src/share/vm/runtime/advancedThresholdPolicy.cpp

Thu, 26 Jan 2012 12:15:24 -0800

author
iveresov
date
Thu, 26 Jan 2012 12:15:24 -0800
changeset 3452
20334ed5ed3c
parent 3385
abcceac2f7cd
child 4037
da91efe96a93
permissions
-rw-r--r--

7131259: compile_method and CompilationPolicy::event shouldn't be declared TRAPS
Summary: Make sure that CompilationPolicy::event() doesn't throw exceptions
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 2010, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "runtime/advancedThresholdPolicy.hpp"
    27 #include "runtime/simpleThresholdPolicy.inline.hpp"
    29 #ifdef TIERED
    30 // Print an event.
    31 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
    32                                              int bci, CompLevel level) {
    33   tty->print(" rate: ");
    34   if (mh->prev_time() == 0) tty->print("n/a");
    35   else tty->print("%f", mh->rate());
    37   tty->print(" k: %.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
    38                                 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
    40 }
    42 void AdvancedThresholdPolicy::initialize() {
    43   // Turn on ergonomic compiler count selection
    44   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
    45     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
    46   }
    47   int count = CICompilerCount;
    48   if (CICompilerCountPerCPU) {
    49     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
    50     int log_cpu = log2_intptr(os::active_processor_count());
    51     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
    52     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
    53   }
    55   set_c1_count(MAX2(count / 3, 1));
    56   set_c2_count(MAX2(count - count / 3, 1));
    58   // Some inlining tuning
    59 #ifdef X86
    60   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    61     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
    62   }
    63 #endif
    65 #ifdef SPARC
    66   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    67     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
    68   }
    69 #endif
    72   set_start_time(os::javaTimeMillis());
    73 }
    75 // update_rate() is called from select_task() while holding a compile queue lock.
    76 void AdvancedThresholdPolicy::update_rate(jlong t, methodOop m) {
    77   if (is_old(m)) {
    78     // We don't remove old methods from the queue,
    79     // so we can just zero the rate.
    80     m->set_rate(0);
    81     return;
    82   }
    84   // We don't update the rate if we've just came out of a safepoint.
    85   // delta_s is the time since last safepoint in milliseconds.
    86   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
    87   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
    88   // How many events were there since the last time?
    89   int event_count = m->invocation_count() + m->backedge_count();
    90   int delta_e = event_count - m->prev_event_count();
    92   // We should be running for at least 1ms.
    93   if (delta_s >= TieredRateUpdateMinTime) {
    94     // And we must've taken the previous point at least 1ms before.
    95     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
    96       m->set_prev_time(t);
    97       m->set_prev_event_count(event_count);
    98       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
    99     } else
   100       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
   101         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
   102         m->set_rate(0);
   103       }
   104   }
   105 }
   107 // Check if this method has been stale from a given number of milliseconds.
   108 // See select_task().
   109 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, methodOop m) {
   110   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
   111   jlong delta_t = t - m->prev_time();
   112   if (delta_t > timeout && delta_s > timeout) {
   113     int event_count = m->invocation_count() + m->backedge_count();
   114     int delta_e = event_count - m->prev_event_count();
   115     // Return true if there were no events.
   116     return delta_e == 0;
   117   }
   118   return false;
   119 }
   121 // We don't remove old methods from the compile queue even if they have
   122 // very low activity. See select_task().
   123 bool AdvancedThresholdPolicy::is_old(methodOop method) {
   124   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
   125 }
   127 double AdvancedThresholdPolicy::weight(methodOop method) {
   128   return (method->rate() + 1) * ((method->invocation_count() + 1) *  (method->backedge_count() + 1));
   129 }
   131 // Apply heuristics and return true if x should be compiled before y
   132 bool AdvancedThresholdPolicy::compare_methods(methodOop x, methodOop y) {
   133   if (x->highest_comp_level() > y->highest_comp_level()) {
   134     // recompilation after deopt
   135     return true;
   136   } else
   137     if (x->highest_comp_level() == y->highest_comp_level()) {
   138       if (weight(x) > weight(y)) {
   139         return true;
   140       }
   141     }
   142   return false;
   143 }
   145 // Is method profiled enough?
   146 bool AdvancedThresholdPolicy::is_method_profiled(methodOop method) {
   147   methodDataOop mdo = method->method_data();
   148   if (mdo != NULL) {
   149     int i = mdo->invocation_count_delta();
   150     int b = mdo->backedge_count_delta();
   151     return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
   152   }
   153   return false;
   154 }
   156 // Called with the queue locked and with at least one element
   157 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
   158   CompileTask *max_task = NULL;
   159   methodHandle max_method;
   160   jlong t = os::javaTimeMillis();
   161   // Iterate through the queue and find a method with a maximum rate.
   162   for (CompileTask* task = compile_queue->first(); task != NULL;) {
   163     CompileTask* next_task = task->next();
   164     methodHandle method = (methodOop)JNIHandles::resolve(task->method_handle());
   165     update_rate(t, method());
   166     if (max_task == NULL) {
   167       max_task = task;
   168       max_method = method;
   169     } else {
   170       // If a method has been stale for some time, remove it from the queue.
   171       if (is_stale(t, TieredCompileTaskTimeout, method()) && !is_old(method())) {
   172         if (PrintTieredEvents) {
   173           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
   174         }
   175         CompileTaskWrapper ctw(task); // Frees the task
   176         compile_queue->remove(task);
   177         method->clear_queued_for_compilation();
   178         task = next_task;
   179         continue;
   180       }
   182       // Select a method with a higher rate
   183       if (compare_methods(method(), max_method())) {
   184         max_task = task;
   185         max_method = method;
   186       }
   187     }
   188     task = next_task;
   189   }
   191   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
   192       && is_method_profiled(max_method())) {
   193     max_task->set_comp_level(CompLevel_limited_profile);
   194     if (PrintTieredEvents) {
   195       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
   196     }
   197   }
   199   return max_task;
   200 }
   202 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
   203   double queue_size = CompileBroker::queue_size(level);
   204   int comp_count = compiler_count(level);
   205   double k = queue_size / (feedback_k * comp_count) + 1;
   206   return k;
   207 }
   209 // Call and loop predicates determine whether a transition to a higher
   210 // compilation level should be performed (pointers to predicate functions
   211 // are passed to common()).
   212 // Tier?LoadFeedback is basically a coefficient that determines of
   213 // how many methods per compiler thread can be in the queue before
   214 // the threshold values double.
   215 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
   216   switch(cur_level) {
   217   case CompLevel_none:
   218   case CompLevel_limited_profile: {
   219     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   220     return loop_predicate_helper<CompLevel_none>(i, b, k);
   221   }
   222   case CompLevel_full_profile: {
   223     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   224     return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
   225   }
   226   default:
   227     return true;
   228   }
   229 }
   231 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
   232   switch(cur_level) {
   233   case CompLevel_none:
   234   case CompLevel_limited_profile: {
   235     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   236     return call_predicate_helper<CompLevel_none>(i, b, k);
   237   }
   238   case CompLevel_full_profile: {
   239     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   240     return call_predicate_helper<CompLevel_full_profile>(i, b, k);
   241   }
   242   default:
   243     return true;
   244   }
   245 }
   247 // If a method is old enough and is still in the interpreter we would want to
   248 // start profiling without waiting for the compiled method to arrive.
   249 // We also take the load on compilers into the account.
   250 bool AdvancedThresholdPolicy::should_create_mdo(methodOop method, CompLevel cur_level) {
   251   if (cur_level == CompLevel_none &&
   252       CompileBroker::queue_size(CompLevel_full_optimization) <=
   253       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   254     int i = method->invocation_count();
   255     int b = method->backedge_count();
   256     double k = Tier0ProfilingStartPercentage / 100.0;
   257     return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
   258   }
   259   return false;
   260 }
   262 // Inlining control: if we're compiling a profiled method with C1 and the callee
   263 // is known to have OSRed in a C2 version, don't inline it.
   264 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
   265   CompLevel comp_level = (CompLevel)env->comp_level();
   266   if (comp_level == CompLevel_full_profile ||
   267       comp_level == CompLevel_limited_profile) {
   268     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
   269   }
   270   return false;
   271 }
   273 // Create MDO if necessary.
   274 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
   275   if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
   276   if (mh->method_data() == NULL) {
   277     methodOopDesc::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
   278   }
   279 }
   282 /*
   283  * Method states:
   284  *   0 - interpreter (CompLevel_none)
   285  *   1 - pure C1 (CompLevel_simple)
   286  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
   287  *   3 - C1 with full profiling (CompLevel_full_profile)
   288  *   4 - C2 (CompLevel_full_optimization)
   289  *
   290  * Common state transition patterns:
   291  * a. 0 -> 3 -> 4.
   292  *    The most common path. But note that even in this straightforward case
   293  *    profiling can start at level 0 and finish at level 3.
   294  *
   295  * b. 0 -> 2 -> 3 -> 4.
   296  *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
   297  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
   298  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
   299  *
   300  * c. 0 -> (3->2) -> 4.
   301  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
   302  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
   303  *    of the method to 2, because it'll allow it to run much faster without full profiling while c2
   304  *    is compiling.
   305  *
   306  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
   307  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
   308  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
   309  *
   310  * e. 0 -> 4.
   311  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
   312  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
   313  *    the compiled version already exists).
   314  *
   315  * Note that since state 0 can be reached from any other state via deoptimization different loops
   316  * are possible.
   317  *
   318  */
   320 // Common transition function. Given a predicate determines if a method should transition to another level.
   321 CompLevel AdvancedThresholdPolicy::common(Predicate p, methodOop method, CompLevel cur_level, bool disable_feedback) {
   322   CompLevel next_level = cur_level;
   323   int i = method->invocation_count();
   324   int b = method->backedge_count();
   326   if (is_trivial(method)) {
   327     next_level = CompLevel_simple;
   328   } else {
   329     switch(cur_level) {
   330     case CompLevel_none:
   331       // If we were at full profile level, would we switch to full opt?
   332       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
   333         next_level = CompLevel_full_optimization;
   334       } else if ((this->*p)(i, b, cur_level)) {
   335         // C1-generated fully profiled code is about 30% slower than the limited profile
   336         // code that has only invocation and backedge counters. The observation is that
   337         // if C2 queue is large enough we can spend too much time in the fully profiled code
   338         // while waiting for C2 to pick the method from the queue. To alleviate this problem
   339         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
   340         // we choose to compile a limited profiled version and then recompile with full profiling
   341         // when the load on C2 goes down.
   342         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
   343                                  Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   344           next_level = CompLevel_limited_profile;
   345         } else {
   346           next_level = CompLevel_full_profile;
   347         }
   348       }
   349       break;
   350     case CompLevel_limited_profile:
   351       if (is_method_profiled(method)) {
   352         // Special case: we got here because this method was fully profiled in the interpreter.
   353         next_level = CompLevel_full_optimization;
   354       } else {
   355         methodDataOop mdo = method->method_data();
   356         if (mdo != NULL) {
   357           if (mdo->would_profile()) {
   358             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
   359                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
   360                                      (this->*p)(i, b, cur_level))) {
   361               next_level = CompLevel_full_profile;
   362             }
   363           } else {
   364             next_level = CompLevel_full_optimization;
   365           }
   366         }
   367       }
   368       break;
   369     case CompLevel_full_profile:
   370       {
   371         methodDataOop mdo = method->method_data();
   372         if (mdo != NULL) {
   373           if (mdo->would_profile()) {
   374             int mdo_i = mdo->invocation_count_delta();
   375             int mdo_b = mdo->backedge_count_delta();
   376             if ((this->*p)(mdo_i, mdo_b, cur_level)) {
   377               next_level = CompLevel_full_optimization;
   378             }
   379           } else {
   380             next_level = CompLevel_full_optimization;
   381           }
   382         }
   383       }
   384       break;
   385     }
   386   }
   387   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
   388 }
   390 // Determine if a method should be compiled with a normal entry point at a different level.
   391 CompLevel AdvancedThresholdPolicy::call_event(methodOop method, CompLevel cur_level) {
   392   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
   393                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
   394   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
   396   // If OSR method level is greater than the regular method level, the levels should be
   397   // equalized by raising the regular method level in order to avoid OSRs during each
   398   // invocation of the method.
   399   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
   400     methodDataOop mdo = method->method_data();
   401     guarantee(mdo != NULL, "MDO should not be NULL");
   402     if (mdo->invocation_count() >= 1) {
   403       next_level = CompLevel_full_optimization;
   404     }
   405   } else {
   406     next_level = MAX2(osr_level, next_level);
   407   }
   408   return next_level;
   409 }
   411 // Determine if we should do an OSR compilation of a given method.
   412 CompLevel AdvancedThresholdPolicy::loop_event(methodOop method, CompLevel cur_level) {
   413   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
   414   if (cur_level == CompLevel_none) {
   415     // If there is a live OSR method that means that we deopted to the interpreter
   416     // for the transition.
   417     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
   418     if (osr_level > CompLevel_none) {
   419       return osr_level;
   420     }
   421   }
   422   return next_level;
   423 }
   425 // Update the rate and submit compile
   426 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
   427   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
   428   update_rate(os::javaTimeMillis(), mh());
   429   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
   430 }
   432 // Handle the invocation event.
   433 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
   434                                                       CompLevel level, nmethod* nm, JavaThread* thread) {
   435   if (should_create_mdo(mh(), level)) {
   436     create_mdo(mh, thread);
   437   }
   438   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
   439     CompLevel next_level = call_event(mh(), level);
   440     if (next_level != level) {
   441       compile(mh, InvocationEntryBci, next_level, thread);
   442     }
   443   }
   444 }
   446 // Handle the back branch event. Notice that we can compile the method
   447 // with a regular entry from here.
   448 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
   449                                                        int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
   450   if (should_create_mdo(mh(), level)) {
   451     create_mdo(mh, thread);
   452   }
   453   // Check if MDO should be created for the inlined method
   454   if (should_create_mdo(imh(), level)) {
   455     create_mdo(imh, thread);
   456   }
   458   if (is_compilation_enabled()) {
   459     CompLevel next_osr_level = loop_event(imh(), level);
   460     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
   461     // At the very least compile the OSR version
   462     if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_osr_level != level) {
   463       compile(imh, bci, next_osr_level, thread);
   464     }
   466     // Use loop event as an opportunity to also check if there's been
   467     // enough calls.
   468     CompLevel cur_level, next_level;
   469     if (mh() != imh()) { // If there is an enclosing method
   470       guarantee(nm != NULL, "Should have nmethod here");
   471       cur_level = comp_level(mh());
   472       next_level = call_event(mh(), cur_level);
   474       if (max_osr_level == CompLevel_full_optimization) {
   475         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
   476         bool make_not_entrant = false;
   477         if (nm->is_osr_method()) {
   478           // This is an osr method, just make it not entrant and recompile later if needed
   479           make_not_entrant = true;
   480         } else {
   481           if (next_level != CompLevel_full_optimization) {
   482             // next_level is not full opt, so we need to recompile the
   483             // enclosing method without the inlinee
   484             cur_level = CompLevel_none;
   485             make_not_entrant = true;
   486           }
   487         }
   488         if (make_not_entrant) {
   489           if (PrintTieredEvents) {
   490             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
   491             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
   492           }
   493           nm->make_not_entrant();
   494         }
   495       }
   496       if (!CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
   497         // Fix up next_level if necessary to avoid deopts
   498         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
   499           next_level = CompLevel_full_profile;
   500         }
   501         if (cur_level != next_level) {
   502           compile(mh, InvocationEntryBci, next_level, thread);
   503         }
   504       }
   505     } else {
   506       cur_level = comp_level(imh());
   507       next_level = call_event(imh(), cur_level);
   508       if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_level != cur_level) {
   509         compile(imh, InvocationEntryBci, next_level, thread);
   510       }
   511     }
   512   }
   513 }
   515 #endif // TIERED

mercurial