorSet& useful_node_set = useful.member_set();
   364   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
   365     // If node with index node_idx is not in useful set,
   366     // mark it as dead in dead node list.
   367     if (! useful_node_set.test(node_idx) ) {
   368       record_dead_node(node_idx);
   369     }
   370   }
   371 }
   373 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
   374   int shift = 0;
   375   for (int i = 0; i < inlines->length(); i++) {
   376     CallGenerator* cg = inlines->at(i);
   377     CallNode* call = cg->call_node();
   378     if (shift > 0) {
   379       inlines->at_put(i-shift, cg);
   380     }
   381     if (!useful.member(call)) {
   382       shift++;
   383     }
   384   }
   385   inlines->trunc_to(inlines->length()-shift);
   386 }
   388 // Disconnect all useless nodes by disconnecting those at the boundary.
   389 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   390   uint next = 0;
   391   while (next < useful.size()) {
   392     Node *n = useful.at(next++);
   393     // Use raw traversal of out edges since this code removes out edges
   394     int max = n->outcnt();
   395     for (int j = 0; j < max; ++j) {
   396       Node* child = n->raw_out(j);
   397       if (! useful.member(child)) {
   398         assert(!child->is_top() || child != top(),
   399                "If top is cached in Compile object it is in useful list");
   400         // Only need to remove this out-edge to the useless node
   401         n->raw_del_out(j);
   402         --j;
   403         --max;
   404       }
   405     }
   406     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   407       record_for_igvn(n->unique_out());
   408     }
   409   }
   410   // Remove useless macro and predicate opaq nodes
   411   for (int i = C->macro_count()-1; i >= 0; i--) {
   412     Node* n = C->macro_node(i);
   413     if (!useful.member(n)) {
   414       remove_macro_node(n);
   415     }
   416   }
   417   // Remove useless expensive node
   418   for (int i = C->expensive_count()-1; i >= 0; i--) {
   419     Node* n = C->expensive_node(i);
   420     if (!useful.member(n)) {
   421       remove_expensive_node(n);
   422     }
   423   }
   424   // clean up the late inline lists
   425   remove_useless_late_inlines(&_string_late_inlines, useful);
   426   remove_useless_late_inlines(&_boxing_late_inlines, useful);
   427   remove_useless_late_inlines(&_late_inlines, useful);
   428   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   429 }
   431 //------------------------------frame_size_in_words-----------------------------
   432 // frame_slots in units of words
   433 int Compile::frame_size_in_words() const {
   434   // shift is 0 in LP32 and 1 in LP64
   435   const int shift = (LogBytesPerWord - LogBytesPerInt);
   436   int words = _frame_slots >> shift;
   437   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   438   return words;
   439 }
   441 // ============================================================================
   442 //------------------------------CompileWrapper---------------------------------
   443 class CompileWrapper : public StackObj {
   444   Compile *const _compile;
   445  public:
   446   CompileWrapper(Compile* compile);
   448   ~CompileWrapper();
   449 };
   451 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   452   // the Compile* pointer is stored in the current ciEnv:
   453   ciEnv* env = compile->env();
   454   assert(env == ciEnv::current(), "must already be a ciEnv active");
   455   assert(env->compiler_data() == NULL, "compile already active?");
   456   env->set_compiler_data(compile);
   457   assert(compile == Compile::current(), "sanity");
   459   compile->set_type_dict(NULL);
   460   compile->set_type_hwm(NULL);
   461   compile->set_type_last_size(0);
   462   compile->set_last_tf(NULL, NULL);
   463   compile->set_indexSet_arena(NULL);
   464   compile->set_indexSet_free_block_list(NULL);
   465   compile->init_type_arena();
   466   Type::Initialize(compile);
   467   _compile->set_scratch_buffer_blob(NULL);
   468   _compile->begin_method();
   469 }
   470 CompileWrapper::~CompileWrapper() {
   471   _compile->end_method();
   472   if (_compile->scratch_buffer_blob() != NULL)
   473     BufferBlob::free(_compile->scratch_buffer_blob());
   474   _compile->env()->set_compiler_data(NULL);
   475 }
   478 //----------------------------print_compile_messages---------------------------
   479 void Compile::print_compile_messages() {
   480 #ifndef PRODUCT
   481   // Check if recompiling
   482   if (_subsume_loads == false && PrintOpto) {
   483     // Recompiling without allowing machine instructions to subsume loads
   484     tty->print_cr("*********************************************************");
   485     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   486     tty->print_cr("*********************************************************");
   487   }
   488   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   489     // Recompiling without escape analysis
   490     tty->print_cr("*********************************************************");
   491     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   492     tty->print_cr("*********************************************************");
   493   }
   494   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
   495     // Recompiling without boxing elimination
   496     tty->print_cr("*********************************************************");
   497     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
   498     tty->print_cr("*********************************************************");
   499   }
   500   if (env()->break_at_compile()) {
   501     // Open the debugger when compiling this method.
   502     tty->print("### Breaking when compiling: ");
   503     method()->print_short_name();
   504     tty->cr();
   505     BREAKPOINT;
   506   }
   508   if( PrintOpto ) {
   509     if (is_osr_compilation()) {
   510       tty->print("[OSR]%3d", _compile_id);
   511     } else {
   512       tty->print("%3d", _compile_id);
   513     }
   514   }
   515 #endif
   516 }
   519 //-----------------------init_scratch_buffer_blob------------------------------
   520 // Construct a temporary BufferBlob and cache it for this compile.
   521 void Compile::init_scratch_buffer_blob(int const_size) {
   522   // If there is already a scratch buffer blob allocated and the
   523   // constant section is big enough, use it.  Otherwise free the
   524   // current and allocate a new one.
   525   BufferBlob* blob = scratch_buffer_blob();
   526   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   527     // Use the current blob.
   528   } else {
   529     if (blob != NULL) {
   530       BufferBlob::free(blob);
   531     }
   533     ResourceMark rm;
   534     _scratch_const_size = const_size;
   535     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   536     blob = BufferBlob::create("Compile::scratch_buffer", size);
   537     // Record the buffer blob for next time.
   538     set_scratch_buffer_blob(blob);
   539     // Have we run out of code space?
   540     if (scratch_buffer_blob() == NULL) {
   541       // Let CompilerBroker disable further compilations.
   542       record_failure("Not enough space for scratch buffer in CodeCache");
   543       return;
   544     }
   545   }
   547   // Initialize the relocation buffers
   548   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   549   set_scratch_locs_memory(locs_buf);
   550 }
   553 //-----------------------scratch_emit_size-------------------------------------
   554 // Helper function that computes size by emitting code
   555 uint Compile::scratch_emit_size(const Node* n) {
   556   // Start scratch_emit_size section.
   557   set_in_scratch_emit_size(true);
   559   // Emit into a trash buffer and count bytes emitted.
   560   // This is a pretty expensive way to compute a size,
   561   // but it works well enough if seldom used.
   562   // All common fixed-size instructions are given a size
   563   // method by the AD file.
   564   // Note that the scratch buffer blob and locs memory are
   565   // allocated at the beginning of the compile task, and
   566   // may be shared by several calls to scratch_emit_size.
   567   // The allocation of the scratch buffer blob is particularly
   568   // expensive, since it has to grab the code cache lock.
   569   BufferBlob* blob = this->scratch_buffer_blob();
   570   assert(blob != NULL, "Initialize BufferBlob at start");
   571   assert(blob->size() > MAX_inst_size, "sanity");
   572   relocInfo* locs_buf = scratch_locs_memory();
   573   address blob_begin = blob->content_begin();
   574   address blob_end   = (address)locs_buf;
   575   assert(blob->content_contains(blob_end), "sanity");
   576   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   577   buf.initialize_consts_size(_scratch_const_size);
   578   buf.initialize_stubs_size(MAX_stubs_size);
   579   assert(locs_buf != NULL, "sanity");
   580   int lsize = MAX_locs_size / 3;
   581   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   582   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   583   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   585   // Do the emission.
   587   Label fakeL; // Fake label for branch instructions.
   588   Label*   saveL = NULL;
   589   uint save_bnum = 0;
   590   bool is_branch = n->is_MachBranch();
   591   if (is_branch) {
   592     MacroAssembler masm(&buf);
   593     masm.bind(fakeL);
   594     n->as_MachBranch()->save_label(&saveL, &save_bnum);
   595     n->as_MachBranch()->label_set(&fakeL, 0);
   596   }
   597   n->emit(buf, this->regalloc());
   598   if (is_branch) // Restore label.
   599     n->as_MachBranch()->label_set(saveL, save_bnum);
   601   // End scratch_emit_size section.
   602   set_in_scratch_emit_size(false);
   604   return buf.insts_size();
   605 }
   608 // ============================================================================
   609 //------------------------------Compile standard-------------------------------
   610 debug_only( int Compile::_debug_idx = 100000; )
   612 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   613 // the continuation bci for on stack replacement.
   616 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
   617                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
   618                 : Phase(Compiler),
   619                   _env(ci_env),
   620                   _log(ci_env->log()),
   621                   _compile_id(ci_env->compile_id()),
   622                   _save_argument_registers(false),
   623                   _stub_name(NULL),
   624                   _stub_function(NULL),
   625                   _stub_entry_point(NULL),
   626                   _method(target),
   627                   _entry_bci(osr_bci),
   628                   _initial_gvn(NULL),
   629                   _for_igvn(NULL),
   630                   _warm_calls(NULL),
   631                   _subsume_loads(subsume_loads),
   632                   _do_escape_analysis(do_escape_analysis),
   633                   _eliminate_boxing(eliminate_boxing),
   634                   _failure_reason(NULL),
   635                   _code_buffer("Compile::Fill_buffer"),
   636                   _orig_pc_slot(0),
   637                   _orig_pc_slot_offset_in_bytes(0),
   638                   _has_method_handle_invokes(false),
   639                   _mach_constant_base_node(NULL),
   640                   _node_bundling_limit(0),
   641                   _node_bundling_base(NULL),
   642                   _java_calls(0),
   643                   _inner_loops(0),
   644                   _scratch_const_size(-1),
   645                   _in_scratch_emit_size(false),
   646                   _dead_node_list(comp_arena()),
   647                   _dead_node_count(0),
   648 #ifndef PRODUCT
   649                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   650                   _printer(IdealGraphPrinter::printer()),
   651 #endif
   652                   _congraph(NULL),
   653                   _late_inlines(comp_arena(), 2, 0, NULL),
   654                   _string_late_inlines(comp_arena(), 2, 0, NULL),
   655                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
   656                   _late_inlines_pos(0),
   657                   _number_of_mh_late_inlines(0),
   658                   _inlining_progress(false),
   659                   _inlining_incrementally(false),
   660                   _print_inlining_list(NULL),
   661                   _print_inlining_idx(0),
   662                   _preserve_jvm_state(0) {
   663   C = this;
   665   CompileWrapper cw(this);
   666 #ifndef PRODUCT
   667   if (TimeCompiler2) {
   668     tty->print(" ");
   669     target->holder()->name()->print();
   670     tty->print(".");
   671     target->print_short_name();
   672     tty->print("  ");
   673   }
   674   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   675   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   676   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   677   if (!print_opto_assembly) {
   678     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   679     if (print_assembly && !Disassembler::can_decode()) {
   680       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   681       print_opto_assembly = true;
   682     }
   683   }
   684   set_print_assembly(print_opto_assembly);
   685   set_parsed_irreducible_loop(false);
   686 #endif
   687   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
   688   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
   690   if (ProfileTraps) {
   691     // Make sure the method being compiled gets its own MDO,
   692     // so we can at least track the decompile_count().
   693     method()->ensure_method_data();
   694   }
   696   Init(::AliasLevel);
   699   print_compile_messages();
   701   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
   702     _ilt = InlineTree::build_inline_tree_root();
   703   else
   704     _ilt = NULL;
   706   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   707   assert(num_alias_types() >= AliasIdxRaw, "");
   709 #define MINIMUM_NODE_HASH  1023
   710   // Node list that Iterative GVN will start with
   711   Unique_Node_List for_igvn(comp_arena());
   712   set_for_igvn(&for_igvn);
   714   // GVN that will be run immediately on new nodes
   715   uint estimated_size = method()->code_size()*4+64;
   716   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   717   PhaseGVN gvn(node_arena(), estimated_size);
   718   set_initial_gvn(&gvn);
   720   if (print_inlining() || print_intrinsics()) {
   721     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
   722   }
   723   { // Scope for timing the parser
   724     TracePhase t3("parse", &_t_parser, true);
   726     // Put top into the hash table ASAP.
   727     initial_gvn()->transform_no_reclaim(top());
   729     // Set up tf(), start(), and find a CallGenerator.
   730     CallGenerator* cg = NULL;
   731     if (is_osr_compilation()) {
   732       const TypeTuple *domain = StartOSRNode::osr_domain();
   733       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   734       init_tf(TypeFunc::make(domain, range));
   735       StartNode* s = new (this) StartOSRNode(root(), domain);
   736       initial_gvn()->set_type_bottom(s);
   737       init_start(s);
   738       cg = CallGenerator::for_osr(method(), entry_bci());
   739     } else {
   740       // Normal case.
   741       init_tf(TypeFunc::make(method()));
   742       StartNode* s = new (this) StartNode(root(), tf()->domain());
   743       initial_gvn()->set_type_bottom(s);
   744       init_start(s);
   745       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   746         // With java.lang.ref.reference.get() we must go through the
   747         // intrinsic when G1 is enabled - even when get() is the root
   748         // method of the compile - so that, if necessary, the value in
   749         // the referent field of the reference object gets recorded by
   750         // the pre-barrier code.
   751         // Specifically, if G1 is enabled, the value in the referent
   752         // field is recorded by the G1 SATB pre barrier. This will
   753         // result in the referent being marked live and the reference
   754         // object removed from the list of discovered references during
   755         // reference processing.
   756         cg = find_intrinsic(method(), false);
   757       }
   758       if (cg == NULL) {
   759         float past_uses = method()->interpreter_invocation_count();
   760         float expected_uses = past_uses;
   761         cg = CallGenerator::for_inline(method(), expected_uses);
   762       }
   763     }
   764     if (failing())  return;
   765     if (cg == NULL) {
   766       record_method_not_compilable_all_tiers("cannot parse method");
   767       return;
   768     }
   769     JVMState* jvms = build_start_state(start(), tf());
   770     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
   771       record_method_not_compilable("method parse failed");
   772       return;
   773     }
   774     GraphKit kit(jvms);
   776     if (!kit.stopped()) {
   777       // Accept return values, and transfer control we know not where.
   778       // This is done by a special, unique ReturnNode bound to root.
   779       return_values(kit.jvms());
   780     }
   782     if (kit.has_exceptions()) {
   783       // Any exceptions that escape from this call must be rethrown
   784       // to whatever caller is dynamically above us on the stack.
   785       // This is done by a special, unique RethrowNode bound to root.
   786       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   787     }
   789     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
   791     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
   792       inline_string_calls(true);
   793     }
   795     if (failing())  return;
   797     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
   799     // Remove clutter produced by parsing.
   800     if (!failing()) {
   801       ResourceMark rm;
   802       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   803     }
   804   }
   806   // Note:  Large methods are capped off in do_one_bytecode().
   807   if (failing())  return;
   809   // After parsing, node notes are no longer automagic.
   810   // They must be propagated by register_new_node_with_optimizer(),
   811   // clone(), or the like.
   812   set_default_node_notes(NULL);
   814   for (;;) {
   815     int successes = Inline_Warm();
   816     if (failing())  return;
   817     if (successes == 0)  break;
   818   }
   820   // Drain the list.
   821   Finish_Warm();
   822 #ifndef PRODUCT
   823   if (_printer) {
   824     _printer->print_inlining(this);
   825   }
   826 #endif
   828   if (failing())  return;
   829   NOT_PRODUCT( verify_graph_edges(); )
   831   // Now optimize
   832   Optimize();
   833   if (failing())  return;
   834   NOT_PRODUCT( verify_graph_edges(); )
   836 #ifndef PRODUCT
   837   if (PrintIdeal) {
   838     ttyLocker ttyl;  // keep the following output all in one block
   839     // This output goes directly to the tty, not the compiler log.
   840     // To enable tools to match it up with the compilation activity,
   841     // be sure to tag this tty output with the compile ID.
   842     if (xtty != NULL) {
   843       xtty->head("ideal compile_id='%d'%s", compile_id(),
   844                  is_osr_compilation()    ? " compile_kind='osr'" :
   845                  "");
   846     }
   847     root()->dump(9999);
   848     if (xtty != NULL) {
   849       xtty->tail("ideal");
   850     }
   851   }
   852 #endif
   854   // Now that we know the size of all the monitors we can add a fixed slot
   855   // for the original deopt pc.
   857   _orig_pc_slot =  fixed_slots();
   858   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   859   set_fixed_slots(next_slot);
   861   // Now generate code
   862   Code_Gen();
   863   if (failing())  return;
   865   // Check if we want to skip execution of all compiled code.
   866   {
   867 #ifndef PRODUCT
   868     if (OptoNoExecute) {
   869       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   870       return;
   871     }
   872     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   873 #endif
   875     if (is_osr_compilation()) {
   876       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   877       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   878     } else {
   879       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   880       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   881     }
   883     env()->register_method(_method, _entry_bci,
   884                            &_code_offsets,
   885                            _orig_pc_slot_offset_in_bytes,
   886                            code_buffer(),
   887                            frame_size_in_words(), _oop_map_set,
   888                            &_handler_table, &_inc_table,
   889                            compiler,
   890                            env()->comp_level(),
   891                            has_unsafe_access(),
   892                            SharedRuntime::is_wide_vector(max_vector_size())
   893                            );
   895     if (log() != NULL) // Print code cache state into compiler log
   896       log()->code_cache_state();
   897   }
   898 }
   900 //------------------------------Compile----------------------------------------
   901 // Compile a runtime stub
   902 Compile::Compile( ciEnv* ci_env,
   903                   TypeFunc_generator generator,
   904                   address stub_function,
   905                   const char *stub_name,
   906                   int is_fancy_jump,
   907                   bool pass_tls,
   908                   bool save_arg_registers,
   909                   bool return_pc )
   910   : Phase(Compiler),
   911     _env(ci_env),
   912     _log(ci_env->log()),
   913     _compile_id(0),
   914     _save_argument_registers(save_arg_registers),
   915     _method(NULL),
   916     _stub_name(stub_name),
   917     _stub_function(stub_function),
   918     _stub_entry_point(NULL),
   919     _entry_bci(InvocationEntryBci),
   920     _initial_gvn(NULL),
   921     _for_igvn(NULL),
   922     _warm_calls(NULL),
   923     _orig_pc_slot(0),
   924     _orig_pc_slot_offset_in_bytes(0),
   925     _subsume_loads(true),
   926     _do_escape_analysis(false),
   927     _eliminate_boxing(false),
   928     _failure_reason(NULL),
   929     _code_buffer("Compile::Fill_buffer"),
   930     _has_method_handle_invokes(false),
   931     _mach_constant_base_node(NULL),
   932     _node_bundling_limit(0),
   933     _node_bundling_base(NULL),
   934     _java_calls(0),
   935     _inner_loops(0),
   936 #ifndef PRODUCT
   937     _trace_opto_output(TraceOptoOutput),
   938     _printer(NULL),
   939 #endif
   940     _dead_node_list(comp_arena()),
   941     _dead_node_count(0),
   942     _congraph(NULL),
   943     _number_of_mh_late_inlines(0),
   944     _inlining_progress(false),
   945     _inlining_incrementally(false),
   946     _print_inlining_list(NULL),
   947     _print_inlining_idx(0),
   948     _preserve_jvm_state(0) {
   949   C = this;
   951 #ifndef PRODUCT
   952   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   953   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   954   set_print_assembly(PrintFrameConverterAssembly);
   955   set_parsed_irreducible_loop(false);
   956 #endif
   957   CompileWrapper cw(this);
   958   Init(/*AliasLevel=*/ 0);
   959   init_tf((*generator)());
   961   {
   962     // The following is a dummy for the sake of GraphKit::gen_stub
   963     Unique_Node_List for_igvn(comp_arena());
   964     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   965     PhaseGVN gvn(Thread::current()->resource_area(),255);
   966     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   967     gvn.transform_no_reclaim(top());
   969     GraphKit kit;
   970     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   971   }
   973   NOT_PRODUCT( verify_graph_edges(); )
   974   Code_Gen();
   975   if (failing())  return;
   978   // Entry point will be accessed using compile->stub_entry_point();
   979   if (code_buffer() == NULL) {
   980     Matcher::soft_match_failure();
   981   } else {
   982     if (PrintAssembly && (WizardMode || Verbose))
   983       tty->print_cr("### Stub::%s", stub_name);
   985     if (!failing()) {
   986       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   988       // Make the NMethod
   989       // For now we mark the frame as never safe for profile stackwalking
   990       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
   991                                                       code_buffer(),
   992                                                       CodeOffsets::frame_never_safe,
   993                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
   994                                                       frame_size_in_words(),
   995                                                       _oop_map_set,
   996                                                       save_arg_registers);
   997       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
   999       _stub_entry_point = rs->entry_point();
  1004 //------------------------------Init-------------------------------------------
  1005 // Prepare for a single compilation
  1006 void Compile::Init(int aliaslevel) {
  1007   _unique  = 0;
  1008   _regalloc = NULL;
  1010   _tf      = NULL;  // filled in later
  1011   _top     = NULL;  // cached later
  1012   _matcher = NULL;  // filled in later
  1013   _cfg     = NULL;  // filled in later
  1015   set_24_bit_selection_and_mode(Use24BitFP, false);
  1017   _node_note_array = NULL;
  1018   _default_node_notes = NULL;
  1020   _immutable_memory = NULL; // filled in at first inquiry
  1022   // Globally visible Nodes
  1023   // First set TOP to NULL to give safe behavior during creation of RootNode
  1024   set_cached_top_node(NULL);
  1025   set_root(new (this) RootNode());
  1026   // Now that you have a Root to point to, create the real TOP
  1027   set_cached_top_node( new (this) ConNode(Type::TOP) );
  1028   set_recent_alloc(NULL, NULL);
  1030   // Create Debug Information Recorder to record scopes, oopmaps, etc.
  1031   env()->set_oop_recorder(new OopRecorder(env()->arena()));
  1032   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
  1033   env()->set_dependencies(new Dependencies(env()));
  1035   _fixed_slots = 0;
  1036   set_has_split_ifs(false);
  1037   set_has_loops(has_method() && method()->has_loops()); // first approximation
  1038   set_has_stringbuilder(false);
  1039   set_has_boxed_value(false);
  1040   _trap_can_recompile = false;  // no traps emitted yet
  1041   _major_progress = true; // start out assuming good things will happen
  1042   set_has_unsafe_access(false);
  1043   set_max_vector_size(0);
  1044   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
  1045   set_decompile_count(0);
  1047   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
  1048   set_num_loop_opts(LoopOptsCount);
  1049   set_do_inlining(Inline);
  1050   set_max_inline_size(MaxInlineSize);
  1051   set_freq_inline_size(FreqInlineSize);
  1052   set_do_scheduling(OptoScheduling);
  1053   set_do_count_invocations(false);
  1054   set_do_method_data_update(false);
  1056   if (debug_info()->recording_non_safepoints()) {
  1057     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
  1058                         (comp_arena(), 8, 0, NULL));
  1059     set_default_node_notes(Node_Notes::make(this));
  1062   // // -- Initialize types before each compile --
  1063   // // Update cached type information
  1064   // if( _method && _method->constants() )
  1065   //   Type::update_loaded_types(_method, _method->constants());
  1067   // Init alias_type map.
  1068   if (!_do_escape_analysis && aliaslevel == 3)
  1069     aliaslevel = 2;  // No unique types without escape analysis
  1070   _AliasLevel = aliaslevel;
  1071   const int grow_ats = 16;
  1072   _max_alias_types = grow_ats;
  1073   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
  1074   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
  1075   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
  1077     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
  1079   // Initialize the first few types.
  1080   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
  1081   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
  1082   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
  1083   _num_alias_types = AliasIdxRaw+1;
  1084   // Zero out the alias type cache.
  1085   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
  1086   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1087   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1089   _intrinsics = NULL;
  1090   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1091   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1092   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1093   register_library_intrinsics();
  1096 //---------------------------init_start----------------------------------------
  1097 // Install the StartNode on this compile object.
  1098 void Compile::init_start(StartNode* s) {
  1099   if (failing())
  1100     return; // already failing
  1101   assert(s == start(), "");
  1104 StartNode* Compile::start() const {
  1105   assert(!failing(), "");
  1106   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1107     Node* start = root()->fast_out(i);
  1108     if( start->is_Start() )
  1109       return start->as_Start();
  1111   ShouldNotReachHere();
  1112   return NULL;
  1115 //-------------------------------immutable_memory-------------------------------------
  1116 // Access immutable memory
  1117 Node* Compile::immutable_memory() {
  1118   if (_immutable_memory != NULL) {
  1119     return _immutable_memory;
  1121   StartNode* s = start();
  1122   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1123     Node *p = s->fast_out(i);
  1124     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1125       _immutable_memory = p;
  1126       return _immutable_memory;
  1129   ShouldNotReachHere();
  1130   return NULL;
  1133 //----------------------set_cached_top_node------------------------------------
  1134 // Install the cached top node, and make sure Node::is_top works correctly.
  1135 void Compile::set_cached_top_node(Node* tn) {
  1136   if (tn != NULL)  verify_top(tn);
  1137   Node* old_top = _top;
  1138   _top = tn;
  1139   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1140   // their _out arrays.
  1141   if (_top != NULL)     _top->setup_is_top();
  1142   if (old_top != NULL)  old_top->setup_is_top();
  1143   assert(_top == NULL || top()->is_top(), "");
  1146 #ifdef ASSERT
  1147 uint Compile::count_live_nodes_by_graph_walk() {
  1148   Unique_Node_List useful(comp_arena());
  1149   // Get useful node list by walking the graph.
  1150   identify_useful_nodes(useful);
  1151   return useful.size();
  1154 void Compile::print_missing_nodes() {
  1156   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
  1157   if ((_log == NULL) && (! PrintIdealNodeCount)) {
  1158     return;
  1161   // This is an expensive function. It is executed only when the user
  1162   // specifies VerifyIdealNodeCount option or otherwise knows the
  1163   // additional work that needs to be done to identify reachable nodes
  1164   // by walking the flow graph and find the missing ones using
  1165   // _dead_node_list.
  1167   Unique_Node_List useful(comp_arena());
  1168   // Get useful node list by walking the graph.
  1169   identify_useful_nodes(useful);
  1171   uint l_nodes = C->live_nodes();
  1172   uint l_nodes_by_walk = useful.size();
  1174   if (l_nodes != l_nodes_by_walk) {
  1175     if (_log != NULL) {
  1176       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
  1177       _log->stamp();
  1178       _log->end_head();
  1180     VectorSet& useful_member_set = useful.member_set();
  1181     int last_idx = l_nodes_by_walk;
  1182     for (int i = 0; i < last_idx; i++) {
  1183       if (useful_member_set.test(i)) {
  1184         if (_dead_node_list.test(i)) {
  1185           if (_log != NULL) {
  1186             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
  1188           if (PrintIdealNodeCount) {
  1189             // Print the log message to tty
  1190               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
  1191               useful.at(i)->dump();
  1195       else if (! _dead_node_list.test(i)) {
  1196         if (_log != NULL) {
  1197           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
  1199         if (PrintIdealNodeCount) {
  1200           // Print the log message to tty
  1201           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
  1205     if (_log != NULL) {
  1206       _log->tail("mismatched_nodes");
  1210 #endif
  1212 #ifndef PRODUCT
  1213 void Compile::verify_top(Node* tn) const {
  1214   if (tn != NULL) {
  1215     assert(tn->is_Con(), "top node must be a constant");
  1216     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1217     assert(tn->in(0) != NULL, "must have live top node");
  1220 #endif
  1223 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1225 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1226   guarantee(arr != NULL, "");
  1227   int num_blocks = arr->length();
  1228   if (grow_by < num_blocks)  grow_by = num_blocks;
  1229   int num_notes = grow_by * _node_notes_block_size;
  1230   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1231   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1232   while (num_notes > 0) {
  1233     arr->append(notes);
  1234     notes     += _node_notes_block_size;
  1235     num_notes -= _node_notes_block_size;
  1237   assert(num_notes == 0, "exact multiple, please");
  1240 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1241   if (source == NULL || dest == NULL)  return false;
  1243   if (dest->is_Con())
  1244     return false;               // Do not push debug info onto constants.
  1246 #ifdef ASSERT
  1247   // Leave a bread crumb trail pointing to the original node:
  1248   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1249     dest->set_debug_orig(source);
  1251 #endif
  1253   if (node_note_array() == NULL)
  1254     return false;               // Not collecting any notes now.
  1256   // This is a copy onto a pre-existing node, which may already have notes.
  1257   // If both nodes have notes, do not overwrite any pre-existing notes.
  1258   Node_Notes* source_notes = node_notes_at(source->_idx);
  1259   if (source_notes == NULL || source_notes->is_clear())  return false;
  1260   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1261   if (dest_notes == NULL || dest_notes->is_clear()) {
  1262     return set_node_notes_at(dest->_idx, source_notes);
  1265   Node_Notes merged_notes = (*source_notes);
  1266   // The order of operations here ensures that dest notes will win...
  1267   merged_notes.update_from(dest_notes);
  1268   return set_node_notes_at(dest->_idx, &merged_notes);
  1272 //--------------------------allow_range_check_smearing-------------------------
  1273 // Gating condition for coalescing similar range checks.
  1274 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1275 // single covering check that is at least as strong as any of them.
  1276 // If the optimization succeeds, the simplified (strengthened) range check
  1277 // will always succeed.  If it fails, we will deopt, and then give up
  1278 // on the optimization.
  1279 bool Compile::allow_range_check_smearing() const {
  1280   // If this method has already thrown a range-check,
  1281   // assume it was because we already tried range smearing
  1282   // and it failed.
  1283   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1284   return !already_trapped;
  1288 //------------------------------flatten_alias_type-----------------------------
  1289 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1290   int offset = tj->offset();
  1291   TypePtr::PTR ptr = tj->ptr();
  1293   // Known instance (scalarizable allocation) alias only with itself.
  1294   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1295                        tj->is_oopptr()->is_known_instance();
  1297   // Process weird unsafe references.
  1298   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1299     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1300     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1301     tj = TypeOopPtr::BOTTOM;
  1302     ptr = tj->ptr();
  1303     offset = tj->offset();
  1306   // Array pointers need some flattening
  1307   const TypeAryPtr *ta = tj->isa_aryptr();
  1308   if (ta && ta->is_stable()) {
  1309     // Erase stability property for alias analysis.
  1310     tj = ta = ta->cast_to_stable(false);
  1312   if( ta && is_known_inst ) {
  1313     if ( offset != Type::OffsetBot &&
  1314          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1315       offset = Type::OffsetBot; // Flatten constant access into array body only
  1316       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1318   } else if( ta && _AliasLevel >= 2 ) {
  1319     // For arrays indexed by constant indices, we flatten the alias
  1320     // space to include all of the array body.  Only the header, klass
  1321     // and array length can be accessed un-aliased.
  1322     if( offset != Type::OffsetBot ) {
  1323       if( ta->const_oop() ) { // MethodData* or Method*
  1324         offset = Type::OffsetBot;   // Flatten constant access into array body
  1325         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1326       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1327         // range is OK as-is.
  1328         tj = ta = TypeAryPtr::RANGE;
  1329       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1330         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1331         ta = TypeAryPtr::RANGE; // generic ignored junk
  1332         ptr = TypePtr::BotPTR;
  1333       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1334         tj = TypeInstPtr::MARK;
  1335         ta = TypeAryPtr::RANGE; // generic ignored junk
  1336         ptr = TypePtr::BotPTR;
  1337       } else {                  // Random constant offset into array body
  1338         offset = Type::OffsetBot;   // Flatten constant access into array body
  1339         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1342     // Arrays of fixed size alias with arrays of unknown size.
  1343     if (ta->size() != TypeInt::POS) {
  1344       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1345       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1347     // Arrays of known objects become arrays of unknown objects.
  1348     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1349       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1350       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1352     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1353       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1354       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1356     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1357     // cannot be distinguished by bytecode alone.
  1358     if (ta->elem() == TypeInt::BOOL) {
  1359       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1360       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1361       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1363     // During the 2nd round of IterGVN, NotNull castings are removed.
  1364     // Make sure the Bottom and NotNull variants alias the same.
  1365     // Also, make sure exact and non-exact variants alias the same.
  1366     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
  1367       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1371   // Oop pointers need some flattening
  1372   const TypeInstPtr *to = tj->isa_instptr();
  1373   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1374     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1375     if( ptr == TypePtr::Constant ) {
  1376       if (to->klass() != ciEnv::current()->Class_klass() ||
  1377           offset < k->size_helper() * wordSize) {
  1378         // No constant oop pointers (such as Strings); they alias with
  1379         // unknown strings.
  1380         assert(!is_known_inst, "not scalarizable allocation");
  1381         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1383     } else if( is_known_inst ) {
  1384       tj = to; // Keep NotNull and klass_is_exact for instance type
  1385     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1386       // During the 2nd round of IterGVN, NotNull castings are removed.
  1387       // Make sure the Bottom and NotNull variants alias the same.
  1388       // Also, make sure exact and non-exact variants alias the same.
  1389       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1391     if (to->speculative() != NULL) {
  1392       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
  1394     // Canonicalize the holder of this field
  1395     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1396       // First handle header references such as a LoadKlassNode, even if the
  1397       // object's klass is unloaded at compile time (4965979).
  1398       if (!is_known_inst) { // Do it only for non-instance types
  1399         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1401     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1402       // Static fields are in the space above the normal instance
  1403       // fields in the java.lang.Class instance.
  1404       if (to->klass() != ciEnv::current()->Class_klass()) {
  1405         to = NULL;
  1406         tj = TypeOopPtr::BOTTOM;
  1407         offset = tj->offset();
  1409     } else {
  1410       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1411       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1412         if( is_known_inst ) {
  1413           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1414         } else {
  1415           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1421   // Klass pointers to object array klasses need some flattening
  1422   const TypeKlassPtr *tk = tj->isa_klassptr();
  1423   if( tk ) {
  1424     // If we are referencing a field within a Klass, we need
  1425     // to assume the worst case of an Object.  Both exact and
  1426     // inexact types must flatten to the same alias class so
  1427     // use NotNull as the PTR.
  1428     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1430       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
  1431                                    TypeKlassPtr::OBJECT->klass(),
  1432                                    offset);
  1435     ciKlass* klass = tk->klass();
  1436     if( klass->is_obj_array_klass() ) {
  1437       ciKlass* k = TypeAryPtr::OOPS->klass();
  1438       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1439         k = TypeInstPtr::BOTTOM->klass();
  1440       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1443     // Check for precise loads from the primary supertype array and force them
  1444     // to the supertype cache alias index.  Check for generic array loads from
  1445     // the primary supertype array and also force them to the supertype cache
  1446     // alias index.  Since the same load can reach both, we need to merge
  1447     // these 2 disparate memories into the same alias class.  Since the
  1448     // primary supertype array is read-only, there's no chance of confusion
  1449     // where we bypass an array load and an array store.
  1450     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
  1451     if (offset == Type::OffsetBot ||
  1452         (offset >= primary_supers_offset &&
  1453          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
  1454         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
  1455       offset = in_bytes(Klass::secondary_super_cache_offset());
  1456       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1460   // Flatten all Raw pointers together.
  1461   if (tj->base() == Type::RawPtr)
  1462     tj = TypeRawPtr::BOTTOM;
  1464   if (tj->base() == Type::AnyPtr)
  1465     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1467   // Flatten all to bottom for now
  1468   switch( _AliasLevel ) {
  1469   case 0:
  1470     tj = TypePtr::BOTTOM;
  1471     break;
  1472   case 1:                       // Flatten to: oop, static, field or array
  1473     switch (tj->base()) {
  1474     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1475     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1476     case Type::AryPtr:   // do not distinguish arrays at all
  1477     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1478     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1479     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1480     default: ShouldNotReachHere();
  1482     break;
  1483   case 2:                       // No collapsing at level 2; keep all splits
  1484   case 3:                       // No collapsing at level 3; keep all splits
  1485     break;
  1486   default:
  1487     Unimplemented();
  1490   offset = tj->offset();
  1491   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1493   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1494           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1495           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1496           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1497           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1498           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1499           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1500           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1501   assert( tj->ptr() != TypePtr::TopPTR &&
  1502           tj->ptr() != TypePtr::AnyNull &&
  1503           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1504 //    assert( tj->ptr() != TypePtr::Constant ||
  1505 //            tj->base() == Type::RawPtr ||
  1506 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1508   return tj;
  1511 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1512   _index = i;
  1513   _adr_type = at;
  1514   _field = NULL;
  1515   _element = NULL;
  1516   _is_rewritable = true; // default
  1517   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1518   if (atoop != NULL && atoop->is_known_instance()) {
  1519     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1520     _general_index = Compile::current()->get_alias_index(gt);
  1521   } else {
  1522     _general_index = 0;
  1526 //---------------------------------print_on------------------------------------
  1527 #ifndef PRODUCT
  1528 void Compile::AliasType::print_on(outputStream* st) {
  1529   if (index() < 10)
  1530         st->print("@ <%d> ", index());
  1531   else  st->print("@ <%d>",  index());
  1532   st->print(is_rewritable() ? "   " : " RO");
  1533   int offset = adr_type()->offset();
  1534   if (offset == Type::OffsetBot)
  1535         st->print(" +any");
  1536   else  st->print(" +%-3d", offset);
  1537   st->print(" in ");
  1538   adr_type()->dump_on(st);
  1539   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1540   if (field() != NULL && tjp) {
  1541     if (tjp->klass()  != field()->holder() ||
  1542         tjp->offset() != field()->offset_in_bytes()) {
  1543       st->print(" != ");
  1544       field()->print();
  1545       st->print(" ***");
  1550 void print_alias_types() {
  1551   Compile* C = Compile::current();
  1552   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1553   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1554     C->alias_type(idx)->print_on(tty);
  1555     tty->cr();
  1558 #endif
  1561 //----------------------------probe_alias_cache--------------------------------
  1562 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1563   intptr_t key = (intptr_t) adr_type;
  1564   key ^= key >> logAliasCacheSize;
  1565   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1569 //-----------------------------grow_alias_types--------------------------------
  1570 void Compile::grow_alias_types() {
  1571   const int old_ats  = _max_alias_types; // how many before?
  1572   const int new_ats  = old_ats;          // how many more?
  1573   const int grow_ats = old_ats+new_ats;  // how many now?
  1574   _max_alias_types = grow_ats;
  1575   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1576   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1577   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1578   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1582 //--------------------------------find_alias_type------------------------------
  1583 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1584   if (_AliasLevel == 0)
  1585     return alias_type(AliasIdxBot);
  1587   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1588   if (ace->_adr_type == adr_type) {
  1589     return alias_type(ace->_index);
  1592   // Handle special cases.
  1593   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1594   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1596   // Do it the slow way.
  1597   const TypePtr* flat = flatten_alias_type(adr_type);
  1599 #ifdef ASSERT
  1600   assert(flat == flatten_alias_type(flat), "idempotent");
  1601   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1602   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1603     const TypeOopPtr* foop = flat->is_oopptr();
  1604     // Scalarizable allocations have exact klass always.
  1605     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1606     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1607     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1609   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1610 #endif
  1612   int idx = AliasIdxTop;
  1613   for (int i = 0; i < num_alias_types(); i++) {
  1614     if (alias_type(i)->adr_type() == flat) {
  1615       idx = i;
  1616       break;
  1620   if (idx == AliasIdxTop) {
  1621     if (no_create)  return NULL;
  1622     // Grow the array if necessary.
  1623     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1624     // Add a new alias type.
  1625     idx = _num_alias_types++;
  1626     _alias_types[idx]->Init(idx, flat);
  1627     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1628     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1629     if (flat->isa_instptr()) {
  1630       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1631           && flat->is_instptr()->klass() == env()->Class_klass())
  1632         alias_type(idx)->set_rewritable(false);
  1634     if (flat->isa_aryptr()) {
  1635 #ifdef ASSERT
  1636       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1637       // (T_BYTE has the weakest alignment and size restrictions...)
  1638       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
  1639 #endif
  1640       if (flat->offset() == TypePtr::OffsetBot) {
  1641         alias_type(idx)->set_element(flat->is_aryptr()->elem());
  1644     if (flat->isa_klassptr()) {
  1645       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
  1646         alias_type(idx)->set_rewritable(false);
  1647       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
  1648         alias_type(idx)->set_rewritable(false);
  1649       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
  1650         alias_type(idx)->set_rewritable(false);
  1651       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
  1652         alias_type(idx)->set_rewritable(false);
  1654     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1655     // but the base pointer type is not distinctive enough to identify
  1656     // references into JavaThread.)
  1658     // Check for final fields.
  1659     const TypeInstPtr* tinst = flat->isa_instptr();
  1660     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1661       ciField* field;
  1662       if (tinst->const_oop() != NULL &&
  1663           tinst->klass() == ciEnv::current()->Class_klass() &&
  1664           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1665         // static field
  1666         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1667         field = k->get_field_by_offset(tinst->offset(), true);
  1668       } else {
  1669         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1670         field = k->get_field_by_offset(tinst->offset(), false);
  1672       assert(field == NULL ||
  1673              original_field == NULL ||
  1674              (field->holder() == original_field->holder() &&
  1675               field->offset() == original_field->offset() &&
  1676               field->is_static() == original_field->is_static()), "wrong field?");
  1677       // Set field() and is_rewritable() attributes.
  1678       if (field != NULL)  alias_type(idx)->set_field(field);
  1682   // Fill the cache for next time.
  1683   ace->_adr_type = adr_type;
  1684   ace->_index    = idx;
  1685   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1687   // Might as well try to fill the cache for the flattened version, too.
  1688   AliasCacheEntry* face = probe_alias_cache(flat);
  1689   if (face->_adr_type == NULL) {
  1690     face->_adr_type = flat;
  1691     face->_index    = idx;
  1692     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1695   return alias_type(idx);
  1699 Compile::AliasType* Compile::alias_type(ciField* field) {
  1700   const TypeOopPtr* t;
  1701   if (field->is_static())
  1702     t = TypeInstPtr::make(field->holder()->java_mirror());
  1703   else
  1704     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1705   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1706   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
  1707   return atp;
  1711 //------------------------------have_alias_type--------------------------------
  1712 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1713   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1714   if (ace->_adr_type == adr_type) {
  1715     return true;
  1718   // Handle special cases.
  1719   if (adr_type == NULL)             return true;
  1720   if (adr_type == TypePtr::BOTTOM)  return true;
  1722   return find_alias_type(adr_type, true, NULL) != NULL;
  1725 //-----------------------------must_alias--------------------------------------
  1726 // True if all values of the given address type are in the given alias category.
  1727 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1728   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1729   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1730   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1731   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1733   // the only remaining possible overlap is identity
  1734   int adr_idx = get_alias_index(adr_type);
  1735   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1736   assert(adr_idx == alias_idx ||
  1737          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1738           && adr_type                       != TypeOopPtr::BOTTOM),
  1739          "should not be testing for overlap with an unsafe pointer");
  1740   return adr_idx == alias_idx;
  1743 //------------------------------can_alias--------------------------------------
  1744 // True if any values of the given address type are in the given alias category.
  1745 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1746   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1747   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1748   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1749   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1751   // the only remaining possible overlap is identity
  1752   int adr_idx = get_alias_index(adr_type);
  1753   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1754   return adr_idx == alias_idx;
  1759 //---------------------------pop_warm_call-------------------------------------
  1760 WarmCallInfo* Compile::pop_warm_call() {
  1761   WarmCallInfo* wci = _warm_calls;
  1762   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1763   return wci;
  1766 //----------------------------Inline_Warm--------------------------------------
  1767 int Compile::Inline_Warm() {
  1768   // If there is room, try to inline some more warm call sites.
  1769   // %%% Do a graph index compaction pass when we think we're out of space?
  1770   if (!InlineWarmCalls)  return 0;
  1772   int calls_made_hot = 0;
  1773   int room_to_grow   = NodeCountInliningCutoff - unique();
  1774   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1775   int amount_grown   = 0;
  1776   WarmCallInfo* call;
  1777   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1778     int est_size = (int)call->size();
  1779     if (est_size > (room_to_grow - amount_grown)) {
  1780       // This one won't fit anyway.  Get rid of it.
  1781       call->make_cold();
  1782       continue;
  1784     call->make_hot();
  1785     calls_made_hot++;
  1786     amount_grown   += est_size;
  1787     amount_to_grow -= est_size;
  1790   if (calls_made_hot > 0)  set_major_progress();
  1791   return calls_made_hot;
  1795 //----------------------------Finish_Warm--------------------------------------
  1796 void Compile::Finish_Warm() {
  1797   if (!InlineWarmCalls)  return;
  1798   if (failing())  return;
  1799   if (warm_calls() == NULL)  return;
  1801   // Clean up loose ends, if we are out of space for inlining.
  1802   WarmCallInfo* call;
  1803   while ((call = pop_warm_call()) != NULL) {
  1804     call->make_cold();
  1808 //---------------------cleanup_loop_predicates-----------------------
  1809 // Remove the opaque nodes that protect the predicates so that all unused
  1810 // checks and uncommon_traps will be eliminated from the ideal graph
  1811 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1812   if (predicate_count()==0) return;
  1813   for (int i = predicate_count(); i > 0; i--) {
  1814     Node * n = predicate_opaque1_node(i-1);
  1815     assert(n->Opcode() == Op_Opaque1, "must be");
  1816     igvn.replace_node(n, n->in(1));
  1818   assert(predicate_count()==0, "should be clean!");
  1821 // StringOpts and late inlining of string methods
  1822 void Compile::inline_string_calls(bool parse_time) {
  1824     // remove useless nodes to make the usage analysis simpler
  1825     ResourceMark rm;
  1826     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1830     ResourceMark rm;
  1831     print_method(PHASE_BEFORE_STRINGOPTS, 3);
  1832     PhaseStringOpts pso(initial_gvn(), for_igvn());
  1833     print_method(PHASE_AFTER_STRINGOPTS, 3);
  1836   // now inline anything that we skipped the first time around
  1837   if (!parse_time) {
  1838     _late_inlines_pos = _late_inlines.length();
  1841   while (_string_late_inlines.length() > 0) {
  1842     CallGenerator* cg = _string_late_inlines.pop();
  1843     cg->do_late_inline();
  1844     if (failing())  return;
  1846   _string_late_inlines.trunc_to(0);
  1849 // Late inlining of boxing methods
  1850 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
  1851   if (_boxing_late_inlines.length() > 0) {
  1852     assert(has_boxed_value(), "inconsistent");
  1854     PhaseGVN* gvn = initial_gvn();
  1855     set_inlining_incrementally(true);
  1857     assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1858     for_igvn()->clear();
  1859     gvn->replace_with(&igvn);
  1861     while (_boxing_late_inlines.length() > 0) {
  1862       CallGenerator* cg = _boxing_late_inlines.pop();
  1863       cg->do_late_inline();
  1864       if (failing())  return;
  1866     _boxing_late_inlines.trunc_to(0);
  1869       ResourceMark rm;
  1870       PhaseRemoveUseless pru(gvn, for_igvn());
  1873     igvn = PhaseIterGVN(gvn);
  1874     igvn.optimize();
  1876     set_inlining_progress(false);
  1877     set_inlining_incrementally(false);
  1881 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
  1882   assert(IncrementalInline, "incremental inlining should be on");
  1883   PhaseGVN* gvn = initial_gvn();
  1885   set_inlining_progress(false);
  1886   for_igvn()->clear();
  1887   gvn->replace_with(&igvn);
  1889   int i = 0;
  1891   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
  1892     CallGenerator* cg = _late_inlines.at(i);
  1893     _late_inlines_pos = i+1;
  1894     cg->do_late_inline();
  1895     if (failing())  return;
  1897   int j = 0;
  1898   for (; i < _late_inlines.length(); i++, j++) {
  1899     _late_inlines.at_put(j, _late_inlines.at(i));
  1901   _late_inlines.trunc_to(j);
  1904     ResourceMark rm;
  1905     PhaseRemoveUseless pru(gvn, for_igvn());
  1908   igvn = PhaseIterGVN(gvn);
  1911 // Perform incremental inlining until bound on number of live nodes is reached
  1912 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
  1913   PhaseGVN* gvn = initial_gvn();
  1915   set_inlining_incrementally(true);
  1916   set_inlining_progress(true);
  1917   uint low_live_nodes = 0;
  1919   while(inlining_progress() && _late_inlines.length() > 0) {
  1921     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1922       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
  1923         // PhaseIdealLoop is expensive so we only try it once we are
  1924         // out of loop and we only try it again if the previous helped
  1925         // got the number of nodes down significantly
  1926         PhaseIdealLoop ideal_loop( igvn, false, true );
  1927         if (failing())  return;
  1928         low_live_nodes = live_nodes();
  1929         _major_progress = true;
  1932       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1933         break;
  1937     inline_incrementally_one(igvn);
  1939     if (failing())  return;
  1941     igvn.optimize();
  1943     if (failing())  return;
  1946   assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1948   if (_string_late_inlines.length() > 0) {
  1949     assert(has_stringbuilder(), "inconsistent");
  1950     for_igvn()->clear();
  1951     initial_gvn()->replace_with(&igvn);
  1953     inline_string_calls(false);
  1955     if (failing())  return;
  1958       ResourceMark rm;
  1959       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1962     igvn = PhaseIterGVN(gvn);
  1964     igvn.optimize();
  1967   set_inlining_incrementally(false);
  1971 //------------------------------Optimize---------------------------------------
  1972 // Given a graph, optimize it.
  1973 void Compile::Optimize() {
  1974   TracePhase t1("optimizer", &_t_optimizer, true);
  1976 #ifndef PRODUCT
  1977   if (env()->break_at_compile()) {
  1978     BREAKPOINT;
  1981 #endif
  1983   ResourceMark rm;
  1984   int          loop_opts_cnt;
  1986   NOT_PRODUCT( verify_graph_edges(); )
  1988   print_method(PHASE_AFTER_PARSING);
  1991   // Iterative Global Value Numbering, including ideal transforms
  1992   // Initialize IterGVN with types and values from parse-time GVN
  1993   PhaseIterGVN igvn(initial_gvn());
  1995     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  1996     igvn.optimize();
  1999   print_method(PHASE_ITER_GVN1, 2);
  2001   if (failing())  return;
  2004     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2005     inline_incrementally(igvn);
  2008   print_method(PHASE_INCREMENTAL_INLINE, 2);
  2010   if (failing())  return;
  2012   if (eliminate_boxing()) {
  2013     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2014     // Inline valueOf() methods now.
  2015     inline_boxing_calls(igvn);
  2017     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
  2019     if (failing())  return;
  2022   // Remove the speculative part of types and clean up the graph from
  2023   // the extra CastPP nodes whose only purpose is to carry them. Do
  2024   // that early so that optimizations are not disrupted by the extra
  2025   // CastPP nodes.
  2026   remove_speculative_types(igvn);
  2028   // No more new expensive nodes will be added to the list from here
  2029   // so keep only the actual candidates for optimizations.
  2030   cleanup_expensive_nodes(igvn);
  2032   // Perform escape analysis
  2033   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  2034     if (has_loops()) {
  2035       // Cleanup graph (remove dead nodes).
  2036       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2037       PhaseIdealLoop ideal_loop( igvn, false, true );
  2038       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
  2039       if (failing())  return;
  2041     ConnectionGraph::do_analysis(this, &igvn);
  2043     if (failing())  return;
  2045     // Optimize out fields loads from scalar replaceable allocations.
  2046     igvn.optimize();
  2047     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
  2049     if (failing())  return;
  2051     if (congraph() != NULL && macro_count() > 0) {
  2052       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
  2053       PhaseMacroExpand mexp(igvn);
  2054       mexp.eliminate_macro_nodes();
  2055       igvn.set_delay_transform(false);
  2057       igvn.optimize();
  2058       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
  2060       if (failing())  return;
  2064   // Loop transforms on the ideal graph.  Range Check Elimination,
  2065   // peeling, unrolling, etc.
  2067   // Set loop opts counter
  2068   loop_opts_cnt = num_loop_opts();
  2069   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  2071       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2072       PhaseIdealLoop ideal_loop( igvn, true );
  2073       loop_opts_cnt--;
  2074       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
  2075       if (failing())  return;
  2077     // Loop opts pass if partial peeling occurred in previous pass
  2078     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  2079       TracePhase t3("idealLoop", &_t_idealLoop, true);
  2080       PhaseIdealLoop ideal_loop( igvn, false );
  2081       loop_opts_cnt--;
  2082       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
  2083       if (failing())  return;
  2085     // Loop opts pass for loop-unrolling before CCP
  2086     if(major_progress() && (loop_opts_cnt > 0)) {
  2087       TracePhase t4("idealLoop", &_t_idealLoop, true);
  2088       PhaseIdealLoop ideal_loop( igvn, false );
  2089       loop_opts_cnt--;
  2090       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
  2092     if (!failing()) {
  2093       // Verify that last round of loop opts produced a valid graph
  2094       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2095       PhaseIdealLoop::verify(igvn);
  2098   if (failing())  return;
  2100   // Conditional Constant Propagation;
  2101   PhaseCCP ccp( &igvn );
  2102   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  2104     TracePhase t2("ccp", &_t_ccp, true);
  2105     ccp.do_transform();
  2107   print_method(PHASE_CPP1, 2);
  2109   assert( true, "Break here to ccp.dump_old2new_map()");
  2111   // Iterative Global Value Numbering, including ideal transforms
  2113     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  2114     igvn = ccp;
  2115     igvn.optimize();
  2118   print_method(PHASE_ITER_GVN2, 2);
  2120   if (failing())  return;
  2122   // Loop transforms on the ideal graph.  Range Check Elimination,
  2123   // peeling, unrolling, etc.
  2124   if(loop_opts_cnt > 0) {
  2125     debug_only( int cnt = 0; );
  2126     while(major_progress() && (loop_opts_cnt > 0)) {
  2127       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2128       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  2129       PhaseIdealLoop ideal_loop( igvn, true);
  2130       loop_opts_cnt--;
  2131       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
  2132       if (failing())  return;
  2137     // Verify that all previous optimizations produced a valid graph
  2138     // at least to this point, even if no loop optimizations were done.
  2139     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2140     PhaseIdealLoop::verify(igvn);
  2144     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  2145     PhaseMacroExpand  mex(igvn);
  2146     if (mex.expand_macro_nodes()) {
  2147       assert(failing(), "must bail out w/ explicit message");
  2148       return;
  2152  } // (End scope of igvn; run destructor if necessary for asserts.)
  2154   dump_inlining();
  2155   // A method with only infinite loops has no edges entering loops from root
  2157     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  2158     if (final_graph_reshaping()) {
  2159       assert(failing(), "must bail out w/ explicit message");
  2160       return;
  2164   print_method(PHASE_OPTIMIZE_FINISHED, 2);
  2168 //------------------------------Code_Gen---------------------------------------
  2169 // Given a graph, generate code for it
  2170 void Compile::Code_Gen() {
  2171   if (failing()) {
  2172     return;
  2175   // Perform instruction selection.  You might think we could reclaim Matcher
  2176   // memory PDQ, but actually the Matcher is used in generating spill code.
  2177   // Internals of the Matcher (including some VectorSets) must remain live
  2178   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  2179   // set a bit in reclaimed memory.
  2181   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2182   // nodes.  Mapping is only valid at the root of each matched subtree.
  2183   NOT_PRODUCT( verify_graph_edges(); )
  2185   Matcher matcher;
  2186   _matcher = &matcher;
  2188     TracePhase t2("matcher", &_t_matcher, true);
  2189     matcher.match();
  2191   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2192   // nodes.  Mapping is only valid at the root of each matched subtree.
  2193   NOT_PRODUCT( verify_graph_edges(); )
  2195   // If you have too many nodes, or if matching has failed, bail out
  2196   check_node_count(0, "out of nodes matching instructions");
  2197   if (failing()) {
  2198     return;
  2201   // Build a proper-looking CFG
  2202   PhaseCFG cfg(node_arena(), root(), matcher);
  2203   _cfg = &cfg;
  2205     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  2206     bool success = cfg.do_global_code_motion();
  2207     if (!success) {
  2208       return;
  2211     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
  2212     NOT_PRODUCT( verify_graph_edges(); )
  2213     debug_only( cfg.verify(); )
  2216   PhaseChaitin regalloc(unique(), cfg, matcher);
  2217   _regalloc = &regalloc;
  2219     TracePhase t2("regalloc", &_t_registerAllocation, true);
  2220     // Perform register allocation.  After Chaitin, use-def chains are
  2221     // no longer accurate (at spill code) and so must be ignored.
  2222     // Node->LRG->reg mappings are still accurate.
  2223     _regalloc->Register_Allocate();
  2225     // Bail out if the allocator builds too many nodes
  2226     if (failing()) {
  2227       return;
  2231   // Prior to register allocation we kept empty basic blocks in case the
  2232   // the allocator needed a place to spill.  After register allocation we
  2233   // are not adding any new instructions.  If any basic block is empty, we
  2234   // can now safely remove it.
  2236     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  2237     cfg.remove_empty_blocks();
  2238     if (do_freq_based_layout()) {
  2239       PhaseBlockLayout layout(cfg);
  2240     } else {
  2241       cfg.set_loop_alignment();
  2243     cfg.fixup_flow();
  2246   // Apply peephole optimizations
  2247   if( OptoPeephole ) {
  2248     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  2249     PhasePeephole peep( _regalloc, cfg);
  2250     peep.do_transform();
  2253   // Convert Nodes to instruction bits in a buffer
  2255     // %%%% workspace merge brought two timers together for one job
  2256     TracePhase t2a("output", &_t_output, true);
  2257     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  2258     Output();
  2261   print_method(PHASE_FINAL_CODE);
  2263   // He's dead, Jim.
  2264   _cfg     = (PhaseCFG*)0xdeadbeef;
  2265   _regalloc = (PhaseChaitin*)0xdeadbeef;
  2269 //------------------------------dump_asm---------------------------------------
  2270 // Dump formatted assembly
  2271 #ifndef PRODUCT
  2272 void Compile::dump_asm(int *pcs, uint pc_limit) {
  2273   bool cut_short = false;
  2274   tty->print_cr("#");
  2275   tty->print("#  ");  _tf->dump();  tty->cr();
  2276   tty->print_cr("#");
  2278   // For all blocks
  2279   int pc = 0x0;                 // Program counter
  2280   char starts_bundle = ' ';
  2281   _regalloc->dump_frame();
  2283   Node *n = NULL;
  2284   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
  2285     if (VMThread::should_terminate()) {
  2286       cut_short = true;
  2287       break;
  2289     Block* block = _cfg->get_block(i);
  2290     if (block->is_connector() && !Verbose) {
  2291       continue;
  2293     n = block->head();
  2294     if (pcs && n->_idx < pc_limit) {
  2295       tty->print("%3.3x   ", pcs[n->_idx]);
  2296     } else {
  2297       tty->print("      ");
  2299     block->dump_head(_cfg);
  2300     if (block->is_connector()) {
  2301       tty->print_cr("        # Empty connector block");
  2302     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  2303       tty->print_cr("        # Block is sole successor of call");
  2306     // For all instructions
  2307     Node *delay = NULL;
  2308     for (uint j = 0; j < block->number_of_nodes(); j++) {
  2309       if (VMThread::should_terminate()) {
  2310         cut_short = true;
  2311         break;
  2313       n = block->get_node(j);
  2314       if (valid_bundle_info(n)) {
  2315         Bundle* bundle = node_bundling(n);
  2316         if (bundle->used_in_unconditional_delay()) {
  2317           delay = n;
  2318           continue;
  2320         if (bundle->starts_bundle()) {
  2321           starts_bundle = '+';
  2325       if (WizardMode) {
  2326         n->dump();
  2329       if( !n->is_Region() &&    // Dont print in the Assembly
  2330           !n->is_Phi() &&       // a few noisely useless nodes
  2331           !n->is_Proj() &&
  2332           !n->is_MachTemp() &&
  2333           !n->is_SafePointScalarObject() &&
  2334           !n->is_Catch() &&     // Would be nice to print exception table targets
  2335           !n->is_MergeMem() &&  // Not very interesting
  2336           !n->is_top() &&       // Debug info table constants
  2337           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  2338           ) {
  2339         if (pcs && n->_idx < pc_limit)
  2340           tty->print("%3.3x", pcs[n->_idx]);
  2341         else
  2342           tty->print("   ");
  2343         tty->print(" %c ", starts_bundle);
  2344         starts_bundle = ' ';
  2345         tty->print("\t");
  2346         n->format(_regalloc, tty);
  2347         tty->cr();
  2350       // If we have an instruction with a delay slot, and have seen a delay,
  2351       // then back up and print it
  2352       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  2353         assert(delay != NULL, "no unconditional delay instruction");
  2354         if (WizardMode) delay->dump();
  2356         if (node_bundling(delay)->starts_bundle())
  2357           starts_bundle = '+';
  2358         if (pcs && n->_idx < pc_limit)
  2359           tty->print("%3.3x", pcs[n->_idx]);
  2360         else
  2361           tty->print("   ");
  2362         tty->print(" %c ", starts_bundle);
  2363         starts_bundle = ' ';
  2364         tty->print("\t");
  2365         delay->format(_regalloc, tty);
  2366         tty->print_cr("");
  2367         delay = NULL;
  2370       // Dump the exception table as well
  2371       if( n->is_Catch() && (Verbose || WizardMode) ) {
  2372         // Print the exception table for this offset
  2373         _handler_table.print_subtable_for(pc);
  2377     if (pcs && n->_idx < pc_limit)
  2378       tty->print_cr("%3.3x", pcs[n->_idx]);
  2379     else
  2380       tty->print_cr("");
  2382     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2384   } // End of per-block dump
  2385   tty->print_cr("");
  2387   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2389 #endif
  2391 //------------------------------Final_Reshape_Counts---------------------------
  2392 // This class defines counters to help identify when a method
  2393 // may/must be executed using hardware with only 24-bit precision.
  2394 struct Final_Reshape_Counts : public StackObj {
  2395   int  _call_count;             // count non-inlined 'common' calls
  2396   int  _float_count;            // count float ops requiring 24-bit precision
  2397   int  _double_count;           // count double ops requiring more precision
  2398   int  _java_call_count;        // count non-inlined 'java' calls
  2399   int  _inner_loop_count;       // count loops which need alignment
  2400   VectorSet _visited;           // Visitation flags
  2401   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2403   Final_Reshape_Counts() :
  2404     _call_count(0), _float_count(0), _double_count(0),
  2405     _java_call_count(0), _inner_loop_count(0),
  2406     _visited( Thread::current()->resource_area() ) { }
  2408   void inc_call_count  () { _call_count  ++; }
  2409   void inc_float_count () { _float_count ++; }
  2410   void inc_double_count() { _double_count++; }
  2411   void inc_java_call_count() { _java_call_count++; }
  2412   void inc_inner_loop_count() { _inner_loop_count++; }
  2414   int  get_call_count  () const { return _call_count  ; }
  2415   int  get_float_count () const { return _float_count ; }
  2416   int  get_double_count() const { return _double_count; }
  2417   int  get_java_call_count() const { return _java_call_count; }
  2418   int  get_inner_loop_count() const { return _inner_loop_count; }
  2419 };
  2421 #ifdef ASSERT
  2422 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2423   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2424   // Make sure the offset goes inside the instance layout.
  2425   return k->contains_field_offset(tp->offset());
  2426   // Note that OffsetBot and OffsetTop are very negative.
  2428 #endif
  2430 // Eliminate trivially redundant StoreCMs and accumulate their
  2431 // precedence edges.
  2432 void Compile::eliminate_redundant_card_marks(Node* n) {
  2433   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2434   if (n->in(MemNode::Address)->outcnt() > 1) {
  2435     // There are multiple users of the same address so it might be
  2436     // possible to eliminate some of the StoreCMs
  2437     Node* mem = n->in(MemNode::Memory);
  2438     Node* adr = n->in(MemNode::Address);
  2439     Node* val = n->in(MemNode::ValueIn);
  2440     Node* prev = n;
  2441     bool done = false;
  2442     // Walk the chain of StoreCMs eliminating ones that match.  As
  2443     // long as it's a chain of single users then the optimization is
  2444     // safe.  Eliminating partially redundant StoreCMs would require
  2445     // cloning copies down the other paths.
  2446     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2447       if (adr == mem->in(MemNode::Address) &&
  2448           val == mem->in(MemNode::ValueIn)) {
  2449         // redundant StoreCM
  2450         if (mem->req() > MemNode::OopStore) {
  2451           // Hasn't been processed by this code yet.
  2452           n->add_prec(mem->in(MemNode::OopStore));
  2453         } else {
  2454           // Already converted to precedence edge
  2455           for (uint i = mem->req(); i < mem->len(); i++) {
  2456             // Accumulate any precedence edges
  2457             if (mem->in(i) != NULL) {
  2458               n->add_prec(mem->in(i));
  2461           // Everything above this point has been processed.
  2462           done = true;
  2464         // Eliminate the previous StoreCM
  2465         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2466         assert(mem->outcnt() == 0, "should be dead");
  2467         mem->disconnect_inputs(NULL, this);
  2468       } else {
  2469         prev = mem;
  2471       mem = prev->in(MemNode::Memory);
  2476 //------------------------------final_graph_reshaping_impl----------------------
  2477 // Implement items 1-5 from final_graph_reshaping below.
  2478 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
  2480   if ( n->outcnt() == 0 ) return; // dead node
  2481   uint nop = n->Opcode();
  2483   // Check for 2-input instruction with "last use" on right input.
  2484   // Swap to left input.  Implements item (2).
  2485   if( n->req() == 3 &&          // two-input instruction
  2486       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2487       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2488       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2489       !n->in(2)->is_Con() ) {   // right use is not a constant
  2490     // Check for commutative opcode
  2491     switch( nop ) {
  2492     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2493     case Op_MaxI:  case Op_MinI:
  2494     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2495     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2496     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2497       // Move "last use" input to left by swapping inputs
  2498       n->swap_edges(1, 2);
  2499       break;
  2501     default:
  2502       break;
  2506 #ifdef ASSERT
  2507   if( n->is_Mem() ) {
  2508     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
  2509     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2510             // oop will be recorded in oop map if load crosses safepoint
  2511             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2512                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2513             "raw memory operations should have control edge");
  2515 #endif
  2516   // Count FPU ops and common calls, implements item (3)
  2517   switch( nop ) {
  2518   // Count all float operations that may use FPU
  2519   case Op_AddF:
  2520   case Op_SubF:
  2521   case Op_MulF:
  2522   case Op_DivF:
  2523   case Op_NegF:
  2524   case Op_ModF:
  2525   case Op_ConvI2F:
  2526   case Op_ConF:
  2527   case Op_CmpF:
  2528   case Op_CmpF3:
  2529   // case Op_ConvL2F: // longs are split into 32-bit halves
  2530     frc.inc_float_count();
  2531     break;
  2533   case Op_ConvF2D:
  2534   case Op_ConvD2F:
  2535     frc.inc_float_count();
  2536     frc.inc_double_count();
  2537     break;
  2539   // Count all double operations that may use FPU
  2540   case Op_AddD:
  2541   case Op_SubD:
  2542   case Op_MulD:
  2543   case Op_DivD:
  2544   case Op_NegD:
  2545   case Op_ModD:
  2546   case Op_ConvI2D:
  2547   case Op_ConvD2I:
  2548   // case Op_ConvL2D: // handled by leaf call
  2549   // case Op_ConvD2L: // handled by leaf call
  2550   case Op_ConD:
  2551   case Op_CmpD:
  2552   case Op_CmpD3:
  2553     frc.inc_double_count();
  2554     break;
  2555   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2556   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2557     n->subsume_by(n->in(1), this);
  2558     break;
  2559   case Op_CallStaticJava:
  2560   case Op_CallJava:
  2561   case Op_CallDynamicJava:
  2562     frc.inc_java_call_count(); // Count java call site;
  2563   case Op_CallRuntime:
  2564   case Op_CallLeaf:
  2565   case Op_CallLeafNoFP: {
  2566     assert( n->is_Call(), "" );
  2567     CallNode *call = n->as_Call();
  2568     // Count call sites where the FP mode bit would have to be flipped.
  2569     // Do not count uncommon runtime calls:
  2570     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2571     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2572     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2573       frc.inc_call_count();   // Count the call site
  2574     } else {                  // See if uncommon argument is shared
  2575       Node *n = call->in(TypeFunc::Parms);
  2576       int nop = n->Opcode();
  2577       // Clone shared simple arguments to uncommon calls, item (1).
  2578       if( n->outcnt() > 1 &&
  2579           !n->is_Proj() &&
  2580           nop != Op_CreateEx &&
  2581           nop != Op_CheckCastPP &&
  2582           nop != Op_DecodeN &&
  2583           nop != Op_DecodeNKlass &&
  2584           !n->is_Mem() ) {
  2585         Node *x = n->clone();
  2586         call->set_req( TypeFunc::Parms, x );
  2589     break;
  2592   case Op_StoreD:
  2593   case Op_LoadD:
  2594   case Op_LoadD_unaligned:
  2595     frc.inc_double_count();
  2596     goto handle_mem;
  2597   case Op_StoreF:
  2598   case Op_LoadF:
  2599     frc.inc_float_count();
  2600     goto handle_mem;
  2602   case Op_StoreCM:
  2604       // Convert OopStore dependence into precedence edge
  2605       Node* prec = n->in(MemNode::OopStore);
  2606       n->del_req(MemNode::OopStore);
  2607       n->add_prec(prec);
  2608       eliminate_redundant_card_marks(n);
  2611     // fall through
  2613   case Op_StoreB:
  2614   case Op_StoreC:
  2615   case Op_StorePConditional:
  2616   case Op_StoreI:
  2617   case Op_StoreL:
  2618   case Op_StoreIConditional:
  2619   case Op_StoreLConditional:
  2620   case Op_CompareAndSwapI:
  2621   case Op_CompareAndSwapL:
  2622   case Op_CompareAndSwapP:
  2623   case Op_CompareAndSwapN:
  2624   case Op_GetAndAddI:
  2625   case Op_GetAndAddL:
  2626   case Op_GetAndSetI:
  2627   case Op_GetAndSetL:
  2628   case Op_GetAndSetP:
  2629   case Op_GetAndSetN:
  2630   case Op_StoreP:
  2631   case Op_StoreN:
  2632   case Op_StoreNKlass:
  2633   case Op_LoadB:
  2634   case Op_LoadUB:
  2635   case Op_LoadUS:
  2636   case Op_LoadI:
  2637   case Op_LoadKlass:
  2638   case Op_LoadNKlass:
  2639   case Op_LoadL:
  2640   case Op_LoadL_unaligned:
  2641   case Op_LoadPLocked:
  2642   case Op_LoadP:
  2643   case Op_LoadN:
  2644   case Op_LoadRange:
  2645   case Op_LoadS: {
  2646   handle_mem:
  2647 #ifdef ASSERT
  2648     if( VerifyOptoOopOffsets ) {
  2649       assert( n->is_Mem(), "" );
  2650       MemNode *mem  = (MemNode*)n;
  2651       // Check to see if address types have grounded out somehow.
  2652       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2653       assert( !tp || oop_offset_is_sane(tp), "" );
  2655 #endif
  2656     break;
  2659   case Op_AddP: {               // Assert sane base pointers
  2660     Node *addp = n->in(AddPNode::Address);
  2661     assert( !addp->is_AddP() ||
  2662             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2663             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2664             "Base pointers must match" );
  2665 #ifdef _LP64
  2666     if ((UseCompressedOops || UseCompressedClassPointers) &&
  2667         addp->Opcode() == Op_ConP &&
  2668         addp == n->in(AddPNode::Base) &&
  2669         n->in(AddPNode::Offset)->is_Con()) {
  2670       // Use addressing with narrow klass to load with offset on x86.
  2671       // On sparc loading 32-bits constant and decoding it have less
  2672       // instructions (4) then load 64-bits constant (7).
  2673       // Do this transformation here since IGVN will convert ConN back to ConP.
  2674       const Type* t = addp->bottom_type();
  2675       if (t->isa_oopptr() || t->isa_klassptr()) {
  2676         Node* nn = NULL;
  2678         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
  2680         // Look for existing ConN node of the same exact type.
  2681         Node* r  = root();
  2682         uint cnt = r->outcnt();
  2683         for (uint i = 0; i < cnt; i++) {
  2684           Node* m = r->raw_out(i);
  2685           if (m!= NULL && m->Opcode() == op &&
  2686               m->bottom_type()->make_ptr() == t) {
  2687             nn = m;
  2688             break;
  2691         if (nn != NULL) {
  2692           // Decode a narrow oop to match address
  2693           // [R12 + narrow_oop_reg<<3 + offset]
  2694           if (t->isa_oopptr()) {
  2695             nn = new (this) DecodeNNode(nn, t);
  2696           } else {
  2697             nn = new (this) DecodeNKlassNode(nn, t);
  2699           n->set_req(AddPNode::Base, nn);
  2700           n->set_req(AddPNode::Address, nn);
  2701           if (addp->outcnt() == 0) {
  2702             addp->disconnect_inputs(NULL, this);
  2707 #endif
  2708     break;
  2711 #ifdef _LP64
  2712   case Op_CastPP:
  2713     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2714       Node* in1 = n->in(1);
  2715       const Type* t = n->bottom_type();
  2716       Node* new_in1 = in1->clone();
  2717       new_in1->as_DecodeN()->set_type(t);
  2719       if (!Matcher::narrow_oop_use_complex_address()) {
  2720         //
  2721         // x86, ARM and friends can handle 2 adds in addressing mode
  2722         // and Matcher can fold a DecodeN node into address by using
  2723         // a narrow oop directly and do implicit NULL check in address:
  2724         //
  2725         // [R12 + narrow_oop_reg<<3 + offset]
  2726         // NullCheck narrow_oop_reg
  2727         //
  2728         // On other platforms (Sparc) we have to keep new DecodeN node and
  2729         // use it to do implicit NULL check in address:
  2730         //
  2731         // decode_not_null narrow_oop_reg, base_reg
  2732         // [base_reg + offset]
  2733         // NullCheck base_reg
  2734         //
  2735         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2736         // to keep the information to which NULL check the new DecodeN node
  2737         // corresponds to use it as value in implicit_null_check().
  2738         //
  2739         new_in1->set_req(0, n->in(0));
  2742       n->subsume_by(new_in1, this);
  2743       if (in1->outcnt() == 0) {
  2744         in1->disconnect_inputs(NULL, this);
  2747     break;
  2749   case Op_CmpP:
  2750     // Do this transformation here to preserve CmpPNode::sub() and
  2751     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2752     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
  2753       Node* in1 = n->in(1);
  2754       Node* in2 = n->in(2);
  2755       if (!in1->is_DecodeNarrowPtr()) {
  2756         in2 = in1;
  2757         in1 = n->in(2);
  2759       assert(in1->is_DecodeNarrowPtr(), "sanity");
  2761       Node* new_in2 = NULL;
  2762       if (in2->is_DecodeNarrowPtr()) {
  2763         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
  2764         new_in2 = in2->in(1);
  2765       } else if (in2->Opcode() == Op_ConP) {
  2766         const Type* t = in2->bottom_type();
  2767         if (t == TypePtr::NULL_PTR) {
  2768           assert(in1->is_DecodeN(), "compare klass to null?");
  2769           // Don't convert CmpP null check into CmpN if compressed
  2770           // oops implicit null check is not generated.
  2771           // This will allow to generate normal oop implicit null check.
  2772           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2773             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
  2774           //
  2775           // This transformation together with CastPP transformation above
  2776           // will generated code for implicit NULL checks for compressed oops.
  2777           //
  2778           // The original code after Optimize()
  2779           //
  2780           //    LoadN memory, narrow_oop_reg
  2781           //    decode narrow_oop_reg, base_reg
  2782           //    CmpP base_reg, NULL
  2783           //    CastPP base_reg // NotNull
  2784           //    Load [base_reg + offset], val_reg
  2785           //
  2786           // after these transformations will be
  2787           //
  2788           //    LoadN memory, narrow_oop_reg
  2789           //    CmpN narrow_oop_reg, NULL
  2790           //    decode_not_null narrow_oop_reg, base_reg
  2791           //    Load [base_reg + offset], val_reg
  2792           //
  2793           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2794           // since narrow oops can be used in debug info now (see the code in
  2795           // final_graph_reshaping_walk()).
  2796           //
  2797           // At the end the code will be matched to
  2798           // on x86:
  2799           //
  2800           //    Load_narrow_oop memory, narrow_oop_reg
  2801           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2802           //    NullCheck narrow_oop_reg
  2803           //
  2804           // and on sparc:
  2805           //
  2806           //    Load_narrow_oop memory, narrow_oop_reg
  2807           //    decode_not_null narrow_oop_reg, base_reg
  2808           //    Load [base_reg + offset], val_reg
  2809           //    NullCheck base_reg
  2810           //
  2811         } else if (t->isa_oopptr()) {
  2812           new_in2 = ConNode::make(this, t->make_narrowoop());
  2813         } else if (t->isa_klassptr()) {
  2814           new_in2 = ConNode::make(this, t->make_narrowklass());
  2817       if (new_in2 != NULL) {
  2818         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
  2819         n->subsume_by(cmpN, this);
  2820         if (in1->outcnt() == 0) {
  2821           in1->disconnect_inputs(NULL, this);
  2823         if (in2->outcnt() == 0) {
  2824           in2->disconnect_inputs(NULL, this);
  2828     break;
  2830   case Op_DecodeN:
  2831   case Op_DecodeNKlass:
  2832     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
  2833     // DecodeN could be pinned when it can't be fold into
  2834     // an address expression, see the code for Op_CastPP above.
  2835     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
  2836     break;
  2838   case Op_EncodeP:
  2839   case Op_EncodePKlass: {
  2840     Node* in1 = n->in(1);
  2841     if (in1->is_DecodeNarrowPtr()) {
  2842       n->subsume_by(in1->in(1), this);
  2843     } else if (in1->Opcode() == Op_ConP) {
  2844       const Type* t = in1->bottom_type();
  2845       if (t == TypePtr::NULL_PTR) {
  2846         assert(t->isa_oopptr(), "null klass?");
  2847         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
  2848       } else if (t->isa_oopptr()) {
  2849         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
  2850       } else if (t->isa_klassptr()) {
  2851         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
  2854     if (in1->outcnt() == 0) {
  2855       in1->disconnect_inputs(NULL, this);
  2857     break;
  2860   case Op_Proj: {
  2861     if (OptimizeStringConcat) {
  2862       ProjNode* p = n->as_Proj();
  2863       if (p->_is_io_use) {
  2864         // Separate projections were used for the exception path which
  2865         // are normally removed by a late inline.  If it wasn't inlined
  2866         // then they will hang around and should just be replaced with
  2867         // the original one.
  2868         Node* proj = NULL;
  2869         // Replace with just one
  2870         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  2871           Node *use = i.get();
  2872           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  2873             proj = use;
  2874             break;
  2877         assert(proj != NULL, "must be found");
  2878         p->subsume_by(proj, this);
  2881     break;
  2884   case Op_Phi:
  2885     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
  2886       // The EncodeP optimization may create Phi with the same edges
  2887       // for all paths. It is not handled well by Register Allocator.
  2888       Node* unique_in = n->in(1);
  2889       assert(unique_in != NULL, "");
  2890       uint cnt = n->req();
  2891       for (uint i = 2; i < cnt; i++) {
  2892         Node* m = n->in(i);
  2893         assert(m != NULL, "");
  2894         if (unique_in != m)
  2895           unique_in = NULL;
  2897       if (unique_in != NULL) {
  2898         n->subsume_by(unique_in, this);
  2901     break;
  2903 #endif
  2905   case Op_ModI:
  2906     if (UseDivMod) {
  2907       // Check if a%b and a/b both exist
  2908       Node* d = n->find_similar(Op_DivI);
  2909       if (d) {
  2910         // Replace them with a fused divmod if supported
  2911         if (Matcher::has_match_rule(Op_DivModI)) {
  2912           DivModINode* divmod = DivModINode::make(this, n);
  2913           d->subsume_by(divmod->div_proj(), this);
  2914           n->subsume_by(divmod->mod_proj(), this);
  2915         } else {
  2916           // replace a%b with a-((a/b)*b)
  2917           Node* mult = new (this) MulINode(d, d->in(2));
  2918           Node* sub  = new (this) SubINode(d->in(1), mult);
  2919           n->subsume_by(sub, this);
  2923     break;
  2925   case Op_ModL:
  2926     if (UseDivMod) {
  2927       // Check if a%b and a/b both exist
  2928       Node* d = n->find_similar(Op_DivL);
  2929       if (d) {
  2930         // Replace them with a fused divmod if supported
  2931         if (Matcher::has_match_rule(Op_DivModL)) {
  2932           DivModLNode* divmod = DivModLNode::make(this, n);
  2933           d->subsume_by(divmod->div_proj(), this);
  2934           n->subsume_by(divmod->mod_proj(), this);
  2935         } else {
  2936           // replace a%b with a-((a/b)*b)
  2937           Node* mult = new (this) MulLNode(d, d->in(2));
  2938           Node* sub  = new (this) SubLNode(d->in(1), mult);
  2939           n->subsume_by(sub, this);
  2943     break;
  2945   case Op_LoadVector:
  2946   case Op_StoreVector:
  2947     break;
  2949   case Op_PackB:
  2950   case Op_PackS:
  2951   case Op_PackI:
  2952   case Op_PackF:
  2953   case Op_PackL:
  2954   case Op_PackD:
  2955     if (n->req()-1 > 2) {
  2956       // Replace many operand PackNodes with a binary tree for matching
  2957       PackNode* p = (PackNode*) n;
  2958       Node* btp = p->binary_tree_pack(this, 1, n->req());
  2959       n->subsume_by(btp, this);
  2961     break;
  2962   case Op_Loop:
  2963   case Op_CountedLoop:
  2964     if (n->as_Loop()->is_inner_loop()) {
  2965       frc.inc_inner_loop_count();
  2967     break;
  2968   case Op_LShiftI:
  2969   case Op_RShiftI:
  2970   case Op_URShiftI:
  2971   case Op_LShiftL:
  2972   case Op_RShiftL:
  2973   case Op_URShiftL:
  2974     if (Matcher::need_masked_shift_count) {
  2975       // The cpu's shift instructions don't restrict the count to the
  2976       // lower 5/6 bits. We need to do the masking ourselves.
  2977       Node* in2 = n->in(2);
  2978       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  2979       const TypeInt* t = in2->find_int_type();
  2980       if (t != NULL && t->is_con()) {
  2981         juint shift = t->get_con();
  2982         if (shift > mask) { // Unsigned cmp
  2983           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
  2985       } else {
  2986         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  2987           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
  2988           n->set_req(2, shift);
  2991       if (in2->outcnt() == 0) { // Remove dead node
  2992         in2->disconnect_inputs(NULL, this);
  2995     break;
  2996   case Op_MemBarStoreStore:
  2997   case Op_MemBarRelease:
  2998     // Break the link with AllocateNode: it is no longer useful and
  2999     // confuses register allocation.
  3000     if (n->req() > MemBarNode::Precedent) {
  3001       n->set_req(MemBarNode::Precedent, top());
  3003     break;
  3004     // Must set a control edge on all nodes that produce a FlagsProj
  3005     // so they can't escape the block that consumes the flags.
  3006     // Must also set the non throwing branch as the control
  3007     // for all nodes that depends on the result. Unless the node
  3008     // already have a control that isn't the control of the
  3009     // flag producer
  3010   case Op_FlagsProj:
  3012       MathExactNode* math = (MathExactNode*)  n->in(0);
  3013       Node* ctrl = math->control_node();
  3014       Node* non_throwing = math->non_throwing_branch();
  3015       math->set_req(0, ctrl);
  3017       Node* result = math->result_node();
  3018       if (result != NULL) {
  3019         for (DUIterator_Fast jmax, j = result->fast_outs(jmax); j < jmax; j++) {
  3020           Node* out = result->fast_out(j);
  3021           // Phi nodes shouldn't be moved. They would only match below if they
  3022           // had the same control as the MathExactNode. The only time that
  3023           // would happen is if the Phi is also an input to the MathExact
  3024           if (!out->is_Phi()) {
  3025             if (out->in(0) == NULL) {
  3026               out->set_req(0, non_throwing);
  3027             } else if (out->in(0) == ctrl) {
  3028               out->set_req(0, non_throwing);
  3034     break;
  3035   default:
  3036     assert( !n->is_Call(), "" );
  3037     assert( !n->is_Mem(), "" );
  3038     break;
  3041   // Collect CFG split points
  3042   if (n->is_MultiBranch())
  3043     frc._tests.push(n);
  3046 //------------------------------final_graph_reshaping_walk---------------------
  3047 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  3048 // requires that the walk visits a node's inputs before visiting the node.
  3049 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  3050   ResourceArea *area = Thread::current()->resource_area();
  3051   Unique_Node_List sfpt(area);
  3053   frc._visited.set(root->_idx); // first, mark node as visited
  3054   uint cnt = root->req();
  3055   Node *n = root;
  3056   uint  i = 0;
  3057   while (true) {
  3058     if (i < cnt) {
  3059       // Place all non-visited non-null inputs onto stack
  3060       Node* m = n->in(i);
  3061       ++i;
  3062       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  3063         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
  3064           sfpt.push(m);
  3065         cnt = m->req();
  3066         nstack.push(n, i); // put on stack parent and next input's index
  3067         n = m;
  3068         i = 0;
  3070     } else {
  3071       // Now do post-visit work
  3072       final_graph_reshaping_impl( n, frc );
  3073       if (nstack.is_empty())
  3074         break;             // finished
  3075       n = nstack.node();   // Get node from stack
  3076       cnt = n->req();
  3077       i = nstack.index();
  3078       nstack.pop();        // Shift to the next node on stack
  3082   // Skip next transformation if compressed oops are not used.
  3083   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
  3084       (!UseCompressedOops && !UseCompressedClassPointers))
  3085     return;
  3087   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
  3088   // It could be done for an uncommon traps or any safepoints/calls
  3089   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
  3090   while (sfpt.size() > 0) {
  3091     n = sfpt.pop();
  3092     JVMState *jvms = n->as_SafePoint()->jvms();
  3093     assert(jvms != NULL, "sanity");
  3094     int start = jvms->debug_start();
  3095     int end   = n->req();
  3096     bool is_uncommon = (n->is_CallStaticJava() &&
  3097                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  3098     for (int j = start; j < end; j++) {
  3099       Node* in = n->in(j);
  3100       if (in->is_DecodeNarrowPtr()) {
  3101         bool safe_to_skip = true;
  3102         if (!is_uncommon ) {
  3103           // Is it safe to skip?
  3104           for (uint i = 0; i < in->outcnt(); i++) {
  3105             Node* u = in->raw_out(i);
  3106             if (!u->is_SafePoint() ||
  3107                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  3108               safe_to_skip = false;
  3112         if (safe_to_skip) {
  3113           n->set_req(j, in->in(1));
  3115         if (in->outcnt() == 0) {
  3116           in->disconnect_inputs(NULL, this);
  3123 //------------------------------final_graph_reshaping--------------------------
  3124 // Final Graph Reshaping.
  3125 //
  3126 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  3127 //     and not commoned up and forced early.  Must come after regular
  3128 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  3129 //     inputs to Loop Phis; these will be split by the allocator anyways.
  3130 //     Remove Opaque nodes.
  3131 // (2) Move last-uses by commutative operations to the left input to encourage
  3132 //     Intel update-in-place two-address operations and better register usage
  3133 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  3134 //     calls canonicalizing them back.
  3135 // (3) Count the number of double-precision FP ops, single-precision FP ops
  3136 //     and call sites.  On Intel, we can get correct rounding either by
  3137 //     forcing singles to memory (requires extra stores and loads after each
  3138 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  3139 //     clearing the mode bit around call sites).  The mode bit is only used
  3140 //     if the relative frequency of single FP ops to calls is low enough.
  3141 //     This is a key transform for SPEC mpeg_audio.
  3142 // (4) Detect infinite loops; blobs of code reachable from above but not
  3143 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  3144 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  3145 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  3146 //     Detection is by looking for IfNodes where only 1 projection is
  3147 //     reachable from below or CatchNodes missing some targets.
  3148 // (5) Assert for insane oop offsets in debug mode.
  3150 bool Compile::final_graph_reshaping() {
  3151   // an infinite loop may have been eliminated by the optimizer,
  3152   // in which case the graph will be empty.
  3153   if (root()->req() == 1) {
  3154     record_method_not_compilable("trivial infinite loop");
  3155     return true;
  3158   // Expensive nodes have their control input set to prevent the GVN
  3159   // from freely commoning them. There's no GVN beyond this point so
  3160   // no need to keep the control input. We want the expensive nodes to
  3161   // be freely moved to the least frequent code path by gcm.
  3162   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
  3163   for (int i = 0; i < expensive_count(); i++) {
  3164     _expensive_nodes->at(i)->set_req(0, NULL);
  3167   Final_Reshape_Counts frc;
  3169   // Visit everybody reachable!
  3170   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  3171   Node_Stack nstack(unique() >> 1);
  3172   final_graph_reshaping_walk(nstack, root(), frc);
  3174   // Check for unreachable (from below) code (i.e., infinite loops).
  3175   for( uint i = 0; i < frc._tests.size(); i++ ) {
  3176     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  3177     // Get number of CFG targets.
  3178     // Note that PCTables include exception targets after calls.
  3179     uint required_outcnt = n->required_outcnt();
  3180     if (n->outcnt() != required_outcnt) {
  3181       // Check for a few special cases.  Rethrow Nodes never take the
  3182       // 'fall-thru' path, so expected kids is 1 less.
  3183       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  3184         if (n->in(0)->in(0)->is_Call()) {
  3185           CallNode *call = n->in(0)->in(0)->as_Call();
  3186           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  3187             required_outcnt--;      // Rethrow always has 1 less kid
  3188           } else if (call->req() > TypeFunc::Parms &&
  3189                      call->is_CallDynamicJava()) {
  3190             // Check for null receiver. In such case, the optimizer has
  3191             // detected that the virtual call will always result in a null
  3192             // pointer exception. The fall-through projection of this CatchNode
  3193             // will not be populated.
  3194             Node *arg0 = call->in(TypeFunc::Parms);
  3195             if (arg0->is_Type() &&
  3196                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  3197               required_outcnt--;
  3199           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  3200                      call->req() > TypeFunc::Parms+1 &&
  3201                      call->is_CallStaticJava()) {
  3202             // Check for negative array length. In such case, the optimizer has
  3203             // detected that the allocation attempt will always result in an
  3204             // exception. There is no fall-through projection of this CatchNode .
  3205             Node *arg1 = call->in(TypeFunc::Parms+1);
  3206             if (arg1->is_Type() &&
  3207                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  3208               required_outcnt--;
  3213       // Recheck with a better notion of 'required_outcnt'
  3214       if (n->outcnt() != required_outcnt) {
  3215         record_method_not_compilable("malformed control flow");
  3216         return true;            // Not all targets reachable!
  3219     // Check that I actually visited all kids.  Unreached kids
  3220     // must be infinite loops.
  3221     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  3222       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  3223         record_method_not_compilable("infinite loop");
  3224         return true;            // Found unvisited kid; must be unreach
  3228   // If original bytecodes contained a mixture of floats and doubles
  3229   // check if the optimizer has made it homogenous, item (3).
  3230   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  3231       frc.get_float_count() > 32 &&
  3232       frc.get_double_count() == 0 &&
  3233       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  3234     set_24_bit_selection_and_mode( false,  true );
  3237   set_java_calls(frc.get_java_call_count());
  3238   set_inner_loops(frc.get_inner_loop_count());
  3240   // No infinite loops, no reason to bail out.
  3241   return false;
  3244 //-----------------------------too_many_traps----------------------------------
  3245 // Report if there are too many traps at the current method and bci.
  3246 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  3247 bool Compile::too_many_traps(ciMethod* method,
  3248                              int bci,
  3249                              Deoptimization::DeoptReason reason) {
  3250   ciMethodData* md = method->method_data();
  3251   if (md->is_empty()) {
  3252     // Assume the trap has not occurred, or that it occurred only
  3253     // because of a transient condition during start-up in the interpreter.
  3254     return false;
  3256   if (md->has_trap_at(bci, reason) != 0) {
  3257     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  3258     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3259     // assume the worst.
  3260     if (log())
  3261       log()->elem("observe trap='%s' count='%d'",
  3262                   Deoptimization::trap_reason_name(reason),
  3263                   md->trap_count(reason));
  3264     return true;
  3265   } else {
  3266     // Ignore method/bci and see if there have been too many globally.
  3267     return too_many_traps(reason, md);
  3271 // Less-accurate variant which does not require a method and bci.
  3272 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  3273                              ciMethodData* logmd) {
  3274  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  3275     // Too many traps globally.
  3276     // Note that we use cumulative trap_count, not just md->trap_count.
  3277     if (log()) {
  3278       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  3279       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  3280                   Deoptimization::trap_reason_name(reason),
  3281                   mcount, trap_count(reason));
  3283     return true;
  3284   } else {
  3285     // The coast is clear.
  3286     return false;
  3290 //--------------------------too_many_recompiles--------------------------------
  3291 // Report if there are too many recompiles at the current method and bci.
  3292 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  3293 // Is not eager to return true, since this will cause the compiler to use
  3294 // Action_none for a trap point, to avoid too many recompilations.
  3295 bool Compile::too_many_recompiles(ciMethod* method,
  3296                                   int bci,
  3297                                   Deoptimization::DeoptReason reason) {
  3298   ciMethodData* md = method->method_data();
  3299   if (md->is_empty()) {
  3300     // Assume the trap has not occurred, or that it occurred only
  3301     // because of a transient condition during start-up in the interpreter.
  3302     return false;
  3304   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  3305   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  3306   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  3307   Deoptimization::DeoptReason per_bc_reason
  3308     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  3309   if ((per_bc_reason == Deoptimization::Reason_none
  3310        || md->has_trap_at(bci, reason) != 0)
  3311       // The trap frequency measure we care about is the recompile count:
  3312       && md->trap_recompiled_at(bci)
  3313       && md->overflow_recompile_count() >= bc_cutoff) {
  3314     // Do not emit a trap here if it has already caused recompilations.
  3315     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3316     // assume the worst.
  3317     if (log())
  3318       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  3319                   Deoptimization::trap_reason_name(reason),
  3320                   md->trap_count(reason),
  3321                   md->overflow_recompile_count());
  3322     return true;
  3323   } else if (trap_count(reason) != 0
  3324              && decompile_count() >= m_cutoff) {
  3325     // Too many recompiles globally, and we have seen this sort of trap.
  3326     // Use cumulative decompile_count, not just md->decompile_count.
  3327     if (log())
  3328       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  3329                   Deoptimization::trap_reason_name(reason),
  3330                   md->trap_count(reason), trap_count(reason),
  3331                   md->decompile_count(), decompile_count());
  3332     return true;
  3333   } else {
  3334     // The coast is clear.
  3335     return false;
  3340 #ifndef PRODUCT
  3341 //------------------------------verify_graph_edges---------------------------
  3342 // Walk the Graph and verify that there is a one-to-one correspondence
  3343 // between Use-Def edges and Def-Use edges in the graph.
  3344 void Compile::verify_graph_edges(bool no_dead_code) {
  3345   if (VerifyGraphEdges) {
  3346     ResourceArea *area = Thread::current()->resource_area();
  3347     Unique_Node_List visited(area);
  3348     // Call recursive graph walk to check edges
  3349     _root->verify_edges(visited);
  3350     if (no_dead_code) {
  3351       // Now make sure that no visited node is used by an unvisited node.
  3352       bool dead_nodes = 0;
  3353       Unique_Node_List checked(area);
  3354       while (visited.size() > 0) {
  3355         Node* n = visited.pop();
  3356         checked.push(n);
  3357         for (uint i = 0; i < n->outcnt(); i++) {
  3358           Node* use = n->raw_out(i);
  3359           if (checked.member(use))  continue;  // already checked
  3360           if (visited.member(use))  continue;  // already in the graph
  3361           if (use->is_Con())        continue;  // a dead ConNode is OK
  3362           // At this point, we have found a dead node which is DU-reachable.
  3363           if (dead_nodes++ == 0)
  3364             tty->print_cr("*** Dead nodes reachable via DU edges:");
  3365           use->dump(2);
  3366           tty->print_cr("---");
  3367           checked.push(use);  // No repeats; pretend it is now checked.
  3370       assert(dead_nodes == 0, "using nodes must be reachable from root");
  3374 #endif
  3376 // The Compile object keeps track of failure reasons separately from the ciEnv.
  3377 // This is required because there is not quite a 1-1 relation between the
  3378 // ciEnv and its compilation task and the Compile object.  Note that one
  3379 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  3380 // to backtrack and retry without subsuming loads.  Other than this backtracking
  3381 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  3382 // by the logic in C2Compiler.
  3383 void Compile::record_failure(const char* reason) {
  3384   if (log() != NULL) {
  3385     log()->elem("failure reason='%s' phase='compile'", reason);
  3387   if (_failure_reason == NULL) {
  3388     // Record the first failure reason.
  3389     _failure_reason = reason;
  3392   EventCompilerFailure event;
  3393   if (event.should_commit()) {
  3394     event.set_compileID(Compile::compile_id());
  3395     event.set_failure(reason);
  3396     event.commit();
  3399   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  3400     C->print_method(PHASE_FAILURE);
  3402   _root = NULL;  // flush the graph, too
  3405 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  3406   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
  3407     _phase_name(name), _dolog(dolog)
  3409   if (dolog) {
  3410     C = Compile::current();
  3411     _log = C->log();
  3412   } else {
  3413     C = NULL;
  3414     _log = NULL;
  3416   if (_log != NULL) {
  3417     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3418     _log->stamp();
  3419     _log->end_head();
  3423 Compile::TracePhase::~TracePhase() {
  3425   C = Compile::current();
  3426   if (_dolog) {
  3427     _log = C->log();
  3428   } else {
  3429     _log = NULL;
  3432 #ifdef ASSERT
  3433   if (PrintIdealNodeCount) {
  3434     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
  3435                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
  3438   if (VerifyIdealNodeCount) {
  3439     Compile::current()->print_missing_nodes();
  3441 #endif
  3443   if (_log != NULL) {
  3444     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3448 //=============================================================================
  3449 // Two Constant's are equal when the type and the value are equal.
  3450 bool Compile::Constant::operator==(const Constant& other) {
  3451   if (type()          != other.type()         )  return false;
  3452   if (can_be_reused() != other.can_be_reused())  return false;
  3453   // For floating point values we compare the bit pattern.
  3454   switch (type()) {
  3455   case T_FLOAT:   return (_v._value.i == other._v._value.i);
  3456   case T_LONG:
  3457   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
  3458   case T_OBJECT:
  3459   case T_ADDRESS: return (_v._value.l == other._v._value.l);
  3460   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
  3461   case T_METADATA: return (_v._metadata == other._v._metadata);
  3462   default: ShouldNotReachHere();
  3464   return false;
  3467 static int type_to_size_in_bytes(BasicType t) {
  3468   switch (t) {
  3469   case T_LONG:    return sizeof(jlong  );
  3470   case T_FLOAT:   return sizeof(jfloat );
  3471   case T_DOUBLE:  return sizeof(jdouble);
  3472   case T_METADATA: return sizeof(Metadata*);
  3473     // We use T_VOID as marker for jump-table entries (labels) which
  3474     // need an internal word relocation.
  3475   case T_VOID:
  3476   case T_ADDRESS:
  3477   case T_OBJECT:  return sizeof(jobject);
  3480   ShouldNotReachHere();
  3481   return -1;
  3484 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
  3485   // sort descending
  3486   if (a->freq() > b->freq())  return -1;
  3487   if (a->freq() < b->freq())  return  1;
  3488   return 0;
  3491 void Compile::ConstantTable::calculate_offsets_and_size() {
  3492   // First, sort the array by frequencies.
  3493   _constants.sort(qsort_comparator);
  3495 #ifdef ASSERT
  3496   // Make sure all jump-table entries were sorted to the end of the
  3497   // array (they have a negative frequency).
  3498   bool found_void = false;
  3499   for (int i = 0; i < _constants.length(); i++) {
  3500     Constant con = _constants.at(i);
  3501     if (con.type() == T_VOID)
  3502       found_void = true;  // jump-tables
  3503     else
  3504       assert(!found_void, "wrong sorting");
  3506 #endif
  3508   int offset = 0;
  3509   for (int i = 0; i < _constants.length(); i++) {
  3510     Constant* con = _constants.adr_at(i);
  3512     // Align offset for type.
  3513     int typesize = type_to_size_in_bytes(con->type());
  3514     offset = align_size_up(offset, typesize);
  3515     con->set_offset(offset);   // set constant's offset
  3517     if (con->type() == T_VOID) {
  3518       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
  3519       offset = offset + typesize * n->outcnt();  // expand jump-table
  3520     } else {
  3521       offset = offset + typesize;
  3525   // Align size up to the next section start (which is insts; see
  3526   // CodeBuffer::align_at_start).
  3527   assert(_size == -1, "already set?");
  3528   _size = align_size_up(offset, CodeEntryAlignment);
  3531 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3532   MacroAssembler _masm(&cb);
  3533   for (int i = 0; i < _constants.length(); i++) {
  3534     Constant con = _constants.at(i);
  3535     address constant_addr;
  3536     switch (con.type()) {
  3537     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3538     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3539     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3540     case T_OBJECT: {
  3541       jobject obj = con.get_jobject();
  3542       int oop_index = _masm.oop_recorder()->find_index(obj);
  3543       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3544       break;
  3546     case T_ADDRESS: {
  3547       address addr = (address) con.get_jobject();
  3548       constant_addr = _masm.address_constant(addr);
  3549       break;
  3551     // We use T_VOID as marker for jump-table entries (labels) which
  3552     // need an internal word relocation.
  3553     case T_VOID: {
  3554       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
  3555       // Fill the jump-table with a dummy word.  The real value is
  3556       // filled in later in fill_jump_table.
  3557       address dummy = (address) n;
  3558       constant_addr = _masm.address_constant(dummy);
  3559       // Expand jump-table
  3560       for (uint i = 1; i < n->outcnt(); i++) {
  3561         address temp_addr = _masm.address_constant(dummy + i);
  3562         assert(temp_addr, "consts section too small");
  3564       break;
  3566     case T_METADATA: {
  3567       Metadata* obj = con.get_metadata();
  3568       int metadata_index = _masm.oop_recorder()->find_index(obj);
  3569       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
  3570       break;
  3572     default: ShouldNotReachHere();
  3574     assert(constant_addr, "consts section too small");
  3575     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
  3579 int Compile::ConstantTable::find_offset(Constant& con) const {
  3580   int idx = _constants.find(con);
  3581   assert(idx != -1, "constant must be in constant table");
  3582   int offset = _constants.at(idx).offset();
  3583   assert(offset != -1, "constant table not emitted yet?");
  3584   return offset;
  3587 void Compile::ConstantTable::add(Constant& con) {
  3588   if (con.can_be_reused()) {
  3589     int idx = _constants.find(con);
  3590     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3591       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
  3592       return;
  3595   (void) _constants.append(con);
  3598 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
  3599   Block* b = Compile::current()->cfg()->get_block_for_node(n);
  3600   Constant con(type, value, b->_freq);
  3601   add(con);
  3602   return con;
  3605 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
  3606   Constant con(metadata);
  3607   add(con);
  3608   return con;
  3611 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
  3612   jvalue value;
  3613   BasicType type = oper->type()->basic_type();
  3614   switch (type) {
  3615   case T_LONG:    value.j = oper->constantL(); break;
  3616   case T_FLOAT:   value.f = oper->constantF(); break;
  3617   case T_DOUBLE:  value.d = oper->constantD(); break;
  3618   case T_OBJECT:
  3619   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3620   case T_METADATA: return add((Metadata*)oper->constant()); break;
  3621   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
  3623   return add(n, type, value);
  3626 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
  3627   jvalue value;
  3628   // We can use the node pointer here to identify the right jump-table
  3629   // as this method is called from Compile::Fill_buffer right before
  3630   // the MachNodes are emitted and the jump-table is filled (means the
  3631   // MachNode pointers do not change anymore).
  3632   value.l = (jobject) n;
  3633   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
  3634   add(con);
  3635   return con;
  3638 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3639   // If called from Compile::scratch_emit_size do nothing.
  3640   if (Compile::current()->in_scratch_emit_size())  return;
  3642   assert(labels.is_nonempty(), "must be");
  3643   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
  3645   // Since MachConstantNode::constant_offset() also contains
  3646   // table_base_offset() we need to subtract the table_base_offset()
  3647   // to get the plain offset into the constant table.
  3648   int offset = n->constant_offset() - table_base_offset();
  3650   MacroAssembler _masm(&cb);
  3651   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3653   for (uint i = 0; i < n->outcnt(); i++) {
  3654     address* constant_addr = &jump_table_base[i];
  3655     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
  3656     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3657     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
  3661 void Compile::dump_inlining() {
  3662   if (print_inlining() || print_intrinsics()) {
  3663     // Print inlining message for candidates that we couldn't inline
  3664     // for lack of space or non constant receiver
  3665     for (int i = 0; i < _late_inlines.length(); i++) {
  3666       CallGenerator* cg = _late_inlines.at(i);
  3667       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
  3669     Unique_Node_List useful;
  3670     useful.push(root());
  3671     for (uint next = 0; next < useful.size(); ++next) {
  3672       Node* n  = useful.at(next);
  3673       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
  3674         CallNode* call = n->as_Call();
  3675         CallGenerator* cg = call->generator();
  3676         cg->print_inlining_late("receiver not constant");
  3678       uint max = n->len();
  3679       for ( uint i = 0; i < max; ++i ) {
  3680         Node *m = n->in(i);
  3681         if ( m == NULL ) continue;
  3682         useful.push(m);
  3685     for (int i = 0; i < _print_inlining_list->length(); i++) {
  3686       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
  3691 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
  3692   if (n1->Opcode() < n2->Opcode())      return -1;
  3693   else if (n1->Opcode() > n2->Opcode()) return 1;
  3695   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
  3696   for (uint i = 1; i < n1->req(); i++) {
  3697     if (n1->in(i) < n2->in(i))      return -1;
  3698     else if (n1->in(i) > n2->in(i)) return 1;
  3701   return 0;
  3704 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
  3705   Node* n1 = *n1p;
  3706   Node* n2 = *n2p;
  3708   return cmp_expensive_nodes(n1, n2);
  3711 void Compile::sort_expensive_nodes() {
  3712   if (!expensive_nodes_sorted()) {
  3713     _expensive_nodes->sort(cmp_expensive_nodes);
  3717 bool Compile::expensive_nodes_sorted() const {
  3718   for (int i = 1; i < _expensive_nodes->length(); i++) {
  3719     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
  3720       return false;
  3723   return true;
  3726 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
  3727   if (_expensive_nodes->length() == 0) {
  3728     return false;
  3731   assert(OptimizeExpensiveOps, "optimization off?");
  3733   // Take this opportunity to remove dead nodes from the list
  3734   int j = 0;
  3735   for (int i = 0; i < _expensive_nodes->length(); i++) {
  3736     Node* n = _expensive_nodes->at(i);
  3737     if (!n->is_unreachable(igvn)) {
  3738       assert(n->is_expensive(), "should be expensive");
  3739       _expensive_nodes->at_put(j, n);
  3740       j++;
  3743   _expensive_nodes->trunc_to(j);
  3745   // Then sort the list so that similar nodes are next to each other
  3746   // and check for at least two nodes of identical kind with same data
  3747   // inputs.
  3748   sort_expensive_nodes();
  3750   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
  3751     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
  3752       return true;
  3756   return false;
  3759 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
  3760   if (_expensive_nodes->length() == 0) {
  3761     return;
  3764   assert(OptimizeExpensiveOps, "optimization off?");
  3766   // Sort to bring similar nodes next to each other and clear the
  3767   // control input of nodes for which there's only a single copy.
  3768   sort_expensive_nodes();
  3770   int j = 0;
  3771   int identical = 0;
  3772   int i = 0;
  3773   for (; i < _expensive_nodes->length()-1; i++) {
  3774     assert(j <= i, "can't write beyond current index");
  3775     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
  3776       identical++;
  3777       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3778       continue;
  3780     if (identical > 0) {
  3781       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3782       identical = 0;
  3783     } else {
  3784       Node* n = _expensive_nodes->at(i);
  3785       igvn.hash_delete(n);
  3786       n->set_req(0, NULL);
  3787       igvn.hash_insert(n);
  3790   if (identical > 0) {
  3791     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3792   } else if (_expensive_nodes->length() >= 1) {
  3793     Node* n = _expensive_nodes->at(i);
  3794     igvn.hash_delete(n);
  3795     n->set_req(0, NULL);
  3796     igvn.hash_insert(n);
  3798   _expensive_nodes->trunc_to(j);
  3801 void Compile::add_expensive_node(Node * n) {
  3802   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
  3803   assert(n->is_expensive(), "expensive nodes with non-null control here only");
  3804   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
  3805   if (OptimizeExpensiveOps) {
  3806     _expensive_nodes->append(n);
  3807   } else {
  3808     // Clear control input and let IGVN optimize expensive nodes if
  3809     // OptimizeExpensiveOps is off.
  3810     n->set_req(0, NULL);
  3814 /**
  3815  * Remove the speculative part of types and clean up the graph
  3816  */
  3817 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
  3818   if (UseTypeSpeculation) {
  3819     Unique_Node_List worklist;
  3820     worklist.push(root());
  3821     int modified = 0;
  3822     // Go over all type nodes that carry a speculative type, drop the
  3823     // speculative part of the type and enqueue the node for an igvn
  3824     // which may optimize it out.
  3825     for (uint next = 0; next < worklist.size(); ++next) {
  3826       Node *n  = worklist.at(next);
  3827       if (n->is_Type() && n->as_Type()->type()->isa_oopptr() != NULL &&
  3828           n->as_Type()->type()->is_oopptr()->speculative() != NULL) {
  3829         TypeNode* tn = n->as_Type();
  3830         const TypeOopPtr* t = tn->type()->is_oopptr();
  3831         bool in_hash = igvn.hash_delete(n);
  3832         assert(in_hash, "node should be in igvn hash table");
  3833         tn->set_type(t->remove_speculative());
  3834         igvn.hash_insert(n);
  3835         igvn._worklist.push(n); // give it a chance to go away
  3836         modified++;
  3838       uint max = n->len();
  3839       for( uint i = 0; i < max; ++i ) {
  3840         Node *m = n->in(i);
  3841         if (not_a_node(m))  continue;
  3842         worklist.push(m);
  3845     // Drop the speculative part of all types in the igvn's type table
  3846     igvn.remove_speculative_types();
  3847     if (modified > 0) {
  3848       igvn.optimize();
  3853 // Auxiliary method to support randomized stressing/fuzzing.
  3854 //
  3855 // This method can be called the arbitrary number of times, with current count
  3856 // as the argument. The logic allows selecting a single candidate from the
  3857 // running list of candidates as follows:
  3858 //    int count = 0;
  3859 //    Cand* selected = null;
  3860 //    while(cand = cand->next()) {
  3861 //      if (randomized_select(++count)) {
  3862 //        selected = cand;
  3863 //      }
  3864 //    }
  3865 //
  3866 // Including count equalizes the chances any candidate is "selected".
  3867 // This is useful when we don't have the complete list of candidates to choose
  3868 // from uniformly. In this case, we need to adjust the randomicity of the
  3869 // selection, or else we will end up biasing the selection towards the latter
  3870 // candidates.
  3871 //
  3872 // Quick back-envelope calculation shows that for the list of n candidates
  3873 // the equal probability for the candidate to persist as "best" can be
  3874 // achieved by replacing it with "next" k-th candidate with the probability
  3875 // of 1/k. It can be easily shown that by the end of the run, the
  3876 // probability for any candidate is converged to 1/n, thus giving the
  3877 // uniform distribution among all the candidates.
  3878 //
  3879 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
  3880 #define RANDOMIZED_DOMAIN_POW 29
  3881 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
  3882 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
  3883 bool Compile::randomized_select(int count) {
  3884   assert(count > 0, "only positive");
  3885   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);

mercurial