src/share/vm/gc_implementation/parallelScavenge/psYoungGen.cpp

Fri, 11 Mar 2011 16:35:18 +0100

author
jwilhelm
date
Fri, 11 Mar 2011 16:35:18 +0100
changeset 2648
1fb790245268
parent 2314
f95d63e2154a
child 2783
eda9eb483d29
permissions
-rw-r--r--

6820066: Check that -XX:ParGCArrayScanChunk has a value larger than zero.
Summary: Check that -XX:ParGCArrayScanChunk has a value larger than zero.
Reviewed-by: johnc, jmasa, ysr

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    27 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
    28 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    29 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    30 #include "gc_implementation/shared/gcUtil.hpp"
    31 #include "gc_implementation/shared/mutableNUMASpace.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "runtime/java.hpp"
    36 PSYoungGen::PSYoungGen(size_t        initial_size,
    37                        size_t        min_size,
    38                        size_t        max_size) :
    39   _init_gen_size(initial_size),
    40   _min_gen_size(min_size),
    41   _max_gen_size(max_size)
    42 {}
    44 void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
    45   assert(_init_gen_size != 0, "Should have a finite size");
    46   _virtual_space = new PSVirtualSpace(rs, alignment);
    47   if (!virtual_space()->expand_by(_init_gen_size)) {
    48     vm_exit_during_initialization("Could not reserve enough space for "
    49                                   "object heap");
    50   }
    51 }
    53 void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
    54   initialize_virtual_space(rs, alignment);
    55   initialize_work();
    56 }
    58 void PSYoungGen::initialize_work() {
    60   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
    61                         (HeapWord*)virtual_space()->high_boundary());
    63   MemRegion cmr((HeapWord*)virtual_space()->low(),
    64                 (HeapWord*)virtual_space()->high());
    65   Universe::heap()->barrier_set()->resize_covered_region(cmr);
    67   if (ZapUnusedHeapArea) {
    68     // Mangle newly committed space immediately because it
    69     // can be done here more simply that after the new
    70     // spaces have been computed.
    71     SpaceMangler::mangle_region(cmr);
    72   }
    74   if (UseNUMA) {
    75     _eden_space = new MutableNUMASpace(virtual_space()->alignment());
    76   } else {
    77     _eden_space = new MutableSpace(virtual_space()->alignment());
    78   }
    79   _from_space = new MutableSpace(virtual_space()->alignment());
    80   _to_space   = new MutableSpace(virtual_space()->alignment());
    82   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
    83     vm_exit_during_initialization("Could not allocate a young gen space");
    84   }
    86   // Allocate the mark sweep views of spaces
    87   _eden_mark_sweep =
    88       new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
    89   _from_mark_sweep =
    90       new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
    91   _to_mark_sweep =
    92       new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
    94   if (_eden_mark_sweep == NULL ||
    95       _from_mark_sweep == NULL ||
    96       _to_mark_sweep == NULL) {
    97     vm_exit_during_initialization("Could not complete allocation"
    98                                   " of the young generation");
    99   }
   101   // Generation Counters - generation 0, 3 subspaces
   102   _gen_counters = new PSGenerationCounters("new", 0, 3, _virtual_space);
   104   // Compute maximum space sizes for performance counters
   105   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   106   size_t alignment = heap->intra_heap_alignment();
   107   size_t size = virtual_space()->reserved_size();
   109   size_t max_survivor_size;
   110   size_t max_eden_size;
   112   if (UseAdaptiveSizePolicy) {
   113     max_survivor_size = size / MinSurvivorRatio;
   115     // round the survivor space size down to the nearest alignment
   116     // and make sure its size is greater than 0.
   117     max_survivor_size = align_size_down(max_survivor_size, alignment);
   118     max_survivor_size = MAX2(max_survivor_size, alignment);
   120     // set the maximum size of eden to be the size of the young gen
   121     // less two times the minimum survivor size. The minimum survivor
   122     // size for UseAdaptiveSizePolicy is one alignment.
   123     max_eden_size = size - 2 * alignment;
   124   } else {
   125     max_survivor_size = size / InitialSurvivorRatio;
   127     // round the survivor space size down to the nearest alignment
   128     // and make sure its size is greater than 0.
   129     max_survivor_size = align_size_down(max_survivor_size, alignment);
   130     max_survivor_size = MAX2(max_survivor_size, alignment);
   132     // set the maximum size of eden to be the size of the young gen
   133     // less two times the survivor size when the generation is 100%
   134     // committed. The minimum survivor size for -UseAdaptiveSizePolicy
   135     // is dependent on the committed portion (current capacity) of the
   136     // generation - the less space committed, the smaller the survivor
   137     // space, possibly as small as an alignment. However, we are interested
   138     // in the case where the young generation is 100% committed, as this
   139     // is the point where eden reachs its maximum size. At this point,
   140     // the size of a survivor space is max_survivor_size.
   141     max_eden_size = size - 2 * max_survivor_size;
   142   }
   144   _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
   145                                      _gen_counters);
   146   _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
   147                                      _gen_counters);
   148   _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
   149                                    _gen_counters);
   151   compute_initial_space_boundaries();
   152 }
   154 void PSYoungGen::compute_initial_space_boundaries() {
   155   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   156   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   158   // Compute sizes
   159   size_t alignment = heap->intra_heap_alignment();
   160   size_t size = virtual_space()->committed_size();
   162   size_t survivor_size = size / InitialSurvivorRatio;
   163   survivor_size = align_size_down(survivor_size, alignment);
   164   // ... but never less than an alignment
   165   survivor_size = MAX2(survivor_size, alignment);
   167   // Young generation is eden + 2 survivor spaces
   168   size_t eden_size = size - (2 * survivor_size);
   170   // Now go ahead and set 'em.
   171   set_space_boundaries(eden_size, survivor_size);
   172   space_invariants();
   174   if (UsePerfData) {
   175     _eden_counters->update_capacity();
   176     _from_counters->update_capacity();
   177     _to_counters->update_capacity();
   178   }
   179 }
   181 void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
   182   assert(eden_size < virtual_space()->committed_size(), "just checking");
   183   assert(eden_size > 0  && survivor_size > 0, "just checking");
   185   // Initial layout is Eden, to, from. After swapping survivor spaces,
   186   // that leaves us with Eden, from, to, which is step one in our two
   187   // step resize-with-live-data procedure.
   188   char *eden_start = virtual_space()->low();
   189   char *to_start   = eden_start + eden_size;
   190   char *from_start = to_start   + survivor_size;
   191   char *from_end   = from_start + survivor_size;
   193   assert(from_end == virtual_space()->high(), "just checking");
   194   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
   195   assert(is_object_aligned((intptr_t)to_start),   "checking alignment");
   196   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
   198   MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
   199   MemRegion to_mr  ((HeapWord*)to_start, (HeapWord*)from_start);
   200   MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
   202   eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
   203     to_space()->initialize(to_mr  , true, ZapUnusedHeapArea);
   204   from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
   205 }
   207 #ifndef PRODUCT
   208 void PSYoungGen::space_invariants() {
   209   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   210   const size_t alignment = heap->intra_heap_alignment();
   212   // Currently, our eden size cannot shrink to zero
   213   guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small");
   214   guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small");
   215   guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small");
   217   // Relationship of spaces to each other
   218   char* eden_start = (char*)eden_space()->bottom();
   219   char* eden_end   = (char*)eden_space()->end();
   220   char* from_start = (char*)from_space()->bottom();
   221   char* from_end   = (char*)from_space()->end();
   222   char* to_start   = (char*)to_space()->bottom();
   223   char* to_end     = (char*)to_space()->end();
   225   guarantee(eden_start >= virtual_space()->low(), "eden bottom");
   226   guarantee(eden_start < eden_end, "eden space consistency");
   227   guarantee(from_start < from_end, "from space consistency");
   228   guarantee(to_start < to_end, "to space consistency");
   230   // Check whether from space is below to space
   231   if (from_start < to_start) {
   232     // Eden, from, to
   233     guarantee(eden_end <= from_start, "eden/from boundary");
   234     guarantee(from_end <= to_start,   "from/to boundary");
   235     guarantee(to_end <= virtual_space()->high(), "to end");
   236   } else {
   237     // Eden, to, from
   238     guarantee(eden_end <= to_start, "eden/to boundary");
   239     guarantee(to_end <= from_start, "to/from boundary");
   240     guarantee(from_end <= virtual_space()->high(), "from end");
   241   }
   243   // More checks that the virtual space is consistent with the spaces
   244   assert(virtual_space()->committed_size() >=
   245     (eden_space()->capacity_in_bytes() +
   246      to_space()->capacity_in_bytes() +
   247      from_space()->capacity_in_bytes()), "Committed size is inconsistent");
   248   assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
   249     "Space invariant");
   250   char* eden_top = (char*)eden_space()->top();
   251   char* from_top = (char*)from_space()->top();
   252   char* to_top = (char*)to_space()->top();
   253   assert(eden_top <= virtual_space()->high(), "eden top");
   254   assert(from_top <= virtual_space()->high(), "from top");
   255   assert(to_top <= virtual_space()->high(), "to top");
   257   virtual_space()->verify();
   258 }
   259 #endif
   261 void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
   262   // Resize the generation if needed. If the generation resize
   263   // reports false, do not attempt to resize the spaces.
   264   if (resize_generation(eden_size, survivor_size)) {
   265     // Then we lay out the spaces inside the generation
   266     resize_spaces(eden_size, survivor_size);
   268     space_invariants();
   270     if (PrintAdaptiveSizePolicy && Verbose) {
   271       gclog_or_tty->print_cr("Young generation size: "
   272         "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
   273         " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
   274         " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
   275         eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
   276         _max_gen_size, min_gen_size());
   277     }
   278   }
   279 }
   282 bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
   283   const size_t alignment = virtual_space()->alignment();
   284   size_t orig_size = virtual_space()->committed_size();
   285   bool size_changed = false;
   287   // There used to be this guarantee there.
   288   // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
   289   // Code below forces this requirement.  In addition the desired eden
   290   // size and disired survivor sizes are desired goals and may
   291   // exceed the total generation size.
   293   assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
   295   // Adjust new generation size
   296   const size_t eden_plus_survivors =
   297           align_size_up(eden_size + 2 * survivor_size, alignment);
   298   size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
   299                              min_gen_size());
   300   assert(desired_size <= max_size(), "just checking");
   302   if (desired_size > orig_size) {
   303     // Grow the generation
   304     size_t change = desired_size - orig_size;
   305     assert(change % alignment == 0, "just checking");
   306     HeapWord* prev_high = (HeapWord*) virtual_space()->high();
   307     if (!virtual_space()->expand_by(change)) {
   308       return false; // Error if we fail to resize!
   309     }
   310     if (ZapUnusedHeapArea) {
   311       // Mangle newly committed space immediately because it
   312       // can be done here more simply that after the new
   313       // spaces have been computed.
   314       HeapWord* new_high = (HeapWord*) virtual_space()->high();
   315       MemRegion mangle_region(prev_high, new_high);
   316       SpaceMangler::mangle_region(mangle_region);
   317     }
   318     size_changed = true;
   319   } else if (desired_size < orig_size) {
   320     size_t desired_change = orig_size - desired_size;
   321     assert(desired_change % alignment == 0, "just checking");
   323     desired_change = limit_gen_shrink(desired_change);
   325     if (desired_change > 0) {
   326       virtual_space()->shrink_by(desired_change);
   327       reset_survivors_after_shrink();
   329       size_changed = true;
   330     }
   331   } else {
   332     if (Verbose && PrintGC) {
   333       if (orig_size == gen_size_limit()) {
   334         gclog_or_tty->print_cr("PSYoung generation size at maximum: "
   335           SIZE_FORMAT "K", orig_size/K);
   336       } else if (orig_size == min_gen_size()) {
   337         gclog_or_tty->print_cr("PSYoung generation size at minium: "
   338           SIZE_FORMAT "K", orig_size/K);
   339       }
   340     }
   341   }
   343   if (size_changed) {
   344     post_resize();
   346     if (Verbose && PrintGC) {
   347       size_t current_size  = virtual_space()->committed_size();
   348       gclog_or_tty->print_cr("PSYoung generation size changed: "
   349                              SIZE_FORMAT "K->" SIZE_FORMAT "K",
   350                              orig_size/K, current_size/K);
   351     }
   352   }
   354   guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
   355             virtual_space()->committed_size() == max_size(), "Sanity");
   357   return true;
   358 }
   360 #ifndef PRODUCT
   361 // In the numa case eden is not mangled so a survivor space
   362 // moving into a region previously occupied by a survivor
   363 // may find an unmangled region.  Also in the PS case eden
   364 // to-space and from-space may not touch (i.e., there may be
   365 // gaps between them due to movement while resizing the
   366 // spaces).  Those gaps must be mangled.
   367 void PSYoungGen::mangle_survivors(MutableSpace* s1,
   368                                   MemRegion s1MR,
   369                                   MutableSpace* s2,
   370                                   MemRegion s2MR) {
   371   // Check eden and gap between eden and from-space, in deciding
   372   // what to mangle in from-space.  Check the gap between from-space
   373   // and to-space when deciding what to mangle.
   374   //
   375   //      +--------+   +----+    +---+
   376   //      | eden   |   |s1  |    |s2 |
   377   //      +--------+   +----+    +---+
   378   //                 +-------+ +-----+
   379   //                 |s1MR   | |s2MR |
   380   //                 +-------+ +-----+
   381   // All of survivor-space is properly mangled so find the
   382   // upper bound on the mangling for any portion above current s1.
   383   HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
   384   MemRegion delta1_left;
   385   if (s1MR.start() < delta_end) {
   386     delta1_left = MemRegion(s1MR.start(), delta_end);
   387     s1->mangle_region(delta1_left);
   388   }
   389   // Find any portion to the right of the current s1.
   390   HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
   391   MemRegion delta1_right;
   392   if (delta_start < s1MR.end()) {
   393     delta1_right = MemRegion(delta_start, s1MR.end());
   394     s1->mangle_region(delta1_right);
   395   }
   397   // Similarly for the second survivor space except that
   398   // any of the new region that overlaps with the current
   399   // region of the first survivor space has already been
   400   // mangled.
   401   delta_end = MIN2(s2->bottom(), s2MR.end());
   402   delta_start = MAX2(s2MR.start(), s1->end());
   403   MemRegion delta2_left;
   404   if (s2MR.start() < delta_end) {
   405     delta2_left = MemRegion(s2MR.start(), delta_end);
   406     s2->mangle_region(delta2_left);
   407   }
   408   delta_start = MAX2(s2->end(), s2MR.start());
   409   MemRegion delta2_right;
   410   if (delta_start < s2MR.end()) {
   411     s2->mangle_region(delta2_right);
   412   }
   414   if (TraceZapUnusedHeapArea) {
   415     // s1
   416     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
   417       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
   418       s1->bottom(), s1->end(), s1MR.start(), s1MR.end());
   419     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
   420       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
   421       delta1_left.start(), delta1_left.end(), delta1_right.start(),
   422       delta1_right.end());
   424     // s2
   425     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
   426       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
   427       s2->bottom(), s2->end(), s2MR.start(), s2MR.end());
   428     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
   429       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
   430       delta2_left.start(), delta2_left.end(), delta2_right.start(),
   431       delta2_right.end());
   432   }
   434 }
   435 #endif // NOT PRODUCT
   437 void PSYoungGen::resize_spaces(size_t requested_eden_size,
   438                                size_t requested_survivor_size) {
   439   assert(UseAdaptiveSizePolicy, "sanity check");
   440   assert(requested_eden_size > 0  && requested_survivor_size > 0,
   441          "just checking");
   443   // We require eden and to space to be empty
   444   if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
   445     return;
   446   }
   448   if (PrintAdaptiveSizePolicy && Verbose) {
   449     gclog_or_tty->print_cr("PSYoungGen::resize_spaces(requested_eden_size: "
   450                   SIZE_FORMAT
   451                   ", requested_survivor_size: " SIZE_FORMAT ")",
   452                   requested_eden_size, requested_survivor_size);
   453     gclog_or_tty->print_cr("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
   454                   SIZE_FORMAT,
   455                   eden_space()->bottom(),
   456                   eden_space()->end(),
   457                   pointer_delta(eden_space()->end(),
   458                                 eden_space()->bottom(),
   459                                 sizeof(char)));
   460     gclog_or_tty->print_cr("    from: [" PTR_FORMAT ".." PTR_FORMAT ") "
   461                   SIZE_FORMAT,
   462                   from_space()->bottom(),
   463                   from_space()->end(),
   464                   pointer_delta(from_space()->end(),
   465                                 from_space()->bottom(),
   466                                 sizeof(char)));
   467     gclog_or_tty->print_cr("      to: [" PTR_FORMAT ".." PTR_FORMAT ") "
   468                   SIZE_FORMAT,
   469                   to_space()->bottom(),
   470                   to_space()->end(),
   471                   pointer_delta(  to_space()->end(),
   472                                   to_space()->bottom(),
   473                                   sizeof(char)));
   474   }
   476   // There's nothing to do if the new sizes are the same as the current
   477   if (requested_survivor_size == to_space()->capacity_in_bytes() &&
   478       requested_survivor_size == from_space()->capacity_in_bytes() &&
   479       requested_eden_size == eden_space()->capacity_in_bytes()) {
   480     if (PrintAdaptiveSizePolicy && Verbose) {
   481       gclog_or_tty->print_cr("    capacities are the right sizes, returning");
   482     }
   483     return;
   484   }
   486   char* eden_start = (char*)eden_space()->bottom();
   487   char* eden_end   = (char*)eden_space()->end();
   488   char* from_start = (char*)from_space()->bottom();
   489   char* from_end   = (char*)from_space()->end();
   490   char* to_start   = (char*)to_space()->bottom();
   491   char* to_end     = (char*)to_space()->end();
   493   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   494   const size_t alignment = heap->intra_heap_alignment();
   495   const bool maintain_minimum =
   496     (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
   498   bool eden_from_to_order = from_start < to_start;
   499   // Check whether from space is below to space
   500   if (eden_from_to_order) {
   501     // Eden, from, to
   502     eden_from_to_order = true;
   503     if (PrintAdaptiveSizePolicy && Verbose) {
   504       gclog_or_tty->print_cr("  Eden, from, to:");
   505     }
   507     // Set eden
   508     // "requested_eden_size" is a goal for the size of eden
   509     // and may not be attainable.  "eden_size" below is
   510     // calculated based on the location of from-space and
   511     // the goal for the size of eden.  from-space is
   512     // fixed in place because it contains live data.
   513     // The calculation is done this way to avoid 32bit
   514     // overflow (i.e., eden_start + requested_eden_size
   515     // may too large for representation in 32bits).
   516     size_t eden_size;
   517     if (maintain_minimum) {
   518       // Only make eden larger than the requested size if
   519       // the minimum size of the generation has to be maintained.
   520       // This could be done in general but policy at a higher
   521       // level is determining a requested size for eden and that
   522       // should be honored unless there is a fundamental reason.
   523       eden_size = pointer_delta(from_start,
   524                                 eden_start,
   525                                 sizeof(char));
   526     } else {
   527       eden_size = MIN2(requested_eden_size,
   528                        pointer_delta(from_start, eden_start, sizeof(char)));
   529     }
   531     eden_end = eden_start + eden_size;
   532     assert(eden_end >= eden_start, "addition overflowed");
   534     // To may resize into from space as long as it is clear of live data.
   535     // From space must remain page aligned, though, so we need to do some
   536     // extra calculations.
   538     // First calculate an optimal to-space
   539     to_end   = (char*)virtual_space()->high();
   540     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
   541                                     sizeof(char));
   543     // Does the optimal to-space overlap from-space?
   544     if (to_start < (char*)from_space()->end()) {
   545       assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   547       // Calculate the minimum offset possible for from_end
   548       size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
   550       // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
   551       if (from_size == 0) {
   552         from_size = alignment;
   553       } else {
   554         from_size = align_size_up(from_size, alignment);
   555       }
   557       from_end = from_start + from_size;
   558       assert(from_end > from_start, "addition overflow or from_size problem");
   560       guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
   562       // Now update to_start with the new from_end
   563       to_start = MAX2(from_end, to_start);
   564     }
   566     guarantee(to_start != to_end, "to space is zero sized");
   568     if (PrintAdaptiveSizePolicy && Verbose) {
   569       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
   570                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   571                     eden_start,
   572                     eden_end,
   573                     pointer_delta(eden_end, eden_start, sizeof(char)));
   574       gclog_or_tty->print_cr("    [from_start .. from_end): "
   575                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   576                     from_start,
   577                     from_end,
   578                     pointer_delta(from_end, from_start, sizeof(char)));
   579       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
   580                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   581                     to_start,
   582                     to_end,
   583                     pointer_delta(  to_end,   to_start, sizeof(char)));
   584     }
   585   } else {
   586     // Eden, to, from
   587     if (PrintAdaptiveSizePolicy && Verbose) {
   588       gclog_or_tty->print_cr("  Eden, to, from:");
   589     }
   591     // To space gets priority over eden resizing. Note that we position
   592     // to space as if we were able to resize from space, even though from
   593     // space is not modified.
   594     // Giving eden priority was tried and gave poorer performance.
   595     to_end   = (char*)pointer_delta(virtual_space()->high(),
   596                                     (char*)requested_survivor_size,
   597                                     sizeof(char));
   598     to_end   = MIN2(to_end, from_start);
   599     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
   600                                     sizeof(char));
   601     // if the space sizes are to be increased by several times then
   602     // 'to_start' will point beyond the young generation. In this case
   603     // 'to_start' should be adjusted.
   604     to_start = MAX2(to_start, eden_start + alignment);
   606     // Compute how big eden can be, then adjust end.
   607     // See  comments above on calculating eden_end.
   608     size_t eden_size;
   609     if (maintain_minimum) {
   610       eden_size = pointer_delta(to_start, eden_start, sizeof(char));
   611     } else {
   612       eden_size = MIN2(requested_eden_size,
   613                        pointer_delta(to_start, eden_start, sizeof(char)));
   614     }
   615     eden_end = eden_start + eden_size;
   616     assert(eden_end >= eden_start, "addition overflowed");
   618     // Could choose to not let eden shrink
   619     // to_start = MAX2(to_start, eden_end);
   621     // Don't let eden shrink down to 0 or less.
   622     eden_end = MAX2(eden_end, eden_start + alignment);
   623     to_start = MAX2(to_start, eden_end);
   625     if (PrintAdaptiveSizePolicy && Verbose) {
   626       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
   627                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   628                     eden_start,
   629                     eden_end,
   630                     pointer_delta(eden_end, eden_start, sizeof(char)));
   631       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
   632                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   633                     to_start,
   634                     to_end,
   635                     pointer_delta(  to_end,   to_start, sizeof(char)));
   636       gclog_or_tty->print_cr("    [from_start .. from_end): "
   637                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   638                     from_start,
   639                     from_end,
   640                     pointer_delta(from_end, from_start, sizeof(char)));
   641     }
   642   }
   645   guarantee((HeapWord*)from_start <= from_space()->bottom(),
   646             "from start moved to the right");
   647   guarantee((HeapWord*)from_end >= from_space()->top(),
   648             "from end moved into live data");
   649   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
   650   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
   651   assert(is_object_aligned((intptr_t)to_start), "checking alignment");
   653   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
   654   MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
   655   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
   657   // Let's make sure the call to initialize doesn't reset "top"!
   658   HeapWord* old_from_top = from_space()->top();
   660   // For PrintAdaptiveSizePolicy block  below
   661   size_t old_from = from_space()->capacity_in_bytes();
   662   size_t old_to   = to_space()->capacity_in_bytes();
   664   if (ZapUnusedHeapArea) {
   665     // NUMA is a special case because a numa space is not mangled
   666     // in order to not prematurely bind its address to memory to
   667     // the wrong memory (i.e., don't want the GC thread to first
   668     // touch the memory).  The survivor spaces are not numa
   669     // spaces and are mangled.
   670     if (UseNUMA) {
   671       if (eden_from_to_order) {
   672         mangle_survivors(from_space(), fromMR, to_space(), toMR);
   673       } else {
   674         mangle_survivors(to_space(), toMR, from_space(), fromMR);
   675       }
   676     }
   678     // If not mangling the spaces, do some checking to verify that
   679     // the spaces are already mangled.
   680     // The spaces should be correctly mangled at this point so
   681     // do some checking here. Note that they are not being mangled
   682     // in the calls to initialize().
   683     // Must check mangling before the spaces are reshaped.  Otherwise,
   684     // the bottom or end of one space may have moved into an area
   685     // covered by another space and a failure of the check may
   686     // not correctly indicate which space is not properly mangled.
   687     HeapWord* limit = (HeapWord*) virtual_space()->high();
   688     eden_space()->check_mangled_unused_area(limit);
   689     from_space()->check_mangled_unused_area(limit);
   690       to_space()->check_mangled_unused_area(limit);
   691   }
   692   // When an existing space is being initialized, it is not
   693   // mangled because the space has been previously mangled.
   694   eden_space()->initialize(edenMR,
   695                            SpaceDecorator::Clear,
   696                            SpaceDecorator::DontMangle);
   697     to_space()->initialize(toMR,
   698                            SpaceDecorator::Clear,
   699                            SpaceDecorator::DontMangle);
   700   from_space()->initialize(fromMR,
   701                            SpaceDecorator::DontClear,
   702                            SpaceDecorator::DontMangle);
   704   assert(from_space()->top() == old_from_top, "from top changed!");
   706   if (PrintAdaptiveSizePolicy) {
   707     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   708     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   710     gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
   711                   "collection: %d "
   712                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
   713                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
   714                   heap->total_collections(),
   715                   old_from, old_to,
   716                   from_space()->capacity_in_bytes(),
   717                   to_space()->capacity_in_bytes());
   718     gclog_or_tty->cr();
   719   }
   720 }
   722 void PSYoungGen::swap_spaces() {
   723   MutableSpace* s    = from_space();
   724   _from_space        = to_space();
   725   _to_space          = s;
   727   // Now update the decorators.
   728   PSMarkSweepDecorator* md = from_mark_sweep();
   729   _from_mark_sweep           = to_mark_sweep();
   730   _to_mark_sweep             = md;
   732   assert(from_mark_sweep()->space() == from_space(), "Sanity");
   733   assert(to_mark_sweep()->space() == to_space(), "Sanity");
   734 }
   736 size_t PSYoungGen::capacity_in_bytes() const {
   737   return eden_space()->capacity_in_bytes()
   738        + from_space()->capacity_in_bytes();  // to_space() is only used during scavenge
   739 }
   742 size_t PSYoungGen::used_in_bytes() const {
   743   return eden_space()->used_in_bytes()
   744        + from_space()->used_in_bytes();      // to_space() is only used during scavenge
   745 }
   748 size_t PSYoungGen::free_in_bytes() const {
   749   return eden_space()->free_in_bytes()
   750        + from_space()->free_in_bytes();      // to_space() is only used during scavenge
   751 }
   753 size_t PSYoungGen::capacity_in_words() const {
   754   return eden_space()->capacity_in_words()
   755        + from_space()->capacity_in_words();  // to_space() is only used during scavenge
   756 }
   759 size_t PSYoungGen::used_in_words() const {
   760   return eden_space()->used_in_words()
   761        + from_space()->used_in_words();      // to_space() is only used during scavenge
   762 }
   765 size_t PSYoungGen::free_in_words() const {
   766   return eden_space()->free_in_words()
   767        + from_space()->free_in_words();      // to_space() is only used during scavenge
   768 }
   770 void PSYoungGen::object_iterate(ObjectClosure* blk) {
   771   eden_space()->object_iterate(blk);
   772   from_space()->object_iterate(blk);
   773   to_space()->object_iterate(blk);
   774 }
   776 void PSYoungGen::precompact() {
   777   eden_mark_sweep()->precompact();
   778   from_mark_sweep()->precompact();
   779   to_mark_sweep()->precompact();
   780 }
   782 void PSYoungGen::adjust_pointers() {
   783   eden_mark_sweep()->adjust_pointers();
   784   from_mark_sweep()->adjust_pointers();
   785   to_mark_sweep()->adjust_pointers();
   786 }
   788 void PSYoungGen::compact() {
   789   eden_mark_sweep()->compact(ZapUnusedHeapArea);
   790   from_mark_sweep()->compact(ZapUnusedHeapArea);
   791   // Mark sweep stores preserved markOops in to space, don't disturb!
   792   to_mark_sweep()->compact(false);
   793 }
   795 void PSYoungGen::move_and_update(ParCompactionManager* cm) {
   796   PSParallelCompact::move_and_update(cm, PSParallelCompact::eden_space_id);
   797   PSParallelCompact::move_and_update(cm, PSParallelCompact::from_space_id);
   798   PSParallelCompact::move_and_update(cm, PSParallelCompact::to_space_id);
   799 }
   801 void PSYoungGen::print() const { print_on(tty); }
   802 void PSYoungGen::print_on(outputStream* st) const {
   803   st->print(" %-15s", "PSYoungGen");
   804   if (PrintGCDetails && Verbose) {
   805     st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
   806                capacity_in_bytes(), used_in_bytes());
   807   } else {
   808     st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
   809                capacity_in_bytes()/K, used_in_bytes()/K);
   810   }
   811   virtual_space()->print_space_boundaries_on(st);
   812   st->print("  eden"); eden_space()->print_on(st);
   813   st->print("  from"); from_space()->print_on(st);
   814   st->print("  to  "); to_space()->print_on(st);
   815 }
   817 void PSYoungGen::print_used_change(size_t prev_used) const {
   818   gclog_or_tty->print(" [%s:", name());
   819   gclog_or_tty->print(" "  SIZE_FORMAT "K"
   820                       "->" SIZE_FORMAT "K"
   821                       "("  SIZE_FORMAT "K)",
   822                       prev_used / K, used_in_bytes() / K,
   823                       capacity_in_bytes() / K);
   824   gclog_or_tty->print("]");
   825 }
   827 size_t PSYoungGen::available_for_expansion() {
   828   ShouldNotReachHere();
   829   return 0;
   830 }
   832 size_t PSYoungGen::available_for_contraction() {
   833   ShouldNotReachHere();
   834   return 0;
   835 }
   837 size_t PSYoungGen::available_to_min_gen() {
   838   assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
   839   return virtual_space()->committed_size() - min_gen_size();
   840 }
   842 // This method assumes that from-space has live data and that
   843 // any shrinkage of the young gen is limited by location of
   844 // from-space.
   845 size_t PSYoungGen::available_to_live() {
   846   size_t delta_in_survivor = 0;
   847   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   848   const size_t space_alignment = heap->intra_heap_alignment();
   849   const size_t gen_alignment = heap->young_gen_alignment();
   851   MutableSpace* space_shrinking = NULL;
   852   if (from_space()->end() > to_space()->end()) {
   853     space_shrinking = from_space();
   854   } else {
   855     space_shrinking = to_space();
   856   }
   858   // Include any space that is committed but not included in
   859   // the survivor spaces.
   860   assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
   861     "Survivor space beyond high end");
   862   size_t unused_committed = pointer_delta(virtual_space()->high(),
   863     space_shrinking->end(), sizeof(char));
   865   if (space_shrinking->is_empty()) {
   866     // Don't let the space shrink to 0
   867     assert(space_shrinking->capacity_in_bytes() >= space_alignment,
   868       "Space is too small");
   869     delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
   870   } else {
   871     delta_in_survivor = pointer_delta(space_shrinking->end(),
   872                                       space_shrinking->top(),
   873                                       sizeof(char));
   874   }
   876   size_t delta_in_bytes = unused_committed + delta_in_survivor;
   877   delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment);
   878   return delta_in_bytes;
   879 }
   881 // Return the number of bytes available for resizing down the young
   882 // generation.  This is the minimum of
   883 //      input "bytes"
   884 //      bytes to the minimum young gen size
   885 //      bytes to the size currently being used + some small extra
   886 size_t PSYoungGen::limit_gen_shrink(size_t bytes) {
   887   // Allow shrinkage into the current eden but keep eden large enough
   888   // to maintain the minimum young gen size
   889   bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
   890   return align_size_down(bytes, virtual_space()->alignment());
   891 }
   893 void PSYoungGen::reset_after_change() {
   894   ShouldNotReachHere();
   895 }
   897 void PSYoungGen::reset_survivors_after_shrink() {
   898   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
   899                         (HeapWord*)virtual_space()->high_boundary());
   900   PSScavenge::reference_processor()->set_span(_reserved);
   902   MutableSpace* space_shrinking = NULL;
   903   if (from_space()->end() > to_space()->end()) {
   904     space_shrinking = from_space();
   905   } else {
   906     space_shrinking = to_space();
   907   }
   909   HeapWord* new_end = (HeapWord*)virtual_space()->high();
   910   assert(new_end >= space_shrinking->bottom(), "Shrink was too large");
   911   // Was there a shrink of the survivor space?
   912   if (new_end < space_shrinking->end()) {
   913     MemRegion mr(space_shrinking->bottom(), new_end);
   914     space_shrinking->initialize(mr,
   915                                 SpaceDecorator::DontClear,
   916                                 SpaceDecorator::Mangle);
   917   }
   918 }
   920 // This method currently does not expect to expand into eden (i.e.,
   921 // the virtual space boundaries is expected to be consistent
   922 // with the eden boundaries..
   923 void PSYoungGen::post_resize() {
   924   assert_locked_or_safepoint(Heap_lock);
   925   assert((eden_space()->bottom() < to_space()->bottom()) &&
   926          (eden_space()->bottom() < from_space()->bottom()),
   927          "Eden is assumed to be below the survivor spaces");
   929   MemRegion cmr((HeapWord*)virtual_space()->low(),
   930                 (HeapWord*)virtual_space()->high());
   931   Universe::heap()->barrier_set()->resize_covered_region(cmr);
   932   space_invariants();
   933 }
   937 void PSYoungGen::update_counters() {
   938   if (UsePerfData) {
   939     _eden_counters->update_all();
   940     _from_counters->update_all();
   941     _to_counters->update_all();
   942     _gen_counters->update_all();
   943   }
   944 }
   946 void PSYoungGen::verify(bool allow_dirty) {
   947   eden_space()->verify(allow_dirty);
   948   from_space()->verify(allow_dirty);
   949   to_space()->verify(allow_dirty);
   950 }
   952 #ifndef PRODUCT
   953 void PSYoungGen::record_spaces_top() {
   954   assert(ZapUnusedHeapArea, "Not mangling unused space");
   955   eden_space()->set_top_for_allocations();
   956   from_space()->set_top_for_allocations();
   957   to_space()->set_top_for_allocations();
   958 }
   959 #endif

mercurial