src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.cpp

Sat, 19 Jul 2008 17:38:22 -0400

author
coleenp
date
Sat, 19 Jul 2008 17:38:22 -0400
changeset 672
1fdb98a17101
parent 435
a61af66fc99e
child 1822
0bfd3fb24150
permissions
-rw-r--r--

6716785: implicit null checks not triggering with CompressedOops
Summary: allocate alignment-sized page(s) below java heap so that memory accesses at heap_base+1page give signal and cause an implicit null check
Reviewed-by: kvn, jmasa, phh, jcoomes

     1 /*
     2  * Copyright 2002-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_psAdaptiveSizePolicy.cpp.incl"
    28 #include <math.h>
    30 PSAdaptiveSizePolicy::PSAdaptiveSizePolicy(size_t init_eden_size,
    31                                            size_t init_promo_size,
    32                                            size_t init_survivor_size,
    33                                            size_t intra_generation_alignment,
    34                                            double gc_pause_goal_sec,
    35                                            double gc_minor_pause_goal_sec,
    36                                            uint gc_cost_ratio) :
    37      AdaptiveSizePolicy(init_eden_size,
    38                         init_promo_size,
    39                         init_survivor_size,
    40                         gc_pause_goal_sec,
    41                         gc_cost_ratio),
    42      _collection_cost_margin_fraction(AdaptiveSizePolicyCollectionCostMargin/
    43        100.0),
    44      _intra_generation_alignment(intra_generation_alignment),
    45      _live_at_last_full_gc(init_promo_size),
    46      _gc_minor_pause_goal_sec(gc_minor_pause_goal_sec),
    47      _latest_major_mutator_interval_seconds(0),
    48      _young_gen_change_for_major_pause_count(0)
    49 {
    50   // Sizing policy statistics
    51   _avg_major_pause    =
    52     new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
    53   _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    54   _avg_major_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    56   _avg_base_footprint = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
    57   _major_pause_old_estimator =
    58     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    59   _major_pause_young_estimator =
    60     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    61   _major_collection_estimator =
    62     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    64   _young_gen_size_increment_supplement = YoungGenerationSizeSupplement;
    65   _old_gen_size_increment_supplement = TenuredGenerationSizeSupplement;
    67   // Start the timers
    68   _major_timer.start();
    70   _old_gen_policy_is_ready = false;
    71 }
    73 void PSAdaptiveSizePolicy::major_collection_begin() {
    74   // Update the interval time
    75   _major_timer.stop();
    76   // Save most recent collection time
    77   _latest_major_mutator_interval_seconds = _major_timer.seconds();
    78   _major_timer.reset();
    79   _major_timer.start();
    80 }
    82 void PSAdaptiveSizePolicy::update_minor_pause_old_estimator(
    83     double minor_pause_in_ms) {
    84   double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
    85   _minor_pause_old_estimator->update(promo_size_in_mbytes,
    86     minor_pause_in_ms);
    87 }
    89 void PSAdaptiveSizePolicy::major_collection_end(size_t amount_live,
    90   GCCause::Cause gc_cause) {
    91   // Update the pause time.
    92   _major_timer.stop();
    94   if (gc_cause != GCCause::_java_lang_system_gc ||
    95       UseAdaptiveSizePolicyWithSystemGC) {
    96     double major_pause_in_seconds = _major_timer.seconds();
    97     double major_pause_in_ms = major_pause_in_seconds * MILLIUNITS;
    99     // Sample for performance counter
   100     _avg_major_pause->sample(major_pause_in_seconds);
   102     // Cost of collection (unit-less)
   103     double collection_cost = 0.0;
   104     if ((_latest_major_mutator_interval_seconds > 0.0) &&
   105         (major_pause_in_seconds > 0.0)) {
   106       double interval_in_seconds =
   107         _latest_major_mutator_interval_seconds + major_pause_in_seconds;
   108       collection_cost =
   109         major_pause_in_seconds / interval_in_seconds;
   110       avg_major_gc_cost()->sample(collection_cost);
   112       // Sample for performance counter
   113       _avg_major_interval->sample(interval_in_seconds);
   114     }
   116     // Calculate variables used to estimate pause time vs. gen sizes
   117     double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
   118     double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
   119     _major_pause_old_estimator->update(promo_size_in_mbytes,
   120       major_pause_in_ms);
   121     _major_pause_young_estimator->update(eden_size_in_mbytes,
   122       major_pause_in_ms);
   124     if (PrintAdaptiveSizePolicy && Verbose) {
   125       gclog_or_tty->print("psAdaptiveSizePolicy::major_collection_end: "
   126         "major gc cost: %f  average: %f", collection_cost,
   127         avg_major_gc_cost()->average());
   128       gclog_or_tty->print_cr("  major pause: %f major period %f",
   129         major_pause_in_ms,
   130         _latest_major_mutator_interval_seconds * MILLIUNITS);
   131     }
   133     // Calculate variable used to estimate collection cost vs. gen sizes
   134     assert(collection_cost >= 0.0, "Expected to be non-negative");
   135     _major_collection_estimator->update(promo_size_in_mbytes,
   136         collection_cost);
   137   }
   139   // Update the amount live at the end of a full GC
   140   _live_at_last_full_gc = amount_live;
   142   // The policy does not have enough data until at least some major collections
   143   // have been done.
   144   if (_avg_major_pause->count() >= AdaptiveSizePolicyReadyThreshold) {
   145     _old_gen_policy_is_ready = true;
   146   }
   148   // Interval times use this timer to measure the interval that
   149   // the mutator runs.  Reset after the GC pause has been measured.
   150   _major_timer.reset();
   151   _major_timer.start();
   152 }
   154 // If the remaining free space in the old generation is less that
   155 // that expected to be needed by the next collection, do a full
   156 // collection now.
   157 bool PSAdaptiveSizePolicy::should_full_GC(size_t old_free_in_bytes) {
   159   // A similar test is done in the scavenge's should_attempt_scavenge().  If
   160   // this is changed, decide if that test should also be changed.
   161   bool result = padded_average_promoted_in_bytes() > (float) old_free_in_bytes;
   162   if (PrintGCDetails && Verbose) {
   163     if (result) {
   164       gclog_or_tty->print("  full after scavenge: ");
   165     } else {
   166       gclog_or_tty->print("  no full after scavenge: ");
   167     }
   168     gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
   169       " padded_average_promoted " SIZE_FORMAT
   170       " free in old gen " SIZE_FORMAT,
   171       (size_t) average_promoted_in_bytes(),
   172       (size_t) padded_average_promoted_in_bytes(),
   173       old_free_in_bytes);
   174   }
   175   return result;
   176 }
   178 void PSAdaptiveSizePolicy::clear_generation_free_space_flags() {
   180   AdaptiveSizePolicy::clear_generation_free_space_flags();
   182   set_change_old_gen_for_min_pauses(0);
   184   set_change_young_gen_for_maj_pauses(0);
   185 }
   188 // If this is not a full GC, only test and modify the young generation.
   190 void PSAdaptiveSizePolicy::compute_generation_free_space(size_t young_live,
   191                                                size_t eden_live,
   192                                                size_t old_live,
   193                                                size_t perm_live,
   194                                                size_t cur_eden,
   195                                                size_t max_old_gen_size,
   196                                                size_t max_eden_size,
   197                                                bool   is_full_gc,
   198                                                GCCause::Cause gc_cause) {
   200   // Update statistics
   201   // Time statistics are updated as we go, update footprint stats here
   202   _avg_base_footprint->sample(BaseFootPrintEstimate + perm_live);
   203   avg_young_live()->sample(young_live);
   204   avg_eden_live()->sample(eden_live);
   205   if (is_full_gc) {
   206     // old_live is only accurate after a full gc
   207     avg_old_live()->sample(old_live);
   208   }
   210   // This code used to return if the policy was not ready , i.e.,
   211   // policy_is_ready() returning false.  The intent was that
   212   // decisions below needed major collection times and so could
   213   // not be made before two major collections.  A consequence was
   214   // adjustments to the young generation were not done until after
   215   // two major collections even if the minor collections times
   216   // exceeded the requested goals.  Now let the young generation
   217   // adjust for the minor collection times.  Major collection times
   218   // will be zero for the first collection and will naturally be
   219   // ignored.  Tenured generation adjustments are only made at the
   220   // full collections so until the second major collection has
   221   // been reached, no tenured generation adjustments will be made.
   223   // Until we know better, desired promotion size uses the last calculation
   224   size_t desired_promo_size = _promo_size;
   226   // Start eden at the current value.  The desired value that is stored
   227   // in _eden_size is not bounded by constraints of the heap and can
   228   // run away.
   229   //
   230   // As expected setting desired_eden_size to the current
   231   // value of desired_eden_size as a starting point
   232   // caused desired_eden_size to grow way too large and caused
   233   // an overflow down stream.  It may have improved performance in
   234   // some case but is dangerous.
   235   size_t desired_eden_size = cur_eden;
   237 #ifdef ASSERT
   238   size_t original_promo_size = desired_promo_size;
   239   size_t original_eden_size = desired_eden_size;
   240 #endif
   242   // Cache some values. There's a bit of work getting these, so
   243   // we might save a little time.
   244   const double major_cost = major_gc_cost();
   245   const double minor_cost = minor_gc_cost();
   247   // Used for diagnostics
   248   clear_generation_free_space_flags();
   250   // Limits on our growth
   251   size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
   253   // This method sets the desired eden size.  That plus the
   254   // desired survivor space sizes sets the desired young generation
   255   // size.  This methods does not know what the desired survivor
   256   // size is but expects that other policy will attempt to make
   257   // the survivor sizes compatible with the live data in the
   258   // young generation.  This limit is an estimate of the space left
   259   // in the young generation after the survivor spaces have been
   260   // subtracted out.
   261   size_t eden_limit = max_eden_size;
   263   // But don't force a promo size below the current promo size. Otherwise,
   264   // the promo size will shrink for no good reason.
   265   promo_limit = MAX2(promo_limit, _promo_size);
   267   const double gc_cost_limit = GCTimeLimit/100.0;
   269   // Which way should we go?
   270   // if pause requirement is not met
   271   //   adjust size of any generation with average paus exceeding
   272   //   the pause limit.  Adjust one pause at a time (the larger)
   273   //   and only make adjustments for the major pause at full collections.
   274   // else if throughput requirement not met
   275   //   adjust the size of the generation with larger gc time.  Only
   276   //   adjust one generation at a time.
   277   // else
   278   //   adjust down the total heap size.  Adjust down the larger of the
   279   //   generations.
   281   // Add some checks for a threshhold for a change.  For example,
   282   // a change less than the necessary alignment is probably not worth
   283   // attempting.
   286   if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) ||
   287       (_avg_major_pause->padded_average() > gc_pause_goal_sec())) {
   288     //
   289     // Check pauses
   290     //
   291     // Make changes only to affect one of the pauses (the larger)
   292     // at a time.
   293     adjust_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
   295   } else if (_avg_minor_pause->padded_average() > gc_minor_pause_goal_sec()) {
   296     // Adjust only for the minor pause time goal
   297     adjust_for_minor_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
   299   } else if(adjusted_mutator_cost() < _throughput_goal) {
   300     // This branch used to require that (mutator_cost() > 0.0 in 1.4.2.
   301     // This sometimes resulted in skipping to the minimize footprint
   302     // code.  Change this to try and reduce GC time if mutator time is
   303     // negative for whatever reason.  Or for future consideration,
   304     // bail out of the code if mutator time is negative.
   305     //
   306     // Throughput
   307     //
   308     assert(major_cost >= 0.0, "major cost is < 0.0");
   309     assert(minor_cost >= 0.0, "minor cost is < 0.0");
   310     // Try to reduce the GC times.
   311     adjust_for_throughput(is_full_gc, &desired_promo_size, &desired_eden_size);
   313   } else {
   315     // Be conservative about reducing the footprint.
   316     //   Do a minimum number of major collections first.
   317     //   Have reasonable averages for major and minor collections costs.
   318     if (UseAdaptiveSizePolicyFootprintGoal &&
   319         young_gen_policy_is_ready() &&
   320         avg_major_gc_cost()->average() >= 0.0 &&
   321         avg_minor_gc_cost()->average() >= 0.0) {
   322       size_t desired_sum = desired_eden_size + desired_promo_size;
   323       desired_eden_size = adjust_eden_for_footprint(desired_eden_size,
   324                                                     desired_sum);
   325       if (is_full_gc) {
   326         set_decide_at_full_gc(decide_at_full_gc_true);
   327         desired_promo_size = adjust_promo_for_footprint(desired_promo_size,
   328                                                         desired_sum);
   329       }
   330     }
   331   }
   333   // Note we make the same tests as in the code block below;  the code
   334   // seems a little easier to read with the printing in another block.
   335   if (PrintAdaptiveSizePolicy) {
   336     if (desired_promo_size > promo_limit)  {
   337       // "free_in_old_gen" was the original value for used for promo_limit
   338       size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
   339       gclog_or_tty->print_cr(
   340             "PSAdaptiveSizePolicy::compute_generation_free_space limits:"
   341             " desired_promo_size: " SIZE_FORMAT
   342             " promo_limit: " SIZE_FORMAT
   343             " free_in_old_gen: " SIZE_FORMAT
   344             " max_old_gen_size: " SIZE_FORMAT
   345             " avg_old_live: " SIZE_FORMAT,
   346             desired_promo_size, promo_limit, free_in_old_gen,
   347             max_old_gen_size, (size_t) avg_old_live()->average());
   348     }
   349     if (desired_eden_size > eden_limit) {
   350       gclog_or_tty->print_cr(
   351             "AdaptiveSizePolicy::compute_generation_free_space limits:"
   352             " desired_eden_size: " SIZE_FORMAT
   353             " old_eden_size: " SIZE_FORMAT
   354             " eden_limit: " SIZE_FORMAT
   355             " cur_eden: " SIZE_FORMAT
   356             " max_eden_size: " SIZE_FORMAT
   357             " avg_young_live: " SIZE_FORMAT,
   358             desired_eden_size, _eden_size, eden_limit, cur_eden,
   359             max_eden_size, (size_t)avg_young_live()->average());
   360     }
   361     if (gc_cost() > gc_cost_limit) {
   362       gclog_or_tty->print_cr(
   363             "AdaptiveSizePolicy::compute_generation_free_space: gc time limit"
   364             " gc_cost: %f "
   365             " GCTimeLimit: %d",
   366             gc_cost(), GCTimeLimit);
   367     }
   368   }
   370   // Align everything and make a final limit check
   371   const size_t alignment = _intra_generation_alignment;
   372   desired_eden_size  = align_size_up(desired_eden_size, alignment);
   373   desired_eden_size  = MAX2(desired_eden_size, alignment);
   374   desired_promo_size = align_size_up(desired_promo_size, alignment);
   375   desired_promo_size = MAX2(desired_promo_size, alignment);
   377   eden_limit  = align_size_down(eden_limit, alignment);
   378   promo_limit = align_size_down(promo_limit, alignment);
   380   // Is too much time being spent in GC?
   381   //   Is the heap trying to grow beyond it's limits?
   383   const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
   384   if (desired_promo_size > free_in_old_gen && desired_eden_size > eden_limit) {
   386     // eden_limit is the upper limit on the size of eden based on
   387     // the maximum size of the young generation and the sizes
   388     // of the survivor space.
   389     // The question being asked is whether the gc costs are high
   390     // and the space being recovered by a collection is low.
   391     // free_in_young_gen is the free space in the young generation
   392     // after a collection and promo_live is the free space in the old
   393     // generation after a collection.
   394     //
   395     // Use the minimum of the current value of the live in the
   396     // young gen or the average of the live in the young gen.
   397     // If the current value drops quickly, that should be taken
   398     // into account (i.e., don't trigger if the amount of free
   399     // space has suddenly jumped up).  If the current is much
   400     // higher than the average, use the average since it represents
   401     // the longer term behavor.
   402     const size_t live_in_eden = MIN2(eden_live, (size_t) avg_eden_live()->average());
   403     const size_t free_in_eden = eden_limit > live_in_eden ?
   404       eden_limit - live_in_eden : 0;
   405     const size_t total_free_limit = free_in_old_gen + free_in_eden;
   406     const size_t total_mem = max_old_gen_size + max_eden_size;
   407     const double mem_free_limit = total_mem * (GCHeapFreeLimit/100.0);
   408     if (PrintAdaptiveSizePolicy && (Verbose ||
   409         (total_free_limit < (size_t) mem_free_limit))) {
   410       gclog_or_tty->print_cr(
   411             "PSAdaptiveSizePolicy::compute_generation_free_space limits:"
   412             " promo_limit: " SIZE_FORMAT
   413             " eden_limit: " SIZE_FORMAT
   414             " total_free_limit: " SIZE_FORMAT
   415             " max_old_gen_size: " SIZE_FORMAT
   416             " max_eden_size: " SIZE_FORMAT
   417             " mem_free_limit: " SIZE_FORMAT,
   418             promo_limit, eden_limit, total_free_limit,
   419             max_old_gen_size, max_eden_size,
   420             (size_t) mem_free_limit);
   421     }
   423     if (is_full_gc) {
   424       if (gc_cost() > gc_cost_limit &&
   425         total_free_limit < (size_t) mem_free_limit) {
   426         // Collections, on average, are taking too much time, and
   427         //      gc_cost() > gc_cost_limit
   428         // we have too little space available after a full gc.
   429         //      total_free_limit < mem_free_limit
   430         // where
   431         //   total_free_limit is the free space available in
   432         //     both generations
   433         //   total_mem is the total space available for allocation
   434         //     in both generations (survivor spaces are not included
   435         //     just as they are not included in eden_limit).
   436         //   mem_free_limit is a fraction of total_mem judged to be an
   437         //     acceptable amount that is still unused.
   438         // The heap can ask for the value of this variable when deciding
   439         // whether to thrown an OutOfMemory error.
   440         // Note that the gc time limit test only works for the collections
   441         // of the young gen + tenured gen and not for collections of the
   442         // permanent gen.  That is because the calculation of the space
   443         // freed by the collection is the free space in the young gen +
   444         // tenured gen.
   445         // Ignore explicit GC's. Ignoring explicit GC's at this level
   446         // is the equivalent of the GC did not happen as far as the
   447         // overhead calculation is concerted (i.e., the flag is not set
   448         // and the count is not affected).  Also the average will not
   449         // have been updated unless UseAdaptiveSizePolicyWithSystemGC is on.
   450         if (!GCCause::is_user_requested_gc(gc_cause) &&
   451             !GCCause::is_serviceability_requested_gc(gc_cause)) {
   452           inc_gc_time_limit_count();
   453           if (UseGCOverheadLimit &&
   454               (gc_time_limit_count() > AdaptiveSizePolicyGCTimeLimitThreshold)){
   455             // All conditions have been met for throwing an out-of-memory
   456             _gc_time_limit_exceeded = true;
   457             // Avoid consecutive OOM due to the gc time limit by resetting
   458             // the counter.
   459             reset_gc_time_limit_count();
   460           }
   461           _print_gc_time_limit_would_be_exceeded = true;
   462         }
   463       } else {
   464         // Did not exceed overhead limits
   465         reset_gc_time_limit_count();
   466       }
   467     }
   468   }
   471   // And one last limit check, now that we've aligned things.
   472   if (desired_eden_size > eden_limit) {
   473     // If the policy says to get a larger eden but
   474     // is hitting the limit, don't decrease eden.
   475     // This can lead to a general drifting down of the
   476     // eden size.  Let the tenuring calculation push more
   477     // into the old gen.
   478     desired_eden_size = MAX2(eden_limit, cur_eden);
   479   }
   480   desired_promo_size = MIN2(desired_promo_size, promo_limit);
   483   if (PrintAdaptiveSizePolicy) {
   484     // Timing stats
   485     gclog_or_tty->print(
   486                "PSAdaptiveSizePolicy::compute_generation_free_space: costs"
   487                " minor_time: %f"
   488                " major_cost: %f"
   489                " mutator_cost: %f"
   490                " throughput_goal: %f",
   491                minor_gc_cost(), major_gc_cost(), mutator_cost(),
   492                _throughput_goal);
   494     // We give more details if Verbose is set
   495     if (Verbose) {
   496       gclog_or_tty->print( " minor_pause: %f"
   497                   " major_pause: %f"
   498                   " minor_interval: %f"
   499                   " major_interval: %f"
   500                   " pause_goal: %f",
   501                   _avg_minor_pause->padded_average(),
   502                   _avg_major_pause->padded_average(),
   503                   _avg_minor_interval->average(),
   504                   _avg_major_interval->average(),
   505                   gc_pause_goal_sec());
   506     }
   508     // Footprint stats
   509     gclog_or_tty->print( " live_space: " SIZE_FORMAT
   510                 " free_space: " SIZE_FORMAT,
   511                 live_space(), free_space());
   512     // More detail
   513     if (Verbose) {
   514       gclog_or_tty->print( " base_footprint: " SIZE_FORMAT
   515                   " avg_young_live: " SIZE_FORMAT
   516                   " avg_old_live: " SIZE_FORMAT,
   517                   (size_t)_avg_base_footprint->average(),
   518                   (size_t)avg_young_live()->average(),
   519                   (size_t)avg_old_live()->average());
   520     }
   522     // And finally, our old and new sizes.
   523     gclog_or_tty->print(" old_promo_size: " SIZE_FORMAT
   524                " old_eden_size: " SIZE_FORMAT
   525                " desired_promo_size: " SIZE_FORMAT
   526                " desired_eden_size: " SIZE_FORMAT,
   527                _promo_size, _eden_size,
   528                desired_promo_size, desired_eden_size);
   529     gclog_or_tty->cr();
   530   }
   532   decay_supplemental_growth(is_full_gc);
   534   set_promo_size(desired_promo_size);
   535   set_eden_size(desired_eden_size);
   536 };
   538 void PSAdaptiveSizePolicy::decay_supplemental_growth(bool is_full_gc) {
   539   // Decay the supplemental increment?  Decay the supplement growth
   540   // factor even if it is not used.  It is only meant to give a boost
   541   // to the initial growth and if it is not used, then it was not
   542   // needed.
   543   if (is_full_gc) {
   544     // Don't wait for the threshold value for the major collections.  If
   545     // here, the supplemental growth term was used and should decay.
   546     if ((_avg_major_pause->count() % TenuredGenerationSizeSupplementDecay)
   547         == 0) {
   548       _old_gen_size_increment_supplement =
   549         _old_gen_size_increment_supplement >> 1;
   550     }
   551   } else {
   552     if ((_avg_minor_pause->count() >= AdaptiveSizePolicyReadyThreshold) &&
   553         (_avg_minor_pause->count() % YoungGenerationSizeSupplementDecay) == 0) {
   554       _young_gen_size_increment_supplement =
   555         _young_gen_size_increment_supplement >> 1;
   556     }
   557   }
   558 }
   560 void PSAdaptiveSizePolicy::adjust_for_minor_pause_time(bool is_full_gc,
   561     size_t* desired_promo_size_ptr, size_t* desired_eden_size_ptr) {
   563   // Adjust the young generation size to reduce pause time of
   564   // of collections.
   565   //
   566   // The AdaptiveSizePolicyInitializingSteps test is not used
   567   // here.  It has not seemed to be needed but perhaps should
   568   // be added for consistency.
   569   if (minor_pause_young_estimator()->decrement_will_decrease()) {
   570         // reduce eden size
   571     set_change_young_gen_for_min_pauses(
   572           decrease_young_gen_for_min_pauses_true);
   573     *desired_eden_size_ptr = *desired_eden_size_ptr -
   574       eden_decrement_aligned_down(*desired_eden_size_ptr);
   575     } else {
   576       // EXPERIMENTAL ADJUSTMENT
   577       // Only record that the estimator indicated such an action.
   578       // *desired_eden_size_ptr = *desired_eden_size_ptr + eden_heap_delta;
   579       set_change_young_gen_for_min_pauses(
   580           increase_young_gen_for_min_pauses_true);
   581   }
   582   if (PSAdjustTenuredGenForMinorPause) {
   583     // If the desired eden size is as small as it will get,
   584     // try to adjust the old gen size.
   585     if (*desired_eden_size_ptr <= _intra_generation_alignment) {
   586       // Vary the old gen size to reduce the young gen pause.  This
   587       // may not be a good idea.  This is just a test.
   588       if (minor_pause_old_estimator()->decrement_will_decrease()) {
   589         set_change_old_gen_for_min_pauses(
   590           decrease_old_gen_for_min_pauses_true);
   591         *desired_promo_size_ptr =
   592           _promo_size - promo_decrement_aligned_down(*desired_promo_size_ptr);
   593       } else {
   594         set_change_old_gen_for_min_pauses(
   595           increase_old_gen_for_min_pauses_true);
   596         size_t promo_heap_delta =
   597           promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
   598         if ((*desired_promo_size_ptr + promo_heap_delta) >
   599             *desired_promo_size_ptr) {
   600           *desired_promo_size_ptr =
   601             _promo_size + promo_heap_delta;
   602         }
   603       }
   604     }
   605   }
   606 }
   608 void PSAdaptiveSizePolicy::adjust_for_pause_time(bool is_full_gc,
   609                                              size_t* desired_promo_size_ptr,
   610                                              size_t* desired_eden_size_ptr) {
   612   size_t promo_heap_delta = 0;
   613   size_t eden_heap_delta = 0;
   614   // Add some checks for a threshhold for a change.  For example,
   615   // a change less than the required alignment is probably not worth
   616   // attempting.
   617   if (is_full_gc) {
   618     set_decide_at_full_gc(decide_at_full_gc_true);
   619   }
   621   if (_avg_minor_pause->padded_average() > _avg_major_pause->padded_average()) {
   622     adjust_for_minor_pause_time(is_full_gc,
   623                                 desired_promo_size_ptr,
   624                                 desired_eden_size_ptr);
   625     // major pause adjustments
   626   } else if (is_full_gc) {
   627     // Adjust for the major pause time only at full gc's because the
   628     // affects of a change can only be seen at full gc's.
   630     // Reduce old generation size to reduce pause?
   631     if (major_pause_old_estimator()->decrement_will_decrease()) {
   632       // reduce old generation size
   633       set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
   634       promo_heap_delta = promo_decrement_aligned_down(*desired_promo_size_ptr);
   635       *desired_promo_size_ptr = _promo_size - promo_heap_delta;
   636     } else {
   637       // EXPERIMENTAL ADJUSTMENT
   638       // Only record that the estimator indicated such an action.
   639       // *desired_promo_size_ptr = _promo_size +
   640       //   promo_increment_aligned_up(*desired_promo_size_ptr);
   641       set_change_old_gen_for_maj_pauses(increase_old_gen_for_maj_pauses_true);
   642     }
   643     if (PSAdjustYoungGenForMajorPause) {
   644       // If the promo size is at the minimum (i.e., the old gen
   645       // size will not actually decrease), consider changing the
   646       // young gen size.
   647       if (*desired_promo_size_ptr < _intra_generation_alignment) {
   648         // If increasing the young generation will decrease the old gen
   649         // pause, do it.
   650         // During startup there is noise in the statistics for deciding
   651         // on whether to increase or decrease the young gen size.  For
   652         // some number of iterations, just try to increase the young
   653         // gen size if the major pause is too long to try and establish
   654         // good statistics for later decisions.
   655         if (major_pause_young_estimator()->increment_will_decrease() ||
   656           (_young_gen_change_for_major_pause_count
   657             <= AdaptiveSizePolicyInitializingSteps)) {
   658           set_change_young_gen_for_maj_pauses(
   659           increase_young_gen_for_maj_pauses_true);
   660           eden_heap_delta = eden_increment_aligned_up(*desired_eden_size_ptr);
   661           *desired_eden_size_ptr = _eden_size + eden_heap_delta;
   662           _young_gen_change_for_major_pause_count++;
   663         } else {
   664           // Record that decreasing the young gen size would decrease
   665           // the major pause
   666           set_change_young_gen_for_maj_pauses(
   667             decrease_young_gen_for_maj_pauses_true);
   668           eden_heap_delta = eden_decrement_aligned_down(*desired_eden_size_ptr);
   669           *desired_eden_size_ptr = _eden_size - eden_heap_delta;
   670         }
   671       }
   672     }
   673   }
   675   if (PrintAdaptiveSizePolicy && Verbose) {
   676     gclog_or_tty->print_cr(
   677       "AdaptiveSizePolicy::compute_generation_free_space "
   678       "adjusting gen sizes for major pause (avg %f goal %f). "
   679       "desired_promo_size " SIZE_FORMAT "desired_eden_size "
   680        SIZE_FORMAT
   681       " promo delta " SIZE_FORMAT  " eden delta " SIZE_FORMAT,
   682       _avg_major_pause->average(), gc_pause_goal_sec(),
   683       *desired_promo_size_ptr, *desired_eden_size_ptr,
   684       promo_heap_delta, eden_heap_delta);
   685   }
   686 }
   688 void PSAdaptiveSizePolicy::adjust_for_throughput(bool is_full_gc,
   689                                              size_t* desired_promo_size_ptr,
   690                                              size_t* desired_eden_size_ptr) {
   692   // Add some checks for a threshhold for a change.  For example,
   693   // a change less than the required alignment is probably not worth
   694   // attempting.
   695   if (is_full_gc) {
   696     set_decide_at_full_gc(decide_at_full_gc_true);
   697   }
   699   if ((gc_cost() + mutator_cost()) == 0.0) {
   700     return;
   701   }
   703   if (PrintAdaptiveSizePolicy && Verbose) {
   704     gclog_or_tty->print("\nPSAdaptiveSizePolicy::adjust_for_throughput("
   705       "is_full: %d, promo: " SIZE_FORMAT ",  cur_eden: " SIZE_FORMAT "): ",
   706       is_full_gc, *desired_promo_size_ptr, *desired_eden_size_ptr);
   707     gclog_or_tty->print_cr("mutator_cost %f  major_gc_cost %f "
   708       "minor_gc_cost %f", mutator_cost(), major_gc_cost(), minor_gc_cost());
   709   }
   711   // Tenured generation
   712   if (is_full_gc) {
   714     // Calculate the change to use for the tenured gen.
   715     size_t scaled_promo_heap_delta = 0;
   716     // Can the increment to the generation be scaled?
   717     if (gc_cost() >= 0.0 && major_gc_cost() >= 0.0) {
   718       size_t promo_heap_delta =
   719         promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
   720       double scale_by_ratio = major_gc_cost() / gc_cost();
   721       scaled_promo_heap_delta =
   722         (size_t) (scale_by_ratio * (double) promo_heap_delta);
   723       if (PrintAdaptiveSizePolicy && Verbose) {
   724         gclog_or_tty->print_cr(
   725           "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
   726           SIZE_FORMAT,
   727           promo_heap_delta, scale_by_ratio, scaled_promo_heap_delta);
   728       }
   729     } else if (major_gc_cost() >= 0.0) {
   730       // Scaling is not going to work.  If the major gc time is the
   731       // larger, give it a full increment.
   732       if (major_gc_cost() >= minor_gc_cost()) {
   733         scaled_promo_heap_delta =
   734           promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
   735       }
   736     } else {
   737       // Don't expect to get here but it's ok if it does
   738       // in the product build since the delta will be 0
   739       // and nothing will change.
   740       assert(false, "Unexpected value for gc costs");
   741     }
   743     switch (AdaptiveSizeThroughPutPolicy) {
   744       case 1:
   745         // Early in the run the statistics might not be good.  Until
   746         // a specific number of collections have been, use the heuristic
   747         // that a larger generation size means lower collection costs.
   748         if (major_collection_estimator()->increment_will_decrease() ||
   749            (_old_gen_change_for_major_throughput
   750             <= AdaptiveSizePolicyInitializingSteps)) {
   751           // Increase tenured generation size to reduce major collection cost
   752           if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
   753               *desired_promo_size_ptr) {
   754             *desired_promo_size_ptr = _promo_size + scaled_promo_heap_delta;
   755           }
   756           set_change_old_gen_for_throughput(
   757               increase_old_gen_for_throughput_true);
   758               _old_gen_change_for_major_throughput++;
   759         } else {
   760           // EXPERIMENTAL ADJUSTMENT
   761           // Record that decreasing the old gen size would decrease
   762           // the major collection cost but don't do it.
   763           // *desired_promo_size_ptr = _promo_size -
   764           //   promo_decrement_aligned_down(*desired_promo_size_ptr);
   765           set_change_old_gen_for_throughput(
   766                 decrease_old_gen_for_throughput_true);
   767         }
   769         break;
   770       default:
   771         // Simplest strategy
   772         if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
   773             *desired_promo_size_ptr) {
   774           *desired_promo_size_ptr = *desired_promo_size_ptr +
   775             scaled_promo_heap_delta;
   776         }
   777         set_change_old_gen_for_throughput(
   778           increase_old_gen_for_throughput_true);
   779         _old_gen_change_for_major_throughput++;
   780     }
   782     if (PrintAdaptiveSizePolicy && Verbose) {
   783       gclog_or_tty->print_cr(
   784           "adjusting tenured gen for throughput (avg %f goal %f). "
   785           "desired_promo_size " SIZE_FORMAT " promo_delta " SIZE_FORMAT ,
   786           mutator_cost(), _throughput_goal,
   787           *desired_promo_size_ptr, scaled_promo_heap_delta);
   788     }
   789   }
   791   // Young generation
   792   size_t scaled_eden_heap_delta = 0;
   793   // Can the increment to the generation be scaled?
   794   if (gc_cost() >= 0.0 && minor_gc_cost() >= 0.0) {
   795     size_t eden_heap_delta =
   796       eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
   797     double scale_by_ratio = minor_gc_cost() / gc_cost();
   798     assert(scale_by_ratio <= 1.0 && scale_by_ratio >= 0.0, "Scaling is wrong");
   799     scaled_eden_heap_delta =
   800       (size_t) (scale_by_ratio * (double) eden_heap_delta);
   801     if (PrintAdaptiveSizePolicy && Verbose) {
   802       gclog_or_tty->print_cr(
   803         "Scaled eden increment: " SIZE_FORMAT " by %f down to "
   804         SIZE_FORMAT,
   805         eden_heap_delta, scale_by_ratio, scaled_eden_heap_delta);
   806     }
   807   } else if (minor_gc_cost() >= 0.0) {
   808     // Scaling is not going to work.  If the minor gc time is the
   809     // larger, give it a full increment.
   810     if (minor_gc_cost() > major_gc_cost()) {
   811       scaled_eden_heap_delta =
   812         eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
   813     }
   814   } else {
   815     // Don't expect to get here but it's ok if it does
   816     // in the product build since the delta will be 0
   817     // and nothing will change.
   818     assert(false, "Unexpected value for gc costs");
   819   }
   821   // Use a heuristic for some number of collections to give
   822   // the averages time to settle down.
   823   switch (AdaptiveSizeThroughPutPolicy) {
   824     case 1:
   825       if (minor_collection_estimator()->increment_will_decrease() ||
   826         (_young_gen_change_for_minor_throughput
   827           <= AdaptiveSizePolicyInitializingSteps)) {
   828         // Expand young generation size to reduce frequency of
   829         // of collections.
   830         if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
   831             *desired_eden_size_ptr) {
   832           *desired_eden_size_ptr =
   833             *desired_eden_size_ptr + scaled_eden_heap_delta;
   834         }
   835         set_change_young_gen_for_throughput(
   836           increase_young_gen_for_througput_true);
   837         _young_gen_change_for_minor_throughput++;
   838       } else {
   839         // EXPERIMENTAL ADJUSTMENT
   840         // Record that decreasing the young gen size would decrease
   841         // the minor collection cost but don't do it.
   842         // *desired_eden_size_ptr = _eden_size -
   843         //   eden_decrement_aligned_down(*desired_eden_size_ptr);
   844         set_change_young_gen_for_throughput(
   845           decrease_young_gen_for_througput_true);
   846       }
   847           break;
   848     default:
   849       if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
   850           *desired_eden_size_ptr) {
   851         *desired_eden_size_ptr =
   852           *desired_eden_size_ptr + scaled_eden_heap_delta;
   853       }
   854       set_change_young_gen_for_throughput(
   855         increase_young_gen_for_througput_true);
   856       _young_gen_change_for_minor_throughput++;
   857   }
   859   if (PrintAdaptiveSizePolicy && Verbose) {
   860     gclog_or_tty->print_cr(
   861         "adjusting eden for throughput (avg %f goal %f). desired_eden_size "
   862         SIZE_FORMAT " eden delta " SIZE_FORMAT "\n",
   863       mutator_cost(), _throughput_goal,
   864         *desired_eden_size_ptr, scaled_eden_heap_delta);
   865   }
   866 }
   868 size_t PSAdaptiveSizePolicy::adjust_promo_for_footprint(
   869     size_t desired_promo_size, size_t desired_sum) {
   870   assert(desired_promo_size <= desired_sum, "Inconsistent parameters");
   871   set_decrease_for_footprint(decrease_old_gen_for_footprint_true);
   873   size_t change = promo_decrement(desired_promo_size);
   874   change = scale_down(change, desired_promo_size, desired_sum);
   876   size_t reduced_size = desired_promo_size - change;
   878   if (PrintAdaptiveSizePolicy && Verbose) {
   879     gclog_or_tty->print_cr(
   880       "AdaptiveSizePolicy::compute_generation_free_space "
   881       "adjusting tenured gen for footprint. "
   882       "starting promo size " SIZE_FORMAT
   883       " reduced promo size " SIZE_FORMAT,
   884       " promo delta " SIZE_FORMAT,
   885       desired_promo_size, reduced_size, change );
   886   }
   888   assert(reduced_size <= desired_promo_size, "Inconsistent result");
   889   return reduced_size;
   890 }
   892 size_t PSAdaptiveSizePolicy::adjust_eden_for_footprint(
   893   size_t desired_eden_size, size_t desired_sum) {
   894   assert(desired_eden_size <= desired_sum, "Inconsistent parameters");
   895   set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
   897   size_t change = eden_decrement(desired_eden_size);
   898   change = scale_down(change, desired_eden_size, desired_sum);
   900   size_t reduced_size = desired_eden_size - change;
   902   if (PrintAdaptiveSizePolicy && Verbose) {
   903     gclog_or_tty->print_cr(
   904       "AdaptiveSizePolicy::compute_generation_free_space "
   905       "adjusting eden for footprint. "
   906       " starting eden size " SIZE_FORMAT
   907       " reduced eden size " SIZE_FORMAT
   908       " eden delta " SIZE_FORMAT,
   909       desired_eden_size, reduced_size, change);
   910   }
   912   assert(reduced_size <= desired_eden_size, "Inconsistent result");
   913   return reduced_size;
   914 }
   916 // Scale down "change" by the factor
   917 //      part / total
   918 // Don't align the results.
   920 size_t PSAdaptiveSizePolicy::scale_down(size_t change,
   921                                         double part,
   922                                         double total) {
   923   assert(part <= total, "Inconsistent input");
   924   size_t reduced_change = change;
   925   if (total > 0) {
   926     double fraction =  part / total;
   927     reduced_change = (size_t) (fraction * (double) change);
   928   }
   929   assert(reduced_change <= change, "Inconsistent result");
   930   return reduced_change;
   931 }
   933 size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden,
   934                                             uint percent_change) {
   935   size_t eden_heap_delta;
   936   eden_heap_delta = cur_eden / 100 * percent_change;
   937   return eden_heap_delta;
   938 }
   940 size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden) {
   941   return eden_increment(cur_eden, YoungGenerationSizeIncrement);
   942 }
   944 size_t PSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
   945   size_t result = eden_increment(cur_eden, YoungGenerationSizeIncrement);
   946   return align_size_up(result, _intra_generation_alignment);
   947 }
   949 size_t PSAdaptiveSizePolicy::eden_increment_aligned_down(size_t cur_eden) {
   950   size_t result = eden_increment(cur_eden);
   951   return align_size_down(result, _intra_generation_alignment);
   952 }
   954 size_t PSAdaptiveSizePolicy::eden_increment_with_supplement_aligned_up(
   955   size_t cur_eden) {
   956   size_t result = eden_increment(cur_eden,
   957     YoungGenerationSizeIncrement + _young_gen_size_increment_supplement);
   958   return align_size_up(result, _intra_generation_alignment);
   959 }
   961 size_t PSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
   962   size_t eden_heap_delta = eden_decrement(cur_eden);
   963   return align_size_down(eden_heap_delta, _intra_generation_alignment);
   964 }
   966 size_t PSAdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
   967   size_t eden_heap_delta = eden_increment(cur_eden) /
   968     AdaptiveSizeDecrementScaleFactor;
   969   return eden_heap_delta;
   970 }
   972 size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo,
   973                                              uint percent_change) {
   974   size_t promo_heap_delta;
   975   promo_heap_delta = cur_promo / 100 * percent_change;
   976   return promo_heap_delta;
   977 }
   979 size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo) {
   980   return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
   981 }
   983 size_t PSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
   984   size_t result =  promo_increment(cur_promo, TenuredGenerationSizeIncrement);
   985   return align_size_up(result, _intra_generation_alignment);
   986 }
   988 size_t PSAdaptiveSizePolicy::promo_increment_aligned_down(size_t cur_promo) {
   989   size_t result =  promo_increment(cur_promo, TenuredGenerationSizeIncrement);
   990   return align_size_down(result, _intra_generation_alignment);
   991 }
   993 size_t PSAdaptiveSizePolicy::promo_increment_with_supplement_aligned_up(
   994   size_t cur_promo) {
   995   size_t result =  promo_increment(cur_promo,
   996     TenuredGenerationSizeIncrement + _old_gen_size_increment_supplement);
   997   return align_size_up(result, _intra_generation_alignment);
   998 }
  1000 size_t PSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
  1001   size_t promo_heap_delta = promo_decrement(cur_promo);
  1002   return align_size_down(promo_heap_delta, _intra_generation_alignment);
  1005 size_t PSAdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
  1006   size_t promo_heap_delta = promo_increment(cur_promo);
  1007   promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
  1008   return promo_heap_delta;
  1011 int PSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
  1012                                              bool is_survivor_overflow,
  1013                                              int tenuring_threshold,
  1014                                              size_t survivor_limit) {
  1015   assert(survivor_limit >= _intra_generation_alignment,
  1016          "survivor_limit too small");
  1017   assert((size_t)align_size_down(survivor_limit, _intra_generation_alignment)
  1018          == survivor_limit, "survivor_limit not aligned");
  1020   // This method is called even if the tenuring threshold and survivor
  1021   // spaces are not adjusted so that the averages are sampled above.
  1022   if (!UsePSAdaptiveSurvivorSizePolicy ||
  1023       !young_gen_policy_is_ready()) {
  1024     return tenuring_threshold;
  1027   // We'll decide whether to increase or decrease the tenuring
  1028   // threshold based partly on the newly computed survivor size
  1029   // (if we hit the maximum limit allowed, we'll always choose to
  1030   // decrement the threshold).
  1031   bool incr_tenuring_threshold = false;
  1032   bool decr_tenuring_threshold = false;
  1034   set_decrement_tenuring_threshold_for_gc_cost(false);
  1035   set_increment_tenuring_threshold_for_gc_cost(false);
  1036   set_decrement_tenuring_threshold_for_survivor_limit(false);
  1038   if (!is_survivor_overflow) {
  1039     // Keep running averages on how much survived
  1041     // We use the tenuring threshold to equalize the cost of major
  1042     // and minor collections.
  1043     // ThresholdTolerance is used to indicate how sensitive the
  1044     // tenuring threshold is to differences in cost betweent the
  1045     // collection types.
  1047     // Get the times of interest. This involves a little work, so
  1048     // we cache the values here.
  1049     const double major_cost = major_gc_cost();
  1050     const double minor_cost = minor_gc_cost();
  1052     if (minor_cost > major_cost * _threshold_tolerance_percent) {
  1053       // Minor times are getting too long;  lower the threshold so
  1054       // less survives and more is promoted.
  1055       decr_tenuring_threshold = true;
  1056       set_decrement_tenuring_threshold_for_gc_cost(true);
  1057     } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
  1058       // Major times are too long, so we want less promotion.
  1059       incr_tenuring_threshold = true;
  1060       set_increment_tenuring_threshold_for_gc_cost(true);
  1063   } else {
  1064     // Survivor space overflow occurred, so promoted and survived are
  1065     // not accurate. We'll make our best guess by combining survived
  1066     // and promoted and count them as survivors.
  1067     //
  1068     // We'll lower the tenuring threshold to see if we can correct
  1069     // things. Also, set the survivor size conservatively. We're
  1070     // trying to avoid many overflows from occurring if defnew size
  1071     // is just too small.
  1073     decr_tenuring_threshold = true;
  1076   // The padded average also maintains a deviation from the average;
  1077   // we use this to see how good of an estimate we have of what survived.
  1078   // We're trying to pad the survivor size as little as possible without
  1079   // overflowing the survivor spaces.
  1080   size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
  1081                                      _intra_generation_alignment);
  1082   target_size = MAX2(target_size, _intra_generation_alignment);
  1084   if (target_size > survivor_limit) {
  1085     // Target size is bigger than we can handle. Let's also reduce
  1086     // the tenuring threshold.
  1087     target_size = survivor_limit;
  1088     decr_tenuring_threshold = true;
  1089     set_decrement_tenuring_threshold_for_survivor_limit(true);
  1092   // Finally, increment or decrement the tenuring threshold, as decided above.
  1093   // We test for decrementing first, as we might have hit the target size
  1094   // limit.
  1095   if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
  1096     if (tenuring_threshold > 1) {
  1097       tenuring_threshold--;
  1099   } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
  1100     if (tenuring_threshold < MaxTenuringThreshold) {
  1101       tenuring_threshold++;
  1105   // We keep a running average of the amount promoted which is used
  1106   // to decide when we should collect the old generation (when
  1107   // the amount of old gen free space is less than what we expect to
  1108   // promote).
  1110   if (PrintAdaptiveSizePolicy) {
  1111     // A little more detail if Verbose is on
  1112     if (Verbose) {
  1113       gclog_or_tty->print( "  avg_survived: %f"
  1114                   "  avg_deviation: %f",
  1115                   _avg_survived->average(),
  1116                   _avg_survived->deviation());
  1119     gclog_or_tty->print( "  avg_survived_padded_avg: %f",
  1120                 _avg_survived->padded_average());
  1122     if (Verbose) {
  1123       gclog_or_tty->print( "  avg_promoted_avg: %f"
  1124                   "  avg_promoted_dev: %f",
  1125                   avg_promoted()->average(),
  1126                   avg_promoted()->deviation());
  1129     gclog_or_tty->print( "  avg_promoted_padded_avg: %f"
  1130                 "  avg_pretenured_padded_avg: %f"
  1131                 "  tenuring_thresh: %d"
  1132                 "  target_size: " SIZE_FORMAT,
  1133                 avg_promoted()->padded_average(),
  1134                 _avg_pretenured->padded_average(),
  1135                 tenuring_threshold, target_size);
  1136     tty->cr();
  1139   set_survivor_size(target_size);
  1141   return tenuring_threshold;
  1144 void PSAdaptiveSizePolicy::update_averages(bool is_survivor_overflow,
  1145                                            size_t survived,
  1146                                            size_t promoted) {
  1147   // Update averages
  1148   if (!is_survivor_overflow) {
  1149     // Keep running averages on how much survived
  1150     _avg_survived->sample(survived);
  1151   } else {
  1152     size_t survived_guess = survived + promoted;
  1153     _avg_survived->sample(survived_guess);
  1155   avg_promoted()->sample(promoted + _avg_pretenured->padded_average());
  1157   if (PrintAdaptiveSizePolicy) {
  1158     gclog_or_tty->print(
  1159                   "AdaptiveSizePolicy::compute_survivor_space_size_and_thresh:"
  1160                   "  survived: "  SIZE_FORMAT
  1161                   "  promoted: "  SIZE_FORMAT
  1162                   "  overflow: %s",
  1163                   survived, promoted, is_survivor_overflow ? "true" : "false");
  1167 bool PSAdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st)
  1168   const {
  1170   if (!UseAdaptiveSizePolicy) return false;
  1172   return AdaptiveSizePolicy::print_adaptive_size_policy_on(
  1173                           st,
  1174                           PSScavenge::tenuring_threshold());

mercurial