src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.hpp

Fri, 11 Mar 2011 16:35:18 +0100

author
jwilhelm
date
Fri, 11 Mar 2011 16:35:18 +0100
changeset 2648
1fb790245268
parent 2314
f95d63e2154a
child 2909
2aa9ddbb9e60
permissions
-rw-r--r--

6820066: Check that -XX:ParGCArrayScanChunk has a value larger than zero.
Summary: Check that -XX:ParGCArrayScanChunk has a value larger than zero.
Reviewed-by: johnc, jmasa, ysr

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP
    28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
    29 #include "gc_implementation/parallelScavenge/psGCAdaptivePolicyCounters.hpp"
    30 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
    31 #include "gc_implementation/parallelScavenge/psPermGen.hpp"
    32 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    33 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    34 #include "gc_interface/collectedHeap.inline.hpp"
    35 #include "utilities/ostream.hpp"
    37 class AdjoiningGenerations;
    38 class GCTaskManager;
    39 class PSAdaptiveSizePolicy;
    40 class GenerationSizer;
    41 class CollectorPolicy;
    43 class ParallelScavengeHeap : public CollectedHeap {
    44   friend class VMStructs;
    45  private:
    46   static PSYoungGen* _young_gen;
    47   static PSOldGen*   _old_gen;
    48   static PSPermGen*  _perm_gen;
    50   // Sizing policy for entire heap
    51   static PSAdaptiveSizePolicy* _size_policy;
    52   static PSGCAdaptivePolicyCounters*   _gc_policy_counters;
    54   static ParallelScavengeHeap* _psh;
    56   size_t _perm_gen_alignment;
    57   size_t _young_gen_alignment;
    58   size_t _old_gen_alignment;
    60   GenerationSizer* _collector_policy;
    62   inline size_t set_alignment(size_t& var, size_t val);
    64   // Collection of generations that are adjacent in the
    65   // space reserved for the heap.
    66   AdjoiningGenerations* _gens;
    68   static GCTaskManager*          _gc_task_manager;      // The task manager.
    70  protected:
    71   static inline size_t total_invocations();
    72   HeapWord* allocate_new_tlab(size_t size);
    74  public:
    75   ParallelScavengeHeap() : CollectedHeap() {
    76     set_alignment(_perm_gen_alignment, intra_heap_alignment());
    77     set_alignment(_young_gen_alignment, intra_heap_alignment());
    78     set_alignment(_old_gen_alignment, intra_heap_alignment());
    79   }
    81   // For use by VM operations
    82   enum CollectionType {
    83     Scavenge,
    84     MarkSweep
    85   };
    87   ParallelScavengeHeap::Name kind() const {
    88     return CollectedHeap::ParallelScavengeHeap;
    89   }
    91 CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector_policy; }
    92   // GenerationSizer* collector_policy() const { return _collector_policy; }
    94   static PSYoungGen* young_gen()     { return _young_gen; }
    95   static PSOldGen* old_gen()         { return _old_gen; }
    96   static PSPermGen* perm_gen()       { return _perm_gen; }
    98   virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; }
   100   static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; }
   102   static ParallelScavengeHeap* heap();
   104   static GCTaskManager* const gc_task_manager() { return _gc_task_manager; }
   106   AdjoiningGenerations* gens() { return _gens; }
   108   // Returns JNI_OK on success
   109   virtual jint initialize();
   111   void post_initialize();
   112   void update_counters();
   113   // The alignment used for the various generations.
   114   size_t perm_gen_alignment()  const { return _perm_gen_alignment; }
   115   size_t young_gen_alignment() const { return _young_gen_alignment; }
   116   size_t old_gen_alignment()  const { return _old_gen_alignment; }
   118   // The alignment used for eden and survivors within the young gen
   119   // and for boundary between young gen and old gen.
   120   size_t intra_heap_alignment() const { return 64 * K; }
   122   size_t capacity() const;
   123   size_t used() const;
   125   // Return "true" if all generations (but perm) have reached the
   126   // maximal committed limit that they can reach, without a garbage
   127   // collection.
   128   virtual bool is_maximal_no_gc() const;
   130   // Does this heap support heap inspection? (+PrintClassHistogram)
   131   bool supports_heap_inspection() const { return true; }
   133   size_t permanent_capacity() const;
   134   size_t permanent_used() const;
   136   size_t max_capacity() const;
   138   // Whether p is in the allocated part of the heap
   139   bool is_in(const void* p) const;
   141   bool is_in_reserved(const void* p) const;
   142   bool is_in_permanent(const void *p) const {    // reserved part
   143     return perm_gen()->reserved().contains(p);
   144   }
   146   bool is_permanent(const void *p) const {    // committed part
   147     return perm_gen()->is_in(p);
   148   }
   150   inline bool is_in_young(oop p);        // reserved part
   151   inline bool is_in_old_or_perm(oop p);  // reserved part
   153   // Memory allocation.   "gc_time_limit_was_exceeded" will
   154   // be set to true if the adaptive size policy determine that
   155   // an excessive amount of time is being spent doing collections
   156   // and caused a NULL to be returned.  If a NULL is not returned,
   157   // "gc_time_limit_was_exceeded" has an undefined meaning.
   159   HeapWord* mem_allocate(size_t size,
   160                          bool is_noref,
   161                          bool is_tlab,
   162                          bool* gc_overhead_limit_was_exceeded);
   163   HeapWord* failed_mem_allocate(size_t size, bool is_tlab);
   165   HeapWord* permanent_mem_allocate(size_t size);
   166   HeapWord* failed_permanent_mem_allocate(size_t size);
   168   // Support for System.gc()
   169   void collect(GCCause::Cause cause);
   171   // This interface assumes that it's being called by the
   172   // vm thread. It collects the heap assuming that the
   173   // heap lock is already held and that we are executing in
   174   // the context of the vm thread.
   175   void collect_as_vm_thread(GCCause::Cause cause);
   177   // These also should be called by the vm thread at a safepoint (e.g., from a
   178   // VM operation).
   179   //
   180   // The first collects the young generation only, unless the scavenge fails; it
   181   // will then attempt a full gc.  The second collects the entire heap; if
   182   // maximum_compaction is true, it will compact everything and clear all soft
   183   // references.
   184   inline void invoke_scavenge();
   185   inline void invoke_full_gc(bool maximum_compaction);
   187   size_t large_typearray_limit() { return FastAllocateSizeLimit; }
   189   bool supports_inline_contig_alloc() const { return !UseNUMA; }
   191   HeapWord** top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord**)-1; }
   192   HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; }
   194   void ensure_parsability(bool retire_tlabs);
   195   void accumulate_statistics_all_tlabs();
   196   void resize_all_tlabs();
   198   size_t unsafe_max_alloc();
   200   bool supports_tlab_allocation() const { return true; }
   202   size_t tlab_capacity(Thread* thr) const;
   203   size_t unsafe_max_tlab_alloc(Thread* thr) const;
   205   // Can a compiler initialize a new object without store barriers?
   206   // This permission only extends from the creation of a new object
   207   // via a TLAB up to the first subsequent safepoint.
   208   virtual bool can_elide_tlab_store_barriers() const {
   209     return true;
   210   }
   212   virtual bool card_mark_must_follow_store() const {
   213     return false;
   214   }
   216   // Return true if we don't we need a store barrier for
   217   // initializing stores to an object at this address.
   218   virtual bool can_elide_initializing_store_barrier(oop new_obj);
   220   // Can a compiler elide a store barrier when it writes
   221   // a permanent oop into the heap?  Applies when the compiler
   222   // is storing x to the heap, where x->is_perm() is true.
   223   virtual bool can_elide_permanent_oop_store_barriers() const {
   224     return true;
   225   }
   227   void oop_iterate(OopClosure* cl);
   228   void object_iterate(ObjectClosure* cl);
   229   void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); }
   230   void permanent_oop_iterate(OopClosure* cl);
   231   void permanent_object_iterate(ObjectClosure* cl);
   233   HeapWord* block_start(const void* addr) const;
   234   size_t block_size(const HeapWord* addr) const;
   235   bool block_is_obj(const HeapWord* addr) const;
   237   jlong millis_since_last_gc();
   239   void prepare_for_verify();
   240   void print() const;
   241   void print_on(outputStream* st) const;
   242   virtual void print_gc_threads_on(outputStream* st) const;
   243   virtual void gc_threads_do(ThreadClosure* tc) const;
   244   virtual void print_tracing_info() const;
   246   void verify(bool allow_dirty, bool silent, bool /* option */);
   248   void print_heap_change(size_t prev_used);
   250   // Resize the young generation.  The reserved space for the
   251   // generation may be expanded in preparation for the resize.
   252   void resize_young_gen(size_t eden_size, size_t survivor_size);
   254   // Resize the old generation.  The reserved space for the
   255   // generation may be expanded in preparation for the resize.
   256   void resize_old_gen(size_t desired_free_space);
   258   // Save the tops of the spaces in all generations
   259   void record_gen_tops_before_GC() PRODUCT_RETURN;
   261   // Mangle the unused parts of all spaces in the heap
   262   void gen_mangle_unused_area() PRODUCT_RETURN;
   264   // Call these in sequential code around the processing of strong roots.
   265   class ParStrongRootsScope : public MarkingCodeBlobClosure::MarkScope {
   266   public:
   267     ParStrongRootsScope();
   268     ~ParStrongRootsScope();
   269   };
   270 };
   272 inline size_t ParallelScavengeHeap::set_alignment(size_t& var, size_t val)
   273 {
   274   assert(is_power_of_2((intptr_t)val), "must be a power of 2");
   275   var = round_to(val, intra_heap_alignment());
   276   return var;
   277 }
   279 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP

mercurial