src/share/vm/gc_implementation/g1/concurrentMark.cpp

Thu, 21 Aug 2014 11:47:10 +0200

author
tschatzl
date
Thu, 21 Aug 2014 11:47:10 +0200
changeset 7051
1f1d373cd044
parent 7050
6701abbc4441
child 7091
a8ea2f110d87
permissions
-rw-r--r--

8038423: G1: Decommit memory within heap
Summary: Allow G1 to decommit memory of arbitrary regions within the heap and their associated auxiliary data structures card table, BOT, hot card cache, and mark bitmaps.
Reviewed-by: mgerdin, brutisso, jwilhelm

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "gc_implementation/g1/concurrentMark.inline.hpp"
    29 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    32 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    33 #include "gc_implementation/g1/g1Log.hpp"
    34 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    35 #include "gc_implementation/g1/g1RemSet.hpp"
    36 #include "gc_implementation/g1/heapRegion.inline.hpp"
    37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    39 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
    40 #include "gc_implementation/shared/vmGCOperations.hpp"
    41 #include "gc_implementation/shared/gcTimer.hpp"
    42 #include "gc_implementation/shared/gcTrace.hpp"
    43 #include "gc_implementation/shared/gcTraceTime.hpp"
    44 #include "memory/allocation.hpp"
    45 #include "memory/genOopClosures.inline.hpp"
    46 #include "memory/referencePolicy.hpp"
    47 #include "memory/resourceArea.hpp"
    48 #include "oops/oop.inline.hpp"
    49 #include "runtime/handles.inline.hpp"
    50 #include "runtime/java.hpp"
    51 #include "runtime/prefetch.inline.hpp"
    52 #include "services/memTracker.hpp"
    54 // Concurrent marking bit map wrapper
    56 CMBitMapRO::CMBitMapRO(int shifter) :
    57   _bm(),
    58   _shifter(shifter) {
    59   _bmStartWord = 0;
    60   _bmWordSize = 0;
    61 }
    63 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
    64                                                const HeapWord* limit) const {
    65   // First we must round addr *up* to a possible object boundary.
    66   addr = (HeapWord*)align_size_up((intptr_t)addr,
    67                                   HeapWordSize << _shifter);
    68   size_t addrOffset = heapWordToOffset(addr);
    69   if (limit == NULL) {
    70     limit = _bmStartWord + _bmWordSize;
    71   }
    72   size_t limitOffset = heapWordToOffset(limit);
    73   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
    74   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    75   assert(nextAddr >= addr, "get_next_one postcondition");
    76   assert(nextAddr == limit || isMarked(nextAddr),
    77          "get_next_one postcondition");
    78   return nextAddr;
    79 }
    81 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
    82                                                  const HeapWord* limit) const {
    83   size_t addrOffset = heapWordToOffset(addr);
    84   if (limit == NULL) {
    85     limit = _bmStartWord + _bmWordSize;
    86   }
    87   size_t limitOffset = heapWordToOffset(limit);
    88   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
    89   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    90   assert(nextAddr >= addr, "get_next_one postcondition");
    91   assert(nextAddr == limit || !isMarked(nextAddr),
    92          "get_next_one postcondition");
    93   return nextAddr;
    94 }
    96 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
    97   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
    98   return (int) (diff >> _shifter);
    99 }
   101 #ifndef PRODUCT
   102 bool CMBitMapRO::covers(MemRegion heap_rs) const {
   103   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
   104   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
   105          "size inconsistency");
   106   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
   107          _bmWordSize  == heap_rs.word_size();
   108 }
   109 #endif
   111 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
   112   _bm.print_on_error(st, prefix);
   113 }
   115 size_t CMBitMap::compute_size(size_t heap_size) {
   116   return heap_size / mark_distance();
   117 }
   119 size_t CMBitMap::mark_distance() {
   120   return MinObjAlignmentInBytes * BitsPerByte;
   121 }
   123 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
   124   _bmStartWord = heap.start();
   125   _bmWordSize = heap.word_size();
   127   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
   128   _bm.set_size(_bmWordSize >> _shifter);
   130   storage->set_mapping_changed_listener(&_listener);
   131 }
   133 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions) {
   134   // We need to clear the bitmap on commit, removing any existing information.
   135   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
   136   _bm->clearRange(mr);
   137 }
   139 // Closure used for clearing the given mark bitmap.
   140 class ClearBitmapHRClosure : public HeapRegionClosure {
   141  private:
   142   ConcurrentMark* _cm;
   143   CMBitMap* _bitmap;
   144   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
   145  public:
   146   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
   147     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
   148   }
   150   virtual bool doHeapRegion(HeapRegion* r) {
   151     size_t const chunk_size_in_words = M / HeapWordSize;
   153     HeapWord* cur = r->bottom();
   154     HeapWord* const end = r->end();
   156     while (cur < end) {
   157       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
   158       _bitmap->clearRange(mr);
   160       cur += chunk_size_in_words;
   162       // Abort iteration if after yielding the marking has been aborted.
   163       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
   164         return true;
   165       }
   166       // Repeat the asserts from before the start of the closure. We will do them
   167       // as asserts here to minimize their overhead on the product. However, we
   168       // will have them as guarantees at the beginning / end of the bitmap
   169       // clearing to get some checking in the product.
   170       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
   171       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
   172     }
   174     return false;
   175   }
   176 };
   178 void CMBitMap::clearAll() {
   179   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
   180   G1CollectedHeap::heap()->heap_region_iterate(&cl);
   181   guarantee(cl.complete(), "Must have completed iteration.");
   182   return;
   183 }
   185 void CMBitMap::markRange(MemRegion mr) {
   186   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   187   assert(!mr.is_empty(), "unexpected empty region");
   188   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
   189           ((HeapWord *) mr.end())),
   190          "markRange memory region end is not card aligned");
   191   // convert address range into offset range
   192   _bm.at_put_range(heapWordToOffset(mr.start()),
   193                    heapWordToOffset(mr.end()), true);
   194 }
   196 void CMBitMap::clearRange(MemRegion mr) {
   197   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   198   assert(!mr.is_empty(), "unexpected empty region");
   199   // convert address range into offset range
   200   _bm.at_put_range(heapWordToOffset(mr.start()),
   201                    heapWordToOffset(mr.end()), false);
   202 }
   204 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
   205                                             HeapWord* end_addr) {
   206   HeapWord* start = getNextMarkedWordAddress(addr);
   207   start = MIN2(start, end_addr);
   208   HeapWord* end   = getNextUnmarkedWordAddress(start);
   209   end = MIN2(end, end_addr);
   210   assert(start <= end, "Consistency check");
   211   MemRegion mr(start, end);
   212   if (!mr.is_empty()) {
   213     clearRange(mr);
   214   }
   215   return mr;
   216 }
   218 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
   219   _base(NULL), _cm(cm)
   220 #ifdef ASSERT
   221   , _drain_in_progress(false)
   222   , _drain_in_progress_yields(false)
   223 #endif
   224 {}
   226 bool CMMarkStack::allocate(size_t capacity) {
   227   // allocate a stack of the requisite depth
   228   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
   229   if (!rs.is_reserved()) {
   230     warning("ConcurrentMark MarkStack allocation failure");
   231     return false;
   232   }
   233   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   234   if (!_virtual_space.initialize(rs, rs.size())) {
   235     warning("ConcurrentMark MarkStack backing store failure");
   236     // Release the virtual memory reserved for the marking stack
   237     rs.release();
   238     return false;
   239   }
   240   assert(_virtual_space.committed_size() == rs.size(),
   241          "Didn't reserve backing store for all of ConcurrentMark stack?");
   242   _base = (oop*) _virtual_space.low();
   243   setEmpty();
   244   _capacity = (jint) capacity;
   245   _saved_index = -1;
   246   _should_expand = false;
   247   NOT_PRODUCT(_max_depth = 0);
   248   return true;
   249 }
   251 void CMMarkStack::expand() {
   252   // Called, during remark, if we've overflown the marking stack during marking.
   253   assert(isEmpty(), "stack should been emptied while handling overflow");
   254   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
   255   // Clear expansion flag
   256   _should_expand = false;
   257   if (_capacity == (jint) MarkStackSizeMax) {
   258     if (PrintGCDetails && Verbose) {
   259       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
   260     }
   261     return;
   262   }
   263   // Double capacity if possible
   264   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
   265   // Do not give up existing stack until we have managed to
   266   // get the double capacity that we desired.
   267   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
   268                                                            sizeof(oop)));
   269   if (rs.is_reserved()) {
   270     // Release the backing store associated with old stack
   271     _virtual_space.release();
   272     // Reinitialize virtual space for new stack
   273     if (!_virtual_space.initialize(rs, rs.size())) {
   274       fatal("Not enough swap for expanded marking stack capacity");
   275     }
   276     _base = (oop*)(_virtual_space.low());
   277     _index = 0;
   278     _capacity = new_capacity;
   279   } else {
   280     if (PrintGCDetails && Verbose) {
   281       // Failed to double capacity, continue;
   282       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
   283                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
   284                           _capacity / K, new_capacity / K);
   285     }
   286   }
   287 }
   289 void CMMarkStack::set_should_expand() {
   290   // If we're resetting the marking state because of an
   291   // marking stack overflow, record that we should, if
   292   // possible, expand the stack.
   293   _should_expand = _cm->has_overflown();
   294 }
   296 CMMarkStack::~CMMarkStack() {
   297   if (_base != NULL) {
   298     _base = NULL;
   299     _virtual_space.release();
   300   }
   301 }
   303 void CMMarkStack::par_push(oop ptr) {
   304   while (true) {
   305     if (isFull()) {
   306       _overflow = true;
   307       return;
   308     }
   309     // Otherwise...
   310     jint index = _index;
   311     jint next_index = index+1;
   312     jint res = Atomic::cmpxchg(next_index, &_index, index);
   313     if (res == index) {
   314       _base[index] = ptr;
   315       // Note that we don't maintain this atomically.  We could, but it
   316       // doesn't seem necessary.
   317       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   318       return;
   319     }
   320     // Otherwise, we need to try again.
   321   }
   322 }
   324 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
   325   while (true) {
   326     if (isFull()) {
   327       _overflow = true;
   328       return;
   329     }
   330     // Otherwise...
   331     jint index = _index;
   332     jint next_index = index + n;
   333     if (next_index > _capacity) {
   334       _overflow = true;
   335       return;
   336     }
   337     jint res = Atomic::cmpxchg(next_index, &_index, index);
   338     if (res == index) {
   339       for (int i = 0; i < n; i++) {
   340         int  ind = index + i;
   341         assert(ind < _capacity, "By overflow test above.");
   342         _base[ind] = ptr_arr[i];
   343       }
   344       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   345       return;
   346     }
   347     // Otherwise, we need to try again.
   348   }
   349 }
   351 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
   352   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   353   jint start = _index;
   354   jint next_index = start + n;
   355   if (next_index > _capacity) {
   356     _overflow = true;
   357     return;
   358   }
   359   // Otherwise.
   360   _index = next_index;
   361   for (int i = 0; i < n; i++) {
   362     int ind = start + i;
   363     assert(ind < _capacity, "By overflow test above.");
   364     _base[ind] = ptr_arr[i];
   365   }
   366   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   367 }
   369 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
   370   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   371   jint index = _index;
   372   if (index == 0) {
   373     *n = 0;
   374     return false;
   375   } else {
   376     int k = MIN2(max, index);
   377     jint  new_ind = index - k;
   378     for (int j = 0; j < k; j++) {
   379       ptr_arr[j] = _base[new_ind + j];
   380     }
   381     _index = new_ind;
   382     *n = k;
   383     return true;
   384   }
   385 }
   387 template<class OopClosureClass>
   388 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
   389   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
   390          || SafepointSynchronize::is_at_safepoint(),
   391          "Drain recursion must be yield-safe.");
   392   bool res = true;
   393   debug_only(_drain_in_progress = true);
   394   debug_only(_drain_in_progress_yields = yield_after);
   395   while (!isEmpty()) {
   396     oop newOop = pop();
   397     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
   398     assert(newOop->is_oop(), "Expected an oop");
   399     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
   400            "only grey objects on this stack");
   401     newOop->oop_iterate(cl);
   402     if (yield_after && _cm->do_yield_check()) {
   403       res = false;
   404       break;
   405     }
   406   }
   407   debug_only(_drain_in_progress = false);
   408   return res;
   409 }
   411 void CMMarkStack::note_start_of_gc() {
   412   assert(_saved_index == -1,
   413          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
   414   _saved_index = _index;
   415 }
   417 void CMMarkStack::note_end_of_gc() {
   418   // This is intentionally a guarantee, instead of an assert. If we
   419   // accidentally add something to the mark stack during GC, it
   420   // will be a correctness issue so it's better if we crash. we'll
   421   // only check this once per GC anyway, so it won't be a performance
   422   // issue in any way.
   423   guarantee(_saved_index == _index,
   424             err_msg("saved index: %d index: %d", _saved_index, _index));
   425   _saved_index = -1;
   426 }
   428 void CMMarkStack::oops_do(OopClosure* f) {
   429   assert(_saved_index == _index,
   430          err_msg("saved index: %d index: %d", _saved_index, _index));
   431   for (int i = 0; i < _index; i += 1) {
   432     f->do_oop(&_base[i]);
   433   }
   434 }
   436 bool ConcurrentMark::not_yet_marked(oop obj) const {
   437   return _g1h->is_obj_ill(obj);
   438 }
   440 CMRootRegions::CMRootRegions() :
   441   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
   442   _should_abort(false),  _next_survivor(NULL) { }
   444 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
   445   _young_list = g1h->young_list();
   446   _cm = cm;
   447 }
   449 void CMRootRegions::prepare_for_scan() {
   450   assert(!scan_in_progress(), "pre-condition");
   452   // Currently, only survivors can be root regions.
   453   assert(_next_survivor == NULL, "pre-condition");
   454   _next_survivor = _young_list->first_survivor_region();
   455   _scan_in_progress = (_next_survivor != NULL);
   456   _should_abort = false;
   457 }
   459 HeapRegion* CMRootRegions::claim_next() {
   460   if (_should_abort) {
   461     // If someone has set the should_abort flag, we return NULL to
   462     // force the caller to bail out of their loop.
   463     return NULL;
   464   }
   466   // Currently, only survivors can be root regions.
   467   HeapRegion* res = _next_survivor;
   468   if (res != NULL) {
   469     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   470     // Read it again in case it changed while we were waiting for the lock.
   471     res = _next_survivor;
   472     if (res != NULL) {
   473       if (res == _young_list->last_survivor_region()) {
   474         // We just claimed the last survivor so store NULL to indicate
   475         // that we're done.
   476         _next_survivor = NULL;
   477       } else {
   478         _next_survivor = res->get_next_young_region();
   479       }
   480     } else {
   481       // Someone else claimed the last survivor while we were trying
   482       // to take the lock so nothing else to do.
   483     }
   484   }
   485   assert(res == NULL || res->is_survivor(), "post-condition");
   487   return res;
   488 }
   490 void CMRootRegions::scan_finished() {
   491   assert(scan_in_progress(), "pre-condition");
   493   // Currently, only survivors can be root regions.
   494   if (!_should_abort) {
   495     assert(_next_survivor == NULL, "we should have claimed all survivors");
   496   }
   497   _next_survivor = NULL;
   499   {
   500     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   501     _scan_in_progress = false;
   502     RootRegionScan_lock->notify_all();
   503   }
   504 }
   506 bool CMRootRegions::wait_until_scan_finished() {
   507   if (!scan_in_progress()) return false;
   509   {
   510     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   511     while (scan_in_progress()) {
   512       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
   513     }
   514   }
   515   return true;
   516 }
   518 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   519 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   520 #endif // _MSC_VER
   522 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
   523   return MAX2((n_par_threads + 2) / 4, 1U);
   524 }
   526 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
   527   _g1h(g1h),
   528   _markBitMap1(),
   529   _markBitMap2(),
   530   _parallel_marking_threads(0),
   531   _max_parallel_marking_threads(0),
   532   _sleep_factor(0.0),
   533   _marking_task_overhead(1.0),
   534   _cleanup_sleep_factor(0.0),
   535   _cleanup_task_overhead(1.0),
   536   _cleanup_list("Cleanup List"),
   537   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
   538   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
   539             CardTableModRefBS::card_shift,
   540             false /* in_resource_area*/),
   542   _prevMarkBitMap(&_markBitMap1),
   543   _nextMarkBitMap(&_markBitMap2),
   545   _markStack(this),
   546   // _finger set in set_non_marking_state
   548   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
   549   // _active_tasks set in set_non_marking_state
   550   // _tasks set inside the constructor
   551   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
   552   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
   554   _has_overflown(false),
   555   _concurrent(false),
   556   _has_aborted(false),
   557   _aborted_gc_id(GCId::undefined()),
   558   _restart_for_overflow(false),
   559   _concurrent_marking_in_progress(false),
   561   // _verbose_level set below
   563   _init_times(),
   564   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
   565   _cleanup_times(),
   566   _total_counting_time(0.0),
   567   _total_rs_scrub_time(0.0),
   569   _parallel_workers(NULL),
   571   _count_card_bitmaps(NULL),
   572   _count_marked_bytes(NULL),
   573   _completed_initialization(false) {
   574   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
   575   if (verbose_level < no_verbose) {
   576     verbose_level = no_verbose;
   577   }
   578   if (verbose_level > high_verbose) {
   579     verbose_level = high_verbose;
   580   }
   581   _verbose_level = verbose_level;
   583   if (verbose_low()) {
   584     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
   585                            "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
   586   }
   588   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
   589   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
   591   // Create & start a ConcurrentMark thread.
   592   _cmThread = new ConcurrentMarkThread(this);
   593   assert(cmThread() != NULL, "CM Thread should have been created");
   594   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
   595   if (_cmThread->osthread() == NULL) {
   596       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
   597   }
   599   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   600   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
   601   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
   603   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
   604   satb_qs.set_buffer_size(G1SATBBufferSize);
   606   _root_regions.init(_g1h, this);
   608   if (ConcGCThreads > ParallelGCThreads) {
   609     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
   610             "than ParallelGCThreads (" UINTX_FORMAT ").",
   611             ConcGCThreads, ParallelGCThreads);
   612     return;
   613   }
   614   if (ParallelGCThreads == 0) {
   615     // if we are not running with any parallel GC threads we will not
   616     // spawn any marking threads either
   617     _parallel_marking_threads =       0;
   618     _max_parallel_marking_threads =   0;
   619     _sleep_factor             =     0.0;
   620     _marking_task_overhead    =     1.0;
   621   } else {
   622     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
   623       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
   624       // if both are set
   625       _sleep_factor             = 0.0;
   626       _marking_task_overhead    = 1.0;
   627     } else if (G1MarkingOverheadPercent > 0) {
   628       // We will calculate the number of parallel marking threads based
   629       // on a target overhead with respect to the soft real-time goal
   630       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
   631       double overall_cm_overhead =
   632         (double) MaxGCPauseMillis * marking_overhead /
   633         (double) GCPauseIntervalMillis;
   634       double cpu_ratio = 1.0 / (double) os::processor_count();
   635       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
   636       double marking_task_overhead =
   637         overall_cm_overhead / marking_thread_num *
   638                                                 (double) os::processor_count();
   639       double sleep_factor =
   640                          (1.0 - marking_task_overhead) / marking_task_overhead;
   642       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
   643       _sleep_factor             = sleep_factor;
   644       _marking_task_overhead    = marking_task_overhead;
   645     } else {
   646       // Calculate the number of parallel marking threads by scaling
   647       // the number of parallel GC threads.
   648       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
   649       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
   650       _sleep_factor             = 0.0;
   651       _marking_task_overhead    = 1.0;
   652     }
   654     assert(ConcGCThreads > 0, "Should have been set");
   655     _parallel_marking_threads = (uint) ConcGCThreads;
   656     _max_parallel_marking_threads = _parallel_marking_threads;
   658     if (parallel_marking_threads() > 1) {
   659       _cleanup_task_overhead = 1.0;
   660     } else {
   661       _cleanup_task_overhead = marking_task_overhead();
   662     }
   663     _cleanup_sleep_factor =
   664                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
   666 #if 0
   667     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
   668     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
   669     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
   670     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
   671     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
   672 #endif
   674     guarantee(parallel_marking_threads() > 0, "peace of mind");
   675     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
   676          _max_parallel_marking_threads, false, true);
   677     if (_parallel_workers == NULL) {
   678       vm_exit_during_initialization("Failed necessary allocation.");
   679     } else {
   680       _parallel_workers->initialize_workers();
   681     }
   682   }
   684   if (FLAG_IS_DEFAULT(MarkStackSize)) {
   685     uintx mark_stack_size =
   686       MIN2(MarkStackSizeMax,
   687           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
   688     // Verify that the calculated value for MarkStackSize is in range.
   689     // It would be nice to use the private utility routine from Arguments.
   690     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
   691       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
   692               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   693               mark_stack_size, (uintx) 1, MarkStackSizeMax);
   694       return;
   695     }
   696     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
   697   } else {
   698     // Verify MarkStackSize is in range.
   699     if (FLAG_IS_CMDLINE(MarkStackSize)) {
   700       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
   701         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   702           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
   703                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   704                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
   705           return;
   706         }
   707       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
   708         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   709           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
   710                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
   711                   MarkStackSize, MarkStackSizeMax);
   712           return;
   713         }
   714       }
   715     }
   716   }
   718   if (!_markStack.allocate(MarkStackSize)) {
   719     warning("Failed to allocate CM marking stack");
   720     return;
   721   }
   723   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
   724   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
   726   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
   727   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
   729   BitMap::idx_t card_bm_size = _card_bm.size();
   731   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
   732   _active_tasks = _max_worker_id;
   734   size_t max_regions = (size_t) _g1h->max_regions();
   735   for (uint i = 0; i < _max_worker_id; ++i) {
   736     CMTaskQueue* task_queue = new CMTaskQueue();
   737     task_queue->initialize();
   738     _task_queues->register_queue(i, task_queue);
   740     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
   741     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
   743     _tasks[i] = new CMTask(i, this,
   744                            _count_marked_bytes[i],
   745                            &_count_card_bitmaps[i],
   746                            task_queue, _task_queues);
   748     _accum_task_vtime[i] = 0.0;
   749   }
   751   // Calculate the card number for the bottom of the heap. Used
   752   // in biasing indexes into the accounting card bitmaps.
   753   _heap_bottom_card_num =
   754     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
   755                                 CardTableModRefBS::card_shift);
   757   // Clear all the liveness counting data
   758   clear_all_count_data();
   760   // so that the call below can read a sensible value
   761   _heap_start = g1h->reserved_region().start();
   762   set_non_marking_state();
   763   _completed_initialization = true;
   764 }
   766 void ConcurrentMark::reset() {
   767   // Starting values for these two. This should be called in a STW
   768   // phase.
   769   MemRegion reserved = _g1h->g1_reserved();
   770   _heap_start = reserved.start();
   771   _heap_end   = reserved.end();
   773   // Separated the asserts so that we know which one fires.
   774   assert(_heap_start != NULL, "heap bounds should look ok");
   775   assert(_heap_end != NULL, "heap bounds should look ok");
   776   assert(_heap_start < _heap_end, "heap bounds should look ok");
   778   // Reset all the marking data structures and any necessary flags
   779   reset_marking_state();
   781   if (verbose_low()) {
   782     gclog_or_tty->print_cr("[global] resetting");
   783   }
   785   // We do reset all of them, since different phases will use
   786   // different number of active threads. So, it's easiest to have all
   787   // of them ready.
   788   for (uint i = 0; i < _max_worker_id; ++i) {
   789     _tasks[i]->reset(_nextMarkBitMap);
   790   }
   792   // we need this to make sure that the flag is on during the evac
   793   // pause with initial mark piggy-backed
   794   set_concurrent_marking_in_progress();
   795 }
   798 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
   799   _markStack.set_should_expand();
   800   _markStack.setEmpty();        // Also clears the _markStack overflow flag
   801   if (clear_overflow) {
   802     clear_has_overflown();
   803   } else {
   804     assert(has_overflown(), "pre-condition");
   805   }
   806   _finger = _heap_start;
   808   for (uint i = 0; i < _max_worker_id; ++i) {
   809     CMTaskQueue* queue = _task_queues->queue(i);
   810     queue->set_empty();
   811   }
   812 }
   814 void ConcurrentMark::set_concurrency(uint active_tasks) {
   815   assert(active_tasks <= _max_worker_id, "we should not have more");
   817   _active_tasks = active_tasks;
   818   // Need to update the three data structures below according to the
   819   // number of active threads for this phase.
   820   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
   821   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
   822   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
   823 }
   825 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
   826   set_concurrency(active_tasks);
   828   _concurrent = concurrent;
   829   // We propagate this to all tasks, not just the active ones.
   830   for (uint i = 0; i < _max_worker_id; ++i)
   831     _tasks[i]->set_concurrent(concurrent);
   833   if (concurrent) {
   834     set_concurrent_marking_in_progress();
   835   } else {
   836     // We currently assume that the concurrent flag has been set to
   837     // false before we start remark. At this point we should also be
   838     // in a STW phase.
   839     assert(!concurrent_marking_in_progress(), "invariant");
   840     assert(out_of_regions(),
   841            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
   842                    p2i(_finger), p2i(_heap_end)));
   843   }
   844 }
   846 void ConcurrentMark::set_non_marking_state() {
   847   // We set the global marking state to some default values when we're
   848   // not doing marking.
   849   reset_marking_state();
   850   _active_tasks = 0;
   851   clear_concurrent_marking_in_progress();
   852 }
   854 ConcurrentMark::~ConcurrentMark() {
   855   // The ConcurrentMark instance is never freed.
   856   ShouldNotReachHere();
   857 }
   859 void ConcurrentMark::clearNextBitmap() {
   860   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   862   // Make sure that the concurrent mark thread looks to still be in
   863   // the current cycle.
   864   guarantee(cmThread()->during_cycle(), "invariant");
   866   // We are finishing up the current cycle by clearing the next
   867   // marking bitmap and getting it ready for the next cycle. During
   868   // this time no other cycle can start. So, let's make sure that this
   869   // is the case.
   870   guarantee(!g1h->mark_in_progress(), "invariant");
   872   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
   873   g1h->heap_region_iterate(&cl);
   875   // Clear the liveness counting data. If the marking has been aborted, the abort()
   876   // call already did that.
   877   if (cl.complete()) {
   878     clear_all_count_data();
   879   }
   881   // Repeat the asserts from above.
   882   guarantee(cmThread()->during_cycle(), "invariant");
   883   guarantee(!g1h->mark_in_progress(), "invariant");
   884 }
   886 class CheckBitmapClearHRClosure : public HeapRegionClosure {
   887   CMBitMap* _bitmap;
   888   bool _error;
   889  public:
   890   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
   891   }
   893   virtual bool doHeapRegion(HeapRegion* r) {
   894     return _bitmap->getNextMarkedWordAddress(r->bottom(), r->end()) != r->end();
   895   }
   896 };
   898 bool ConcurrentMark::nextMarkBitmapIsClear() {
   899   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
   900   _g1h->heap_region_iterate(&cl);
   901   return cl.complete();
   902 }
   904 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
   905 public:
   906   bool doHeapRegion(HeapRegion* r) {
   907     if (!r->continuesHumongous()) {
   908       r->note_start_of_marking();
   909     }
   910     return false;
   911   }
   912 };
   914 void ConcurrentMark::checkpointRootsInitialPre() {
   915   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   916   G1CollectorPolicy* g1p = g1h->g1_policy();
   918   _has_aborted = false;
   920 #ifndef PRODUCT
   921   if (G1PrintReachableAtInitialMark) {
   922     print_reachable("at-cycle-start",
   923                     VerifyOption_G1UsePrevMarking, true /* all */);
   924   }
   925 #endif
   927   // Initialise marking structures. This has to be done in a STW phase.
   928   reset();
   930   // For each region note start of marking.
   931   NoteStartOfMarkHRClosure startcl;
   932   g1h->heap_region_iterate(&startcl);
   933 }
   936 void ConcurrentMark::checkpointRootsInitialPost() {
   937   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   939   // If we force an overflow during remark, the remark operation will
   940   // actually abort and we'll restart concurrent marking. If we always
   941   // force an oveflow during remark we'll never actually complete the
   942   // marking phase. So, we initilize this here, at the start of the
   943   // cycle, so that at the remaining overflow number will decrease at
   944   // every remark and we'll eventually not need to cause one.
   945   force_overflow_stw()->init();
   947   // Start Concurrent Marking weak-reference discovery.
   948   ReferenceProcessor* rp = g1h->ref_processor_cm();
   949   // enable ("weak") refs discovery
   950   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   951   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
   953   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
   954   // This is the start of  the marking cycle, we're expected all
   955   // threads to have SATB queues with active set to false.
   956   satb_mq_set.set_active_all_threads(true, /* new active value */
   957                                      false /* expected_active */);
   959   _root_regions.prepare_for_scan();
   961   // update_g1_committed() will be called at the end of an evac pause
   962   // when marking is on. So, it's also called at the end of the
   963   // initial-mark pause to update the heap end, if the heap expands
   964   // during it. No need to call it here.
   965 }
   967 /*
   968  * Notice that in the next two methods, we actually leave the STS
   969  * during the barrier sync and join it immediately afterwards. If we
   970  * do not do this, the following deadlock can occur: one thread could
   971  * be in the barrier sync code, waiting for the other thread to also
   972  * sync up, whereas another one could be trying to yield, while also
   973  * waiting for the other threads to sync up too.
   974  *
   975  * Note, however, that this code is also used during remark and in
   976  * this case we should not attempt to leave / enter the STS, otherwise
   977  * we'll either hit an asseert (debug / fastdebug) or deadlock
   978  * (product). So we should only leave / enter the STS if we are
   979  * operating concurrently.
   980  *
   981  * Because the thread that does the sync barrier has left the STS, it
   982  * is possible to be suspended for a Full GC or an evacuation pause
   983  * could occur. This is actually safe, since the entering the sync
   984  * barrier is one of the last things do_marking_step() does, and it
   985  * doesn't manipulate any data structures afterwards.
   986  */
   988 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
   989   if (verbose_low()) {
   990     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
   991   }
   993   if (concurrent()) {
   994     SuspendibleThreadSet::leave();
   995   }
   997   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
   999   if (concurrent()) {
  1000     SuspendibleThreadSet::join();
  1002   // at this point everyone should have synced up and not be doing any
  1003   // more work
  1005   if (verbose_low()) {
  1006     if (barrier_aborted) {
  1007       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
  1008     } else {
  1009       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
  1013   if (barrier_aborted) {
  1014     // If the barrier aborted we ignore the overflow condition and
  1015     // just abort the whole marking phase as quickly as possible.
  1016     return;
  1019   // If we're executing the concurrent phase of marking, reset the marking
  1020   // state; otherwise the marking state is reset after reference processing,
  1021   // during the remark pause.
  1022   // If we reset here as a result of an overflow during the remark we will
  1023   // see assertion failures from any subsequent set_concurrency_and_phase()
  1024   // calls.
  1025   if (concurrent()) {
  1026     // let the task associated with with worker 0 do this
  1027     if (worker_id == 0) {
  1028       // task 0 is responsible for clearing the global data structures
  1029       // We should be here because of an overflow. During STW we should
  1030       // not clear the overflow flag since we rely on it being true when
  1031       // we exit this method to abort the pause and restart concurent
  1032       // marking.
  1033       reset_marking_state(true /* clear_overflow */);
  1034       force_overflow()->update();
  1036       if (G1Log::fine()) {
  1037         gclog_or_tty->gclog_stamp(concurrent_gc_id());
  1038         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
  1043   // after this, each task should reset its own data structures then
  1044   // then go into the second barrier
  1047 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
  1048   if (verbose_low()) {
  1049     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
  1052   if (concurrent()) {
  1053     SuspendibleThreadSet::leave();
  1056   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
  1058   if (concurrent()) {
  1059     SuspendibleThreadSet::join();
  1061   // at this point everything should be re-initialized and ready to go
  1063   if (verbose_low()) {
  1064     if (barrier_aborted) {
  1065       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
  1066     } else {
  1067       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
  1072 #ifndef PRODUCT
  1073 void ForceOverflowSettings::init() {
  1074   _num_remaining = G1ConcMarkForceOverflow;
  1075   _force = false;
  1076   update();
  1079 void ForceOverflowSettings::update() {
  1080   if (_num_remaining > 0) {
  1081     _num_remaining -= 1;
  1082     _force = true;
  1083   } else {
  1084     _force = false;
  1088 bool ForceOverflowSettings::should_force() {
  1089   if (_force) {
  1090     _force = false;
  1091     return true;
  1092   } else {
  1093     return false;
  1096 #endif // !PRODUCT
  1098 class CMConcurrentMarkingTask: public AbstractGangTask {
  1099 private:
  1100   ConcurrentMark*       _cm;
  1101   ConcurrentMarkThread* _cmt;
  1103 public:
  1104   void work(uint worker_id) {
  1105     assert(Thread::current()->is_ConcurrentGC_thread(),
  1106            "this should only be done by a conc GC thread");
  1107     ResourceMark rm;
  1109     double start_vtime = os::elapsedVTime();
  1111     SuspendibleThreadSet::join();
  1113     assert(worker_id < _cm->active_tasks(), "invariant");
  1114     CMTask* the_task = _cm->task(worker_id);
  1115     the_task->record_start_time();
  1116     if (!_cm->has_aborted()) {
  1117       do {
  1118         double start_vtime_sec = os::elapsedVTime();
  1119         double start_time_sec = os::elapsedTime();
  1120         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1122         the_task->do_marking_step(mark_step_duration_ms,
  1123                                   true  /* do_termination */,
  1124                                   false /* is_serial*/);
  1126         double end_time_sec = os::elapsedTime();
  1127         double end_vtime_sec = os::elapsedVTime();
  1128         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
  1129         double elapsed_time_sec = end_time_sec - start_time_sec;
  1130         _cm->clear_has_overflown();
  1132         bool ret = _cm->do_yield_check(worker_id);
  1134         jlong sleep_time_ms;
  1135         if (!_cm->has_aborted() && the_task->has_aborted()) {
  1136           sleep_time_ms =
  1137             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
  1138           SuspendibleThreadSet::leave();
  1139           os::sleep(Thread::current(), sleep_time_ms, false);
  1140           SuspendibleThreadSet::join();
  1142         double end_time2_sec = os::elapsedTime();
  1143         double elapsed_time2_sec = end_time2_sec - start_time_sec;
  1145 #if 0
  1146           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
  1147                                  "overhead %1.4lf",
  1148                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
  1149                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
  1150           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
  1151                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
  1152 #endif
  1153       } while (!_cm->has_aborted() && the_task->has_aborted());
  1155     the_task->record_end_time();
  1156     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
  1158     SuspendibleThreadSet::leave();
  1160     double end_vtime = os::elapsedVTime();
  1161     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
  1164   CMConcurrentMarkingTask(ConcurrentMark* cm,
  1165                           ConcurrentMarkThread* cmt) :
  1166       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
  1168   ~CMConcurrentMarkingTask() { }
  1169 };
  1171 // Calculates the number of active workers for a concurrent
  1172 // phase.
  1173 uint ConcurrentMark::calc_parallel_marking_threads() {
  1174   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1175     uint n_conc_workers = 0;
  1176     if (!UseDynamicNumberOfGCThreads ||
  1177         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
  1178          !ForceDynamicNumberOfGCThreads)) {
  1179       n_conc_workers = max_parallel_marking_threads();
  1180     } else {
  1181       n_conc_workers =
  1182         AdaptiveSizePolicy::calc_default_active_workers(
  1183                                      max_parallel_marking_threads(),
  1184                                      1, /* Minimum workers */
  1185                                      parallel_marking_threads(),
  1186                                      Threads::number_of_non_daemon_threads());
  1187       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
  1188       // that scaling has already gone into "_max_parallel_marking_threads".
  1190     assert(n_conc_workers > 0, "Always need at least 1");
  1191     return n_conc_workers;
  1193   // If we are not running with any parallel GC threads we will not
  1194   // have spawned any marking threads either. Hence the number of
  1195   // concurrent workers should be 0.
  1196   return 0;
  1199 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  1200   // Currently, only survivors can be root regions.
  1201   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  1202   G1RootRegionScanClosure cl(_g1h, this, worker_id);
  1204   const uintx interval = PrefetchScanIntervalInBytes;
  1205   HeapWord* curr = hr->bottom();
  1206   const HeapWord* end = hr->top();
  1207   while (curr < end) {
  1208     Prefetch::read(curr, interval);
  1209     oop obj = oop(curr);
  1210     int size = obj->oop_iterate(&cl);
  1211     assert(size == obj->size(), "sanity");
  1212     curr += size;
  1216 class CMRootRegionScanTask : public AbstractGangTask {
  1217 private:
  1218   ConcurrentMark* _cm;
  1220 public:
  1221   CMRootRegionScanTask(ConcurrentMark* cm) :
  1222     AbstractGangTask("Root Region Scan"), _cm(cm) { }
  1224   void work(uint worker_id) {
  1225     assert(Thread::current()->is_ConcurrentGC_thread(),
  1226            "this should only be done by a conc GC thread");
  1228     CMRootRegions* root_regions = _cm->root_regions();
  1229     HeapRegion* hr = root_regions->claim_next();
  1230     while (hr != NULL) {
  1231       _cm->scanRootRegion(hr, worker_id);
  1232       hr = root_regions->claim_next();
  1235 };
  1237 void ConcurrentMark::scanRootRegions() {
  1238   // Start of concurrent marking.
  1239   ClassLoaderDataGraph::clear_claimed_marks();
  1241   // scan_in_progress() will have been set to true only if there was
  1242   // at least one root region to scan. So, if it's false, we
  1243   // should not attempt to do any further work.
  1244   if (root_regions()->scan_in_progress()) {
  1245     _parallel_marking_threads = calc_parallel_marking_threads();
  1246     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1247            "Maximum number of marking threads exceeded");
  1248     uint active_workers = MAX2(1U, parallel_marking_threads());
  1250     CMRootRegionScanTask task(this);
  1251     if (use_parallel_marking_threads()) {
  1252       _parallel_workers->set_active_workers((int) active_workers);
  1253       _parallel_workers->run_task(&task);
  1254     } else {
  1255       task.work(0);
  1258     // It's possible that has_aborted() is true here without actually
  1259     // aborting the survivor scan earlier. This is OK as it's
  1260     // mainly used for sanity checking.
  1261     root_regions()->scan_finished();
  1265 void ConcurrentMark::markFromRoots() {
  1266   // we might be tempted to assert that:
  1267   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1268   //        "inconsistent argument?");
  1269   // However that wouldn't be right, because it's possible that
  1270   // a safepoint is indeed in progress as a younger generation
  1271   // stop-the-world GC happens even as we mark in this generation.
  1273   _restart_for_overflow = false;
  1274   force_overflow_conc()->init();
  1276   // _g1h has _n_par_threads
  1277   _parallel_marking_threads = calc_parallel_marking_threads();
  1278   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1279     "Maximum number of marking threads exceeded");
  1281   uint active_workers = MAX2(1U, parallel_marking_threads());
  1283   // Parallel task terminator is set in "set_concurrency_and_phase()"
  1284   set_concurrency_and_phase(active_workers, true /* concurrent */);
  1286   CMConcurrentMarkingTask markingTask(this, cmThread());
  1287   if (use_parallel_marking_threads()) {
  1288     _parallel_workers->set_active_workers((int)active_workers);
  1289     // Don't set _n_par_threads because it affects MT in process_roots()
  1290     // and the decisions on that MT processing is made elsewhere.
  1291     assert(_parallel_workers->active_workers() > 0, "Should have been set");
  1292     _parallel_workers->run_task(&markingTask);
  1293   } else {
  1294     markingTask.work(0);
  1296   print_stats();
  1299 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  1300   // world is stopped at this checkpoint
  1301   assert(SafepointSynchronize::is_at_safepoint(),
  1302          "world should be stopped");
  1304   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1306   // If a full collection has happened, we shouldn't do this.
  1307   if (has_aborted()) {
  1308     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1309     return;
  1312   SvcGCMarker sgcm(SvcGCMarker::OTHER);
  1314   if (VerifyDuringGC) {
  1315     HandleMark hm;  // handle scope
  1316     Universe::heap()->prepare_for_verify();
  1317     Universe::verify(VerifyOption_G1UsePrevMarking,
  1318                      " VerifyDuringGC:(before)");
  1320   g1h->check_bitmaps("Remark Start");
  1322   G1CollectorPolicy* g1p = g1h->g1_policy();
  1323   g1p->record_concurrent_mark_remark_start();
  1325   double start = os::elapsedTime();
  1327   checkpointRootsFinalWork();
  1329   double mark_work_end = os::elapsedTime();
  1331   weakRefsWork(clear_all_soft_refs);
  1333   if (has_overflown()) {
  1334     // Oops.  We overflowed.  Restart concurrent marking.
  1335     _restart_for_overflow = true;
  1336     if (G1TraceMarkStackOverflow) {
  1337       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  1340     // Verify the heap w.r.t. the previous marking bitmap.
  1341     if (VerifyDuringGC) {
  1342       HandleMark hm;  // handle scope
  1343       Universe::heap()->prepare_for_verify();
  1344       Universe::verify(VerifyOption_G1UsePrevMarking,
  1345                        " VerifyDuringGC:(overflow)");
  1348     // Clear the marking state because we will be restarting
  1349     // marking due to overflowing the global mark stack.
  1350     reset_marking_state();
  1351   } else {
  1352     // Aggregate the per-task counting data that we have accumulated
  1353     // while marking.
  1354     aggregate_count_data();
  1356     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  1357     // We're done with marking.
  1358     // This is the end of  the marking cycle, we're expected all
  1359     // threads to have SATB queues with active set to true.
  1360     satb_mq_set.set_active_all_threads(false, /* new active value */
  1361                                        true /* expected_active */);
  1363     if (VerifyDuringGC) {
  1364       HandleMark hm;  // handle scope
  1365       Universe::heap()->prepare_for_verify();
  1366       Universe::verify(VerifyOption_G1UseNextMarking,
  1367                        " VerifyDuringGC:(after)");
  1369     g1h->check_bitmaps("Remark End");
  1370     assert(!restart_for_overflow(), "sanity");
  1371     // Completely reset the marking state since marking completed
  1372     set_non_marking_state();
  1375   // Expand the marking stack, if we have to and if we can.
  1376   if (_markStack.should_expand()) {
  1377     _markStack.expand();
  1380   // Statistics
  1381   double now = os::elapsedTime();
  1382   _remark_mark_times.add((mark_work_end - start) * 1000.0);
  1383   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  1384   _remark_times.add((now - start) * 1000.0);
  1386   g1p->record_concurrent_mark_remark_end();
  1388   G1CMIsAliveClosure is_alive(g1h);
  1389   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
  1392 // Base class of the closures that finalize and verify the
  1393 // liveness counting data.
  1394 class CMCountDataClosureBase: public HeapRegionClosure {
  1395 protected:
  1396   G1CollectedHeap* _g1h;
  1397   ConcurrentMark* _cm;
  1398   CardTableModRefBS* _ct_bs;
  1400   BitMap* _region_bm;
  1401   BitMap* _card_bm;
  1403   // Takes a region that's not empty (i.e., it has at least one
  1404   // live object in it and sets its corresponding bit on the region
  1405   // bitmap to 1. If the region is "starts humongous" it will also set
  1406   // to 1 the bits on the region bitmap that correspond to its
  1407   // associated "continues humongous" regions.
  1408   void set_bit_for_region(HeapRegion* hr) {
  1409     assert(!hr->continuesHumongous(), "should have filtered those out");
  1411     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1412     if (!hr->startsHumongous()) {
  1413       // Normal (non-humongous) case: just set the bit.
  1414       _region_bm->par_at_put(index, true);
  1415     } else {
  1416       // Starts humongous case: calculate how many regions are part of
  1417       // this humongous region and then set the bit range.
  1418       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
  1419       _region_bm->par_at_put_range(index, end_index, true);
  1423 public:
  1424   CMCountDataClosureBase(G1CollectedHeap* g1h,
  1425                          BitMap* region_bm, BitMap* card_bm):
  1426     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1427     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  1428     _region_bm(region_bm), _card_bm(card_bm) { }
  1429 };
  1431 // Closure that calculates the # live objects per region. Used
  1432 // for verification purposes during the cleanup pause.
  1433 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  1434   CMBitMapRO* _bm;
  1435   size_t _region_marked_bytes;
  1437 public:
  1438   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
  1439                          BitMap* region_bm, BitMap* card_bm) :
  1440     CMCountDataClosureBase(g1h, region_bm, card_bm),
  1441     _bm(bm), _region_marked_bytes(0) { }
  1443   bool doHeapRegion(HeapRegion* hr) {
  1445     if (hr->continuesHumongous()) {
  1446       // We will ignore these here and process them when their
  1447       // associated "starts humongous" region is processed (see
  1448       // set_bit_for_heap_region()). Note that we cannot rely on their
  1449       // associated "starts humongous" region to have their bit set to
  1450       // 1 since, due to the region chunking in the parallel region
  1451       // iteration, a "continues humongous" region might be visited
  1452       // before its associated "starts humongous".
  1453       return false;
  1456     HeapWord* ntams = hr->next_top_at_mark_start();
  1457     HeapWord* start = hr->bottom();
  1459     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
  1460            err_msg("Preconditions not met - "
  1461                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
  1462                    p2i(start), p2i(ntams), p2i(hr->end())));
  1464     // Find the first marked object at or after "start".
  1465     start = _bm->getNextMarkedWordAddress(start, ntams);
  1467     size_t marked_bytes = 0;
  1469     while (start < ntams) {
  1470       oop obj = oop(start);
  1471       int obj_sz = obj->size();
  1472       HeapWord* obj_end = start + obj_sz;
  1474       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  1475       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
  1477       // Note: if we're looking at the last region in heap - obj_end
  1478       // could be actually just beyond the end of the heap; end_idx
  1479       // will then correspond to a (non-existent) card that is also
  1480       // just beyond the heap.
  1481       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
  1482         // end of object is not card aligned - increment to cover
  1483         // all the cards spanned by the object
  1484         end_idx += 1;
  1487       // Set the bits in the card BM for the cards spanned by this object.
  1488       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1490       // Add the size of this object to the number of marked bytes.
  1491       marked_bytes += (size_t)obj_sz * HeapWordSize;
  1493       // Find the next marked object after this one.
  1494       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
  1497     // Mark the allocated-since-marking portion...
  1498     HeapWord* top = hr->top();
  1499     if (ntams < top) {
  1500       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1501       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1503       // Note: if we're looking at the last region in heap - top
  1504       // could be actually just beyond the end of the heap; end_idx
  1505       // will then correspond to a (non-existent) card that is also
  1506       // just beyond the heap.
  1507       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1508         // end of object is not card aligned - increment to cover
  1509         // all the cards spanned by the object
  1510         end_idx += 1;
  1512       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1514       // This definitely means the region has live objects.
  1515       set_bit_for_region(hr);
  1518     // Update the live region bitmap.
  1519     if (marked_bytes > 0) {
  1520       set_bit_for_region(hr);
  1523     // Set the marked bytes for the current region so that
  1524     // it can be queried by a calling verificiation routine
  1525     _region_marked_bytes = marked_bytes;
  1527     return false;
  1530   size_t region_marked_bytes() const { return _region_marked_bytes; }
  1531 };
  1533 // Heap region closure used for verifying the counting data
  1534 // that was accumulated concurrently and aggregated during
  1535 // the remark pause. This closure is applied to the heap
  1536 // regions during the STW cleanup pause.
  1538 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  1539   G1CollectedHeap* _g1h;
  1540   ConcurrentMark* _cm;
  1541   CalcLiveObjectsClosure _calc_cl;
  1542   BitMap* _region_bm;   // Region BM to be verified
  1543   BitMap* _card_bm;     // Card BM to be verified
  1544   bool _verbose;        // verbose output?
  1546   BitMap* _exp_region_bm; // Expected Region BM values
  1547   BitMap* _exp_card_bm;   // Expected card BM values
  1549   int _failures;
  1551 public:
  1552   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
  1553                                 BitMap* region_bm,
  1554                                 BitMap* card_bm,
  1555                                 BitMap* exp_region_bm,
  1556                                 BitMap* exp_card_bm,
  1557                                 bool verbose) :
  1558     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1559     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
  1560     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
  1561     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
  1562     _failures(0) { }
  1564   int failures() const { return _failures; }
  1566   bool doHeapRegion(HeapRegion* hr) {
  1567     if (hr->continuesHumongous()) {
  1568       // We will ignore these here and process them when their
  1569       // associated "starts humongous" region is processed (see
  1570       // set_bit_for_heap_region()). Note that we cannot rely on their
  1571       // associated "starts humongous" region to have their bit set to
  1572       // 1 since, due to the region chunking in the parallel region
  1573       // iteration, a "continues humongous" region might be visited
  1574       // before its associated "starts humongous".
  1575       return false;
  1578     int failures = 0;
  1580     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
  1581     // this region and set the corresponding bits in the expected region
  1582     // and card bitmaps.
  1583     bool res = _calc_cl.doHeapRegion(hr);
  1584     assert(res == false, "should be continuing");
  1586     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
  1587                     Mutex::_no_safepoint_check_flag);
  1589     // Verify the marked bytes for this region.
  1590     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
  1591     size_t act_marked_bytes = hr->next_marked_bytes();
  1593     // We're not OK if expected marked bytes > actual marked bytes. It means
  1594     // we have missed accounting some objects during the actual marking.
  1595     if (exp_marked_bytes > act_marked_bytes) {
  1596       if (_verbose) {
  1597         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
  1598                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
  1599                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
  1601       failures += 1;
  1604     // Verify the bit, for this region, in the actual and expected
  1605     // (which was just calculated) region bit maps.
  1606     // We're not OK if the bit in the calculated expected region
  1607     // bitmap is set and the bit in the actual region bitmap is not.
  1608     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1610     bool expected = _exp_region_bm->at(index);
  1611     bool actual = _region_bm->at(index);
  1612     if (expected && !actual) {
  1613       if (_verbose) {
  1614         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
  1615                                "expected: %s, actual: %s",
  1616                                hr->hrs_index(),
  1617                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1619       failures += 1;
  1622     // Verify that the card bit maps for the cards spanned by the current
  1623     // region match. We have an error if we have a set bit in the expected
  1624     // bit map and the corresponding bit in the actual bitmap is not set.
  1626     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
  1627     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
  1629     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
  1630       expected = _exp_card_bm->at(i);
  1631       actual = _card_bm->at(i);
  1633       if (expected && !actual) {
  1634         if (_verbose) {
  1635           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
  1636                                  "expected: %s, actual: %s",
  1637                                  hr->hrs_index(), i,
  1638                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1640         failures += 1;
  1644     if (failures > 0 && _verbose)  {
  1645       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
  1646                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
  1647                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
  1648                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
  1651     _failures += failures;
  1653     // We could stop iteration over the heap when we
  1654     // find the first violating region by returning true.
  1655     return false;
  1657 };
  1659 class G1ParVerifyFinalCountTask: public AbstractGangTask {
  1660 protected:
  1661   G1CollectedHeap* _g1h;
  1662   ConcurrentMark* _cm;
  1663   BitMap* _actual_region_bm;
  1664   BitMap* _actual_card_bm;
  1666   uint    _n_workers;
  1668   BitMap* _expected_region_bm;
  1669   BitMap* _expected_card_bm;
  1671   int  _failures;
  1672   bool _verbose;
  1674 public:
  1675   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
  1676                             BitMap* region_bm, BitMap* card_bm,
  1677                             BitMap* expected_region_bm, BitMap* expected_card_bm)
  1678     : AbstractGangTask("G1 verify final counting"),
  1679       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1680       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1681       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
  1682       _failures(0), _verbose(false),
  1683       _n_workers(0) {
  1684     assert(VerifyDuringGC, "don't call this otherwise");
  1686     // Use the value already set as the number of active threads
  1687     // in the call to run_task().
  1688     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1689       assert( _g1h->workers()->active_workers() > 0,
  1690         "Should have been previously set");
  1691       _n_workers = _g1h->workers()->active_workers();
  1692     } else {
  1693       _n_workers = 1;
  1696     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
  1697     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
  1699     _verbose = _cm->verbose_medium();
  1702   void work(uint worker_id) {
  1703     assert(worker_id < _n_workers, "invariant");
  1705     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
  1706                                             _actual_region_bm, _actual_card_bm,
  1707                                             _expected_region_bm,
  1708                                             _expected_card_bm,
  1709                                             _verbose);
  1711     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1712       _g1h->heap_region_par_iterate_chunked(&verify_cl,
  1713                                             worker_id,
  1714                                             _n_workers,
  1715                                             HeapRegion::VerifyCountClaimValue);
  1716     } else {
  1717       _g1h->heap_region_iterate(&verify_cl);
  1720     Atomic::add(verify_cl.failures(), &_failures);
  1723   int failures() const { return _failures; }
  1724 };
  1726 // Closure that finalizes the liveness counting data.
  1727 // Used during the cleanup pause.
  1728 // Sets the bits corresponding to the interval [NTAMS, top]
  1729 // (which contains the implicitly live objects) in the
  1730 // card liveness bitmap. Also sets the bit for each region,
  1731 // containing live data, in the region liveness bitmap.
  1733 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
  1734  public:
  1735   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
  1736                               BitMap* region_bm,
  1737                               BitMap* card_bm) :
  1738     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
  1740   bool doHeapRegion(HeapRegion* hr) {
  1742     if (hr->continuesHumongous()) {
  1743       // We will ignore these here and process them when their
  1744       // associated "starts humongous" region is processed (see
  1745       // set_bit_for_heap_region()). Note that we cannot rely on their
  1746       // associated "starts humongous" region to have their bit set to
  1747       // 1 since, due to the region chunking in the parallel region
  1748       // iteration, a "continues humongous" region might be visited
  1749       // before its associated "starts humongous".
  1750       return false;
  1753     HeapWord* ntams = hr->next_top_at_mark_start();
  1754     HeapWord* top   = hr->top();
  1756     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
  1758     // Mark the allocated-since-marking portion...
  1759     if (ntams < top) {
  1760       // This definitely means the region has live objects.
  1761       set_bit_for_region(hr);
  1763       // Now set the bits in the card bitmap for [ntams, top)
  1764       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1765       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1767       // Note: if we're looking at the last region in heap - top
  1768       // could be actually just beyond the end of the heap; end_idx
  1769       // will then correspond to a (non-existent) card that is also
  1770       // just beyond the heap.
  1771       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1772         // end of object is not card aligned - increment to cover
  1773         // all the cards spanned by the object
  1774         end_idx += 1;
  1777       assert(end_idx <= _card_bm->size(),
  1778              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1779                      end_idx, _card_bm->size()));
  1780       assert(start_idx < _card_bm->size(),
  1781              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1782                      start_idx, _card_bm->size()));
  1784       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1787     // Set the bit for the region if it contains live data
  1788     if (hr->next_marked_bytes() > 0) {
  1789       set_bit_for_region(hr);
  1792     return false;
  1794 };
  1796 class G1ParFinalCountTask: public AbstractGangTask {
  1797 protected:
  1798   G1CollectedHeap* _g1h;
  1799   ConcurrentMark* _cm;
  1800   BitMap* _actual_region_bm;
  1801   BitMap* _actual_card_bm;
  1803   uint    _n_workers;
  1805 public:
  1806   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
  1807     : AbstractGangTask("G1 final counting"),
  1808       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1809       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1810       _n_workers(0) {
  1811     // Use the value already set as the number of active threads
  1812     // in the call to run_task().
  1813     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1814       assert( _g1h->workers()->active_workers() > 0,
  1815         "Should have been previously set");
  1816       _n_workers = _g1h->workers()->active_workers();
  1817     } else {
  1818       _n_workers = 1;
  1822   void work(uint worker_id) {
  1823     assert(worker_id < _n_workers, "invariant");
  1825     FinalCountDataUpdateClosure final_update_cl(_g1h,
  1826                                                 _actual_region_bm,
  1827                                                 _actual_card_bm);
  1829     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1830       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
  1831                                             worker_id,
  1832                                             _n_workers,
  1833                                             HeapRegion::FinalCountClaimValue);
  1834     } else {
  1835       _g1h->heap_region_iterate(&final_update_cl);
  1838 };
  1840 class G1ParNoteEndTask;
  1842 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  1843   G1CollectedHeap* _g1;
  1844   size_t _max_live_bytes;
  1845   uint _regions_claimed;
  1846   size_t _freed_bytes;
  1847   FreeRegionList* _local_cleanup_list;
  1848   HeapRegionSetCount _old_regions_removed;
  1849   HeapRegionSetCount _humongous_regions_removed;
  1850   HRRSCleanupTask* _hrrs_cleanup_task;
  1851   double _claimed_region_time;
  1852   double _max_region_time;
  1854 public:
  1855   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1856                              FreeRegionList* local_cleanup_list,
  1857                              HRRSCleanupTask* hrrs_cleanup_task) :
  1858     _g1(g1),
  1859     _max_live_bytes(0), _regions_claimed(0),
  1860     _freed_bytes(0),
  1861     _claimed_region_time(0.0), _max_region_time(0.0),
  1862     _local_cleanup_list(local_cleanup_list),
  1863     _old_regions_removed(),
  1864     _humongous_regions_removed(),
  1865     _hrrs_cleanup_task(hrrs_cleanup_task) { }
  1867   size_t freed_bytes() { return _freed_bytes; }
  1868   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
  1869   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
  1871   bool doHeapRegion(HeapRegion *hr) {
  1872     if (hr->continuesHumongous()) {
  1873       return false;
  1875     // We use a claim value of zero here because all regions
  1876     // were claimed with value 1 in the FinalCount task.
  1877     _g1->reset_gc_time_stamps(hr);
  1878     double start = os::elapsedTime();
  1879     _regions_claimed++;
  1880     hr->note_end_of_marking();
  1881     _max_live_bytes += hr->max_live_bytes();
  1883     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  1884       _freed_bytes += hr->used();
  1885       hr->set_containing_set(NULL);
  1886       if (hr->isHumongous()) {
  1887         assert(hr->startsHumongous(), "we should only see starts humongous");
  1888         _humongous_regions_removed.increment(1u, hr->capacity());
  1889         _g1->free_humongous_region(hr, _local_cleanup_list, true);
  1890       } else {
  1891         _old_regions_removed.increment(1u, hr->capacity());
  1892         _g1->free_region(hr, _local_cleanup_list, true);
  1894     } else {
  1895       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
  1898     double region_time = (os::elapsedTime() - start);
  1899     _claimed_region_time += region_time;
  1900     if (region_time > _max_region_time) {
  1901       _max_region_time = region_time;
  1903     return false;
  1906   size_t max_live_bytes() { return _max_live_bytes; }
  1907   uint regions_claimed() { return _regions_claimed; }
  1908   double claimed_region_time_sec() { return _claimed_region_time; }
  1909   double max_region_time_sec() { return _max_region_time; }
  1910 };
  1912 class G1ParNoteEndTask: public AbstractGangTask {
  1913   friend class G1NoteEndOfConcMarkClosure;
  1915 protected:
  1916   G1CollectedHeap* _g1h;
  1917   size_t _max_live_bytes;
  1918   size_t _freed_bytes;
  1919   FreeRegionList* _cleanup_list;
  1921 public:
  1922   G1ParNoteEndTask(G1CollectedHeap* g1h,
  1923                    FreeRegionList* cleanup_list) :
  1924     AbstractGangTask("G1 note end"), _g1h(g1h),
  1925     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
  1927   void work(uint worker_id) {
  1928     double start = os::elapsedTime();
  1929     FreeRegionList local_cleanup_list("Local Cleanup List");
  1930     HRRSCleanupTask hrrs_cleanup_task;
  1931     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
  1932                                            &hrrs_cleanup_task);
  1933     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1934       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
  1935                                             _g1h->workers()->active_workers(),
  1936                                             HeapRegion::NoteEndClaimValue);
  1937     } else {
  1938       _g1h->heap_region_iterate(&g1_note_end);
  1940     assert(g1_note_end.complete(), "Shouldn't have yielded!");
  1942     // Now update the lists
  1943     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
  1945       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  1946       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
  1947       _max_live_bytes += g1_note_end.max_live_bytes();
  1948       _freed_bytes += g1_note_end.freed_bytes();
  1950       // If we iterate over the global cleanup list at the end of
  1951       // cleanup to do this printing we will not guarantee to only
  1952       // generate output for the newly-reclaimed regions (the list
  1953       // might not be empty at the beginning of cleanup; we might
  1954       // still be working on its previous contents). So we do the
  1955       // printing here, before we append the new regions to the global
  1956       // cleanup list.
  1958       G1HRPrinter* hr_printer = _g1h->hr_printer();
  1959       if (hr_printer->is_active()) {
  1960         FreeRegionListIterator iter(&local_cleanup_list);
  1961         while (iter.more_available()) {
  1962           HeapRegion* hr = iter.get_next();
  1963           hr_printer->cleanup(hr);
  1967       _cleanup_list->add_ordered(&local_cleanup_list);
  1968       assert(local_cleanup_list.is_empty(), "post-condition");
  1970       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
  1973   size_t max_live_bytes() { return _max_live_bytes; }
  1974   size_t freed_bytes() { return _freed_bytes; }
  1975 };
  1977 class G1ParScrubRemSetTask: public AbstractGangTask {
  1978 protected:
  1979   G1RemSet* _g1rs;
  1980   BitMap* _region_bm;
  1981   BitMap* _card_bm;
  1982 public:
  1983   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
  1984                        BitMap* region_bm, BitMap* card_bm) :
  1985     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
  1986     _region_bm(region_bm), _card_bm(card_bm) { }
  1988   void work(uint worker_id) {
  1989     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1990       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
  1991                        HeapRegion::ScrubRemSetClaimValue);
  1992     } else {
  1993       _g1rs->scrub(_region_bm, _card_bm);
  1997 };
  1999 void ConcurrentMark::cleanup() {
  2000   // world is stopped at this checkpoint
  2001   assert(SafepointSynchronize::is_at_safepoint(),
  2002          "world should be stopped");
  2003   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2005   // If a full collection has happened, we shouldn't do this.
  2006   if (has_aborted()) {
  2007     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  2008     return;
  2011   g1h->verify_region_sets_optional();
  2013   if (VerifyDuringGC) {
  2014     HandleMark hm;  // handle scope
  2015     Universe::heap()->prepare_for_verify();
  2016     Universe::verify(VerifyOption_G1UsePrevMarking,
  2017                      " VerifyDuringGC:(before)");
  2019   g1h->check_bitmaps("Cleanup Start");
  2021   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  2022   g1p->record_concurrent_mark_cleanup_start();
  2024   double start = os::elapsedTime();
  2026   HeapRegionRemSet::reset_for_cleanup_tasks();
  2028   uint n_workers;
  2030   // Do counting once more with the world stopped for good measure.
  2031   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
  2033   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2034    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2035            "sanity check");
  2037     g1h->set_par_threads();
  2038     n_workers = g1h->n_par_threads();
  2039     assert(g1h->n_par_threads() == n_workers,
  2040            "Should not have been reset");
  2041     g1h->workers()->run_task(&g1_par_count_task);
  2042     // Done with the parallel phase so reset to 0.
  2043     g1h->set_par_threads(0);
  2045     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
  2046            "sanity check");
  2047   } else {
  2048     n_workers = 1;
  2049     g1_par_count_task.work(0);
  2052   if (VerifyDuringGC) {
  2053     // Verify that the counting data accumulated during marking matches
  2054     // that calculated by walking the marking bitmap.
  2056     // Bitmaps to hold expected values
  2057     BitMap expected_region_bm(_region_bm.size(), true);
  2058     BitMap expected_card_bm(_card_bm.size(), true);
  2060     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
  2061                                                  &_region_bm,
  2062                                                  &_card_bm,
  2063                                                  &expected_region_bm,
  2064                                                  &expected_card_bm);
  2066     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2067       g1h->set_par_threads((int)n_workers);
  2068       g1h->workers()->run_task(&g1_par_verify_task);
  2069       // Done with the parallel phase so reset to 0.
  2070       g1h->set_par_threads(0);
  2072       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
  2073              "sanity check");
  2074     } else {
  2075       g1_par_verify_task.work(0);
  2078     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  2081   size_t start_used_bytes = g1h->used();
  2082   g1h->set_marking_complete();
  2084   double count_end = os::elapsedTime();
  2085   double this_final_counting_time = (count_end - start);
  2086   _total_counting_time += this_final_counting_time;
  2088   if (G1PrintRegionLivenessInfo) {
  2089     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
  2090     _g1h->heap_region_iterate(&cl);
  2093   // Install newly created mark bitMap as "prev".
  2094   swapMarkBitMaps();
  2096   g1h->reset_gc_time_stamp();
  2098   // Note end of marking in all heap regions.
  2099   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
  2100   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2101     g1h->set_par_threads((int)n_workers);
  2102     g1h->workers()->run_task(&g1_par_note_end_task);
  2103     g1h->set_par_threads(0);
  2105     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
  2106            "sanity check");
  2107   } else {
  2108     g1_par_note_end_task.work(0);
  2110   g1h->check_gc_time_stamps();
  2112   if (!cleanup_list_is_empty()) {
  2113     // The cleanup list is not empty, so we'll have to process it
  2114     // concurrently. Notify anyone else that might be wanting free
  2115     // regions that there will be more free regions coming soon.
  2116     g1h->set_free_regions_coming();
  2119   // call below, since it affects the metric by which we sort the heap
  2120   // regions.
  2121   if (G1ScrubRemSets) {
  2122     double rs_scrub_start = os::elapsedTime();
  2123     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
  2124     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2125       g1h->set_par_threads((int)n_workers);
  2126       g1h->workers()->run_task(&g1_par_scrub_rs_task);
  2127       g1h->set_par_threads(0);
  2129       assert(g1h->check_heap_region_claim_values(
  2130                                             HeapRegion::ScrubRemSetClaimValue),
  2131              "sanity check");
  2132     } else {
  2133       g1_par_scrub_rs_task.work(0);
  2136     double rs_scrub_end = os::elapsedTime();
  2137     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
  2138     _total_rs_scrub_time += this_rs_scrub_time;
  2141   // this will also free any regions totally full of garbage objects,
  2142   // and sort the regions.
  2143   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
  2145   // Statistics.
  2146   double end = os::elapsedTime();
  2147   _cleanup_times.add((end - start) * 1000.0);
  2149   if (G1Log::fine()) {
  2150     g1h->print_size_transition(gclog_or_tty,
  2151                                start_used_bytes,
  2152                                g1h->used(),
  2153                                g1h->capacity());
  2156   // Clean up will have freed any regions completely full of garbage.
  2157   // Update the soft reference policy with the new heap occupancy.
  2158   Universe::update_heap_info_at_gc();
  2160   if (VerifyDuringGC) {
  2161     HandleMark hm;  // handle scope
  2162     Universe::heap()->prepare_for_verify();
  2163     Universe::verify(VerifyOption_G1UsePrevMarking,
  2164                      " VerifyDuringGC:(after)");
  2166   g1h->check_bitmaps("Cleanup End");
  2168   g1h->verify_region_sets_optional();
  2170   // We need to make this be a "collection" so any collection pause that
  2171   // races with it goes around and waits for completeCleanup to finish.
  2172   g1h->increment_total_collections();
  2174   // Clean out dead classes and update Metaspace sizes.
  2175   if (ClassUnloadingWithConcurrentMark) {
  2176     ClassLoaderDataGraph::purge();
  2178   MetaspaceGC::compute_new_size();
  2180   // We reclaimed old regions so we should calculate the sizes to make
  2181   // sure we update the old gen/space data.
  2182   g1h->g1mm()->update_sizes();
  2184   g1h->trace_heap_after_concurrent_cycle();
  2187 void ConcurrentMark::completeCleanup() {
  2188   if (has_aborted()) return;
  2190   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2192   _cleanup_list.verify_optional();
  2193   FreeRegionList tmp_free_list("Tmp Free List");
  2195   if (G1ConcRegionFreeingVerbose) {
  2196     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2197                            "cleanup list has %u entries",
  2198                            _cleanup_list.length());
  2201   // No one else should be accessing the _cleanup_list at this point,
  2202   // so it is not necessary to take any locks
  2203   while (!_cleanup_list.is_empty()) {
  2204     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
  2205     assert(hr != NULL, "Got NULL from a non-empty list");
  2206     hr->par_clear();
  2207     tmp_free_list.add_ordered(hr);
  2209     // Instead of adding one region at a time to the secondary_free_list,
  2210     // we accumulate them in the local list and move them a few at a
  2211     // time. This also cuts down on the number of notify_all() calls
  2212     // we do during this process. We'll also append the local list when
  2213     // _cleanup_list is empty (which means we just removed the last
  2214     // region from the _cleanup_list).
  2215     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
  2216         _cleanup_list.is_empty()) {
  2217       if (G1ConcRegionFreeingVerbose) {
  2218         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2219                                "appending %u entries to the secondary_free_list, "
  2220                                "cleanup list still has %u entries",
  2221                                tmp_free_list.length(),
  2222                                _cleanup_list.length());
  2226         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  2227         g1h->secondary_free_list_add(&tmp_free_list);
  2228         SecondaryFreeList_lock->notify_all();
  2231       if (G1StressConcRegionFreeing) {
  2232         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
  2233           os::sleep(Thread::current(), (jlong) 1, false);
  2238   assert(tmp_free_list.is_empty(), "post-condition");
  2241 // Supporting Object and Oop closures for reference discovery
  2242 // and processing in during marking
  2244 bool G1CMIsAliveClosure::do_object_b(oop obj) {
  2245   HeapWord* addr = (HeapWord*)obj;
  2246   return addr != NULL &&
  2247          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  2250 // 'Keep Alive' oop closure used by both serial parallel reference processing.
  2251 // Uses the CMTask associated with a worker thread (for serial reference
  2252 // processing the CMTask for worker 0 is used) to preserve (mark) and
  2253 // trace referent objects.
  2254 //
  2255 // Using the CMTask and embedded local queues avoids having the worker
  2256 // threads operating on the global mark stack. This reduces the risk
  2257 // of overflowing the stack - which we would rather avoid at this late
  2258 // state. Also using the tasks' local queues removes the potential
  2259 // of the workers interfering with each other that could occur if
  2260 // operating on the global stack.
  2262 class G1CMKeepAliveAndDrainClosure: public OopClosure {
  2263   ConcurrentMark* _cm;
  2264   CMTask*         _task;
  2265   int             _ref_counter_limit;
  2266   int             _ref_counter;
  2267   bool            _is_serial;
  2268  public:
  2269   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2270     _cm(cm), _task(task), _is_serial(is_serial),
  2271     _ref_counter_limit(G1RefProcDrainInterval) {
  2272     assert(_ref_counter_limit > 0, "sanity");
  2273     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2274     _ref_counter = _ref_counter_limit;
  2277   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2278   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2280   template <class T> void do_oop_work(T* p) {
  2281     if (!_cm->has_overflown()) {
  2282       oop obj = oopDesc::load_decode_heap_oop(p);
  2283       if (_cm->verbose_high()) {
  2284         gclog_or_tty->print_cr("\t[%u] we're looking at location "
  2285                                "*"PTR_FORMAT" = "PTR_FORMAT,
  2286                                _task->worker_id(), p2i(p), p2i((void*) obj));
  2289       _task->deal_with_reference(obj);
  2290       _ref_counter--;
  2292       if (_ref_counter == 0) {
  2293         // We have dealt with _ref_counter_limit references, pushing them
  2294         // and objects reachable from them on to the local stack (and
  2295         // possibly the global stack). Call CMTask::do_marking_step() to
  2296         // process these entries.
  2297         //
  2298         // We call CMTask::do_marking_step() in a loop, which we'll exit if
  2299         // there's nothing more to do (i.e. we're done with the entries that
  2300         // were pushed as a result of the CMTask::deal_with_reference() calls
  2301         // above) or we overflow.
  2302         //
  2303         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2304         // flag while there may still be some work to do. (See the comment at
  2305         // the beginning of CMTask::do_marking_step() for those conditions -
  2306         // one of which is reaching the specified time target.) It is only
  2307         // when CMTask::do_marking_step() returns without setting the
  2308         // has_aborted() flag that the marking step has completed.
  2309         do {
  2310           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  2311           _task->do_marking_step(mark_step_duration_ms,
  2312                                  false      /* do_termination */,
  2313                                  _is_serial);
  2314         } while (_task->has_aborted() && !_cm->has_overflown());
  2315         _ref_counter = _ref_counter_limit;
  2317     } else {
  2318       if (_cm->verbose_high()) {
  2319          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
  2323 };
  2325 // 'Drain' oop closure used by both serial and parallel reference processing.
  2326 // Uses the CMTask associated with a given worker thread (for serial
  2327 // reference processing the CMtask for worker 0 is used). Calls the
  2328 // do_marking_step routine, with an unbelievably large timeout value,
  2329 // to drain the marking data structures of the remaining entries
  2330 // added by the 'keep alive' oop closure above.
  2332 class G1CMDrainMarkingStackClosure: public VoidClosure {
  2333   ConcurrentMark* _cm;
  2334   CMTask*         _task;
  2335   bool            _is_serial;
  2336  public:
  2337   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2338     _cm(cm), _task(task), _is_serial(is_serial) {
  2339     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2342   void do_void() {
  2343     do {
  2344       if (_cm->verbose_high()) {
  2345         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
  2346                                _task->worker_id(), BOOL_TO_STR(_is_serial));
  2349       // We call CMTask::do_marking_step() to completely drain the local
  2350       // and global marking stacks of entries pushed by the 'keep alive'
  2351       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
  2352       //
  2353       // CMTask::do_marking_step() is called in a loop, which we'll exit
  2354       // if there's nothing more to do (i.e. we'completely drained the
  2355       // entries that were pushed as a a result of applying the 'keep alive'
  2356       // closure to the entries on the discovered ref lists) or we overflow
  2357       // the global marking stack.
  2358       //
  2359       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2360       // flag while there may still be some work to do. (See the comment at
  2361       // the beginning of CMTask::do_marking_step() for those conditions -
  2362       // one of which is reaching the specified time target.) It is only
  2363       // when CMTask::do_marking_step() returns without setting the
  2364       // has_aborted() flag that the marking step has completed.
  2366       _task->do_marking_step(1000000000.0 /* something very large */,
  2367                              true         /* do_termination */,
  2368                              _is_serial);
  2369     } while (_task->has_aborted() && !_cm->has_overflown());
  2371 };
  2373 // Implementation of AbstractRefProcTaskExecutor for parallel
  2374 // reference processing at the end of G1 concurrent marking
  2376 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  2377 private:
  2378   G1CollectedHeap* _g1h;
  2379   ConcurrentMark*  _cm;
  2380   WorkGang*        _workers;
  2381   int              _active_workers;
  2383 public:
  2384   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
  2385                         ConcurrentMark* cm,
  2386                         WorkGang* workers,
  2387                         int n_workers) :
  2388     _g1h(g1h), _cm(cm),
  2389     _workers(workers), _active_workers(n_workers) { }
  2391   // Executes the given task using concurrent marking worker threads.
  2392   virtual void execute(ProcessTask& task);
  2393   virtual void execute(EnqueueTask& task);
  2394 };
  2396 class G1CMRefProcTaskProxy: public AbstractGangTask {
  2397   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  2398   ProcessTask&     _proc_task;
  2399   G1CollectedHeap* _g1h;
  2400   ConcurrentMark*  _cm;
  2402 public:
  2403   G1CMRefProcTaskProxy(ProcessTask& proc_task,
  2404                      G1CollectedHeap* g1h,
  2405                      ConcurrentMark* cm) :
  2406     AbstractGangTask("Process reference objects in parallel"),
  2407     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
  2408     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  2409     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  2412   virtual void work(uint worker_id) {
  2413     ResourceMark rm;
  2414     HandleMark hm;
  2415     CMTask* task = _cm->task(worker_id);
  2416     G1CMIsAliveClosure g1_is_alive(_g1h);
  2417     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
  2418     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
  2420     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  2422 };
  2424 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  2425   assert(_workers != NULL, "Need parallel worker threads.");
  2426   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2428   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
  2430   // We need to reset the concurrency level before each
  2431   // proxy task execution, so that the termination protocol
  2432   // and overflow handling in CMTask::do_marking_step() knows
  2433   // how many workers to wait for.
  2434   _cm->set_concurrency(_active_workers);
  2435   _g1h->set_par_threads(_active_workers);
  2436   _workers->run_task(&proc_task_proxy);
  2437   _g1h->set_par_threads(0);
  2440 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
  2441   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  2442   EnqueueTask& _enq_task;
  2444 public:
  2445   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  2446     AbstractGangTask("Enqueue reference objects in parallel"),
  2447     _enq_task(enq_task) { }
  2449   virtual void work(uint worker_id) {
  2450     _enq_task.work(worker_id);
  2452 };
  2454 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  2455   assert(_workers != NULL, "Need parallel worker threads.");
  2456   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2458   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
  2460   // Not strictly necessary but...
  2461   //
  2462   // We need to reset the concurrency level before each
  2463   // proxy task execution, so that the termination protocol
  2464   // and overflow handling in CMTask::do_marking_step() knows
  2465   // how many workers to wait for.
  2466   _cm->set_concurrency(_active_workers);
  2467   _g1h->set_par_threads(_active_workers);
  2468   _workers->run_task(&enq_task_proxy);
  2469   _g1h->set_par_threads(0);
  2472 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
  2473   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
  2476 // Helper class to get rid of some boilerplate code.
  2477 class G1RemarkGCTraceTime : public GCTraceTime {
  2478   static bool doit_and_prepend(bool doit) {
  2479     if (doit) {
  2480       gclog_or_tty->put(' ');
  2482     return doit;
  2485  public:
  2486   G1RemarkGCTraceTime(const char* title, bool doit)
  2487     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
  2488         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
  2490 };
  2492 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  2493   if (has_overflown()) {
  2494     // Skip processing the discovered references if we have
  2495     // overflown the global marking stack. Reference objects
  2496     // only get discovered once so it is OK to not
  2497     // de-populate the discovered reference lists. We could have,
  2498     // but the only benefit would be that, when marking restarts,
  2499     // less reference objects are discovered.
  2500     return;
  2503   ResourceMark rm;
  2504   HandleMark   hm;
  2506   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2508   // Is alive closure.
  2509   G1CMIsAliveClosure g1_is_alive(g1h);
  2511   // Inner scope to exclude the cleaning of the string and symbol
  2512   // tables from the displayed time.
  2514     if (G1Log::finer()) {
  2515       gclog_or_tty->put(' ');
  2517     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
  2519     ReferenceProcessor* rp = g1h->ref_processor_cm();
  2521     // See the comment in G1CollectedHeap::ref_processing_init()
  2522     // about how reference processing currently works in G1.
  2524     // Set the soft reference policy
  2525     rp->setup_policy(clear_all_soft_refs);
  2526     assert(_markStack.isEmpty(), "mark stack should be empty");
  2528     // Instances of the 'Keep Alive' and 'Complete GC' closures used
  2529     // in serial reference processing. Note these closures are also
  2530     // used for serially processing (by the the current thread) the
  2531     // JNI references during parallel reference processing.
  2532     //
  2533     // These closures do not need to synchronize with the worker
  2534     // threads involved in parallel reference processing as these
  2535     // instances are executed serially by the current thread (e.g.
  2536     // reference processing is not multi-threaded and is thus
  2537     // performed by the current thread instead of a gang worker).
  2538     //
  2539     // The gang tasks involved in parallel reference procssing create
  2540     // their own instances of these closures, which do their own
  2541     // synchronization among themselves.
  2542     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
  2543     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
  2545     // We need at least one active thread. If reference processing
  2546     // is not multi-threaded we use the current (VMThread) thread,
  2547     // otherwise we use the work gang from the G1CollectedHeap and
  2548     // we utilize all the worker threads we can.
  2549     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
  2550     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
  2551     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
  2553     // Parallel processing task executor.
  2554     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
  2555                                               g1h->workers(), active_workers);
  2556     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
  2558     // Set the concurrency level. The phase was already set prior to
  2559     // executing the remark task.
  2560     set_concurrency(active_workers);
  2562     // Set the degree of MT processing here.  If the discovery was done MT,
  2563     // the number of threads involved during discovery could differ from
  2564     // the number of active workers.  This is OK as long as the discovered
  2565     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
  2566     rp->set_active_mt_degree(active_workers);
  2568     // Process the weak references.
  2569     const ReferenceProcessorStats& stats =
  2570         rp->process_discovered_references(&g1_is_alive,
  2571                                           &g1_keep_alive,
  2572                                           &g1_drain_mark_stack,
  2573                                           executor,
  2574                                           g1h->gc_timer_cm(),
  2575                                           concurrent_gc_id());
  2576     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
  2578     // The do_oop work routines of the keep_alive and drain_marking_stack
  2579     // oop closures will set the has_overflown flag if we overflow the
  2580     // global marking stack.
  2582     assert(_markStack.overflow() || _markStack.isEmpty(),
  2583             "mark stack should be empty (unless it overflowed)");
  2585     if (_markStack.overflow()) {
  2586       // This should have been done already when we tried to push an
  2587       // entry on to the global mark stack. But let's do it again.
  2588       set_has_overflown();
  2591     assert(rp->num_q() == active_workers, "why not");
  2593     rp->enqueue_discovered_references(executor);
  2595     rp->verify_no_references_recorded();
  2596     assert(!rp->discovery_enabled(), "Post condition");
  2599   if (has_overflown()) {
  2600     // We can not trust g1_is_alive if the marking stack overflowed
  2601     return;
  2604   assert(_markStack.isEmpty(), "Marking should have completed");
  2606   // Unload Klasses, String, Symbols, Code Cache, etc.
  2608     G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
  2610     if (ClassUnloadingWithConcurrentMark) {
  2611       bool purged_classes;
  2614         G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
  2615         purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
  2619         G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
  2620         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
  2624     if (G1StringDedup::is_enabled()) {
  2625       G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
  2626       G1StringDedup::unlink(&g1_is_alive);
  2631 void ConcurrentMark::swapMarkBitMaps() {
  2632   CMBitMapRO* temp = _prevMarkBitMap;
  2633   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  2634   _nextMarkBitMap  = (CMBitMap*)  temp;
  2637 class CMObjectClosure;
  2639 // Closure for iterating over objects, currently only used for
  2640 // processing SATB buffers.
  2641 class CMObjectClosure : public ObjectClosure {
  2642 private:
  2643   CMTask* _task;
  2645 public:
  2646   void do_object(oop obj) {
  2647     _task->deal_with_reference(obj);
  2650   CMObjectClosure(CMTask* task) : _task(task) { }
  2651 };
  2653 class G1RemarkThreadsClosure : public ThreadClosure {
  2654   CMObjectClosure _cm_obj;
  2655   G1CMOopClosure _cm_cl;
  2656   MarkingCodeBlobClosure _code_cl;
  2657   int _thread_parity;
  2658   bool _is_par;
  2660  public:
  2661   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
  2662     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
  2663     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
  2665   void do_thread(Thread* thread) {
  2666     if (thread->is_Java_thread()) {
  2667       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2668         JavaThread* jt = (JavaThread*)thread;
  2670         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
  2671         // however the liveness of oops reachable from nmethods have very complex lifecycles:
  2672         // * Alive if on the stack of an executing method
  2673         // * Weakly reachable otherwise
  2674         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
  2675         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
  2676         jt->nmethods_do(&_code_cl);
  2678         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
  2680     } else if (thread->is_VM_thread()) {
  2681       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2682         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
  2686 };
  2688 class CMRemarkTask: public AbstractGangTask {
  2689 private:
  2690   ConcurrentMark* _cm;
  2691   bool            _is_serial;
  2692 public:
  2693   void work(uint worker_id) {
  2694     // Since all available tasks are actually started, we should
  2695     // only proceed if we're supposed to be actived.
  2696     if (worker_id < _cm->active_tasks()) {
  2697       CMTask* task = _cm->task(worker_id);
  2698       task->record_start_time();
  2700         ResourceMark rm;
  2701         HandleMark hm;
  2703         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
  2704         Threads::threads_do(&threads_f);
  2707       do {
  2708         task->do_marking_step(1000000000.0 /* something very large */,
  2709                               true         /* do_termination       */,
  2710                               _is_serial);
  2711       } while (task->has_aborted() && !_cm->has_overflown());
  2712       // If we overflow, then we do not want to restart. We instead
  2713       // want to abort remark and do concurrent marking again.
  2714       task->record_end_time();
  2718   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
  2719     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
  2720     _cm->terminator()->reset_for_reuse(active_workers);
  2722 };
  2724 void ConcurrentMark::checkpointRootsFinalWork() {
  2725   ResourceMark rm;
  2726   HandleMark   hm;
  2727   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2729   G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
  2731   g1h->ensure_parsability(false);
  2733   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2734     G1CollectedHeap::StrongRootsScope srs(g1h);
  2735     // this is remark, so we'll use up all active threads
  2736     uint active_workers = g1h->workers()->active_workers();
  2737     if (active_workers == 0) {
  2738       assert(active_workers > 0, "Should have been set earlier");
  2739       active_workers = (uint) ParallelGCThreads;
  2740       g1h->workers()->set_active_workers(active_workers);
  2742     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2743     // Leave _parallel_marking_threads at it's
  2744     // value originally calculated in the ConcurrentMark
  2745     // constructor and pass values of the active workers
  2746     // through the gang in the task.
  2748     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
  2749     // We will start all available threads, even if we decide that the
  2750     // active_workers will be fewer. The extra ones will just bail out
  2751     // immediately.
  2752     g1h->set_par_threads(active_workers);
  2753     g1h->workers()->run_task(&remarkTask);
  2754     g1h->set_par_threads(0);
  2755   } else {
  2756     G1CollectedHeap::StrongRootsScope srs(g1h);
  2757     uint active_workers = 1;
  2758     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2760     // Note - if there's no work gang then the VMThread will be
  2761     // the thread to execute the remark - serially. We have
  2762     // to pass true for the is_serial parameter so that
  2763     // CMTask::do_marking_step() doesn't enter the sync
  2764     // barriers in the event of an overflow. Doing so will
  2765     // cause an assert that the current thread is not a
  2766     // concurrent GC thread.
  2767     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
  2768     remarkTask.work(0);
  2770   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2771   guarantee(has_overflown() ||
  2772             satb_mq_set.completed_buffers_num() == 0,
  2773             err_msg("Invariant: has_overflown = %s, num buffers = %d",
  2774                     BOOL_TO_STR(has_overflown()),
  2775                     satb_mq_set.completed_buffers_num()));
  2777   print_stats();
  2780 #ifndef PRODUCT
  2782 class PrintReachableOopClosure: public OopClosure {
  2783 private:
  2784   G1CollectedHeap* _g1h;
  2785   outputStream*    _out;
  2786   VerifyOption     _vo;
  2787   bool             _all;
  2789 public:
  2790   PrintReachableOopClosure(outputStream* out,
  2791                            VerifyOption  vo,
  2792                            bool          all) :
  2793     _g1h(G1CollectedHeap::heap()),
  2794     _out(out), _vo(vo), _all(all) { }
  2796   void do_oop(narrowOop* p) { do_oop_work(p); }
  2797   void do_oop(      oop* p) { do_oop_work(p); }
  2799   template <class T> void do_oop_work(T* p) {
  2800     oop         obj = oopDesc::load_decode_heap_oop(p);
  2801     const char* str = NULL;
  2802     const char* str2 = "";
  2804     if (obj == NULL) {
  2805       str = "";
  2806     } else if (!_g1h->is_in_g1_reserved(obj)) {
  2807       str = " O";
  2808     } else {
  2809       HeapRegion* hr  = _g1h->heap_region_containing(obj);
  2810       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
  2811       bool marked = _g1h->is_marked(obj, _vo);
  2813       if (over_tams) {
  2814         str = " >";
  2815         if (marked) {
  2816           str2 = " AND MARKED";
  2818       } else if (marked) {
  2819         str = " M";
  2820       } else {
  2821         str = " NOT";
  2825     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
  2826                    p2i(p), p2i((void*) obj), str, str2);
  2828 };
  2830 class PrintReachableObjectClosure : public ObjectClosure {
  2831 private:
  2832   G1CollectedHeap* _g1h;
  2833   outputStream*    _out;
  2834   VerifyOption     _vo;
  2835   bool             _all;
  2836   HeapRegion*      _hr;
  2838 public:
  2839   PrintReachableObjectClosure(outputStream* out,
  2840                               VerifyOption  vo,
  2841                               bool          all,
  2842                               HeapRegion*   hr) :
  2843     _g1h(G1CollectedHeap::heap()),
  2844     _out(out), _vo(vo), _all(all), _hr(hr) { }
  2846   void do_object(oop o) {
  2847     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
  2848     bool marked = _g1h->is_marked(o, _vo);
  2849     bool print_it = _all || over_tams || marked;
  2851     if (print_it) {
  2852       _out->print_cr(" "PTR_FORMAT"%s",
  2853                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
  2854       PrintReachableOopClosure oopCl(_out, _vo, _all);
  2855       o->oop_iterate_no_header(&oopCl);
  2858 };
  2860 class PrintReachableRegionClosure : public HeapRegionClosure {
  2861 private:
  2862   G1CollectedHeap* _g1h;
  2863   outputStream*    _out;
  2864   VerifyOption     _vo;
  2865   bool             _all;
  2867 public:
  2868   bool doHeapRegion(HeapRegion* hr) {
  2869     HeapWord* b = hr->bottom();
  2870     HeapWord* e = hr->end();
  2871     HeapWord* t = hr->top();
  2872     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
  2873     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
  2874                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
  2875     _out->cr();
  2877     HeapWord* from = b;
  2878     HeapWord* to   = t;
  2880     if (to > from) {
  2881       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
  2882       _out->cr();
  2883       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
  2884       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
  2885       _out->cr();
  2888     return false;
  2891   PrintReachableRegionClosure(outputStream* out,
  2892                               VerifyOption  vo,
  2893                               bool          all) :
  2894     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
  2895 };
  2897 void ConcurrentMark::print_reachable(const char* str,
  2898                                      VerifyOption vo,
  2899                                      bool all) {
  2900   gclog_or_tty->cr();
  2901   gclog_or_tty->print_cr("== Doing heap dump... ");
  2903   if (G1PrintReachableBaseFile == NULL) {
  2904     gclog_or_tty->print_cr("  #### error: no base file defined");
  2905     return;
  2908   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
  2909       (JVM_MAXPATHLEN - 1)) {
  2910     gclog_or_tty->print_cr("  #### error: file name too long");
  2911     return;
  2914   char file_name[JVM_MAXPATHLEN];
  2915   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  2916   gclog_or_tty->print_cr("  dumping to file %s", file_name);
  2918   fileStream fout(file_name);
  2919   if (!fout.is_open()) {
  2920     gclog_or_tty->print_cr("  #### error: could not open file");
  2921     return;
  2924   outputStream* out = &fout;
  2925   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
  2926   out->cr();
  2928   out->print_cr("--- ITERATING OVER REGIONS");
  2929   out->cr();
  2930   PrintReachableRegionClosure rcl(out, vo, all);
  2931   _g1h->heap_region_iterate(&rcl);
  2932   out->cr();
  2934   gclog_or_tty->print_cr("  done");
  2935   gclog_or_tty->flush();
  2938 #endif // PRODUCT
  2940 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
  2941   // Note we are overriding the read-only view of the prev map here, via
  2942   // the cast.
  2943   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  2946 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
  2947   _nextMarkBitMap->clearRange(mr);
  2950 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  2951   clearRangePrevBitmap(mr);
  2952   clearRangeNextBitmap(mr);
  2955 HeapRegion*
  2956 ConcurrentMark::claim_region(uint worker_id) {
  2957   // "checkpoint" the finger
  2958   HeapWord* finger = _finger;
  2960   // _heap_end will not change underneath our feet; it only changes at
  2961   // yield points.
  2962   while (finger < _heap_end) {
  2963     assert(_g1h->is_in_g1_reserved(finger), "invariant");
  2965     // Note on how this code handles humongous regions. In the
  2966     // normal case the finger will reach the start of a "starts
  2967     // humongous" (SH) region. Its end will either be the end of the
  2968     // last "continues humongous" (CH) region in the sequence, or the
  2969     // standard end of the SH region (if the SH is the only region in
  2970     // the sequence). That way claim_region() will skip over the CH
  2971     // regions. However, there is a subtle race between a CM thread
  2972     // executing this method and a mutator thread doing a humongous
  2973     // object allocation. The two are not mutually exclusive as the CM
  2974     // thread does not need to hold the Heap_lock when it gets
  2975     // here. So there is a chance that claim_region() will come across
  2976     // a free region that's in the progress of becoming a SH or a CH
  2977     // region. In the former case, it will either
  2978     //   a) Miss the update to the region's end, in which case it will
  2979     //      visit every subsequent CH region, will find their bitmaps
  2980     //      empty, and do nothing, or
  2981     //   b) Will observe the update of the region's end (in which case
  2982     //      it will skip the subsequent CH regions).
  2983     // If it comes across a region that suddenly becomes CH, the
  2984     // scenario will be similar to b). So, the race between
  2985     // claim_region() and a humongous object allocation might force us
  2986     // to do a bit of unnecessary work (due to some unnecessary bitmap
  2987     // iterations) but it should not introduce and correctness issues.
  2988     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
  2990     // Above heap_region_containing_raw may return NULL as we always scan claim
  2991     // until the end of the heap. In this case, just jump to the next region.
  2992     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
  2994     // Is the gap between reading the finger and doing the CAS too long?
  2995     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
  2996     if (res == finger && curr_region != NULL) {
  2997       // we succeeded
  2998       HeapWord*   bottom        = curr_region->bottom();
  2999       HeapWord*   limit         = curr_region->next_top_at_mark_start();
  3001       if (verbose_low()) {
  3002         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
  3003                                "["PTR_FORMAT", "PTR_FORMAT"), "
  3004                                "limit = "PTR_FORMAT,
  3005                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
  3008       // notice that _finger == end cannot be guaranteed here since,
  3009       // someone else might have moved the finger even further
  3010       assert(_finger >= end, "the finger should have moved forward");
  3012       if (verbose_low()) {
  3013         gclog_or_tty->print_cr("[%u] we were successful with region = "
  3014                                PTR_FORMAT, worker_id, p2i(curr_region));
  3017       if (limit > bottom) {
  3018         if (verbose_low()) {
  3019           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
  3020                                  "returning it ", worker_id, p2i(curr_region));
  3022         return curr_region;
  3023       } else {
  3024         assert(limit == bottom,
  3025                "the region limit should be at bottom");
  3026         if (verbose_low()) {
  3027           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
  3028                                  "returning NULL", worker_id, p2i(curr_region));
  3030         // we return NULL and the caller should try calling
  3031         // claim_region() again.
  3032         return NULL;
  3034     } else {
  3035       assert(_finger > finger, "the finger should have moved forward");
  3036       if (verbose_low()) {
  3037         if (curr_region == NULL) {
  3038           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
  3039                                  "global finger = "PTR_FORMAT", "
  3040                                  "our finger = "PTR_FORMAT,
  3041                                  worker_id, p2i(_finger), p2i(finger));
  3042         } else {
  3043           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
  3044                                  "global finger = "PTR_FORMAT", "
  3045                                  "our finger = "PTR_FORMAT,
  3046                                  worker_id, p2i(_finger), p2i(finger));
  3050       // read it again
  3051       finger = _finger;
  3055   return NULL;
  3058 #ifndef PRODUCT
  3059 enum VerifyNoCSetOopsPhase {
  3060   VerifyNoCSetOopsStack,
  3061   VerifyNoCSetOopsQueues,
  3062   VerifyNoCSetOopsSATBCompleted,
  3063   VerifyNoCSetOopsSATBThread
  3064 };
  3066 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
  3067 private:
  3068   G1CollectedHeap* _g1h;
  3069   VerifyNoCSetOopsPhase _phase;
  3070   int _info;
  3072   const char* phase_str() {
  3073     switch (_phase) {
  3074     case VerifyNoCSetOopsStack:         return "Stack";
  3075     case VerifyNoCSetOopsQueues:        return "Queue";
  3076     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
  3077     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
  3078     default:                            ShouldNotReachHere();
  3080     return NULL;
  3083   void do_object_work(oop obj) {
  3084     guarantee(!_g1h->obj_in_cs(obj),
  3085               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
  3086                       p2i((void*) obj), phase_str(), _info));
  3089 public:
  3090   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
  3092   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
  3093     _phase = phase;
  3094     _info = info;
  3097   virtual void do_oop(oop* p) {
  3098     oop obj = oopDesc::load_decode_heap_oop(p);
  3099     do_object_work(obj);
  3102   virtual void do_oop(narrowOop* p) {
  3103     // We should not come across narrow oops while scanning marking
  3104     // stacks and SATB buffers.
  3105     ShouldNotReachHere();
  3108   virtual void do_object(oop obj) {
  3109     do_object_work(obj);
  3111 };
  3113 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
  3114                                          bool verify_enqueued_buffers,
  3115                                          bool verify_thread_buffers,
  3116                                          bool verify_fingers) {
  3117   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  3118   if (!G1CollectedHeap::heap()->mark_in_progress()) {
  3119     return;
  3122   VerifyNoCSetOopsClosure cl;
  3124   if (verify_stacks) {
  3125     // Verify entries on the global mark stack
  3126     cl.set_phase(VerifyNoCSetOopsStack);
  3127     _markStack.oops_do(&cl);
  3129     // Verify entries on the task queues
  3130     for (uint i = 0; i < _max_worker_id; i += 1) {
  3131       cl.set_phase(VerifyNoCSetOopsQueues, i);
  3132       CMTaskQueue* queue = _task_queues->queue(i);
  3133       queue->oops_do(&cl);
  3137   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
  3139   // Verify entries on the enqueued SATB buffers
  3140   if (verify_enqueued_buffers) {
  3141     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
  3142     satb_qs.iterate_completed_buffers_read_only(&cl);
  3145   // Verify entries on the per-thread SATB buffers
  3146   if (verify_thread_buffers) {
  3147     cl.set_phase(VerifyNoCSetOopsSATBThread);
  3148     satb_qs.iterate_thread_buffers_read_only(&cl);
  3151   if (verify_fingers) {
  3152     // Verify the global finger
  3153     HeapWord* global_finger = finger();
  3154     if (global_finger != NULL && global_finger < _heap_end) {
  3155       // The global finger always points to a heap region boundary. We
  3156       // use heap_region_containing_raw() to get the containing region
  3157       // given that the global finger could be pointing to a free region
  3158       // which subsequently becomes continues humongous. If that
  3159       // happens, heap_region_containing() will return the bottom of the
  3160       // corresponding starts humongous region and the check below will
  3161       // not hold any more.
  3162       // Since we always iterate over all regions, we might get a NULL HeapRegion
  3163       // here.
  3164       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
  3165       guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
  3166                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
  3167                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
  3170     // Verify the task fingers
  3171     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
  3172     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
  3173       CMTask* task = _tasks[i];
  3174       HeapWord* task_finger = task->finger();
  3175       if (task_finger != NULL && task_finger < _heap_end) {
  3176         // See above note on the global finger verification.
  3177         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
  3178         guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
  3179                   !task_hr->in_collection_set(),
  3180                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
  3181                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
  3186 #endif // PRODUCT
  3188 // Aggregate the counting data that was constructed concurrently
  3189 // with marking.
  3190 class AggregateCountDataHRClosure: public HeapRegionClosure {
  3191   G1CollectedHeap* _g1h;
  3192   ConcurrentMark* _cm;
  3193   CardTableModRefBS* _ct_bs;
  3194   BitMap* _cm_card_bm;
  3195   uint _max_worker_id;
  3197  public:
  3198   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
  3199                               BitMap* cm_card_bm,
  3200                               uint max_worker_id) :
  3201     _g1h(g1h), _cm(g1h->concurrent_mark()),
  3202     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  3203     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
  3205   bool doHeapRegion(HeapRegion* hr) {
  3206     if (hr->continuesHumongous()) {
  3207       // We will ignore these here and process them when their
  3208       // associated "starts humongous" region is processed.
  3209       // Note that we cannot rely on their associated
  3210       // "starts humongous" region to have their bit set to 1
  3211       // since, due to the region chunking in the parallel region
  3212       // iteration, a "continues humongous" region might be visited
  3213       // before its associated "starts humongous".
  3214       return false;
  3217     HeapWord* start = hr->bottom();
  3218     HeapWord* limit = hr->next_top_at_mark_start();
  3219     HeapWord* end = hr->end();
  3221     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
  3222            err_msg("Preconditions not met - "
  3223                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
  3224                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
  3225                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
  3227     assert(hr->next_marked_bytes() == 0, "Precondition");
  3229     if (start == limit) {
  3230       // NTAMS of this region has not been set so nothing to do.
  3231       return false;
  3234     // 'start' should be in the heap.
  3235     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
  3236     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
  3237     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
  3239     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  3240     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
  3241     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
  3243     // If ntams is not card aligned then we bump card bitmap index
  3244     // for limit so that we get the all the cards spanned by
  3245     // the object ending at ntams.
  3246     // Note: if this is the last region in the heap then ntams
  3247     // could be actually just beyond the end of the the heap;
  3248     // limit_idx will then  correspond to a (non-existent) card
  3249     // that is also outside the heap.
  3250     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
  3251       limit_idx += 1;
  3254     assert(limit_idx <= end_idx, "or else use atomics");
  3256     // Aggregate the "stripe" in the count data associated with hr.
  3257     uint hrs_index = hr->hrs_index();
  3258     size_t marked_bytes = 0;
  3260     for (uint i = 0; i < _max_worker_id; i += 1) {
  3261       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
  3262       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
  3264       // Fetch the marked_bytes in this region for task i and
  3265       // add it to the running total for this region.
  3266       marked_bytes += marked_bytes_array[hrs_index];
  3268       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
  3269       // into the global card bitmap.
  3270       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
  3272       while (scan_idx < limit_idx) {
  3273         assert(task_card_bm->at(scan_idx) == true, "should be");
  3274         _cm_card_bm->set_bit(scan_idx);
  3275         assert(_cm_card_bm->at(scan_idx) == true, "should be");
  3277         // BitMap::get_next_one_offset() can handle the case when
  3278         // its left_offset parameter is greater than its right_offset
  3279         // parameter. It does, however, have an early exit if
  3280         // left_offset == right_offset. So let's limit the value
  3281         // passed in for left offset here.
  3282         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
  3283         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
  3287     // Update the marked bytes for this region.
  3288     hr->add_to_marked_bytes(marked_bytes);
  3290     // Next heap region
  3291     return false;
  3293 };
  3295 class G1AggregateCountDataTask: public AbstractGangTask {
  3296 protected:
  3297   G1CollectedHeap* _g1h;
  3298   ConcurrentMark* _cm;
  3299   BitMap* _cm_card_bm;
  3300   uint _max_worker_id;
  3301   int _active_workers;
  3303 public:
  3304   G1AggregateCountDataTask(G1CollectedHeap* g1h,
  3305                            ConcurrentMark* cm,
  3306                            BitMap* cm_card_bm,
  3307                            uint max_worker_id,
  3308                            int n_workers) :
  3309     AbstractGangTask("Count Aggregation"),
  3310     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
  3311     _max_worker_id(max_worker_id),
  3312     _active_workers(n_workers) { }
  3314   void work(uint worker_id) {
  3315     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
  3317     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3318       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
  3319                                             _active_workers,
  3320                                             HeapRegion::AggregateCountClaimValue);
  3321     } else {
  3322       _g1h->heap_region_iterate(&cl);
  3325 };
  3328 void ConcurrentMark::aggregate_count_data() {
  3329   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3330                         _g1h->workers()->active_workers() :
  3331                         1);
  3333   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
  3334                                            _max_worker_id, n_workers);
  3336   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3337     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3338            "sanity check");
  3339     _g1h->set_par_threads(n_workers);
  3340     _g1h->workers()->run_task(&g1_par_agg_task);
  3341     _g1h->set_par_threads(0);
  3343     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
  3344            "sanity check");
  3345     _g1h->reset_heap_region_claim_values();
  3346   } else {
  3347     g1_par_agg_task.work(0);
  3351 // Clear the per-worker arrays used to store the per-region counting data
  3352 void ConcurrentMark::clear_all_count_data() {
  3353   // Clear the global card bitmap - it will be filled during
  3354   // liveness count aggregation (during remark) and the
  3355   // final counting task.
  3356   _card_bm.clear();
  3358   // Clear the global region bitmap - it will be filled as part
  3359   // of the final counting task.
  3360   _region_bm.clear();
  3362   uint max_regions = _g1h->max_regions();
  3363   assert(_max_worker_id > 0, "uninitialized");
  3365   for (uint i = 0; i < _max_worker_id; i += 1) {
  3366     BitMap* task_card_bm = count_card_bitmap_for(i);
  3367     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
  3369     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
  3370     assert(marked_bytes_array != NULL, "uninitialized");
  3372     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
  3373     task_card_bm->clear();
  3377 void ConcurrentMark::print_stats() {
  3378   if (verbose_stats()) {
  3379     gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3380     for (size_t i = 0; i < _active_tasks; ++i) {
  3381       _tasks[i]->print_stats();
  3382       gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3387 // abandon current marking iteration due to a Full GC
  3388 void ConcurrentMark::abort() {
  3389   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
  3390   // concurrent bitmap clearing.
  3391   _nextMarkBitMap->clearAll();
  3393   // Note we cannot clear the previous marking bitmap here
  3394   // since VerifyDuringGC verifies the objects marked during
  3395   // a full GC against the previous bitmap.
  3397   // Clear the liveness counting data
  3398   clear_all_count_data();
  3399   // Empty mark stack
  3400   reset_marking_state();
  3401   for (uint i = 0; i < _max_worker_id; ++i) {
  3402     _tasks[i]->clear_region_fields();
  3404   _first_overflow_barrier_sync.abort();
  3405   _second_overflow_barrier_sync.abort();
  3406   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
  3407   if (!gc_id.is_undefined()) {
  3408     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
  3409     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
  3410     _aborted_gc_id = gc_id;
  3412   _has_aborted = true;
  3414   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3415   satb_mq_set.abandon_partial_marking();
  3416   // This can be called either during or outside marking, we'll read
  3417   // the expected_active value from the SATB queue set.
  3418   satb_mq_set.set_active_all_threads(
  3419                                  false, /* new active value */
  3420                                  satb_mq_set.is_active() /* expected_active */);
  3422   _g1h->trace_heap_after_concurrent_cycle();
  3423   _g1h->register_concurrent_cycle_end();
  3426 const GCId& ConcurrentMark::concurrent_gc_id() {
  3427   if (has_aborted()) {
  3428     return _aborted_gc_id;
  3430   return _g1h->gc_tracer_cm()->gc_id();
  3433 static void print_ms_time_info(const char* prefix, const char* name,
  3434                                NumberSeq& ns) {
  3435   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
  3436                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  3437   if (ns.num() > 0) {
  3438     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
  3439                            prefix, ns.sd(), ns.maximum());
  3443 void ConcurrentMark::print_summary_info() {
  3444   gclog_or_tty->print_cr(" Concurrent marking:");
  3445   print_ms_time_info("  ", "init marks", _init_times);
  3446   print_ms_time_info("  ", "remarks", _remark_times);
  3448     print_ms_time_info("     ", "final marks", _remark_mark_times);
  3449     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
  3452   print_ms_time_info("  ", "cleanups", _cleanup_times);
  3453   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
  3454                          _total_counting_time,
  3455                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
  3456                           (double)_cleanup_times.num()
  3457                          : 0.0));
  3458   if (G1ScrubRemSets) {
  3459     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
  3460                            _total_rs_scrub_time,
  3461                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
  3462                             (double)_cleanup_times.num()
  3463                            : 0.0));
  3465   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
  3466                          (_init_times.sum() + _remark_times.sum() +
  3467                           _cleanup_times.sum())/1000.0);
  3468   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
  3469                 "(%8.2f s marking).",
  3470                 cmThread()->vtime_accum(),
  3471                 cmThread()->vtime_mark_accum());
  3474 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  3475   if (use_parallel_marking_threads()) {
  3476     _parallel_workers->print_worker_threads_on(st);
  3480 void ConcurrentMark::print_on_error(outputStream* st) const {
  3481   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
  3482       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
  3483   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  3484   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
  3487 // We take a break if someone is trying to stop the world.
  3488 bool ConcurrentMark::do_yield_check(uint worker_id) {
  3489   if (SuspendibleThreadSet::should_yield()) {
  3490     if (worker_id == 0) {
  3491       _g1h->g1_policy()->record_concurrent_pause();
  3493     SuspendibleThreadSet::yield();
  3494     return true;
  3495   } else {
  3496     return false;
  3500 bool ConcurrentMark::containing_card_is_marked(void* p) {
  3501   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  3502   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
  3505 bool ConcurrentMark::containing_cards_are_marked(void* start,
  3506                                                  void* last) {
  3507   return containing_card_is_marked(start) &&
  3508          containing_card_is_marked(last);
  3511 #ifndef PRODUCT
  3512 // for debugging purposes
  3513 void ConcurrentMark::print_finger() {
  3514   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
  3515                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
  3516   for (uint i = 0; i < _max_worker_id; ++i) {
  3517     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
  3519   gclog_or_tty->cr();
  3521 #endif
  3523 void CMTask::scan_object(oop obj) {
  3524   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  3526   if (_cm->verbose_high()) {
  3527     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
  3528                            _worker_id, p2i((void*) obj));
  3531   size_t obj_size = obj->size();
  3532   _words_scanned += obj_size;
  3534   obj->oop_iterate(_cm_oop_closure);
  3535   statsOnly( ++_objs_scanned );
  3536   check_limits();
  3539 // Closure for iteration over bitmaps
  3540 class CMBitMapClosure : public BitMapClosure {
  3541 private:
  3542   // the bitmap that is being iterated over
  3543   CMBitMap*                   _nextMarkBitMap;
  3544   ConcurrentMark*             _cm;
  3545   CMTask*                     _task;
  3547 public:
  3548   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
  3549     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
  3551   bool do_bit(size_t offset) {
  3552     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
  3553     assert(_nextMarkBitMap->isMarked(addr), "invariant");
  3554     assert( addr < _cm->finger(), "invariant");
  3556     statsOnly( _task->increase_objs_found_on_bitmap() );
  3557     assert(addr >= _task->finger(), "invariant");
  3559     // We move that task's local finger along.
  3560     _task->move_finger_to(addr);
  3562     _task->scan_object(oop(addr));
  3563     // we only partially drain the local queue and global stack
  3564     _task->drain_local_queue(true);
  3565     _task->drain_global_stack(true);
  3567     // if the has_aborted flag has been raised, we need to bail out of
  3568     // the iteration
  3569     return !_task->has_aborted();
  3571 };
  3573 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
  3574                                ConcurrentMark* cm,
  3575                                CMTask* task)
  3576   : _g1h(g1h), _cm(cm), _task(task) {
  3577   assert(_ref_processor == NULL, "should be initialized to NULL");
  3579   if (G1UseConcMarkReferenceProcessing) {
  3580     _ref_processor = g1h->ref_processor_cm();
  3581     assert(_ref_processor != NULL, "should not be NULL");
  3585 void CMTask::setup_for_region(HeapRegion* hr) {
  3586   assert(hr != NULL,
  3587         "claim_region() should have filtered out NULL regions");
  3588   assert(!hr->continuesHumongous(),
  3589         "claim_region() should have filtered out continues humongous regions");
  3591   if (_cm->verbose_low()) {
  3592     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
  3593                            _worker_id, p2i(hr));
  3596   _curr_region  = hr;
  3597   _finger       = hr->bottom();
  3598   update_region_limit();
  3601 void CMTask::update_region_limit() {
  3602   HeapRegion* hr            = _curr_region;
  3603   HeapWord* bottom          = hr->bottom();
  3604   HeapWord* limit           = hr->next_top_at_mark_start();
  3606   if (limit == bottom) {
  3607     if (_cm->verbose_low()) {
  3608       gclog_or_tty->print_cr("[%u] found an empty region "
  3609                              "["PTR_FORMAT", "PTR_FORMAT")",
  3610                              _worker_id, p2i(bottom), p2i(limit));
  3612     // The region was collected underneath our feet.
  3613     // We set the finger to bottom to ensure that the bitmap
  3614     // iteration that will follow this will not do anything.
  3615     // (this is not a condition that holds when we set the region up,
  3616     // as the region is not supposed to be empty in the first place)
  3617     _finger = bottom;
  3618   } else if (limit >= _region_limit) {
  3619     assert(limit >= _finger, "peace of mind");
  3620   } else {
  3621     assert(limit < _region_limit, "only way to get here");
  3622     // This can happen under some pretty unusual circumstances.  An
  3623     // evacuation pause empties the region underneath our feet (NTAMS
  3624     // at bottom). We then do some allocation in the region (NTAMS
  3625     // stays at bottom), followed by the region being used as a GC
  3626     // alloc region (NTAMS will move to top() and the objects
  3627     // originally below it will be grayed). All objects now marked in
  3628     // the region are explicitly grayed, if below the global finger,
  3629     // and we do not need in fact to scan anything else. So, we simply
  3630     // set _finger to be limit to ensure that the bitmap iteration
  3631     // doesn't do anything.
  3632     _finger = limit;
  3635   _region_limit = limit;
  3638 void CMTask::giveup_current_region() {
  3639   assert(_curr_region != NULL, "invariant");
  3640   if (_cm->verbose_low()) {
  3641     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
  3642                            _worker_id, p2i(_curr_region));
  3644   clear_region_fields();
  3647 void CMTask::clear_region_fields() {
  3648   // Values for these three fields that indicate that we're not
  3649   // holding on to a region.
  3650   _curr_region   = NULL;
  3651   _finger        = NULL;
  3652   _region_limit  = NULL;
  3655 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  3656   if (cm_oop_closure == NULL) {
  3657     assert(_cm_oop_closure != NULL, "invariant");
  3658   } else {
  3659     assert(_cm_oop_closure == NULL, "invariant");
  3661   _cm_oop_closure = cm_oop_closure;
  3664 void CMTask::reset(CMBitMap* nextMarkBitMap) {
  3665   guarantee(nextMarkBitMap != NULL, "invariant");
  3667   if (_cm->verbose_low()) {
  3668     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
  3671   _nextMarkBitMap                = nextMarkBitMap;
  3672   clear_region_fields();
  3674   _calls                         = 0;
  3675   _elapsed_time_ms               = 0.0;
  3676   _termination_time_ms           = 0.0;
  3677   _termination_start_time_ms     = 0.0;
  3679 #if _MARKING_STATS_
  3680   _local_pushes                  = 0;
  3681   _local_pops                    = 0;
  3682   _local_max_size                = 0;
  3683   _objs_scanned                  = 0;
  3684   _global_pushes                 = 0;
  3685   _global_pops                   = 0;
  3686   _global_max_size               = 0;
  3687   _global_transfers_to           = 0;
  3688   _global_transfers_from         = 0;
  3689   _regions_claimed               = 0;
  3690   _objs_found_on_bitmap          = 0;
  3691   _satb_buffers_processed        = 0;
  3692   _steal_attempts                = 0;
  3693   _steals                        = 0;
  3694   _aborted                       = 0;
  3695   _aborted_overflow              = 0;
  3696   _aborted_cm_aborted            = 0;
  3697   _aborted_yield                 = 0;
  3698   _aborted_timed_out             = 0;
  3699   _aborted_satb                  = 0;
  3700   _aborted_termination           = 0;
  3701 #endif // _MARKING_STATS_
  3704 bool CMTask::should_exit_termination() {
  3705   regular_clock_call();
  3706   // This is called when we are in the termination protocol. We should
  3707   // quit if, for some reason, this task wants to abort or the global
  3708   // stack is not empty (this means that we can get work from it).
  3709   return !_cm->mark_stack_empty() || has_aborted();
  3712 void CMTask::reached_limit() {
  3713   assert(_words_scanned >= _words_scanned_limit ||
  3714          _refs_reached >= _refs_reached_limit ,
  3715          "shouldn't have been called otherwise");
  3716   regular_clock_call();
  3719 void CMTask::regular_clock_call() {
  3720   if (has_aborted()) return;
  3722   // First, we need to recalculate the words scanned and refs reached
  3723   // limits for the next clock call.
  3724   recalculate_limits();
  3726   // During the regular clock call we do the following
  3728   // (1) If an overflow has been flagged, then we abort.
  3729   if (_cm->has_overflown()) {
  3730     set_has_aborted();
  3731     return;
  3734   // If we are not concurrent (i.e. we're doing remark) we don't need
  3735   // to check anything else. The other steps are only needed during
  3736   // the concurrent marking phase.
  3737   if (!concurrent()) return;
  3739   // (2) If marking has been aborted for Full GC, then we also abort.
  3740   if (_cm->has_aborted()) {
  3741     set_has_aborted();
  3742     statsOnly( ++_aborted_cm_aborted );
  3743     return;
  3746   double curr_time_ms = os::elapsedVTime() * 1000.0;
  3748   // (3) If marking stats are enabled, then we update the step history.
  3749 #if _MARKING_STATS_
  3750   if (_words_scanned >= _words_scanned_limit) {
  3751     ++_clock_due_to_scanning;
  3753   if (_refs_reached >= _refs_reached_limit) {
  3754     ++_clock_due_to_marking;
  3757   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  3758   _interval_start_time_ms = curr_time_ms;
  3759   _all_clock_intervals_ms.add(last_interval_ms);
  3761   if (_cm->verbose_medium()) {
  3762       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
  3763                         "scanned = %d%s, refs reached = %d%s",
  3764                         _worker_id, last_interval_ms,
  3765                         _words_scanned,
  3766                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
  3767                         _refs_reached,
  3768                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  3770 #endif // _MARKING_STATS_
  3772   // (4) We check whether we should yield. If we have to, then we abort.
  3773   if (SuspendibleThreadSet::should_yield()) {
  3774     // We should yield. To do this we abort the task. The caller is
  3775     // responsible for yielding.
  3776     set_has_aborted();
  3777     statsOnly( ++_aborted_yield );
  3778     return;
  3781   // (5) We check whether we've reached our time quota. If we have,
  3782   // then we abort.
  3783   double elapsed_time_ms = curr_time_ms - _start_time_ms;
  3784   if (elapsed_time_ms > _time_target_ms) {
  3785     set_has_aborted();
  3786     _has_timed_out = true;
  3787     statsOnly( ++_aborted_timed_out );
  3788     return;
  3791   // (6) Finally, we check whether there are enough completed STAB
  3792   // buffers available for processing. If there are, we abort.
  3793   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3794   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
  3795     if (_cm->verbose_low()) {
  3796       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
  3797                              _worker_id);
  3799     // we do need to process SATB buffers, we'll abort and restart
  3800     // the marking task to do so
  3801     set_has_aborted();
  3802     statsOnly( ++_aborted_satb );
  3803     return;
  3807 void CMTask::recalculate_limits() {
  3808   _real_words_scanned_limit = _words_scanned + words_scanned_period;
  3809   _words_scanned_limit      = _real_words_scanned_limit;
  3811   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  3812   _refs_reached_limit       = _real_refs_reached_limit;
  3815 void CMTask::decrease_limits() {
  3816   // This is called when we believe that we're going to do an infrequent
  3817   // operation which will increase the per byte scanned cost (i.e. move
  3818   // entries to/from the global stack). It basically tries to decrease the
  3819   // scanning limit so that the clock is called earlier.
  3821   if (_cm->verbose_medium()) {
  3822     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
  3825   _words_scanned_limit = _real_words_scanned_limit -
  3826     3 * words_scanned_period / 4;
  3827   _refs_reached_limit  = _real_refs_reached_limit -
  3828     3 * refs_reached_period / 4;
  3831 void CMTask::move_entries_to_global_stack() {
  3832   // local array where we'll store the entries that will be popped
  3833   // from the local queue
  3834   oop buffer[global_stack_transfer_size];
  3836   int n = 0;
  3837   oop obj;
  3838   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
  3839     buffer[n] = obj;
  3840     ++n;
  3843   if (n > 0) {
  3844     // we popped at least one entry from the local queue
  3846     statsOnly( ++_global_transfers_to; _local_pops += n );
  3848     if (!_cm->mark_stack_push(buffer, n)) {
  3849       if (_cm->verbose_low()) {
  3850         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
  3851                                _worker_id);
  3853       set_has_aborted();
  3854     } else {
  3855       // the transfer was successful
  3857       if (_cm->verbose_medium()) {
  3858         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
  3859                                _worker_id, n);
  3861       statsOnly( int tmp_size = _cm->mark_stack_size();
  3862                  if (tmp_size > _global_max_size) {
  3863                    _global_max_size = tmp_size;
  3865                  _global_pushes += n );
  3869   // this operation was quite expensive, so decrease the limits
  3870   decrease_limits();
  3873 void CMTask::get_entries_from_global_stack() {
  3874   // local array where we'll store the entries that will be popped
  3875   // from the global stack.
  3876   oop buffer[global_stack_transfer_size];
  3877   int n;
  3878   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
  3879   assert(n <= global_stack_transfer_size,
  3880          "we should not pop more than the given limit");
  3881   if (n > 0) {
  3882     // yes, we did actually pop at least one entry
  3884     statsOnly( ++_global_transfers_from; _global_pops += n );
  3885     if (_cm->verbose_medium()) {
  3886       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
  3887                              _worker_id, n);
  3889     for (int i = 0; i < n; ++i) {
  3890       bool success = _task_queue->push(buffer[i]);
  3891       // We only call this when the local queue is empty or under a
  3892       // given target limit. So, we do not expect this push to fail.
  3893       assert(success, "invariant");
  3896     statsOnly( int tmp_size = _task_queue->size();
  3897                if (tmp_size > _local_max_size) {
  3898                  _local_max_size = tmp_size;
  3900                _local_pushes += n );
  3903   // this operation was quite expensive, so decrease the limits
  3904   decrease_limits();
  3907 void CMTask::drain_local_queue(bool partially) {
  3908   if (has_aborted()) return;
  3910   // Decide what the target size is, depending whether we're going to
  3911   // drain it partially (so that other tasks can steal if they run out
  3912   // of things to do) or totally (at the very end).
  3913   size_t target_size;
  3914   if (partially) {
  3915     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  3916   } else {
  3917     target_size = 0;
  3920   if (_task_queue->size() > target_size) {
  3921     if (_cm->verbose_high()) {
  3922       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
  3923                              _worker_id, target_size);
  3926     oop obj;
  3927     bool ret = _task_queue->pop_local(obj);
  3928     while (ret) {
  3929       statsOnly( ++_local_pops );
  3931       if (_cm->verbose_high()) {
  3932         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
  3933                                p2i((void*) obj));
  3936       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
  3937       assert(!_g1h->is_on_master_free_list(
  3938                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
  3940       scan_object(obj);
  3942       if (_task_queue->size() <= target_size || has_aborted()) {
  3943         ret = false;
  3944       } else {
  3945         ret = _task_queue->pop_local(obj);
  3949     if (_cm->verbose_high()) {
  3950       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
  3951                              _worker_id, _task_queue->size());
  3956 void CMTask::drain_global_stack(bool partially) {
  3957   if (has_aborted()) return;
  3959   // We have a policy to drain the local queue before we attempt to
  3960   // drain the global stack.
  3961   assert(partially || _task_queue->size() == 0, "invariant");
  3963   // Decide what the target size is, depending whether we're going to
  3964   // drain it partially (so that other tasks can steal if they run out
  3965   // of things to do) or totally (at the very end).  Notice that,
  3966   // because we move entries from the global stack in chunks or
  3967   // because another task might be doing the same, we might in fact
  3968   // drop below the target. But, this is not a problem.
  3969   size_t target_size;
  3970   if (partially) {
  3971     target_size = _cm->partial_mark_stack_size_target();
  3972   } else {
  3973     target_size = 0;
  3976   if (_cm->mark_stack_size() > target_size) {
  3977     if (_cm->verbose_low()) {
  3978       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
  3979                              _worker_id, target_size);
  3982     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
  3983       get_entries_from_global_stack();
  3984       drain_local_queue(partially);
  3987     if (_cm->verbose_low()) {
  3988       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
  3989                              _worker_id, _cm->mark_stack_size());
  3994 // SATB Queue has several assumptions on whether to call the par or
  3995 // non-par versions of the methods. this is why some of the code is
  3996 // replicated. We should really get rid of the single-threaded version
  3997 // of the code to simplify things.
  3998 void CMTask::drain_satb_buffers() {
  3999   if (has_aborted()) return;
  4001   // We set this so that the regular clock knows that we're in the
  4002   // middle of draining buffers and doesn't set the abort flag when it
  4003   // notices that SATB buffers are available for draining. It'd be
  4004   // very counter productive if it did that. :-)
  4005   _draining_satb_buffers = true;
  4007   CMObjectClosure oc(this);
  4008   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  4009   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4010     satb_mq_set.set_par_closure(_worker_id, &oc);
  4011   } else {
  4012     satb_mq_set.set_closure(&oc);
  4015   // This keeps claiming and applying the closure to completed buffers
  4016   // until we run out of buffers or we need to abort.
  4017   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4018     while (!has_aborted() &&
  4019            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
  4020       if (_cm->verbose_medium()) {
  4021         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  4023       statsOnly( ++_satb_buffers_processed );
  4024       regular_clock_call();
  4026   } else {
  4027     while (!has_aborted() &&
  4028            satb_mq_set.apply_closure_to_completed_buffer()) {
  4029       if (_cm->verbose_medium()) {
  4030         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  4032       statsOnly( ++_satb_buffers_processed );
  4033       regular_clock_call();
  4037   _draining_satb_buffers = false;
  4039   assert(has_aborted() ||
  4040          concurrent() ||
  4041          satb_mq_set.completed_buffers_num() == 0, "invariant");
  4043   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4044     satb_mq_set.set_par_closure(_worker_id, NULL);
  4045   } else {
  4046     satb_mq_set.set_closure(NULL);
  4049   // again, this was a potentially expensive operation, decrease the
  4050   // limits to get the regular clock call early
  4051   decrease_limits();
  4054 void CMTask::print_stats() {
  4055   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
  4056                          _worker_id, _calls);
  4057   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
  4058                          _elapsed_time_ms, _termination_time_ms);
  4059   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4060                          _step_times_ms.num(), _step_times_ms.avg(),
  4061                          _step_times_ms.sd());
  4062   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
  4063                          _step_times_ms.maximum(), _step_times_ms.sum());
  4065 #if _MARKING_STATS_
  4066   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4067                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
  4068                          _all_clock_intervals_ms.sd());
  4069   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
  4070                          _all_clock_intervals_ms.maximum(),
  4071                          _all_clock_intervals_ms.sum());
  4072   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
  4073                          _clock_due_to_scanning, _clock_due_to_marking);
  4074   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
  4075                          _objs_scanned, _objs_found_on_bitmap);
  4076   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
  4077                          _local_pushes, _local_pops, _local_max_size);
  4078   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
  4079                          _global_pushes, _global_pops, _global_max_size);
  4080   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
  4081                          _global_transfers_to,_global_transfers_from);
  4082   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
  4083   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  4084   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
  4085                          _steal_attempts, _steals);
  4086   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  4087   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
  4088                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  4089   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
  4090                          _aborted_timed_out, _aborted_satb, _aborted_termination);
  4091 #endif // _MARKING_STATS_
  4094 /*****************************************************************************
  4096     The do_marking_step(time_target_ms, ...) method is the building
  4097     block of the parallel marking framework. It can be called in parallel
  4098     with other invocations of do_marking_step() on different tasks
  4099     (but only one per task, obviously) and concurrently with the
  4100     mutator threads, or during remark, hence it eliminates the need
  4101     for two versions of the code. When called during remark, it will
  4102     pick up from where the task left off during the concurrent marking
  4103     phase. Interestingly, tasks are also claimable during evacuation
  4104     pauses too, since do_marking_step() ensures that it aborts before
  4105     it needs to yield.
  4107     The data structures that it uses to do marking work are the
  4108     following:
  4110       (1) Marking Bitmap. If there are gray objects that appear only
  4111       on the bitmap (this happens either when dealing with an overflow
  4112       or when the initial marking phase has simply marked the roots
  4113       and didn't push them on the stack), then tasks claim heap
  4114       regions whose bitmap they then scan to find gray objects. A
  4115       global finger indicates where the end of the last claimed region
  4116       is. A local finger indicates how far into the region a task has
  4117       scanned. The two fingers are used to determine how to gray an
  4118       object (i.e. whether simply marking it is OK, as it will be
  4119       visited by a task in the future, or whether it needs to be also
  4120       pushed on a stack).
  4122       (2) Local Queue. The local queue of the task which is accessed
  4123       reasonably efficiently by the task. Other tasks can steal from
  4124       it when they run out of work. Throughout the marking phase, a
  4125       task attempts to keep its local queue short but not totally
  4126       empty, so that entries are available for stealing by other
  4127       tasks. Only when there is no more work, a task will totally
  4128       drain its local queue.
  4130       (3) Global Mark Stack. This handles local queue overflow. During
  4131       marking only sets of entries are moved between it and the local
  4132       queues, as access to it requires a mutex and more fine-grain
  4133       interaction with it which might cause contention. If it
  4134       overflows, then the marking phase should restart and iterate
  4135       over the bitmap to identify gray objects. Throughout the marking
  4136       phase, tasks attempt to keep the global mark stack at a small
  4137       length but not totally empty, so that entries are available for
  4138       popping by other tasks. Only when there is no more work, tasks
  4139       will totally drain the global mark stack.
  4141       (4) SATB Buffer Queue. This is where completed SATB buffers are
  4142       made available. Buffers are regularly removed from this queue
  4143       and scanned for roots, so that the queue doesn't get too
  4144       long. During remark, all completed buffers are processed, as
  4145       well as the filled in parts of any uncompleted buffers.
  4147     The do_marking_step() method tries to abort when the time target
  4148     has been reached. There are a few other cases when the
  4149     do_marking_step() method also aborts:
  4151       (1) When the marking phase has been aborted (after a Full GC).
  4153       (2) When a global overflow (on the global stack) has been
  4154       triggered. Before the task aborts, it will actually sync up with
  4155       the other tasks to ensure that all the marking data structures
  4156       (local queues, stacks, fingers etc.)  are re-initialized so that
  4157       when do_marking_step() completes, the marking phase can
  4158       immediately restart.
  4160       (3) When enough completed SATB buffers are available. The
  4161       do_marking_step() method only tries to drain SATB buffers right
  4162       at the beginning. So, if enough buffers are available, the
  4163       marking step aborts and the SATB buffers are processed at
  4164       the beginning of the next invocation.
  4166       (4) To yield. when we have to yield then we abort and yield
  4167       right at the end of do_marking_step(). This saves us from a lot
  4168       of hassle as, by yielding we might allow a Full GC. If this
  4169       happens then objects will be compacted underneath our feet, the
  4170       heap might shrink, etc. We save checking for this by just
  4171       aborting and doing the yield right at the end.
  4173     From the above it follows that the do_marking_step() method should
  4174     be called in a loop (or, otherwise, regularly) until it completes.
  4176     If a marking step completes without its has_aborted() flag being
  4177     true, it means it has completed the current marking phase (and
  4178     also all other marking tasks have done so and have all synced up).
  4180     A method called regular_clock_call() is invoked "regularly" (in
  4181     sub ms intervals) throughout marking. It is this clock method that
  4182     checks all the abort conditions which were mentioned above and
  4183     decides when the task should abort. A work-based scheme is used to
  4184     trigger this clock method: when the number of object words the
  4185     marking phase has scanned or the number of references the marking
  4186     phase has visited reach a given limit. Additional invocations to
  4187     the method clock have been planted in a few other strategic places
  4188     too. The initial reason for the clock method was to avoid calling
  4189     vtime too regularly, as it is quite expensive. So, once it was in
  4190     place, it was natural to piggy-back all the other conditions on it
  4191     too and not constantly check them throughout the code.
  4193     If do_termination is true then do_marking_step will enter its
  4194     termination protocol.
  4196     The value of is_serial must be true when do_marking_step is being
  4197     called serially (i.e. by the VMThread) and do_marking_step should
  4198     skip any synchronization in the termination and overflow code.
  4199     Examples include the serial remark code and the serial reference
  4200     processing closures.
  4202     The value of is_serial must be false when do_marking_step is
  4203     being called by any of the worker threads in a work gang.
  4204     Examples include the concurrent marking code (CMMarkingTask),
  4205     the MT remark code, and the MT reference processing closures.
  4207  *****************************************************************************/
  4209 void CMTask::do_marking_step(double time_target_ms,
  4210                              bool do_termination,
  4211                              bool is_serial) {
  4212   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  4213   assert(concurrent() == _cm->concurrent(), "they should be the same");
  4215   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
  4216   assert(_task_queues != NULL, "invariant");
  4217   assert(_task_queue != NULL, "invariant");
  4218   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
  4220   assert(!_claimed,
  4221          "only one thread should claim this task at any one time");
  4223   // OK, this doesn't safeguard again all possible scenarios, as it is
  4224   // possible for two threads to set the _claimed flag at the same
  4225   // time. But it is only for debugging purposes anyway and it will
  4226   // catch most problems.
  4227   _claimed = true;
  4229   _start_time_ms = os::elapsedVTime() * 1000.0;
  4230   statsOnly( _interval_start_time_ms = _start_time_ms );
  4232   // If do_stealing is true then do_marking_step will attempt to
  4233   // steal work from the other CMTasks. It only makes sense to
  4234   // enable stealing when the termination protocol is enabled
  4235   // and do_marking_step() is not being called serially.
  4236   bool do_stealing = do_termination && !is_serial;
  4238   double diff_prediction_ms =
  4239     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  4240   _time_target_ms = time_target_ms - diff_prediction_ms;
  4242   // set up the variables that are used in the work-based scheme to
  4243   // call the regular clock method
  4244   _words_scanned = 0;
  4245   _refs_reached  = 0;
  4246   recalculate_limits();
  4248   // clear all flags
  4249   clear_has_aborted();
  4250   _has_timed_out = false;
  4251   _draining_satb_buffers = false;
  4253   ++_calls;
  4255   if (_cm->verbose_low()) {
  4256     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
  4257                            "target = %1.2lfms >>>>>>>>>>",
  4258                            _worker_id, _calls, _time_target_ms);
  4261   // Set up the bitmap and oop closures. Anything that uses them is
  4262   // eventually called from this method, so it is OK to allocate these
  4263   // statically.
  4264   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  4265   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  4266   set_cm_oop_closure(&cm_oop_closure);
  4268   if (_cm->has_overflown()) {
  4269     // This can happen if the mark stack overflows during a GC pause
  4270     // and this task, after a yield point, restarts. We have to abort
  4271     // as we need to get into the overflow protocol which happens
  4272     // right at the end of this task.
  4273     set_has_aborted();
  4276   // First drain any available SATB buffers. After this, we will not
  4277   // look at SATB buffers before the next invocation of this method.
  4278   // If enough completed SATB buffers are queued up, the regular clock
  4279   // will abort this task so that it restarts.
  4280   drain_satb_buffers();
  4281   // ...then partially drain the local queue and the global stack
  4282   drain_local_queue(true);
  4283   drain_global_stack(true);
  4285   do {
  4286     if (!has_aborted() && _curr_region != NULL) {
  4287       // This means that we're already holding on to a region.
  4288       assert(_finger != NULL, "if region is not NULL, then the finger "
  4289              "should not be NULL either");
  4291       // We might have restarted this task after an evacuation pause
  4292       // which might have evacuated the region we're holding on to
  4293       // underneath our feet. Let's read its limit again to make sure
  4294       // that we do not iterate over a region of the heap that
  4295       // contains garbage (update_region_limit() will also move
  4296       // _finger to the start of the region if it is found empty).
  4297       update_region_limit();
  4298       // We will start from _finger not from the start of the region,
  4299       // as we might be restarting this task after aborting half-way
  4300       // through scanning this region. In this case, _finger points to
  4301       // the address where we last found a marked object. If this is a
  4302       // fresh region, _finger points to start().
  4303       MemRegion mr = MemRegion(_finger, _region_limit);
  4305       if (_cm->verbose_low()) {
  4306         gclog_or_tty->print_cr("[%u] we're scanning part "
  4307                                "["PTR_FORMAT", "PTR_FORMAT") "
  4308                                "of region "HR_FORMAT,
  4309                                _worker_id, p2i(_finger), p2i(_region_limit),
  4310                                HR_FORMAT_PARAMS(_curr_region));
  4313       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
  4314              "humongous regions should go around loop once only");
  4316       // Some special cases:
  4317       // If the memory region is empty, we can just give up the region.
  4318       // If the current region is humongous then we only need to check
  4319       // the bitmap for the bit associated with the start of the object,
  4320       // scan the object if it's live, and give up the region.
  4321       // Otherwise, let's iterate over the bitmap of the part of the region
  4322       // that is left.
  4323       // If the iteration is successful, give up the region.
  4324       if (mr.is_empty()) {
  4325         giveup_current_region();
  4326         regular_clock_call();
  4327       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
  4328         if (_nextMarkBitMap->isMarked(mr.start())) {
  4329           // The object is marked - apply the closure
  4330           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
  4331           bitmap_closure.do_bit(offset);
  4333         // Even if this task aborted while scanning the humongous object
  4334         // we can (and should) give up the current region.
  4335         giveup_current_region();
  4336         regular_clock_call();
  4337       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
  4338         giveup_current_region();
  4339         regular_clock_call();
  4340       } else {
  4341         assert(has_aborted(), "currently the only way to do so");
  4342         // The only way to abort the bitmap iteration is to return
  4343         // false from the do_bit() method. However, inside the
  4344         // do_bit() method we move the _finger to point to the
  4345         // object currently being looked at. So, if we bail out, we
  4346         // have definitely set _finger to something non-null.
  4347         assert(_finger != NULL, "invariant");
  4349         // Region iteration was actually aborted. So now _finger
  4350         // points to the address of the object we last scanned. If we
  4351         // leave it there, when we restart this task, we will rescan
  4352         // the object. It is easy to avoid this. We move the finger by
  4353         // enough to point to the next possible object header (the
  4354         // bitmap knows by how much we need to move it as it knows its
  4355         // granularity).
  4356         assert(_finger < _region_limit, "invariant");
  4357         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
  4358         // Check if bitmap iteration was aborted while scanning the last object
  4359         if (new_finger >= _region_limit) {
  4360           giveup_current_region();
  4361         } else {
  4362           move_finger_to(new_finger);
  4366     // At this point we have either completed iterating over the
  4367     // region we were holding on to, or we have aborted.
  4369     // We then partially drain the local queue and the global stack.
  4370     // (Do we really need this?)
  4371     drain_local_queue(true);
  4372     drain_global_stack(true);
  4374     // Read the note on the claim_region() method on why it might
  4375     // return NULL with potentially more regions available for
  4376     // claiming and why we have to check out_of_regions() to determine
  4377     // whether we're done or not.
  4378     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
  4379       // We are going to try to claim a new region. We should have
  4380       // given up on the previous one.
  4381       // Separated the asserts so that we know which one fires.
  4382       assert(_curr_region  == NULL, "invariant");
  4383       assert(_finger       == NULL, "invariant");
  4384       assert(_region_limit == NULL, "invariant");
  4385       if (_cm->verbose_low()) {
  4386         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
  4388       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
  4389       if (claimed_region != NULL) {
  4390         // Yes, we managed to claim one
  4391         statsOnly( ++_regions_claimed );
  4393         if (_cm->verbose_low()) {
  4394           gclog_or_tty->print_cr("[%u] we successfully claimed "
  4395                                  "region "PTR_FORMAT,
  4396                                  _worker_id, p2i(claimed_region));
  4399         setup_for_region(claimed_region);
  4400         assert(_curr_region == claimed_region, "invariant");
  4402       // It is important to call the regular clock here. It might take
  4403       // a while to claim a region if, for example, we hit a large
  4404       // block of empty regions. So we need to call the regular clock
  4405       // method once round the loop to make sure it's called
  4406       // frequently enough.
  4407       regular_clock_call();
  4410     if (!has_aborted() && _curr_region == NULL) {
  4411       assert(_cm->out_of_regions(),
  4412              "at this point we should be out of regions");
  4414   } while ( _curr_region != NULL && !has_aborted());
  4416   if (!has_aborted()) {
  4417     // We cannot check whether the global stack is empty, since other
  4418     // tasks might be pushing objects to it concurrently.
  4419     assert(_cm->out_of_regions(),
  4420            "at this point we should be out of regions");
  4422     if (_cm->verbose_low()) {
  4423       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
  4426     // Try to reduce the number of available SATB buffers so that
  4427     // remark has less work to do.
  4428     drain_satb_buffers();
  4431   // Since we've done everything else, we can now totally drain the
  4432   // local queue and global stack.
  4433   drain_local_queue(false);
  4434   drain_global_stack(false);
  4436   // Attempt at work stealing from other task's queues.
  4437   if (do_stealing && !has_aborted()) {
  4438     // We have not aborted. This means that we have finished all that
  4439     // we could. Let's try to do some stealing...
  4441     // We cannot check whether the global stack is empty, since other
  4442     // tasks might be pushing objects to it concurrently.
  4443     assert(_cm->out_of_regions() && _task_queue->size() == 0,
  4444            "only way to reach here");
  4446     if (_cm->verbose_low()) {
  4447       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
  4450     while (!has_aborted()) {
  4451       oop obj;
  4452       statsOnly( ++_steal_attempts );
  4454       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
  4455         if (_cm->verbose_medium()) {
  4456           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
  4457                                  _worker_id, p2i((void*) obj));
  4460         statsOnly( ++_steals );
  4462         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
  4463                "any stolen object should be marked");
  4464         scan_object(obj);
  4466         // And since we're towards the end, let's totally drain the
  4467         // local queue and global stack.
  4468         drain_local_queue(false);
  4469         drain_global_stack(false);
  4470       } else {
  4471         break;
  4476   // If we are about to wrap up and go into termination, check if we
  4477   // should raise the overflow flag.
  4478   if (do_termination && !has_aborted()) {
  4479     if (_cm->force_overflow()->should_force()) {
  4480       _cm->set_has_overflown();
  4481       regular_clock_call();
  4485   // We still haven't aborted. Now, let's try to get into the
  4486   // termination protocol.
  4487   if (do_termination && !has_aborted()) {
  4488     // We cannot check whether the global stack is empty, since other
  4489     // tasks might be concurrently pushing objects on it.
  4490     // Separated the asserts so that we know which one fires.
  4491     assert(_cm->out_of_regions(), "only way to reach here");
  4492     assert(_task_queue->size() == 0, "only way to reach here");
  4494     if (_cm->verbose_low()) {
  4495       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
  4498     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
  4500     // The CMTask class also extends the TerminatorTerminator class,
  4501     // hence its should_exit_termination() method will also decide
  4502     // whether to exit the termination protocol or not.
  4503     bool finished = (is_serial ||
  4504                      _cm->terminator()->offer_termination(this));
  4505     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
  4506     _termination_time_ms +=
  4507       termination_end_time_ms - _termination_start_time_ms;
  4509     if (finished) {
  4510       // We're all done.
  4512       if (_worker_id == 0) {
  4513         // let's allow task 0 to do this
  4514         if (concurrent()) {
  4515           assert(_cm->concurrent_marking_in_progress(), "invariant");
  4516           // we need to set this to false before the next
  4517           // safepoint. This way we ensure that the marking phase
  4518           // doesn't observe any more heap expansions.
  4519           _cm->clear_concurrent_marking_in_progress();
  4523       // We can now guarantee that the global stack is empty, since
  4524       // all other tasks have finished. We separated the guarantees so
  4525       // that, if a condition is false, we can immediately find out
  4526       // which one.
  4527       guarantee(_cm->out_of_regions(), "only way to reach here");
  4528       guarantee(_cm->mark_stack_empty(), "only way to reach here");
  4529       guarantee(_task_queue->size() == 0, "only way to reach here");
  4530       guarantee(!_cm->has_overflown(), "only way to reach here");
  4531       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
  4533       if (_cm->verbose_low()) {
  4534         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
  4536     } else {
  4537       // Apparently there's more work to do. Let's abort this task. It
  4538       // will restart it and we can hopefully find more things to do.
  4540       if (_cm->verbose_low()) {
  4541         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
  4542                                _worker_id);
  4545       set_has_aborted();
  4546       statsOnly( ++_aborted_termination );
  4550   // Mainly for debugging purposes to make sure that a pointer to the
  4551   // closure which was statically allocated in this frame doesn't
  4552   // escape it by accident.
  4553   set_cm_oop_closure(NULL);
  4554   double end_time_ms = os::elapsedVTime() * 1000.0;
  4555   double elapsed_time_ms = end_time_ms - _start_time_ms;
  4556   // Update the step history.
  4557   _step_times_ms.add(elapsed_time_ms);
  4559   if (has_aborted()) {
  4560     // The task was aborted for some reason.
  4562     statsOnly( ++_aborted );
  4564     if (_has_timed_out) {
  4565       double diff_ms = elapsed_time_ms - _time_target_ms;
  4566       // Keep statistics of how well we did with respect to hitting
  4567       // our target only if we actually timed out (if we aborted for
  4568       // other reasons, then the results might get skewed).
  4569       _marking_step_diffs_ms.add(diff_ms);
  4572     if (_cm->has_overflown()) {
  4573       // This is the interesting one. We aborted because a global
  4574       // overflow was raised. This means we have to restart the
  4575       // marking phase and start iterating over regions. However, in
  4576       // order to do this we have to make sure that all tasks stop
  4577       // what they are doing and re-initialise in a safe manner. We
  4578       // will achieve this with the use of two barrier sync points.
  4580       if (_cm->verbose_low()) {
  4581         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
  4584       if (!is_serial) {
  4585         // We only need to enter the sync barrier if being called
  4586         // from a parallel context
  4587         _cm->enter_first_sync_barrier(_worker_id);
  4589         // When we exit this sync barrier we know that all tasks have
  4590         // stopped doing marking work. So, it's now safe to
  4591         // re-initialise our data structures. At the end of this method,
  4592         // task 0 will clear the global data structures.
  4595       statsOnly( ++_aborted_overflow );
  4597       // We clear the local state of this task...
  4598       clear_region_fields();
  4600       if (!is_serial) {
  4601         // ...and enter the second barrier.
  4602         _cm->enter_second_sync_barrier(_worker_id);
  4604       // At this point, if we're during the concurrent phase of
  4605       // marking, everything has been re-initialized and we're
  4606       // ready to restart.
  4609     if (_cm->verbose_low()) {
  4610       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
  4611                              "elapsed = %1.2lfms <<<<<<<<<<",
  4612                              _worker_id, _time_target_ms, elapsed_time_ms);
  4613       if (_cm->has_aborted()) {
  4614         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
  4615                                _worker_id);
  4618   } else {
  4619     if (_cm->verbose_low()) {
  4620       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
  4621                              "elapsed = %1.2lfms <<<<<<<<<<",
  4622                              _worker_id, _time_target_ms, elapsed_time_ms);
  4626   _claimed = false;
  4629 CMTask::CMTask(uint worker_id,
  4630                ConcurrentMark* cm,
  4631                size_t* marked_bytes,
  4632                BitMap* card_bm,
  4633                CMTaskQueue* task_queue,
  4634                CMTaskQueueSet* task_queues)
  4635   : _g1h(G1CollectedHeap::heap()),
  4636     _worker_id(worker_id), _cm(cm),
  4637     _claimed(false),
  4638     _nextMarkBitMap(NULL), _hash_seed(17),
  4639     _task_queue(task_queue),
  4640     _task_queues(task_queues),
  4641     _cm_oop_closure(NULL),
  4642     _marked_bytes_array(marked_bytes),
  4643     _card_bm(card_bm) {
  4644   guarantee(task_queue != NULL, "invariant");
  4645   guarantee(task_queues != NULL, "invariant");
  4647   statsOnly( _clock_due_to_scanning = 0;
  4648              _clock_due_to_marking  = 0 );
  4650   _marking_step_diffs_ms.add(0.5);
  4653 // These are formatting macros that are used below to ensure
  4654 // consistent formatting. The *_H_* versions are used to format the
  4655 // header for a particular value and they should be kept consistent
  4656 // with the corresponding macro. Also note that most of the macros add
  4657 // the necessary white space (as a prefix) which makes them a bit
  4658 // easier to compose.
  4660 // All the output lines are prefixed with this string to be able to
  4661 // identify them easily in a large log file.
  4662 #define G1PPRL_LINE_PREFIX            "###"
  4664 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
  4665 #ifdef _LP64
  4666 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
  4667 #else // _LP64
  4668 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
  4669 #endif // _LP64
  4671 // For per-region info
  4672 #define G1PPRL_TYPE_FORMAT            "   %-4s"
  4673 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
  4674 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
  4675 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
  4676 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
  4677 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
  4679 // For summary info
  4680 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
  4681 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
  4682 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
  4683 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
  4685 G1PrintRegionLivenessInfoClosure::
  4686 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  4687   : _out(out),
  4688     _total_used_bytes(0), _total_capacity_bytes(0),
  4689     _total_prev_live_bytes(0), _total_next_live_bytes(0),
  4690     _hum_used_bytes(0), _hum_capacity_bytes(0),
  4691     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
  4692     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
  4693   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  4694   MemRegion g1_reserved = g1h->g1_reserved();
  4695   double now = os::elapsedTime();
  4697   // Print the header of the output.
  4698   _out->cr();
  4699   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  4700   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
  4701                  G1PPRL_SUM_ADDR_FORMAT("reserved")
  4702                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
  4703                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
  4704                  HeapRegion::GrainBytes);
  4705   _out->print_cr(G1PPRL_LINE_PREFIX);
  4706   _out->print_cr(G1PPRL_LINE_PREFIX
  4707                 G1PPRL_TYPE_H_FORMAT
  4708                 G1PPRL_ADDR_BASE_H_FORMAT
  4709                 G1PPRL_BYTE_H_FORMAT
  4710                 G1PPRL_BYTE_H_FORMAT
  4711                 G1PPRL_BYTE_H_FORMAT
  4712                 G1PPRL_DOUBLE_H_FORMAT
  4713                 G1PPRL_BYTE_H_FORMAT
  4714                 G1PPRL_BYTE_H_FORMAT,
  4715                 "type", "address-range",
  4716                 "used", "prev-live", "next-live", "gc-eff",
  4717                 "remset", "code-roots");
  4718   _out->print_cr(G1PPRL_LINE_PREFIX
  4719                 G1PPRL_TYPE_H_FORMAT
  4720                 G1PPRL_ADDR_BASE_H_FORMAT
  4721                 G1PPRL_BYTE_H_FORMAT
  4722                 G1PPRL_BYTE_H_FORMAT
  4723                 G1PPRL_BYTE_H_FORMAT
  4724                 G1PPRL_DOUBLE_H_FORMAT
  4725                 G1PPRL_BYTE_H_FORMAT
  4726                 G1PPRL_BYTE_H_FORMAT,
  4727                 "", "",
  4728                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
  4729                 "(bytes)", "(bytes)");
  4732 // It takes as a parameter a reference to one of the _hum_* fields, it
  4733 // deduces the corresponding value for a region in a humongous region
  4734 // series (either the region size, or what's left if the _hum_* field
  4735 // is < the region size), and updates the _hum_* field accordingly.
  4736 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  4737   size_t bytes = 0;
  4738   // The > 0 check is to deal with the prev and next live bytes which
  4739   // could be 0.
  4740   if (*hum_bytes > 0) {
  4741     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
  4742     *hum_bytes -= bytes;
  4744   return bytes;
  4747 // It deduces the values for a region in a humongous region series
  4748 // from the _hum_* fields and updates those accordingly. It assumes
  4749 // that that _hum_* fields have already been set up from the "starts
  4750 // humongous" region and we visit the regions in address order.
  4751 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
  4752                                                      size_t* capacity_bytes,
  4753                                                      size_t* prev_live_bytes,
  4754                                                      size_t* next_live_bytes) {
  4755   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  4756   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  4757   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  4758   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  4759   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
  4762 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  4763   const char* type = "";
  4764   HeapWord* bottom       = r->bottom();
  4765   HeapWord* end          = r->end();
  4766   size_t capacity_bytes  = r->capacity();
  4767   size_t used_bytes      = r->used();
  4768   size_t prev_live_bytes = r->live_bytes();
  4769   size_t next_live_bytes = r->next_live_bytes();
  4770   double gc_eff          = r->gc_efficiency();
  4771   size_t remset_bytes    = r->rem_set()->mem_size();
  4772   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
  4774   if (r->used() == 0) {
  4775     type = "FREE";
  4776   } else if (r->is_survivor()) {
  4777     type = "SURV";
  4778   } else if (r->is_young()) {
  4779     type = "EDEN";
  4780   } else if (r->startsHumongous()) {
  4781     type = "HUMS";
  4783     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
  4784            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
  4785            "they should have been zeroed after the last time we used them");
  4786     // Set up the _hum_* fields.
  4787     _hum_capacity_bytes  = capacity_bytes;
  4788     _hum_used_bytes      = used_bytes;
  4789     _hum_prev_live_bytes = prev_live_bytes;
  4790     _hum_next_live_bytes = next_live_bytes;
  4791     get_hum_bytes(&used_bytes, &capacity_bytes,
  4792                   &prev_live_bytes, &next_live_bytes);
  4793     end = bottom + HeapRegion::GrainWords;
  4794   } else if (r->continuesHumongous()) {
  4795     type = "HUMC";
  4796     get_hum_bytes(&used_bytes, &capacity_bytes,
  4797                   &prev_live_bytes, &next_live_bytes);
  4798     assert(end == bottom + HeapRegion::GrainWords, "invariant");
  4799   } else {
  4800     type = "OLD";
  4803   _total_used_bytes      += used_bytes;
  4804   _total_capacity_bytes  += capacity_bytes;
  4805   _total_prev_live_bytes += prev_live_bytes;
  4806   _total_next_live_bytes += next_live_bytes;
  4807   _total_remset_bytes    += remset_bytes;
  4808   _total_strong_code_roots_bytes += strong_code_roots_bytes;
  4810   // Print a line for this particular region.
  4811   _out->print_cr(G1PPRL_LINE_PREFIX
  4812                  G1PPRL_TYPE_FORMAT
  4813                  G1PPRL_ADDR_BASE_FORMAT
  4814                  G1PPRL_BYTE_FORMAT
  4815                  G1PPRL_BYTE_FORMAT
  4816                  G1PPRL_BYTE_FORMAT
  4817                  G1PPRL_DOUBLE_FORMAT
  4818                  G1PPRL_BYTE_FORMAT
  4819                  G1PPRL_BYTE_FORMAT,
  4820                  type, p2i(bottom), p2i(end),
  4821                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
  4822                  remset_bytes, strong_code_roots_bytes);
  4824   return false;
  4827 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  4828   // add static memory usages to remembered set sizes
  4829   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
  4830   // Print the footer of the output.
  4831   _out->print_cr(G1PPRL_LINE_PREFIX);
  4832   _out->print_cr(G1PPRL_LINE_PREFIX
  4833                  " SUMMARY"
  4834                  G1PPRL_SUM_MB_FORMAT("capacity")
  4835                  G1PPRL_SUM_MB_PERC_FORMAT("used")
  4836                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
  4837                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
  4838                  G1PPRL_SUM_MB_FORMAT("remset")
  4839                  G1PPRL_SUM_MB_FORMAT("code-roots"),
  4840                  bytes_to_mb(_total_capacity_bytes),
  4841                  bytes_to_mb(_total_used_bytes),
  4842                  perc(_total_used_bytes, _total_capacity_bytes),
  4843                  bytes_to_mb(_total_prev_live_bytes),
  4844                  perc(_total_prev_live_bytes, _total_capacity_bytes),
  4845                  bytes_to_mb(_total_next_live_bytes),
  4846                  perc(_total_next_live_bytes, _total_capacity_bytes),
  4847                  bytes_to_mb(_total_remset_bytes),
  4848                  bytes_to_mb(_total_strong_code_roots_bytes));
  4849   _out->cr();

mercurial