src/cpu/x86/vm/x86_32.ad

Thu, 03 Apr 2014 12:37:53 +0200

author
goetz
date
Thu, 03 Apr 2014 12:37:53 +0200
changeset 6558
2100bf712e2a
parent 6518
62c54fcc0a35
child 6723
0bf37f737702
permissions
-rw-r--r--

8039146: Fix 64-bit store to int JNIHandleBlock::_top
Reviewed-by: coleenp, kvn

     1 //
     2 // Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    78 // allocator, and only shows up in the encodings.
    79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    81 // Ok so here's the trick FPR1 is really st(0) except in the midst
    82 // of emission of assembly for a machnode. During the emission the fpu stack
    83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    84 // the stack will not have this element so FPR1 == st(0) from the
    85 // oopMap viewpoint. This same weirdness with numbering causes
    86 // instruction encoding to have to play games with the register
    87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    88 // where it does flt->flt moves to see an example
    89 //
    90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
    97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
    98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
    99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   105 // Specify priority of register selection within phases of register
   106 // allocation.  Highest priority is first.  A useful heuristic is to
   107 // give registers a low priority when they are required by machine
   108 // instructions, like EAX and EDX.  Registers which are used as
   109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   110 // For the Intel integer registers, the equivalent Long pairs are
   111 // EDX:EAX, EBX:ECX, and EDI:EBP.
   112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   115                     FPR6L, FPR6H, FPR7L, FPR7H );
   118 //----------Architecture Description Register Classes--------------------------
   119 // Several register classes are automatically defined based upon information in
   120 // this architecture description.
   121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   125 //
   126 // Class for all registers
   127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   128 // Class for general registers
   129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   130 // Class for general registers which may be used for implicit null checks on win95
   131 // Also safe for use by tailjump. We don't want to allocate in rbp,
   132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   133 // Class of "X" registers
   134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
   135 // Class of registers that can appear in an address with no offset.
   136 // EBP and ESP require an extra instruction byte for zero offset.
   137 // Used in fast-unlock
   138 reg_class p_reg(EDX, EDI, ESI, EBX);
   139 // Class for general registers not including ECX
   140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   141 // Class for general registers not including EAX
   142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   143 // Class for general registers not including EAX or EBX.
   144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   145 // Class of EAX (for multiply and divide operations)
   146 reg_class eax_reg(EAX);
   147 // Class of EBX (for atomic add)
   148 reg_class ebx_reg(EBX);
   149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   150 reg_class ecx_reg(ECX);
   151 // Class of EDX (for multiply and divide operations)
   152 reg_class edx_reg(EDX);
   153 // Class of EDI (for synchronization)
   154 reg_class edi_reg(EDI);
   155 // Class of ESI (for synchronization)
   156 reg_class esi_reg(ESI);
   157 // Singleton class for interpreter's stack pointer
   158 reg_class ebp_reg(EBP);
   159 // Singleton class for stack pointer
   160 reg_class sp_reg(ESP);
   161 // Singleton class for instruction pointer
   162 // reg_class ip_reg(EIP);
   163 // Class of integer register pairs
   164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   165 // Class of integer register pairs that aligns with calling convention
   166 reg_class eadx_reg( EAX,EDX );
   167 reg_class ebcx_reg( ECX,EBX );
   168 // Not AX or DX, used in divides
   169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   171 // Floating point registers.  Notice FPR0 is not a choice.
   172 // FPR0 is not ever allocated; we use clever encodings to fake
   173 // a 2-address instructions out of Intels FP stack.
   174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   178                       FPR7L,FPR7H );
   180 reg_class fp_flt_reg0( FPR1L );
   181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
   182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
   183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   186 %}
   189 //----------SOURCE BLOCK-------------------------------------------------------
   190 // This is a block of C++ code which provides values, functions, and
   191 // definitions necessary in the rest of the architecture description
   192 source_hpp %{
   193 // Must be visible to the DFA in dfa_x86_32.cpp
   194 extern bool is_operand_hi32_zero(Node* n);
   195 %}
   197 source %{
   198 #define   RELOC_IMM32    Assembler::imm_operand
   199 #define   RELOC_DISP32   Assembler::disp32_operand
   201 #define __ _masm.
   203 // How to find the high register of a Long pair, given the low register
   204 #define   HIGH_FROM_LOW(x) ((x)+2)
   206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   208 // fast versions of NegF/NegD and AbsF/AbsD.
   210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   213   // of 128-bits operands for SSE instructions.
   214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   215   // Store the value to a 128-bits operand.
   216   operand[0] = lo;
   217   operand[1] = hi;
   218   return operand;
   219 }
   221 // Buffer for 128-bits masks used by SSE instructions.
   222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   224 // Static initialization during VM startup.
   225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   230 // Offset hacking within calls.
   231 static int pre_call_resets_size() {
   232   int size = 0;
   233   Compile* C = Compile::current();
   234   if (C->in_24_bit_fp_mode()) {
   235     size += 6; // fldcw
   236   }
   237   if (C->max_vector_size() > 16) {
   238     size += 3; // vzeroupper
   239   }
   240   return size;
   241 }
   243 static int preserve_SP_size() {
   244   return 2;  // op, rm(reg/reg)
   245 }
   247 // !!!!! Special hack to get all type of calls to specify the byte offset
   248 //       from the start of the call to the point where the return address
   249 //       will point.
   250 int MachCallStaticJavaNode::ret_addr_offset() {
   251   int offset = 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points
   252   if (_method_handle_invoke)
   253     offset += preserve_SP_size();
   254   return offset;
   255 }
   257 int MachCallDynamicJavaNode::ret_addr_offset() {
   258   return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
   259 }
   261 static int sizeof_FFree_Float_Stack_All = -1;
   263 int MachCallRuntimeNode::ret_addr_offset() {
   264   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   265   return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
   266 }
   268 // Indicate if the safepoint node needs the polling page as an input.
   269 // Since x86 does have absolute addressing, it doesn't.
   270 bool SafePointNode::needs_polling_address_input() {
   271   return false;
   272 }
   274 //
   275 // Compute padding required for nodes which need alignment
   276 //
   278 // The address of the call instruction needs to be 4-byte aligned to
   279 // ensure that it does not span a cache line so that it can be patched.
   280 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   281   current_offset += pre_call_resets_size();  // skip fldcw, if any
   282   current_offset += 1;      // skip call opcode byte
   283   return round_to(current_offset, alignment_required()) - current_offset;
   284 }
   286 // The address of the call instruction needs to be 4-byte aligned to
   287 // ensure that it does not span a cache line so that it can be patched.
   288 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   289   current_offset += pre_call_resets_size();  // skip fldcw, if any
   290   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   291   current_offset += 1;      // skip call opcode byte
   292   return round_to(current_offset, alignment_required()) - current_offset;
   293 }
   295 // The address of the call instruction needs to be 4-byte aligned to
   296 // ensure that it does not span a cache line so that it can be patched.
   297 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   298   current_offset += pre_call_resets_size();  // skip fldcw, if any
   299   current_offset += 5;      // skip MOV instruction
   300   current_offset += 1;      // skip call opcode byte
   301   return round_to(current_offset, alignment_required()) - current_offset;
   302 }
   304 // EMIT_RM()
   305 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   306   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   307   cbuf.insts()->emit_int8(c);
   308 }
   310 // EMIT_CC()
   311 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   312   unsigned char c = (unsigned char)( f1 | f2 );
   313   cbuf.insts()->emit_int8(c);
   314 }
   316 // EMIT_OPCODE()
   317 void emit_opcode(CodeBuffer &cbuf, int code) {
   318   cbuf.insts()->emit_int8((unsigned char) code);
   319 }
   321 // EMIT_OPCODE() w/ relocation information
   322 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   323   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   324   emit_opcode(cbuf, code);
   325 }
   327 // EMIT_D8()
   328 void emit_d8(CodeBuffer &cbuf, int d8) {
   329   cbuf.insts()->emit_int8((unsigned char) d8);
   330 }
   332 // EMIT_D16()
   333 void emit_d16(CodeBuffer &cbuf, int d16) {
   334   cbuf.insts()->emit_int16(d16);
   335 }
   337 // EMIT_D32()
   338 void emit_d32(CodeBuffer &cbuf, int d32) {
   339   cbuf.insts()->emit_int32(d32);
   340 }
   342 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   343 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   344         int format) {
   345   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   346   cbuf.insts()->emit_int32(d32);
   347 }
   349 // emit 32 bit value and construct relocation entry from RelocationHolder
   350 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   351         int format) {
   352 #ifdef ASSERT
   353   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   354     assert(cast_to_oop(d32)->is_oop() && (ScavengeRootsInCode || !cast_to_oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   355   }
   356 #endif
   357   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   358   cbuf.insts()->emit_int32(d32);
   359 }
   361 // Access stack slot for load or store
   362 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   363   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   364   if( -128 <= disp && disp <= 127 ) {
   365     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   366     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   367     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   368   } else {
   369     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   370     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   371     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   372   }
   373 }
   375    // rRegI ereg, memory mem) %{    // emit_reg_mem
   376 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
   377   // There is no index & no scale, use form without SIB byte
   378   if ((index == 0x4) &&
   379       (scale == 0) && (base != ESP_enc)) {
   380     // If no displacement, mode is 0x0; unless base is [EBP]
   381     if ( (displace == 0) && (base != EBP_enc) ) {
   382       emit_rm(cbuf, 0x0, reg_encoding, base);
   383     }
   384     else {                    // If 8-bit displacement, mode 0x1
   385       if ((displace >= -128) && (displace <= 127)
   386           && (disp_reloc == relocInfo::none) ) {
   387         emit_rm(cbuf, 0x1, reg_encoding, base);
   388         emit_d8(cbuf, displace);
   389       }
   390       else {                  // If 32-bit displacement
   391         if (base == -1) { // Special flag for absolute address
   392           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   393           // (manual lies; no SIB needed here)
   394           if ( disp_reloc != relocInfo::none ) {
   395             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   396           } else {
   397             emit_d32      (cbuf, displace);
   398           }
   399         }
   400         else {                // Normal base + offset
   401           emit_rm(cbuf, 0x2, reg_encoding, base);
   402           if ( disp_reloc != relocInfo::none ) {
   403             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   404           } else {
   405             emit_d32      (cbuf, displace);
   406           }
   407         }
   408       }
   409     }
   410   }
   411   else {                      // Else, encode with the SIB byte
   412     // If no displacement, mode is 0x0; unless base is [EBP]
   413     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   414       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   415       emit_rm(cbuf, scale, index, base);
   416     }
   417     else {                    // If 8-bit displacement, mode 0x1
   418       if ((displace >= -128) && (displace <= 127)
   419           && (disp_reloc == relocInfo::none) ) {
   420         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   421         emit_rm(cbuf, scale, index, base);
   422         emit_d8(cbuf, displace);
   423       }
   424       else {                  // If 32-bit displacement
   425         if (base == 0x04 ) {
   426           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   427           emit_rm(cbuf, scale, index, 0x04);
   428         } else {
   429           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   430           emit_rm(cbuf, scale, index, base);
   431         }
   432         if ( disp_reloc != relocInfo::none ) {
   433           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   434         } else {
   435           emit_d32      (cbuf, displace);
   436         }
   437       }
   438     }
   439   }
   440 }
   443 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   444   if( dst_encoding == src_encoding ) {
   445     // reg-reg copy, use an empty encoding
   446   } else {
   447     emit_opcode( cbuf, 0x8B );
   448     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   449   }
   450 }
   452 void emit_cmpfp_fixup(MacroAssembler& _masm) {
   453   Label exit;
   454   __ jccb(Assembler::noParity, exit);
   455   __ pushf();
   456   //
   457   // comiss/ucomiss instructions set ZF,PF,CF flags and
   458   // zero OF,AF,SF for NaN values.
   459   // Fixup flags by zeroing ZF,PF so that compare of NaN
   460   // values returns 'less than' result (CF is set).
   461   // Leave the rest of flags unchanged.
   462   //
   463   //    7 6 5 4 3 2 1 0
   464   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
   465   //    0 0 1 0 1 0 1 1   (0x2B)
   466   //
   467   __ andl(Address(rsp, 0), 0xffffff2b);
   468   __ popf();
   469   __ bind(exit);
   470 }
   472 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
   473   Label done;
   474   __ movl(dst, -1);
   475   __ jcc(Assembler::parity, done);
   476   __ jcc(Assembler::below, done);
   477   __ setb(Assembler::notEqual, dst);
   478   __ movzbl(dst, dst);
   479   __ bind(done);
   480 }
   483 //=============================================================================
   484 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   486 int Compile::ConstantTable::calculate_table_base_offset() const {
   487   return 0;  // absolute addressing, no offset
   488 }
   490 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
   491 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
   492   ShouldNotReachHere();
   493 }
   495 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   496   // Empty encoding
   497 }
   499 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   500   return 0;
   501 }
   503 #ifndef PRODUCT
   504 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   505   st->print("# MachConstantBaseNode (empty encoding)");
   506 }
   507 #endif
   510 //=============================================================================
   511 #ifndef PRODUCT
   512 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   513   Compile* C = ra_->C;
   515   int framesize = C->frame_slots() << LogBytesPerInt;
   516   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   517   // Remove wordSize for return addr which is already pushed.
   518   framesize -= wordSize;
   520   if (C->need_stack_bang(framesize)) {
   521     framesize -= wordSize;
   522     st->print("# stack bang");
   523     st->print("\n\t");
   524     st->print("PUSH   EBP\t# Save EBP");
   525     if (framesize) {
   526       st->print("\n\t");
   527       st->print("SUB    ESP, #%d\t# Create frame",framesize);
   528     }
   529   } else {
   530     st->print("SUB    ESP, #%d\t# Create frame",framesize);
   531     st->print("\n\t");
   532     framesize -= wordSize;
   533     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
   534   }
   536   if (VerifyStackAtCalls) {
   537     st->print("\n\t");
   538     framesize -= wordSize;
   539     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
   540   }
   542   if( C->in_24_bit_fp_mode() ) {
   543     st->print("\n\t");
   544     st->print("FLDCW  \t# load 24 bit fpu control word");
   545   }
   546   if (UseSSE >= 2 && VerifyFPU) {
   547     st->print("\n\t");
   548     st->print("# verify FPU stack (must be clean on entry)");
   549   }
   551 #ifdef ASSERT
   552   if (VerifyStackAtCalls) {
   553     st->print("\n\t");
   554     st->print("# stack alignment check");
   555   }
   556 #endif
   557   st->cr();
   558 }
   559 #endif
   562 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   563   Compile* C = ra_->C;
   564   MacroAssembler _masm(&cbuf);
   566   int framesize = C->frame_slots() << LogBytesPerInt;
   568   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
   570   C->set_frame_complete(cbuf.insts_size());
   572   if (C->has_mach_constant_base_node()) {
   573     // NOTE: We set the table base offset here because users might be
   574     // emitted before MachConstantBaseNode.
   575     Compile::ConstantTable& constant_table = C->constant_table();
   576     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
   577   }
   578 }
   580 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   581   return MachNode::size(ra_); // too many variables; just compute it the hard way
   582 }
   584 int MachPrologNode::reloc() const {
   585   return 0; // a large enough number
   586 }
   588 //=============================================================================
   589 #ifndef PRODUCT
   590 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   591   Compile *C = ra_->C;
   592   int framesize = C->frame_slots() << LogBytesPerInt;
   593   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   594   // Remove two words for return addr and rbp,
   595   framesize -= 2*wordSize;
   597   if (C->max_vector_size() > 16) {
   598     st->print("VZEROUPPER");
   599     st->cr(); st->print("\t");
   600   }
   601   if (C->in_24_bit_fp_mode()) {
   602     st->print("FLDCW  standard control word");
   603     st->cr(); st->print("\t");
   604   }
   605   if (framesize) {
   606     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   607     st->cr(); st->print("\t");
   608   }
   609   st->print_cr("POPL   EBP"); st->print("\t");
   610   if (do_polling() && C->is_method_compilation()) {
   611     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   612     st->cr(); st->print("\t");
   613   }
   614 }
   615 #endif
   617 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   618   Compile *C = ra_->C;
   620   if (C->max_vector_size() > 16) {
   621     // Clear upper bits of YMM registers when current compiled code uses
   622     // wide vectors to avoid AVX <-> SSE transition penalty during call.
   623     MacroAssembler masm(&cbuf);
   624     masm.vzeroupper();
   625   }
   626   // If method set FPU control word, restore to standard control word
   627   if (C->in_24_bit_fp_mode()) {
   628     MacroAssembler masm(&cbuf);
   629     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   630   }
   632   int framesize = C->frame_slots() << LogBytesPerInt;
   633   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   634   // Remove two words for return addr and rbp,
   635   framesize -= 2*wordSize;
   637   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   639   if (framesize >= 128) {
   640     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   641     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   642     emit_d32(cbuf, framesize);
   643   } else if (framesize) {
   644     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   645     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   646     emit_d8(cbuf, framesize);
   647   }
   649   emit_opcode(cbuf, 0x58 | EBP_enc);
   651   if (do_polling() && C->is_method_compilation()) {
   652     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   653     emit_opcode(cbuf,0x85);
   654     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   655     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   656   }
   657 }
   659 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   660   Compile *C = ra_->C;
   661   // If method set FPU control word, restore to standard control word
   662   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   663   if (C->max_vector_size() > 16) size += 3; // vzeroupper
   664   if (do_polling() && C->is_method_compilation()) size += 6;
   666   int framesize = C->frame_slots() << LogBytesPerInt;
   667   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   668   // Remove two words for return addr and rbp,
   669   framesize -= 2*wordSize;
   671   size++; // popl rbp,
   673   if (framesize >= 128) {
   674     size += 6;
   675   } else {
   676     size += framesize ? 3 : 0;
   677   }
   678   return size;
   679 }
   681 int MachEpilogNode::reloc() const {
   682   return 0; // a large enough number
   683 }
   685 const Pipeline * MachEpilogNode::pipeline() const {
   686   return MachNode::pipeline_class();
   687 }
   689 int MachEpilogNode::safepoint_offset() const { return 0; }
   691 //=============================================================================
   693 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   694 static enum RC rc_class( OptoReg::Name reg ) {
   696   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   697   if (OptoReg::is_stack(reg)) return rc_stack;
   699   VMReg r = OptoReg::as_VMReg(reg);
   700   if (r->is_Register()) return rc_int;
   701   if (r->is_FloatRegister()) {
   702     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   703     return rc_float;
   704   }
   705   assert(r->is_XMMRegister(), "must be");
   706   return rc_xmm;
   707 }
   709 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   710                         int opcode, const char *op_str, int size, outputStream* st ) {
   711   if( cbuf ) {
   712     emit_opcode  (*cbuf, opcode );
   713     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
   714 #ifndef PRODUCT
   715   } else if( !do_size ) {
   716     if( size != 0 ) st->print("\n\t");
   717     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   718       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   719       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   720     } else { // FLD, FST, PUSH, POP
   721       st->print("%s [ESP + #%d]",op_str,offset);
   722     }
   723 #endif
   724   }
   725   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   726   return size+3+offset_size;
   727 }
   729 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   730 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   731                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   732   if (cbuf) {
   733     MacroAssembler _masm(cbuf);
   734     if (reg_lo+1 == reg_hi) { // double move?
   735       if (is_load) {
   736         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   737       } else {
   738         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   739       }
   740     } else {
   741       if (is_load) {
   742         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   743       } else {
   744         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   745       }
   746     }
   747 #ifndef PRODUCT
   748   } else if (!do_size) {
   749     if (size != 0) st->print("\n\t");
   750     if (reg_lo+1 == reg_hi) { // double move?
   751       if (is_load) st->print("%s %s,[ESP + #%d]",
   752                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   753                               Matcher::regName[reg_lo], offset);
   754       else         st->print("MOVSD  [ESP + #%d],%s",
   755                               offset, Matcher::regName[reg_lo]);
   756     } else {
   757       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
   758                               Matcher::regName[reg_lo], offset);
   759       else         st->print("MOVSS  [ESP + #%d],%s",
   760                               offset, Matcher::regName[reg_lo]);
   761     }
   762 #endif
   763   }
   764   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   765   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
   766   return size+5+offset_size;
   767 }
   770 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   771                             int src_hi, int dst_hi, int size, outputStream* st ) {
   772   if (cbuf) {
   773     MacroAssembler _masm(cbuf);
   774     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   775       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   776                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   777     } else {
   778       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   779                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   780     }
   781 #ifndef PRODUCT
   782   } else if (!do_size) {
   783     if (size != 0) st->print("\n\t");
   784     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
   785       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   786         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   787       } else {
   788         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   789       }
   790     } else {
   791       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   792         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   793       } else {
   794         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   795       }
   796     }
   797 #endif
   798   }
   799   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
   800   // Only MOVAPS SSE prefix uses 1 byte.
   801   int sz = 4;
   802   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
   803       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
   804   return size + sz;
   805 }
   807 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   808                             int src_hi, int dst_hi, int size, outputStream* st ) {
   809   // 32-bit
   810   if (cbuf) {
   811     MacroAssembler _masm(cbuf);
   812     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   813              as_Register(Matcher::_regEncode[src_lo]));
   814 #ifndef PRODUCT
   815   } else if (!do_size) {
   816     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   817 #endif
   818   }
   819   return 4;
   820 }
   823 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   824                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   825   // 32-bit
   826   if (cbuf) {
   827     MacroAssembler _masm(cbuf);
   828     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
   829              as_XMMRegister(Matcher::_regEncode[src_lo]));
   830 #ifndef PRODUCT
   831   } else if (!do_size) {
   832     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   833 #endif
   834   }
   835   return 4;
   836 }
   838 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   839   if( cbuf ) {
   840     emit_opcode(*cbuf, 0x8B );
   841     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   842 #ifndef PRODUCT
   843   } else if( !do_size ) {
   844     if( size != 0 ) st->print("\n\t");
   845     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   846 #endif
   847   }
   848   return size+2;
   849 }
   851 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   852                                  int offset, int size, outputStream* st ) {
   853   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   854     if( cbuf ) {
   855       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   856       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   857 #ifndef PRODUCT
   858     } else if( !do_size ) {
   859       if( size != 0 ) st->print("\n\t");
   860       st->print("FLD    %s",Matcher::regName[src_lo]);
   861 #endif
   862     }
   863     size += 2;
   864   }
   866   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   867   const char *op_str;
   868   int op;
   869   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   870     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   871     op = 0xDD;
   872   } else {                   // 32-bit store
   873     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   874     op = 0xD9;
   875     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   876   }
   878   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   879 }
   881 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
   882 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   883                           int src_hi, int dst_hi, uint ireg, outputStream* st);
   885 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
   886                             int stack_offset, int reg, uint ireg, outputStream* st);
   888 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
   889                                      int dst_offset, uint ireg, outputStream* st) {
   890   int calc_size = 0;
   891   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   892   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   893   switch (ireg) {
   894   case Op_VecS:
   895     calc_size = 3+src_offset_size + 3+dst_offset_size;
   896     break;
   897   case Op_VecD:
   898     calc_size = 3+src_offset_size + 3+dst_offset_size;
   899     src_offset += 4;
   900     dst_offset += 4;
   901     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   902     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   903     calc_size += 3+src_offset_size + 3+dst_offset_size;
   904     break;
   905   case Op_VecX:
   906     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   907     break;
   908   case Op_VecY:
   909     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   910     break;
   911   default:
   912     ShouldNotReachHere();
   913   }
   914   if (cbuf) {
   915     MacroAssembler _masm(cbuf);
   916     int offset = __ offset();
   917     switch (ireg) {
   918     case Op_VecS:
   919       __ pushl(Address(rsp, src_offset));
   920       __ popl (Address(rsp, dst_offset));
   921       break;
   922     case Op_VecD:
   923       __ pushl(Address(rsp, src_offset));
   924       __ popl (Address(rsp, dst_offset));
   925       __ pushl(Address(rsp, src_offset+4));
   926       __ popl (Address(rsp, dst_offset+4));
   927       break;
   928     case Op_VecX:
   929       __ movdqu(Address(rsp, -16), xmm0);
   930       __ movdqu(xmm0, Address(rsp, src_offset));
   931       __ movdqu(Address(rsp, dst_offset), xmm0);
   932       __ movdqu(xmm0, Address(rsp, -16));
   933       break;
   934     case Op_VecY:
   935       __ vmovdqu(Address(rsp, -32), xmm0);
   936       __ vmovdqu(xmm0, Address(rsp, src_offset));
   937       __ vmovdqu(Address(rsp, dst_offset), xmm0);
   938       __ vmovdqu(xmm0, Address(rsp, -32));
   939       break;
   940     default:
   941       ShouldNotReachHere();
   942     }
   943     int size = __ offset() - offset;
   944     assert(size == calc_size, "incorrect size calculattion");
   945     return size;
   946 #ifndef PRODUCT
   947   } else if (!do_size) {
   948     switch (ireg) {
   949     case Op_VecS:
   950       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
   951                 "popl    [rsp + #%d]",
   952                 src_offset, dst_offset);
   953       break;
   954     case Op_VecD:
   955       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
   956                 "popq    [rsp + #%d]\n\t"
   957                 "pushl   [rsp + #%d]\n\t"
   958                 "popq    [rsp + #%d]",
   959                 src_offset, dst_offset, src_offset+4, dst_offset+4);
   960       break;
   961      case Op_VecX:
   962       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
   963                 "movdqu  xmm0, [rsp + #%d]\n\t"
   964                 "movdqu  [rsp + #%d], xmm0\n\t"
   965                 "movdqu  xmm0, [rsp - #16]",
   966                 src_offset, dst_offset);
   967       break;
   968     case Op_VecY:
   969       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
   970                 "vmovdqu xmm0, [rsp + #%d]\n\t"
   971                 "vmovdqu [rsp + #%d], xmm0\n\t"
   972                 "vmovdqu xmm0, [rsp - #32]",
   973                 src_offset, dst_offset);
   974       break;
   975     default:
   976       ShouldNotReachHere();
   977     }
   978 #endif
   979   }
   980   return calc_size;
   981 }
   983 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   984   // Get registers to move
   985   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   986   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   987   OptoReg::Name dst_second = ra_->get_reg_second(this );
   988   OptoReg::Name dst_first = ra_->get_reg_first(this );
   990   enum RC src_second_rc = rc_class(src_second);
   991   enum RC src_first_rc = rc_class(src_first);
   992   enum RC dst_second_rc = rc_class(dst_second);
   993   enum RC dst_first_rc = rc_class(dst_first);
   995   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   997   // Generate spill code!
   998   int size = 0;
  1000   if( src_first == dst_first && src_second == dst_second )
  1001     return size;            // Self copy, no move
  1003   if (bottom_type()->isa_vect() != NULL) {
  1004     uint ireg = ideal_reg();
  1005     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
  1006     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
  1007     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
  1008     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1009       // mem -> mem
  1010       int src_offset = ra_->reg2offset(src_first);
  1011       int dst_offset = ra_->reg2offset(dst_first);
  1012       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
  1013     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1014       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
  1015     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1016       int stack_offset = ra_->reg2offset(dst_first);
  1017       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
  1018     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
  1019       int stack_offset = ra_->reg2offset(src_first);
  1020       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
  1021     } else {
  1022       ShouldNotReachHere();
  1026   // --------------------------------------
  1027   // Check for mem-mem move.  push/pop to move.
  1028   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1029     if( src_second == dst_first ) { // overlapping stack copy ranges
  1030       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
  1031       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1032       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1033       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
  1035     // move low bits
  1036     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
  1037     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
  1038     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
  1039       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1040       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1042     return size;
  1045   // --------------------------------------
  1046   // Check for integer reg-reg copy
  1047   if( src_first_rc == rc_int && dst_first_rc == rc_int )
  1048     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
  1050   // Check for integer store
  1051   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
  1052     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
  1054   // Check for integer load
  1055   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
  1056     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
  1058   // Check for integer reg-xmm reg copy
  1059   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
  1060     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1061             "no 64 bit integer-float reg moves" );
  1062     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1064   // --------------------------------------
  1065   // Check for float reg-reg copy
  1066   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1067     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1068             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
  1069     if( cbuf ) {
  1071       // Note the mucking with the register encode to compensate for the 0/1
  1072       // indexing issue mentioned in a comment in the reg_def sections
  1073       // for FPR registers many lines above here.
  1075       if( src_first != FPR1L_num ) {
  1076         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
  1077         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
  1078         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1079         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1080      } else {
  1081         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
  1082         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
  1084 #ifndef PRODUCT
  1085     } else if( !do_size ) {
  1086       if( size != 0 ) st->print("\n\t");
  1087       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1088       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1089 #endif
  1091     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1094   // Check for float store
  1095   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1096     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1099   // Check for float load
  1100   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1101     int offset = ra_->reg2offset(src_first);
  1102     const char *op_str;
  1103     int op;
  1104     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1105       op_str = "FLD_D";
  1106       op = 0xDD;
  1107     } else {                   // 32-bit load
  1108       op_str = "FLD_S";
  1109       op = 0xD9;
  1110       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1112     if( cbuf ) {
  1113       emit_opcode  (*cbuf, op );
  1114       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
  1115       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1116       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1117 #ifndef PRODUCT
  1118     } else if( !do_size ) {
  1119       if( size != 0 ) st->print("\n\t");
  1120       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1121 #endif
  1123     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1124     return size + 3+offset_size+2;
  1127   // Check for xmm reg-reg copy
  1128   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1129     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1130             (src_first+1 == src_second && dst_first+1 == dst_second),
  1131             "no non-adjacent float-moves" );
  1132     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1135   // Check for xmm reg-integer reg copy
  1136   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1137     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1138             "no 64 bit float-integer reg moves" );
  1139     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1142   // Check for xmm store
  1143   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1144     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1147   // Check for float xmm load
  1148   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1149     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1152   // Copy from float reg to xmm reg
  1153   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1154     // copy to the top of stack from floating point reg
  1155     // and use LEA to preserve flags
  1156     if( cbuf ) {
  1157       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1158       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1159       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1160       emit_d8(*cbuf,0xF8);
  1161 #ifndef PRODUCT
  1162     } else if( !do_size ) {
  1163       if( size != 0 ) st->print("\n\t");
  1164       st->print("LEA    ESP,[ESP-8]");
  1165 #endif
  1167     size += 4;
  1169     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1171     // Copy from the temp memory to the xmm reg.
  1172     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1174     if( cbuf ) {
  1175       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1176       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1177       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1178       emit_d8(*cbuf,0x08);
  1179 #ifndef PRODUCT
  1180     } else if( !do_size ) {
  1181       if( size != 0 ) st->print("\n\t");
  1182       st->print("LEA    ESP,[ESP+8]");
  1183 #endif
  1185     size += 4;
  1186     return size;
  1189   assert( size > 0, "missed a case" );
  1191   // --------------------------------------------------------------------
  1192   // Check for second bits still needing moving.
  1193   if( src_second == dst_second )
  1194     return size;               // Self copy; no move
  1195   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1197   // Check for second word int-int move
  1198   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1199     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1201   // Check for second word integer store
  1202   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1203     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1205   // Check for second word integer load
  1206   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1207     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1210   Unimplemented();
  1213 #ifndef PRODUCT
  1214 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
  1215   implementation( NULL, ra_, false, st );
  1217 #endif
  1219 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1220   implementation( &cbuf, ra_, false, NULL );
  1223 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1224   return implementation( NULL, ra_, true, NULL );
  1228 //=============================================================================
  1229 #ifndef PRODUCT
  1230 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1231   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1232   int reg = ra_->get_reg_first(this);
  1233   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1235 #endif
  1237 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1238   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1239   int reg = ra_->get_encode(this);
  1240   if( offset >= 128 ) {
  1241     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1242     emit_rm(cbuf, 0x2, reg, 0x04);
  1243     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1244     emit_d32(cbuf, offset);
  1246   else {
  1247     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1248     emit_rm(cbuf, 0x1, reg, 0x04);
  1249     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1250     emit_d8(cbuf, offset);
  1254 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1255   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1256   if( offset >= 128 ) {
  1257     return 7;
  1259   else {
  1260     return 4;
  1264 //=============================================================================
  1265 #ifndef PRODUCT
  1266 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1267   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1268   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1269   st->print_cr("\tNOP");
  1270   st->print_cr("\tNOP");
  1271   if( !OptoBreakpoint )
  1272     st->print_cr("\tNOP");
  1274 #endif
  1276 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1277   MacroAssembler masm(&cbuf);
  1278 #ifdef ASSERT
  1279   uint insts_size = cbuf.insts_size();
  1280 #endif
  1281   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1282   masm.jump_cc(Assembler::notEqual,
  1283                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1284   /* WARNING these NOPs are critical so that verified entry point is properly
  1285      aligned for patching by NativeJump::patch_verified_entry() */
  1286   int nops_cnt = 2;
  1287   if( !OptoBreakpoint ) // Leave space for int3
  1288      nops_cnt += 1;
  1289   masm.nop(nops_cnt);
  1291   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1294 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1295   return OptoBreakpoint ? 11 : 12;
  1299 //=============================================================================
  1301 int Matcher::regnum_to_fpu_offset(int regnum) {
  1302   return regnum - 32; // The FP registers are in the second chunk
  1305 // This is UltraSparc specific, true just means we have fast l2f conversion
  1306 const bool Matcher::convL2FSupported(void) {
  1307   return true;
  1310 // Is this branch offset short enough that a short branch can be used?
  1311 //
  1312 // NOTE: If the platform does not provide any short branch variants, then
  1313 //       this method should return false for offset 0.
  1314 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1315   // The passed offset is relative to address of the branch.
  1316   // On 86 a branch displacement is calculated relative to address
  1317   // of a next instruction.
  1318   offset -= br_size;
  1320   // the short version of jmpConUCF2 contains multiple branches,
  1321   // making the reach slightly less
  1322   if (rule == jmpConUCF2_rule)
  1323     return (-126 <= offset && offset <= 125);
  1324   return (-128 <= offset && offset <= 127);
  1327 const bool Matcher::isSimpleConstant64(jlong value) {
  1328   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1329   return false;
  1332 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1333 const bool Matcher::init_array_count_is_in_bytes = false;
  1335 // Threshold size for cleararray.
  1336 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1338 // Needs 2 CMOV's for longs.
  1339 const int Matcher::long_cmove_cost() { return 1; }
  1341 // No CMOVF/CMOVD with SSE/SSE2
  1342 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
  1344 // Does the CPU require late expand (see block.cpp for description of late expand)?
  1345 const bool Matcher::require_postalloc_expand = false;
  1347 // Should the Matcher clone shifts on addressing modes, expecting them to
  1348 // be subsumed into complex addressing expressions or compute them into
  1349 // registers?  True for Intel but false for most RISCs
  1350 const bool Matcher::clone_shift_expressions = true;
  1352 // Do we need to mask the count passed to shift instructions or does
  1353 // the cpu only look at the lower 5/6 bits anyway?
  1354 const bool Matcher::need_masked_shift_count = false;
  1356 bool Matcher::narrow_oop_use_complex_address() {
  1357   ShouldNotCallThis();
  1358   return true;
  1361 bool Matcher::narrow_klass_use_complex_address() {
  1362   ShouldNotCallThis();
  1363   return true;
  1367 // Is it better to copy float constants, or load them directly from memory?
  1368 // Intel can load a float constant from a direct address, requiring no
  1369 // extra registers.  Most RISCs will have to materialize an address into a
  1370 // register first, so they would do better to copy the constant from stack.
  1371 const bool Matcher::rematerialize_float_constants = true;
  1373 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1374 // needed.  Else we split the double into 2 integer pieces and move it
  1375 // piece-by-piece.  Only happens when passing doubles into C code as the
  1376 // Java calling convention forces doubles to be aligned.
  1377 const bool Matcher::misaligned_doubles_ok = true;
  1380 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1381   // Get the memory operand from the node
  1382   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1383   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1384   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1385   uint opcnt     = 1;                 // First operand
  1386   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1387   while( idx >= skipped+num_edges ) {
  1388     skipped += num_edges;
  1389     opcnt++;                          // Bump operand count
  1390     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1391     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1394   MachOper *memory = node->_opnds[opcnt];
  1395   MachOper *new_memory = NULL;
  1396   switch (memory->opcode()) {
  1397   case DIRECT:
  1398   case INDOFFSET32X:
  1399     // No transformation necessary.
  1400     return;
  1401   case INDIRECT:
  1402     new_memory = new (C) indirect_win95_safeOper( );
  1403     break;
  1404   case INDOFFSET8:
  1405     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1406     break;
  1407   case INDOFFSET32:
  1408     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1409     break;
  1410   case INDINDEXOFFSET:
  1411     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1412     break;
  1413   case INDINDEXSCALE:
  1414     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1415     break;
  1416   case INDINDEXSCALEOFFSET:
  1417     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1418     break;
  1419   case LOAD_LONG_INDIRECT:
  1420   case LOAD_LONG_INDOFFSET32:
  1421     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1422     return;
  1423   default:
  1424     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1425     return;
  1427   node->_opnds[opcnt] = new_memory;
  1430 // Advertise here if the CPU requires explicit rounding operations
  1431 // to implement the UseStrictFP mode.
  1432 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1434 // Are floats conerted to double when stored to stack during deoptimization?
  1435 // On x32 it is stored with convertion only when FPU is used for floats.
  1436 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1438 // Do ints take an entire long register or just half?
  1439 const bool Matcher::int_in_long = false;
  1441 // Return whether or not this register is ever used as an argument.  This
  1442 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1443 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1444 // arguments in those registers not be available to the callee.
  1445 bool Matcher::can_be_java_arg( int reg ) {
  1446   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1447   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
  1448   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1449   return false;
  1452 bool Matcher::is_spillable_arg( int reg ) {
  1453   return can_be_java_arg(reg);
  1456 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1457   // Use hardware integer DIV instruction when
  1458   // it is faster than a code which use multiply.
  1459   // Only when constant divisor fits into 32 bit
  1460   // (min_jint is excluded to get only correct
  1461   // positive 32 bit values from negative).
  1462   return VM_Version::has_fast_idiv() &&
  1463          (divisor == (int)divisor && divisor != min_jint);
  1466 // Register for DIVI projection of divmodI
  1467 RegMask Matcher::divI_proj_mask() {
  1468   return EAX_REG_mask();
  1471 // Register for MODI projection of divmodI
  1472 RegMask Matcher::modI_proj_mask() {
  1473   return EDX_REG_mask();
  1476 // Register for DIVL projection of divmodL
  1477 RegMask Matcher::divL_proj_mask() {
  1478   ShouldNotReachHere();
  1479   return RegMask();
  1482 // Register for MODL projection of divmodL
  1483 RegMask Matcher::modL_proj_mask() {
  1484   ShouldNotReachHere();
  1485   return RegMask();
  1488 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1489   return EBP_REG_mask();
  1492 // Returns true if the high 32 bits of the value is known to be zero.
  1493 bool is_operand_hi32_zero(Node* n) {
  1494   int opc = n->Opcode();
  1495   if (opc == Op_AndL) {
  1496     Node* o2 = n->in(2);
  1497     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1498       return true;
  1501   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1502     return true;
  1504   return false;
  1507 %}
  1509 //----------ENCODING BLOCK-----------------------------------------------------
  1510 // This block specifies the encoding classes used by the compiler to output
  1511 // byte streams.  Encoding classes generate functions which are called by
  1512 // Machine Instruction Nodes in order to generate the bit encoding of the
  1513 // instruction.  Operands specify their base encoding interface with the
  1514 // interface keyword.  There are currently supported four interfaces,
  1515 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1516 // operand to generate a function which returns its register number when
  1517 // queried.   CONST_INTER causes an operand to generate a function which
  1518 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1519 // operand to generate four functions which return the Base Register, the
  1520 // Index Register, the Scale Value, and the Offset Value of the operand when
  1521 // queried.  COND_INTER causes an operand to generate six functions which
  1522 // return the encoding code (ie - encoding bits for the instruction)
  1523 // associated with each basic boolean condition for a conditional instruction.
  1524 // Instructions specify two basic values for encoding.  They use the
  1525 // ins_encode keyword to specify their encoding class (which must be one of
  1526 // the class names specified in the encoding block), and they use the
  1527 // opcode keyword to specify, in order, their primary, secondary, and
  1528 // tertiary opcode.  Only the opcode sections which a particular instruction
  1529 // needs for encoding need to be specified.
  1530 encode %{
  1531   // Build emit functions for each basic byte or larger field in the intel
  1532   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1533   // code in the enc_class source block.  Emit functions will live in the
  1534   // main source block for now.  In future, we can generalize this by
  1535   // adding a syntax that specifies the sizes of fields in an order,
  1536   // so that the adlc can build the emit functions automagically
  1538   // Emit primary opcode
  1539   enc_class OpcP %{
  1540     emit_opcode(cbuf, $primary);
  1541   %}
  1543   // Emit secondary opcode
  1544   enc_class OpcS %{
  1545     emit_opcode(cbuf, $secondary);
  1546   %}
  1548   // Emit opcode directly
  1549   enc_class Opcode(immI d8) %{
  1550     emit_opcode(cbuf, $d8$$constant);
  1551   %}
  1553   enc_class SizePrefix %{
  1554     emit_opcode(cbuf,0x66);
  1555   %}
  1557   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1558     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1559   %}
  1561   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
  1562     emit_opcode(cbuf,$opcode$$constant);
  1563     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1564   %}
  1566   enc_class mov_r32_imm0( rRegI dst ) %{
  1567     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1568     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1569   %}
  1571   enc_class cdq_enc %{
  1572     // Full implementation of Java idiv and irem; checks for
  1573     // special case as described in JVM spec., p.243 & p.271.
  1574     //
  1575     //         normal case                           special case
  1576     //
  1577     // input : rax,: dividend                         min_int
  1578     //         reg: divisor                          -1
  1579     //
  1580     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1581     //         rdx: remainder (= rax, irem reg)       0
  1582     //
  1583     //  Code sequnce:
  1584     //
  1585     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1586     //  0F 85 0B 00 00 00    jne         normal_case
  1587     //  33 D2                xor         rdx,edx
  1588     //  83 F9 FF             cmp         rcx,0FFh
  1589     //  0F 84 03 00 00 00    je          done
  1590     //                  normal_case:
  1591     //  99                   cdq
  1592     //  F7 F9                idiv        rax,ecx
  1593     //                  done:
  1594     //
  1595     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1596     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1597     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1598     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1599     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1600     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1601     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1602     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1603     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1604     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1605     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1606     // normal_case:
  1607     emit_opcode(cbuf,0x99);                                         // cdq
  1608     // idiv (note: must be emitted by the user of this rule)
  1609     // normal:
  1610   %}
  1612   // Dense encoding for older common ops
  1613   enc_class Opc_plus(immI opcode, rRegI reg) %{
  1614     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1615   %}
  1618   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1619   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1620     // Check for 8-bit immediate, and set sign extend bit in opcode
  1621     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1622       emit_opcode(cbuf, $primary | 0x02);
  1624     else {                          // If 32-bit immediate
  1625       emit_opcode(cbuf, $primary);
  1627   %}
  1629   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
  1630     // Emit primary opcode and set sign-extend bit
  1631     // Check for 8-bit immediate, and set sign extend bit in opcode
  1632     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1633       emit_opcode(cbuf, $primary | 0x02);    }
  1634     else {                          // If 32-bit immediate
  1635       emit_opcode(cbuf, $primary);
  1637     // Emit r/m byte with secondary opcode, after primary opcode.
  1638     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1639   %}
  1641   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1642     // Check for 8-bit immediate, and set sign extend bit in opcode
  1643     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1644       $$$emit8$imm$$constant;
  1646     else {                          // If 32-bit immediate
  1647       // Output immediate
  1648       $$$emit32$imm$$constant;
  1650   %}
  1652   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1653     // Emit primary opcode and set sign-extend bit
  1654     // Check for 8-bit immediate, and set sign extend bit in opcode
  1655     int con = (int)$imm$$constant; // Throw away top bits
  1656     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1657     // Emit r/m byte with secondary opcode, after primary opcode.
  1658     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1659     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1660     else                               emit_d32(cbuf,con);
  1661   %}
  1663   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1664     // Emit primary opcode and set sign-extend bit
  1665     // Check for 8-bit immediate, and set sign extend bit in opcode
  1666     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1667     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1668     // Emit r/m byte with tertiary opcode, after primary opcode.
  1669     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1670     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1671     else                               emit_d32(cbuf,con);
  1672   %}
  1674   enc_class OpcSReg (rRegI dst) %{    // BSWAP
  1675     emit_cc(cbuf, $secondary, $dst$$reg );
  1676   %}
  1678   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1679     int destlo = $dst$$reg;
  1680     int desthi = HIGH_FROM_LOW(destlo);
  1681     // bswap lo
  1682     emit_opcode(cbuf, 0x0F);
  1683     emit_cc(cbuf, 0xC8, destlo);
  1684     // bswap hi
  1685     emit_opcode(cbuf, 0x0F);
  1686     emit_cc(cbuf, 0xC8, desthi);
  1687     // xchg lo and hi
  1688     emit_opcode(cbuf, 0x87);
  1689     emit_rm(cbuf, 0x3, destlo, desthi);
  1690   %}
  1692   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1693     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1694   %}
  1696   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1697     $$$emit8$primary;
  1698     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1699   %}
  1701   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
  1702     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1703     emit_d8(cbuf, op >> 8 );
  1704     emit_d8(cbuf, op & 255);
  1705   %}
  1707   // emulate a CMOV with a conditional branch around a MOV
  1708   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1709     // Invert sense of branch from sense of CMOV
  1710     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1711     emit_d8( cbuf, $brOffs$$constant );
  1712   %}
  1714   enc_class enc_PartialSubtypeCheck( ) %{
  1715     Register Redi = as_Register(EDI_enc); // result register
  1716     Register Reax = as_Register(EAX_enc); // super class
  1717     Register Recx = as_Register(ECX_enc); // killed
  1718     Register Resi = as_Register(ESI_enc); // sub class
  1719     Label miss;
  1721     MacroAssembler _masm(&cbuf);
  1722     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1723                                      NULL, &miss,
  1724                                      /*set_cond_codes:*/ true);
  1725     if ($primary) {
  1726       __ xorptr(Redi, Redi);
  1728     __ bind(miss);
  1729   %}
  1731   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1732     MacroAssembler masm(&cbuf);
  1733     int start = masm.offset();
  1734     if (UseSSE >= 2) {
  1735       if (VerifyFPU) {
  1736         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1738     } else {
  1739       // External c_calling_convention expects the FPU stack to be 'clean'.
  1740       // Compiled code leaves it dirty.  Do cleanup now.
  1741       masm.empty_FPU_stack();
  1743     if (sizeof_FFree_Float_Stack_All == -1) {
  1744       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1745     } else {
  1746       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1748   %}
  1750   enc_class Verify_FPU_For_Leaf %{
  1751     if( VerifyFPU ) {
  1752       MacroAssembler masm(&cbuf);
  1753       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1755   %}
  1757   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1758     // This is the instruction starting address for relocation info.
  1759     cbuf.set_insts_mark();
  1760     $$$emit8$primary;
  1761     // CALL directly to the runtime
  1762     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1763                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1765     if (UseSSE >= 2) {
  1766       MacroAssembler _masm(&cbuf);
  1767       BasicType rt = tf()->return_type();
  1769       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1770         // A C runtime call where the return value is unused.  In SSE2+
  1771         // mode the result needs to be removed from the FPU stack.  It's
  1772         // likely that this function call could be removed by the
  1773         // optimizer if the C function is a pure function.
  1774         __ ffree(0);
  1775       } else if (rt == T_FLOAT) {
  1776         __ lea(rsp, Address(rsp, -4));
  1777         __ fstp_s(Address(rsp, 0));
  1778         __ movflt(xmm0, Address(rsp, 0));
  1779         __ lea(rsp, Address(rsp,  4));
  1780       } else if (rt == T_DOUBLE) {
  1781         __ lea(rsp, Address(rsp, -8));
  1782         __ fstp_d(Address(rsp, 0));
  1783         __ movdbl(xmm0, Address(rsp, 0));
  1784         __ lea(rsp, Address(rsp,  8));
  1787   %}
  1790   enc_class pre_call_resets %{
  1791     // If method sets FPU control word restore it here
  1792     debug_only(int off0 = cbuf.insts_size());
  1793     if (ra_->C->in_24_bit_fp_mode()) {
  1794       MacroAssembler _masm(&cbuf);
  1795       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1797     if (ra_->C->max_vector_size() > 16) {
  1798       // Clear upper bits of YMM registers when current compiled code uses
  1799       // wide vectors to avoid AVX <-> SSE transition penalty during call.
  1800       MacroAssembler _masm(&cbuf);
  1801       __ vzeroupper();
  1803     debug_only(int off1 = cbuf.insts_size());
  1804     assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
  1805   %}
  1807   enc_class post_call_FPU %{
  1808     // If method sets FPU control word do it here also
  1809     if (Compile::current()->in_24_bit_fp_mode()) {
  1810       MacroAssembler masm(&cbuf);
  1811       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1813   %}
  1815   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1816     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1817     // who we intended to call.
  1818     cbuf.set_insts_mark();
  1819     $$$emit8$primary;
  1820     if (!_method) {
  1821       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1822                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1823     } else if (_optimized_virtual) {
  1824       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1825                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1826     } else {
  1827       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1828                      static_call_Relocation::spec(), RELOC_IMM32 );
  1830     if (_method) {  // Emit stub for static call.
  1831       CompiledStaticCall::emit_to_interp_stub(cbuf);
  1833   %}
  1835   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1836     MacroAssembler _masm(&cbuf);
  1837     __ ic_call((address)$meth$$method);
  1838   %}
  1840   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1841     int disp = in_bytes(Method::from_compiled_offset());
  1842     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1844     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
  1845     cbuf.set_insts_mark();
  1846     $$$emit8$primary;
  1847     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1848     emit_d8(cbuf, disp);             // Displacement
  1850   %}
  1852 //   Following encoding is no longer used, but may be restored if calling
  1853 //   convention changes significantly.
  1854 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1855 //
  1856 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1857 //     // int ic_reg     = Matcher::inline_cache_reg();
  1858 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1859 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1860 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1861 //
  1862 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1863 //     // // so we load it immediately before the call
  1864 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1865 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1866 //
  1867 //     // xor rbp,ebp
  1868 //     emit_opcode(cbuf, 0x33);
  1869 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1870 //
  1871 //     // CALL to interpreter.
  1872 //     cbuf.set_insts_mark();
  1873 //     $$$emit8$primary;
  1874 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1875 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1876 //   %}
  1878   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1879     $$$emit8$primary;
  1880     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1881     $$$emit8$shift$$constant;
  1882   %}
  1884   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
  1885     // Load immediate does not have a zero or sign extended version
  1886     // for 8-bit immediates
  1887     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1888     $$$emit32$src$$constant;
  1889   %}
  1891   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
  1892     // Load immediate does not have a zero or sign extended version
  1893     // for 8-bit immediates
  1894     emit_opcode(cbuf, $primary + $dst$$reg);
  1895     $$$emit32$src$$constant;
  1896   %}
  1898   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1899     // Load immediate does not have a zero or sign extended version
  1900     // for 8-bit immediates
  1901     int dst_enc = $dst$$reg;
  1902     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1903     if (src_con == 0) {
  1904       // xor dst, dst
  1905       emit_opcode(cbuf, 0x33);
  1906       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1907     } else {
  1908       emit_opcode(cbuf, $primary + dst_enc);
  1909       emit_d32(cbuf, src_con);
  1911   %}
  1913   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1914     // Load immediate does not have a zero or sign extended version
  1915     // for 8-bit immediates
  1916     int dst_enc = $dst$$reg + 2;
  1917     int src_con = ((julong)($src$$constant)) >> 32;
  1918     if (src_con == 0) {
  1919       // xor dst, dst
  1920       emit_opcode(cbuf, 0x33);
  1921       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1922     } else {
  1923       emit_opcode(cbuf, $primary + dst_enc);
  1924       emit_d32(cbuf, src_con);
  1926   %}
  1929   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1930   enc_class enc_Copy( rRegI dst, rRegI src ) %{
  1931     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1932   %}
  1934   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
  1935     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1936   %}
  1938   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1939     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1940   %}
  1942   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  1943     $$$emit8$primary;
  1944     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1945   %}
  1947   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  1948     $$$emit8$secondary;
  1949     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  1950   %}
  1952   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  1953     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1954   %}
  1956   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  1957     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  1958   %}
  1960   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
  1961     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  1962   %}
  1964   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  1965     // Output immediate
  1966     $$$emit32$src$$constant;
  1967   %}
  1969   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
  1970     // Output Float immediate bits
  1971     jfloat jf = $src$$constant;
  1972     int    jf_as_bits = jint_cast( jf );
  1973     emit_d32(cbuf, jf_as_bits);
  1974   %}
  1976   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
  1977     // Output Float immediate bits
  1978     jfloat jf = $src$$constant;
  1979     int    jf_as_bits = jint_cast( jf );
  1980     emit_d32(cbuf, jf_as_bits);
  1981   %}
  1983   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  1984     // Output immediate
  1985     $$$emit16$src$$constant;
  1986   %}
  1988   enc_class Con_d32(immI src) %{
  1989     emit_d32(cbuf,$src$$constant);
  1990   %}
  1992   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  1993     // Output immediate memory reference
  1994     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  1995     emit_d32(cbuf, 0x00);
  1996   %}
  1998   enc_class lock_prefix( ) %{
  1999     if( os::is_MP() )
  2000       emit_opcode(cbuf,0xF0);         // [Lock]
  2001   %}
  2003   // Cmp-xchg long value.
  2004   // Note: we need to swap rbx, and rcx before and after the
  2005   //       cmpxchg8 instruction because the instruction uses
  2006   //       rcx as the high order word of the new value to store but
  2007   //       our register encoding uses rbx,.
  2008   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2010     // XCHG  rbx,ecx
  2011     emit_opcode(cbuf,0x87);
  2012     emit_opcode(cbuf,0xD9);
  2013     // [Lock]
  2014     if( os::is_MP() )
  2015       emit_opcode(cbuf,0xF0);
  2016     // CMPXCHG8 [Eptr]
  2017     emit_opcode(cbuf,0x0F);
  2018     emit_opcode(cbuf,0xC7);
  2019     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2020     // XCHG  rbx,ecx
  2021     emit_opcode(cbuf,0x87);
  2022     emit_opcode(cbuf,0xD9);
  2023   %}
  2025   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2026     // [Lock]
  2027     if( os::is_MP() )
  2028       emit_opcode(cbuf,0xF0);
  2030     // CMPXCHG [Eptr]
  2031     emit_opcode(cbuf,0x0F);
  2032     emit_opcode(cbuf,0xB1);
  2033     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2034   %}
  2036   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2037     int res_encoding = $res$$reg;
  2039     // MOV  res,0
  2040     emit_opcode( cbuf, 0xB8 + res_encoding);
  2041     emit_d32( cbuf, 0 );
  2042     // JNE,s  fail
  2043     emit_opcode(cbuf,0x75);
  2044     emit_d8(cbuf, 5 );
  2045     // MOV  res,1
  2046     emit_opcode( cbuf, 0xB8 + res_encoding);
  2047     emit_d32( cbuf, 1 );
  2048     // fail:
  2049   %}
  2051   enc_class set_instruction_start( ) %{
  2052     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2053   %}
  2055   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
  2056     int reg_encoding = $ereg$$reg;
  2057     int base  = $mem$$base;
  2058     int index = $mem$$index;
  2059     int scale = $mem$$scale;
  2060     int displace = $mem$$disp;
  2061     relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2062     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2063   %}
  2065   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2066     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2067     int base  = $mem$$base;
  2068     int index = $mem$$index;
  2069     int scale = $mem$$scale;
  2070     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2071     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
  2072     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
  2073   %}
  2075   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2076     int r1, r2;
  2077     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2078     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2079     emit_opcode(cbuf,0x0F);
  2080     emit_opcode(cbuf,$tertiary);
  2081     emit_rm(cbuf, 0x3, r1, r2);
  2082     emit_d8(cbuf,$cnt$$constant);
  2083     emit_d8(cbuf,$primary);
  2084     emit_rm(cbuf, 0x3, $secondary, r1);
  2085     emit_d8(cbuf,$cnt$$constant);
  2086   %}
  2088   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2089     emit_opcode( cbuf, 0x8B ); // Move
  2090     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2091     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2092       emit_d8(cbuf,$primary);
  2093       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2094       emit_d8(cbuf,$cnt$$constant-32);
  2096     emit_d8(cbuf,$primary);
  2097     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2098     emit_d8(cbuf,31);
  2099   %}
  2101   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2102     int r1, r2;
  2103     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2104     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2106     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2107     emit_rm(cbuf, 0x3, r1, r2);
  2108     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2109       emit_opcode(cbuf,$primary);
  2110       emit_rm(cbuf, 0x3, $secondary, r1);
  2111       emit_d8(cbuf,$cnt$$constant-32);
  2113     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2114     emit_rm(cbuf, 0x3, r2, r2);
  2115   %}
  2117   // Clone of RegMem but accepts an extra parameter to access each
  2118   // half of a double in memory; it never needs relocation info.
  2119   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
  2120     emit_opcode(cbuf,$opcode$$constant);
  2121     int reg_encoding = $rm_reg$$reg;
  2122     int base     = $mem$$base;
  2123     int index    = $mem$$index;
  2124     int scale    = $mem$$scale;
  2125     int displace = $mem$$disp + $disp_for_half$$constant;
  2126     relocInfo::relocType disp_reloc = relocInfo::none;
  2127     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2128   %}
  2130   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2131   //
  2132   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2133   // and it never needs relocation information.
  2134   // Frequently used to move data between FPU's Stack Top and memory.
  2135   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2136     int rm_byte_opcode = $rm_opcode$$constant;
  2137     int base     = $mem$$base;
  2138     int index    = $mem$$index;
  2139     int scale    = $mem$$scale;
  2140     int displace = $mem$$disp;
  2141     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
  2142     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
  2143   %}
  2145   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2146     int rm_byte_opcode = $rm_opcode$$constant;
  2147     int base     = $mem$$base;
  2148     int index    = $mem$$index;
  2149     int scale    = $mem$$scale;
  2150     int displace = $mem$$disp;
  2151     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2152     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  2153   %}
  2155   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
  2156     int reg_encoding = $dst$$reg;
  2157     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2158     int index        = 0x04;            // 0x04 indicates no index
  2159     int scale        = 0x00;            // 0x00 indicates no scale
  2160     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2161     relocInfo::relocType disp_reloc = relocInfo::none;
  2162     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2163   %}
  2165   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
  2166     // Compare dst,src
  2167     emit_opcode(cbuf,0x3B);
  2168     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2169     // jmp dst < src around move
  2170     emit_opcode(cbuf,0x7C);
  2171     emit_d8(cbuf,2);
  2172     // move dst,src
  2173     emit_opcode(cbuf,0x8B);
  2174     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2175   %}
  2177   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
  2178     // Compare dst,src
  2179     emit_opcode(cbuf,0x3B);
  2180     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2181     // jmp dst > src around move
  2182     emit_opcode(cbuf,0x7F);
  2183     emit_d8(cbuf,2);
  2184     // move dst,src
  2185     emit_opcode(cbuf,0x8B);
  2186     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2187   %}
  2189   enc_class enc_FPR_store(memory mem, regDPR src) %{
  2190     // If src is FPR1, we can just FST to store it.
  2191     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2192     int reg_encoding = 0x2; // Just store
  2193     int base  = $mem$$base;
  2194     int index = $mem$$index;
  2195     int scale = $mem$$scale;
  2196     int displace = $mem$$disp;
  2197     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2198     if( $src$$reg != FPR1L_enc ) {
  2199       reg_encoding = 0x3;  // Store & pop
  2200       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2201       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2203     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2204     emit_opcode(cbuf,$primary);
  2205     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2206   %}
  2208   enc_class neg_reg(rRegI dst) %{
  2209     // NEG $dst
  2210     emit_opcode(cbuf,0xF7);
  2211     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2212   %}
  2214   enc_class setLT_reg(eCXRegI dst) %{
  2215     // SETLT $dst
  2216     emit_opcode(cbuf,0x0F);
  2217     emit_opcode(cbuf,0x9C);
  2218     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2219   %}
  2221   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2222     int tmpReg = $tmp$$reg;
  2224     // SUB $p,$q
  2225     emit_opcode(cbuf,0x2B);
  2226     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2227     // SBB $tmp,$tmp
  2228     emit_opcode(cbuf,0x1B);
  2229     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2230     // AND $tmp,$y
  2231     emit_opcode(cbuf,0x23);
  2232     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2233     // ADD $p,$tmp
  2234     emit_opcode(cbuf,0x03);
  2235     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2236   %}
  2238   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2239     // TEST shift,32
  2240     emit_opcode(cbuf,0xF7);
  2241     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2242     emit_d32(cbuf,0x20);
  2243     // JEQ,s small
  2244     emit_opcode(cbuf, 0x74);
  2245     emit_d8(cbuf, 0x04);
  2246     // MOV    $dst.hi,$dst.lo
  2247     emit_opcode( cbuf, 0x8B );
  2248     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2249     // CLR    $dst.lo
  2250     emit_opcode(cbuf, 0x33);
  2251     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2252 // small:
  2253     // SHLD   $dst.hi,$dst.lo,$shift
  2254     emit_opcode(cbuf,0x0F);
  2255     emit_opcode(cbuf,0xA5);
  2256     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2257     // SHL    $dst.lo,$shift"
  2258     emit_opcode(cbuf,0xD3);
  2259     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2260   %}
  2262   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2263     // TEST shift,32
  2264     emit_opcode(cbuf,0xF7);
  2265     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2266     emit_d32(cbuf,0x20);
  2267     // JEQ,s small
  2268     emit_opcode(cbuf, 0x74);
  2269     emit_d8(cbuf, 0x04);
  2270     // MOV    $dst.lo,$dst.hi
  2271     emit_opcode( cbuf, 0x8B );
  2272     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2273     // CLR    $dst.hi
  2274     emit_opcode(cbuf, 0x33);
  2275     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2276 // small:
  2277     // SHRD   $dst.lo,$dst.hi,$shift
  2278     emit_opcode(cbuf,0x0F);
  2279     emit_opcode(cbuf,0xAD);
  2280     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2281     // SHR    $dst.hi,$shift"
  2282     emit_opcode(cbuf,0xD3);
  2283     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2284   %}
  2286   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2287     // TEST shift,32
  2288     emit_opcode(cbuf,0xF7);
  2289     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2290     emit_d32(cbuf,0x20);
  2291     // JEQ,s small
  2292     emit_opcode(cbuf, 0x74);
  2293     emit_d8(cbuf, 0x05);
  2294     // MOV    $dst.lo,$dst.hi
  2295     emit_opcode( cbuf, 0x8B );
  2296     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2297     // SAR    $dst.hi,31
  2298     emit_opcode(cbuf, 0xC1);
  2299     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2300     emit_d8(cbuf, 0x1F );
  2301 // small:
  2302     // SHRD   $dst.lo,$dst.hi,$shift
  2303     emit_opcode(cbuf,0x0F);
  2304     emit_opcode(cbuf,0xAD);
  2305     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2306     // SAR    $dst.hi,$shift"
  2307     emit_opcode(cbuf,0xD3);
  2308     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2309   %}
  2312   // ----------------- Encodings for floating point unit -----------------
  2313   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2314   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
  2315     $$$emit8$primary;
  2316     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2317   %}
  2319   // Pop argument in FPR0 with FSTP ST(0)
  2320   enc_class PopFPU() %{
  2321     emit_opcode( cbuf, 0xDD );
  2322     emit_d8( cbuf, 0xD8 );
  2323   %}
  2325   // !!!!! equivalent to Pop_Reg_F
  2326   enc_class Pop_Reg_DPR( regDPR dst ) %{
  2327     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2328     emit_d8( cbuf, 0xD8+$dst$$reg );
  2329   %}
  2331   enc_class Push_Reg_DPR( regDPR dst ) %{
  2332     emit_opcode( cbuf, 0xD9 );
  2333     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2334   %}
  2336   enc_class strictfp_bias1( regDPR dst ) %{
  2337     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2338     emit_opcode( cbuf, 0x2D );
  2339     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2340     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2341     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2342   %}
  2344   enc_class strictfp_bias2( regDPR dst ) %{
  2345     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2346     emit_opcode( cbuf, 0x2D );
  2347     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2348     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2349     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2350   %}
  2352   // Special case for moving an integer register to a stack slot.
  2353   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2354     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2355   %}
  2357   // Special case for moving a register to a stack slot.
  2358   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2359     // Opcode already emitted
  2360     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2361     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2362     emit_d32(cbuf, $dst$$disp);   // Displacement
  2363   %}
  2365   // Push the integer in stackSlot 'src' onto FP-stack
  2366   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2367     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2368   %}
  2370   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2371   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2372     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2373   %}
  2375   // Same as Pop_Mem_F except for opcode
  2376   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2377   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2378     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2379   %}
  2381   enc_class Pop_Reg_FPR( regFPR dst ) %{
  2382     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2383     emit_d8( cbuf, 0xD8+$dst$$reg );
  2384   %}
  2386   enc_class Push_Reg_FPR( regFPR dst ) %{
  2387     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2388     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2389   %}
  2391   // Push FPU's float to a stack-slot, and pop FPU-stack
  2392   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
  2393     int pop = 0x02;
  2394     if ($src$$reg != FPR1L_enc) {
  2395       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2396       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2397       pop = 0x03;
  2399     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2400   %}
  2402   // Push FPU's double to a stack-slot, and pop FPU-stack
  2403   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
  2404     int pop = 0x02;
  2405     if ($src$$reg != FPR1L_enc) {
  2406       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2407       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2408       pop = 0x03;
  2410     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2411   %}
  2413   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2414   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
  2415     int pop = 0xD0 - 1; // -1 since we skip FLD
  2416     if ($src$$reg != FPR1L_enc) {
  2417       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2418       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2419       pop = 0xD8;
  2421     emit_opcode( cbuf, 0xDD );
  2422     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2423   %}
  2426   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
  2427     // load dst in FPR0
  2428     emit_opcode( cbuf, 0xD9 );
  2429     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2430     if ($src$$reg != FPR1L_enc) {
  2431       // fincstp
  2432       emit_opcode (cbuf, 0xD9);
  2433       emit_opcode (cbuf, 0xF7);
  2434       // swap src with FPR1:
  2435       // FXCH FPR1 with src
  2436       emit_opcode(cbuf, 0xD9);
  2437       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2438       // fdecstp
  2439       emit_opcode (cbuf, 0xD9);
  2440       emit_opcode (cbuf, 0xF6);
  2442   %}
  2444   enc_class Push_ModD_encoding(regD src0, regD src1) %{
  2445     MacroAssembler _masm(&cbuf);
  2446     __ subptr(rsp, 8);
  2447     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  2448     __ fld_d(Address(rsp, 0));
  2449     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  2450     __ fld_d(Address(rsp, 0));
  2451   %}
  2453   enc_class Push_ModF_encoding(regF src0, regF src1) %{
  2454     MacroAssembler _masm(&cbuf);
  2455     __ subptr(rsp, 4);
  2456     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
  2457     __ fld_s(Address(rsp, 0));
  2458     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
  2459     __ fld_s(Address(rsp, 0));
  2460   %}
  2462   enc_class Push_ResultD(regD dst) %{
  2463     MacroAssembler _masm(&cbuf);
  2464     __ fstp_d(Address(rsp, 0));
  2465     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  2466     __ addptr(rsp, 8);
  2467   %}
  2469   enc_class Push_ResultF(regF dst, immI d8) %{
  2470     MacroAssembler _masm(&cbuf);
  2471     __ fstp_s(Address(rsp, 0));
  2472     __ movflt($dst$$XMMRegister, Address(rsp, 0));
  2473     __ addptr(rsp, $d8$$constant);
  2474   %}
  2476   enc_class Push_SrcD(regD src) %{
  2477     MacroAssembler _masm(&cbuf);
  2478     __ subptr(rsp, 8);
  2479     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2480     __ fld_d(Address(rsp, 0));
  2481   %}
  2483   enc_class push_stack_temp_qword() %{
  2484     MacroAssembler _masm(&cbuf);
  2485     __ subptr(rsp, 8);
  2486   %}
  2488   enc_class pop_stack_temp_qword() %{
  2489     MacroAssembler _masm(&cbuf);
  2490     __ addptr(rsp, 8);
  2491   %}
  2493   enc_class push_xmm_to_fpr1(regD src) %{
  2494     MacroAssembler _masm(&cbuf);
  2495     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2496     __ fld_d(Address(rsp, 0));
  2497   %}
  2499   enc_class Push_Result_Mod_DPR( regDPR src) %{
  2500     if ($src$$reg != FPR1L_enc) {
  2501       // fincstp
  2502       emit_opcode (cbuf, 0xD9);
  2503       emit_opcode (cbuf, 0xF7);
  2504       // FXCH FPR1 with src
  2505       emit_opcode(cbuf, 0xD9);
  2506       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2507       // fdecstp
  2508       emit_opcode (cbuf, 0xD9);
  2509       emit_opcode (cbuf, 0xF6);
  2511     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2512     // // FSTP   FPR$dst$$reg
  2513     // emit_opcode( cbuf, 0xDD );
  2514     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2515   %}
  2517   enc_class fnstsw_sahf_skip_parity() %{
  2518     // fnstsw ax
  2519     emit_opcode( cbuf, 0xDF );
  2520     emit_opcode( cbuf, 0xE0 );
  2521     // sahf
  2522     emit_opcode( cbuf, 0x9E );
  2523     // jnp  ::skip
  2524     emit_opcode( cbuf, 0x7B );
  2525     emit_opcode( cbuf, 0x05 );
  2526   %}
  2528   enc_class emitModDPR() %{
  2529     // fprem must be iterative
  2530     // :: loop
  2531     // fprem
  2532     emit_opcode( cbuf, 0xD9 );
  2533     emit_opcode( cbuf, 0xF8 );
  2534     // wait
  2535     emit_opcode( cbuf, 0x9b );
  2536     // fnstsw ax
  2537     emit_opcode( cbuf, 0xDF );
  2538     emit_opcode( cbuf, 0xE0 );
  2539     // sahf
  2540     emit_opcode( cbuf, 0x9E );
  2541     // jp  ::loop
  2542     emit_opcode( cbuf, 0x0F );
  2543     emit_opcode( cbuf, 0x8A );
  2544     emit_opcode( cbuf, 0xF4 );
  2545     emit_opcode( cbuf, 0xFF );
  2546     emit_opcode( cbuf, 0xFF );
  2547     emit_opcode( cbuf, 0xFF );
  2548   %}
  2550   enc_class fpu_flags() %{
  2551     // fnstsw_ax
  2552     emit_opcode( cbuf, 0xDF);
  2553     emit_opcode( cbuf, 0xE0);
  2554     // test ax,0x0400
  2555     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2556     emit_opcode( cbuf, 0xA9 );
  2557     emit_d16   ( cbuf, 0x0400 );
  2558     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2559     // // test rax,0x0400
  2560     // emit_opcode( cbuf, 0xA9 );
  2561     // emit_d32   ( cbuf, 0x00000400 );
  2562     //
  2563     // jz exit (no unordered comparison)
  2564     emit_opcode( cbuf, 0x74 );
  2565     emit_d8    ( cbuf, 0x02 );
  2566     // mov ah,1 - treat as LT case (set carry flag)
  2567     emit_opcode( cbuf, 0xB4 );
  2568     emit_d8    ( cbuf, 0x01 );
  2569     // sahf
  2570     emit_opcode( cbuf, 0x9E);
  2571   %}
  2573   enc_class cmpF_P6_fixup() %{
  2574     // Fixup the integer flags in case comparison involved a NaN
  2575     //
  2576     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2577     emit_opcode( cbuf, 0x7B );
  2578     emit_d8    ( cbuf, 0x03 );
  2579     // MOV AH,1 - treat as LT case (set carry flag)
  2580     emit_opcode( cbuf, 0xB4 );
  2581     emit_d8    ( cbuf, 0x01 );
  2582     // SAHF
  2583     emit_opcode( cbuf, 0x9E);
  2584     // NOP     // target for branch to avoid branch to branch
  2585     emit_opcode( cbuf, 0x90);
  2586   %}
  2588 //     fnstsw_ax();
  2589 //     sahf();
  2590 //     movl(dst, nan_result);
  2591 //     jcc(Assembler::parity, exit);
  2592 //     movl(dst, less_result);
  2593 //     jcc(Assembler::below, exit);
  2594 //     movl(dst, equal_result);
  2595 //     jcc(Assembler::equal, exit);
  2596 //     movl(dst, greater_result);
  2598 // less_result     =  1;
  2599 // greater_result  = -1;
  2600 // equal_result    = 0;
  2601 // nan_result      = -1;
  2603   enc_class CmpF_Result(rRegI dst) %{
  2604     // fnstsw_ax();
  2605     emit_opcode( cbuf, 0xDF);
  2606     emit_opcode( cbuf, 0xE0);
  2607     // sahf
  2608     emit_opcode( cbuf, 0x9E);
  2609     // movl(dst, nan_result);
  2610     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2611     emit_d32( cbuf, -1 );
  2612     // jcc(Assembler::parity, exit);
  2613     emit_opcode( cbuf, 0x7A );
  2614     emit_d8    ( cbuf, 0x13 );
  2615     // movl(dst, less_result);
  2616     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2617     emit_d32( cbuf, -1 );
  2618     // jcc(Assembler::below, exit);
  2619     emit_opcode( cbuf, 0x72 );
  2620     emit_d8    ( cbuf, 0x0C );
  2621     // movl(dst, equal_result);
  2622     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2623     emit_d32( cbuf, 0 );
  2624     // jcc(Assembler::equal, exit);
  2625     emit_opcode( cbuf, 0x74 );
  2626     emit_d8    ( cbuf, 0x05 );
  2627     // movl(dst, greater_result);
  2628     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2629     emit_d32( cbuf, 1 );
  2630   %}
  2633   // Compare the longs and set flags
  2634   // BROKEN!  Do Not use as-is
  2635   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2636     // CMP    $src1.hi,$src2.hi
  2637     emit_opcode( cbuf, 0x3B );
  2638     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2639     // JNE,s  done
  2640     emit_opcode(cbuf,0x75);
  2641     emit_d8(cbuf, 2 );
  2642     // CMP    $src1.lo,$src2.lo
  2643     emit_opcode( cbuf, 0x3B );
  2644     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2645 // done:
  2646   %}
  2648   enc_class convert_int_long( regL dst, rRegI src ) %{
  2649     // mov $dst.lo,$src
  2650     int dst_encoding = $dst$$reg;
  2651     int src_encoding = $src$$reg;
  2652     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2653     // mov $dst.hi,$src
  2654     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2655     // sar $dst.hi,31
  2656     emit_opcode( cbuf, 0xC1 );
  2657     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2658     emit_d8(cbuf, 0x1F );
  2659   %}
  2661   enc_class convert_long_double( eRegL src ) %{
  2662     // push $src.hi
  2663     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2664     // push $src.lo
  2665     emit_opcode(cbuf, 0x50+$src$$reg  );
  2666     // fild 64-bits at [SP]
  2667     emit_opcode(cbuf,0xdf);
  2668     emit_d8(cbuf, 0x6C);
  2669     emit_d8(cbuf, 0x24);
  2670     emit_d8(cbuf, 0x00);
  2671     // pop stack
  2672     emit_opcode(cbuf, 0x83); // add  SP, #8
  2673     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2674     emit_d8(cbuf, 0x8);
  2675   %}
  2677   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2678     // IMUL   EDX:EAX,$src1
  2679     emit_opcode( cbuf, 0xF7 );
  2680     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2681     // SAR    EDX,$cnt-32
  2682     int shift_count = ((int)$cnt$$constant) - 32;
  2683     if (shift_count > 0) {
  2684       emit_opcode(cbuf, 0xC1);
  2685       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2686       emit_d8(cbuf, shift_count);
  2688   %}
  2690   // this version doesn't have add sp, 8
  2691   enc_class convert_long_double2( eRegL src ) %{
  2692     // push $src.hi
  2693     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2694     // push $src.lo
  2695     emit_opcode(cbuf, 0x50+$src$$reg  );
  2696     // fild 64-bits at [SP]
  2697     emit_opcode(cbuf,0xdf);
  2698     emit_d8(cbuf, 0x6C);
  2699     emit_d8(cbuf, 0x24);
  2700     emit_d8(cbuf, 0x00);
  2701   %}
  2703   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2704     // Basic idea: long = (long)int * (long)int
  2705     // IMUL EDX:EAX, src
  2706     emit_opcode( cbuf, 0xF7 );
  2707     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2708   %}
  2710   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2711     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2712     // MUL EDX:EAX, src
  2713     emit_opcode( cbuf, 0xF7 );
  2714     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2715   %}
  2717   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
  2718     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2719     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2720     // MOV    $tmp,$src.lo
  2721     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2722     // IMUL   $tmp,EDX
  2723     emit_opcode( cbuf, 0x0F );
  2724     emit_opcode( cbuf, 0xAF );
  2725     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2726     // MOV    EDX,$src.hi
  2727     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2728     // IMUL   EDX,EAX
  2729     emit_opcode( cbuf, 0x0F );
  2730     emit_opcode( cbuf, 0xAF );
  2731     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2732     // ADD    $tmp,EDX
  2733     emit_opcode( cbuf, 0x03 );
  2734     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2735     // MUL   EDX:EAX,$src.lo
  2736     emit_opcode( cbuf, 0xF7 );
  2737     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  2738     // ADD    EDX,ESI
  2739     emit_opcode( cbuf, 0x03 );
  2740     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  2741   %}
  2743   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
  2744     // Basic idea: lo(result) = lo(src * y_lo)
  2745     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  2746     // IMUL   $tmp,EDX,$src
  2747     emit_opcode( cbuf, 0x6B );
  2748     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2749     emit_d8( cbuf, (int)$src$$constant );
  2750     // MOV    EDX,$src
  2751     emit_opcode(cbuf, 0xB8 + EDX_enc);
  2752     emit_d32( cbuf, (int)$src$$constant );
  2753     // MUL   EDX:EAX,EDX
  2754     emit_opcode( cbuf, 0xF7 );
  2755     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  2756     // ADD    EDX,ESI
  2757     emit_opcode( cbuf, 0x03 );
  2758     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  2759   %}
  2761   enc_class long_div( eRegL src1, eRegL src2 ) %{
  2762     // PUSH src1.hi
  2763     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2764     // PUSH src1.lo
  2765     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2766     // PUSH src2.hi
  2767     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2768     // PUSH src2.lo
  2769     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2770     // CALL directly to the runtime
  2771     cbuf.set_insts_mark();
  2772     emit_opcode(cbuf,0xE8);       // Call into runtime
  2773     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2774     // Restore stack
  2775     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2776     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2777     emit_d8(cbuf, 4*4);
  2778   %}
  2780   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  2781     // PUSH src1.hi
  2782     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2783     // PUSH src1.lo
  2784     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2785     // PUSH src2.hi
  2786     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2787     // PUSH src2.lo
  2788     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2789     // CALL directly to the runtime
  2790     cbuf.set_insts_mark();
  2791     emit_opcode(cbuf,0xE8);       // Call into runtime
  2792     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2793     // Restore stack
  2794     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2795     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2796     emit_d8(cbuf, 4*4);
  2797   %}
  2799   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
  2800     // MOV   $tmp,$src.lo
  2801     emit_opcode(cbuf, 0x8B);
  2802     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2803     // OR    $tmp,$src.hi
  2804     emit_opcode(cbuf, 0x0B);
  2805     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2806   %}
  2808   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  2809     // CMP    $src1.lo,$src2.lo
  2810     emit_opcode( cbuf, 0x3B );
  2811     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2812     // JNE,s  skip
  2813     emit_cc(cbuf, 0x70, 0x5);
  2814     emit_d8(cbuf,2);
  2815     // CMP    $src1.hi,$src2.hi
  2816     emit_opcode( cbuf, 0x3B );
  2817     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2818   %}
  2820   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
  2821     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  2822     emit_opcode( cbuf, 0x3B );
  2823     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2824     // MOV    $tmp,$src1.hi
  2825     emit_opcode( cbuf, 0x8B );
  2826     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  2827     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  2828     emit_opcode( cbuf, 0x1B );
  2829     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  2830   %}
  2832   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
  2833     // XOR    $tmp,$tmp
  2834     emit_opcode(cbuf,0x33);  // XOR
  2835     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  2836     // CMP    $tmp,$src.lo
  2837     emit_opcode( cbuf, 0x3B );
  2838     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  2839     // SBB    $tmp,$src.hi
  2840     emit_opcode( cbuf, 0x1B );
  2841     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  2842   %}
  2844  // Sniff, sniff... smells like Gnu Superoptimizer
  2845   enc_class neg_long( eRegL dst ) %{
  2846     emit_opcode(cbuf,0xF7);    // NEG hi
  2847     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2848     emit_opcode(cbuf,0xF7);    // NEG lo
  2849     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  2850     emit_opcode(cbuf,0x83);    // SBB hi,0
  2851     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2852     emit_d8    (cbuf,0 );
  2853   %}
  2855   enc_class enc_pop_rdx() %{
  2856     emit_opcode(cbuf,0x5A);
  2857   %}
  2859   enc_class enc_rethrow() %{
  2860     cbuf.set_insts_mark();
  2861     emit_opcode(cbuf, 0xE9);        // jmp    entry
  2862     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  2863                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  2864   %}
  2867   // Convert a double to an int.  Java semantics require we do complex
  2868   // manglelations in the corner cases.  So we set the rounding mode to
  2869   // 'zero', store the darned double down as an int, and reset the
  2870   // rounding mode to 'nearest'.  The hardware throws an exception which
  2871   // patches up the correct value directly to the stack.
  2872   enc_class DPR2I_encoding( regDPR src ) %{
  2873     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  2874     // exceptions here, so that a NAN or other corner-case value will
  2875     // thrown an exception (but normal values get converted at full speed).
  2876     // However, I2C adapters and other float-stack manglers leave pending
  2877     // invalid-op exceptions hanging.  We would have to clear them before
  2878     // enabling them and that is more expensive than just testing for the
  2879     // invalid value Intel stores down in the corner cases.
  2880     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  2881     emit_opcode(cbuf,0x2D);
  2882     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  2883     // Allocate a word
  2884     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2885     emit_opcode(cbuf,0xEC);
  2886     emit_d8(cbuf,0x04);
  2887     // Encoding assumes a double has been pushed into FPR0.
  2888     // Store down the double as an int, popping the FPU stack
  2889     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  2890     emit_opcode(cbuf,0x1C);
  2891     emit_d8(cbuf,0x24);
  2892     // Restore the rounding mode; mask the exception
  2893     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  2894     emit_opcode(cbuf,0x2D);
  2895     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  2896         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  2897         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  2899     // Load the converted int; adjust CPU stack
  2900     emit_opcode(cbuf,0x58);       // POP EAX
  2901     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  2902     emit_d32   (cbuf,0x80000000); //         0x80000000
  2903     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  2904     emit_d8    (cbuf,0x07);       // Size of slow_call
  2905     // Push src onto stack slow-path
  2906     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  2907     emit_d8    (cbuf,0xC0-1+$src$$reg );
  2908     // CALL directly to the runtime
  2909     cbuf.set_insts_mark();
  2910     emit_opcode(cbuf,0xE8);       // Call into runtime
  2911     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2912     // Carry on here...
  2913   %}
  2915   enc_class DPR2L_encoding( regDPR src ) %{
  2916     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  2917     emit_opcode(cbuf,0x2D);
  2918     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  2919     // Allocate a word
  2920     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2921     emit_opcode(cbuf,0xEC);
  2922     emit_d8(cbuf,0x08);
  2923     // Encoding assumes a double has been pushed into FPR0.
  2924     // Store down the double as a long, popping the FPU stack
  2925     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  2926     emit_opcode(cbuf,0x3C);
  2927     emit_d8(cbuf,0x24);
  2928     // Restore the rounding mode; mask the exception
  2929     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  2930     emit_opcode(cbuf,0x2D);
  2931     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  2932         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  2933         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  2935     // Load the converted int; adjust CPU stack
  2936     emit_opcode(cbuf,0x58);       // POP EAX
  2937     emit_opcode(cbuf,0x5A);       // POP EDX
  2938     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  2939     emit_d8    (cbuf,0xFA);       // rdx
  2940     emit_d32   (cbuf,0x80000000); //         0x80000000
  2941     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  2942     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  2943     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  2944     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  2945     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  2946     emit_d8    (cbuf,0x07);       // Size of slow_call
  2947     // Push src onto stack slow-path
  2948     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  2949     emit_d8    (cbuf,0xC0-1+$src$$reg );
  2950     // CALL directly to the runtime
  2951     cbuf.set_insts_mark();
  2952     emit_opcode(cbuf,0xE8);       // Call into runtime
  2953     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2954     // Carry on here...
  2955   %}
  2957   enc_class FMul_ST_reg( eRegFPR src1 ) %{
  2958     // Operand was loaded from memory into fp ST (stack top)
  2959     // FMUL   ST,$src  /* D8 C8+i */
  2960     emit_opcode(cbuf, 0xD8);
  2961     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  2962   %}
  2964   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
  2965     // FADDP  ST,src2  /* D8 C0+i */
  2966     emit_opcode(cbuf, 0xD8);
  2967     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  2968     //could use FADDP  src2,fpST  /* DE C0+i */
  2969   %}
  2971   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
  2972     // FADDP  src2,ST  /* DE C0+i */
  2973     emit_opcode(cbuf, 0xDE);
  2974     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  2975   %}
  2977   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
  2978     // Operand has been loaded into fp ST (stack top)
  2979       // FSUB   ST,$src1
  2980       emit_opcode(cbuf, 0xD8);
  2981       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  2983       // FDIV
  2984       emit_opcode(cbuf, 0xD8);
  2985       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  2986   %}
  2988   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
  2989     // Operand was loaded from memory into fp ST (stack top)
  2990     // FADD   ST,$src  /* D8 C0+i */
  2991     emit_opcode(cbuf, 0xD8);
  2992     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  2994     // FMUL  ST,src2  /* D8 C*+i */
  2995     emit_opcode(cbuf, 0xD8);
  2996     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  2997   %}
  3000   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
  3001     // Operand was loaded from memory into fp ST (stack top)
  3002     // FADD   ST,$src  /* D8 C0+i */
  3003     emit_opcode(cbuf, 0xD8);
  3004     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3006     // FMULP  src2,ST  /* DE C8+i */
  3007     emit_opcode(cbuf, 0xDE);
  3008     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3009   %}
  3011   // Atomically load the volatile long
  3012   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  3013     emit_opcode(cbuf,0xDF);
  3014     int rm_byte_opcode = 0x05;
  3015     int base     = $mem$$base;
  3016     int index    = $mem$$index;
  3017     int scale    = $mem$$scale;
  3018     int displace = $mem$$disp;
  3019     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3020     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3021     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  3022   %}
  3024   // Volatile Store Long.  Must be atomic, so move it into
  3025   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  3026   // target address before the store (for null-ptr checks)
  3027   // so the memory operand is used twice in the encoding.
  3028   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  3029     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  3030     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  3031     emit_opcode(cbuf,0xDF);
  3032     int rm_byte_opcode = 0x07;
  3033     int base     = $mem$$base;
  3034     int index    = $mem$$index;
  3035     int scale    = $mem$$scale;
  3036     int displace = $mem$$disp;
  3037     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3038     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3039   %}
  3041   // Safepoint Poll.  This polls the safepoint page, and causes an
  3042   // exception if it is not readable. Unfortunately, it kills the condition code
  3043   // in the process
  3044   // We current use TESTL [spp],EDI
  3045   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  3047   enc_class Safepoint_Poll() %{
  3048     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  3049     emit_opcode(cbuf,0x85);
  3050     emit_rm (cbuf, 0x0, 0x7, 0x5);
  3051     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  3052   %}
  3053 %}
  3056 //----------FRAME--------------------------------------------------------------
  3057 // Definition of frame structure and management information.
  3058 //
  3059 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3060 //                             |   (to get allocators register number
  3061 //  G  Owned by    |        |  v    add OptoReg::stack0())
  3062 //  r   CALLER     |        |
  3063 //  o     |        +--------+      pad to even-align allocators stack-slot
  3064 //  w     V        |  pad0  |        numbers; owned by CALLER
  3065 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3066 //  h     ^        |   in   |  5
  3067 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3068 //  |     |        |        |  3
  3069 //  |     |        +--------+
  3070 //  V     |        | old out|      Empty on Intel, window on Sparc
  3071 //        |    old |preserve|      Must be even aligned.
  3072 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  3073 //        |        |   in   |  3   area for Intel ret address
  3074 //     Owned by    |preserve|      Empty on Sparc.
  3075 //       SELF      +--------+
  3076 //        |        |  pad2  |  2   pad to align old SP
  3077 //        |        +--------+  1
  3078 //        |        | locks  |  0
  3079 //        |        +--------+----> OptoReg::stack0(), even aligned
  3080 //        |        |  pad1  | 11   pad to align new SP
  3081 //        |        +--------+
  3082 //        |        |        | 10
  3083 //        |        | spills |  9   spills
  3084 //        V        |        |  8   (pad0 slot for callee)
  3085 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3086 //        ^        |  out   |  7
  3087 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3088 //     Owned by    +--------+
  3089 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3090 //        |    new |preserve|      Must be even-aligned.
  3091 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3092 //        |        |        |
  3093 //
  3094 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3095 //         known from SELF's arguments and the Java calling convention.
  3096 //         Region 6-7 is determined per call site.
  3097 // Note 2: If the calling convention leaves holes in the incoming argument
  3098 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3099 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3100 //         incoming area, as the Java calling convention is completely under
  3101 //         the control of the AD file.  Doubles can be sorted and packed to
  3102 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3103 //         varargs C calling conventions.
  3104 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3105 //         even aligned with pad0 as needed.
  3106 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3107 //         region 6-11 is even aligned; it may be padded out more so that
  3108 //         the region from SP to FP meets the minimum stack alignment.
  3110 frame %{
  3111   // What direction does stack grow in (assumed to be same for C & Java)
  3112   stack_direction(TOWARDS_LOW);
  3114   // These three registers define part of the calling convention
  3115   // between compiled code and the interpreter.
  3116   inline_cache_reg(EAX);                // Inline Cache Register
  3117   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  3119   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3120   cisc_spilling_operand_name(indOffset32);
  3122   // Number of stack slots consumed by locking an object
  3123   sync_stack_slots(1);
  3125   // Compiled code's Frame Pointer
  3126   frame_pointer(ESP);
  3127   // Interpreter stores its frame pointer in a register which is
  3128   // stored to the stack by I2CAdaptors.
  3129   // I2CAdaptors convert from interpreted java to compiled java.
  3130   interpreter_frame_pointer(EBP);
  3132   // Stack alignment requirement
  3133   // Alignment size in bytes (128-bit -> 16 bytes)
  3134   stack_alignment(StackAlignmentInBytes);
  3136   // Number of stack slots between incoming argument block and the start of
  3137   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3138   // EPILOG must remove this many slots.  Intel needs one slot for
  3139   // return address and one for rbp, (must save rbp)
  3140   in_preserve_stack_slots(2+VerifyStackAtCalls);
  3142   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3143   // for calls to C.  Supports the var-args backing area for register parms.
  3144   varargs_C_out_slots_killed(0);
  3146   // The after-PROLOG location of the return address.  Location of
  3147   // return address specifies a type (REG or STACK) and a number
  3148   // representing the register number (i.e. - use a register name) or
  3149   // stack slot.
  3150   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3151   // Otherwise, it is above the locks and verification slot and alignment word
  3152   return_addr(STACK - 1 +
  3153               round_to((Compile::current()->in_preserve_stack_slots() +
  3154                         Compile::current()->fixed_slots()),
  3155                        stack_alignment_in_slots()));
  3157   // Body of function which returns an integer array locating
  3158   // arguments either in registers or in stack slots.  Passed an array
  3159   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3160   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3161   // arguments for a CALLEE.  Incoming stack arguments are
  3162   // automatically biased by the preserve_stack_slots field above.
  3163   calling_convention %{
  3164     // No difference between ingoing/outgoing just pass false
  3165     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3166   %}
  3169   // Body of function which returns an integer array locating
  3170   // arguments either in registers or in stack slots.  Passed an array
  3171   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3172   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3173   // arguments for a CALLEE.  Incoming stack arguments are
  3174   // automatically biased by the preserve_stack_slots field above.
  3175   c_calling_convention %{
  3176     // This is obviously always outgoing
  3177     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3178   %}
  3180   // Location of C & interpreter return values
  3181   c_return_value %{
  3182     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3183     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3184     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3186     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  3187     // that C functions return float and double results in XMM0.
  3188     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3189       return OptoRegPair(XMM0b_num,XMM0_num);
  3190     if( ideal_reg == Op_RegF && UseSSE>=2 )
  3191       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3193     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3194   %}
  3196   // Location of return values
  3197   return_value %{
  3198     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3199     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3200     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3201     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3202       return OptoRegPair(XMM0b_num,XMM0_num);
  3203     if( ideal_reg == Op_RegF && UseSSE>=1 )
  3204       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3205     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3206   %}
  3208 %}
  3210 //----------ATTRIBUTES---------------------------------------------------------
  3211 //----------Operand Attributes-------------------------------------------------
  3212 op_attrib op_cost(0);        // Required cost attribute
  3214 //----------Instruction Attributes---------------------------------------------
  3215 ins_attrib ins_cost(100);       // Required cost attribute
  3216 ins_attrib ins_size(8);         // Required size attribute (in bits)
  3217 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3218                                 // non-matching short branch variant of some
  3219                                                             // long branch?
  3220 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  3221                                 // specifies the alignment that some part of the instruction (not
  3222                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3223                                 // function must be provided for the instruction
  3225 //----------OPERANDS-----------------------------------------------------------
  3226 // Operand definitions must precede instruction definitions for correct parsing
  3227 // in the ADLC because operands constitute user defined types which are used in
  3228 // instruction definitions.
  3230 //----------Simple Operands----------------------------------------------------
  3231 // Immediate Operands
  3232 // Integer Immediate
  3233 operand immI() %{
  3234   match(ConI);
  3236   op_cost(10);
  3237   format %{ %}
  3238   interface(CONST_INTER);
  3239 %}
  3241 // Constant for test vs zero
  3242 operand immI0() %{
  3243   predicate(n->get_int() == 0);
  3244   match(ConI);
  3246   op_cost(0);
  3247   format %{ %}
  3248   interface(CONST_INTER);
  3249 %}
  3251 // Constant for increment
  3252 operand immI1() %{
  3253   predicate(n->get_int() == 1);
  3254   match(ConI);
  3256   op_cost(0);
  3257   format %{ %}
  3258   interface(CONST_INTER);
  3259 %}
  3261 // Constant for decrement
  3262 operand immI_M1() %{
  3263   predicate(n->get_int() == -1);
  3264   match(ConI);
  3266   op_cost(0);
  3267   format %{ %}
  3268   interface(CONST_INTER);
  3269 %}
  3271 // Valid scale values for addressing modes
  3272 operand immI2() %{
  3273   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3274   match(ConI);
  3276   format %{ %}
  3277   interface(CONST_INTER);
  3278 %}
  3280 operand immI8() %{
  3281   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3282   match(ConI);
  3284   op_cost(5);
  3285   format %{ %}
  3286   interface(CONST_INTER);
  3287 %}
  3289 operand immI16() %{
  3290   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3291   match(ConI);
  3293   op_cost(10);
  3294   format %{ %}
  3295   interface(CONST_INTER);
  3296 %}
  3298 // Int Immediate non-negative
  3299 operand immU31()
  3300 %{
  3301   predicate(n->get_int() >= 0);
  3302   match(ConI);
  3304   op_cost(0);
  3305   format %{ %}
  3306   interface(CONST_INTER);
  3307 %}
  3309 // Constant for long shifts
  3310 operand immI_32() %{
  3311   predicate( n->get_int() == 32 );
  3312   match(ConI);
  3314   op_cost(0);
  3315   format %{ %}
  3316   interface(CONST_INTER);
  3317 %}
  3319 operand immI_1_31() %{
  3320   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  3321   match(ConI);
  3323   op_cost(0);
  3324   format %{ %}
  3325   interface(CONST_INTER);
  3326 %}
  3328 operand immI_32_63() %{
  3329   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3330   match(ConI);
  3331   op_cost(0);
  3333   format %{ %}
  3334   interface(CONST_INTER);
  3335 %}
  3337 operand immI_1() %{
  3338   predicate( n->get_int() == 1 );
  3339   match(ConI);
  3341   op_cost(0);
  3342   format %{ %}
  3343   interface(CONST_INTER);
  3344 %}
  3346 operand immI_2() %{
  3347   predicate( n->get_int() == 2 );
  3348   match(ConI);
  3350   op_cost(0);
  3351   format %{ %}
  3352   interface(CONST_INTER);
  3353 %}
  3355 operand immI_3() %{
  3356   predicate( n->get_int() == 3 );
  3357   match(ConI);
  3359   op_cost(0);
  3360   format %{ %}
  3361   interface(CONST_INTER);
  3362 %}
  3364 // Pointer Immediate
  3365 operand immP() %{
  3366   match(ConP);
  3368   op_cost(10);
  3369   format %{ %}
  3370   interface(CONST_INTER);
  3371 %}
  3373 // NULL Pointer Immediate
  3374 operand immP0() %{
  3375   predicate( n->get_ptr() == 0 );
  3376   match(ConP);
  3377   op_cost(0);
  3379   format %{ %}
  3380   interface(CONST_INTER);
  3381 %}
  3383 // Long Immediate
  3384 operand immL() %{
  3385   match(ConL);
  3387   op_cost(20);
  3388   format %{ %}
  3389   interface(CONST_INTER);
  3390 %}
  3392 // Long Immediate zero
  3393 operand immL0() %{
  3394   predicate( n->get_long() == 0L );
  3395   match(ConL);
  3396   op_cost(0);
  3398   format %{ %}
  3399   interface(CONST_INTER);
  3400 %}
  3402 // Long Immediate zero
  3403 operand immL_M1() %{
  3404   predicate( n->get_long() == -1L );
  3405   match(ConL);
  3406   op_cost(0);
  3408   format %{ %}
  3409   interface(CONST_INTER);
  3410 %}
  3412 // Long immediate from 0 to 127.
  3413 // Used for a shorter form of long mul by 10.
  3414 operand immL_127() %{
  3415   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  3416   match(ConL);
  3417   op_cost(0);
  3419   format %{ %}
  3420   interface(CONST_INTER);
  3421 %}
  3423 // Long Immediate: low 32-bit mask
  3424 operand immL_32bits() %{
  3425   predicate(n->get_long() == 0xFFFFFFFFL);
  3426   match(ConL);
  3427   op_cost(0);
  3429   format %{ %}
  3430   interface(CONST_INTER);
  3431 %}
  3433 // Long Immediate: low 32-bit mask
  3434 operand immL32() %{
  3435   predicate(n->get_long() == (int)(n->get_long()));
  3436   match(ConL);
  3437   op_cost(20);
  3439   format %{ %}
  3440   interface(CONST_INTER);
  3441 %}
  3443 //Double Immediate zero
  3444 operand immDPR0() %{
  3445   // Do additional (and counter-intuitive) test against NaN to work around VC++
  3446   // bug that generates code such that NaNs compare equal to 0.0
  3447   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  3448   match(ConD);
  3450   op_cost(5);
  3451   format %{ %}
  3452   interface(CONST_INTER);
  3453 %}
  3455 // Double Immediate one
  3456 operand immDPR1() %{
  3457   predicate( UseSSE<=1 && n->getd() == 1.0 );
  3458   match(ConD);
  3460   op_cost(5);
  3461   format %{ %}
  3462   interface(CONST_INTER);
  3463 %}
  3465 // Double Immediate
  3466 operand immDPR() %{
  3467   predicate(UseSSE<=1);
  3468   match(ConD);
  3470   op_cost(5);
  3471   format %{ %}
  3472   interface(CONST_INTER);
  3473 %}
  3475 operand immD() %{
  3476   predicate(UseSSE>=2);
  3477   match(ConD);
  3479   op_cost(5);
  3480   format %{ %}
  3481   interface(CONST_INTER);
  3482 %}
  3484 // Double Immediate zero
  3485 operand immD0() %{
  3486   // Do additional (and counter-intuitive) test against NaN to work around VC++
  3487   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  3488   // compare equal to -0.0.
  3489   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  3490   match(ConD);
  3492   format %{ %}
  3493   interface(CONST_INTER);
  3494 %}
  3496 // Float Immediate zero
  3497 operand immFPR0() %{
  3498   predicate(UseSSE == 0 && n->getf() == 0.0F);
  3499   match(ConF);
  3501   op_cost(5);
  3502   format %{ %}
  3503   interface(CONST_INTER);
  3504 %}
  3506 // Float Immediate one
  3507 operand immFPR1() %{
  3508   predicate(UseSSE == 0 && n->getf() == 1.0F);
  3509   match(ConF);
  3511   op_cost(5);
  3512   format %{ %}
  3513   interface(CONST_INTER);
  3514 %}
  3516 // Float Immediate
  3517 operand immFPR() %{
  3518   predicate( UseSSE == 0 );
  3519   match(ConF);
  3521   op_cost(5);
  3522   format %{ %}
  3523   interface(CONST_INTER);
  3524 %}
  3526 // Float Immediate
  3527 operand immF() %{
  3528   predicate(UseSSE >= 1);
  3529   match(ConF);
  3531   op_cost(5);
  3532   format %{ %}
  3533   interface(CONST_INTER);
  3534 %}
  3536 // Float Immediate zero.  Zero and not -0.0
  3537 operand immF0() %{
  3538   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  3539   match(ConF);
  3541   op_cost(5);
  3542   format %{ %}
  3543   interface(CONST_INTER);
  3544 %}
  3546 // Immediates for special shifts (sign extend)
  3548 // Constants for increment
  3549 operand immI_16() %{
  3550   predicate( n->get_int() == 16 );
  3551   match(ConI);
  3553   format %{ %}
  3554   interface(CONST_INTER);
  3555 %}
  3557 operand immI_24() %{
  3558   predicate( n->get_int() == 24 );
  3559   match(ConI);
  3561   format %{ %}
  3562   interface(CONST_INTER);
  3563 %}
  3565 // Constant for byte-wide masking
  3566 operand immI_255() %{
  3567   predicate( n->get_int() == 255 );
  3568   match(ConI);
  3570   format %{ %}
  3571   interface(CONST_INTER);
  3572 %}
  3574 // Constant for short-wide masking
  3575 operand immI_65535() %{
  3576   predicate(n->get_int() == 65535);
  3577   match(ConI);
  3579   format %{ %}
  3580   interface(CONST_INTER);
  3581 %}
  3583 // Register Operands
  3584 // Integer Register
  3585 operand rRegI() %{
  3586   constraint(ALLOC_IN_RC(int_reg));
  3587   match(RegI);
  3588   match(xRegI);
  3589   match(eAXRegI);
  3590   match(eBXRegI);
  3591   match(eCXRegI);
  3592   match(eDXRegI);
  3593   match(eDIRegI);
  3594   match(eSIRegI);
  3596   format %{ %}
  3597   interface(REG_INTER);
  3598 %}
  3600 // Subset of Integer Register
  3601 operand xRegI(rRegI reg) %{
  3602   constraint(ALLOC_IN_RC(int_x_reg));
  3603   match(reg);
  3604   match(eAXRegI);
  3605   match(eBXRegI);
  3606   match(eCXRegI);
  3607   match(eDXRegI);
  3609   format %{ %}
  3610   interface(REG_INTER);
  3611 %}
  3613 // Special Registers
  3614 operand eAXRegI(xRegI reg) %{
  3615   constraint(ALLOC_IN_RC(eax_reg));
  3616   match(reg);
  3617   match(rRegI);
  3619   format %{ "EAX" %}
  3620   interface(REG_INTER);
  3621 %}
  3623 // Special Registers
  3624 operand eBXRegI(xRegI reg) %{
  3625   constraint(ALLOC_IN_RC(ebx_reg));
  3626   match(reg);
  3627   match(rRegI);
  3629   format %{ "EBX" %}
  3630   interface(REG_INTER);
  3631 %}
  3633 operand eCXRegI(xRegI reg) %{
  3634   constraint(ALLOC_IN_RC(ecx_reg));
  3635   match(reg);
  3636   match(rRegI);
  3638   format %{ "ECX" %}
  3639   interface(REG_INTER);
  3640 %}
  3642 operand eDXRegI(xRegI reg) %{
  3643   constraint(ALLOC_IN_RC(edx_reg));
  3644   match(reg);
  3645   match(rRegI);
  3647   format %{ "EDX" %}
  3648   interface(REG_INTER);
  3649 %}
  3651 operand eDIRegI(xRegI reg) %{
  3652   constraint(ALLOC_IN_RC(edi_reg));
  3653   match(reg);
  3654   match(rRegI);
  3656   format %{ "EDI" %}
  3657   interface(REG_INTER);
  3658 %}
  3660 operand naxRegI() %{
  3661   constraint(ALLOC_IN_RC(nax_reg));
  3662   match(RegI);
  3663   match(eCXRegI);
  3664   match(eDXRegI);
  3665   match(eSIRegI);
  3666   match(eDIRegI);
  3668   format %{ %}
  3669   interface(REG_INTER);
  3670 %}
  3672 operand nadxRegI() %{
  3673   constraint(ALLOC_IN_RC(nadx_reg));
  3674   match(RegI);
  3675   match(eBXRegI);
  3676   match(eCXRegI);
  3677   match(eSIRegI);
  3678   match(eDIRegI);
  3680   format %{ %}
  3681   interface(REG_INTER);
  3682 %}
  3684 operand ncxRegI() %{
  3685   constraint(ALLOC_IN_RC(ncx_reg));
  3686   match(RegI);
  3687   match(eAXRegI);
  3688   match(eDXRegI);
  3689   match(eSIRegI);
  3690   match(eDIRegI);
  3692   format %{ %}
  3693   interface(REG_INTER);
  3694 %}
  3696 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  3697 // //
  3698 operand eSIRegI(xRegI reg) %{
  3699    constraint(ALLOC_IN_RC(esi_reg));
  3700    match(reg);
  3701    match(rRegI);
  3703    format %{ "ESI" %}
  3704    interface(REG_INTER);
  3705 %}
  3707 // Pointer Register
  3708 operand anyRegP() %{
  3709   constraint(ALLOC_IN_RC(any_reg));
  3710   match(RegP);
  3711   match(eAXRegP);
  3712   match(eBXRegP);
  3713   match(eCXRegP);
  3714   match(eDIRegP);
  3715   match(eRegP);
  3717   format %{ %}
  3718   interface(REG_INTER);
  3719 %}
  3721 operand eRegP() %{
  3722   constraint(ALLOC_IN_RC(int_reg));
  3723   match(RegP);
  3724   match(eAXRegP);
  3725   match(eBXRegP);
  3726   match(eCXRegP);
  3727   match(eDIRegP);
  3729   format %{ %}
  3730   interface(REG_INTER);
  3731 %}
  3733 // On windows95, EBP is not safe to use for implicit null tests.
  3734 operand eRegP_no_EBP() %{
  3735   constraint(ALLOC_IN_RC(int_reg_no_rbp));
  3736   match(RegP);
  3737   match(eAXRegP);
  3738   match(eBXRegP);
  3739   match(eCXRegP);
  3740   match(eDIRegP);
  3742   op_cost(100);
  3743   format %{ %}
  3744   interface(REG_INTER);
  3745 %}
  3747 operand naxRegP() %{
  3748   constraint(ALLOC_IN_RC(nax_reg));
  3749   match(RegP);
  3750   match(eBXRegP);
  3751   match(eDXRegP);
  3752   match(eCXRegP);
  3753   match(eSIRegP);
  3754   match(eDIRegP);
  3756   format %{ %}
  3757   interface(REG_INTER);
  3758 %}
  3760 operand nabxRegP() %{
  3761   constraint(ALLOC_IN_RC(nabx_reg));
  3762   match(RegP);
  3763   match(eCXRegP);
  3764   match(eDXRegP);
  3765   match(eSIRegP);
  3766   match(eDIRegP);
  3768   format %{ %}
  3769   interface(REG_INTER);
  3770 %}
  3772 operand pRegP() %{
  3773   constraint(ALLOC_IN_RC(p_reg));
  3774   match(RegP);
  3775   match(eBXRegP);
  3776   match(eDXRegP);
  3777   match(eSIRegP);
  3778   match(eDIRegP);
  3780   format %{ %}
  3781   interface(REG_INTER);
  3782 %}
  3784 // Special Registers
  3785 // Return a pointer value
  3786 operand eAXRegP(eRegP reg) %{
  3787   constraint(ALLOC_IN_RC(eax_reg));
  3788   match(reg);
  3789   format %{ "EAX" %}
  3790   interface(REG_INTER);
  3791 %}
  3793 // Used in AtomicAdd
  3794 operand eBXRegP(eRegP reg) %{
  3795   constraint(ALLOC_IN_RC(ebx_reg));
  3796   match(reg);
  3797   format %{ "EBX" %}
  3798   interface(REG_INTER);
  3799 %}
  3801 // Tail-call (interprocedural jump) to interpreter
  3802 operand eCXRegP(eRegP reg) %{
  3803   constraint(ALLOC_IN_RC(ecx_reg));
  3804   match(reg);
  3805   format %{ "ECX" %}
  3806   interface(REG_INTER);
  3807 %}
  3809 operand eSIRegP(eRegP reg) %{
  3810   constraint(ALLOC_IN_RC(esi_reg));
  3811   match(reg);
  3812   format %{ "ESI" %}
  3813   interface(REG_INTER);
  3814 %}
  3816 // Used in rep stosw
  3817 operand eDIRegP(eRegP reg) %{
  3818   constraint(ALLOC_IN_RC(edi_reg));
  3819   match(reg);
  3820   format %{ "EDI" %}
  3821   interface(REG_INTER);
  3822 %}
  3824 operand eBPRegP() %{
  3825   constraint(ALLOC_IN_RC(ebp_reg));
  3826   match(RegP);
  3827   format %{ "EBP" %}
  3828   interface(REG_INTER);
  3829 %}
  3831 operand eRegL() %{
  3832   constraint(ALLOC_IN_RC(long_reg));
  3833   match(RegL);
  3834   match(eADXRegL);
  3836   format %{ %}
  3837   interface(REG_INTER);
  3838 %}
  3840 operand eADXRegL( eRegL reg ) %{
  3841   constraint(ALLOC_IN_RC(eadx_reg));
  3842   match(reg);
  3844   format %{ "EDX:EAX" %}
  3845   interface(REG_INTER);
  3846 %}
  3848 operand eBCXRegL( eRegL reg ) %{
  3849   constraint(ALLOC_IN_RC(ebcx_reg));
  3850   match(reg);
  3852   format %{ "EBX:ECX" %}
  3853   interface(REG_INTER);
  3854 %}
  3856 // Special case for integer high multiply
  3857 operand eADXRegL_low_only() %{
  3858   constraint(ALLOC_IN_RC(eadx_reg));
  3859   match(RegL);
  3861   format %{ "EAX" %}
  3862   interface(REG_INTER);
  3863 %}
  3865 // Flags register, used as output of compare instructions
  3866 operand eFlagsReg() %{
  3867   constraint(ALLOC_IN_RC(int_flags));
  3868   match(RegFlags);
  3870   format %{ "EFLAGS" %}
  3871   interface(REG_INTER);
  3872 %}
  3874 // Flags register, used as output of FLOATING POINT compare instructions
  3875 operand eFlagsRegU() %{
  3876   constraint(ALLOC_IN_RC(int_flags));
  3877   match(RegFlags);
  3879   format %{ "EFLAGS_U" %}
  3880   interface(REG_INTER);
  3881 %}
  3883 operand eFlagsRegUCF() %{
  3884   constraint(ALLOC_IN_RC(int_flags));
  3885   match(RegFlags);
  3886   predicate(false);
  3888   format %{ "EFLAGS_U_CF" %}
  3889   interface(REG_INTER);
  3890 %}
  3892 // Condition Code Register used by long compare
  3893 operand flagsReg_long_LTGE() %{
  3894   constraint(ALLOC_IN_RC(int_flags));
  3895   match(RegFlags);
  3896   format %{ "FLAGS_LTGE" %}
  3897   interface(REG_INTER);
  3898 %}
  3899 operand flagsReg_long_EQNE() %{
  3900   constraint(ALLOC_IN_RC(int_flags));
  3901   match(RegFlags);
  3902   format %{ "FLAGS_EQNE" %}
  3903   interface(REG_INTER);
  3904 %}
  3905 operand flagsReg_long_LEGT() %{
  3906   constraint(ALLOC_IN_RC(int_flags));
  3907   match(RegFlags);
  3908   format %{ "FLAGS_LEGT" %}
  3909   interface(REG_INTER);
  3910 %}
  3912 // Float register operands
  3913 operand regDPR() %{
  3914   predicate( UseSSE < 2 );
  3915   constraint(ALLOC_IN_RC(fp_dbl_reg));
  3916   match(RegD);
  3917   match(regDPR1);
  3918   match(regDPR2);
  3919   format %{ %}
  3920   interface(REG_INTER);
  3921 %}
  3923 operand regDPR1(regDPR reg) %{
  3924   predicate( UseSSE < 2 );
  3925   constraint(ALLOC_IN_RC(fp_dbl_reg0));
  3926   match(reg);
  3927   format %{ "FPR1" %}
  3928   interface(REG_INTER);
  3929 %}
  3931 operand regDPR2(regDPR reg) %{
  3932   predicate( UseSSE < 2 );
  3933   constraint(ALLOC_IN_RC(fp_dbl_reg1));
  3934   match(reg);
  3935   format %{ "FPR2" %}
  3936   interface(REG_INTER);
  3937 %}
  3939 operand regnotDPR1(regDPR reg) %{
  3940   predicate( UseSSE < 2 );
  3941   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
  3942   match(reg);
  3943   format %{ %}
  3944   interface(REG_INTER);
  3945 %}
  3947 // Float register operands
  3948 operand regFPR() %{
  3949   predicate( UseSSE < 2 );
  3950   constraint(ALLOC_IN_RC(fp_flt_reg));
  3951   match(RegF);
  3952   match(regFPR1);
  3953   format %{ %}
  3954   interface(REG_INTER);
  3955 %}
  3957 // Float register operands
  3958 operand regFPR1(regFPR reg) %{
  3959   predicate( UseSSE < 2 );
  3960   constraint(ALLOC_IN_RC(fp_flt_reg0));
  3961   match(reg);
  3962   format %{ "FPR1" %}
  3963   interface(REG_INTER);
  3964 %}
  3966 // XMM Float register operands
  3967 operand regF() %{
  3968   predicate( UseSSE>=1 );
  3969   constraint(ALLOC_IN_RC(float_reg));
  3970   match(RegF);
  3971   format %{ %}
  3972   interface(REG_INTER);
  3973 %}
  3975 // XMM Double register operands
  3976 operand regD() %{
  3977   predicate( UseSSE>=2 );
  3978   constraint(ALLOC_IN_RC(double_reg));
  3979   match(RegD);
  3980   format %{ %}
  3981   interface(REG_INTER);
  3982 %}
  3985 //----------Memory Operands----------------------------------------------------
  3986 // Direct Memory Operand
  3987 operand direct(immP addr) %{
  3988   match(addr);
  3990   format %{ "[$addr]" %}
  3991   interface(MEMORY_INTER) %{
  3992     base(0xFFFFFFFF);
  3993     index(0x4);
  3994     scale(0x0);
  3995     disp($addr);
  3996   %}
  3997 %}
  3999 // Indirect Memory Operand
  4000 operand indirect(eRegP reg) %{
  4001   constraint(ALLOC_IN_RC(int_reg));
  4002   match(reg);
  4004   format %{ "[$reg]" %}
  4005   interface(MEMORY_INTER) %{
  4006     base($reg);
  4007     index(0x4);
  4008     scale(0x0);
  4009     disp(0x0);
  4010   %}
  4011 %}
  4013 // Indirect Memory Plus Short Offset Operand
  4014 operand indOffset8(eRegP reg, immI8 off) %{
  4015   match(AddP reg off);
  4017   format %{ "[$reg + $off]" %}
  4018   interface(MEMORY_INTER) %{
  4019     base($reg);
  4020     index(0x4);
  4021     scale(0x0);
  4022     disp($off);
  4023   %}
  4024 %}
  4026 // Indirect Memory Plus Long Offset Operand
  4027 operand indOffset32(eRegP reg, immI off) %{
  4028   match(AddP reg off);
  4030   format %{ "[$reg + $off]" %}
  4031   interface(MEMORY_INTER) %{
  4032     base($reg);
  4033     index(0x4);
  4034     scale(0x0);
  4035     disp($off);
  4036   %}
  4037 %}
  4039 // Indirect Memory Plus Long Offset Operand
  4040 operand indOffset32X(rRegI reg, immP off) %{
  4041   match(AddP off reg);
  4043   format %{ "[$reg + $off]" %}
  4044   interface(MEMORY_INTER) %{
  4045     base($reg);
  4046     index(0x4);
  4047     scale(0x0);
  4048     disp($off);
  4049   %}
  4050 %}
  4052 // Indirect Memory Plus Index Register Plus Offset Operand
  4053 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
  4054   match(AddP (AddP reg ireg) off);
  4056   op_cost(10);
  4057   format %{"[$reg + $off + $ireg]" %}
  4058   interface(MEMORY_INTER) %{
  4059     base($reg);
  4060     index($ireg);
  4061     scale(0x0);
  4062     disp($off);
  4063   %}
  4064 %}
  4066 // Indirect Memory Plus Index Register Plus Offset Operand
  4067 operand indIndex(eRegP reg, rRegI ireg) %{
  4068   match(AddP reg ireg);
  4070   op_cost(10);
  4071   format %{"[$reg + $ireg]" %}
  4072   interface(MEMORY_INTER) %{
  4073     base($reg);
  4074     index($ireg);
  4075     scale(0x0);
  4076     disp(0x0);
  4077   %}
  4078 %}
  4080 // // -------------------------------------------------------------------------
  4081 // // 486 architecture doesn't support "scale * index + offset" with out a base
  4082 // // -------------------------------------------------------------------------
  4083 // // Scaled Memory Operands
  4084 // // Indirect Memory Times Scale Plus Offset Operand
  4085 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
  4086 //   match(AddP off (LShiftI ireg scale));
  4087 //
  4088 //   op_cost(10);
  4089 //   format %{"[$off + $ireg << $scale]" %}
  4090 //   interface(MEMORY_INTER) %{
  4091 //     base(0x4);
  4092 //     index($ireg);
  4093 //     scale($scale);
  4094 //     disp($off);
  4095 //   %}
  4096 // %}
  4098 // Indirect Memory Times Scale Plus Index Register
  4099 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
  4100   match(AddP reg (LShiftI ireg scale));
  4102   op_cost(10);
  4103   format %{"[$reg + $ireg << $scale]" %}
  4104   interface(MEMORY_INTER) %{
  4105     base($reg);
  4106     index($ireg);
  4107     scale($scale);
  4108     disp(0x0);
  4109   %}
  4110 %}
  4112 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4113 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
  4114   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4116   op_cost(10);
  4117   format %{"[$reg + $off + $ireg << $scale]" %}
  4118   interface(MEMORY_INTER) %{
  4119     base($reg);
  4120     index($ireg);
  4121     scale($scale);
  4122     disp($off);
  4123   %}
  4124 %}
  4126 //----------Load Long Memory Operands------------------------------------------
  4127 // The load-long idiom will use it's address expression again after loading
  4128 // the first word of the long.  If the load-long destination overlaps with
  4129 // registers used in the addressing expression, the 2nd half will be loaded
  4130 // from a clobbered address.  Fix this by requiring that load-long use
  4131 // address registers that do not overlap with the load-long target.
  4133 // load-long support
  4134 operand load_long_RegP() %{
  4135   constraint(ALLOC_IN_RC(esi_reg));
  4136   match(RegP);
  4137   match(eSIRegP);
  4138   op_cost(100);
  4139   format %{  %}
  4140   interface(REG_INTER);
  4141 %}
  4143 // Indirect Memory Operand Long
  4144 operand load_long_indirect(load_long_RegP reg) %{
  4145   constraint(ALLOC_IN_RC(esi_reg));
  4146   match(reg);
  4148   format %{ "[$reg]" %}
  4149   interface(MEMORY_INTER) %{
  4150     base($reg);
  4151     index(0x4);
  4152     scale(0x0);
  4153     disp(0x0);
  4154   %}
  4155 %}
  4157 // Indirect Memory Plus Long Offset Operand
  4158 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  4159   match(AddP reg off);
  4161   format %{ "[$reg + $off]" %}
  4162   interface(MEMORY_INTER) %{
  4163     base($reg);
  4164     index(0x4);
  4165     scale(0x0);
  4166     disp($off);
  4167   %}
  4168 %}
  4170 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  4173 //----------Special Memory Operands--------------------------------------------
  4174 // Stack Slot Operand - This operand is used for loading and storing temporary
  4175 //                      values on the stack where a match requires a value to
  4176 //                      flow through memory.
  4177 operand stackSlotP(sRegP reg) %{
  4178   constraint(ALLOC_IN_RC(stack_slots));
  4179   // No match rule because this operand is only generated in matching
  4180   format %{ "[$reg]" %}
  4181   interface(MEMORY_INTER) %{
  4182     base(0x4);   // ESP
  4183     index(0x4);  // No Index
  4184     scale(0x0);  // No Scale
  4185     disp($reg);  // Stack Offset
  4186   %}
  4187 %}
  4189 operand stackSlotI(sRegI reg) %{
  4190   constraint(ALLOC_IN_RC(stack_slots));
  4191   // No match rule because this operand is only generated in matching
  4192   format %{ "[$reg]" %}
  4193   interface(MEMORY_INTER) %{
  4194     base(0x4);   // ESP
  4195     index(0x4);  // No Index
  4196     scale(0x0);  // No Scale
  4197     disp($reg);  // Stack Offset
  4198   %}
  4199 %}
  4201 operand stackSlotF(sRegF reg) %{
  4202   constraint(ALLOC_IN_RC(stack_slots));
  4203   // No match rule because this operand is only generated in matching
  4204   format %{ "[$reg]" %}
  4205   interface(MEMORY_INTER) %{
  4206     base(0x4);   // ESP
  4207     index(0x4);  // No Index
  4208     scale(0x0);  // No Scale
  4209     disp($reg);  // Stack Offset
  4210   %}
  4211 %}
  4213 operand stackSlotD(sRegD reg) %{
  4214   constraint(ALLOC_IN_RC(stack_slots));
  4215   // No match rule because this operand is only generated in matching
  4216   format %{ "[$reg]" %}
  4217   interface(MEMORY_INTER) %{
  4218     base(0x4);   // ESP
  4219     index(0x4);  // No Index
  4220     scale(0x0);  // No Scale
  4221     disp($reg);  // Stack Offset
  4222   %}
  4223 %}
  4225 operand stackSlotL(sRegL reg) %{
  4226   constraint(ALLOC_IN_RC(stack_slots));
  4227   // No match rule because this operand is only generated in matching
  4228   format %{ "[$reg]" %}
  4229   interface(MEMORY_INTER) %{
  4230     base(0x4);   // ESP
  4231     index(0x4);  // No Index
  4232     scale(0x0);  // No Scale
  4233     disp($reg);  // Stack Offset
  4234   %}
  4235 %}
  4237 //----------Memory Operands - Win95 Implicit Null Variants----------------
  4238 // Indirect Memory Operand
  4239 operand indirect_win95_safe(eRegP_no_EBP reg)
  4240 %{
  4241   constraint(ALLOC_IN_RC(int_reg));
  4242   match(reg);
  4244   op_cost(100);
  4245   format %{ "[$reg]" %}
  4246   interface(MEMORY_INTER) %{
  4247     base($reg);
  4248     index(0x4);
  4249     scale(0x0);
  4250     disp(0x0);
  4251   %}
  4252 %}
  4254 // Indirect Memory Plus Short Offset Operand
  4255 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  4256 %{
  4257   match(AddP reg off);
  4259   op_cost(100);
  4260   format %{ "[$reg + $off]" %}
  4261   interface(MEMORY_INTER) %{
  4262     base($reg);
  4263     index(0x4);
  4264     scale(0x0);
  4265     disp($off);
  4266   %}
  4267 %}
  4269 // Indirect Memory Plus Long Offset Operand
  4270 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  4271 %{
  4272   match(AddP reg off);
  4274   op_cost(100);
  4275   format %{ "[$reg + $off]" %}
  4276   interface(MEMORY_INTER) %{
  4277     base($reg);
  4278     index(0x4);
  4279     scale(0x0);
  4280     disp($off);
  4281   %}
  4282 %}
  4284 // Indirect Memory Plus Index Register Plus Offset Operand
  4285 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
  4286 %{
  4287   match(AddP (AddP reg ireg) off);
  4289   op_cost(100);
  4290   format %{"[$reg + $off + $ireg]" %}
  4291   interface(MEMORY_INTER) %{
  4292     base($reg);
  4293     index($ireg);
  4294     scale(0x0);
  4295     disp($off);
  4296   %}
  4297 %}
  4299 // Indirect Memory Times Scale Plus Index Register
  4300 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
  4301 %{
  4302   match(AddP reg (LShiftI ireg scale));
  4304   op_cost(100);
  4305   format %{"[$reg + $ireg << $scale]" %}
  4306   interface(MEMORY_INTER) %{
  4307     base($reg);
  4308     index($ireg);
  4309     scale($scale);
  4310     disp(0x0);
  4311   %}
  4312 %}
  4314 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4315 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
  4316 %{
  4317   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4319   op_cost(100);
  4320   format %{"[$reg + $off + $ireg << $scale]" %}
  4321   interface(MEMORY_INTER) %{
  4322     base($reg);
  4323     index($ireg);
  4324     scale($scale);
  4325     disp($off);
  4326   %}
  4327 %}
  4329 //----------Conditional Branch Operands----------------------------------------
  4330 // Comparison Op  - This is the operation of the comparison, and is limited to
  4331 //                  the following set of codes:
  4332 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4333 //
  4334 // Other attributes of the comparison, such as unsignedness, are specified
  4335 // by the comparison instruction that sets a condition code flags register.
  4336 // That result is represented by a flags operand whose subtype is appropriate
  4337 // to the unsignedness (etc.) of the comparison.
  4338 //
  4339 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4340 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4341 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4343 // Comparision Code
  4344 operand cmpOp() %{
  4345   match(Bool);
  4347   format %{ "" %}
  4348   interface(COND_INTER) %{
  4349     equal(0x4, "e");
  4350     not_equal(0x5, "ne");
  4351     less(0xC, "l");
  4352     greater_equal(0xD, "ge");
  4353     less_equal(0xE, "le");
  4354     greater(0xF, "g");
  4355     overflow(0x0, "o");
  4356     no_overflow(0x1, "no");
  4357   %}
  4358 %}
  4360 // Comparison Code, unsigned compare.  Used by FP also, with
  4361 // C2 (unordered) turned into GT or LT already.  The other bits
  4362 // C0 and C3 are turned into Carry & Zero flags.
  4363 operand cmpOpU() %{
  4364   match(Bool);
  4366   format %{ "" %}
  4367   interface(COND_INTER) %{
  4368     equal(0x4, "e");
  4369     not_equal(0x5, "ne");
  4370     less(0x2, "b");
  4371     greater_equal(0x3, "nb");
  4372     less_equal(0x6, "be");
  4373     greater(0x7, "nbe");
  4374     overflow(0x0, "o");
  4375     no_overflow(0x1, "no");
  4376   %}
  4377 %}
  4379 // Floating comparisons that don't require any fixup for the unordered case
  4380 operand cmpOpUCF() %{
  4381   match(Bool);
  4382   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  4383             n->as_Bool()->_test._test == BoolTest::ge ||
  4384             n->as_Bool()->_test._test == BoolTest::le ||
  4385             n->as_Bool()->_test._test == BoolTest::gt);
  4386   format %{ "" %}
  4387   interface(COND_INTER) %{
  4388     equal(0x4, "e");
  4389     not_equal(0x5, "ne");
  4390     less(0x2, "b");
  4391     greater_equal(0x3, "nb");
  4392     less_equal(0x6, "be");
  4393     greater(0x7, "nbe");
  4394     overflow(0x0, "o");
  4395     no_overflow(0x1, "no");
  4396   %}
  4397 %}
  4400 // Floating comparisons that can be fixed up with extra conditional jumps
  4401 operand cmpOpUCF2() %{
  4402   match(Bool);
  4403   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  4404             n->as_Bool()->_test._test == BoolTest::eq);
  4405   format %{ "" %}
  4406   interface(COND_INTER) %{
  4407     equal(0x4, "e");
  4408     not_equal(0x5, "ne");
  4409     less(0x2, "b");
  4410     greater_equal(0x3, "nb");
  4411     less_equal(0x6, "be");
  4412     greater(0x7, "nbe");
  4413     overflow(0x0, "o");
  4414     no_overflow(0x1, "no");
  4415   %}
  4416 %}
  4418 // Comparison Code for FP conditional move
  4419 operand cmpOp_fcmov() %{
  4420   match(Bool);
  4422   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4423             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4424   format %{ "" %}
  4425   interface(COND_INTER) %{
  4426     equal        (0x0C8);
  4427     not_equal    (0x1C8);
  4428     less         (0x0C0);
  4429     greater_equal(0x1C0);
  4430     less_equal   (0x0D0);
  4431     greater      (0x1D0);
  4432     overflow(0x0, "o"); // not really supported by the instruction
  4433     no_overflow(0x1, "no"); // not really supported by the instruction
  4434   %}
  4435 %}
  4437 // Comparision Code used in long compares
  4438 operand cmpOp_commute() %{
  4439   match(Bool);
  4441   format %{ "" %}
  4442   interface(COND_INTER) %{
  4443     equal(0x4, "e");
  4444     not_equal(0x5, "ne");
  4445     less(0xF, "g");
  4446     greater_equal(0xE, "le");
  4447     less_equal(0xD, "ge");
  4448     greater(0xC, "l");
  4449     overflow(0x0, "o");
  4450     no_overflow(0x1, "no");
  4451   %}
  4452 %}
  4454 //----------OPERAND CLASSES----------------------------------------------------
  4455 // Operand Classes are groups of operands that are used as to simplify
  4456 // instruction definitions by not requiring the AD writer to specify separate
  4457 // instructions for every form of operand when the instruction accepts
  4458 // multiple operand types with the same basic encoding and format.  The classic
  4459 // case of this is memory operands.
  4461 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  4462                indIndex, indIndexScale, indIndexScaleOffset);
  4464 // Long memory operations are encoded in 2 instructions and a +4 offset.
  4465 // This means some kind of offset is always required and you cannot use
  4466 // an oop as the offset (done when working on static globals).
  4467 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  4468                     indIndex, indIndexScale, indIndexScaleOffset);
  4471 //----------PIPELINE-----------------------------------------------------------
  4472 // Rules which define the behavior of the target architectures pipeline.
  4473 pipeline %{
  4475 //----------ATTRIBUTES---------------------------------------------------------
  4476 attributes %{
  4477   variable_size_instructions;        // Fixed size instructions
  4478   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  4479   instruction_unit_size = 1;         // An instruction is 1 bytes long
  4480   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4481   instruction_fetch_units = 1;       // of 16 bytes
  4483   // List of nop instructions
  4484   nops( MachNop );
  4485 %}
  4487 //----------RESOURCES----------------------------------------------------------
  4488 // Resources are the functional units available to the machine
  4490 // Generic P2/P3 pipeline
  4491 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  4492 // 3 instructions decoded per cycle.
  4493 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  4494 // 2 ALU op, only ALU0 handles mul/div instructions.
  4495 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  4496            MS0, MS1, MEM = MS0 | MS1,
  4497            BR, FPU,
  4498            ALU0, ALU1, ALU = ALU0 | ALU1 );
  4500 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4501 // Pipeline Description specifies the stages in the machine's pipeline
  4503 // Generic P2/P3 pipeline
  4504 pipe_desc(S0, S1, S2, S3, S4, S5);
  4506 //----------PIPELINE CLASSES---------------------------------------------------
  4507 // Pipeline Classes describe the stages in which input and output are
  4508 // referenced by the hardware pipeline.
  4510 // Naming convention: ialu or fpu
  4511 // Then: _reg
  4512 // Then: _reg if there is a 2nd register
  4513 // Then: _long if it's a pair of instructions implementing a long
  4514 // Then: _fat if it requires the big decoder
  4515 //   Or: _mem if it requires the big decoder and a memory unit.
  4517 // Integer ALU reg operation
  4518 pipe_class ialu_reg(rRegI dst) %{
  4519     single_instruction;
  4520     dst    : S4(write);
  4521     dst    : S3(read);
  4522     DECODE : S0;        // any decoder
  4523     ALU    : S3;        // any alu
  4524 %}
  4526 // Long ALU reg operation
  4527 pipe_class ialu_reg_long(eRegL dst) %{
  4528     instruction_count(2);
  4529     dst    : S4(write);
  4530     dst    : S3(read);
  4531     DECODE : S0(2);     // any 2 decoders
  4532     ALU    : S3(2);     // both alus
  4533 %}
  4535 // Integer ALU reg operation using big decoder
  4536 pipe_class ialu_reg_fat(rRegI dst) %{
  4537     single_instruction;
  4538     dst    : S4(write);
  4539     dst    : S3(read);
  4540     D0     : S0;        // big decoder only
  4541     ALU    : S3;        // any alu
  4542 %}
  4544 // Long ALU reg operation using big decoder
  4545 pipe_class ialu_reg_long_fat(eRegL dst) %{
  4546     instruction_count(2);
  4547     dst    : S4(write);
  4548     dst    : S3(read);
  4549     D0     : S0(2);     // big decoder only; twice
  4550     ALU    : S3(2);     // any 2 alus
  4551 %}
  4553 // Integer ALU reg-reg operation
  4554 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
  4555     single_instruction;
  4556     dst    : S4(write);
  4557     src    : S3(read);
  4558     DECODE : S0;        // any decoder
  4559     ALU    : S3;        // any alu
  4560 %}
  4562 // Long ALU reg-reg operation
  4563 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  4564     instruction_count(2);
  4565     dst    : S4(write);
  4566     src    : S3(read);
  4567     DECODE : S0(2);     // any 2 decoders
  4568     ALU    : S3(2);     // both alus
  4569 %}
  4571 // Integer ALU reg-reg operation
  4572 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
  4573     single_instruction;
  4574     dst    : S4(write);
  4575     src    : S3(read);
  4576     D0     : S0;        // big decoder only
  4577     ALU    : S3;        // any alu
  4578 %}
  4580 // Long ALU reg-reg operation
  4581 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  4582     instruction_count(2);
  4583     dst    : S4(write);
  4584     src    : S3(read);
  4585     D0     : S0(2);     // big decoder only; twice
  4586     ALU    : S3(2);     // both alus
  4587 %}
  4589 // Integer ALU reg-mem operation
  4590 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
  4591     single_instruction;
  4592     dst    : S5(write);
  4593     mem    : S3(read);
  4594     D0     : S0;        // big decoder only
  4595     ALU    : S4;        // any alu
  4596     MEM    : S3;        // any mem
  4597 %}
  4599 // Long ALU reg-mem operation
  4600 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  4601     instruction_count(2);
  4602     dst    : S5(write);
  4603     mem    : S3(read);
  4604     D0     : S0(2);     // big decoder only; twice
  4605     ALU    : S4(2);     // any 2 alus
  4606     MEM    : S3(2);     // both mems
  4607 %}
  4609 // Integer mem operation (prefetch)
  4610 pipe_class ialu_mem(memory mem)
  4611 %{
  4612     single_instruction;
  4613     mem    : S3(read);
  4614     D0     : S0;        // big decoder only
  4615     MEM    : S3;        // any mem
  4616 %}
  4618 // Integer Store to Memory
  4619 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
  4620     single_instruction;
  4621     mem    : S3(read);
  4622     src    : S5(read);
  4623     D0     : S0;        // big decoder only
  4624     ALU    : S4;        // any alu
  4625     MEM    : S3;
  4626 %}
  4628 // Long Store to Memory
  4629 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  4630     instruction_count(2);
  4631     mem    : S3(read);
  4632     src    : S5(read);
  4633     D0     : S0(2);     // big decoder only; twice
  4634     ALU    : S4(2);     // any 2 alus
  4635     MEM    : S3(2);     // Both mems
  4636 %}
  4638 // Integer Store to Memory
  4639 pipe_class ialu_mem_imm(memory mem) %{
  4640     single_instruction;
  4641     mem    : S3(read);
  4642     D0     : S0;        // big decoder only
  4643     ALU    : S4;        // any alu
  4644     MEM    : S3;
  4645 %}
  4647 // Integer ALU0 reg-reg operation
  4648 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
  4649     single_instruction;
  4650     dst    : S4(write);
  4651     src    : S3(read);
  4652     D0     : S0;        // Big decoder only
  4653     ALU0   : S3;        // only alu0
  4654 %}
  4656 // Integer ALU0 reg-mem operation
  4657 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
  4658     single_instruction;
  4659     dst    : S5(write);
  4660     mem    : S3(read);
  4661     D0     : S0;        // big decoder only
  4662     ALU0   : S4;        // ALU0 only
  4663     MEM    : S3;        // any mem
  4664 %}
  4666 // Integer ALU reg-reg operation
  4667 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
  4668     single_instruction;
  4669     cr     : S4(write);
  4670     src1   : S3(read);
  4671     src2   : S3(read);
  4672     DECODE : S0;        // any decoder
  4673     ALU    : S3;        // any alu
  4674 %}
  4676 // Integer ALU reg-imm operation
  4677 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
  4678     single_instruction;
  4679     cr     : S4(write);
  4680     src1   : S3(read);
  4681     DECODE : S0;        // any decoder
  4682     ALU    : S3;        // any alu
  4683 %}
  4685 // Integer ALU reg-mem operation
  4686 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
  4687     single_instruction;
  4688     cr     : S4(write);
  4689     src1   : S3(read);
  4690     src2   : S3(read);
  4691     D0     : S0;        // big decoder only
  4692     ALU    : S4;        // any alu
  4693     MEM    : S3;
  4694 %}
  4696 // Conditional move reg-reg
  4697 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
  4698     instruction_count(4);
  4699     y      : S4(read);
  4700     q      : S3(read);
  4701     p      : S3(read);
  4702     DECODE : S0(4);     // any decoder
  4703 %}
  4705 // Conditional move reg-reg
  4706 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
  4707     single_instruction;
  4708     dst    : S4(write);
  4709     src    : S3(read);
  4710     cr     : S3(read);
  4711     DECODE : S0;        // any decoder
  4712 %}
  4714 // Conditional move reg-mem
  4715 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
  4716     single_instruction;
  4717     dst    : S4(write);
  4718     src    : S3(read);
  4719     cr     : S3(read);
  4720     DECODE : S0;        // any decoder
  4721     MEM    : S3;
  4722 %}
  4724 // Conditional move reg-reg long
  4725 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  4726     single_instruction;
  4727     dst    : S4(write);
  4728     src    : S3(read);
  4729     cr     : S3(read);
  4730     DECODE : S0(2);     // any 2 decoders
  4731 %}
  4733 // Conditional move double reg-reg
  4734 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
  4735     single_instruction;
  4736     dst    : S4(write);
  4737     src    : S3(read);
  4738     cr     : S3(read);
  4739     DECODE : S0;        // any decoder
  4740 %}
  4742 // Float reg-reg operation
  4743 pipe_class fpu_reg(regDPR dst) %{
  4744     instruction_count(2);
  4745     dst    : S3(read);
  4746     DECODE : S0(2);     // any 2 decoders
  4747     FPU    : S3;
  4748 %}
  4750 // Float reg-reg operation
  4751 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
  4752     instruction_count(2);
  4753     dst    : S4(write);
  4754     src    : S3(read);
  4755     DECODE : S0(2);     // any 2 decoders
  4756     FPU    : S3;
  4757 %}
  4759 // Float reg-reg operation
  4760 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
  4761     instruction_count(3);
  4762     dst    : S4(write);
  4763     src1   : S3(read);
  4764     src2   : S3(read);
  4765     DECODE : S0(3);     // any 3 decoders
  4766     FPU    : S3(2);
  4767 %}
  4769 // Float reg-reg operation
  4770 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
  4771     instruction_count(4);
  4772     dst    : S4(write);
  4773     src1   : S3(read);
  4774     src2   : S3(read);
  4775     src3   : S3(read);
  4776     DECODE : S0(4);     // any 3 decoders
  4777     FPU    : S3(2);
  4778 %}
  4780 // Float reg-reg operation
  4781 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
  4782     instruction_count(4);
  4783     dst    : S4(write);
  4784     src1   : S3(read);
  4785     src2   : S3(read);
  4786     src3   : S3(read);
  4787     DECODE : S1(3);     // any 3 decoders
  4788     D0     : S0;        // Big decoder only
  4789     FPU    : S3(2);
  4790     MEM    : S3;
  4791 %}
  4793 // Float reg-mem operation
  4794 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
  4795     instruction_count(2);
  4796     dst    : S5(write);
  4797     mem    : S3(read);
  4798     D0     : S0;        // big decoder only
  4799     DECODE : S1;        // any decoder for FPU POP
  4800     FPU    : S4;
  4801     MEM    : S3;        // any mem
  4802 %}
  4804 // Float reg-mem operation
  4805 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
  4806     instruction_count(3);
  4807     dst    : S5(write);
  4808     src1   : S3(read);
  4809     mem    : S3(read);
  4810     D0     : S0;        // big decoder only
  4811     DECODE : S1(2);     // any decoder for FPU POP
  4812     FPU    : S4;
  4813     MEM    : S3;        // any mem
  4814 %}
  4816 // Float mem-reg operation
  4817 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
  4818     instruction_count(2);
  4819     src    : S5(read);
  4820     mem    : S3(read);
  4821     DECODE : S0;        // any decoder for FPU PUSH
  4822     D0     : S1;        // big decoder only
  4823     FPU    : S4;
  4824     MEM    : S3;        // any mem
  4825 %}
  4827 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
  4828     instruction_count(3);
  4829     src1   : S3(read);
  4830     src2   : S3(read);
  4831     mem    : S3(read);
  4832     DECODE : S0(2);     // any decoder for FPU PUSH
  4833     D0     : S1;        // big decoder only
  4834     FPU    : S4;
  4835     MEM    : S3;        // any mem
  4836 %}
  4838 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
  4839     instruction_count(3);
  4840     src1   : S3(read);
  4841     src2   : S3(read);
  4842     mem    : S4(read);
  4843     DECODE : S0;        // any decoder for FPU PUSH
  4844     D0     : S0(2);     // big decoder only
  4845     FPU    : S4;
  4846     MEM    : S3(2);     // any mem
  4847 %}
  4849 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  4850     instruction_count(2);
  4851     src1   : S3(read);
  4852     dst    : S4(read);
  4853     D0     : S0(2);     // big decoder only
  4854     MEM    : S3(2);     // any mem
  4855 %}
  4857 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  4858     instruction_count(3);
  4859     src1   : S3(read);
  4860     src2   : S3(read);
  4861     dst    : S4(read);
  4862     D0     : S0(3);     // big decoder only
  4863     FPU    : S4;
  4864     MEM    : S3(3);     // any mem
  4865 %}
  4867 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
  4868     instruction_count(3);
  4869     src1   : S4(read);
  4870     mem    : S4(read);
  4871     DECODE : S0;        // any decoder for FPU PUSH
  4872     D0     : S0(2);     // big decoder only
  4873     FPU    : S4;
  4874     MEM    : S3(2);     // any mem
  4875 %}
  4877 // Float load constant
  4878 pipe_class fpu_reg_con(regDPR dst) %{
  4879     instruction_count(2);
  4880     dst    : S5(write);
  4881     D0     : S0;        // big decoder only for the load
  4882     DECODE : S1;        // any decoder for FPU POP
  4883     FPU    : S4;
  4884     MEM    : S3;        // any mem
  4885 %}
  4887 // Float load constant
  4888 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
  4889     instruction_count(3);
  4890     dst    : S5(write);
  4891     src    : S3(read);
  4892     D0     : S0;        // big decoder only for the load
  4893     DECODE : S1(2);     // any decoder for FPU POP
  4894     FPU    : S4;
  4895     MEM    : S3;        // any mem
  4896 %}
  4898 // UnConditional branch
  4899 pipe_class pipe_jmp( label labl ) %{
  4900     single_instruction;
  4901     BR   : S3;
  4902 %}
  4904 // Conditional branch
  4905 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  4906     single_instruction;
  4907     cr    : S1(read);
  4908     BR    : S3;
  4909 %}
  4911 // Allocation idiom
  4912 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  4913     instruction_count(1); force_serialization;
  4914     fixed_latency(6);
  4915     heap_ptr : S3(read);
  4916     DECODE   : S0(3);
  4917     D0       : S2;
  4918     MEM      : S3;
  4919     ALU      : S3(2);
  4920     dst      : S5(write);
  4921     BR       : S5;
  4922 %}
  4924 // Generic big/slow expanded idiom
  4925 pipe_class pipe_slow(  ) %{
  4926     instruction_count(10); multiple_bundles; force_serialization;
  4927     fixed_latency(100);
  4928     D0  : S0(2);
  4929     MEM : S3(2);
  4930 %}
  4932 // The real do-nothing guy
  4933 pipe_class empty( ) %{
  4934     instruction_count(0);
  4935 %}
  4937 // Define the class for the Nop node
  4938 define %{
  4939    MachNop = empty;
  4940 %}
  4942 %}
  4944 //----------INSTRUCTIONS-------------------------------------------------------
  4945 //
  4946 // match      -- States which machine-independent subtree may be replaced
  4947 //               by this instruction.
  4948 // ins_cost   -- The estimated cost of this instruction is used by instruction
  4949 //               selection to identify a minimum cost tree of machine
  4950 //               instructions that matches a tree of machine-independent
  4951 //               instructions.
  4952 // format     -- A string providing the disassembly for this instruction.
  4953 //               The value of an instruction's operand may be inserted
  4954 //               by referring to it with a '$' prefix.
  4955 // opcode     -- Three instruction opcodes may be provided.  These are referred
  4956 //               to within an encode class as $primary, $secondary, and $tertiary
  4957 //               respectively.  The primary opcode is commonly used to
  4958 //               indicate the type of machine instruction, while secondary
  4959 //               and tertiary are often used for prefix options or addressing
  4960 //               modes.
  4961 // ins_encode -- A list of encode classes with parameters. The encode class
  4962 //               name must have been defined in an 'enc_class' specification
  4963 //               in the encode section of the architecture description.
  4965 //----------BSWAP-Instruction--------------------------------------------------
  4966 instruct bytes_reverse_int(rRegI dst) %{
  4967   match(Set dst (ReverseBytesI dst));
  4969   format %{ "BSWAP  $dst" %}
  4970   opcode(0x0F, 0xC8);
  4971   ins_encode( OpcP, OpcSReg(dst) );
  4972   ins_pipe( ialu_reg );
  4973 %}
  4975 instruct bytes_reverse_long(eRegL dst) %{
  4976   match(Set dst (ReverseBytesL dst));
  4978   format %{ "BSWAP  $dst.lo\n\t"
  4979             "BSWAP  $dst.hi\n\t"
  4980             "XCHG   $dst.lo $dst.hi" %}
  4982   ins_cost(125);
  4983   ins_encode( bswap_long_bytes(dst) );
  4984   ins_pipe( ialu_reg_reg);
  4985 %}
  4987 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
  4988   match(Set dst (ReverseBytesUS dst));
  4989   effect(KILL cr);
  4991   format %{ "BSWAP  $dst\n\t" 
  4992             "SHR    $dst,16\n\t" %}
  4993   ins_encode %{
  4994     __ bswapl($dst$$Register);
  4995     __ shrl($dst$$Register, 16); 
  4996   %}
  4997   ins_pipe( ialu_reg );
  4998 %}
  5000 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
  5001   match(Set dst (ReverseBytesS dst));
  5002   effect(KILL cr);
  5004   format %{ "BSWAP  $dst\n\t" 
  5005             "SAR    $dst,16\n\t" %}
  5006   ins_encode %{
  5007     __ bswapl($dst$$Register);
  5008     __ sarl($dst$$Register, 16); 
  5009   %}
  5010   ins_pipe( ialu_reg );
  5011 %}
  5014 //---------- Zeros Count Instructions ------------------------------------------
  5016 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5017   predicate(UseCountLeadingZerosInstruction);
  5018   match(Set dst (CountLeadingZerosI src));
  5019   effect(KILL cr);
  5021   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  5022   ins_encode %{
  5023     __ lzcntl($dst$$Register, $src$$Register);
  5024   %}
  5025   ins_pipe(ialu_reg);
  5026 %}
  5028 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
  5029   predicate(!UseCountLeadingZerosInstruction);
  5030   match(Set dst (CountLeadingZerosI src));
  5031   effect(KILL cr);
  5033   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  5034             "JNZ    skip\n\t"
  5035             "MOV    $dst, -1\n"
  5036       "skip:\n\t"
  5037             "NEG    $dst\n\t"
  5038             "ADD    $dst, 31" %}
  5039   ins_encode %{
  5040     Register Rdst = $dst$$Register;
  5041     Register Rsrc = $src$$Register;
  5042     Label skip;
  5043     __ bsrl(Rdst, Rsrc);
  5044     __ jccb(Assembler::notZero, skip);
  5045     __ movl(Rdst, -1);
  5046     __ bind(skip);
  5047     __ negl(Rdst);
  5048     __ addl(Rdst, BitsPerInt - 1);
  5049   %}
  5050   ins_pipe(ialu_reg);
  5051 %}
  5053 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5054   predicate(UseCountLeadingZerosInstruction);
  5055   match(Set dst (CountLeadingZerosL src));
  5056   effect(TEMP dst, KILL cr);
  5058   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  5059             "JNC    done\n\t"
  5060             "LZCNT  $dst, $src.lo\n\t"
  5061             "ADD    $dst, 32\n"
  5062       "done:" %}
  5063   ins_encode %{
  5064     Register Rdst = $dst$$Register;
  5065     Register Rsrc = $src$$Register;
  5066     Label done;
  5067     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5068     __ jccb(Assembler::carryClear, done);
  5069     __ lzcntl(Rdst, Rsrc);
  5070     __ addl(Rdst, BitsPerInt);
  5071     __ bind(done);
  5072   %}
  5073   ins_pipe(ialu_reg);
  5074 %}
  5076 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
  5077   predicate(!UseCountLeadingZerosInstruction);
  5078   match(Set dst (CountLeadingZerosL src));
  5079   effect(TEMP dst, KILL cr);
  5081   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  5082             "JZ     msw_is_zero\n\t"
  5083             "ADD    $dst, 32\n\t"
  5084             "JMP    not_zero\n"
  5085       "msw_is_zero:\n\t"
  5086             "BSR    $dst, $src.lo\n\t"
  5087             "JNZ    not_zero\n\t"
  5088             "MOV    $dst, -1\n"
  5089       "not_zero:\n\t"
  5090             "NEG    $dst\n\t"
  5091             "ADD    $dst, 63\n" %}
  5092  ins_encode %{
  5093     Register Rdst = $dst$$Register;
  5094     Register Rsrc = $src$$Register;
  5095     Label msw_is_zero;
  5096     Label not_zero;
  5097     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  5098     __ jccb(Assembler::zero, msw_is_zero);
  5099     __ addl(Rdst, BitsPerInt);
  5100     __ jmpb(not_zero);
  5101     __ bind(msw_is_zero);
  5102     __ bsrl(Rdst, Rsrc);
  5103     __ jccb(Assembler::notZero, not_zero);
  5104     __ movl(Rdst, -1);
  5105     __ bind(not_zero);
  5106     __ negl(Rdst);
  5107     __ addl(Rdst, BitsPerLong - 1);
  5108   %}
  5109   ins_pipe(ialu_reg);
  5110 %}
  5112 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5113   predicate(UseCountTrailingZerosInstruction);
  5114   match(Set dst (CountTrailingZerosI src));
  5115   effect(KILL cr);
  5117   format %{ "TZCNT    $dst, $src\t# count trailing zeros (int)" %}
  5118   ins_encode %{
  5119     __ tzcntl($dst$$Register, $src$$Register);
  5120   %}
  5121   ins_pipe(ialu_reg);
  5122 %}
  5124 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, eFlagsReg cr) %{
  5125   predicate(!UseCountTrailingZerosInstruction);
  5126   match(Set dst (CountTrailingZerosI src));
  5127   effect(KILL cr);
  5129   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  5130             "JNZ    done\n\t"
  5131             "MOV    $dst, 32\n"
  5132       "done:" %}
  5133   ins_encode %{
  5134     Register Rdst = $dst$$Register;
  5135     Label done;
  5136     __ bsfl(Rdst, $src$$Register);
  5137     __ jccb(Assembler::notZero, done);
  5138     __ movl(Rdst, BitsPerInt);
  5139     __ bind(done);
  5140   %}
  5141   ins_pipe(ialu_reg);
  5142 %}
  5144 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5145   predicate(UseCountTrailingZerosInstruction);
  5146   match(Set dst (CountTrailingZerosL src));
  5147   effect(TEMP dst, KILL cr);
  5149   format %{ "TZCNT  $dst, $src.lo\t# count trailing zeros (long) \n\t"
  5150             "JNC    done\n\t"
  5151             "TZCNT  $dst, $src.hi\n\t"
  5152             "ADD    $dst, 32\n"
  5153             "done:" %}
  5154   ins_encode %{
  5155     Register Rdst = $dst$$Register;
  5156     Register Rsrc = $src$$Register;
  5157     Label done;
  5158     __ tzcntl(Rdst, Rsrc);
  5159     __ jccb(Assembler::carryClear, done);
  5160     __ tzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5161     __ addl(Rdst, BitsPerInt);
  5162     __ bind(done);
  5163   %}
  5164   ins_pipe(ialu_reg);
  5165 %}
  5167 instruct countTrailingZerosL_bsf(rRegI dst, eRegL src, eFlagsReg cr) %{
  5168   predicate(!UseCountTrailingZerosInstruction);
  5169   match(Set dst (CountTrailingZerosL src));
  5170   effect(TEMP dst, KILL cr);
  5172   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  5173             "JNZ    done\n\t"
  5174             "BSF    $dst, $src.hi\n\t"
  5175             "JNZ    msw_not_zero\n\t"
  5176             "MOV    $dst, 32\n"
  5177       "msw_not_zero:\n\t"
  5178             "ADD    $dst, 32\n"
  5179       "done:" %}
  5180   ins_encode %{
  5181     Register Rdst = $dst$$Register;
  5182     Register Rsrc = $src$$Register;
  5183     Label msw_not_zero;
  5184     Label done;
  5185     __ bsfl(Rdst, Rsrc);
  5186     __ jccb(Assembler::notZero, done);
  5187     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  5188     __ jccb(Assembler::notZero, msw_not_zero);
  5189     __ movl(Rdst, BitsPerInt);
  5190     __ bind(msw_not_zero);
  5191     __ addl(Rdst, BitsPerInt);
  5192     __ bind(done);
  5193   %}
  5194   ins_pipe(ialu_reg);
  5195 %}
  5198 //---------- Population Count Instructions -------------------------------------
  5200 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5201   predicate(UsePopCountInstruction);
  5202   match(Set dst (PopCountI src));
  5203   effect(KILL cr);
  5205   format %{ "POPCNT $dst, $src" %}
  5206   ins_encode %{
  5207     __ popcntl($dst$$Register, $src$$Register);
  5208   %}
  5209   ins_pipe(ialu_reg);
  5210 %}
  5212 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
  5213   predicate(UsePopCountInstruction);
  5214   match(Set dst (PopCountI (LoadI mem)));
  5215   effect(KILL cr);
  5217   format %{ "POPCNT $dst, $mem" %}
  5218   ins_encode %{
  5219     __ popcntl($dst$$Register, $mem$$Address);
  5220   %}
  5221   ins_pipe(ialu_reg);
  5222 %}
  5224 // Note: Long.bitCount(long) returns an int.
  5225 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  5226   predicate(UsePopCountInstruction);
  5227   match(Set dst (PopCountL src));
  5228   effect(KILL cr, TEMP tmp, TEMP dst);
  5230   format %{ "POPCNT $dst, $src.lo\n\t"
  5231             "POPCNT $tmp, $src.hi\n\t"
  5232             "ADD    $dst, $tmp" %}
  5233   ins_encode %{
  5234     __ popcntl($dst$$Register, $src$$Register);
  5235     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  5236     __ addl($dst$$Register, $tmp$$Register);
  5237   %}
  5238   ins_pipe(ialu_reg);
  5239 %}
  5241 // Note: Long.bitCount(long) returns an int.
  5242 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
  5243   predicate(UsePopCountInstruction);
  5244   match(Set dst (PopCountL (LoadL mem)));
  5245   effect(KILL cr, TEMP tmp, TEMP dst);
  5247   format %{ "POPCNT $dst, $mem\n\t"
  5248             "POPCNT $tmp, $mem+4\n\t"
  5249             "ADD    $dst, $tmp" %}
  5250   ins_encode %{
  5251     //__ popcntl($dst$$Register, $mem$$Address$$first);
  5252     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  5253     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
  5254     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
  5255     __ addl($dst$$Register, $tmp$$Register);
  5256   %}
  5257   ins_pipe(ialu_reg);
  5258 %}
  5261 //----------Load/Store/Move Instructions---------------------------------------
  5262 //----------Load Instructions--------------------------------------------------
  5263 // Load Byte (8bit signed)
  5264 instruct loadB(xRegI dst, memory mem) %{
  5265   match(Set dst (LoadB mem));
  5267   ins_cost(125);
  5268   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  5270   ins_encode %{
  5271     __ movsbl($dst$$Register, $mem$$Address);
  5272   %}
  5274   ins_pipe(ialu_reg_mem);
  5275 %}
  5277 // Load Byte (8bit signed) into Long Register
  5278 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5279   match(Set dst (ConvI2L (LoadB mem)));
  5280   effect(KILL cr);
  5282   ins_cost(375);
  5283   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  5284             "MOV    $dst.hi,$dst.lo\n\t"
  5285             "SAR    $dst.hi,7" %}
  5287   ins_encode %{
  5288     __ movsbl($dst$$Register, $mem$$Address);
  5289     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5290     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  5291   %}
  5293   ins_pipe(ialu_reg_mem);
  5294 %}
  5296 // Load Unsigned Byte (8bit UNsigned)
  5297 instruct loadUB(xRegI dst, memory mem) %{
  5298   match(Set dst (LoadUB mem));
  5300   ins_cost(125);
  5301   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  5303   ins_encode %{
  5304     __ movzbl($dst$$Register, $mem$$Address);
  5305   %}
  5307   ins_pipe(ialu_reg_mem);
  5308 %}
  5310 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  5311 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5312   match(Set dst (ConvI2L (LoadUB mem)));
  5313   effect(KILL cr);
  5315   ins_cost(250);
  5316   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  5317             "XOR    $dst.hi,$dst.hi" %}
  5319   ins_encode %{
  5320     Register Rdst = $dst$$Register;
  5321     __ movzbl(Rdst, $mem$$Address);
  5322     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5323   %}
  5325   ins_pipe(ialu_reg_mem);
  5326 %}
  5328 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  5329 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  5330   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5331   effect(KILL cr);
  5333   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  5334             "XOR    $dst.hi,$dst.hi\n\t"
  5335             "AND    $dst.lo,$mask" %}
  5336   ins_encode %{
  5337     Register Rdst = $dst$$Register;
  5338     __ movzbl(Rdst, $mem$$Address);
  5339     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5340     __ andl(Rdst, $mask$$constant);
  5341   %}
  5342   ins_pipe(ialu_reg_mem);
  5343 %}
  5345 // Load Short (16bit signed)
  5346 instruct loadS(rRegI dst, memory mem) %{
  5347   match(Set dst (LoadS mem));
  5349   ins_cost(125);
  5350   format %{ "MOVSX  $dst,$mem\t# short" %}
  5352   ins_encode %{
  5353     __ movswl($dst$$Register, $mem$$Address);
  5354   %}
  5356   ins_pipe(ialu_reg_mem);
  5357 %}
  5359 // Load Short (16 bit signed) to Byte (8 bit signed)
  5360 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5361   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5363   ins_cost(125);
  5364   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  5365   ins_encode %{
  5366     __ movsbl($dst$$Register, $mem$$Address);
  5367   %}
  5368   ins_pipe(ialu_reg_mem);
  5369 %}
  5371 // Load Short (16bit signed) into Long Register
  5372 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5373   match(Set dst (ConvI2L (LoadS mem)));
  5374   effect(KILL cr);
  5376   ins_cost(375);
  5377   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  5378             "MOV    $dst.hi,$dst.lo\n\t"
  5379             "SAR    $dst.hi,15" %}
  5381   ins_encode %{
  5382     __ movswl($dst$$Register, $mem$$Address);
  5383     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5384     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  5385   %}
  5387   ins_pipe(ialu_reg_mem);
  5388 %}
  5390 // Load Unsigned Short/Char (16bit unsigned)
  5391 instruct loadUS(rRegI dst, memory mem) %{
  5392   match(Set dst (LoadUS mem));
  5394   ins_cost(125);
  5395   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  5397   ins_encode %{
  5398     __ movzwl($dst$$Register, $mem$$Address);
  5399   %}
  5401   ins_pipe(ialu_reg_mem);
  5402 %}
  5404 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5405 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5406   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5408   ins_cost(125);
  5409   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  5410   ins_encode %{
  5411     __ movsbl($dst$$Register, $mem$$Address);
  5412   %}
  5413   ins_pipe(ialu_reg_mem);
  5414 %}
  5416 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  5417 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5418   match(Set dst (ConvI2L (LoadUS mem)));
  5419   effect(KILL cr);
  5421   ins_cost(250);
  5422   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  5423             "XOR    $dst.hi,$dst.hi" %}
  5425   ins_encode %{
  5426     __ movzwl($dst$$Register, $mem$$Address);
  5427     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  5428   %}
  5430   ins_pipe(ialu_reg_mem);
  5431 %}
  5433 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  5434 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  5435   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5436   effect(KILL cr);
  5438   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  5439             "XOR    $dst.hi,$dst.hi" %}
  5440   ins_encode %{
  5441     Register Rdst = $dst$$Register;
  5442     __ movzbl(Rdst, $mem$$Address);
  5443     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5444   %}
  5445   ins_pipe(ialu_reg_mem);
  5446 %}
  5448 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  5449 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  5450   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5451   effect(KILL cr);
  5453   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  5454             "XOR    $dst.hi,$dst.hi\n\t"
  5455             "AND    $dst.lo,$mask" %}
  5456   ins_encode %{
  5457     Register Rdst = $dst$$Register;
  5458     __ movzwl(Rdst, $mem$$Address);
  5459     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5460     __ andl(Rdst, $mask$$constant);
  5461   %}
  5462   ins_pipe(ialu_reg_mem);
  5463 %}
  5465 // Load Integer
  5466 instruct loadI(rRegI dst, memory mem) %{
  5467   match(Set dst (LoadI mem));
  5469   ins_cost(125);
  5470   format %{ "MOV    $dst,$mem\t# int" %}
  5472   ins_encode %{
  5473     __ movl($dst$$Register, $mem$$Address);
  5474   %}
  5476   ins_pipe(ialu_reg_mem);
  5477 %}
  5479 // Load Integer (32 bit signed) to Byte (8 bit signed)
  5480 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5481   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5483   ins_cost(125);
  5484   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  5485   ins_encode %{
  5486     __ movsbl($dst$$Register, $mem$$Address);
  5487   %}
  5488   ins_pipe(ialu_reg_mem);
  5489 %}
  5491 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  5492 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
  5493   match(Set dst (AndI (LoadI mem) mask));
  5495   ins_cost(125);
  5496   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  5497   ins_encode %{
  5498     __ movzbl($dst$$Register, $mem$$Address);
  5499   %}
  5500   ins_pipe(ialu_reg_mem);
  5501 %}
  5503 // Load Integer (32 bit signed) to Short (16 bit signed)
  5504 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
  5505   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5507   ins_cost(125);
  5508   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  5509   ins_encode %{
  5510     __ movswl($dst$$Register, $mem$$Address);
  5511   %}
  5512   ins_pipe(ialu_reg_mem);
  5513 %}
  5515 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  5516 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
  5517   match(Set dst (AndI (LoadI mem) mask));
  5519   ins_cost(125);
  5520   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  5521   ins_encode %{
  5522     __ movzwl($dst$$Register, $mem$$Address);
  5523   %}
  5524   ins_pipe(ialu_reg_mem);
  5525 %}
  5527 // Load Integer into Long Register
  5528 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5529   match(Set dst (ConvI2L (LoadI mem)));
  5530   effect(KILL cr);
  5532   ins_cost(375);
  5533   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  5534             "MOV    $dst.hi,$dst.lo\n\t"
  5535             "SAR    $dst.hi,31" %}
  5537   ins_encode %{
  5538     __ movl($dst$$Register, $mem$$Address);
  5539     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5540     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  5541   %}
  5543   ins_pipe(ialu_reg_mem);
  5544 %}
  5546 // Load Integer with mask 0xFF into Long Register
  5547 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  5548   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5549   effect(KILL cr);
  5551   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  5552             "XOR    $dst.hi,$dst.hi" %}
  5553   ins_encode %{
  5554     Register Rdst = $dst$$Register;
  5555     __ movzbl(Rdst, $mem$$Address);
  5556     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5557   %}
  5558   ins_pipe(ialu_reg_mem);
  5559 %}
  5561 // Load Integer with mask 0xFFFF into Long Register
  5562 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  5563   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5564   effect(KILL cr);
  5566   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  5567             "XOR    $dst.hi,$dst.hi" %}
  5568   ins_encode %{
  5569     Register Rdst = $dst$$Register;
  5570     __ movzwl(Rdst, $mem$$Address);
  5571     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5572   %}
  5573   ins_pipe(ialu_reg_mem);
  5574 %}
  5576 // Load Integer with 31-bit mask into Long Register
  5577 instruct loadI2L_immU31(eRegL dst, memory mem, immU31 mask, eFlagsReg cr) %{
  5578   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5579   effect(KILL cr);
  5581   format %{ "MOV    $dst.lo,$mem\t# int & 31-bit mask -> long\n\t"
  5582             "XOR    $dst.hi,$dst.hi\n\t"
  5583             "AND    $dst.lo,$mask" %}
  5584   ins_encode %{
  5585     Register Rdst = $dst$$Register;
  5586     __ movl(Rdst, $mem$$Address);
  5587     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5588     __ andl(Rdst, $mask$$constant);
  5589   %}
  5590   ins_pipe(ialu_reg_mem);
  5591 %}
  5593 // Load Unsigned Integer into Long Register
  5594 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
  5595   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5596   effect(KILL cr);
  5598   ins_cost(250);
  5599   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  5600             "XOR    $dst.hi,$dst.hi" %}
  5602   ins_encode %{
  5603     __ movl($dst$$Register, $mem$$Address);
  5604     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  5605   %}
  5607   ins_pipe(ialu_reg_mem);
  5608 %}
  5610 // Load Long.  Cannot clobber address while loading, so restrict address
  5611 // register to ESI
  5612 instruct loadL(eRegL dst, load_long_memory mem) %{
  5613   predicate(!((LoadLNode*)n)->require_atomic_access());
  5614   match(Set dst (LoadL mem));
  5616   ins_cost(250);
  5617   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  5618             "MOV    $dst.hi,$mem+4" %}
  5620   ins_encode %{
  5621     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
  5622     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
  5623     __ movl($dst$$Register, Amemlo);
  5624     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  5625   %}
  5627   ins_pipe(ialu_reg_long_mem);
  5628 %}
  5630 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  5631 // then store it down to the stack and reload on the int
  5632 // side.
  5633 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  5634   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  5635   match(Set dst (LoadL mem));
  5637   ins_cost(200);
  5638   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  5639             "FISTp  $dst" %}
  5640   ins_encode(enc_loadL_volatile(mem,dst));
  5641   ins_pipe( fpu_reg_mem );
  5642 %}
  5644 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
  5645   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  5646   match(Set dst (LoadL mem));
  5647   effect(TEMP tmp);
  5648   ins_cost(180);
  5649   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  5650             "MOVSD  $dst,$tmp" %}
  5651   ins_encode %{
  5652     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  5653     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  5654   %}
  5655   ins_pipe( pipe_slow );
  5656 %}
  5658 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
  5659   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  5660   match(Set dst (LoadL mem));
  5661   effect(TEMP tmp);
  5662   ins_cost(160);
  5663   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  5664             "MOVD   $dst.lo,$tmp\n\t"
  5665             "PSRLQ  $tmp,32\n\t"
  5666             "MOVD   $dst.hi,$tmp" %}
  5667   ins_encode %{
  5668     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  5669     __ movdl($dst$$Register, $tmp$$XMMRegister);
  5670     __ psrlq($tmp$$XMMRegister, 32);
  5671     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  5672   %}
  5673   ins_pipe( pipe_slow );
  5674 %}
  5676 // Load Range
  5677 instruct loadRange(rRegI dst, memory mem) %{
  5678   match(Set dst (LoadRange mem));
  5680   ins_cost(125);
  5681   format %{ "MOV    $dst,$mem" %}
  5682   opcode(0x8B);
  5683   ins_encode( OpcP, RegMem(dst,mem));
  5684   ins_pipe( ialu_reg_mem );
  5685 %}
  5688 // Load Pointer
  5689 instruct loadP(eRegP dst, memory mem) %{
  5690   match(Set dst (LoadP mem));
  5692   ins_cost(125);
  5693   format %{ "MOV    $dst,$mem" %}
  5694   opcode(0x8B);
  5695   ins_encode( OpcP, RegMem(dst,mem));
  5696   ins_pipe( ialu_reg_mem );
  5697 %}
  5699 // Load Klass Pointer
  5700 instruct loadKlass(eRegP dst, memory mem) %{
  5701   match(Set dst (LoadKlass mem));
  5703   ins_cost(125);
  5704   format %{ "MOV    $dst,$mem" %}
  5705   opcode(0x8B);
  5706   ins_encode( OpcP, RegMem(dst,mem));
  5707   ins_pipe( ialu_reg_mem );
  5708 %}
  5710 // Load Double
  5711 instruct loadDPR(regDPR dst, memory mem) %{
  5712   predicate(UseSSE<=1);
  5713   match(Set dst (LoadD mem));
  5715   ins_cost(150);
  5716   format %{ "FLD_D  ST,$mem\n\t"
  5717             "FSTP   $dst" %}
  5718   opcode(0xDD);               /* DD /0 */
  5719   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  5720               Pop_Reg_DPR(dst) );
  5721   ins_pipe( fpu_reg_mem );
  5722 %}
  5724 // Load Double to XMM
  5725 instruct loadD(regD dst, memory mem) %{
  5726   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  5727   match(Set dst (LoadD mem));
  5728   ins_cost(145);
  5729   format %{ "MOVSD  $dst,$mem" %}
  5730   ins_encode %{
  5731     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  5732   %}
  5733   ins_pipe( pipe_slow );
  5734 %}
  5736 instruct loadD_partial(regD dst, memory mem) %{
  5737   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  5738   match(Set dst (LoadD mem));
  5739   ins_cost(145);
  5740   format %{ "MOVLPD $dst,$mem" %}
  5741   ins_encode %{
  5742     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  5743   %}
  5744   ins_pipe( pipe_slow );
  5745 %}
  5747 // Load to XMM register (single-precision floating point)
  5748 // MOVSS instruction
  5749 instruct loadF(regF dst, memory mem) %{
  5750   predicate(UseSSE>=1);
  5751   match(Set dst (LoadF mem));
  5752   ins_cost(145);
  5753   format %{ "MOVSS  $dst,$mem" %}
  5754   ins_encode %{
  5755     __ movflt ($dst$$XMMRegister, $mem$$Address);
  5756   %}
  5757   ins_pipe( pipe_slow );
  5758 %}
  5760 // Load Float
  5761 instruct loadFPR(regFPR dst, memory mem) %{
  5762   predicate(UseSSE==0);
  5763   match(Set dst (LoadF mem));
  5765   ins_cost(150);
  5766   format %{ "FLD_S  ST,$mem\n\t"
  5767             "FSTP   $dst" %}
  5768   opcode(0xD9);               /* D9 /0 */
  5769   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  5770               Pop_Reg_FPR(dst) );
  5771   ins_pipe( fpu_reg_mem );
  5772 %}
  5774 // Load Effective Address
  5775 instruct leaP8(eRegP dst, indOffset8 mem) %{
  5776   match(Set dst mem);
  5778   ins_cost(110);
  5779   format %{ "LEA    $dst,$mem" %}
  5780   opcode(0x8D);
  5781   ins_encode( OpcP, RegMem(dst,mem));
  5782   ins_pipe( ialu_reg_reg_fat );
  5783 %}
  5785 instruct leaP32(eRegP dst, indOffset32 mem) %{
  5786   match(Set dst mem);
  5788   ins_cost(110);
  5789   format %{ "LEA    $dst,$mem" %}
  5790   opcode(0x8D);
  5791   ins_encode( OpcP, RegMem(dst,mem));
  5792   ins_pipe( ialu_reg_reg_fat );
  5793 %}
  5795 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  5796   match(Set dst mem);
  5798   ins_cost(110);
  5799   format %{ "LEA    $dst,$mem" %}
  5800   opcode(0x8D);
  5801   ins_encode( OpcP, RegMem(dst,mem));
  5802   ins_pipe( ialu_reg_reg_fat );
  5803 %}
  5805 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  5806   match(Set dst mem);
  5808   ins_cost(110);
  5809   format %{ "LEA    $dst,$mem" %}
  5810   opcode(0x8D);
  5811   ins_encode( OpcP, RegMem(dst,mem));
  5812   ins_pipe( ialu_reg_reg_fat );
  5813 %}
  5815 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  5816   match(Set dst mem);
  5818   ins_cost(110);
  5819   format %{ "LEA    $dst,$mem" %}
  5820   opcode(0x8D);
  5821   ins_encode( OpcP, RegMem(dst,mem));
  5822   ins_pipe( ialu_reg_reg_fat );
  5823 %}
  5825 // Load Constant
  5826 instruct loadConI(rRegI dst, immI src) %{
  5827   match(Set dst src);
  5829   format %{ "MOV    $dst,$src" %}
  5830   ins_encode( LdImmI(dst, src) );
  5831   ins_pipe( ialu_reg_fat );
  5832 %}
  5834 // Load Constant zero
  5835 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
  5836   match(Set dst src);
  5837   effect(KILL cr);
  5839   ins_cost(50);
  5840   format %{ "XOR    $dst,$dst" %}
  5841   opcode(0x33);  /* + rd */
  5842   ins_encode( OpcP, RegReg( dst, dst ) );
  5843   ins_pipe( ialu_reg );
  5844 %}
  5846 instruct loadConP(eRegP dst, immP src) %{
  5847   match(Set dst src);
  5849   format %{ "MOV    $dst,$src" %}
  5850   opcode(0xB8);  /* + rd */
  5851   ins_encode( LdImmP(dst, src) );
  5852   ins_pipe( ialu_reg_fat );
  5853 %}
  5855 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  5856   match(Set dst src);
  5857   effect(KILL cr);
  5858   ins_cost(200);
  5859   format %{ "MOV    $dst.lo,$src.lo\n\t"
  5860             "MOV    $dst.hi,$src.hi" %}
  5861   opcode(0xB8);
  5862   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  5863   ins_pipe( ialu_reg_long_fat );
  5864 %}
  5866 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  5867   match(Set dst src);
  5868   effect(KILL cr);
  5869   ins_cost(150);
  5870   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  5871             "XOR    $dst.hi,$dst.hi" %}
  5872   opcode(0x33,0x33);
  5873   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  5874   ins_pipe( ialu_reg_long );
  5875 %}
  5877 // The instruction usage is guarded by predicate in operand immFPR().
  5878 instruct loadConFPR(regFPR dst, immFPR con) %{
  5879   match(Set dst con);
  5880   ins_cost(125);
  5881   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  5882             "FSTP   $dst" %}
  5883   ins_encode %{
  5884     __ fld_s($constantaddress($con));
  5885     __ fstp_d($dst$$reg);
  5886   %}
  5887   ins_pipe(fpu_reg_con);
  5888 %}
  5890 // The instruction usage is guarded by predicate in operand immFPR0().
  5891 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
  5892   match(Set dst con);
  5893   ins_cost(125);
  5894   format %{ "FLDZ   ST\n\t"
  5895             "FSTP   $dst" %}
  5896   ins_encode %{
  5897     __ fldz();
  5898     __ fstp_d($dst$$reg);
  5899   %}
  5900   ins_pipe(fpu_reg_con);
  5901 %}
  5903 // The instruction usage is guarded by predicate in operand immFPR1().
  5904 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
  5905   match(Set dst con);
  5906   ins_cost(125);
  5907   format %{ "FLD1   ST\n\t"
  5908             "FSTP   $dst" %}
  5909   ins_encode %{
  5910     __ fld1();
  5911     __ fstp_d($dst$$reg);
  5912   %}
  5913   ins_pipe(fpu_reg_con);
  5914 %}
  5916 // The instruction usage is guarded by predicate in operand immF().
  5917 instruct loadConF(regF dst, immF con) %{
  5918   match(Set dst con);
  5919   ins_cost(125);
  5920   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  5921   ins_encode %{
  5922     __ movflt($dst$$XMMRegister, $constantaddress($con));
  5923   %}
  5924   ins_pipe(pipe_slow);
  5925 %}
  5927 // The instruction usage is guarded by predicate in operand immF0().
  5928 instruct loadConF0(regF dst, immF0 src) %{
  5929   match(Set dst src);
  5930   ins_cost(100);
  5931   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  5932   ins_encode %{
  5933     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  5934   %}
  5935   ins_pipe(pipe_slow);
  5936 %}
  5938 // The instruction usage is guarded by predicate in operand immDPR().
  5939 instruct loadConDPR(regDPR dst, immDPR con) %{
  5940   match(Set dst con);
  5941   ins_cost(125);
  5943   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  5944             "FSTP   $dst" %}
  5945   ins_encode %{
  5946     __ fld_d($constantaddress($con));
  5947     __ fstp_d($dst$$reg);
  5948   %}
  5949   ins_pipe(fpu_reg_con);
  5950 %}
  5952 // The instruction usage is guarded by predicate in operand immDPR0().
  5953 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
  5954   match(Set dst con);
  5955   ins_cost(125);
  5957   format %{ "FLDZ   ST\n\t"
  5958             "FSTP   $dst" %}
  5959   ins_encode %{
  5960     __ fldz();
  5961     __ fstp_d($dst$$reg);
  5962   %}
  5963   ins_pipe(fpu_reg_con);
  5964 %}
  5966 // The instruction usage is guarded by predicate in operand immDPR1().
  5967 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
  5968   match(Set dst con);
  5969   ins_cost(125);
  5971   format %{ "FLD1   ST\n\t"
  5972             "FSTP   $dst" %}
  5973   ins_encode %{
  5974     __ fld1();
  5975     __ fstp_d($dst$$reg);
  5976   %}
  5977   ins_pipe(fpu_reg_con);
  5978 %}
  5980 // The instruction usage is guarded by predicate in operand immD().
  5981 instruct loadConD(regD dst, immD con) %{
  5982   match(Set dst con);
  5983   ins_cost(125);
  5984   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  5985   ins_encode %{
  5986     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  5987   %}
  5988   ins_pipe(pipe_slow);
  5989 %}
  5991 // The instruction usage is guarded by predicate in operand immD0().
  5992 instruct loadConD0(regD dst, immD0 src) %{
  5993   match(Set dst src);
  5994   ins_cost(100);
  5995   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  5996   ins_encode %{
  5997     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
  5998   %}
  5999   ins_pipe( pipe_slow );
  6000 %}
  6002 // Load Stack Slot
  6003 instruct loadSSI(rRegI dst, stackSlotI src) %{
  6004   match(Set dst src);
  6005   ins_cost(125);
  6007   format %{ "MOV    $dst,$src" %}
  6008   opcode(0x8B);
  6009   ins_encode( OpcP, RegMem(dst,src));
  6010   ins_pipe( ialu_reg_mem );
  6011 %}
  6013 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6014   match(Set dst src);
  6016   ins_cost(200);
  6017   format %{ "MOV    $dst,$src.lo\n\t"
  6018             "MOV    $dst+4,$src.hi" %}
  6019   opcode(0x8B, 0x8B);
  6020   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  6021   ins_pipe( ialu_mem_long_reg );
  6022 %}
  6024 // Load Stack Slot
  6025 instruct loadSSP(eRegP dst, stackSlotP src) %{
  6026   match(Set dst src);
  6027   ins_cost(125);
  6029   format %{ "MOV    $dst,$src" %}
  6030   opcode(0x8B);
  6031   ins_encode( OpcP, RegMem(dst,src));
  6032   ins_pipe( ialu_reg_mem );
  6033 %}
  6035 // Load Stack Slot
  6036 instruct loadSSF(regFPR dst, stackSlotF src) %{
  6037   match(Set dst src);
  6038   ins_cost(125);
  6040   format %{ "FLD_S  $src\n\t"
  6041             "FSTP   $dst" %}
  6042   opcode(0xD9);               /* D9 /0, FLD m32real */
  6043   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6044               Pop_Reg_FPR(dst) );
  6045   ins_pipe( fpu_reg_mem );
  6046 %}
  6048 // Load Stack Slot
  6049 instruct loadSSD(regDPR dst, stackSlotD src) %{
  6050   match(Set dst src);
  6051   ins_cost(125);
  6053   format %{ "FLD_D  $src\n\t"
  6054             "FSTP   $dst" %}
  6055   opcode(0xDD);               /* DD /0, FLD m64real */
  6056   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6057               Pop_Reg_DPR(dst) );
  6058   ins_pipe( fpu_reg_mem );
  6059 %}
  6061 // Prefetch instructions.
  6062 // Must be safe to execute with invalid address (cannot fault).
  6064 instruct prefetchr0( memory mem ) %{
  6065   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6066   match(PrefetchRead mem);
  6067   ins_cost(0);
  6068   size(0);
  6069   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  6070   ins_encode();
  6071   ins_pipe(empty);
  6072 %}
  6074 instruct prefetchr( memory mem ) %{
  6075   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
  6076   match(PrefetchRead mem);
  6077   ins_cost(100);
  6079   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  6080   ins_encode %{
  6081     __ prefetchr($mem$$Address);
  6082   %}
  6083   ins_pipe(ialu_mem);
  6084 %}
  6086 instruct prefetchrNTA( memory mem ) %{
  6087   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  6088   match(PrefetchRead mem);
  6089   ins_cost(100);
  6091   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  6092   ins_encode %{
  6093     __ prefetchnta($mem$$Address);
  6094   %}
  6095   ins_pipe(ialu_mem);
  6096 %}
  6098 instruct prefetchrT0( memory mem ) %{
  6099   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  6100   match(PrefetchRead mem);
  6101   ins_cost(100);
  6103   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  6104   ins_encode %{
  6105     __ prefetcht0($mem$$Address);
  6106   %}
  6107   ins_pipe(ialu_mem);
  6108 %}
  6110 instruct prefetchrT2( memory mem ) %{
  6111   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  6112   match(PrefetchRead mem);
  6113   ins_cost(100);
  6115   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  6116   ins_encode %{
  6117     __ prefetcht2($mem$$Address);
  6118   %}
  6119   ins_pipe(ialu_mem);
  6120 %}
  6122 instruct prefetchw0( memory mem ) %{
  6123   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6124   match(PrefetchWrite mem);
  6125   ins_cost(0);
  6126   size(0);
  6127   format %{ "Prefetch (non-SSE is empty encoding)" %}
  6128   ins_encode();
  6129   ins_pipe(empty);
  6130 %}
  6132 instruct prefetchw( memory mem ) %{
  6133   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
  6134   match( PrefetchWrite mem );
  6135   ins_cost(100);
  6137   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  6138   ins_encode %{
  6139     __ prefetchw($mem$$Address);
  6140   %}
  6141   ins_pipe(ialu_mem);
  6142 %}
  6144 instruct prefetchwNTA( memory mem ) %{
  6145   predicate(UseSSE>=1);
  6146   match(PrefetchWrite mem);
  6147   ins_cost(100);
  6149   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  6150   ins_encode %{
  6151     __ prefetchnta($mem$$Address);
  6152   %}
  6153   ins_pipe(ialu_mem);
  6154 %}
  6156 // Prefetch instructions for allocation.
  6158 instruct prefetchAlloc0( memory mem ) %{
  6159   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
  6160   match(PrefetchAllocation mem);
  6161   ins_cost(0);
  6162   size(0);
  6163   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
  6164   ins_encode();
  6165   ins_pipe(empty);
  6166 %}
  6168 instruct prefetchAlloc( memory mem ) %{
  6169   predicate(AllocatePrefetchInstr==3);
  6170   match( PrefetchAllocation mem );
  6171   ins_cost(100);
  6173   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
  6174   ins_encode %{
  6175     __ prefetchw($mem$$Address);
  6176   %}
  6177   ins_pipe(ialu_mem);
  6178 %}
  6180 instruct prefetchAllocNTA( memory mem ) %{
  6181   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  6182   match(PrefetchAllocation mem);
  6183   ins_cost(100);
  6185   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
  6186   ins_encode %{
  6187     __ prefetchnta($mem$$Address);
  6188   %}
  6189   ins_pipe(ialu_mem);
  6190 %}
  6192 instruct prefetchAllocT0( memory mem ) %{
  6193   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  6194   match(PrefetchAllocation mem);
  6195   ins_cost(100);
  6197   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
  6198   ins_encode %{
  6199     __ prefetcht0($mem$$Address);
  6200   %}
  6201   ins_pipe(ialu_mem);
  6202 %}
  6204 instruct prefetchAllocT2( memory mem ) %{
  6205   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  6206   match(PrefetchAllocation mem);
  6207   ins_cost(100);
  6209   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
  6210   ins_encode %{
  6211     __ prefetcht2($mem$$Address);
  6212   %}
  6213   ins_pipe(ialu_mem);
  6214 %}
  6216 //----------Store Instructions-------------------------------------------------
  6218 // Store Byte
  6219 instruct storeB(memory mem, xRegI src) %{
  6220   match(Set mem (StoreB mem src));
  6222   ins_cost(125);
  6223   format %{ "MOV8   $mem,$src" %}
  6224   opcode(0x88);
  6225   ins_encode( OpcP, RegMem( src, mem ) );
  6226   ins_pipe( ialu_mem_reg );
  6227 %}
  6229 // Store Char/Short
  6230 instruct storeC(memory mem, rRegI src) %{
  6231   match(Set mem (StoreC mem src));
  6233   ins_cost(125);
  6234   format %{ "MOV16  $mem,$src" %}
  6235   opcode(0x89, 0x66);
  6236   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  6237   ins_pipe( ialu_mem_reg );
  6238 %}
  6240 // Store Integer
  6241 instruct storeI(memory mem, rRegI src) %{
  6242   match(Set mem (StoreI mem src));
  6244   ins_cost(125);
  6245   format %{ "MOV    $mem,$src" %}
  6246   opcode(0x89);
  6247   ins_encode( OpcP, RegMem( src, mem ) );
  6248   ins_pipe( ialu_mem_reg );
  6249 %}
  6251 // Store Long
  6252 instruct storeL(long_memory mem, eRegL src) %{
  6253   predicate(!((StoreLNode*)n)->require_atomic_access());
  6254   match(Set mem (StoreL mem src));
  6256   ins_cost(200);
  6257   format %{ "MOV    $mem,$src.lo\n\t"
  6258             "MOV    $mem+4,$src.hi" %}
  6259   opcode(0x89, 0x89);
  6260   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  6261   ins_pipe( ialu_mem_long_reg );
  6262 %}
  6264 // Store Long to Integer
  6265 instruct storeL2I(memory mem, eRegL src) %{
  6266   match(Set mem (StoreI mem (ConvL2I src)));
  6268   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  6269   ins_encode %{
  6270     __ movl($mem$$Address, $src$$Register);
  6271   %}
  6272   ins_pipe(ialu_mem_reg);
  6273 %}
  6275 // Volatile Store Long.  Must be atomic, so move it into
  6276 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6277 // target address before the store (for null-ptr checks)
  6278 // so the memory operand is used twice in the encoding.
  6279 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  6280   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  6281   match(Set mem (StoreL mem src));
  6282   effect( KILL cr );
  6283   ins_cost(400);
  6284   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6285             "FILD   $src\n\t"
  6286             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  6287   opcode(0x3B);
  6288   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  6289   ins_pipe( fpu_reg_mem );
  6290 %}
  6292 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
  6293   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6294   match(Set mem (StoreL mem src));
  6295   effect( TEMP tmp, KILL cr );
  6296   ins_cost(380);
  6297   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6298             "MOVSD  $tmp,$src\n\t"
  6299             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6300   ins_encode %{
  6301     __ cmpl(rax, $mem$$Address);
  6302     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
  6303     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6304   %}
  6305   ins_pipe( pipe_slow );
  6306 %}
  6308 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
  6309   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6310   match(Set mem (StoreL mem src));
  6311   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  6312   ins_cost(360);
  6313   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6314             "MOVD   $tmp,$src.lo\n\t"
  6315             "MOVD   $tmp2,$src.hi\n\t"
  6316             "PUNPCKLDQ $tmp,$tmp2\n\t"
  6317             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6318   ins_encode %{
  6319     __ cmpl(rax, $mem$$Address);
  6320     __ movdl($tmp$$XMMRegister, $src$$Register);
  6321     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
  6322     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
  6323     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6324   %}
  6325   ins_pipe( pipe_slow );
  6326 %}
  6328 // Store Pointer; for storing unknown oops and raw pointers
  6329 instruct storeP(memory mem, anyRegP src) %{
  6330   match(Set mem (StoreP mem src));
  6332   ins_cost(125);
  6333   format %{ "MOV    $mem,$src" %}
  6334   opcode(0x89);
  6335   ins_encode( OpcP, RegMem( src, mem ) );
  6336   ins_pipe( ialu_mem_reg );
  6337 %}
  6339 // Store Integer Immediate
  6340 instruct storeImmI(memory mem, immI src) %{
  6341   match(Set mem (StoreI mem src));
  6343   ins_cost(150);
  6344   format %{ "MOV    $mem,$src" %}
  6345   opcode(0xC7);               /* C7 /0 */
  6346   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6347   ins_pipe( ialu_mem_imm );
  6348 %}
  6350 // Store Short/Char Immediate
  6351 instruct storeImmI16(memory mem, immI16 src) %{
  6352   predicate(UseStoreImmI16);
  6353   match(Set mem (StoreC mem src));
  6355   ins_cost(150);
  6356   format %{ "MOV16  $mem,$src" %}
  6357   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  6358   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  6359   ins_pipe( ialu_mem_imm );
  6360 %}
  6362 // Store Pointer Immediate; null pointers or constant oops that do not
  6363 // need card-mark barriers.
  6364 instruct storeImmP(memory mem, immP src) %{
  6365   match(Set mem (StoreP mem src));
  6367   ins_cost(150);
  6368   format %{ "MOV    $mem,$src" %}
  6369   opcode(0xC7);               /* C7 /0 */
  6370   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6371   ins_pipe( ialu_mem_imm );
  6372 %}
  6374 // Store Byte Immediate
  6375 instruct storeImmB(memory mem, immI8 src) %{
  6376   match(Set mem (StoreB mem src));
  6378   ins_cost(150);
  6379   format %{ "MOV8   $mem,$src" %}
  6380   opcode(0xC6);               /* C6 /0 */
  6381   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6382   ins_pipe( ialu_mem_imm );
  6383 %}
  6385 // Store CMS card-mark Immediate
  6386 instruct storeImmCM(memory mem, immI8 src) %{
  6387   match(Set mem (StoreCM mem src));
  6389   ins_cost(150);
  6390   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  6391   opcode(0xC6);               /* C6 /0 */
  6392   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6393   ins_pipe( ialu_mem_imm );
  6394 %}
  6396 // Store Double
  6397 instruct storeDPR( memory mem, regDPR1 src) %{
  6398   predicate(UseSSE<=1);
  6399   match(Set mem (StoreD mem src));
  6401   ins_cost(100);
  6402   format %{ "FST_D  $mem,$src" %}
  6403   opcode(0xDD);       /* DD /2 */
  6404   ins_encode( enc_FPR_store(mem,src) );
  6405   ins_pipe( fpu_mem_reg );
  6406 %}
  6408 // Store double does rounding on x86
  6409 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
  6410   predicate(UseSSE<=1);
  6411   match(Set mem (StoreD mem (RoundDouble src)));
  6413   ins_cost(100);
  6414   format %{ "FST_D  $mem,$src\t# round" %}
  6415   opcode(0xDD);       /* DD /2 */
  6416   ins_encode( enc_FPR_store(mem,src) );
  6417   ins_pipe( fpu_mem_reg );
  6418 %}
  6420 // Store XMM register to memory (double-precision floating points)
  6421 // MOVSD instruction
  6422 instruct storeD(memory mem, regD src) %{
  6423   predicate(UseSSE>=2);
  6424   match(Set mem (StoreD mem src));
  6425   ins_cost(95);
  6426   format %{ "MOVSD  $mem,$src" %}
  6427   ins_encode %{
  6428     __ movdbl($mem$$Address, $src$$XMMRegister);
  6429   %}
  6430   ins_pipe( pipe_slow );
  6431 %}
  6433 // Store XMM register to memory (single-precision floating point)
  6434 // MOVSS instruction
  6435 instruct storeF(memory mem, regF src) %{
  6436   predicate(UseSSE>=1);
  6437   match(Set mem (StoreF mem src));
  6438   ins_cost(95);
  6439   format %{ "MOVSS  $mem,$src" %}
  6440   ins_encode %{
  6441     __ movflt($mem$$Address, $src$$XMMRegister);
  6442   %}
  6443   ins_pipe( pipe_slow );
  6444 %}
  6446 // Store Float
  6447 instruct storeFPR( memory mem, regFPR1 src) %{
  6448   predicate(UseSSE==0);
  6449   match(Set mem (StoreF mem src));
  6451   ins_cost(100);
  6452   format %{ "FST_S  $mem,$src" %}
  6453   opcode(0xD9);       /* D9 /2 */
  6454   ins_encode( enc_FPR_store(mem,src) );
  6455   ins_pipe( fpu_mem_reg );
  6456 %}
  6458 // Store Float does rounding on x86
  6459 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
  6460   predicate(UseSSE==0);
  6461   match(Set mem (StoreF mem (RoundFloat src)));
  6463   ins_cost(100);
  6464   format %{ "FST_S  $mem,$src\t# round" %}
  6465   opcode(0xD9);       /* D9 /2 */
  6466   ins_encode( enc_FPR_store(mem,src) );
  6467   ins_pipe( fpu_mem_reg );
  6468 %}
  6470 // Store Float does rounding on x86
  6471 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
  6472   predicate(UseSSE<=1);
  6473   match(Set mem (StoreF mem (ConvD2F src)));
  6475   ins_cost(100);
  6476   format %{ "FST_S  $mem,$src\t# D-round" %}
  6477   opcode(0xD9);       /* D9 /2 */
  6478   ins_encode( enc_FPR_store(mem,src) );
  6479   ins_pipe( fpu_mem_reg );
  6480 %}
  6482 // Store immediate Float value (it is faster than store from FPU register)
  6483 // The instruction usage is guarded by predicate in operand immFPR().
  6484 instruct storeFPR_imm( memory mem, immFPR src) %{
  6485   match(Set mem (StoreF mem src));
  6487   ins_cost(50);
  6488   format %{ "MOV    $mem,$src\t# store float" %}
  6489   opcode(0xC7);               /* C7 /0 */
  6490   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
  6491   ins_pipe( ialu_mem_imm );
  6492 %}
  6494 // Store immediate Float value (it is faster than store from XMM register)
  6495 // The instruction usage is guarded by predicate in operand immF().
  6496 instruct storeF_imm( memory mem, immF src) %{
  6497   match(Set mem (StoreF mem src));
  6499   ins_cost(50);
  6500   format %{ "MOV    $mem,$src\t# store float" %}
  6501   opcode(0xC7);               /* C7 /0 */
  6502   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  6503   ins_pipe( ialu_mem_imm );
  6504 %}
  6506 // Store Integer to stack slot
  6507 instruct storeSSI(stackSlotI dst, rRegI src) %{
  6508   match(Set dst src);
  6510   ins_cost(100);
  6511   format %{ "MOV    $dst,$src" %}
  6512   opcode(0x89);
  6513   ins_encode( OpcPRegSS( dst, src ) );
  6514   ins_pipe( ialu_mem_reg );
  6515 %}
  6517 // Store Integer to stack slot
  6518 instruct storeSSP(stackSlotP dst, eRegP src) %{
  6519   match(Set dst src);
  6521   ins_cost(100);
  6522   format %{ "MOV    $dst,$src" %}
  6523   opcode(0x89);
  6524   ins_encode( OpcPRegSS( dst, src ) );
  6525   ins_pipe( ialu_mem_reg );
  6526 %}
  6528 // Store Long to stack slot
  6529 instruct storeSSL(stackSlotL dst, eRegL src) %{
  6530   match(Set dst src);
  6532   ins_cost(200);
  6533   format %{ "MOV    $dst,$src.lo\n\t"
  6534             "MOV    $dst+4,$src.hi" %}
  6535   opcode(0x89, 0x89);
  6536   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  6537   ins_pipe( ialu_mem_long_reg );
  6538 %}
  6540 //----------MemBar Instructions-----------------------------------------------
  6541 // Memory barrier flavors
  6543 instruct membar_acquire() %{
  6544   match(MemBarAcquire);
  6545   match(LoadFence);
  6546   ins_cost(400);
  6548   size(0);
  6549   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  6550   ins_encode();
  6551   ins_pipe(empty);
  6552 %}
  6554 instruct membar_acquire_lock() %{
  6555   match(MemBarAcquireLock);
  6556   ins_cost(0);
  6558   size(0);
  6559   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  6560   ins_encode( );
  6561   ins_pipe(empty);
  6562 %}
  6564 instruct membar_release() %{
  6565   match(MemBarRelease);
  6566   match(StoreFence);
  6567   ins_cost(400);
  6569   size(0);
  6570   format %{ "MEMBAR-release ! (empty encoding)" %}
  6571   ins_encode( );
  6572   ins_pipe(empty);
  6573 %}
  6575 instruct membar_release_lock() %{
  6576   match(MemBarReleaseLock);
  6577   ins_cost(0);
  6579   size(0);
  6580   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  6581   ins_encode( );
  6582   ins_pipe(empty);
  6583 %}
  6585 instruct membar_volatile(eFlagsReg cr) %{
  6586   match(MemBarVolatile);
  6587   effect(KILL cr);
  6588   ins_cost(400);
  6590   format %{ 
  6591     $$template
  6592     if (os::is_MP()) {
  6593       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  6594     } else {
  6595       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  6597   %}
  6598   ins_encode %{
  6599     __ membar(Assembler::StoreLoad);
  6600   %}
  6601   ins_pipe(pipe_slow);
  6602 %}
  6604 instruct unnecessary_membar_volatile() %{
  6605   match(MemBarVolatile);
  6606   predicate(Matcher::post_store_load_barrier(n));
  6607   ins_cost(0);
  6609   size(0);
  6610   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  6611   ins_encode( );
  6612   ins_pipe(empty);
  6613 %}
  6615 instruct membar_storestore() %{
  6616   match(MemBarStoreStore);
  6617   ins_cost(0);
  6619   size(0);
  6620   format %{ "MEMBAR-storestore (empty encoding)" %}
  6621   ins_encode( );
  6622   ins_pipe(empty);
  6623 %}
  6625 //----------Move Instructions--------------------------------------------------
  6626 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  6627   match(Set dst (CastX2P src));
  6628   format %{ "# X2P  $dst, $src" %}
  6629   ins_encode( /*empty encoding*/ );
  6630   ins_cost(0);
  6631   ins_pipe(empty);
  6632 %}
  6634 instruct castP2X(rRegI dst, eRegP src ) %{
  6635   match(Set dst (CastP2X src));
  6636   ins_cost(50);
  6637   format %{ "MOV    $dst, $src\t# CastP2X" %}
  6638   ins_encode( enc_Copy( dst, src) );
  6639   ins_pipe( ialu_reg_reg );
  6640 %}
  6642 //----------Conditional Move---------------------------------------------------
  6643 // Conditional move
  6644 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
  6645   predicate(!VM_Version::supports_cmov() );
  6646   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6647   ins_cost(200);
  6648   format %{ "J$cop,us skip\t# signed cmove\n\t"
  6649             "MOV    $dst,$src\n"
  6650       "skip:" %}
  6651   ins_encode %{
  6652     Label Lskip;
  6653     // Invert sense of branch from sense of CMOV
  6654     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  6655     __ movl($dst$$Register, $src$$Register);
  6656     __ bind(Lskip);
  6657   %}
  6658   ins_pipe( pipe_cmov_reg );
  6659 %}
  6661 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
  6662   predicate(!VM_Version::supports_cmov() );
  6663   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6664   ins_cost(200);
  6665   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
  6666             "MOV    $dst,$src\n"
  6667       "skip:" %}
  6668   ins_encode %{
  6669     Label Lskip;
  6670     // Invert sense of branch from sense of CMOV
  6671     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  6672     __ movl($dst$$Register, $src$$Register);
  6673     __ bind(Lskip);
  6674   %}
  6675   ins_pipe( pipe_cmov_reg );
  6676 %}
  6678 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
  6679   predicate(VM_Version::supports_cmov() );
  6680   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6681   ins_cost(200);
  6682   format %{ "CMOV$cop $dst,$src" %}
  6683   opcode(0x0F,0x40);
  6684   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6685   ins_pipe( pipe_cmov_reg );
  6686 %}
  6688 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
  6689   predicate(VM_Version::supports_cmov() );
  6690   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6691   ins_cost(200);
  6692   format %{ "CMOV$cop $dst,$src" %}
  6693   opcode(0x0F,0x40);
  6694   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6695   ins_pipe( pipe_cmov_reg );
  6696 %}
  6698 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
  6699   predicate(VM_Version::supports_cmov() );
  6700   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6701   ins_cost(200);
  6702   expand %{
  6703     cmovI_regU(cop, cr, dst, src);
  6704   %}
  6705 %}
  6707 // Conditional move
  6708 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
  6709   predicate(VM_Version::supports_cmov() );
  6710   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  6711   ins_cost(250);
  6712   format %{ "CMOV$cop $dst,$src" %}
  6713   opcode(0x0F,0x40);
  6714   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6715   ins_pipe( pipe_cmov_mem );
  6716 %}
  6718 // Conditional move
  6719 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
  6720   predicate(VM_Version::supports_cmov() );
  6721   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  6722   ins_cost(250);
  6723   format %{ "CMOV$cop $dst,$src" %}
  6724   opcode(0x0F,0x40);
  6725   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6726   ins_pipe( pipe_cmov_mem );
  6727 %}
  6729 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
  6730   predicate(VM_Version::supports_cmov() );
  6731   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  6732   ins_cost(250);
  6733   expand %{
  6734     cmovI_memU(cop, cr, dst, src);
  6735   %}
  6736 %}
  6738 // Conditional move
  6739 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  6740   predicate(VM_Version::supports_cmov() );
  6741   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6742   ins_cost(200);
  6743   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6744   opcode(0x0F,0x40);
  6745   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6746   ins_pipe( pipe_cmov_reg );
  6747 %}
  6749 // Conditional move (non-P6 version)
  6750 // Note:  a CMoveP is generated for  stubs and native wrappers
  6751 //        regardless of whether we are on a P6, so we
  6752 //        emulate a cmov here
  6753 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  6754   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6755   ins_cost(300);
  6756   format %{ "Jn$cop   skip\n\t"
  6757           "MOV    $dst,$src\t# pointer\n"
  6758       "skip:" %}
  6759   opcode(0x8b);
  6760   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  6761   ins_pipe( pipe_cmov_reg );
  6762 %}
  6764 // Conditional move
  6765 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  6766   predicate(VM_Version::supports_cmov() );
  6767   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6768   ins_cost(200);
  6769   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6770   opcode(0x0F,0x40);
  6771   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6772   ins_pipe( pipe_cmov_reg );
  6773 %}
  6775 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  6776   predicate(VM_Version::supports_cmov() );
  6777   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6778   ins_cost(200);
  6779   expand %{
  6780     cmovP_regU(cop, cr, dst, src);
  6781   %}
  6782 %}
  6784 // DISABLED: Requires the ADLC to emit a bottom_type call that
  6785 // correctly meets the two pointer arguments; one is an incoming
  6786 // register but the other is a memory operand.  ALSO appears to
  6787 // be buggy with implicit null checks.
  6788 //
  6789 //// Conditional move
  6790 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  6791 //  predicate(VM_Version::supports_cmov() );
  6792 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  6793 //  ins_cost(250);
  6794 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6795 //  opcode(0x0F,0x40);
  6796 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6797 //  ins_pipe( pipe_cmov_mem );
  6798 //%}
  6799 //
  6800 //// Conditional move
  6801 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  6802 //  predicate(VM_Version::supports_cmov() );
  6803 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  6804 //  ins_cost(250);
  6805 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6806 //  opcode(0x0F,0x40);
  6807 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6808 //  ins_pipe( pipe_cmov_mem );
  6809 //%}
  6811 // Conditional move
  6812 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
  6813   predicate(UseSSE<=1);
  6814   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6815   ins_cost(200);
  6816   format %{ "FCMOV$cop $dst,$src\t# double" %}
  6817   opcode(0xDA);
  6818   ins_encode( enc_cmov_dpr(cop,src) );
  6819   ins_pipe( pipe_cmovDPR_reg );
  6820 %}
  6822 // Conditional move
  6823 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
  6824   predicate(UseSSE==0);
  6825   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6826   ins_cost(200);
  6827   format %{ "FCMOV$cop $dst,$src\t# float" %}
  6828   opcode(0xDA);
  6829   ins_encode( enc_cmov_dpr(cop,src) );
  6830   ins_pipe( pipe_cmovDPR_reg );
  6831 %}
  6833 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  6834 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
  6835   predicate(UseSSE<=1);
  6836   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6837   ins_cost(200);
  6838   format %{ "Jn$cop   skip\n\t"
  6839             "MOV    $dst,$src\t# double\n"
  6840       "skip:" %}
  6841   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  6842   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
  6843   ins_pipe( pipe_cmovDPR_reg );
  6844 %}
  6846 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  6847 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
  6848   predicate(UseSSE==0);
  6849   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6850   ins_cost(200);
  6851   format %{ "Jn$cop    skip\n\t"
  6852             "MOV    $dst,$src\t# float\n"
  6853       "skip:" %}
  6854   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  6855   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
  6856   ins_pipe( pipe_cmovDPR_reg );
  6857 %}
  6859 // No CMOVE with SSE/SSE2
  6860 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  6861   predicate (UseSSE>=1);
  6862   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6863   ins_cost(200);
  6864   format %{ "Jn$cop   skip\n\t"
  6865             "MOVSS  $dst,$src\t# float\n"
  6866       "skip:" %}
  6867   ins_encode %{
  6868     Label skip;
  6869     // Invert sense of branch from sense of CMOV
  6870     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6871     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  6872     __ bind(skip);
  6873   %}
  6874   ins_pipe( pipe_slow );
  6875 %}
  6877 // No CMOVE with SSE/SSE2
  6878 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  6879   predicate (UseSSE>=2);
  6880   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6881   ins_cost(200);
  6882   format %{ "Jn$cop   skip\n\t"
  6883             "MOVSD  $dst,$src\t# float\n"
  6884       "skip:" %}
  6885   ins_encode %{
  6886     Label skip;
  6887     // Invert sense of branch from sense of CMOV
  6888     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6889     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  6890     __ bind(skip);
  6891   %}
  6892   ins_pipe( pipe_slow );
  6893 %}
  6895 // unsigned version
  6896 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
  6897   predicate (UseSSE>=1);
  6898   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6899   ins_cost(200);
  6900   format %{ "Jn$cop   skip\n\t"
  6901             "MOVSS  $dst,$src\t# float\n"
  6902       "skip:" %}
  6903   ins_encode %{
  6904     Label skip;
  6905     // Invert sense of branch from sense of CMOV
  6906     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6907     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  6908     __ bind(skip);
  6909   %}
  6910   ins_pipe( pipe_slow );
  6911 %}
  6913 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
  6914   predicate (UseSSE>=1);
  6915   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6916   ins_cost(200);
  6917   expand %{
  6918     fcmovF_regU(cop, cr, dst, src);
  6919   %}
  6920 %}
  6922 // unsigned version
  6923 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
  6924   predicate (UseSSE>=2);
  6925   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6926   ins_cost(200);
  6927   format %{ "Jn$cop   skip\n\t"
  6928             "MOVSD  $dst,$src\t# float\n"
  6929       "skip:" %}
  6930   ins_encode %{
  6931     Label skip;
  6932     // Invert sense of branch from sense of CMOV
  6933     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6934     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  6935     __ bind(skip);
  6936   %}
  6937   ins_pipe( pipe_slow );
  6938 %}
  6940 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
  6941   predicate (UseSSE>=2);
  6942   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6943   ins_cost(200);
  6944   expand %{
  6945     fcmovD_regU(cop, cr, dst, src);
  6946   %}
  6947 %}
  6949 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  6950   predicate(VM_Version::supports_cmov() );
  6951   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  6952   ins_cost(200);
  6953   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  6954             "CMOV$cop $dst.hi,$src.hi" %}
  6955   opcode(0x0F,0x40);
  6956   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  6957   ins_pipe( pipe_cmov_reg_long );
  6958 %}
  6960 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  6961   predicate(VM_Version::supports_cmov() );
  6962   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  6963   ins_cost(200);
  6964   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  6965             "CMOV$cop $dst.hi,$src.hi" %}
  6966   opcode(0x0F,0x40);
  6967   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  6968   ins_pipe( pipe_cmov_reg_long );
  6969 %}
  6971 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  6972   predicate(VM_Version::supports_cmov() );
  6973   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  6974   ins_cost(200);
  6975   expand %{
  6976     cmovL_regU(cop, cr, dst, src);
  6977   %}
  6978 %}
  6980 //----------Arithmetic Instructions--------------------------------------------
  6981 //----------Addition Instructions----------------------------------------------
  6983 // Integer Addition Instructions
  6984 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  6985   match(Set dst (AddI dst src));
  6986   effect(KILL cr);
  6988   size(2);
  6989   format %{ "ADD    $dst,$src" %}
  6990   opcode(0x03);
  6991   ins_encode( OpcP, RegReg( dst, src) );
  6992   ins_pipe( ialu_reg_reg );
  6993 %}
  6995 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  6996   match(Set dst (AddI dst src));
  6997   effect(KILL cr);
  6999   format %{ "ADD    $dst,$src" %}
  7000   opcode(0x81, 0x00); /* /0 id */
  7001   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7002   ins_pipe( ialu_reg );
  7003 %}
  7005 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
  7006   predicate(UseIncDec);
  7007   match(Set dst (AddI dst src));
  7008   effect(KILL cr);
  7010   size(1);
  7011   format %{ "INC    $dst" %}
  7012   opcode(0x40); /*  */
  7013   ins_encode( Opc_plus( primary, dst ) );
  7014   ins_pipe( ialu_reg );
  7015 %}
  7017 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
  7018   match(Set dst (AddI src0 src1));
  7019   ins_cost(110);
  7021   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7022   opcode(0x8D); /* 0x8D /r */
  7023   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7024   ins_pipe( ialu_reg_reg );
  7025 %}
  7027 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7028   match(Set dst (AddP src0 src1));
  7029   ins_cost(110);
  7031   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7032   opcode(0x8D); /* 0x8D /r */
  7033   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7034   ins_pipe( ialu_reg_reg );
  7035 %}
  7037 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
  7038   predicate(UseIncDec);
  7039   match(Set dst (AddI dst src));
  7040   effect(KILL cr);
  7042   size(1);
  7043   format %{ "DEC    $dst" %}
  7044   opcode(0x48); /*  */
  7045   ins_encode( Opc_plus( primary, dst ) );
  7046   ins_pipe( ialu_reg );
  7047 %}
  7049 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
  7050   match(Set dst (AddP dst src));
  7051   effect(KILL cr);
  7053   size(2);
  7054   format %{ "ADD    $dst,$src" %}
  7055   opcode(0x03);
  7056   ins_encode( OpcP, RegReg( dst, src) );
  7057   ins_pipe( ialu_reg_reg );
  7058 %}
  7060 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7061   match(Set dst (AddP dst src));
  7062   effect(KILL cr);
  7064   format %{ "ADD    $dst,$src" %}
  7065   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7066   // ins_encode( RegImm( dst, src) );
  7067   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7068   ins_pipe( ialu_reg );
  7069 %}
  7071 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7072   match(Set dst (AddI dst (LoadI src)));
  7073   effect(KILL cr);
  7075   ins_cost(125);
  7076   format %{ "ADD    $dst,$src" %}
  7077   opcode(0x03);
  7078   ins_encode( OpcP, RegMem( dst, src) );
  7079   ins_pipe( ialu_reg_mem );
  7080 %}
  7082 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7083   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7084   effect(KILL cr);
  7086   ins_cost(150);
  7087   format %{ "ADD    $dst,$src" %}
  7088   opcode(0x01);  /* Opcode 01 /r */
  7089   ins_encode( OpcP, RegMem( src, dst ) );
  7090   ins_pipe( ialu_mem_reg );
  7091 %}
  7093 // Add Memory with Immediate
  7094 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7095   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7096   effect(KILL cr);
  7098   ins_cost(125);
  7099   format %{ "ADD    $dst,$src" %}
  7100   opcode(0x81);               /* Opcode 81 /0 id */
  7101   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  7102   ins_pipe( ialu_mem_imm );
  7103 %}
  7105 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  7106   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7107   effect(KILL cr);
  7109   ins_cost(125);
  7110   format %{ "INC    $dst" %}
  7111   opcode(0xFF);               /* Opcode FF /0 */
  7112   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  7113   ins_pipe( ialu_mem_imm );
  7114 %}
  7116 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  7117   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7118   effect(KILL cr);
  7120   ins_cost(125);
  7121   format %{ "DEC    $dst" %}
  7122   opcode(0xFF);               /* Opcode FF /1 */
  7123   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  7124   ins_pipe( ialu_mem_imm );
  7125 %}
  7128 instruct checkCastPP( eRegP dst ) %{
  7129   match(Set dst (CheckCastPP dst));
  7131   size(0);
  7132   format %{ "#checkcastPP of $dst" %}
  7133   ins_encode( /*empty encoding*/ );
  7134   ins_pipe( empty );
  7135 %}
  7137 instruct castPP( eRegP dst ) %{
  7138   match(Set dst (CastPP dst));
  7139   format %{ "#castPP of $dst" %}
  7140   ins_encode( /*empty encoding*/ );
  7141   ins_pipe( empty );
  7142 %}
  7144 instruct castII( rRegI dst ) %{
  7145   match(Set dst (CastII dst));
  7146   format %{ "#castII of $dst" %}
  7147   ins_encode( /*empty encoding*/ );
  7148   ins_cost(0);
  7149   ins_pipe( empty );
  7150 %}
  7153 // Load-locked - same as a regular pointer load when used with compare-swap
  7154 instruct loadPLocked(eRegP dst, memory mem) %{
  7155   match(Set dst (LoadPLocked mem));
  7157   ins_cost(125);
  7158   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  7159   opcode(0x8B);
  7160   ins_encode( OpcP, RegMem(dst,mem));
  7161   ins_pipe( ialu_reg_mem );
  7162 %}
  7164 // Conditional-store of the updated heap-top.
  7165 // Used during allocation of the shared heap.
  7166 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7167 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  7168   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7169   // EAX is killed if there is contention, but then it's also unused.
  7170   // In the common case of no contention, EAX holds the new oop address.
  7171   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  7172   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  7173   ins_pipe( pipe_cmpxchg );
  7174 %}
  7176 // Conditional-store of an int value.
  7177 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  7178 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
  7179   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  7180   effect(KILL oldval);
  7181   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  7182   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  7183   ins_pipe( pipe_cmpxchg );
  7184 %}
  7186 // Conditional-store of a long value.
  7187 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  7188 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7189   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  7190   effect(KILL oldval);
  7191   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  7192             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  7193             "XCHG   EBX,ECX"
  7194   %}
  7195   ins_encode %{
  7196     // Note: we need to swap rbx, and rcx before and after the
  7197     //       cmpxchg8 instruction because the instruction uses
  7198     //       rcx as the high order word of the new value to store but
  7199     //       our register encoding uses rbx.
  7200     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7201     if( os::is_MP() )
  7202       __ lock();
  7203     __ cmpxchg8($mem$$Address);
  7204     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7205   %}
  7206   ins_pipe( pipe_cmpxchg );
  7207 %}
  7209 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7211 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7212   predicate(VM_Version::supports_cx8());
  7213   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7214   effect(KILL cr, KILL oldval);
  7215   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7216             "MOV    $res,0\n\t"
  7217             "JNE,s  fail\n\t"
  7218             "MOV    $res,1\n"
  7219           "fail:" %}
  7220   ins_encode( enc_cmpxchg8(mem_ptr),
  7221               enc_flags_ne_to_boolean(res) );
  7222   ins_pipe( pipe_cmpxchg );
  7223 %}
  7225 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  7226   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7227   effect(KILL cr, KILL oldval);
  7228   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7229             "MOV    $res,0\n\t"
  7230             "JNE,s  fail\n\t"
  7231             "MOV    $res,1\n"
  7232           "fail:" %}
  7233   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7234   ins_pipe( pipe_cmpxchg );
  7235 %}
  7237 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  7238   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7239   effect(KILL cr, KILL oldval);
  7240   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7241             "MOV    $res,0\n\t"
  7242             "JNE,s  fail\n\t"
  7243             "MOV    $res,1\n"
  7244           "fail:" %}
  7245   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7246   ins_pipe( pipe_cmpxchg );
  7247 %}
  7249 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
  7250   predicate(n->as_LoadStore()->result_not_used());
  7251   match(Set dummy (GetAndAddI mem add));
  7252   effect(KILL cr);
  7253   format %{ "ADDL  [$mem],$add" %}
  7254   ins_encode %{
  7255     if (os::is_MP()) { __ lock(); }
  7256     __ addl($mem$$Address, $add$$constant);
  7257   %}
  7258   ins_pipe( pipe_cmpxchg );
  7259 %}
  7261 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
  7262   match(Set newval (GetAndAddI mem newval));
  7263   effect(KILL cr);
  7264   format %{ "XADDL  [$mem],$newval" %}
  7265   ins_encode %{
  7266     if (os::is_MP()) { __ lock(); }
  7267     __ xaddl($mem$$Address, $newval$$Register);
  7268   %}
  7269   ins_pipe( pipe_cmpxchg );
  7270 %}
  7272 instruct xchgI( memory mem, rRegI newval) %{
  7273   match(Set newval (GetAndSetI mem newval));
  7274   format %{ "XCHGL  $newval,[$mem]" %}
  7275   ins_encode %{
  7276     __ xchgl($newval$$Register, $mem$$Address);
  7277   %}
  7278   ins_pipe( pipe_cmpxchg );
  7279 %}
  7281 instruct xchgP( memory mem, pRegP newval) %{
  7282   match(Set newval (GetAndSetP mem newval));
  7283   format %{ "XCHGL  $newval,[$mem]" %}
  7284   ins_encode %{
  7285     __ xchgl($newval$$Register, $mem$$Address);
  7286   %}
  7287   ins_pipe( pipe_cmpxchg );
  7288 %}
  7290 //----------Subtraction Instructions-------------------------------------------
  7292 // Integer Subtraction Instructions
  7293 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7294   match(Set dst (SubI dst src));
  7295   effect(KILL cr);
  7297   size(2);
  7298   format %{ "SUB    $dst,$src" %}
  7299   opcode(0x2B);
  7300   ins_encode( OpcP, RegReg( dst, src) );
  7301   ins_pipe( ialu_reg_reg );
  7302 %}
  7304 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7305   match(Set dst (SubI dst src));
  7306   effect(KILL cr);
  7308   format %{ "SUB    $dst,$src" %}
  7309   opcode(0x81,0x05);  /* Opcode 81 /5 */
  7310   // ins_encode( RegImm( dst, src) );
  7311   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7312   ins_pipe( ialu_reg );
  7313 %}
  7315 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7316   match(Set dst (SubI dst (LoadI src)));
  7317   effect(KILL cr);
  7319   ins_cost(125);
  7320   format %{ "SUB    $dst,$src" %}
  7321   opcode(0x2B);
  7322   ins_encode( OpcP, RegMem( dst, src) );
  7323   ins_pipe( ialu_reg_mem );
  7324 %}
  7326 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7327   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  7328   effect(KILL cr);
  7330   ins_cost(150);
  7331   format %{ "SUB    $dst,$src" %}
  7332   opcode(0x29);  /* Opcode 29 /r */
  7333   ins_encode( OpcP, RegMem( src, dst ) );
  7334   ins_pipe( ialu_mem_reg );
  7335 %}
  7337 // Subtract from a pointer
  7338 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
  7339   match(Set dst (AddP dst (SubI zero src)));
  7340   effect(KILL cr);
  7342   size(2);
  7343   format %{ "SUB    $dst,$src" %}
  7344   opcode(0x2B);
  7345   ins_encode( OpcP, RegReg( dst, src) );
  7346   ins_pipe( ialu_reg_reg );
  7347 %}
  7349 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
  7350   match(Set dst (SubI zero dst));
  7351   effect(KILL cr);
  7353   size(2);
  7354   format %{ "NEG    $dst" %}
  7355   opcode(0xF7,0x03);  // Opcode F7 /3
  7356   ins_encode( OpcP, RegOpc( dst ) );
  7357   ins_pipe( ialu_reg );
  7358 %}
  7360 //----------Multiplication/Division Instructions-------------------------------
  7361 // Integer Multiplication Instructions
  7362 // Multiply Register
  7363 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7364   match(Set dst (MulI dst src));
  7365   effect(KILL cr);
  7367   size(3);
  7368   ins_cost(300);
  7369   format %{ "IMUL   $dst,$src" %}
  7370   opcode(0xAF, 0x0F);
  7371   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  7372   ins_pipe( ialu_reg_reg_alu0 );
  7373 %}
  7375 // Multiply 32-bit Immediate
  7376 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
  7377   match(Set dst (MulI src imm));
  7378   effect(KILL cr);
  7380   ins_cost(300);
  7381   format %{ "IMUL   $dst,$src,$imm" %}
  7382   opcode(0x69);  /* 69 /r id */
  7383   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  7384   ins_pipe( ialu_reg_reg_alu0 );
  7385 %}
  7387 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  7388   match(Set dst src);
  7389   effect(KILL cr);
  7391   // Note that this is artificially increased to make it more expensive than loadConL
  7392   ins_cost(250);
  7393   format %{ "MOV    EAX,$src\t// low word only" %}
  7394   opcode(0xB8);
  7395   ins_encode( LdImmL_Lo(dst, src) );
  7396   ins_pipe( ialu_reg_fat );
  7397 %}
  7399 // Multiply by 32-bit Immediate, taking the shifted high order results
  7400 //  (special case for shift by 32)
  7401 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  7402   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7403   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7404              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7405              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7406   effect(USE src1, KILL cr);
  7408   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7409   ins_cost(0*100 + 1*400 - 150);
  7410   format %{ "IMUL   EDX:EAX,$src1" %}
  7411   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7412   ins_pipe( pipe_slow );
  7413 %}
  7415 // Multiply by 32-bit Immediate, taking the shifted high order results
  7416 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  7417   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7418   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7419              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7420              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7421   effect(USE src1, KILL cr);
  7423   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7424   ins_cost(1*100 + 1*400 - 150);
  7425   format %{ "IMUL   EDX:EAX,$src1\n\t"
  7426             "SAR    EDX,$cnt-32" %}
  7427   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7428   ins_pipe( pipe_slow );
  7429 %}
  7431 // Multiply Memory 32-bit Immediate
  7432 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
  7433   match(Set dst (MulI (LoadI src) imm));
  7434   effect(KILL cr);
  7436   ins_cost(300);
  7437   format %{ "IMUL   $dst,$src,$imm" %}
  7438   opcode(0x69);  /* 69 /r id */
  7439   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  7440   ins_pipe( ialu_reg_mem_alu0 );
  7441 %}
  7443 // Multiply Memory
  7444 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
  7445   match(Set dst (MulI dst (LoadI src)));
  7446   effect(KILL cr);
  7448   ins_cost(350);
  7449   format %{ "IMUL   $dst,$src" %}
  7450   opcode(0xAF, 0x0F);
  7451   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  7452   ins_pipe( ialu_reg_mem_alu0 );
  7453 %}
  7455 // Multiply Register Int to Long
  7456 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  7457   // Basic Idea: long = (long)int * (long)int
  7458   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  7459   effect(DEF dst, USE src, USE src1, KILL flags);
  7461   ins_cost(300);
  7462   format %{ "IMUL   $dst,$src1" %}
  7464   ins_encode( long_int_multiply( dst, src1 ) );
  7465   ins_pipe( ialu_reg_reg_alu0 );
  7466 %}
  7468 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  7469   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  7470   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  7471   effect(KILL flags);
  7473   ins_cost(300);
  7474   format %{ "MUL    $dst,$src1" %}
  7476   ins_encode( long_uint_multiply(dst, src1) );
  7477   ins_pipe( ialu_reg_reg_alu0 );
  7478 %}
  7480 // Multiply Register Long
  7481 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  7482   match(Set dst (MulL dst src));
  7483   effect(KILL cr, TEMP tmp);
  7484   ins_cost(4*100+3*400);
  7485 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7486 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  7487   format %{ "MOV    $tmp,$src.lo\n\t"
  7488             "IMUL   $tmp,EDX\n\t"
  7489             "MOV    EDX,$src.hi\n\t"
  7490             "IMUL   EDX,EAX\n\t"
  7491             "ADD    $tmp,EDX\n\t"
  7492             "MUL    EDX:EAX,$src.lo\n\t"
  7493             "ADD    EDX,$tmp" %}
  7494   ins_encode( long_multiply( dst, src, tmp ) );
  7495   ins_pipe( pipe_slow );
  7496 %}
  7498 // Multiply Register Long where the left operand's high 32 bits are zero
  7499 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  7500   predicate(is_operand_hi32_zero(n->in(1)));
  7501   match(Set dst (MulL dst src));
  7502   effect(KILL cr, TEMP tmp);
  7503   ins_cost(2*100+2*400);
  7504 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7505 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  7506   format %{ "MOV    $tmp,$src.hi\n\t"
  7507             "IMUL   $tmp,EAX\n\t"
  7508             "MUL    EDX:EAX,$src.lo\n\t"
  7509             "ADD    EDX,$tmp" %}
  7510   ins_encode %{
  7511     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  7512     __ imull($tmp$$Register, rax);
  7513     __ mull($src$$Register);
  7514     __ addl(rdx, $tmp$$Register);
  7515   %}
  7516   ins_pipe( pipe_slow );
  7517 %}
  7519 // Multiply Register Long where the right operand's high 32 bits are zero
  7520 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  7521   predicate(is_operand_hi32_zero(n->in(2)));
  7522   match(Set dst (MulL dst src));
  7523   effect(KILL cr, TEMP tmp);
  7524   ins_cost(2*100+2*400);
  7525 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7526 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  7527   format %{ "MOV    $tmp,$src.lo\n\t"
  7528             "IMUL   $tmp,EDX\n\t"
  7529             "MUL    EDX:EAX,$src.lo\n\t"
  7530             "ADD    EDX,$tmp" %}
  7531   ins_encode %{
  7532     __ movl($tmp$$Register, $src$$Register);
  7533     __ imull($tmp$$Register, rdx);
  7534     __ mull($src$$Register);
  7535     __ addl(rdx, $tmp$$Register);
  7536   %}
  7537   ins_pipe( pipe_slow );
  7538 %}
  7540 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  7541 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  7542   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  7543   match(Set dst (MulL dst src));
  7544   effect(KILL cr);
  7545   ins_cost(1*400);
  7546 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7547 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  7548   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  7549   ins_encode %{
  7550     __ mull($src$$Register);
  7551   %}
  7552   ins_pipe( pipe_slow );
  7553 %}
  7555 // Multiply Register Long by small constant
  7556 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
  7557   match(Set dst (MulL dst src));
  7558   effect(KILL cr, TEMP tmp);
  7559   ins_cost(2*100+2*400);
  7560   size(12);
  7561 // Basic idea: lo(result) = lo(src * EAX)
  7562 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  7563   format %{ "IMUL   $tmp,EDX,$src\n\t"
  7564             "MOV    EDX,$src\n\t"
  7565             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  7566             "ADD    EDX,$tmp" %}
  7567   ins_encode( long_multiply_con( dst, src, tmp ) );
  7568   ins_pipe( pipe_slow );
  7569 %}
  7571 // Integer DIV with Register
  7572 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  7573   match(Set rax (DivI rax div));
  7574   effect(KILL rdx, KILL cr);
  7575   size(26);
  7576   ins_cost(30*100+10*100);
  7577   format %{ "CMP    EAX,0x80000000\n\t"
  7578             "JNE,s  normal\n\t"
  7579             "XOR    EDX,EDX\n\t"
  7580             "CMP    ECX,-1\n\t"
  7581             "JE,s   done\n"
  7582     "normal: CDQ\n\t"
  7583             "IDIV   $div\n\t"
  7584     "done:"        %}
  7585   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  7586   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  7587   ins_pipe( ialu_reg_reg_alu0 );
  7588 %}
  7590 // Divide Register Long
  7591 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  7592   match(Set dst (DivL src1 src2));
  7593   effect( KILL cr, KILL cx, KILL bx );
  7594   ins_cost(10000);
  7595   format %{ "PUSH   $src1.hi\n\t"
  7596             "PUSH   $src1.lo\n\t"
  7597             "PUSH   $src2.hi\n\t"
  7598             "PUSH   $src2.lo\n\t"
  7599             "CALL   SharedRuntime::ldiv\n\t"
  7600             "ADD    ESP,16" %}
  7601   ins_encode( long_div(src1,src2) );
  7602   ins_pipe( pipe_slow );
  7603 %}
  7605 // Integer DIVMOD with Register, both quotient and mod results
  7606 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  7607   match(DivModI rax div);
  7608   effect(KILL cr);
  7609   size(26);
  7610   ins_cost(30*100+10*100);
  7611   format %{ "CMP    EAX,0x80000000\n\t"
  7612             "JNE,s  normal\n\t"
  7613             "XOR    EDX,EDX\n\t"
  7614             "CMP    ECX,-1\n\t"
  7615             "JE,s   done\n"
  7616     "normal: CDQ\n\t"
  7617             "IDIV   $div\n\t"
  7618     "done:"        %}
  7619   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  7620   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  7621   ins_pipe( pipe_slow );
  7622 %}
  7624 // Integer MOD with Register
  7625 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  7626   match(Set rdx (ModI rax div));
  7627   effect(KILL rax, KILL cr);
  7629   size(26);
  7630   ins_cost(300);
  7631   format %{ "CDQ\n\t"
  7632             "IDIV   $div" %}
  7633   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  7634   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  7635   ins_pipe( ialu_reg_reg_alu0 );
  7636 %}
  7638 // Remainder Register Long
  7639 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  7640   match(Set dst (ModL src1 src2));
  7641   effect( KILL cr, KILL cx, KILL bx );
  7642   ins_cost(10000);
  7643   format %{ "PUSH   $src1.hi\n\t"
  7644             "PUSH   $src1.lo\n\t"
  7645             "PUSH   $src2.hi\n\t"
  7646             "PUSH   $src2.lo\n\t"
  7647             "CALL   SharedRuntime::lrem\n\t"
  7648             "ADD    ESP,16" %}
  7649   ins_encode( long_mod(src1,src2) );
  7650   ins_pipe( pipe_slow );
  7651 %}
  7653 // Divide Register Long (no special case since divisor != -1)
  7654 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  7655   match(Set dst (DivL dst imm));
  7656   effect( TEMP tmp, TEMP tmp2, KILL cr );
  7657   ins_cost(1000);
  7658   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  7659             "XOR    $tmp2,$tmp2\n\t"
  7660             "CMP    $tmp,EDX\n\t"
  7661             "JA,s   fast\n\t"
  7662             "MOV    $tmp2,EAX\n\t"
  7663             "MOV    EAX,EDX\n\t"
  7664             "MOV    EDX,0\n\t"
  7665             "JLE,s  pos\n\t"
  7666             "LNEG   EAX : $tmp2\n\t"
  7667             "DIV    $tmp # unsigned division\n\t"
  7668             "XCHG   EAX,$tmp2\n\t"
  7669             "DIV    $tmp\n\t"
  7670             "LNEG   $tmp2 : EAX\n\t"
  7671             "JMP,s  done\n"
  7672     "pos:\n\t"
  7673             "DIV    $tmp\n\t"
  7674             "XCHG   EAX,$tmp2\n"
  7675     "fast:\n\t"
  7676             "DIV    $tmp\n"
  7677     "done:\n\t"
  7678             "MOV    EDX,$tmp2\n\t"
  7679             "NEG    EDX:EAX # if $imm < 0" %}
  7680   ins_encode %{
  7681     int con = (int)$imm$$constant;
  7682     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  7683     int pcon = (con > 0) ? con : -con;
  7684     Label Lfast, Lpos, Ldone;
  7686     __ movl($tmp$$Register, pcon);
  7687     __ xorl($tmp2$$Register,$tmp2$$Register);
  7688     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  7689     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  7691     __ movl($tmp2$$Register, $dst$$Register); // save
  7692     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  7693     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  7694     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  7696     // Negative dividend.
  7697     // convert value to positive to use unsigned division
  7698     __ lneg($dst$$Register, $tmp2$$Register);
  7699     __ divl($tmp$$Register);
  7700     __ xchgl($dst$$Register, $tmp2$$Register);
  7701     __ divl($tmp$$Register);
  7702     // revert result back to negative
  7703     __ lneg($tmp2$$Register, $dst$$Register);
  7704     __ jmpb(Ldone);
  7706     __ bind(Lpos);
  7707     __ divl($tmp$$Register); // Use unsigned division
  7708     __ xchgl($dst$$Register, $tmp2$$Register);
  7709     // Fallthrow for final divide, tmp2 has 32 bit hi result
  7711     __ bind(Lfast);
  7712     // fast path: src is positive
  7713     __ divl($tmp$$Register); // Use unsigned division
  7715     __ bind(Ldone);
  7716     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  7717     if (con < 0) {
  7718       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  7720   %}
  7721   ins_pipe( pipe_slow );
  7722 %}
  7724 // Remainder Register Long (remainder fit into 32 bits)
  7725 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  7726   match(Set dst (ModL dst imm));
  7727   effect( TEMP tmp, TEMP tmp2, KILL cr );
  7728   ins_cost(1000);
  7729   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  7730             "CMP    $tmp,EDX\n\t"
  7731             "JA,s   fast\n\t"
  7732             "MOV    $tmp2,EAX\n\t"
  7733             "MOV    EAX,EDX\n\t"
  7734             "MOV    EDX,0\n\t"
  7735             "JLE,s  pos\n\t"
  7736             "LNEG   EAX : $tmp2\n\t"
  7737             "DIV    $tmp # unsigned division\n\t"
  7738             "MOV    EAX,$tmp2\n\t"
  7739             "DIV    $tmp\n\t"
  7740             "NEG    EDX\n\t"
  7741             "JMP,s  done\n"
  7742     "pos:\n\t"
  7743             "DIV    $tmp\n\t"
  7744             "MOV    EAX,$tmp2\n"
  7745     "fast:\n\t"
  7746             "DIV    $tmp\n"
  7747     "done:\n\t"
  7748             "MOV    EAX,EDX\n\t"
  7749             "SAR    EDX,31\n\t" %}
  7750   ins_encode %{
  7751     int con = (int)$imm$$constant;
  7752     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  7753     int pcon = (con > 0) ? con : -con;
  7754     Label  Lfast, Lpos, Ldone;
  7756     __ movl($tmp$$Register, pcon);
  7757     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  7758     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  7760     __ movl($tmp2$$Register, $dst$$Register); // save
  7761     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  7762     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  7763     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  7765     // Negative dividend.
  7766     // convert value to positive to use unsigned division
  7767     __ lneg($dst$$Register, $tmp2$$Register);
  7768     __ divl($tmp$$Register);
  7769     __ movl($dst$$Register, $tmp2$$Register);
  7770     __ divl($tmp$$Register);
  7771     // revert remainder back to negative
  7772     __ negl(HIGH_FROM_LOW($dst$$Register));
  7773     __ jmpb(Ldone);
  7775     __ bind(Lpos);
  7776     __ divl($tmp$$Register);
  7777     __ movl($dst$$Register, $tmp2$$Register);
  7779     __ bind(Lfast);
  7780     // fast path: src is positive
  7781     __ divl($tmp$$Register);
  7783     __ bind(Ldone);
  7784     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  7785     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  7787   %}
  7788   ins_pipe( pipe_slow );
  7789 %}
  7791 // Integer Shift Instructions
  7792 // Shift Left by one
  7793 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  7794   match(Set dst (LShiftI dst shift));
  7795   effect(KILL cr);
  7797   size(2);
  7798   format %{ "SHL    $dst,$shift" %}
  7799   opcode(0xD1, 0x4);  /* D1 /4 */
  7800   ins_encode( OpcP, RegOpc( dst ) );
  7801   ins_pipe( ialu_reg );
  7802 %}
  7804 // Shift Left by 8-bit immediate
  7805 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  7806   match(Set dst (LShiftI dst shift));
  7807   effect(KILL cr);
  7809   size(3);
  7810   format %{ "SHL    $dst,$shift" %}
  7811   opcode(0xC1, 0x4);  /* C1 /4 ib */
  7812   ins_encode( RegOpcImm( dst, shift) );
  7813   ins_pipe( ialu_reg );
  7814 %}
  7816 // Shift Left by variable
  7817 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  7818   match(Set dst (LShiftI dst shift));
  7819   effect(KILL cr);
  7821   size(2);
  7822   format %{ "SHL    $dst,$shift" %}
  7823   opcode(0xD3, 0x4);  /* D3 /4 */
  7824   ins_encode( OpcP, RegOpc( dst ) );
  7825   ins_pipe( ialu_reg_reg );
  7826 %}
  7828 // Arithmetic shift right by one
  7829 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  7830   match(Set dst (RShiftI dst shift));
  7831   effect(KILL cr);
  7833   size(2);
  7834   format %{ "SAR    $dst,$shift" %}
  7835   opcode(0xD1, 0x7);  /* D1 /7 */
  7836   ins_encode( OpcP, RegOpc( dst ) );
  7837   ins_pipe( ialu_reg );
  7838 %}
  7840 // Arithmetic shift right by one
  7841 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  7842   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  7843   effect(KILL cr);
  7844   format %{ "SAR    $dst,$shift" %}
  7845   opcode(0xD1, 0x7);  /* D1 /7 */
  7846   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  7847   ins_pipe( ialu_mem_imm );
  7848 %}
  7850 // Arithmetic Shift Right by 8-bit immediate
  7851 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  7852   match(Set dst (RShiftI dst shift));
  7853   effect(KILL cr);
  7855   size(3);
  7856   format %{ "SAR    $dst,$shift" %}
  7857   opcode(0xC1, 0x7);  /* C1 /7 ib */
  7858   ins_encode( RegOpcImm( dst, shift ) );
  7859   ins_pipe( ialu_mem_imm );
  7860 %}
  7862 // Arithmetic Shift Right by 8-bit immediate
  7863 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  7864   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  7865   effect(KILL cr);
  7867   format %{ "SAR    $dst,$shift" %}
  7868   opcode(0xC1, 0x7);  /* C1 /7 ib */
  7869   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  7870   ins_pipe( ialu_mem_imm );
  7871 %}
  7873 // Arithmetic Shift Right by variable
  7874 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  7875   match(Set dst (RShiftI dst shift));
  7876   effect(KILL cr);
  7878   size(2);
  7879   format %{ "SAR    $dst,$shift" %}
  7880   opcode(0xD3, 0x7);  /* D3 /7 */
  7881   ins_encode( OpcP, RegOpc( dst ) );
  7882   ins_pipe( ialu_reg_reg );
  7883 %}
  7885 // Logical shift right by one
  7886 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  7887   match(Set dst (URShiftI dst shift));
  7888   effect(KILL cr);
  7890   size(2);
  7891   format %{ "SHR    $dst,$shift" %}
  7892   opcode(0xD1, 0x5);  /* D1 /5 */
  7893   ins_encode( OpcP, RegOpc( dst ) );
  7894   ins_pipe( ialu_reg );
  7895 %}
  7897 // Logical Shift Right by 8-bit immediate
  7898 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  7899   match(Set dst (URShiftI dst shift));
  7900   effect(KILL cr);
  7902   size(3);
  7903   format %{ "SHR    $dst,$shift" %}
  7904   opcode(0xC1, 0x5);  /* C1 /5 ib */
  7905   ins_encode( RegOpcImm( dst, shift) );
  7906   ins_pipe( ialu_reg );
  7907 %}
  7910 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  7911 // This idiom is used by the compiler for the i2b bytecode.
  7912 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
  7913   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  7915   size(3);
  7916   format %{ "MOVSX  $dst,$src :8" %}
  7917   ins_encode %{
  7918     __ movsbl($dst$$Register, $src$$Register);
  7919   %}
  7920   ins_pipe(ialu_reg_reg);
  7921 %}
  7923 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  7924 // This idiom is used by the compiler the i2s bytecode.
  7925 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
  7926   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  7928   size(3);
  7929   format %{ "MOVSX  $dst,$src :16" %}
  7930   ins_encode %{
  7931     __ movswl($dst$$Register, $src$$Register);
  7932   %}
  7933   ins_pipe(ialu_reg_reg);
  7934 %}
  7937 // Logical Shift Right by variable
  7938 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  7939   match(Set dst (URShiftI dst shift));
  7940   effect(KILL cr);
  7942   size(2);
  7943   format %{ "SHR    $dst,$shift" %}
  7944   opcode(0xD3, 0x5);  /* D3 /5 */
  7945   ins_encode( OpcP, RegOpc( dst ) );
  7946   ins_pipe( ialu_reg_reg );
  7947 %}
  7950 //----------Logical Instructions-----------------------------------------------
  7951 //----------Integer Logical Instructions---------------------------------------
  7952 // And Instructions
  7953 // And Register with Register
  7954 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7955   match(Set dst (AndI dst src));
  7956   effect(KILL cr);
  7958   size(2);
  7959   format %{ "AND    $dst,$src" %}
  7960   opcode(0x23);
  7961   ins_encode( OpcP, RegReg( dst, src) );
  7962   ins_pipe( ialu_reg_reg );
  7963 %}
  7965 // And Register with Immediate
  7966 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7967   match(Set dst (AndI dst src));
  7968   effect(KILL cr);
  7970   format %{ "AND    $dst,$src" %}
  7971   opcode(0x81,0x04);  /* Opcode 81 /4 */
  7972   // ins_encode( RegImm( dst, src) );
  7973   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7974   ins_pipe( ialu_reg );
  7975 %}
  7977 // And Register with Memory
  7978 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7979   match(Set dst (AndI dst (LoadI src)));
  7980   effect(KILL cr);
  7982   ins_cost(125);
  7983   format %{ "AND    $dst,$src" %}
  7984   opcode(0x23);
  7985   ins_encode( OpcP, RegMem( dst, src) );
  7986   ins_pipe( ialu_reg_mem );
  7987 %}
  7989 // And Memory with Register
  7990 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7991   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  7992   effect(KILL cr);
  7994   ins_cost(150);
  7995   format %{ "AND    $dst,$src" %}
  7996   opcode(0x21);  /* Opcode 21 /r */
  7997   ins_encode( OpcP, RegMem( src, dst ) );
  7998   ins_pipe( ialu_mem_reg );
  7999 %}
  8001 // And Memory with Immediate
  8002 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8003   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8004   effect(KILL cr);
  8006   ins_cost(125);
  8007   format %{ "AND    $dst,$src" %}
  8008   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8009   // ins_encode( MemImm( dst, src) );
  8010   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8011   ins_pipe( ialu_mem_imm );
  8012 %}
  8014 // BMI1 instructions
  8015 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, eFlagsReg cr) %{
  8016   match(Set dst (AndI (XorI src1 minus_1) src2));
  8017   predicate(UseBMI1Instructions);
  8018   effect(KILL cr);
  8020   format %{ "ANDNL  $dst, $src1, $src2" %}
  8022   ins_encode %{
  8023     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
  8024   %}
  8025   ins_pipe(ialu_reg);
  8026 %}
  8028 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, eFlagsReg cr) %{
  8029   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2) ));
  8030   predicate(UseBMI1Instructions);
  8031   effect(KILL cr);
  8033   ins_cost(125);
  8034   format %{ "ANDNL  $dst, $src1, $src2" %}
  8036   ins_encode %{
  8037     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
  8038   %}
  8039   ins_pipe(ialu_reg_mem);
  8040 %}
  8042 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, eFlagsReg cr) %{
  8043   match(Set dst (AndI (SubI imm_zero src) src));
  8044   predicate(UseBMI1Instructions);
  8045   effect(KILL cr);
  8047   format %{ "BLSIL  $dst, $src" %}
  8049   ins_encode %{
  8050     __ blsil($dst$$Register, $src$$Register);
  8051   %}
  8052   ins_pipe(ialu_reg);
  8053 %}
  8055 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, eFlagsReg cr) %{
  8056   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
  8057   predicate(UseBMI1Instructions);
  8058   effect(KILL cr);
  8060   ins_cost(125);
  8061   format %{ "BLSIL  $dst, $src" %}
  8063   ins_encode %{
  8064     __ blsil($dst$$Register, $src$$Address);
  8065   %}
  8066   ins_pipe(ialu_reg_mem);
  8067 %}
  8069 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
  8070 %{
  8071   match(Set dst (XorI (AddI src minus_1) src));
  8072   predicate(UseBMI1Instructions);
  8073   effect(KILL cr);
  8075   format %{ "BLSMSKL $dst, $src" %}
  8077   ins_encode %{
  8078     __ blsmskl($dst$$Register, $src$$Register);
  8079   %}
  8081   ins_pipe(ialu_reg);
  8082 %}
  8084 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
  8085 %{
  8086   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ));
  8087   predicate(UseBMI1Instructions);
  8088   effect(KILL cr);
  8090   ins_cost(125);
  8091   format %{ "BLSMSKL $dst, $src" %}
  8093   ins_encode %{
  8094     __ blsmskl($dst$$Register, $src$$Address);
  8095   %}
  8097   ins_pipe(ialu_reg_mem);
  8098 %}
  8100 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
  8101 %{
  8102   match(Set dst (AndI (AddI src minus_1) src) );
  8103   predicate(UseBMI1Instructions);
  8104   effect(KILL cr);
  8106   format %{ "BLSRL  $dst, $src" %}
  8108   ins_encode %{
  8109     __ blsrl($dst$$Register, $src$$Register);
  8110   %}
  8112   ins_pipe(ialu_reg);
  8113 %}
  8115 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
  8116 %{
  8117   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ));
  8118   predicate(UseBMI1Instructions);
  8119   effect(KILL cr);
  8121   ins_cost(125);
  8122   format %{ "BLSRL  $dst, $src" %}
  8124   ins_encode %{
  8125     __ blsrl($dst$$Register, $src$$Address);
  8126   %}
  8128   ins_pipe(ialu_reg_mem);
  8129 %}
  8131 // Or Instructions
  8132 // Or Register with Register
  8133 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8134   match(Set dst (OrI dst src));
  8135   effect(KILL cr);
  8137   size(2);
  8138   format %{ "OR     $dst,$src" %}
  8139   opcode(0x0B);
  8140   ins_encode( OpcP, RegReg( dst, src) );
  8141   ins_pipe( ialu_reg_reg );
  8142 %}
  8144 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
  8145   match(Set dst (OrI dst (CastP2X src)));
  8146   effect(KILL cr);
  8148   size(2);
  8149   format %{ "OR     $dst,$src" %}
  8150   opcode(0x0B);
  8151   ins_encode( OpcP, RegReg( dst, src) );
  8152   ins_pipe( ialu_reg_reg );
  8153 %}
  8156 // Or Register with Immediate
  8157 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8158   match(Set dst (OrI dst src));
  8159   effect(KILL cr);
  8161   format %{ "OR     $dst,$src" %}
  8162   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8163   // ins_encode( RegImm( dst, src) );
  8164   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8165   ins_pipe( ialu_reg );
  8166 %}
  8168 // Or Register with Memory
  8169 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8170   match(Set dst (OrI dst (LoadI src)));
  8171   effect(KILL cr);
  8173   ins_cost(125);
  8174   format %{ "OR     $dst,$src" %}
  8175   opcode(0x0B);
  8176   ins_encode( OpcP, RegMem( dst, src) );
  8177   ins_pipe( ialu_reg_mem );
  8178 %}
  8180 // Or Memory with Register
  8181 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8182   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8183   effect(KILL cr);
  8185   ins_cost(150);
  8186   format %{ "OR     $dst,$src" %}
  8187   opcode(0x09);  /* Opcode 09 /r */
  8188   ins_encode( OpcP, RegMem( src, dst ) );
  8189   ins_pipe( ialu_mem_reg );
  8190 %}
  8192 // Or Memory with Immediate
  8193 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8194   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8195   effect(KILL cr);
  8197   ins_cost(125);
  8198   format %{ "OR     $dst,$src" %}
  8199   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8200   // ins_encode( MemImm( dst, src) );
  8201   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8202   ins_pipe( ialu_mem_imm );
  8203 %}
  8205 // ROL/ROR
  8206 // ROL expand
  8207 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8208   effect(USE_DEF dst, USE shift, KILL cr);
  8210   format %{ "ROL    $dst, $shift" %}
  8211   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8212   ins_encode( OpcP, RegOpc( dst ));
  8213   ins_pipe( ialu_reg );
  8214 %}
  8216 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8217   effect(USE_DEF dst, USE shift, KILL cr);
  8219   format %{ "ROL    $dst, $shift" %}
  8220   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8221   ins_encode( RegOpcImm(dst, shift) );
  8222   ins_pipe(ialu_reg);
  8223 %}
  8225 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8226   effect(USE_DEF dst, USE shift, KILL cr);
  8228   format %{ "ROL    $dst, $shift" %}
  8229   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8230   ins_encode(OpcP, RegOpc(dst));
  8231   ins_pipe( ialu_reg_reg );
  8232 %}
  8233 // end of ROL expand
  8235 // ROL 32bit by one once
  8236 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8237   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8239   expand %{
  8240     rolI_eReg_imm1(dst, lshift, cr);
  8241   %}
  8242 %}
  8244 // ROL 32bit var by imm8 once
  8245 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8246   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8247   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8249   expand %{
  8250     rolI_eReg_imm8(dst, lshift, cr);
  8251   %}
  8252 %}
  8254 // ROL 32bit var by var once
  8255 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8256   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8258   expand %{
  8259     rolI_eReg_CL(dst, shift, cr);
  8260   %}
  8261 %}
  8263 // ROL 32bit var by var once
  8264 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8265   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8267   expand %{
  8268     rolI_eReg_CL(dst, shift, cr);
  8269   %}
  8270 %}
  8272 // ROR expand
  8273 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8274   effect(USE_DEF dst, USE shift, KILL cr);
  8276   format %{ "ROR    $dst, $shift" %}
  8277   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8278   ins_encode( OpcP, RegOpc( dst ) );
  8279   ins_pipe( ialu_reg );
  8280 %}
  8282 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8283   effect (USE_DEF dst, USE shift, KILL cr);
  8285   format %{ "ROR    $dst, $shift" %}
  8286   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8287   ins_encode( RegOpcImm(dst, shift) );
  8288   ins_pipe( ialu_reg );
  8289 %}
  8291 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8292   effect(USE_DEF dst, USE shift, KILL cr);
  8294   format %{ "ROR    $dst, $shift" %}
  8295   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8296   ins_encode(OpcP, RegOpc(dst));
  8297   ins_pipe( ialu_reg_reg );
  8298 %}
  8299 // end of ROR expand
  8301 // ROR right once
  8302 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8303   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8305   expand %{
  8306     rorI_eReg_imm1(dst, rshift, cr);
  8307   %}
  8308 %}
  8310 // ROR 32bit by immI8 once
  8311 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8312   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8313   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8315   expand %{
  8316     rorI_eReg_imm8(dst, rshift, cr);
  8317   %}
  8318 %}
  8320 // ROR 32bit var by var once
  8321 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8322   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8324   expand %{
  8325     rorI_eReg_CL(dst, shift, cr);
  8326   %}
  8327 %}
  8329 // ROR 32bit var by var once
  8330 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8331   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8333   expand %{
  8334     rorI_eReg_CL(dst, shift, cr);
  8335   %}
  8336 %}
  8338 // Xor Instructions
  8339 // Xor Register with Register
  8340 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8341   match(Set dst (XorI dst src));
  8342   effect(KILL cr);
  8344   size(2);
  8345   format %{ "XOR    $dst,$src" %}
  8346   opcode(0x33);
  8347   ins_encode( OpcP, RegReg( dst, src) );
  8348   ins_pipe( ialu_reg_reg );
  8349 %}
  8351 // Xor Register with Immediate -1
  8352 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
  8353   match(Set dst (XorI dst imm));  
  8355   size(2);
  8356   format %{ "NOT    $dst" %}  
  8357   ins_encode %{
  8358      __ notl($dst$$Register);
  8359   %}
  8360   ins_pipe( ialu_reg );
  8361 %}
  8363 // Xor Register with Immediate
  8364 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8365   match(Set dst (XorI dst src));
  8366   effect(KILL cr);
  8368   format %{ "XOR    $dst,$src" %}
  8369   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  8370   // ins_encode( RegImm( dst, src) );
  8371   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8372   ins_pipe( ialu_reg );
  8373 %}
  8375 // Xor Register with Memory
  8376 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8377   match(Set dst (XorI dst (LoadI src)));
  8378   effect(KILL cr);
  8380   ins_cost(125);
  8381   format %{ "XOR    $dst,$src" %}
  8382   opcode(0x33);
  8383   ins_encode( OpcP, RegMem(dst, src) );
  8384   ins_pipe( ialu_reg_mem );
  8385 %}
  8387 // Xor Memory with Register
  8388 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8389   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8390   effect(KILL cr);
  8392   ins_cost(150);
  8393   format %{ "XOR    $dst,$src" %}
  8394   opcode(0x31);  /* Opcode 31 /r */
  8395   ins_encode( OpcP, RegMem( src, dst ) );
  8396   ins_pipe( ialu_mem_reg );
  8397 %}
  8399 // Xor Memory with Immediate
  8400 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8401   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8402   effect(KILL cr);
  8404   ins_cost(125);
  8405   format %{ "XOR    $dst,$src" %}
  8406   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  8407   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8408   ins_pipe( ialu_mem_imm );
  8409 %}
  8411 //----------Convert Int to Boolean---------------------------------------------
  8413 instruct movI_nocopy(rRegI dst, rRegI src) %{
  8414   effect( DEF dst, USE src );
  8415   format %{ "MOV    $dst,$src" %}
  8416   ins_encode( enc_Copy( dst, src) );
  8417   ins_pipe( ialu_reg_reg );
  8418 %}
  8420 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8421   effect( USE_DEF dst, USE src, KILL cr );
  8423   size(4);
  8424   format %{ "NEG    $dst\n\t"
  8425             "ADC    $dst,$src" %}
  8426   ins_encode( neg_reg(dst),
  8427               OpcRegReg(0x13,dst,src) );
  8428   ins_pipe( ialu_reg_reg_long );
  8429 %}
  8431 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8432   match(Set dst (Conv2B src));
  8434   expand %{
  8435     movI_nocopy(dst,src);
  8436     ci2b(dst,src,cr);
  8437   %}
  8438 %}
  8440 instruct movP_nocopy(rRegI dst, eRegP src) %{
  8441   effect( DEF dst, USE src );
  8442   format %{ "MOV    $dst,$src" %}
  8443   ins_encode( enc_Copy( dst, src) );
  8444   ins_pipe( ialu_reg_reg );
  8445 %}
  8447 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8448   effect( USE_DEF dst, USE src, KILL cr );
  8449   format %{ "NEG    $dst\n\t"
  8450             "ADC    $dst,$src" %}
  8451   ins_encode( neg_reg(dst),
  8452               OpcRegReg(0x13,dst,src) );
  8453   ins_pipe( ialu_reg_reg_long );
  8454 %}
  8456 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8457   match(Set dst (Conv2B src));
  8459   expand %{
  8460     movP_nocopy(dst,src);
  8461     cp2b(dst,src,cr);
  8462   %}
  8463 %}
  8465 instruct cmpLTMask(eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr) %{
  8466   match(Set dst (CmpLTMask p q));
  8467   effect(KILL cr);
  8468   ins_cost(400);
  8470   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  8471   format %{ "XOR    $dst,$dst\n\t"
  8472             "CMP    $p,$q\n\t"
  8473             "SETlt  $dst\n\t"
  8474             "NEG    $dst" %}
  8475   ins_encode %{
  8476     Register Rp = $p$$Register;
  8477     Register Rq = $q$$Register;
  8478     Register Rd = $dst$$Register;
  8479     Label done;
  8480     __ xorl(Rd, Rd);
  8481     __ cmpl(Rp, Rq);
  8482     __ setb(Assembler::less, Rd);
  8483     __ negl(Rd);
  8484   %}
  8486   ins_pipe(pipe_slow);
  8487 %}
  8489 instruct cmpLTMask0(rRegI dst, immI0 zero, eFlagsReg cr) %{
  8490   match(Set dst (CmpLTMask dst zero));
  8491   effect(DEF dst, KILL cr);
  8492   ins_cost(100);
  8494   format %{ "SAR    $dst,31\t# cmpLTMask0" %}
  8495   ins_encode %{
  8496   __ sarl($dst$$Register, 31);
  8497   %}
  8498   ins_pipe(ialu_reg);
  8499 %}
  8501 /* better to save a register than avoid a branch */
  8502 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
  8503   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8504   effect(KILL cr);
  8505   ins_cost(400);
  8506   format %{ "SUB    $p,$q\t# cadd_cmpLTMask\n\t"
  8507             "JGE    done\n\t"
  8508             "ADD    $p,$y\n"
  8509             "done:  " %}
  8510   ins_encode %{
  8511     Register Rp = $p$$Register;
  8512     Register Rq = $q$$Register;
  8513     Register Ry = $y$$Register;
  8514     Label done;
  8515     __ subl(Rp, Rq);
  8516     __ jccb(Assembler::greaterEqual, done);
  8517     __ addl(Rp, Ry);
  8518     __ bind(done);
  8519   %}
  8521   ins_pipe(pipe_cmplt);
  8522 %}
  8524 /* better to save a register than avoid a branch */
  8525 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
  8526   match(Set y (AndI (CmpLTMask p q) y));
  8527   effect(KILL cr);
  8529   ins_cost(300);
  8531   format %{ "CMPL     $p, $q\t# and_cmpLTMask\n\t"
  8532             "JLT      done\n\t"
  8533             "XORL     $y, $y\n"
  8534             "done:  " %}
  8535   ins_encode %{
  8536     Register Rp = $p$$Register;
  8537     Register Rq = $q$$Register;
  8538     Register Ry = $y$$Register;
  8539     Label done;
  8540     __ cmpl(Rp, Rq);
  8541     __ jccb(Assembler::less, done);
  8542     __ xorl(Ry, Ry);
  8543     __ bind(done);
  8544   %}
  8546   ins_pipe(pipe_cmplt);
  8547 %}
  8549 /* If I enable this, I encourage spilling in the inner loop of compress.
  8550 instruct cadd_cmpLTMask_mem(ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr) %{
  8551   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  8552 */
  8553 //----------Overflow Math Instructions-----------------------------------------
  8555 instruct overflowAddI_eReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
  8556 %{
  8557   match(Set cr (OverflowAddI op1 op2));
  8558   effect(DEF cr, USE_KILL op1, USE op2);
  8560   format %{ "ADD    $op1, $op2\t# overflow check int" %}
  8562   ins_encode %{
  8563     __ addl($op1$$Register, $op2$$Register);
  8564   %}
  8565   ins_pipe(ialu_reg_reg);
  8566 %}
  8568 instruct overflowAddI_rReg_imm(eFlagsReg cr, eAXRegI op1, immI op2)
  8569 %{
  8570   match(Set cr (OverflowAddI op1 op2));
  8571   effect(DEF cr, USE_KILL op1, USE op2);
  8573   format %{ "ADD    $op1, $op2\t# overflow check int" %}
  8575   ins_encode %{
  8576     __ addl($op1$$Register, $op2$$constant);
  8577   %}
  8578   ins_pipe(ialu_reg_reg);
  8579 %}
  8581 instruct overflowSubI_rReg(eFlagsReg cr, rRegI op1, rRegI op2)
  8582 %{
  8583   match(Set cr (OverflowSubI op1 op2));
  8585   format %{ "CMP    $op1, $op2\t# overflow check int" %}
  8586   ins_encode %{
  8587     __ cmpl($op1$$Register, $op2$$Register);
  8588   %}
  8589   ins_pipe(ialu_reg_reg);
  8590 %}
  8592 instruct overflowSubI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2)
  8593 %{
  8594   match(Set cr (OverflowSubI op1 op2));
  8596   format %{ "CMP    $op1, $op2\t# overflow check int" %}
  8597   ins_encode %{
  8598     __ cmpl($op1$$Register, $op2$$constant);
  8599   %}
  8600   ins_pipe(ialu_reg_reg);
  8601 %}
  8603 instruct overflowNegI_rReg(eFlagsReg cr, immI0 zero, eAXRegI op2)
  8604 %{
  8605   match(Set cr (OverflowSubI zero op2));
  8606   effect(DEF cr, USE_KILL op2);
  8608   format %{ "NEG    $op2\t# overflow check int" %}
  8609   ins_encode %{
  8610     __ negl($op2$$Register);
  8611   %}
  8612   ins_pipe(ialu_reg_reg);
  8613 %}
  8615 instruct overflowMulI_rReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
  8616 %{
  8617   match(Set cr (OverflowMulI op1 op2));
  8618   effect(DEF cr, USE_KILL op1, USE op2);
  8620   format %{ "IMUL    $op1, $op2\t# overflow check int" %}
  8621   ins_encode %{
  8622     __ imull($op1$$Register, $op2$$Register);
  8623   %}
  8624   ins_pipe(ialu_reg_reg_alu0);
  8625 %}
  8627 instruct overflowMulI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
  8628 %{
  8629   match(Set cr (OverflowMulI op1 op2));
  8630   effect(DEF cr, TEMP tmp, USE op1, USE op2);
  8632   format %{ "IMUL    $tmp, $op1, $op2\t# overflow check int" %}
  8633   ins_encode %{
  8634     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
  8635   %}
  8636   ins_pipe(ialu_reg_reg_alu0);
  8637 %}
  8639 //----------Long Instructions------------------------------------------------
  8640 // Add Long Register with Register
  8641 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8642   match(Set dst (AddL dst src));
  8643   effect(KILL cr);
  8644   ins_cost(200);
  8645   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8646             "ADC    $dst.hi,$src.hi" %}
  8647   opcode(0x03, 0x13);
  8648   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  8649   ins_pipe( ialu_reg_reg_long );
  8650 %}
  8652 // Add Long Register with Immediate
  8653 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8654   match(Set dst (AddL dst src));
  8655   effect(KILL cr);
  8656   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8657             "ADC    $dst.hi,$src.hi" %}
  8658   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  8659   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8660   ins_pipe( ialu_reg_long );
  8661 %}
  8663 // Add Long Register with Memory
  8664 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8665   match(Set dst (AddL dst (LoadL mem)));
  8666   effect(KILL cr);
  8667   ins_cost(125);
  8668   format %{ "ADD    $dst.lo,$mem\n\t"
  8669             "ADC    $dst.hi,$mem+4" %}
  8670   opcode(0x03, 0x13);
  8671   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8672   ins_pipe( ialu_reg_long_mem );
  8673 %}
  8675 // Subtract Long Register with Register.
  8676 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8677   match(Set dst (SubL dst src));
  8678   effect(KILL cr);
  8679   ins_cost(200);
  8680   format %{ "SUB    $dst.lo,$src.lo\n\t"
  8681             "SBB    $dst.hi,$src.hi" %}
  8682   opcode(0x2B, 0x1B);
  8683   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  8684   ins_pipe( ialu_reg_reg_long );
  8685 %}
  8687 // Subtract Long Register with Immediate
  8688 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8689   match(Set dst (SubL dst src));
  8690   effect(KILL cr);
  8691   format %{ "SUB    $dst.lo,$src.lo\n\t"
  8692             "SBB    $dst.hi,$src.hi" %}
  8693   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  8694   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8695   ins_pipe( ialu_reg_long );
  8696 %}
  8698 // Subtract Long Register with Memory
  8699 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8700   match(Set dst (SubL dst (LoadL mem)));
  8701   effect(KILL cr);
  8702   ins_cost(125);
  8703   format %{ "SUB    $dst.lo,$mem\n\t"
  8704             "SBB    $dst.hi,$mem+4" %}
  8705   opcode(0x2B, 0x1B);
  8706   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8707   ins_pipe( ialu_reg_long_mem );
  8708 %}
  8710 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  8711   match(Set dst (SubL zero dst));
  8712   effect(KILL cr);
  8713   ins_cost(300);
  8714   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  8715   ins_encode( neg_long(dst) );
  8716   ins_pipe( ialu_reg_reg_long );
  8717 %}
  8719 // And Long Register with Register
  8720 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8721   match(Set dst (AndL dst src));
  8722   effect(KILL cr);
  8723   format %{ "AND    $dst.lo,$src.lo\n\t"
  8724             "AND    $dst.hi,$src.hi" %}
  8725   opcode(0x23,0x23);
  8726   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  8727   ins_pipe( ialu_reg_reg_long );
  8728 %}
  8730 // And Long Register with Immediate
  8731 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8732   match(Set dst (AndL dst src));
  8733   effect(KILL cr);
  8734   format %{ "AND    $dst.lo,$src.lo\n\t"
  8735             "AND    $dst.hi,$src.hi" %}
  8736   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  8737   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8738   ins_pipe( ialu_reg_long );
  8739 %}
  8741 // And Long Register with Memory
  8742 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8743   match(Set dst (AndL dst (LoadL mem)));
  8744   effect(KILL cr);
  8745   ins_cost(125);
  8746   format %{ "AND    $dst.lo,$mem\n\t"
  8747             "AND    $dst.hi,$mem+4" %}
  8748   opcode(0x23, 0x23);
  8749   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8750   ins_pipe( ialu_reg_long_mem );
  8751 %}
  8753 // BMI1 instructions
  8754 instruct andnL_eReg_eReg_eReg(eRegL dst, eRegL src1, eRegL src2, immL_M1 minus_1, eFlagsReg cr) %{
  8755   match(Set dst (AndL (XorL src1 minus_1) src2));
  8756   predicate(UseBMI1Instructions);
  8757   effect(KILL cr, TEMP dst);
  8759   format %{ "ANDNL  $dst.lo, $src1.lo, $src2.lo\n\t"
  8760             "ANDNL  $dst.hi, $src1.hi, $src2.hi"
  8761          %}
  8763   ins_encode %{
  8764     Register Rdst = $dst$$Register;
  8765     Register Rsrc1 = $src1$$Register;
  8766     Register Rsrc2 = $src2$$Register;
  8767     __ andnl(Rdst, Rsrc1, Rsrc2);
  8768     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), HIGH_FROM_LOW(Rsrc2));
  8769   %}
  8770   ins_pipe(ialu_reg_reg_long);
  8771 %}
  8773 instruct andnL_eReg_eReg_mem(eRegL dst, eRegL src1, memory src2, immL_M1 minus_1, eFlagsReg cr) %{
  8774   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2) ));
  8775   predicate(UseBMI1Instructions);
  8776   effect(KILL cr, TEMP dst);
  8778   ins_cost(125);
  8779   format %{ "ANDNL  $dst.lo, $src1.lo, $src2\n\t"
  8780             "ANDNL  $dst.hi, $src1.hi, $src2+4"
  8781          %}
  8783   ins_encode %{
  8784     Register Rdst = $dst$$Register;
  8785     Register Rsrc1 = $src1$$Register;
  8786     Address src2_hi = Address::make_raw($src2$$base, $src2$$index, $src2$$scale, $src2$$disp + 4, relocInfo::none);
  8788     __ andnl(Rdst, Rsrc1, $src2$$Address);
  8789     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), src2_hi);
  8790   %}
  8791   ins_pipe(ialu_reg_mem);
  8792 %}
  8794 instruct blsiL_eReg_eReg(eRegL dst, eRegL src, immL0 imm_zero, eFlagsReg cr) %{
  8795   match(Set dst (AndL (SubL imm_zero src) src));
  8796   predicate(UseBMI1Instructions);
  8797   effect(KILL cr, TEMP dst);
  8799   format %{ "MOVL   $dst.hi, 0\n\t"
  8800             "BLSIL  $dst.lo, $src.lo\n\t"
  8801             "JNZ    done\n\t"
  8802             "BLSIL  $dst.hi, $src.hi\n"
  8803             "done:"
  8804          %}
  8806   ins_encode %{
  8807     Label done;
  8808     Register Rdst = $dst$$Register;
  8809     Register Rsrc = $src$$Register;
  8810     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8811     __ blsil(Rdst, Rsrc);
  8812     __ jccb(Assembler::notZero, done);
  8813     __ blsil(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8814     __ bind(done);
  8815   %}
  8816   ins_pipe(ialu_reg);
  8817 %}
  8819 instruct blsiL_eReg_mem(eRegL dst, memory src, immL0 imm_zero, eFlagsReg cr) %{
  8820   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
  8821   predicate(UseBMI1Instructions);
  8822   effect(KILL cr, TEMP dst);
  8824   ins_cost(125);
  8825   format %{ "MOVL   $dst.hi, 0\n\t"
  8826             "BLSIL  $dst.lo, $src\n\t"
  8827             "JNZ    done\n\t"
  8828             "BLSIL  $dst.hi, $src+4\n"
  8829             "done:"
  8830          %}
  8832   ins_encode %{
  8833     Label done;
  8834     Register Rdst = $dst$$Register;
  8835     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
  8837     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8838     __ blsil(Rdst, $src$$Address);
  8839     __ jccb(Assembler::notZero, done);
  8840     __ blsil(HIGH_FROM_LOW(Rdst), src_hi);
  8841     __ bind(done);
  8842   %}
  8843   ins_pipe(ialu_reg_mem);
  8844 %}
  8846 instruct blsmskL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
  8847 %{
  8848   match(Set dst (XorL (AddL src minus_1) src));
  8849   predicate(UseBMI1Instructions);
  8850   effect(KILL cr, TEMP dst);
  8852   format %{ "MOVL    $dst.hi, 0\n\t"
  8853             "BLSMSKL $dst.lo, $src.lo\n\t"
  8854             "JNC     done\n\t"
  8855             "BLSMSKL $dst.hi, $src.hi\n"
  8856             "done:"
  8857          %}
  8859   ins_encode %{
  8860     Label done;
  8861     Register Rdst = $dst$$Register;
  8862     Register Rsrc = $src$$Register;
  8863     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8864     __ blsmskl(Rdst, Rsrc);
  8865     __ jccb(Assembler::carryClear, done);
  8866     __ blsmskl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8867     __ bind(done);
  8868   %}
  8870   ins_pipe(ialu_reg);
  8871 %}
  8873 instruct blsmskL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
  8874 %{
  8875   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ));
  8876   predicate(UseBMI1Instructions);
  8877   effect(KILL cr, TEMP dst);
  8879   ins_cost(125);
  8880   format %{ "MOVL    $dst.hi, 0\n\t"
  8881             "BLSMSKL $dst.lo, $src\n\t"
  8882             "JNC     done\n\t"
  8883             "BLSMSKL $dst.hi, $src+4\n"
  8884             "done:"
  8885          %}
  8887   ins_encode %{
  8888     Label done;
  8889     Register Rdst = $dst$$Register;
  8890     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
  8892     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8893     __ blsmskl(Rdst, $src$$Address);
  8894     __ jccb(Assembler::carryClear, done);
  8895     __ blsmskl(HIGH_FROM_LOW(Rdst), src_hi);
  8896     __ bind(done);
  8897   %}
  8899   ins_pipe(ialu_reg_mem);
  8900 %}
  8902 instruct blsrL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
  8903 %{
  8904   match(Set dst (AndL (AddL src minus_1) src) );
  8905   predicate(UseBMI1Instructions);
  8906   effect(KILL cr, TEMP dst);
  8908   format %{ "MOVL   $dst.hi, $src.hi\n\t"
  8909             "BLSRL  $dst.lo, $src.lo\n\t"
  8910             "JNC    done\n\t"
  8911             "BLSRL  $dst.hi, $src.hi\n"
  8912             "done:"
  8913   %}
  8915   ins_encode %{
  8916     Label done;
  8917     Register Rdst = $dst$$Register;
  8918     Register Rsrc = $src$$Register;
  8919     __ movl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8920     __ blsrl(Rdst, Rsrc);
  8921     __ jccb(Assembler::carryClear, done);
  8922     __ blsrl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8923     __ bind(done);
  8924   %}
  8926   ins_pipe(ialu_reg);
  8927 %}
  8929 instruct blsrL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
  8930 %{
  8931   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src) ));
  8932   predicate(UseBMI1Instructions);
  8933   effect(KILL cr, TEMP dst);
  8935   ins_cost(125);
  8936   format %{ "MOVL   $dst.hi, $src+4\n\t"
  8937             "BLSRL  $dst.lo, $src\n\t"
  8938             "JNC    done\n\t"
  8939             "BLSRL  $dst.hi, $src+4\n"
  8940             "done:"
  8941   %}
  8943   ins_encode %{
  8944     Label done;
  8945     Register Rdst = $dst$$Register;
  8946     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
  8947     __ movl(HIGH_FROM_LOW(Rdst), src_hi);
  8948     __ blsrl(Rdst, $src$$Address);
  8949     __ jccb(Assembler::carryClear, done);
  8950     __ blsrl(HIGH_FROM_LOW(Rdst), src_hi);
  8951     __ bind(done);
  8952   %}
  8954   ins_pipe(ialu_reg_mem);
  8955 %}
  8957 // Or Long Register with Register
  8958 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8959   match(Set dst (OrL dst src));
  8960   effect(KILL cr);
  8961   format %{ "OR     $dst.lo,$src.lo\n\t"
  8962             "OR     $dst.hi,$src.hi" %}
  8963   opcode(0x0B,0x0B);
  8964   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  8965   ins_pipe( ialu_reg_reg_long );
  8966 %}
  8968 // Or Long Register with Immediate
  8969 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8970   match(Set dst (OrL dst src));
  8971   effect(KILL cr);
  8972   format %{ "OR     $dst.lo,$src.lo\n\t"
  8973             "OR     $dst.hi,$src.hi" %}
  8974   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  8975   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8976   ins_pipe( ialu_reg_long );
  8977 %}
  8979 // Or Long Register with Memory
  8980 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8981   match(Set dst (OrL dst (LoadL mem)));
  8982   effect(KILL cr);
  8983   ins_cost(125);
  8984   format %{ "OR     $dst.lo,$mem\n\t"
  8985             "OR     $dst.hi,$mem+4" %}
  8986   opcode(0x0B,0x0B);
  8987   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8988   ins_pipe( ialu_reg_long_mem );
  8989 %}
  8991 // Xor Long Register with Register
  8992 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8993   match(Set dst (XorL dst src));
  8994   effect(KILL cr);
  8995   format %{ "XOR    $dst.lo,$src.lo\n\t"
  8996             "XOR    $dst.hi,$src.hi" %}
  8997   opcode(0x33,0x33);
  8998   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  8999   ins_pipe( ialu_reg_reg_long );
  9000 %}
  9002 // Xor Long Register with Immediate -1
  9003 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9004   match(Set dst (XorL dst imm));  
  9005   format %{ "NOT    $dst.lo\n\t"
  9006             "NOT    $dst.hi" %}
  9007   ins_encode %{
  9008      __ notl($dst$$Register);
  9009      __ notl(HIGH_FROM_LOW($dst$$Register));
  9010   %}
  9011   ins_pipe( ialu_reg_long );
  9012 %}
  9014 // Xor Long Register with Immediate
  9015 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9016   match(Set dst (XorL dst src));
  9017   effect(KILL cr);
  9018   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9019             "XOR    $dst.hi,$src.hi" %}
  9020   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9021   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9022   ins_pipe( ialu_reg_long );
  9023 %}
  9025 // Xor Long Register with Memory
  9026 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9027   match(Set dst (XorL dst (LoadL mem)));
  9028   effect(KILL cr);
  9029   ins_cost(125);
  9030   format %{ "XOR    $dst.lo,$mem\n\t"
  9031             "XOR    $dst.hi,$mem+4" %}
  9032   opcode(0x33,0x33);
  9033   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9034   ins_pipe( ialu_reg_long_mem );
  9035 %}
  9037 // Shift Left Long by 1
  9038 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9039   predicate(UseNewLongLShift);
  9040   match(Set dst (LShiftL dst cnt));
  9041   effect(KILL cr);
  9042   ins_cost(100);
  9043   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9044             "ADC    $dst.hi,$dst.hi" %}
  9045   ins_encode %{
  9046     __ addl($dst$$Register,$dst$$Register);
  9047     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9048   %}
  9049   ins_pipe( ialu_reg_long );
  9050 %}
  9052 // Shift Left Long by 2
  9053 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9054   predicate(UseNewLongLShift);
  9055   match(Set dst (LShiftL dst cnt));
  9056   effect(KILL cr);
  9057   ins_cost(100);
  9058   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9059             "ADC    $dst.hi,$dst.hi\n\t" 
  9060             "ADD    $dst.lo,$dst.lo\n\t"
  9061             "ADC    $dst.hi,$dst.hi" %}
  9062   ins_encode %{
  9063     __ addl($dst$$Register,$dst$$Register);
  9064     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9065     __ addl($dst$$Register,$dst$$Register);
  9066     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9067   %}
  9068   ins_pipe( ialu_reg_long );
  9069 %}
  9071 // Shift Left Long by 3
  9072 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9073   predicate(UseNewLongLShift);
  9074   match(Set dst (LShiftL dst cnt));
  9075   effect(KILL cr);
  9076   ins_cost(100);
  9077   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9078             "ADC    $dst.hi,$dst.hi\n\t" 
  9079             "ADD    $dst.lo,$dst.lo\n\t"
  9080             "ADC    $dst.hi,$dst.hi\n\t" 
  9081             "ADD    $dst.lo,$dst.lo\n\t"
  9082             "ADC    $dst.hi,$dst.hi" %}
  9083   ins_encode %{
  9084     __ addl($dst$$Register,$dst$$Register);
  9085     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9086     __ addl($dst$$Register,$dst$$Register);
  9087     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9088     __ addl($dst$$Register,$dst$$Register);
  9089     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9090   %}
  9091   ins_pipe( ialu_reg_long );
  9092 %}
  9094 // Shift Left Long by 1-31
  9095 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9096   match(Set dst (LShiftL dst cnt));
  9097   effect(KILL cr);
  9098   ins_cost(200);
  9099   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9100             "SHL    $dst.lo,$cnt" %}
  9101   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9102   ins_encode( move_long_small_shift(dst,cnt) );
  9103   ins_pipe( ialu_reg_long );
  9104 %}
  9106 // Shift Left Long by 32-63
  9107 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9108   match(Set dst (LShiftL dst cnt));
  9109   effect(KILL cr);
  9110   ins_cost(300);
  9111   format %{ "MOV    $dst.hi,$dst.lo\n"
  9112           "\tSHL    $dst.hi,$cnt-32\n"
  9113           "\tXOR    $dst.lo,$dst.lo" %}
  9114   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9115   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9116   ins_pipe( ialu_reg_long );
  9117 %}
  9119 // Shift Left Long by variable
  9120 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9121   match(Set dst (LShiftL dst shift));
  9122   effect(KILL cr);
  9123   ins_cost(500+200);
  9124   size(17);
  9125   format %{ "TEST   $shift,32\n\t"
  9126             "JEQ,s  small\n\t"
  9127             "MOV    $dst.hi,$dst.lo\n\t"
  9128             "XOR    $dst.lo,$dst.lo\n"
  9129     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9130             "SHL    $dst.lo,$shift" %}
  9131   ins_encode( shift_left_long( dst, shift ) );
  9132   ins_pipe( pipe_slow );
  9133 %}
  9135 // Shift Right Long by 1-31
  9136 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9137   match(Set dst (URShiftL dst cnt));
  9138   effect(KILL cr);
  9139   ins_cost(200);
  9140   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9141             "SHR    $dst.hi,$cnt" %}
  9142   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9143   ins_encode( move_long_small_shift(dst,cnt) );
  9144   ins_pipe( ialu_reg_long );
  9145 %}
  9147 // Shift Right Long by 32-63
  9148 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9149   match(Set dst (URShiftL dst cnt));
  9150   effect(KILL cr);
  9151   ins_cost(300);
  9152   format %{ "MOV    $dst.lo,$dst.hi\n"
  9153           "\tSHR    $dst.lo,$cnt-32\n"
  9154           "\tXOR    $dst.hi,$dst.hi" %}
  9155   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9156   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9157   ins_pipe( ialu_reg_long );
  9158 %}
  9160 // Shift Right Long by variable
  9161 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9162   match(Set dst (URShiftL dst shift));
  9163   effect(KILL cr);
  9164   ins_cost(600);
  9165   size(17);
  9166   format %{ "TEST   $shift,32\n\t"
  9167             "JEQ,s  small\n\t"
  9168             "MOV    $dst.lo,$dst.hi\n\t"
  9169             "XOR    $dst.hi,$dst.hi\n"
  9170     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9171             "SHR    $dst.hi,$shift" %}
  9172   ins_encode( shift_right_long( dst, shift ) );
  9173   ins_pipe( pipe_slow );
  9174 %}
  9176 // Shift Right Long by 1-31
  9177 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9178   match(Set dst (RShiftL dst cnt));
  9179   effect(KILL cr);
  9180   ins_cost(200);
  9181   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9182             "SAR    $dst.hi,$cnt" %}
  9183   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9184   ins_encode( move_long_small_shift(dst,cnt) );
  9185   ins_pipe( ialu_reg_long );
  9186 %}
  9188 // Shift Right Long by 32-63
  9189 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9190   match(Set dst (RShiftL dst cnt));
  9191   effect(KILL cr);
  9192   ins_cost(300);
  9193   format %{ "MOV    $dst.lo,$dst.hi\n"
  9194           "\tSAR    $dst.lo,$cnt-32\n"
  9195           "\tSAR    $dst.hi,31" %}
  9196   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9197   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9198   ins_pipe( ialu_reg_long );
  9199 %}
  9201 // Shift Right arithmetic Long by variable
  9202 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9203   match(Set dst (RShiftL dst shift));
  9204   effect(KILL cr);
  9205   ins_cost(600);
  9206   size(18);
  9207   format %{ "TEST   $shift,32\n\t"
  9208             "JEQ,s  small\n\t"
  9209             "MOV    $dst.lo,$dst.hi\n\t"
  9210             "SAR    $dst.hi,31\n"
  9211     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9212             "SAR    $dst.hi,$shift" %}
  9213   ins_encode( shift_right_arith_long( dst, shift ) );
  9214   ins_pipe( pipe_slow );
  9215 %}
  9218 //----------Double Instructions------------------------------------------------
  9219 // Double Math
  9221 // Compare & branch
  9223 // P6 version of float compare, sets condition codes in EFLAGS
  9224 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9225   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9226   match(Set cr (CmpD src1 src2));
  9227   effect(KILL rax);
  9228   ins_cost(150);
  9229   format %{ "FLD    $src1\n\t"
  9230             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9231             "JNP    exit\n\t"
  9232             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9233             "SAHF\n"
  9234      "exit:\tNOP               // avoid branch to branch" %}
  9235   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9236   ins_encode( Push_Reg_DPR(src1),
  9237               OpcP, RegOpc(src2),
  9238               cmpF_P6_fixup );
  9239   ins_pipe( pipe_slow );
  9240 %}
  9242 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
  9243   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9244   match(Set cr (CmpD src1 src2));
  9245   ins_cost(150);
  9246   format %{ "FLD    $src1\n\t"
  9247             "FUCOMIP ST,$src2  // P6 instruction" %}
  9248   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9249   ins_encode( Push_Reg_DPR(src1),
  9250               OpcP, RegOpc(src2));
  9251   ins_pipe( pipe_slow );
  9252 %}
  9254 // Compare & branch
  9255 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9256   predicate(UseSSE<=1);
  9257   match(Set cr (CmpD src1 src2));
  9258   effect(KILL rax);
  9259   ins_cost(200);
  9260   format %{ "FLD    $src1\n\t"
  9261             "FCOMp  $src2\n\t"
  9262             "FNSTSW AX\n\t"
  9263             "TEST   AX,0x400\n\t"
  9264             "JZ,s   flags\n\t"
  9265             "MOV    AH,1\t# unordered treat as LT\n"
  9266     "flags:\tSAHF" %}
  9267   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9268   ins_encode( Push_Reg_DPR(src1),
  9269               OpcP, RegOpc(src2),
  9270               fpu_flags);
  9271   ins_pipe( pipe_slow );
  9272 %}
  9274 // Compare vs zero into -1,0,1
  9275 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
  9276   predicate(UseSSE<=1);
  9277   match(Set dst (CmpD3 src1 zero));
  9278   effect(KILL cr, KILL rax);
  9279   ins_cost(280);
  9280   format %{ "FTSTD  $dst,$src1" %}
  9281   opcode(0xE4, 0xD9);
  9282   ins_encode( Push_Reg_DPR(src1),
  9283               OpcS, OpcP, PopFPU,
  9284               CmpF_Result(dst));
  9285   ins_pipe( pipe_slow );
  9286 %}
  9288 // Compare into -1,0,1
  9289 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
  9290   predicate(UseSSE<=1);
  9291   match(Set dst (CmpD3 src1 src2));
  9292   effect(KILL cr, KILL rax);
  9293   ins_cost(300);
  9294   format %{ "FCMPD  $dst,$src1,$src2" %}
  9295   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9296   ins_encode( Push_Reg_DPR(src1),
  9297               OpcP, RegOpc(src2),
  9298               CmpF_Result(dst));
  9299   ins_pipe( pipe_slow );
  9300 %}
  9302 // float compare and set condition codes in EFLAGS by XMM regs
  9303 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
  9304   predicate(UseSSE>=2);
  9305   match(Set cr (CmpD src1 src2));
  9306   ins_cost(145);
  9307   format %{ "UCOMISD $src1,$src2\n\t"
  9308             "JNP,s   exit\n\t"
  9309             "PUSHF\t# saw NaN, set CF\n\t"
  9310             "AND     [rsp], #0xffffff2b\n\t"
  9311             "POPF\n"
  9312     "exit:" %}
  9313   ins_encode %{
  9314     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9315     emit_cmpfp_fixup(_masm);
  9316   %}
  9317   ins_pipe( pipe_slow );
  9318 %}
  9320 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9321   predicate(UseSSE>=2);
  9322   match(Set cr (CmpD src1 src2));
  9323   ins_cost(100);
  9324   format %{ "UCOMISD $src1,$src2" %}
  9325   ins_encode %{
  9326     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9327   %}
  9328   ins_pipe( pipe_slow );
  9329 %}
  9331 // float compare and set condition codes in EFLAGS by XMM regs
  9332 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
  9333   predicate(UseSSE>=2);
  9334   match(Set cr (CmpD src1 (LoadD src2)));
  9335   ins_cost(145);
  9336   format %{ "UCOMISD $src1,$src2\n\t"
  9337             "JNP,s   exit\n\t"
  9338             "PUSHF\t# saw NaN, set CF\n\t"
  9339             "AND     [rsp], #0xffffff2b\n\t"
  9340             "POPF\n"
  9341     "exit:" %}
  9342   ins_encode %{
  9343     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9344     emit_cmpfp_fixup(_masm);
  9345   %}
  9346   ins_pipe( pipe_slow );
  9347 %}
  9349 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
  9350   predicate(UseSSE>=2);
  9351   match(Set cr (CmpD src1 (LoadD src2)));
  9352   ins_cost(100);
  9353   format %{ "UCOMISD $src1,$src2" %}
  9354   ins_encode %{
  9355     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9356   %}
  9357   ins_pipe( pipe_slow );
  9358 %}
  9360 // Compare into -1,0,1 in XMM
  9361 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
  9362   predicate(UseSSE>=2);
  9363   match(Set dst (CmpD3 src1 src2));
  9364   effect(KILL cr);
  9365   ins_cost(255);
  9366   format %{ "UCOMISD $src1, $src2\n\t"
  9367             "MOV     $dst, #-1\n\t"
  9368             "JP,s    done\n\t"
  9369             "JB,s    done\n\t"
  9370             "SETNE   $dst\n\t"
  9371             "MOVZB   $dst, $dst\n"
  9372     "done:" %}
  9373   ins_encode %{
  9374     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9375     emit_cmpfp3(_masm, $dst$$Register);
  9376   %}
  9377   ins_pipe( pipe_slow );
  9378 %}
  9380 // Compare into -1,0,1 in XMM and memory
  9381 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
  9382   predicate(UseSSE>=2);
  9383   match(Set dst (CmpD3 src1 (LoadD src2)));
  9384   effect(KILL cr);
  9385   ins_cost(275);
  9386   format %{ "UCOMISD $src1, $src2\n\t"
  9387             "MOV     $dst, #-1\n\t"
  9388             "JP,s    done\n\t"
  9389             "JB,s    done\n\t"
  9390             "SETNE   $dst\n\t"
  9391             "MOVZB   $dst, $dst\n"
  9392     "done:" %}
  9393   ins_encode %{
  9394     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9395     emit_cmpfp3(_masm, $dst$$Register);
  9396   %}
  9397   ins_pipe( pipe_slow );
  9398 %}
  9401 instruct subDPR_reg(regDPR dst, regDPR src) %{
  9402   predicate (UseSSE <=1);
  9403   match(Set dst (SubD dst src));
  9405   format %{ "FLD    $src\n\t"
  9406             "DSUBp  $dst,ST" %}
  9407   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9408   ins_cost(150);
  9409   ins_encode( Push_Reg_DPR(src),
  9410               OpcP, RegOpc(dst) );
  9411   ins_pipe( fpu_reg_reg );
  9412 %}
  9414 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9415   predicate (UseSSE <=1);
  9416   match(Set dst (RoundDouble (SubD src1 src2)));
  9417   ins_cost(250);
  9419   format %{ "FLD    $src2\n\t"
  9420             "DSUB   ST,$src1\n\t"
  9421             "FSTP_D $dst\t# D-round" %}
  9422   opcode(0xD8, 0x5);
  9423   ins_encode( Push_Reg_DPR(src2),
  9424               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9425   ins_pipe( fpu_mem_reg_reg );
  9426 %}
  9429 instruct subDPR_reg_mem(regDPR dst, memory src) %{
  9430   predicate (UseSSE <=1);
  9431   match(Set dst (SubD dst (LoadD src)));
  9432   ins_cost(150);
  9434   format %{ "FLD    $src\n\t"
  9435             "DSUBp  $dst,ST" %}
  9436   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9437   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9438               OpcP, RegOpc(dst) );
  9439   ins_pipe( fpu_reg_mem );
  9440 %}
  9442 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
  9443   predicate (UseSSE<=1);
  9444   match(Set dst (AbsD src));
  9445   ins_cost(100);
  9446   format %{ "FABS" %}
  9447   opcode(0xE1, 0xD9);
  9448   ins_encode( OpcS, OpcP );
  9449   ins_pipe( fpu_reg_reg );
  9450 %}
  9452 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
  9453   predicate(UseSSE<=1);
  9454   match(Set dst (NegD src));
  9455   ins_cost(100);
  9456   format %{ "FCHS" %}
  9457   opcode(0xE0, 0xD9);
  9458   ins_encode( OpcS, OpcP );
  9459   ins_pipe( fpu_reg_reg );
  9460 %}
  9462 instruct addDPR_reg(regDPR dst, regDPR src) %{
  9463   predicate(UseSSE<=1);
  9464   match(Set dst (AddD dst src));
  9465   format %{ "FLD    $src\n\t"
  9466             "DADD   $dst,ST" %}
  9467   size(4);
  9468   ins_cost(150);
  9469   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9470   ins_encode( Push_Reg_DPR(src),
  9471               OpcP, RegOpc(dst) );
  9472   ins_pipe( fpu_reg_reg );
  9473 %}
  9476 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9477   predicate(UseSSE<=1);
  9478   match(Set dst (RoundDouble (AddD src1 src2)));
  9479   ins_cost(250);
  9481   format %{ "FLD    $src2\n\t"
  9482             "DADD   ST,$src1\n\t"
  9483             "FSTP_D $dst\t# D-round" %}
  9484   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9485   ins_encode( Push_Reg_DPR(src2),
  9486               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9487   ins_pipe( fpu_mem_reg_reg );
  9488 %}
  9491 instruct addDPR_reg_mem(regDPR dst, memory src) %{
  9492   predicate(UseSSE<=1);
  9493   match(Set dst (AddD dst (LoadD src)));
  9494   ins_cost(150);
  9496   format %{ "FLD    $src\n\t"
  9497             "DADDp  $dst,ST" %}
  9498   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9499   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9500               OpcP, RegOpc(dst) );
  9501   ins_pipe( fpu_reg_mem );
  9502 %}
  9504 // add-to-memory
  9505 instruct addDPR_mem_reg(memory dst, regDPR src) %{
  9506   predicate(UseSSE<=1);
  9507   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9508   ins_cost(150);
  9510   format %{ "FLD_D  $dst\n\t"
  9511             "DADD   ST,$src\n\t"
  9512             "FST_D  $dst" %}
  9513   opcode(0xDD, 0x0);
  9514   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9515               Opcode(0xD8), RegOpc(src),
  9516               set_instruction_start,
  9517               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9518   ins_pipe( fpu_reg_mem );
  9519 %}
  9521 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
  9522   predicate(UseSSE<=1);
  9523   match(Set dst (AddD dst con));
  9524   ins_cost(125);
  9525   format %{ "FLD1\n\t"
  9526             "DADDp  $dst,ST" %}
  9527   ins_encode %{
  9528     __ fld1();
  9529     __ faddp($dst$$reg);
  9530   %}
  9531   ins_pipe(fpu_reg);
  9532 %}
  9534 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
  9535   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9536   match(Set dst (AddD dst con));
  9537   ins_cost(200);
  9538   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9539             "DADDp  $dst,ST" %}
  9540   ins_encode %{
  9541     __ fld_d($constantaddress($con));
  9542     __ faddp($dst$$reg);
  9543   %}
  9544   ins_pipe(fpu_reg_mem);
  9545 %}
  9547 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
  9548   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9549   match(Set dst (RoundDouble (AddD src con)));
  9550   ins_cost(200);
  9551   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9552             "DADD   ST,$src\n\t"
  9553             "FSTP_D $dst\t# D-round" %}
  9554   ins_encode %{
  9555     __ fld_d($constantaddress($con));
  9556     __ fadd($src$$reg);
  9557     __ fstp_d(Address(rsp, $dst$$disp));
  9558   %}
  9559   ins_pipe(fpu_mem_reg_con);
  9560 %}
  9562 instruct mulDPR_reg(regDPR dst, regDPR src) %{
  9563   predicate(UseSSE<=1);
  9564   match(Set dst (MulD dst src));
  9565   format %{ "FLD    $src\n\t"
  9566             "DMULp  $dst,ST" %}
  9567   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9568   ins_cost(150);
  9569   ins_encode( Push_Reg_DPR(src),
  9570               OpcP, RegOpc(dst) );
  9571   ins_pipe( fpu_reg_reg );
  9572 %}
  9574 // Strict FP instruction biases argument before multiply then
  9575 // biases result to avoid double rounding of subnormals.
  9576 //
  9577 // scale arg1 by multiplying arg1 by 2^(-15360)
  9578 // load arg2
  9579 // multiply scaled arg1 by arg2
  9580 // rescale product by 2^(15360)
  9581 //
  9582 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9583   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9584   match(Set dst (MulD dst src));
  9585   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9587   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9588             "DMULp  $dst,ST\n\t"
  9589             "FLD    $src\n\t"
  9590             "DMULp  $dst,ST\n\t"
  9591             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9592             "DMULp  $dst,ST\n\t" %}
  9593   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9594   ins_encode( strictfp_bias1(dst),
  9595               Push_Reg_DPR(src),
  9596               OpcP, RegOpc(dst),
  9597               strictfp_bias2(dst) );
  9598   ins_pipe( fpu_reg_reg );
  9599 %}
  9601 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
  9602   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9603   match(Set dst (MulD dst con));
  9604   ins_cost(200);
  9605   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9606             "DMULp  $dst,ST" %}
  9607   ins_encode %{
  9608     __ fld_d($constantaddress($con));
  9609     __ fmulp($dst$$reg);
  9610   %}
  9611   ins_pipe(fpu_reg_mem);
  9612 %}
  9615 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
  9616   predicate( UseSSE<=1 );
  9617   match(Set dst (MulD dst (LoadD src)));
  9618   ins_cost(200);
  9619   format %{ "FLD_D  $src\n\t"
  9620             "DMULp  $dst,ST" %}
  9621   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9622   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9623               OpcP, RegOpc(dst) );
  9624   ins_pipe( fpu_reg_mem );
  9625 %}
  9627 //
  9628 // Cisc-alternate to reg-reg multiply
  9629 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
  9630   predicate( UseSSE<=1 );
  9631   match(Set dst (MulD src (LoadD mem)));
  9632   ins_cost(250);
  9633   format %{ "FLD_D  $mem\n\t"
  9634             "DMUL   ST,$src\n\t"
  9635             "FSTP_D $dst" %}
  9636   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
  9637   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
  9638               OpcReg_FPR(src),
  9639               Pop_Reg_DPR(dst) );
  9640   ins_pipe( fpu_reg_reg_mem );
  9641 %}
  9644 // MACRO3 -- addDPR a mulDPR
  9645 // This instruction is a '2-address' instruction in that the result goes
  9646 // back to src2.  This eliminates a move from the macro; possibly the
  9647 // register allocator will have to add it back (and maybe not).
  9648 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9649   predicate( UseSSE<=1 );
  9650   match(Set src2 (AddD (MulD src0 src1) src2));
  9651   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9652             "DMUL   ST,$src1\n\t"
  9653             "DADDp  $src2,ST" %}
  9654   ins_cost(250);
  9655   opcode(0xDD); /* LoadD DD /0 */
  9656   ins_encode( Push_Reg_FPR(src0),
  9657               FMul_ST_reg(src1),
  9658               FAddP_reg_ST(src2) );
  9659   ins_pipe( fpu_reg_reg_reg );
  9660 %}
  9663 // MACRO3 -- subDPR a mulDPR
  9664 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9665   predicate( UseSSE<=1 );
  9666   match(Set src2 (SubD (MulD src0 src1) src2));
  9667   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9668             "DMUL   ST,$src1\n\t"
  9669             "DSUBRp $src2,ST" %}
  9670   ins_cost(250);
  9671   ins_encode( Push_Reg_FPR(src0),
  9672               FMul_ST_reg(src1),
  9673               Opcode(0xDE), Opc_plus(0xE0,src2));
  9674   ins_pipe( fpu_reg_reg_reg );
  9675 %}
  9678 instruct divDPR_reg(regDPR dst, regDPR src) %{
  9679   predicate( UseSSE<=1 );
  9680   match(Set dst (DivD dst src));
  9682   format %{ "FLD    $src\n\t"
  9683             "FDIVp  $dst,ST" %}
  9684   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9685   ins_cost(150);
  9686   ins_encode( Push_Reg_DPR(src),
  9687               OpcP, RegOpc(dst) );
  9688   ins_pipe( fpu_reg_reg );
  9689 %}
  9691 // Strict FP instruction biases argument before division then
  9692 // biases result, to avoid double rounding of subnormals.
  9693 //
  9694 // scale dividend by multiplying dividend by 2^(-15360)
  9695 // load divisor
  9696 // divide scaled dividend by divisor
  9697 // rescale quotient by 2^(15360)
  9698 //
  9699 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9700   predicate (UseSSE<=1);
  9701   match(Set dst (DivD dst src));
  9702   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9703   ins_cost(01);
  9705   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9706             "DMULp  $dst,ST\n\t"
  9707             "FLD    $src\n\t"
  9708             "FDIVp  $dst,ST\n\t"
  9709             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9710             "DMULp  $dst,ST\n\t" %}
  9711   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9712   ins_encode( strictfp_bias1(dst),
  9713               Push_Reg_DPR(src),
  9714               OpcP, RegOpc(dst),
  9715               strictfp_bias2(dst) );
  9716   ins_pipe( fpu_reg_reg );
  9717 %}
  9719 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9720   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
  9721   match(Set dst (RoundDouble (DivD src1 src2)));
  9723   format %{ "FLD    $src1\n\t"
  9724             "FDIV   ST,$src2\n\t"
  9725             "FSTP_D $dst\t# D-round" %}
  9726   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
  9727   ins_encode( Push_Reg_DPR(src1),
  9728               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
  9729   ins_pipe( fpu_mem_reg_reg );
  9730 %}
  9733 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
  9734   predicate(UseSSE<=1);
  9735   match(Set dst (ModD dst src));
  9736   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
  9738   format %{ "DMOD   $dst,$src" %}
  9739   ins_cost(250);
  9740   ins_encode(Push_Reg_Mod_DPR(dst, src),
  9741               emitModDPR(),
  9742               Push_Result_Mod_DPR(src),
  9743               Pop_Reg_DPR(dst));
  9744   ins_pipe( pipe_slow );
  9745 %}
  9747 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
  9748   predicate(UseSSE>=2);
  9749   match(Set dst (ModD src0 src1));
  9750   effect(KILL rax, KILL cr);
  9752   format %{ "SUB    ESP,8\t # DMOD\n"
  9753           "\tMOVSD  [ESP+0],$src1\n"
  9754           "\tFLD_D  [ESP+0]\n"
  9755           "\tMOVSD  [ESP+0],$src0\n"
  9756           "\tFLD_D  [ESP+0]\n"
  9757      "loop:\tFPREM\n"
  9758           "\tFWAIT\n"
  9759           "\tFNSTSW AX\n"
  9760           "\tSAHF\n"
  9761           "\tJP     loop\n"
  9762           "\tFSTP_D [ESP+0]\n"
  9763           "\tMOVSD  $dst,[ESP+0]\n"
  9764           "\tADD    ESP,8\n"
  9765           "\tFSTP   ST0\t # Restore FPU Stack"
  9766     %}
  9767   ins_cost(250);
  9768   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
  9769   ins_pipe( pipe_slow );
  9770 %}
  9772 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
  9773   predicate (UseSSE<=1);
  9774   match(Set dst (SinD src));
  9775   ins_cost(1800);
  9776   format %{ "DSIN   $dst" %}
  9777   opcode(0xD9, 0xFE);
  9778   ins_encode( OpcP, OpcS );
  9779   ins_pipe( pipe_slow );
  9780 %}
  9782 instruct sinD_reg(regD dst, eFlagsReg cr) %{
  9783   predicate (UseSSE>=2);
  9784   match(Set dst (SinD dst));
  9785   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9786   ins_cost(1800);
  9787   format %{ "DSIN   $dst" %}
  9788   opcode(0xD9, 0xFE);
  9789   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9790   ins_pipe( pipe_slow );
  9791 %}
  9793 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
  9794   predicate (UseSSE<=1);
  9795   match(Set dst (CosD src));
  9796   ins_cost(1800);
  9797   format %{ "DCOS   $dst" %}
  9798   opcode(0xD9, 0xFF);
  9799   ins_encode( OpcP, OpcS );
  9800   ins_pipe( pipe_slow );
  9801 %}
  9803 instruct cosD_reg(regD dst, eFlagsReg cr) %{
  9804   predicate (UseSSE>=2);
  9805   match(Set dst (CosD dst));
  9806   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9807   ins_cost(1800);
  9808   format %{ "DCOS   $dst" %}
  9809   opcode(0xD9, 0xFF);
  9810   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9811   ins_pipe( pipe_slow );
  9812 %}
  9814 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
  9815   predicate (UseSSE<=1);
  9816   match(Set dst(TanD src));
  9817   format %{ "DTAN   $dst" %}
  9818   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
  9819               Opcode(0xDD), Opcode(0xD8));   // fstp st
  9820   ins_pipe( pipe_slow );
  9821 %}
  9823 instruct tanD_reg(regD dst, eFlagsReg cr) %{
  9824   predicate (UseSSE>=2);
  9825   match(Set dst(TanD dst));
  9826   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9827   format %{ "DTAN   $dst" %}
  9828   ins_encode( Push_SrcD(dst),
  9829               Opcode(0xD9), Opcode(0xF2),    // fptan
  9830               Opcode(0xDD), Opcode(0xD8),   // fstp st
  9831               Push_ResultD(dst) );
  9832   ins_pipe( pipe_slow );
  9833 %}
  9835 instruct atanDPR_reg(regDPR dst, regDPR src) %{
  9836   predicate (UseSSE<=1);
  9837   match(Set dst(AtanD dst src));
  9838   format %{ "DATA   $dst,$src" %}
  9839   opcode(0xD9, 0xF3);
  9840   ins_encode( Push_Reg_DPR(src),
  9841               OpcP, OpcS, RegOpc(dst) );
  9842   ins_pipe( pipe_slow );
  9843 %}
  9845 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
  9846   predicate (UseSSE>=2);
  9847   match(Set dst(AtanD dst src));
  9848   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9849   format %{ "DATA   $dst,$src" %}
  9850   opcode(0xD9, 0xF3);
  9851   ins_encode( Push_SrcD(src),
  9852               OpcP, OpcS, Push_ResultD(dst) );
  9853   ins_pipe( pipe_slow );
  9854 %}
  9856 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
  9857   predicate (UseSSE<=1);
  9858   match(Set dst (SqrtD src));
  9859   format %{ "DSQRT  $dst,$src" %}
  9860   opcode(0xFA, 0xD9);
  9861   ins_encode( Push_Reg_DPR(src),
  9862               OpcS, OpcP, Pop_Reg_DPR(dst) );
  9863   ins_pipe( pipe_slow );
  9864 %}
  9866 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9867   predicate (UseSSE<=1);
  9868   match(Set Y (PowD X Y));  // Raise X to the Yth power
  9869   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
  9870   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
  9871   ins_encode %{
  9872     __ subptr(rsp, 8);
  9873     __ fld_s($X$$reg - 1);
  9874     __ fast_pow();
  9875     __ addptr(rsp, 8);
  9876   %}
  9877   ins_pipe( pipe_slow );
  9878 %}
  9880 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9881   predicate (UseSSE>=2);
  9882   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
  9883   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
  9884   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
  9885   ins_encode %{
  9886     __ subptr(rsp, 8);
  9887     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  9888     __ fld_d(Address(rsp, 0));
  9889     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  9890     __ fld_d(Address(rsp, 0));
  9891     __ fast_pow();
  9892     __ fstp_d(Address(rsp, 0));
  9893     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  9894     __ addptr(rsp, 8);
  9895   %}
  9896   ins_pipe( pipe_slow );
  9897 %}
  9900 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9901   predicate (UseSSE<=1);
  9902   match(Set dpr1 (ExpD dpr1));
  9903   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
  9904   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
  9905   ins_encode %{
  9906     __ fast_exp();
  9907   %}
  9908   ins_pipe( pipe_slow );
  9909 %}
  9911 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9912   predicate (UseSSE>=2);
  9913   match(Set dst (ExpD src));
  9914   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
  9915   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
  9916   ins_encode %{
  9917     __ subptr(rsp, 8);
  9918     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  9919     __ fld_d(Address(rsp, 0));
  9920     __ fast_exp();
  9921     __ fstp_d(Address(rsp, 0));
  9922     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  9923     __ addptr(rsp, 8);
  9924   %}
  9925   ins_pipe( pipe_slow );
  9926 %}
  9928 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
  9929   predicate (UseSSE<=1);
  9930   // The source Double operand on FPU stack
  9931   match(Set dst (Log10D src));
  9932   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
  9933   // fxch         ; swap ST(0) with ST(1)
  9934   // fyl2x        ; compute log_10(2) * log_2(x)
  9935   format %{ "FLDLG2 \t\t\t#Log10\n\t"
  9936             "FXCH   \n\t"
  9937             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
  9938          %}
  9939   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
  9940               Opcode(0xD9), Opcode(0xC9),   // fxch
  9941               Opcode(0xD9), Opcode(0xF1));  // fyl2x
  9943   ins_pipe( pipe_slow );
  9944 %}
  9946 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
  9947   predicate (UseSSE>=2);
  9948   effect(KILL cr);
  9949   match(Set dst (Log10D src));
  9950   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
  9951   // fyl2x        ; compute log_10(2) * log_2(x)
  9952   format %{ "FLDLG2 \t\t\t#Log10\n\t"
  9953             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
  9954          %}
  9955   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
  9956               Push_SrcD(src),
  9957               Opcode(0xD9), Opcode(0xF1),   // fyl2x
  9958               Push_ResultD(dst));
  9960   ins_pipe( pipe_slow );
  9961 %}
  9963 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
  9964   predicate (UseSSE<=1);
  9965   // The source Double operand on FPU stack
  9966   match(Set dst (LogD src));
  9967   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
  9968   // fxch         ; swap ST(0) with ST(1)
  9969   // fyl2x        ; compute log_e(2) * log_2(x)
  9970   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
  9971             "FXCH   \n\t"
  9972             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
  9973          %}
  9974   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
  9975               Opcode(0xD9), Opcode(0xC9),   // fxch
  9976               Opcode(0xD9), Opcode(0xF1));  // fyl2x
  9978   ins_pipe( pipe_slow );
  9979 %}
  9981 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
  9982   predicate (UseSSE>=2);
  9983   effect(KILL cr);
  9984   // The source and result Double operands in XMM registers
  9985   match(Set dst (LogD src));
  9986   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
  9987   // fyl2x        ; compute log_e(2) * log_2(x)
  9988   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
  9989             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
  9990          %}
  9991   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
  9992               Push_SrcD(src),
  9993               Opcode(0xD9), Opcode(0xF1),   // fyl2x
  9994               Push_ResultD(dst));
  9995   ins_pipe( pipe_slow );
  9996 %}
  9998 //-------------Float Instructions-------------------------------
  9999 // Float Math
 10001 // Code for float compare:
 10002 //     fcompp();
 10003 //     fwait(); fnstsw_ax();
 10004 //     sahf();
 10005 //     movl(dst, unordered_result);
 10006 //     jcc(Assembler::parity, exit);
 10007 //     movl(dst, less_result);
 10008 //     jcc(Assembler::below, exit);
 10009 //     movl(dst, equal_result);
 10010 //     jcc(Assembler::equal, exit);
 10011 //     movl(dst, greater_result);
 10012 //   exit:
 10014 // P6 version of float compare, sets condition codes in EFLAGS
 10015 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10016   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10017   match(Set cr (CmpF src1 src2));
 10018   effect(KILL rax);
 10019   ins_cost(150);
 10020   format %{ "FLD    $src1\n\t"
 10021             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10022             "JNP    exit\n\t"
 10023             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10024             "SAHF\n"
 10025      "exit:\tNOP               // avoid branch to branch" %}
 10026   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10027   ins_encode( Push_Reg_DPR(src1),
 10028               OpcP, RegOpc(src2),
 10029               cmpF_P6_fixup );
 10030   ins_pipe( pipe_slow );
 10031 %}
 10033 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
 10034   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10035   match(Set cr (CmpF src1 src2));
 10036   ins_cost(100);
 10037   format %{ "FLD    $src1\n\t"
 10038             "FUCOMIP ST,$src2  // P6 instruction" %}
 10039   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10040   ins_encode( Push_Reg_DPR(src1),
 10041               OpcP, RegOpc(src2));
 10042   ins_pipe( pipe_slow );
 10043 %}
 10046 // Compare & branch
 10047 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10048   predicate(UseSSE == 0);
 10049   match(Set cr (CmpF src1 src2));
 10050   effect(KILL rax);
 10051   ins_cost(200);
 10052   format %{ "FLD    $src1\n\t"
 10053             "FCOMp  $src2\n\t"
 10054             "FNSTSW AX\n\t"
 10055             "TEST   AX,0x400\n\t"
 10056             "JZ,s   flags\n\t"
 10057             "MOV    AH,1\t# unordered treat as LT\n"
 10058     "flags:\tSAHF" %}
 10059   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10060   ins_encode( Push_Reg_DPR(src1),
 10061               OpcP, RegOpc(src2),
 10062               fpu_flags);
 10063   ins_pipe( pipe_slow );
 10064 %}
 10066 // Compare vs zero into -1,0,1
 10067 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
 10068   predicate(UseSSE == 0);
 10069   match(Set dst (CmpF3 src1 zero));
 10070   effect(KILL cr, KILL rax);
 10071   ins_cost(280);
 10072   format %{ "FTSTF  $dst,$src1" %}
 10073   opcode(0xE4, 0xD9);
 10074   ins_encode( Push_Reg_DPR(src1),
 10075               OpcS, OpcP, PopFPU,
 10076               CmpF_Result(dst));
 10077   ins_pipe( pipe_slow );
 10078 %}
 10080 // Compare into -1,0,1
 10081 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10082   predicate(UseSSE == 0);
 10083   match(Set dst (CmpF3 src1 src2));
 10084   effect(KILL cr, KILL rax);
 10085   ins_cost(300);
 10086   format %{ "FCMPF  $dst,$src1,$src2" %}
 10087   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10088   ins_encode( Push_Reg_DPR(src1),
 10089               OpcP, RegOpc(src2),
 10090               CmpF_Result(dst));
 10091   ins_pipe( pipe_slow );
 10092 %}
 10094 // float compare and set condition codes in EFLAGS by XMM regs
 10095 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
 10096   predicate(UseSSE>=1);
 10097   match(Set cr (CmpF src1 src2));
 10098   ins_cost(145);
 10099   format %{ "UCOMISS $src1,$src2\n\t"
 10100             "JNP,s   exit\n\t"
 10101             "PUSHF\t# saw NaN, set CF\n\t"
 10102             "AND     [rsp], #0xffffff2b\n\t"
 10103             "POPF\n"
 10104     "exit:" %}
 10105   ins_encode %{
 10106     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10107     emit_cmpfp_fixup(_masm);
 10108   %}
 10109   ins_pipe( pipe_slow );
 10110 %}
 10112 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10113   predicate(UseSSE>=1);
 10114   match(Set cr (CmpF src1 src2));
 10115   ins_cost(100);
 10116   format %{ "UCOMISS $src1,$src2" %}
 10117   ins_encode %{
 10118     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10119   %}
 10120   ins_pipe( pipe_slow );
 10121 %}
 10123 // float compare and set condition codes in EFLAGS by XMM regs
 10124 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
 10125   predicate(UseSSE>=1);
 10126   match(Set cr (CmpF src1 (LoadF src2)));
 10127   ins_cost(165);
 10128   format %{ "UCOMISS $src1,$src2\n\t"
 10129             "JNP,s   exit\n\t"
 10130             "PUSHF\t# saw NaN, set CF\n\t"
 10131             "AND     [rsp], #0xffffff2b\n\t"
 10132             "POPF\n"
 10133     "exit:" %}
 10134   ins_encode %{
 10135     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10136     emit_cmpfp_fixup(_masm);
 10137   %}
 10138   ins_pipe( pipe_slow );
 10139 %}
 10141 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
 10142   predicate(UseSSE>=1);
 10143   match(Set cr (CmpF src1 (LoadF src2)));
 10144   ins_cost(100);
 10145   format %{ "UCOMISS $src1,$src2" %}
 10146   ins_encode %{
 10147     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10148   %}
 10149   ins_pipe( pipe_slow );
 10150 %}
 10152 // Compare into -1,0,1 in XMM
 10153 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
 10154   predicate(UseSSE>=1);
 10155   match(Set dst (CmpF3 src1 src2));
 10156   effect(KILL cr);
 10157   ins_cost(255);
 10158   format %{ "UCOMISS $src1, $src2\n\t"
 10159             "MOV     $dst, #-1\n\t"
 10160             "JP,s    done\n\t"
 10161             "JB,s    done\n\t"
 10162             "SETNE   $dst\n\t"
 10163             "MOVZB   $dst, $dst\n"
 10164     "done:" %}
 10165   ins_encode %{
 10166     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10167     emit_cmpfp3(_masm, $dst$$Register);
 10168   %}
 10169   ins_pipe( pipe_slow );
 10170 %}
 10172 // Compare into -1,0,1 in XMM and memory
 10173 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
 10174   predicate(UseSSE>=1);
 10175   match(Set dst (CmpF3 src1 (LoadF src2)));
 10176   effect(KILL cr);
 10177   ins_cost(275);
 10178   format %{ "UCOMISS $src1, $src2\n\t"
 10179             "MOV     $dst, #-1\n\t"
 10180             "JP,s    done\n\t"
 10181             "JB,s    done\n\t"
 10182             "SETNE   $dst\n\t"
 10183             "MOVZB   $dst, $dst\n"
 10184     "done:" %}
 10185   ins_encode %{
 10186     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10187     emit_cmpfp3(_masm, $dst$$Register);
 10188   %}
 10189   ins_pipe( pipe_slow );
 10190 %}
 10192 // Spill to obtain 24-bit precision
 10193 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10194   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10195   match(Set dst (SubF src1 src2));
 10197   format %{ "FSUB   $dst,$src1 - $src2" %}
 10198   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10199   ins_encode( Push_Reg_FPR(src1),
 10200               OpcReg_FPR(src2),
 10201               Pop_Mem_FPR(dst) );
 10202   ins_pipe( fpu_mem_reg_reg );
 10203 %}
 10204 //
 10205 // This instruction does not round to 24-bits
 10206 instruct subFPR_reg(regFPR dst, regFPR src) %{
 10207   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10208   match(Set dst (SubF dst src));
 10210   format %{ "FSUB   $dst,$src" %}
 10211   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10212   ins_encode( Push_Reg_FPR(src),
 10213               OpcP, RegOpc(dst) );
 10214   ins_pipe( fpu_reg_reg );
 10215 %}
 10217 // Spill to obtain 24-bit precision
 10218 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10219   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10220   match(Set dst (AddF src1 src2));
 10222   format %{ "FADD   $dst,$src1,$src2" %}
 10223   opcode(0xD8, 0x0); /* D8 C0+i */
 10224   ins_encode( Push_Reg_FPR(src2),
 10225               OpcReg_FPR(src1),
 10226               Pop_Mem_FPR(dst) );
 10227   ins_pipe( fpu_mem_reg_reg );
 10228 %}
 10229 //
 10230 // This instruction does not round to 24-bits
 10231 instruct addFPR_reg(regFPR dst, regFPR src) %{
 10232   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10233   match(Set dst (AddF dst src));
 10235   format %{ "FLD    $src\n\t"
 10236             "FADDp  $dst,ST" %}
 10237   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10238   ins_encode( Push_Reg_FPR(src),
 10239               OpcP, RegOpc(dst) );
 10240   ins_pipe( fpu_reg_reg );
 10241 %}
 10243 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
 10244   predicate(UseSSE==0);
 10245   match(Set dst (AbsF src));
 10246   ins_cost(100);
 10247   format %{ "FABS" %}
 10248   opcode(0xE1, 0xD9);
 10249   ins_encode( OpcS, OpcP );
 10250   ins_pipe( fpu_reg_reg );
 10251 %}
 10253 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
 10254   predicate(UseSSE==0);
 10255   match(Set dst (NegF src));
 10256   ins_cost(100);
 10257   format %{ "FCHS" %}
 10258   opcode(0xE0, 0xD9);
 10259   ins_encode( OpcS, OpcP );
 10260   ins_pipe( fpu_reg_reg );
 10261 %}
 10263 // Cisc-alternate to addFPR_reg
 10264 // Spill to obtain 24-bit precision
 10265 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10266   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10267   match(Set dst (AddF src1 (LoadF src2)));
 10269   format %{ "FLD    $src2\n\t"
 10270             "FADD   ST,$src1\n\t"
 10271             "FSTP_S $dst" %}
 10272   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10273   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10274               OpcReg_FPR(src1),
 10275               Pop_Mem_FPR(dst) );
 10276   ins_pipe( fpu_mem_reg_mem );
 10277 %}
 10278 //
 10279 // Cisc-alternate to addFPR_reg
 10280 // This instruction does not round to 24-bits
 10281 instruct addFPR_reg_mem(regFPR dst, memory src) %{
 10282   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10283   match(Set dst (AddF dst (LoadF src)));
 10285   format %{ "FADD   $dst,$src" %}
 10286   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10287   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10288               OpcP, RegOpc(dst) );
 10289   ins_pipe( fpu_reg_mem );
 10290 %}
 10292 // // Following two instructions for _222_mpegaudio
 10293 // Spill to obtain 24-bit precision
 10294 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
 10295   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10296   match(Set dst (AddF src1 src2));
 10298   format %{ "FADD   $dst,$src1,$src2" %}
 10299   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10300   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10301               OpcReg_FPR(src2),
 10302               Pop_Mem_FPR(dst) );
 10303   ins_pipe( fpu_mem_reg_mem );
 10304 %}
 10306 // Cisc-spill variant
 10307 // Spill to obtain 24-bit precision
 10308 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10309   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10310   match(Set dst (AddF src1 (LoadF src2)));
 10312   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10313   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10314   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10315               set_instruction_start,
 10316               OpcP, RMopc_Mem(secondary,src1),
 10317               Pop_Mem_FPR(dst) );
 10318   ins_pipe( fpu_mem_mem_mem );
 10319 %}
 10321 // Spill to obtain 24-bit precision
 10322 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10323   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10324   match(Set dst (AddF src1 src2));
 10326   format %{ "FADD   $dst,$src1,$src2" %}
 10327   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10328   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10329               set_instruction_start,
 10330               OpcP, RMopc_Mem(secondary,src1),
 10331               Pop_Mem_FPR(dst) );
 10332   ins_pipe( fpu_mem_mem_mem );
 10333 %}
 10336 // Spill to obtain 24-bit precision
 10337 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10338   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10339   match(Set dst (AddF src con));
 10340   format %{ "FLD    $src\n\t"
 10341             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10342             "FSTP_S $dst"  %}
 10343   ins_encode %{
 10344     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10345     __ fadd_s($constantaddress($con));
 10346     __ fstp_s(Address(rsp, $dst$$disp));
 10347   %}
 10348   ins_pipe(fpu_mem_reg_con);
 10349 %}
 10350 //
 10351 // This instruction does not round to 24-bits
 10352 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10353   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10354   match(Set dst (AddF src con));
 10355   format %{ "FLD    $src\n\t"
 10356             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10357             "FSTP   $dst"  %}
 10358   ins_encode %{
 10359     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10360     __ fadd_s($constantaddress($con));
 10361     __ fstp_d($dst$$reg);
 10362   %}
 10363   ins_pipe(fpu_reg_reg_con);
 10364 %}
 10366 // Spill to obtain 24-bit precision
 10367 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10368   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10369   match(Set dst (MulF src1 src2));
 10371   format %{ "FLD    $src1\n\t"
 10372             "FMUL   $src2\n\t"
 10373             "FSTP_S $dst"  %}
 10374   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10375   ins_encode( Push_Reg_FPR(src1),
 10376               OpcReg_FPR(src2),
 10377               Pop_Mem_FPR(dst) );
 10378   ins_pipe( fpu_mem_reg_reg );
 10379 %}
 10380 //
 10381 // This instruction does not round to 24-bits
 10382 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
 10383   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10384   match(Set dst (MulF src1 src2));
 10386   format %{ "FLD    $src1\n\t"
 10387             "FMUL   $src2\n\t"
 10388             "FSTP_S $dst"  %}
 10389   opcode(0xD8, 0x1); /* D8 C8+i */
 10390   ins_encode( Push_Reg_FPR(src2),
 10391               OpcReg_FPR(src1),
 10392               Pop_Reg_FPR(dst) );
 10393   ins_pipe( fpu_reg_reg_reg );
 10394 %}
 10397 // Spill to obtain 24-bit precision
 10398 // Cisc-alternate to reg-reg multiply
 10399 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10400   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10401   match(Set dst (MulF src1 (LoadF src2)));
 10403   format %{ "FLD_S  $src2\n\t"
 10404             "FMUL   $src1\n\t"
 10405             "FSTP_S $dst"  %}
 10406   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 10407   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10408               OpcReg_FPR(src1),
 10409               Pop_Mem_FPR(dst) );
 10410   ins_pipe( fpu_mem_reg_mem );
 10411 %}
 10412 //
 10413 // This instruction does not round to 24-bits
 10414 // Cisc-alternate to reg-reg multiply
 10415 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
 10416   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10417   match(Set dst (MulF src1 (LoadF src2)));
 10419   format %{ "FMUL   $dst,$src1,$src2" %}
 10420   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 10421   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10422               OpcReg_FPR(src1),
 10423               Pop_Reg_FPR(dst) );
 10424   ins_pipe( fpu_reg_reg_mem );
 10425 %}
 10427 // Spill to obtain 24-bit precision
 10428 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10429   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10430   match(Set dst (MulF src1 src2));
 10432   format %{ "FMUL   $dst,$src1,$src2" %}
 10433   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 10434   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10435               set_instruction_start,
 10436               OpcP, RMopc_Mem(secondary,src1),
 10437               Pop_Mem_FPR(dst) );
 10438   ins_pipe( fpu_mem_mem_mem );
 10439 %}
 10441 // Spill to obtain 24-bit precision
 10442 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10443   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10444   match(Set dst (MulF src con));
 10446   format %{ "FLD    $src\n\t"
 10447             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10448             "FSTP_S $dst"  %}
 10449   ins_encode %{
 10450     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10451     __ fmul_s($constantaddress($con));
 10452     __ fstp_s(Address(rsp, $dst$$disp));
 10453   %}
 10454   ins_pipe(fpu_mem_reg_con);
 10455 %}
 10456 //
 10457 // This instruction does not round to 24-bits
 10458 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10459   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10460   match(Set dst (MulF src con));
 10462   format %{ "FLD    $src\n\t"
 10463             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10464             "FSTP   $dst"  %}
 10465   ins_encode %{
 10466     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10467     __ fmul_s($constantaddress($con));
 10468     __ fstp_d($dst$$reg);
 10469   %}
 10470   ins_pipe(fpu_reg_reg_con);
 10471 %}
 10474 //
 10475 // MACRO1 -- subsume unshared load into mulFPR
 10476 // This instruction does not round to 24-bits
 10477 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
 10478   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10479   match(Set dst (MulF (LoadF mem1) src));
 10481   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 10482             "FMUL   ST,$src\n\t"
 10483             "FSTP   $dst" %}
 10484   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 10485   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 10486               OpcReg_FPR(src),
 10487               Pop_Reg_FPR(dst) );
 10488   ins_pipe( fpu_reg_reg_mem );
 10489 %}
 10490 //
 10491 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
 10492 // This instruction does not round to 24-bits
 10493 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
 10494   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10495   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 10496   ins_cost(95);
 10498   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 10499             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
 10500             "FADD   ST,$src2\n\t"
 10501             "FSTP   $dst" %}
 10502   opcode(0xD9); /* LoadF D9 /0 */
 10503   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 10504               FMul_ST_reg(src1),
 10505               FAdd_ST_reg(src2),
 10506               Pop_Reg_FPR(dst) );
 10507   ins_pipe( fpu_reg_mem_reg_reg );
 10508 %}
 10510 // MACRO3 -- addFPR a mulFPR
 10511 // This instruction does not round to 24-bits.  It is a '2-address'
 10512 // instruction in that the result goes back to src2.  This eliminates
 10513 // a move from the macro; possibly the register allocator will have
 10514 // to add it back (and maybe not).
 10515 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
 10516   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10517   match(Set src2 (AddF (MulF src0 src1) src2));
 10519   format %{ "FLD    $src0     ===MACRO3===\n\t"
 10520             "FMUL   ST,$src1\n\t"
 10521             "FADDP  $src2,ST" %}
 10522   opcode(0xD9); /* LoadF D9 /0 */
 10523   ins_encode( Push_Reg_FPR(src0),
 10524               FMul_ST_reg(src1),
 10525               FAddP_reg_ST(src2) );
 10526   ins_pipe( fpu_reg_reg_reg );
 10527 %}
 10529 // MACRO4 -- divFPR subFPR
 10530 // This instruction does not round to 24-bits
 10531 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
 10532   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10533   match(Set dst (DivF (SubF src2 src1) src3));
 10535   format %{ "FLD    $src2   ===MACRO4===\n\t"
 10536             "FSUB   ST,$src1\n\t"
 10537             "FDIV   ST,$src3\n\t"
 10538             "FSTP  $dst" %}
 10539   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10540   ins_encode( Push_Reg_FPR(src2),
 10541               subFPR_divFPR_encode(src1,src3),
 10542               Pop_Reg_FPR(dst) );
 10543   ins_pipe( fpu_reg_reg_reg_reg );
 10544 %}
 10546 // Spill to obtain 24-bit precision
 10547 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10548   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10549   match(Set dst (DivF src1 src2));
 10551   format %{ "FDIV   $dst,$src1,$src2" %}
 10552   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 10553   ins_encode( Push_Reg_FPR(src1),
 10554               OpcReg_FPR(src2),
 10555               Pop_Mem_FPR(dst) );
 10556   ins_pipe( fpu_mem_reg_reg );
 10557 %}
 10558 //
 10559 // This instruction does not round to 24-bits
 10560 instruct divFPR_reg(regFPR dst, regFPR src) %{
 10561   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10562   match(Set dst (DivF dst src));
 10564   format %{ "FDIV   $dst,$src" %}
 10565   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10566   ins_encode( Push_Reg_FPR(src),
 10567               OpcP, RegOpc(dst) );
 10568   ins_pipe( fpu_reg_reg );
 10569 %}
 10572 // Spill to obtain 24-bit precision
 10573 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10574   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 10575   match(Set dst (ModF src1 src2));
 10576   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10578   format %{ "FMOD   $dst,$src1,$src2" %}
 10579   ins_encode( Push_Reg_Mod_DPR(src1, src2),
 10580               emitModDPR(),
 10581               Push_Result_Mod_DPR(src2),
 10582               Pop_Mem_FPR(dst));
 10583   ins_pipe( pipe_slow );
 10584 %}
 10585 //
 10586 // This instruction does not round to 24-bits
 10587 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
 10588   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10589   match(Set dst (ModF dst src));
 10590   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10592   format %{ "FMOD   $dst,$src" %}
 10593   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10594               emitModDPR(),
 10595               Push_Result_Mod_DPR(src),
 10596               Pop_Reg_FPR(dst));
 10597   ins_pipe( pipe_slow );
 10598 %}
 10600 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
 10601   predicate(UseSSE>=1);
 10602   match(Set dst (ModF src0 src1));
 10603   effect(KILL rax, KILL cr);
 10604   format %{ "SUB    ESP,4\t # FMOD\n"
 10605           "\tMOVSS  [ESP+0],$src1\n"
 10606           "\tFLD_S  [ESP+0]\n"
 10607           "\tMOVSS  [ESP+0],$src0\n"
 10608           "\tFLD_S  [ESP+0]\n"
 10609      "loop:\tFPREM\n"
 10610           "\tFWAIT\n"
 10611           "\tFNSTSW AX\n"
 10612           "\tSAHF\n"
 10613           "\tJP     loop\n"
 10614           "\tFSTP_S [ESP+0]\n"
 10615           "\tMOVSS  $dst,[ESP+0]\n"
 10616           "\tADD    ESP,4\n"
 10617           "\tFSTP   ST0\t # Restore FPU Stack"
 10618     %}
 10619   ins_cost(250);
 10620   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
 10621   ins_pipe( pipe_slow );
 10622 %}
 10625 //----------Arithmetic Conversion Instructions---------------------------------
 10626 // The conversions operations are all Alpha sorted.  Please keep it that way!
 10628 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
 10629   predicate(UseSSE==0);
 10630   match(Set dst (RoundFloat src));
 10631   ins_cost(125);
 10632   format %{ "FST_S  $dst,$src\t# F-round" %}
 10633   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 10634   ins_pipe( fpu_mem_reg );
 10635 %}
 10637 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
 10638   predicate(UseSSE<=1);
 10639   match(Set dst (RoundDouble src));
 10640   ins_cost(125);
 10641   format %{ "FST_D  $dst,$src\t# D-round" %}
 10642   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 10643   ins_pipe( fpu_mem_reg );
 10644 %}
 10646 // Force rounding to 24-bit precision and 6-bit exponent
 10647 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
 10648   predicate(UseSSE==0);
 10649   match(Set dst (ConvD2F src));
 10650   format %{ "FST_S  $dst,$src\t# F-round" %}
 10651   expand %{
 10652     roundFloat_mem_reg(dst,src);
 10653   %}
 10654 %}
 10656 // Force rounding to 24-bit precision and 6-bit exponent
 10657 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
 10658   predicate(UseSSE==1);
 10659   match(Set dst (ConvD2F src));
 10660   effect( KILL cr );
 10661   format %{ "SUB    ESP,4\n\t"
 10662             "FST_S  [ESP],$src\t# F-round\n\t"
 10663             "MOVSS  $dst,[ESP]\n\t"
 10664             "ADD ESP,4" %}
 10665   ins_encode %{
 10666     __ subptr(rsp, 4);
 10667     if ($src$$reg != FPR1L_enc) {
 10668       __ fld_s($src$$reg-1);
 10669       __ fstp_s(Address(rsp, 0));
 10670     } else {
 10671       __ fst_s(Address(rsp, 0));
 10673     __ movflt($dst$$XMMRegister, Address(rsp, 0));
 10674     __ addptr(rsp, 4);
 10675   %}
 10676   ins_pipe( pipe_slow );
 10677 %}
 10679 // Force rounding double precision to single precision
 10680 instruct convD2F_reg(regF dst, regD src) %{
 10681   predicate(UseSSE>=2);
 10682   match(Set dst (ConvD2F src));
 10683   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 10684   ins_encode %{
 10685     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
 10686   %}
 10687   ins_pipe( pipe_slow );
 10688 %}
 10690 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
 10691   predicate(UseSSE==0);
 10692   match(Set dst (ConvF2D src));
 10693   format %{ "FST_S  $dst,$src\t# D-round" %}
 10694   ins_encode( Pop_Reg_Reg_DPR(dst, src));
 10695   ins_pipe( fpu_reg_reg );
 10696 %}
 10698 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
 10699   predicate(UseSSE==1);
 10700   match(Set dst (ConvF2D src));
 10701   format %{ "FST_D  $dst,$src\t# D-round" %}
 10702   expand %{
 10703     roundDouble_mem_reg(dst,src);
 10704   %}
 10705 %}
 10707 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
 10708   predicate(UseSSE==1);
 10709   match(Set dst (ConvF2D src));
 10710   effect( KILL cr );
 10711   format %{ "SUB    ESP,4\n\t"
 10712             "MOVSS  [ESP] $src\n\t"
 10713             "FLD_S  [ESP]\n\t"
 10714             "ADD    ESP,4\n\t"
 10715             "FSTP   $dst\t# D-round" %}
 10716   ins_encode %{
 10717     __ subptr(rsp, 4);
 10718     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10719     __ fld_s(Address(rsp, 0));
 10720     __ addptr(rsp, 4);
 10721     __ fstp_d($dst$$reg);
 10722   %}
 10723   ins_pipe( pipe_slow );
 10724 %}
 10726 instruct convF2D_reg(regD dst, regF src) %{
 10727   predicate(UseSSE>=2);
 10728   match(Set dst (ConvF2D src));
 10729   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 10730   ins_encode %{
 10731     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
 10732   %}
 10733   ins_pipe( pipe_slow );
 10734 %}
 10736 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10737 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
 10738   predicate(UseSSE<=1);
 10739   match(Set dst (ConvD2I src));
 10740   effect( KILL tmp, KILL cr );
 10741   format %{ "FLD    $src\t# Convert double to int \n\t"
 10742             "FLDCW  trunc mode\n\t"
 10743             "SUB    ESP,4\n\t"
 10744             "FISTp  [ESP + #0]\n\t"
 10745             "FLDCW  std/24-bit mode\n\t"
 10746             "POP    EAX\n\t"
 10747             "CMP    EAX,0x80000000\n\t"
 10748             "JNE,s  fast\n\t"
 10749             "FLD_D  $src\n\t"
 10750             "CALL   d2i_wrapper\n"
 10751       "fast:" %}
 10752   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
 10753   ins_pipe( pipe_slow );
 10754 %}
 10756 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10757 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 10758   predicate(UseSSE>=2);
 10759   match(Set dst (ConvD2I src));
 10760   effect( KILL tmp, KILL cr );
 10761   format %{ "CVTTSD2SI $dst, $src\n\t"
 10762             "CMP    $dst,0x80000000\n\t"
 10763             "JNE,s  fast\n\t"
 10764             "SUB    ESP, 8\n\t"
 10765             "MOVSD  [ESP], $src\n\t"
 10766             "FLD_D  [ESP]\n\t"
 10767             "ADD    ESP, 8\n\t"
 10768             "CALL   d2i_wrapper\n"
 10769       "fast:" %}
 10770   ins_encode %{
 10771     Label fast;
 10772     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
 10773     __ cmpl($dst$$Register, 0x80000000);
 10774     __ jccb(Assembler::notEqual, fast);
 10775     __ subptr(rsp, 8);
 10776     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10777     __ fld_d(Address(rsp, 0));
 10778     __ addptr(rsp, 8);
 10779     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 10780     __ bind(fast);
 10781   %}
 10782   ins_pipe( pipe_slow );
 10783 %}
 10785 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
 10786   predicate(UseSSE<=1);
 10787   match(Set dst (ConvD2L src));
 10788   effect( KILL cr );
 10789   format %{ "FLD    $src\t# Convert double to long\n\t"
 10790             "FLDCW  trunc mode\n\t"
 10791             "SUB    ESP,8\n\t"
 10792             "FISTp  [ESP + #0]\n\t"
 10793             "FLDCW  std/24-bit mode\n\t"
 10794             "POP    EAX\n\t"
 10795             "POP    EDX\n\t"
 10796             "CMP    EDX,0x80000000\n\t"
 10797             "JNE,s  fast\n\t"
 10798             "TEST   EAX,EAX\n\t"
 10799             "JNE,s  fast\n\t"
 10800             "FLD    $src\n\t"
 10801             "CALL   d2l_wrapper\n"
 10802       "fast:" %}
 10803   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
 10804   ins_pipe( pipe_slow );
 10805 %}
 10807 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 10808 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 10809   predicate (UseSSE>=2);
 10810   match(Set dst (ConvD2L src));
 10811   effect( KILL cr );
 10812   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 10813             "MOVSD  [ESP],$src\n\t"
 10814             "FLD_D  [ESP]\n\t"
 10815             "FLDCW  trunc mode\n\t"
 10816             "FISTp  [ESP + #0]\n\t"
 10817             "FLDCW  std/24-bit mode\n\t"
 10818             "POP    EAX\n\t"
 10819             "POP    EDX\n\t"
 10820             "CMP    EDX,0x80000000\n\t"
 10821             "JNE,s  fast\n\t"
 10822             "TEST   EAX,EAX\n\t"
 10823             "JNE,s  fast\n\t"
 10824             "SUB    ESP,8\n\t"
 10825             "MOVSD  [ESP],$src\n\t"
 10826             "FLD_D  [ESP]\n\t"
 10827             "ADD    ESP,8\n\t"
 10828             "CALL   d2l_wrapper\n"
 10829       "fast:" %}
 10830   ins_encode %{
 10831     Label fast;
 10832     __ subptr(rsp, 8);
 10833     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10834     __ fld_d(Address(rsp, 0));
 10835     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 10836     __ fistp_d(Address(rsp, 0));
 10837     // Restore the rounding mode, mask the exception
 10838     if (Compile::current()->in_24_bit_fp_mode()) {
 10839       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 10840     } else {
 10841       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 10843     // Load the converted long, adjust CPU stack
 10844     __ pop(rax);
 10845     __ pop(rdx);
 10846     __ cmpl(rdx, 0x80000000);
 10847     __ jccb(Assembler::notEqual, fast);
 10848     __ testl(rax, rax);
 10849     __ jccb(Assembler::notEqual, fast);
 10850     __ subptr(rsp, 8);
 10851     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10852     __ fld_d(Address(rsp, 0));
 10853     __ addptr(rsp, 8);
 10854     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 10855     __ bind(fast);
 10856   %}
 10857   ins_pipe( pipe_slow );
 10858 %}
 10860 // Convert a double to an int.  Java semantics require we do complex
 10861 // manglations in the corner cases.  So we set the rounding mode to
 10862 // 'zero', store the darned double down as an int, and reset the
 10863 // rounding mode to 'nearest'.  The hardware stores a flag value down
 10864 // if we would overflow or converted a NAN; we check for this and
 10865 // and go the slow path if needed.
 10866 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
 10867   predicate(UseSSE==0);
 10868   match(Set dst (ConvF2I src));
 10869   effect( KILL tmp, KILL cr );
 10870   format %{ "FLD    $src\t# Convert float to int \n\t"
 10871             "FLDCW  trunc mode\n\t"
 10872             "SUB    ESP,4\n\t"
 10873             "FISTp  [ESP + #0]\n\t"
 10874             "FLDCW  std/24-bit mode\n\t"
 10875             "POP    EAX\n\t"
 10876             "CMP    EAX,0x80000000\n\t"
 10877             "JNE,s  fast\n\t"
 10878             "FLD    $src\n\t"
 10879             "CALL   d2i_wrapper\n"
 10880       "fast:" %}
 10881   // DPR2I_encoding works for FPR2I
 10882   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
 10883   ins_pipe( pipe_slow );
 10884 %}
 10886 // Convert a float in xmm to an int reg.
 10887 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 10888   predicate(UseSSE>=1);
 10889   match(Set dst (ConvF2I src));
 10890   effect( KILL tmp, KILL cr );
 10891   format %{ "CVTTSS2SI $dst, $src\n\t"
 10892             "CMP    $dst,0x80000000\n\t"
 10893             "JNE,s  fast\n\t"
 10894             "SUB    ESP, 4\n\t"
 10895             "MOVSS  [ESP], $src\n\t"
 10896             "FLD    [ESP]\n\t"
 10897             "ADD    ESP, 4\n\t"
 10898             "CALL   d2i_wrapper\n"
 10899       "fast:" %}
 10900   ins_encode %{
 10901     Label fast;
 10902     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
 10903     __ cmpl($dst$$Register, 0x80000000);
 10904     __ jccb(Assembler::notEqual, fast);
 10905     __ subptr(rsp, 4);
 10906     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10907     __ fld_s(Address(rsp, 0));
 10908     __ addptr(rsp, 4);
 10909     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 10910     __ bind(fast);
 10911   %}
 10912   ins_pipe( pipe_slow );
 10913 %}
 10915 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
 10916   predicate(UseSSE==0);
 10917   match(Set dst (ConvF2L src));
 10918   effect( KILL cr );
 10919   format %{ "FLD    $src\t# Convert float to long\n\t"
 10920             "FLDCW  trunc mode\n\t"
 10921             "SUB    ESP,8\n\t"
 10922             "FISTp  [ESP + #0]\n\t"
 10923             "FLDCW  std/24-bit mode\n\t"
 10924             "POP    EAX\n\t"
 10925             "POP    EDX\n\t"
 10926             "CMP    EDX,0x80000000\n\t"
 10927             "JNE,s  fast\n\t"
 10928             "TEST   EAX,EAX\n\t"
 10929             "JNE,s  fast\n\t"
 10930             "FLD    $src\n\t"
 10931             "CALL   d2l_wrapper\n"
 10932       "fast:" %}
 10933   // DPR2L_encoding works for FPR2L
 10934   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
 10935   ins_pipe( pipe_slow );
 10936 %}
 10938 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 10939 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 10940   predicate (UseSSE>=1);
 10941   match(Set dst (ConvF2L src));
 10942   effect( KILL cr );
 10943   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 10944             "MOVSS  [ESP],$src\n\t"
 10945             "FLD_S  [ESP]\n\t"
 10946             "FLDCW  trunc mode\n\t"
 10947             "FISTp  [ESP + #0]\n\t"
 10948             "FLDCW  std/24-bit mode\n\t"
 10949             "POP    EAX\n\t"
 10950             "POP    EDX\n\t"
 10951             "CMP    EDX,0x80000000\n\t"
 10952             "JNE,s  fast\n\t"
 10953             "TEST   EAX,EAX\n\t"
 10954             "JNE,s  fast\n\t"
 10955             "SUB    ESP,4\t# Convert float to long\n\t"
 10956             "MOVSS  [ESP],$src\n\t"
 10957             "FLD_S  [ESP]\n\t"
 10958             "ADD    ESP,4\n\t"
 10959             "CALL   d2l_wrapper\n"
 10960       "fast:" %}
 10961   ins_encode %{
 10962     Label fast;
 10963     __ subptr(rsp, 8);
 10964     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10965     __ fld_s(Address(rsp, 0));
 10966     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 10967     __ fistp_d(Address(rsp, 0));
 10968     // Restore the rounding mode, mask the exception
 10969     if (Compile::current()->in_24_bit_fp_mode()) {
 10970       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 10971     } else {
 10972       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 10974     // Load the converted long, adjust CPU stack
 10975     __ pop(rax);
 10976     __ pop(rdx);
 10977     __ cmpl(rdx, 0x80000000);
 10978     __ jccb(Assembler::notEqual, fast);
 10979     __ testl(rax, rax);
 10980     __ jccb(Assembler::notEqual, fast);
 10981     __ subptr(rsp, 4);
 10982     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10983     __ fld_s(Address(rsp, 0));
 10984     __ addptr(rsp, 4);
 10985     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 10986     __ bind(fast);
 10987   %}
 10988   ins_pipe( pipe_slow );
 10989 %}
 10991 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
 10992   predicate( UseSSE<=1 );
 10993   match(Set dst (ConvI2D src));
 10994   format %{ "FILD   $src\n\t"
 10995             "FSTP   $dst" %}
 10996   opcode(0xDB, 0x0);  /* DB /0 */
 10997   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
 10998   ins_pipe( fpu_reg_mem );
 10999 %}
 11001 instruct convI2D_reg(regD dst, rRegI src) %{
 11002   predicate( UseSSE>=2 && !UseXmmI2D );
 11003   match(Set dst (ConvI2D src));
 11004   format %{ "CVTSI2SD $dst,$src" %}
 11005   ins_encode %{
 11006     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
 11007   %}
 11008   ins_pipe( pipe_slow );
 11009 %}
 11011 instruct convI2D_mem(regD dst, memory mem) %{
 11012   predicate( UseSSE>=2 );
 11013   match(Set dst (ConvI2D (LoadI mem)));
 11014   format %{ "CVTSI2SD $dst,$mem" %}
 11015   ins_encode %{
 11016     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
 11017   %}
 11018   ins_pipe( pipe_slow );
 11019 %}
 11021 instruct convXI2D_reg(regD dst, rRegI src)
 11022 %{
 11023   predicate( UseSSE>=2 && UseXmmI2D );
 11024   match(Set dst (ConvI2D src));
 11026   format %{ "MOVD  $dst,$src\n\t"
 11027             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11028   ins_encode %{
 11029     __ movdl($dst$$XMMRegister, $src$$Register);
 11030     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11031   %}
 11032   ins_pipe(pipe_slow); // XXX
 11033 %}
 11035 instruct convI2DPR_mem(regDPR dst, memory mem) %{
 11036   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11037   match(Set dst (ConvI2D (LoadI mem)));
 11038   format %{ "FILD   $mem\n\t"
 11039             "FSTP   $dst" %}
 11040   opcode(0xDB);      /* DB /0 */
 11041   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11042               Pop_Reg_DPR(dst));
 11043   ins_pipe( fpu_reg_mem );
 11044 %}
 11046 // Convert a byte to a float; no rounding step needed.
 11047 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
 11048   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11049   match(Set dst (ConvI2F src));
 11050   format %{ "FILD   $src\n\t"
 11051             "FSTP   $dst" %}
 11053   opcode(0xDB, 0x0);  /* DB /0 */
 11054   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
 11055   ins_pipe( fpu_reg_mem );
 11056 %}
 11058 // In 24-bit mode, force exponent rounding by storing back out
 11059 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
 11060   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11061   match(Set dst (ConvI2F src));
 11062   ins_cost(200);
 11063   format %{ "FILD   $src\n\t"
 11064             "FSTP_S $dst" %}
 11065   opcode(0xDB, 0x0);  /* DB /0 */
 11066   ins_encode( Push_Mem_I(src),
 11067               Pop_Mem_FPR(dst));
 11068   ins_pipe( fpu_mem_mem );
 11069 %}
 11071 // In 24-bit mode, force exponent rounding by storing back out
 11072 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
 11073   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11074   match(Set dst (ConvI2F (LoadI mem)));
 11075   ins_cost(200);
 11076   format %{ "FILD   $mem\n\t"
 11077             "FSTP_S $dst" %}
 11078   opcode(0xDB);  /* DB /0 */
 11079   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11080               Pop_Mem_FPR(dst));
 11081   ins_pipe( fpu_mem_mem );
 11082 %}
 11084 // This instruction does not round to 24-bits
 11085 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
 11086   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11087   match(Set dst (ConvI2F src));
 11088   format %{ "FILD   $src\n\t"
 11089             "FSTP   $dst" %}
 11090   opcode(0xDB, 0x0);  /* DB /0 */
 11091   ins_encode( Push_Mem_I(src),
 11092               Pop_Reg_FPR(dst));
 11093   ins_pipe( fpu_reg_mem );
 11094 %}
 11096 // This instruction does not round to 24-bits
 11097 instruct convI2FPR_mem(regFPR dst, memory mem) %{
 11098   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11099   match(Set dst (ConvI2F (LoadI mem)));
 11100   format %{ "FILD   $mem\n\t"
 11101             "FSTP   $dst" %}
 11102   opcode(0xDB);      /* DB /0 */
 11103   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11104               Pop_Reg_FPR(dst));
 11105   ins_pipe( fpu_reg_mem );
 11106 %}
 11108 // Convert an int to a float in xmm; no rounding step needed.
 11109 instruct convI2F_reg(regF dst, rRegI src) %{
 11110   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11111   match(Set dst (ConvI2F src));
 11112   format %{ "CVTSI2SS $dst, $src" %}
 11113   ins_encode %{
 11114     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
 11115   %}
 11116   ins_pipe( pipe_slow );
 11117 %}
 11119  instruct convXI2F_reg(regF dst, rRegI src)
 11120 %{
 11121   predicate( UseSSE>=2 && UseXmmI2F );
 11122   match(Set dst (ConvI2F src));
 11124   format %{ "MOVD  $dst,$src\n\t"
 11125             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11126   ins_encode %{
 11127     __ movdl($dst$$XMMRegister, $src$$Register);
 11128     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11129   %}
 11130   ins_pipe(pipe_slow); // XXX
 11131 %}
 11133 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
 11134   match(Set dst (ConvI2L src));
 11135   effect(KILL cr);
 11136   ins_cost(375);
 11137   format %{ "MOV    $dst.lo,$src\n\t"
 11138             "MOV    $dst.hi,$src\n\t"
 11139             "SAR    $dst.hi,31" %}
 11140   ins_encode(convert_int_long(dst,src));
 11141   ins_pipe( ialu_reg_reg_long );
 11142 %}
 11144 // Zero-extend convert int to long
 11145 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11146   match(Set dst (AndL (ConvI2L src) mask) );
 11147   effect( KILL flags );
 11148   ins_cost(250);
 11149   format %{ "MOV    $dst.lo,$src\n\t"
 11150             "XOR    $dst.hi,$dst.hi" %}
 11151   opcode(0x33); // XOR
 11152   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11153   ins_pipe( ialu_reg_reg_long );
 11154 %}
 11156 // Zero-extend long
 11157 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11158   match(Set dst (AndL src mask) );
 11159   effect( KILL flags );
 11160   ins_cost(250);
 11161   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11162             "XOR    $dst.hi,$dst.hi\n\t" %}
 11163   opcode(0x33); // XOR
 11164   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11165   ins_pipe( ialu_reg_reg_long );
 11166 %}
 11168 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11169   predicate (UseSSE<=1);
 11170   match(Set dst (ConvL2D src));
 11171   effect( KILL cr );
 11172   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11173             "PUSH   $src.lo\n\t"
 11174             "FILD   ST,[ESP + #0]\n\t"
 11175             "ADD    ESP,8\n\t"
 11176             "FSTP_D $dst\t# D-round" %}
 11177   opcode(0xDF, 0x5);  /* DF /5 */
 11178   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
 11179   ins_pipe( pipe_slow );
 11180 %}
 11182 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
 11183   predicate (UseSSE>=2);
 11184   match(Set dst (ConvL2D src));
 11185   effect( KILL cr );
 11186   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11187             "PUSH   $src.lo\n\t"
 11188             "FILD_D [ESP]\n\t"
 11189             "FSTP_D [ESP]\n\t"
 11190             "MOVSD  $dst,[ESP]\n\t"
 11191             "ADD    ESP,8" %}
 11192   opcode(0xDF, 0x5);  /* DF /5 */
 11193   ins_encode(convert_long_double2(src), Push_ResultD(dst));
 11194   ins_pipe( pipe_slow );
 11195 %}
 11197 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
 11198   predicate (UseSSE>=1);
 11199   match(Set dst (ConvL2F src));
 11200   effect( KILL cr );
 11201   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11202             "PUSH   $src.lo\n\t"
 11203             "FILD_D [ESP]\n\t"
 11204             "FSTP_S [ESP]\n\t"
 11205             "MOVSS  $dst,[ESP]\n\t"
 11206             "ADD    ESP,8" %}
 11207   opcode(0xDF, 0x5);  /* DF /5 */
 11208   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
 11209   ins_pipe( pipe_slow );
 11210 %}
 11212 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11213   match(Set dst (ConvL2F src));
 11214   effect( KILL cr );
 11215   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11216             "PUSH   $src.lo\n\t"
 11217             "FILD   ST,[ESP + #0]\n\t"
 11218             "ADD    ESP,8\n\t"
 11219             "FSTP_S $dst\t# F-round" %}
 11220   opcode(0xDF, 0x5);  /* DF /5 */
 11221   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
 11222   ins_pipe( pipe_slow );
 11223 %}
 11225 instruct convL2I_reg( rRegI dst, eRegL src ) %{
 11226   match(Set dst (ConvL2I src));
 11227   effect( DEF dst, USE src );
 11228   format %{ "MOV    $dst,$src.lo" %}
 11229   ins_encode(enc_CopyL_Lo(dst,src));
 11230   ins_pipe( ialu_reg_reg );
 11231 %}
 11234 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
 11235   match(Set dst (MoveF2I src));
 11236   effect( DEF dst, USE src );
 11237   ins_cost(100);
 11238   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11239   ins_encode %{
 11240     __ movl($dst$$Register, Address(rsp, $src$$disp));
 11241   %}
 11242   ins_pipe( ialu_reg_mem );
 11243 %}
 11245 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
 11246   predicate(UseSSE==0);
 11247   match(Set dst (MoveF2I src));
 11248   effect( DEF dst, USE src );
 11250   ins_cost(125);
 11251   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11252   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 11253   ins_pipe( fpu_mem_reg );
 11254 %}
 11256 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
 11257   predicate(UseSSE>=1);
 11258   match(Set dst (MoveF2I src));
 11259   effect( DEF dst, USE src );
 11261   ins_cost(95);
 11262   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11263   ins_encode %{
 11264     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11265   %}
 11266   ins_pipe( pipe_slow );
 11267 %}
 11269 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
 11270   predicate(UseSSE>=2);
 11271   match(Set dst (MoveF2I src));
 11272   effect( DEF dst, USE src );
 11273   ins_cost(85);
 11274   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11275   ins_encode %{
 11276     __ movdl($dst$$Register, $src$$XMMRegister);
 11277   %}
 11278   ins_pipe( pipe_slow );
 11279 %}
 11281 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
 11282   match(Set dst (MoveI2F src));
 11283   effect( DEF dst, USE src );
 11285   ins_cost(100);
 11286   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11287   ins_encode %{
 11288     __ movl(Address(rsp, $dst$$disp), $src$$Register);
 11289   %}
 11290   ins_pipe( ialu_mem_reg );
 11291 %}
 11294 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
 11295   predicate(UseSSE==0);
 11296   match(Set dst (MoveI2F src));
 11297   effect(DEF dst, USE src);
 11299   ins_cost(125);
 11300   format %{ "FLD_S  $src\n\t"
 11301             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11302   opcode(0xD9);               /* D9 /0, FLD m32real */
 11303   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11304               Pop_Reg_FPR(dst) );
 11305   ins_pipe( fpu_reg_mem );
 11306 %}
 11308 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
 11309   predicate(UseSSE>=1);
 11310   match(Set dst (MoveI2F src));
 11311   effect( DEF dst, USE src );
 11313   ins_cost(95);
 11314   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11315   ins_encode %{
 11316     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
 11317   %}
 11318   ins_pipe( pipe_slow );
 11319 %}
 11321 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
 11322   predicate(UseSSE>=2);
 11323   match(Set dst (MoveI2F src));
 11324   effect( DEF dst, USE src );
 11326   ins_cost(85);
 11327   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11328   ins_encode %{
 11329     __ movdl($dst$$XMMRegister, $src$$Register);
 11330   %}
 11331   ins_pipe( pipe_slow );
 11332 %}
 11334 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11335   match(Set dst (MoveD2L src));
 11336   effect(DEF dst, USE src);
 11338   ins_cost(250);
 11339   format %{ "MOV    $dst.lo,$src\n\t"
 11340             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11341   opcode(0x8B, 0x8B);
 11342   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11343   ins_pipe( ialu_mem_long_reg );
 11344 %}
 11346 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
 11347   predicate(UseSSE<=1);
 11348   match(Set dst (MoveD2L src));
 11349   effect(DEF dst, USE src);
 11351   ins_cost(125);
 11352   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11353   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11354   ins_pipe( fpu_mem_reg );
 11355 %}
 11357 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
 11358   predicate(UseSSE>=2);
 11359   match(Set dst (MoveD2L src));
 11360   effect(DEF dst, USE src);
 11361   ins_cost(95);
 11362   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11363   ins_encode %{
 11364     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11365   %}
 11366   ins_pipe( pipe_slow );
 11367 %}
 11369 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
 11370   predicate(UseSSE>=2);
 11371   match(Set dst (MoveD2L src));
 11372   effect(DEF dst, USE src, TEMP tmp);
 11373   ins_cost(85);
 11374   format %{ "MOVD   $dst.lo,$src\n\t"
 11375             "PSHUFLW $tmp,$src,0x4E\n\t"
 11376             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11377   ins_encode %{
 11378     __ movdl($dst$$Register, $src$$XMMRegister);
 11379     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
 11380     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
 11381   %}
 11382   ins_pipe( pipe_slow );
 11383 %}
 11385 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11386   match(Set dst (MoveL2D src));
 11387   effect(DEF dst, USE src);
 11389   ins_cost(200);
 11390   format %{ "MOV    $dst,$src.lo\n\t"
 11391             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11392   opcode(0x89, 0x89);
 11393   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11394   ins_pipe( ialu_mem_long_reg );
 11395 %}
 11398 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
 11399   predicate(UseSSE<=1);
 11400   match(Set dst (MoveL2D src));
 11401   effect(DEF dst, USE src);
 11402   ins_cost(125);
 11404   format %{ "FLD_D  $src\n\t"
 11405             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11406   opcode(0xDD);               /* DD /0, FLD m64real */
 11407   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11408               Pop_Reg_DPR(dst) );
 11409   ins_pipe( fpu_reg_mem );
 11410 %}
 11413 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
 11414   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11415   match(Set dst (MoveL2D src));
 11416   effect(DEF dst, USE src);
 11418   ins_cost(95);
 11419   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11420   ins_encode %{
 11421     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11422   %}
 11423   ins_pipe( pipe_slow );
 11424 %}
 11426 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
 11427   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11428   match(Set dst (MoveL2D src));
 11429   effect(DEF dst, USE src);
 11431   ins_cost(95);
 11432   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11433   ins_encode %{
 11434     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11435   %}
 11436   ins_pipe( pipe_slow );
 11437 %}
 11439 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
 11440   predicate(UseSSE>=2);
 11441   match(Set dst (MoveL2D src));
 11442   effect(TEMP dst, USE src, TEMP tmp);
 11443   ins_cost(85);
 11444   format %{ "MOVD   $dst,$src.lo\n\t"
 11445             "MOVD   $tmp,$src.hi\n\t"
 11446             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11447   ins_encode %{
 11448     __ movdl($dst$$XMMRegister, $src$$Register);
 11449     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
 11450     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
 11451   %}
 11452   ins_pipe( pipe_slow );
 11453 %}
 11456 // =======================================================================
 11457 // fast clearing of an array
 11458 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11459   predicate(!UseFastStosb);
 11460   match(Set dummy (ClearArray cnt base));
 11461   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11462   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
 11463             "SHL    ECX,1\t# Convert doublewords to words\n\t"
 11464             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 11465   ins_encode %{ 
 11466     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
 11467   %}
 11468   ins_pipe( pipe_slow );
 11469 %}
 11471 instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11472   predicate(UseFastStosb);
 11473   match(Set dummy (ClearArray cnt base));
 11474   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11475   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
 11476             "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
 11477             "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
 11478   ins_encode %{ 
 11479     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
 11480   %}
 11481   ins_pipe( pipe_slow );
 11482 %}
 11484 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
 11485                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
 11486   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11487   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 11489   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
 11490   ins_encode %{
 11491     __ string_compare($str1$$Register, $str2$$Register,
 11492                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 11493                       $tmp1$$XMMRegister);
 11494   %}
 11495   ins_pipe( pipe_slow );
 11496 %}
 11498 // fast string equals
 11499 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 11500                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 11501   match(Set result (StrEquals (Binary str1 str2) cnt));
 11502   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 11504   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 11505   ins_encode %{
 11506     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 11507                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 11508                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11509   %}
 11510   ins_pipe( pipe_slow );
 11511 %}
 11513 // fast search of substring with known size.
 11514 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
 11515                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
 11516   predicate(UseSSE42Intrinsics);
 11517   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
 11518   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
 11520   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
 11521   ins_encode %{
 11522     int icnt2 = (int)$int_cnt2$$constant;
 11523     if (icnt2 >= 8) {
 11524       // IndexOf for constant substrings with size >= 8 elements
 11525       // which don't need to be loaded through stack.
 11526       __ string_indexofC8($str1$$Register, $str2$$Register,
 11527                           $cnt1$$Register, $cnt2$$Register,
 11528                           icnt2, $result$$Register,
 11529                           $vec$$XMMRegister, $tmp$$Register);
 11530     } else {
 11531       // Small strings are loaded through stack if they cross page boundary.
 11532       __ string_indexof($str1$$Register, $str2$$Register,
 11533                         $cnt1$$Register, $cnt2$$Register,
 11534                         icnt2, $result$$Register,
 11535                         $vec$$XMMRegister, $tmp$$Register);
 11537   %}
 11538   ins_pipe( pipe_slow );
 11539 %}
 11541 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 11542                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
 11543   predicate(UseSSE42Intrinsics);
 11544   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 11545   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
 11547   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
 11548   ins_encode %{
 11549     __ string_indexof($str1$$Register, $str2$$Register,
 11550                       $cnt1$$Register, $cnt2$$Register,
 11551                       (-1), $result$$Register,
 11552                       $vec$$XMMRegister, $tmp$$Register);
 11553   %}
 11554   ins_pipe( pipe_slow );
 11555 %}
 11557 // fast array equals
 11558 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 11559                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 11560 %{
 11561   match(Set result (AryEq ary1 ary2));
 11562   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 11563   //ins_cost(300);
 11565   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 11566   ins_encode %{
 11567     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 11568                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 11569                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11570   %}
 11571   ins_pipe( pipe_slow );
 11572 %}
 11574 // encode char[] to byte[] in ISO_8859_1
 11575 instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
 11576                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
 11577                           eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
 11578   match(Set result (EncodeISOArray src (Binary dst len)));
 11579   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
 11581   format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
 11582   ins_encode %{
 11583     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
 11584                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
 11585                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
 11586   %}
 11587   ins_pipe( pipe_slow );
 11588 %}
 11591 //----------Control Flow Instructions------------------------------------------
 11592 // Signed compare Instructions
 11593 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
 11594   match(Set cr (CmpI op1 op2));
 11595   effect( DEF cr, USE op1, USE op2 );
 11596   format %{ "CMP    $op1,$op2" %}
 11597   opcode(0x3B);  /* Opcode 3B /r */
 11598   ins_encode( OpcP, RegReg( op1, op2) );
 11599   ins_pipe( ialu_cr_reg_reg );
 11600 %}
 11602 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
 11603   match(Set cr (CmpI op1 op2));
 11604   effect( DEF cr, USE op1 );
 11605   format %{ "CMP    $op1,$op2" %}
 11606   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11607   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 11608   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11609   ins_pipe( ialu_cr_reg_imm );
 11610 %}
 11612 // Cisc-spilled version of cmpI_eReg
 11613 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
 11614   match(Set cr (CmpI op1 (LoadI op2)));
 11616   format %{ "CMP    $op1,$op2" %}
 11617   ins_cost(500);
 11618   opcode(0x3B);  /* Opcode 3B /r */
 11619   ins_encode( OpcP, RegMem( op1, op2) );
 11620   ins_pipe( ialu_cr_reg_mem );
 11621 %}
 11623 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
 11624   match(Set cr (CmpI src zero));
 11625   effect( DEF cr, USE src );
 11627   format %{ "TEST   $src,$src" %}
 11628   opcode(0x85);
 11629   ins_encode( OpcP, RegReg( src, src ) );
 11630   ins_pipe( ialu_cr_reg_imm );
 11631 %}
 11633 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
 11634   match(Set cr (CmpI (AndI src con) zero));
 11636   format %{ "TEST   $src,$con" %}
 11637   opcode(0xF7,0x00);
 11638   ins_encode( OpcP, RegOpc(src), Con32(con) );
 11639   ins_pipe( ialu_cr_reg_imm );
 11640 %}
 11642 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
 11643   match(Set cr (CmpI (AndI src mem) zero));
 11645   format %{ "TEST   $src,$mem" %}
 11646   opcode(0x85);
 11647   ins_encode( OpcP, RegMem( src, mem ) );
 11648   ins_pipe( ialu_cr_reg_mem );
 11649 %}
 11651 // Unsigned compare Instructions; really, same as signed except they
 11652 // produce an eFlagsRegU instead of eFlagsReg.
 11653 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
 11654   match(Set cr (CmpU op1 op2));
 11656   format %{ "CMPu   $op1,$op2" %}
 11657   opcode(0x3B);  /* Opcode 3B /r */
 11658   ins_encode( OpcP, RegReg( op1, op2) );
 11659   ins_pipe( ialu_cr_reg_reg );
 11660 %}
 11662 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
 11663   match(Set cr (CmpU op1 op2));
 11665   format %{ "CMPu   $op1,$op2" %}
 11666   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11667   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11668   ins_pipe( ialu_cr_reg_imm );
 11669 %}
 11671 // // Cisc-spilled version of cmpU_eReg
 11672 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
 11673   match(Set cr (CmpU op1 (LoadI op2)));
 11675   format %{ "CMPu   $op1,$op2" %}
 11676   ins_cost(500);
 11677   opcode(0x3B);  /* Opcode 3B /r */
 11678   ins_encode( OpcP, RegMem( op1, op2) );
 11679   ins_pipe( ialu_cr_reg_mem );
 11680 %}
 11682 // // Cisc-spilled version of cmpU_eReg
 11683 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
 11684 //  match(Set cr (CmpU (LoadI op1) op2));
 11685 //
 11686 //  format %{ "CMPu   $op1,$op2" %}
 11687 //  ins_cost(500);
 11688 //  opcode(0x39);  /* Opcode 39 /r */
 11689 //  ins_encode( OpcP, RegMem( op1, op2) );
 11690 //%}
 11692 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
 11693   match(Set cr (CmpU src zero));
 11695   format %{ "TESTu  $src,$src" %}
 11696   opcode(0x85);
 11697   ins_encode( OpcP, RegReg( src, src ) );
 11698   ins_pipe( ialu_cr_reg_imm );
 11699 %}
 11701 // Unsigned pointer compare Instructions
 11702 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 11703   match(Set cr (CmpP op1 op2));
 11705   format %{ "CMPu   $op1,$op2" %}
 11706   opcode(0x3B);  /* Opcode 3B /r */
 11707   ins_encode( OpcP, RegReg( op1, op2) );
 11708   ins_pipe( ialu_cr_reg_reg );
 11709 %}
 11711 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 11712   match(Set cr (CmpP op1 op2));
 11714   format %{ "CMPu   $op1,$op2" %}
 11715   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11716   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11717   ins_pipe( ialu_cr_reg_imm );
 11718 %}
 11720 // // Cisc-spilled version of cmpP_eReg
 11721 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 11722   match(Set cr (CmpP op1 (LoadP op2)));
 11724   format %{ "CMPu   $op1,$op2" %}
 11725   ins_cost(500);
 11726   opcode(0x3B);  /* Opcode 3B /r */
 11727   ins_encode( OpcP, RegMem( op1, op2) );
 11728   ins_pipe( ialu_cr_reg_mem );
 11729 %}
 11731 // // Cisc-spilled version of cmpP_eReg
 11732 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 11733 //  match(Set cr (CmpP (LoadP op1) op2));
 11734 //
 11735 //  format %{ "CMPu   $op1,$op2" %}
 11736 //  ins_cost(500);
 11737 //  opcode(0x39);  /* Opcode 39 /r */
 11738 //  ins_encode( OpcP, RegMem( op1, op2) );
 11739 //%}
 11741 // Compare raw pointer (used in out-of-heap check).
 11742 // Only works because non-oop pointers must be raw pointers
 11743 // and raw pointers have no anti-dependencies.
 11744 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 11745   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
 11746   match(Set cr (CmpP op1 (LoadP op2)));
 11748   format %{ "CMPu   $op1,$op2" %}
 11749   opcode(0x3B);  /* Opcode 3B /r */
 11750   ins_encode( OpcP, RegMem( op1, op2) );
 11751   ins_pipe( ialu_cr_reg_mem );
 11752 %}
 11754 //
 11755 // This will generate a signed flags result. This should be ok
 11756 // since any compare to a zero should be eq/neq.
 11757 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 11758   match(Set cr (CmpP src zero));
 11760   format %{ "TEST   $src,$src" %}
 11761   opcode(0x85);
 11762   ins_encode( OpcP, RegReg( src, src ) );
 11763   ins_pipe( ialu_cr_reg_imm );
 11764 %}
 11766 // Cisc-spilled version of testP_reg
 11767 // This will generate a signed flags result. This should be ok
 11768 // since any compare to a zero should be eq/neq.
 11769 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 11770   match(Set cr (CmpP (LoadP op) zero));
 11772   format %{ "TEST   $op,0xFFFFFFFF" %}
 11773   ins_cost(500);
 11774   opcode(0xF7);               /* Opcode F7 /0 */
 11775   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 11776   ins_pipe( ialu_cr_reg_imm );
 11777 %}
 11779 // Yanked all unsigned pointer compare operations.
 11780 // Pointer compares are done with CmpP which is already unsigned.
 11782 //----------Max and Min--------------------------------------------------------
 11783 // Min Instructions
 11784 ////
 11785 //   *** Min and Max using the conditional move are slower than the
 11786 //   *** branch version on a Pentium III.
 11787 // // Conditional move for min
 11788 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11789 //  effect( USE_DEF op2, USE op1, USE cr );
 11790 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 11791 //  opcode(0x4C,0x0F);
 11792 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11793 //  ins_pipe( pipe_cmov_reg );
 11794 //%}
 11795 //
 11796 //// Min Register with Register (P6 version)
 11797 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11798 //  predicate(VM_Version::supports_cmov() );
 11799 //  match(Set op2 (MinI op1 op2));
 11800 //  ins_cost(200);
 11801 //  expand %{
 11802 //    eFlagsReg cr;
 11803 //    compI_eReg(cr,op1,op2);
 11804 //    cmovI_reg_lt(op2,op1,cr);
 11805 //  %}
 11806 //%}
 11808 // Min Register with Register (generic version)
 11809 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11810   match(Set dst (MinI dst src));
 11811   effect(KILL flags);
 11812   ins_cost(300);
 11814   format %{ "MIN    $dst,$src" %}
 11815   opcode(0xCC);
 11816   ins_encode( min_enc(dst,src) );
 11817   ins_pipe( pipe_slow );
 11818 %}
 11820 // Max Register with Register
 11821 //   *** Min and Max using the conditional move are slower than the
 11822 //   *** branch version on a Pentium III.
 11823 // // Conditional move for max
 11824 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11825 //  effect( USE_DEF op2, USE op1, USE cr );
 11826 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 11827 //  opcode(0x4F,0x0F);
 11828 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11829 //  ins_pipe( pipe_cmov_reg );
 11830 //%}
 11831 //
 11832 // // Max Register with Register (P6 version)
 11833 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11834 //  predicate(VM_Version::supports_cmov() );
 11835 //  match(Set op2 (MaxI op1 op2));
 11836 //  ins_cost(200);
 11837 //  expand %{
 11838 //    eFlagsReg cr;
 11839 //    compI_eReg(cr,op1,op2);
 11840 //    cmovI_reg_gt(op2,op1,cr);
 11841 //  %}
 11842 //%}
 11844 // Max Register with Register (generic version)
 11845 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11846   match(Set dst (MaxI dst src));
 11847   effect(KILL flags);
 11848   ins_cost(300);
 11850   format %{ "MAX    $dst,$src" %}
 11851   opcode(0xCC);
 11852   ins_encode( max_enc(dst,src) );
 11853   ins_pipe( pipe_slow );
 11854 %}
 11856 // ============================================================================
 11857 // Counted Loop limit node which represents exact final iterator value.
 11858 // Note: the resulting value should fit into integer range since
 11859 // counted loops have limit check on overflow.
 11860 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
 11861   match(Set limit (LoopLimit (Binary init limit) stride));
 11862   effect(TEMP limit_hi, TEMP tmp, KILL flags);
 11863   ins_cost(300);
 11865   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
 11866   ins_encode %{
 11867     int strd = (int)$stride$$constant;
 11868     assert(strd != 1 && strd != -1, "sanity");
 11869     int m1 = (strd > 0) ? 1 : -1;
 11870     // Convert limit to long (EAX:EDX)
 11871     __ cdql();
 11872     // Convert init to long (init:tmp)
 11873     __ movl($tmp$$Register, $init$$Register);
 11874     __ sarl($tmp$$Register, 31);
 11875     // $limit - $init
 11876     __ subl($limit$$Register, $init$$Register);
 11877     __ sbbl($limit_hi$$Register, $tmp$$Register);
 11878     // + ($stride - 1)
 11879     if (strd > 0) {
 11880       __ addl($limit$$Register, (strd - 1));
 11881       __ adcl($limit_hi$$Register, 0);
 11882       __ movl($tmp$$Register, strd);
 11883     } else {
 11884       __ addl($limit$$Register, (strd + 1));
 11885       __ adcl($limit_hi$$Register, -1);
 11886       __ lneg($limit_hi$$Register, $limit$$Register);
 11887       __ movl($tmp$$Register, -strd);
 11889     // signed devision: (EAX:EDX) / pos_stride
 11890     __ idivl($tmp$$Register);
 11891     if (strd < 0) {
 11892       // restore sign
 11893       __ negl($tmp$$Register);
 11895     // (EAX) * stride
 11896     __ mull($tmp$$Register);
 11897     // + init (ignore upper bits)
 11898     __ addl($limit$$Register, $init$$Register);
 11899   %}
 11900   ins_pipe( pipe_slow );
 11901 %}
 11903 // ============================================================================
 11904 // Branch Instructions
 11905 // Jump Table
 11906 instruct jumpXtnd(rRegI switch_val) %{
 11907   match(Jump switch_val);
 11908   ins_cost(350);
 11909   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 11910   ins_encode %{
 11911     // Jump to Address(table_base + switch_reg)
 11912     Address index(noreg, $switch_val$$Register, Address::times_1);
 11913     __ jump(ArrayAddress($constantaddress, index));
 11914   %}
 11915   ins_pipe(pipe_jmp);
 11916 %}
 11918 // Jump Direct - Label defines a relative address from JMP+1
 11919 instruct jmpDir(label labl) %{
 11920   match(Goto);
 11921   effect(USE labl);
 11923   ins_cost(300);
 11924   format %{ "JMP    $labl" %}
 11925   size(5);
 11926   ins_encode %{
 11927     Label* L = $labl$$label;
 11928     __ jmp(*L, false); // Always long jump
 11929   %}
 11930   ins_pipe( pipe_jmp );
 11931 %}
 11933 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11934 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 11935   match(If cop cr);
 11936   effect(USE labl);
 11938   ins_cost(300);
 11939   format %{ "J$cop    $labl" %}
 11940   size(6);
 11941   ins_encode %{
 11942     Label* L = $labl$$label;
 11943     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 11944   %}
 11945   ins_pipe( pipe_jcc );
 11946 %}
 11948 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11949 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 11950   match(CountedLoopEnd cop cr);
 11951   effect(USE labl);
 11953   ins_cost(300);
 11954   format %{ "J$cop    $labl\t# Loop end" %}
 11955   size(6);
 11956   ins_encode %{
 11957     Label* L = $labl$$label;
 11958     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 11959   %}
 11960   ins_pipe( pipe_jcc );
 11961 %}
 11963 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11964 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 11965   match(CountedLoopEnd cop cmp);
 11966   effect(USE labl);
 11968   ins_cost(300);
 11969   format %{ "J$cop,u  $labl\t# Loop end" %}
 11970   size(6);
 11971   ins_encode %{
 11972     Label* L = $labl$$label;
 11973     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 11974   %}
 11975   ins_pipe( pipe_jcc );
 11976 %}
 11978 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 11979   match(CountedLoopEnd cop cmp);
 11980   effect(USE labl);
 11982   ins_cost(200);
 11983   format %{ "J$cop,u  $labl\t# Loop end" %}
 11984   size(6);
 11985   ins_encode %{
 11986     Label* L = $labl$$label;
 11987     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 11988   %}
 11989   ins_pipe( pipe_jcc );
 11990 %}
 11992 // Jump Direct Conditional - using unsigned comparison
 11993 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 11994   match(If cop cmp);
 11995   effect(USE labl);
 11997   ins_cost(300);
 11998   format %{ "J$cop,u  $labl" %}
 11999   size(6);
 12000   ins_encode %{
 12001     Label* L = $labl$$label;
 12002     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12003   %}
 12004   ins_pipe(pipe_jcc);
 12005 %}
 12007 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12008   match(If cop cmp);
 12009   effect(USE labl);
 12011   ins_cost(200);
 12012   format %{ "J$cop,u  $labl" %}
 12013   size(6);
 12014   ins_encode %{
 12015     Label* L = $labl$$label;
 12016     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12017   %}
 12018   ins_pipe(pipe_jcc);
 12019 %}
 12021 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12022   match(If cop cmp);
 12023   effect(USE labl);
 12025   ins_cost(200);
 12026   format %{ $$template
 12027     if ($cop$$cmpcode == Assembler::notEqual) {
 12028       $$emit$$"JP,u   $labl\n\t"
 12029       $$emit$$"J$cop,u   $labl"
 12030     } else {
 12031       $$emit$$"JP,u   done\n\t"
 12032       $$emit$$"J$cop,u   $labl\n\t"
 12033       $$emit$$"done:"
 12035   %}
 12036   ins_encode %{
 12037     Label* l = $labl$$label;
 12038     if ($cop$$cmpcode == Assembler::notEqual) {
 12039       __ jcc(Assembler::parity, *l, false);
 12040       __ jcc(Assembler::notEqual, *l, false);
 12041     } else if ($cop$$cmpcode == Assembler::equal) {
 12042       Label done;
 12043       __ jccb(Assembler::parity, done);
 12044       __ jcc(Assembler::equal, *l, false);
 12045       __ bind(done);
 12046     } else {
 12047        ShouldNotReachHere();
 12049   %}
 12050   ins_pipe(pipe_jcc);
 12051 %}
 12053 // ============================================================================
 12054 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12055 // array for an instance of the superklass.  Set a hidden internal cache on a
 12056 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12057 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12058 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12059   match(Set result (PartialSubtypeCheck sub super));
 12060   effect( KILL rcx, KILL cr );
 12062   ins_cost(1100);  // slightly larger than the next version
 12063   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12064             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
 12065             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12066             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12067             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12068             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12069             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12070      "miss:\t" %}
 12072   opcode(0x1); // Force a XOR of EDI
 12073   ins_encode( enc_PartialSubtypeCheck() );
 12074   ins_pipe( pipe_slow );
 12075 %}
 12077 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12078   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12079   effect( KILL rcx, KILL result );
 12081   ins_cost(1000);
 12082   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12083             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
 12084             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12085             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12086             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12087             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12088      "miss:\t" %}
 12090   opcode(0x0);  // No need to XOR EDI
 12091   ins_encode( enc_PartialSubtypeCheck() );
 12092   ins_pipe( pipe_slow );
 12093 %}
 12095 // ============================================================================
 12096 // Branch Instructions -- short offset versions
 12097 //
 12098 // These instructions are used to replace jumps of a long offset (the default
 12099 // match) with jumps of a shorter offset.  These instructions are all tagged
 12100 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12101 // match rules in general matching.  Instead, the ADLC generates a conversion
 12102 // method in the MachNode which can be used to do in-place replacement of the
 12103 // long variant with the shorter variant.  The compiler will determine if a
 12104 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12105 // specific code section of the file.
 12107 // Jump Direct - Label defines a relative address from JMP+1
 12108 instruct jmpDir_short(label labl) %{
 12109   match(Goto);
 12110   effect(USE labl);
 12112   ins_cost(300);
 12113   format %{ "JMP,s  $labl" %}
 12114   size(2);
 12115   ins_encode %{
 12116     Label* L = $labl$$label;
 12117     __ jmpb(*L);
 12118   %}
 12119   ins_pipe( pipe_jmp );
 12120   ins_short_branch(1);
 12121 %}
 12123 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12124 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12125   match(If cop cr);
 12126   effect(USE labl);
 12128   ins_cost(300);
 12129   format %{ "J$cop,s  $labl" %}
 12130   size(2);
 12131   ins_encode %{
 12132     Label* L = $labl$$label;
 12133     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12134   %}
 12135   ins_pipe( pipe_jcc );
 12136   ins_short_branch(1);
 12137 %}
 12139 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12140 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12141   match(CountedLoopEnd cop cr);
 12142   effect(USE labl);
 12144   ins_cost(300);
 12145   format %{ "J$cop,s  $labl\t# Loop end" %}
 12146   size(2);
 12147   ins_encode %{
 12148     Label* L = $labl$$label;
 12149     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12150   %}
 12151   ins_pipe( pipe_jcc );
 12152   ins_short_branch(1);
 12153 %}
 12155 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12156 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12157   match(CountedLoopEnd cop cmp);
 12158   effect(USE labl);
 12160   ins_cost(300);
 12161   format %{ "J$cop,us $labl\t# Loop end" %}
 12162   size(2);
 12163   ins_encode %{
 12164     Label* L = $labl$$label;
 12165     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12166   %}
 12167   ins_pipe( pipe_jcc );
 12168   ins_short_branch(1);
 12169 %}
 12171 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12172   match(CountedLoopEnd cop cmp);
 12173   effect(USE labl);
 12175   ins_cost(300);
 12176   format %{ "J$cop,us $labl\t# Loop end" %}
 12177   size(2);
 12178   ins_encode %{
 12179     Label* L = $labl$$label;
 12180     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12181   %}
 12182   ins_pipe( pipe_jcc );
 12183   ins_short_branch(1);
 12184 %}
 12186 // Jump Direct Conditional - using unsigned comparison
 12187 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12188   match(If cop cmp);
 12189   effect(USE labl);
 12191   ins_cost(300);
 12192   format %{ "J$cop,us $labl" %}
 12193   size(2);
 12194   ins_encode %{
 12195     Label* L = $labl$$label;
 12196     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12197   %}
 12198   ins_pipe( pipe_jcc );
 12199   ins_short_branch(1);
 12200 %}
 12202 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12203   match(If cop cmp);
 12204   effect(USE labl);
 12206   ins_cost(300);
 12207   format %{ "J$cop,us $labl" %}
 12208   size(2);
 12209   ins_encode %{
 12210     Label* L = $labl$$label;
 12211     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12212   %}
 12213   ins_pipe( pipe_jcc );
 12214   ins_short_branch(1);
 12215 %}
 12217 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12218   match(If cop cmp);
 12219   effect(USE labl);
 12221   ins_cost(300);
 12222   format %{ $$template
 12223     if ($cop$$cmpcode == Assembler::notEqual) {
 12224       $$emit$$"JP,u,s   $labl\n\t"
 12225       $$emit$$"J$cop,u,s   $labl"
 12226     } else {
 12227       $$emit$$"JP,u,s   done\n\t"
 12228       $$emit$$"J$cop,u,s  $labl\n\t"
 12229       $$emit$$"done:"
 12231   %}
 12232   size(4);
 12233   ins_encode %{
 12234     Label* l = $labl$$label;
 12235     if ($cop$$cmpcode == Assembler::notEqual) {
 12236       __ jccb(Assembler::parity, *l);
 12237       __ jccb(Assembler::notEqual, *l);
 12238     } else if ($cop$$cmpcode == Assembler::equal) {
 12239       Label done;
 12240       __ jccb(Assembler::parity, done);
 12241       __ jccb(Assembler::equal, *l);
 12242       __ bind(done);
 12243     } else {
 12244        ShouldNotReachHere();
 12246   %}
 12247   ins_pipe(pipe_jcc);
 12248   ins_short_branch(1);
 12249 %}
 12251 // ============================================================================
 12252 // Long Compare
 12253 //
 12254 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12255 // is tricky.  The flavor of compare used depends on whether we are testing
 12256 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12257 // The GE test is the negated LT test.  The LE test can be had by commuting
 12258 // the operands (yielding a GE test) and then negating; negate again for the
 12259 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12260 // NE test is negated from that.
 12262 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12263 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12264 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12265 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12266 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12267 // foo match ends up with the wrong leaf.  One fix is to not match both
 12268 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12269 // both forms beat the trinary form of long-compare and both are very useful
 12270 // on Intel which has so few registers.
 12272 // Manifest a CmpL result in an integer register.  Very painful.
 12273 // This is the test to avoid.
 12274 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12275   match(Set dst (CmpL3 src1 src2));
 12276   effect( KILL flags );
 12277   ins_cost(1000);
 12278   format %{ "XOR    $dst,$dst\n\t"
 12279             "CMP    $src1.hi,$src2.hi\n\t"
 12280             "JLT,s  m_one\n\t"
 12281             "JGT,s  p_one\n\t"
 12282             "CMP    $src1.lo,$src2.lo\n\t"
 12283             "JB,s   m_one\n\t"
 12284             "JEQ,s  done\n"
 12285     "p_one:\tINC    $dst\n\t"
 12286             "JMP,s  done\n"
 12287     "m_one:\tDEC    $dst\n"
 12288      "done:" %}
 12289   ins_encode %{
 12290     Label p_one, m_one, done;
 12291     __ xorptr($dst$$Register, $dst$$Register);
 12292     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12293     __ jccb(Assembler::less,    m_one);
 12294     __ jccb(Assembler::greater, p_one);
 12295     __ cmpl($src1$$Register, $src2$$Register);
 12296     __ jccb(Assembler::below,   m_one);
 12297     __ jccb(Assembler::equal,   done);
 12298     __ bind(p_one);
 12299     __ incrementl($dst$$Register);
 12300     __ jmpb(done);
 12301     __ bind(m_one);
 12302     __ decrementl($dst$$Register);
 12303     __ bind(done);
 12304   %}
 12305   ins_pipe( pipe_slow );
 12306 %}
 12308 //======
 12309 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12310 // compares.  Can be used for LE or GT compares by reversing arguments.
 12311 // NOT GOOD FOR EQ/NE tests.
 12312 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12313   match( Set flags (CmpL src zero ));
 12314   ins_cost(100);
 12315   format %{ "TEST   $src.hi,$src.hi" %}
 12316   opcode(0x85);
 12317   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12318   ins_pipe( ialu_cr_reg_reg );
 12319 %}
 12321 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12322 // compares.  Can be used for LE or GT compares by reversing arguments.
 12323 // NOT GOOD FOR EQ/NE tests.
 12324 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12325   match( Set flags (CmpL src1 src2 ));
 12326   effect( TEMP tmp );
 12327   ins_cost(300);
 12328   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12329             "MOV    $tmp,$src1.hi\n\t"
 12330             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12331   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12332   ins_pipe( ialu_cr_reg_reg );
 12333 %}
 12335 // Long compares reg < zero/req OR reg >= zero/req.
 12336 // Just a wrapper for a normal branch, plus the predicate test.
 12337 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12338   match(If cmp flags);
 12339   effect(USE labl);
 12340   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12341   expand %{
 12342     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12343   %}
 12344 %}
 12346 // Compare 2 longs and CMOVE longs.
 12347 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12348   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12349   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12350   ins_cost(400);
 12351   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12352             "CMOV$cmp $dst.hi,$src.hi" %}
 12353   opcode(0x0F,0x40);
 12354   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12355   ins_pipe( pipe_cmov_reg_long );
 12356 %}
 12358 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12359   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12360   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12361   ins_cost(500);
 12362   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12363             "CMOV$cmp $dst.hi,$src.hi" %}
 12364   opcode(0x0F,0x40);
 12365   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12366   ins_pipe( pipe_cmov_reg_long );
 12367 %}
 12369 // Compare 2 longs and CMOVE ints.
 12370 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
 12371   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12372   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12373   ins_cost(200);
 12374   format %{ "CMOV$cmp $dst,$src" %}
 12375   opcode(0x0F,0x40);
 12376   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12377   ins_pipe( pipe_cmov_reg );
 12378 %}
 12380 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
 12381   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12382   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12383   ins_cost(250);
 12384   format %{ "CMOV$cmp $dst,$src" %}
 12385   opcode(0x0F,0x40);
 12386   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12387   ins_pipe( pipe_cmov_mem );
 12388 %}
 12390 // Compare 2 longs and CMOVE ints.
 12391 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12392   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12393   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12394   ins_cost(200);
 12395   format %{ "CMOV$cmp $dst,$src" %}
 12396   opcode(0x0F,0x40);
 12397   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12398   ins_pipe( pipe_cmov_reg );
 12399 %}
 12401 // Compare 2 longs and CMOVE doubles
 12402 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
 12403   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12404   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12405   ins_cost(200);
 12406   expand %{
 12407     fcmovDPR_regS(cmp,flags,dst,src);
 12408   %}
 12409 %}
 12411 // Compare 2 longs and CMOVE doubles
 12412 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12413   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12414   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12415   ins_cost(200);
 12416   expand %{
 12417     fcmovD_regS(cmp,flags,dst,src);
 12418   %}
 12419 %}
 12421 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
 12422   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12423   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12424   ins_cost(200);
 12425   expand %{
 12426     fcmovFPR_regS(cmp,flags,dst,src);
 12427   %}
 12428 %}
 12430 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12431   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12432   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12433   ins_cost(200);
 12434   expand %{
 12435     fcmovF_regS(cmp,flags,dst,src);
 12436   %}
 12437 %}
 12439 //======
 12440 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12441 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12442   match( Set flags (CmpL src zero ));
 12443   effect(TEMP tmp);
 12444   ins_cost(200);
 12445   format %{ "MOV    $tmp,$src.lo\n\t"
 12446             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 12447   ins_encode( long_cmp_flags0( src, tmp ) );
 12448   ins_pipe( ialu_reg_reg_long );
 12449 %}
 12451 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12452 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 12453   match( Set flags (CmpL src1 src2 ));
 12454   ins_cost(200+300);
 12455   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12456             "JNE,s  skip\n\t"
 12457             "CMP    $src1.hi,$src2.hi\n\t"
 12458      "skip:\t" %}
 12459   ins_encode( long_cmp_flags1( src1, src2 ) );
 12460   ins_pipe( ialu_cr_reg_reg );
 12461 %}
 12463 // Long compare reg == zero/reg OR reg != zero/reg
 12464 // Just a wrapper for a normal branch, plus the predicate test.
 12465 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 12466   match(If cmp flags);
 12467   effect(USE labl);
 12468   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12469   expand %{
 12470     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 12471   %}
 12472 %}
 12474 // Compare 2 longs and CMOVE longs.
 12475 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 12476   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12477   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12478   ins_cost(400);
 12479   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12480             "CMOV$cmp $dst.hi,$src.hi" %}
 12481   opcode(0x0F,0x40);
 12482   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12483   ins_pipe( pipe_cmov_reg_long );
 12484 %}
 12486 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 12487   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12488   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12489   ins_cost(500);
 12490   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12491             "CMOV$cmp $dst.hi,$src.hi" %}
 12492   opcode(0x0F,0x40);
 12493   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12494   ins_pipe( pipe_cmov_reg_long );
 12495 %}
 12497 // Compare 2 longs and CMOVE ints.
 12498 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
 12499   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12500   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12501   ins_cost(200);
 12502   format %{ "CMOV$cmp $dst,$src" %}
 12503   opcode(0x0F,0x40);
 12504   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12505   ins_pipe( pipe_cmov_reg );
 12506 %}
 12508 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
 12509   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12510   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12511   ins_cost(250);
 12512   format %{ "CMOV$cmp $dst,$src" %}
 12513   opcode(0x0F,0x40);
 12514   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12515   ins_pipe( pipe_cmov_mem );
 12516 %}
 12518 // Compare 2 longs and CMOVE ints.
 12519 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 12520   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12521   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12522   ins_cost(200);
 12523   format %{ "CMOV$cmp $dst,$src" %}
 12524   opcode(0x0F,0x40);
 12525   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12526   ins_pipe( pipe_cmov_reg );
 12527 %}
 12529 // Compare 2 longs and CMOVE doubles
 12530 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
 12531   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12532   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12533   ins_cost(200);
 12534   expand %{
 12535     fcmovDPR_regS(cmp,flags,dst,src);
 12536   %}
 12537 %}
 12539 // Compare 2 longs and CMOVE doubles
 12540 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 12541   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12542   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12543   ins_cost(200);
 12544   expand %{
 12545     fcmovD_regS(cmp,flags,dst,src);
 12546   %}
 12547 %}
 12549 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
 12550   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12551   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12552   ins_cost(200);
 12553   expand %{
 12554     fcmovFPR_regS(cmp,flags,dst,src);
 12555   %}
 12556 %}
 12558 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 12559   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12560   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12561   ins_cost(200);
 12562   expand %{
 12563     fcmovF_regS(cmp,flags,dst,src);
 12564   %}
 12565 %}
 12567 //======
 12568 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12569 // Same as cmpL_reg_flags_LEGT except must negate src
 12570 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12571   match( Set flags (CmpL src zero ));
 12572   effect( TEMP tmp );
 12573   ins_cost(300);
 12574   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 12575             "CMP    $tmp,$src.lo\n\t"
 12576             "SBB    $tmp,$src.hi\n\t" %}
 12577   ins_encode( long_cmp_flags3(src, tmp) );
 12578   ins_pipe( ialu_reg_reg_long );
 12579 %}
 12581 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12582 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 12583 // requires a commuted test to get the same result.
 12584 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12585   match( Set flags (CmpL src1 src2 ));
 12586   effect( TEMP tmp );
 12587   ins_cost(300);
 12588   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 12589             "MOV    $tmp,$src2.hi\n\t"
 12590             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 12591   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 12592   ins_pipe( ialu_cr_reg_reg );
 12593 %}
 12595 // Long compares reg < zero/req OR reg >= zero/req.
 12596 // Just a wrapper for a normal branch, plus the predicate test
 12597 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 12598   match(If cmp flags);
 12599   effect(USE labl);
 12600   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 12601   ins_cost(300);
 12602   expand %{
 12603     jmpCon(cmp,flags,labl);    // JGT or JLE...
 12604   %}
 12605 %}
 12607 // Compare 2 longs and CMOVE longs.
 12608 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 12609   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12610   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12611   ins_cost(400);
 12612   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12613             "CMOV$cmp $dst.hi,$src.hi" %}
 12614   opcode(0x0F,0x40);
 12615   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12616   ins_pipe( pipe_cmov_reg_long );
 12617 %}
 12619 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 12620   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12621   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12622   ins_cost(500);
 12623   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12624             "CMOV$cmp $dst.hi,$src.hi+4" %}
 12625   opcode(0x0F,0x40);
 12626   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12627   ins_pipe( pipe_cmov_reg_long );
 12628 %}
 12630 // Compare 2 longs and CMOVE ints.
 12631 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
 12632   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12633   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12634   ins_cost(200);
 12635   format %{ "CMOV$cmp $dst,$src" %}
 12636   opcode(0x0F,0x40);
 12637   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12638   ins_pipe( pipe_cmov_reg );
 12639 %}
 12641 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
 12642   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12643   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12644   ins_cost(250);
 12645   format %{ "CMOV$cmp $dst,$src" %}
 12646   opcode(0x0F,0x40);
 12647   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12648   ins_pipe( pipe_cmov_mem );
 12649 %}
 12651 // Compare 2 longs and CMOVE ptrs.
 12652 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 12653   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12654   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12655   ins_cost(200);
 12656   format %{ "CMOV$cmp $dst,$src" %}
 12657   opcode(0x0F,0x40);
 12658   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12659   ins_pipe( pipe_cmov_reg );
 12660 %}
 12662 // Compare 2 longs and CMOVE doubles
 12663 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
 12664   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12665   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12666   ins_cost(200);
 12667   expand %{
 12668     fcmovDPR_regS(cmp,flags,dst,src);
 12669   %}
 12670 %}
 12672 // Compare 2 longs and CMOVE doubles
 12673 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 12674   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12675   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12676   ins_cost(200);
 12677   expand %{
 12678     fcmovD_regS(cmp,flags,dst,src);
 12679   %}
 12680 %}
 12682 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
 12683   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12684   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12685   ins_cost(200);
 12686   expand %{
 12687     fcmovFPR_regS(cmp,flags,dst,src);
 12688   %}
 12689 %}
 12692 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 12693   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12694   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12695   ins_cost(200);
 12696   expand %{
 12697     fcmovF_regS(cmp,flags,dst,src);
 12698   %}
 12699 %}
 12702 // ============================================================================
 12703 // Procedure Call/Return Instructions
 12704 // Call Java Static Instruction
 12705 // Note: If this code changes, the corresponding ret_addr_offset() and
 12706 //       compute_padding() functions will have to be adjusted.
 12707 instruct CallStaticJavaDirect(method meth) %{
 12708   match(CallStaticJava);
 12709   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 12710   effect(USE meth);
 12712   ins_cost(300);
 12713   format %{ "CALL,static " %}
 12714   opcode(0xE8); /* E8 cd */
 12715   ins_encode( pre_call_resets,
 12716               Java_Static_Call( meth ),
 12717               call_epilog,
 12718               post_call_FPU );
 12719   ins_pipe( pipe_slow );
 12720   ins_alignment(4);
 12721 %}
 12723 // Call Java Static Instruction (method handle version)
 12724 // Note: If this code changes, the corresponding ret_addr_offset() and
 12725 //       compute_padding() functions will have to be adjusted.
 12726 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 12727   match(CallStaticJava);
 12728   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 12729   effect(USE meth);
 12730   // EBP is saved by all callees (for interpreter stack correction).
 12731   // We use it here for a similar purpose, in {preserve,restore}_SP.
 12733   ins_cost(300);
 12734   format %{ "CALL,static/MethodHandle " %}
 12735   opcode(0xE8); /* E8 cd */
 12736   ins_encode( pre_call_resets,
 12737               preserve_SP,
 12738               Java_Static_Call( meth ),
 12739               restore_SP,
 12740               call_epilog,
 12741               post_call_FPU );
 12742   ins_pipe( pipe_slow );
 12743   ins_alignment(4);
 12744 %}
 12746 // Call Java Dynamic Instruction
 12747 // Note: If this code changes, the corresponding ret_addr_offset() and
 12748 //       compute_padding() functions will have to be adjusted.
 12749 instruct CallDynamicJavaDirect(method meth) %{
 12750   match(CallDynamicJava);
 12751   effect(USE meth);
 12753   ins_cost(300);
 12754   format %{ "MOV    EAX,(oop)-1\n\t"
 12755             "CALL,dynamic" %}
 12756   opcode(0xE8); /* E8 cd */
 12757   ins_encode( pre_call_resets,
 12758               Java_Dynamic_Call( meth ),
 12759               call_epilog,
 12760               post_call_FPU );
 12761   ins_pipe( pipe_slow );
 12762   ins_alignment(4);
 12763 %}
 12765 // Call Runtime Instruction
 12766 instruct CallRuntimeDirect(method meth) %{
 12767   match(CallRuntime );
 12768   effect(USE meth);
 12770   ins_cost(300);
 12771   format %{ "CALL,runtime " %}
 12772   opcode(0xE8); /* E8 cd */
 12773   // Use FFREEs to clear entries in float stack
 12774   ins_encode( pre_call_resets,
 12775               FFree_Float_Stack_All,
 12776               Java_To_Runtime( meth ),
 12777               post_call_FPU );
 12778   ins_pipe( pipe_slow );
 12779 %}
 12781 // Call runtime without safepoint
 12782 instruct CallLeafDirect(method meth) %{
 12783   match(CallLeaf);
 12784   effect(USE meth);
 12786   ins_cost(300);
 12787   format %{ "CALL_LEAF,runtime " %}
 12788   opcode(0xE8); /* E8 cd */
 12789   ins_encode( pre_call_resets,
 12790               FFree_Float_Stack_All,
 12791               Java_To_Runtime( meth ),
 12792               Verify_FPU_For_Leaf, post_call_FPU );
 12793   ins_pipe( pipe_slow );
 12794 %}
 12796 instruct CallLeafNoFPDirect(method meth) %{
 12797   match(CallLeafNoFP);
 12798   effect(USE meth);
 12800   ins_cost(300);
 12801   format %{ "CALL_LEAF_NOFP,runtime " %}
 12802   opcode(0xE8); /* E8 cd */
 12803   ins_encode(Java_To_Runtime(meth));
 12804   ins_pipe( pipe_slow );
 12805 %}
 12808 // Return Instruction
 12809 // Remove the return address & jump to it.
 12810 instruct Ret() %{
 12811   match(Return);
 12812   format %{ "RET" %}
 12813   opcode(0xC3);
 12814   ins_encode(OpcP);
 12815   ins_pipe( pipe_jmp );
 12816 %}
 12818 // Tail Call; Jump from runtime stub to Java code.
 12819 // Also known as an 'interprocedural jump'.
 12820 // Target of jump will eventually return to caller.
 12821 // TailJump below removes the return address.
 12822 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 12823   match(TailCall jump_target method_oop );
 12824   ins_cost(300);
 12825   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 12826   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 12827   ins_encode( OpcP, RegOpc(jump_target) );
 12828   ins_pipe( pipe_jmp );
 12829 %}
 12832 // Tail Jump; remove the return address; jump to target.
 12833 // TailCall above leaves the return address around.
 12834 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 12835   match( TailJump jump_target ex_oop );
 12836   ins_cost(300);
 12837   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 12838             "JMP    $jump_target " %}
 12839   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 12840   ins_encode( enc_pop_rdx,
 12841               OpcP, RegOpc(jump_target) );
 12842   ins_pipe( pipe_jmp );
 12843 %}
 12845 // Create exception oop: created by stack-crawling runtime code.
 12846 // Created exception is now available to this handler, and is setup
 12847 // just prior to jumping to this handler.  No code emitted.
 12848 instruct CreateException( eAXRegP ex_oop )
 12849 %{
 12850   match(Set ex_oop (CreateEx));
 12852   size(0);
 12853   // use the following format syntax
 12854   format %{ "# exception oop is in EAX; no code emitted" %}
 12855   ins_encode();
 12856   ins_pipe( empty );
 12857 %}
 12860 // Rethrow exception:
 12861 // The exception oop will come in the first argument position.
 12862 // Then JUMP (not call) to the rethrow stub code.
 12863 instruct RethrowException()
 12864 %{
 12865   match(Rethrow);
 12867   // use the following format syntax
 12868   format %{ "JMP    rethrow_stub" %}
 12869   ins_encode(enc_rethrow);
 12870   ins_pipe( pipe_jmp );
 12871 %}
 12873 // inlined locking and unlocking
 12875 instruct cmpFastLockRTM(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eDXRegI scr, rRegI cx1, rRegI cx2) %{
 12876   predicate(Compile::current()->use_rtm());
 12877   match(Set cr (FastLock object box));
 12878   effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
 12879   ins_cost(300);
 12880   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
 12881   ins_encode %{
 12882     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
 12883                  $scr$$Register, $cx1$$Register, $cx2$$Register,
 12884                  _counters, _rtm_counters, _stack_rtm_counters,
 12885                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
 12886                  true, ra_->C->profile_rtm());
 12887   %}
 12888   ins_pipe(pipe_slow);
 12889 %}
 12891 instruct cmpFastLock(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
 12892   predicate(!Compile::current()->use_rtm());
 12893   match(Set cr (FastLock object box));
 12894   effect(TEMP tmp, TEMP scr, USE_KILL box);
 12895   ins_cost(300);
 12896   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
 12897   ins_encode %{
 12898     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
 12899                  $scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
 12900   %}
 12901   ins_pipe(pipe_slow);
 12902 %}
 12904 instruct cmpFastUnlock(eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 12905   match(Set cr (FastUnlock object box));
 12906   effect(TEMP tmp, USE_KILL box);
 12907   ins_cost(300);
 12908   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
 12909   ins_encode %{
 12910     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
 12911   %}
 12912   ins_pipe(pipe_slow);
 12913 %}
 12917 // ============================================================================
 12918 // Safepoint Instruction
 12919 instruct safePoint_poll(eFlagsReg cr) %{
 12920   match(SafePoint);
 12921   effect(KILL cr);
 12923   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 12924   // On SPARC that might be acceptable as we can generate the address with
 12925   // just a sethi, saving an or.  By polling at offset 0 we can end up
 12926   // putting additional pressure on the index-0 in the D$.  Because of
 12927   // alignment (just like the situation at hand) the lower indices tend
 12928   // to see more traffic.  It'd be better to change the polling address
 12929   // to offset 0 of the last $line in the polling page.
 12931   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 12932   ins_cost(125);
 12933   size(6) ;
 12934   ins_encode( Safepoint_Poll() );
 12935   ins_pipe( ialu_reg_mem );
 12936 %}
 12939 // ============================================================================
 12940 // This name is KNOWN by the ADLC and cannot be changed.
 12941 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
 12942 // for this guy.
 12943 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
 12944   match(Set dst (ThreadLocal));
 12945   effect(DEF dst, KILL cr);
 12947   format %{ "MOV    $dst, Thread::current()" %}
 12948   ins_encode %{
 12949     Register dstReg = as_Register($dst$$reg);
 12950     __ get_thread(dstReg);
 12951   %}
 12952   ins_pipe( ialu_reg_fat );
 12953 %}
 12957 //----------PEEPHOLE RULES-----------------------------------------------------
 12958 // These must follow all instruction definitions as they use the names
 12959 // defined in the instructions definitions.
 12960 //
 12961 // peepmatch ( root_instr_name [preceding_instruction]* );
 12962 //
 12963 // peepconstraint %{
 12964 // (instruction_number.operand_name relational_op instruction_number.operand_name
 12965 //  [, ...] );
 12966 // // instruction numbers are zero-based using left to right order in peepmatch
 12967 //
 12968 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 12969 // // provide an instruction_number.operand_name for each operand that appears
 12970 // // in the replacement instruction's match rule
 12971 //
 12972 // ---------VM FLAGS---------------------------------------------------------
 12973 //
 12974 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 12975 //
 12976 // Each peephole rule is given an identifying number starting with zero and
 12977 // increasing by one in the order seen by the parser.  An individual peephole
 12978 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 12979 // on the command-line.
 12980 //
 12981 // ---------CURRENT LIMITATIONS----------------------------------------------
 12982 //
 12983 // Only match adjacent instructions in same basic block
 12984 // Only equality constraints
 12985 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 12986 // Only one replacement instruction
 12987 //
 12988 // ---------EXAMPLE----------------------------------------------------------
 12989 //
 12990 // // pertinent parts of existing instructions in architecture description
 12991 // instruct movI(rRegI dst, rRegI src) %{
 12992 //   match(Set dst (CopyI src));
 12993 // %}
 12994 //
 12995 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
 12996 //   match(Set dst (AddI dst src));
 12997 //   effect(KILL cr);
 12998 // %}
 12999 //
 13000 // // Change (inc mov) to lea
 13001 // peephole %{
 13002 //   // increment preceeded by register-register move
 13003 //   peepmatch ( incI_eReg movI );
 13004 //   // require that the destination register of the increment
 13005 //   // match the destination register of the move
 13006 //   peepconstraint ( 0.dst == 1.dst );
 13007 //   // construct a replacement instruction that sets
 13008 //   // the destination to ( move's source register + one )
 13009 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13010 // %}
 13011 //
 13012 // Implementation no longer uses movX instructions since
 13013 // machine-independent system no longer uses CopyX nodes.
 13014 //
 13015 // peephole %{
 13016 //   peepmatch ( incI_eReg movI );
 13017 //   peepconstraint ( 0.dst == 1.dst );
 13018 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13019 // %}
 13020 //
 13021 // peephole %{
 13022 //   peepmatch ( decI_eReg movI );
 13023 //   peepconstraint ( 0.dst == 1.dst );
 13024 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13025 // %}
 13026 //
 13027 // peephole %{
 13028 //   peepmatch ( addI_eReg_imm movI );
 13029 //   peepconstraint ( 0.dst == 1.dst );
 13030 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13031 // %}
 13032 //
 13033 // peephole %{
 13034 //   peepmatch ( addP_eReg_imm movP );
 13035 //   peepconstraint ( 0.dst == 1.dst );
 13036 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13037 // %}
 13039 // // Change load of spilled value to only a spill
 13040 // instruct storeI(memory mem, rRegI src) %{
 13041 //   match(Set mem (StoreI mem src));
 13042 // %}
 13043 //
 13044 // instruct loadI(rRegI dst, memory mem) %{
 13045 //   match(Set dst (LoadI mem));
 13046 // %}
 13047 //
 13048 peephole %{
 13049   peepmatch ( loadI storeI );
 13050   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13051   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13052 %}
 13054 //----------SMARTSPILL RULES---------------------------------------------------
 13055 // These must follow all instruction definitions as they use the names
 13056 // defined in the instructions definitions.

mercurial