src/share/vm/memory/referenceProcessor.cpp

Thu, 21 Aug 2008 23:36:31 -0400

author
tonyp
date
Thu, 21 Aug 2008 23:36:31 -0400
changeset 791
1ee8caae33af
parent 777
37f87013dfd8
parent 631
d1605aabd0a1
child 887
00b023ae2d78
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_referenceProcessor.cpp.incl"
    28 // List of discovered references.
    29 class DiscoveredList {
    30 public:
    31   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
    32   oop head() const     {
    33      return UseCompressedOops ?  oopDesc::decode_heap_oop_not_null(_compressed_head) :
    34                                 _oop_head;
    35   }
    36   HeapWord* adr_head() {
    37     return UseCompressedOops ? (HeapWord*)&_compressed_head :
    38                                (HeapWord*)&_oop_head;
    39   }
    40   void   set_head(oop o) {
    41     if (UseCompressedOops) {
    42       // Must compress the head ptr.
    43       _compressed_head = oopDesc::encode_heap_oop_not_null(o);
    44     } else {
    45       _oop_head = o;
    46     }
    47   }
    48   bool   empty() const          { return head() == ReferenceProcessor::sentinel_ref(); }
    49   size_t length()               { return _len; }
    50   void   set_length(size_t len) { _len = len; }
    51 private:
    52   // Set value depending on UseCompressedOops. This could be a template class
    53   // but then we have to fix all the instantiations and declarations that use this class.
    54   oop       _oop_head;
    55   narrowOop _compressed_head;
    56   size_t _len;
    57 };
    59 oop  ReferenceProcessor::_sentinelRef = NULL;
    61 const int subclasses_of_ref = REF_PHANTOM - REF_OTHER;
    63 void referenceProcessor_init() {
    64   ReferenceProcessor::init_statics();
    65 }
    67 void ReferenceProcessor::init_statics() {
    68   assert(_sentinelRef == NULL, "should be initialized precisely once");
    69   EXCEPTION_MARK;
    70   _sentinelRef = instanceKlass::cast(
    71                     SystemDictionary::reference_klass())->
    72                       allocate_permanent_instance(THREAD);
    74   // Initialize the master soft ref clock.
    75   java_lang_ref_SoftReference::set_clock(os::javaTimeMillis());
    77   if (HAS_PENDING_EXCEPTION) {
    78       Handle ex(THREAD, PENDING_EXCEPTION);
    79       vm_exit_during_initialization(ex);
    80   }
    81   assert(_sentinelRef != NULL && _sentinelRef->is_oop(),
    82          "Just constructed it!");
    83   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
    84             RefDiscoveryPolicy == ReferentBasedDiscovery,
    85             "Unrecongnized RefDiscoveryPolicy");
    86 }
    88 ReferenceProcessor*
    89 ReferenceProcessor::create_ref_processor(MemRegion          span,
    90                                          bool               atomic_discovery,
    91                                          bool               mt_discovery,
    92                                          BoolObjectClosure* is_alive_non_header,
    93                                          int                parallel_gc_threads,
    94                                          bool               mt_processing,
    95                                          bool               dl_needs_barrier) {
    96   int mt_degree = 1;
    97   if (parallel_gc_threads > 1) {
    98     mt_degree = parallel_gc_threads;
    99   }
   100   ReferenceProcessor* rp =
   101     new ReferenceProcessor(span, atomic_discovery,
   102                            mt_discovery, mt_degree,
   103                            mt_processing && (parallel_gc_threads > 0),
   104                            dl_needs_barrier);
   105   if (rp == NULL) {
   106     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
   107   }
   108   rp->set_is_alive_non_header(is_alive_non_header);
   109   return rp;
   110 }
   112 ReferenceProcessor::ReferenceProcessor(MemRegion span,
   113                                        bool      atomic_discovery,
   114                                        bool      mt_discovery,
   115                                        int       mt_degree,
   116                                        bool      mt_processing,
   117                                        bool      discovered_list_needs_barrier)  :
   118   _discovering_refs(false),
   119   _enqueuing_is_done(false),
   120   _is_alive_non_header(NULL),
   121   _discovered_list_needs_barrier(discovered_list_needs_barrier),
   122   _bs(NULL),
   123   _processing_is_mt(mt_processing),
   124   _next_id(0)
   125 {
   126   _span = span;
   127   _discovery_is_atomic = atomic_discovery;
   128   _discovery_is_mt     = mt_discovery;
   129   _num_q               = mt_degree;
   130   _discoveredSoftRefs  = NEW_C_HEAP_ARRAY(DiscoveredList, _num_q * subclasses_of_ref);
   131   if (_discoveredSoftRefs == NULL) {
   132     vm_exit_during_initialization("Could not allocated RefProc Array");
   133   }
   134   _discoveredWeakRefs    = &_discoveredSoftRefs[_num_q];
   135   _discoveredFinalRefs   = &_discoveredWeakRefs[_num_q];
   136   _discoveredPhantomRefs = &_discoveredFinalRefs[_num_q];
   137   assert(sentinel_ref() != NULL, "_sentinelRef is NULL");
   138   // Initialized all entries to _sentinelRef
   139   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
   140         _discoveredSoftRefs[i].set_head(sentinel_ref());
   141     _discoveredSoftRefs[i].set_length(0);
   142   }
   143   // If we do barreirs, cache a copy of the barrier set.
   144   if (discovered_list_needs_barrier) {
   145     _bs = Universe::heap()->barrier_set();
   146   }
   147 }
   149 #ifndef PRODUCT
   150 void ReferenceProcessor::verify_no_references_recorded() {
   151   guarantee(!_discovering_refs, "Discovering refs?");
   152   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
   153     guarantee(_discoveredSoftRefs[i].empty(),
   154               "Found non-empty discovered list");
   155   }
   156 }
   157 #endif
   159 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   160   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
   161     if (UseCompressedOops) {
   162       f->do_oop((narrowOop*)_discoveredSoftRefs[i].adr_head());
   163     } else {
   164       f->do_oop((oop*)_discoveredSoftRefs[i].adr_head());
   165     }
   166   }
   167 }
   169 void ReferenceProcessor::oops_do(OopClosure* f) {
   170   f->do_oop(adr_sentinel_ref());
   171 }
   173 void ReferenceProcessor::update_soft_ref_master_clock() {
   174   // Update (advance) the soft ref master clock field. This must be done
   175   // after processing the soft ref list.
   176   jlong now = os::javaTimeMillis();
   177   jlong clock = java_lang_ref_SoftReference::clock();
   178   NOT_PRODUCT(
   179   if (now < clock) {
   180     warning("time warp: %d to %d", clock, now);
   181   }
   182   )
   183   // In product mode, protect ourselves from system time being adjusted
   184   // externally and going backward; see note in the implementation of
   185   // GenCollectedHeap::time_since_last_gc() for the right way to fix
   186   // this uniformly throughout the VM; see bug-id 4741166. XXX
   187   if (now > clock) {
   188     java_lang_ref_SoftReference::set_clock(now);
   189   }
   190   // Else leave clock stalled at its old value until time progresses
   191   // past clock value.
   192 }
   194 void ReferenceProcessor::process_discovered_references(
   195   ReferencePolicy*             policy,
   196   BoolObjectClosure*           is_alive,
   197   OopClosure*                  keep_alive,
   198   VoidClosure*                 complete_gc,
   199   AbstractRefProcTaskExecutor* task_executor) {
   200   NOT_PRODUCT(verify_ok_to_handle_reflists());
   202   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   203   // Stop treating discovered references specially.
   204   disable_discovery();
   206   bool trace_time = PrintGCDetails && PrintReferenceGC;
   207   // Soft references
   208   {
   209     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
   210     process_discovered_reflist(_discoveredSoftRefs, policy, true,
   211                                is_alive, keep_alive, complete_gc, task_executor);
   212   }
   214   update_soft_ref_master_clock();
   216   // Weak references
   217   {
   218     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
   219     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   220                                is_alive, keep_alive, complete_gc, task_executor);
   221   }
   223   // Final references
   224   {
   225     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
   226     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   227                                is_alive, keep_alive, complete_gc, task_executor);
   228   }
   230   // Phantom references
   231   {
   232     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
   233     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   234                                is_alive, keep_alive, complete_gc, task_executor);
   235   }
   237   // Weak global JNI references. It would make more sense (semantically) to
   238   // traverse these simultaneously with the regular weak references above, but
   239   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   240   // thus use JNI weak references to circumvent the phantom references and
   241   // resurrect a "post-mortem" object.
   242   {
   243     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
   244     if (task_executor != NULL) {
   245       task_executor->set_single_threaded_mode();
   246     }
   247     process_phaseJNI(is_alive, keep_alive, complete_gc);
   248   }
   249 }
   251 #ifndef PRODUCT
   252 // Calculate the number of jni handles.
   253 uint ReferenceProcessor::count_jni_refs() {
   254   class AlwaysAliveClosure: public BoolObjectClosure {
   255   public:
   256     virtual bool do_object_b(oop obj) { return true; }
   257     virtual void do_object(oop obj) { assert(false, "Don't call"); }
   258   };
   260   class CountHandleClosure: public OopClosure {
   261   private:
   262     int _count;
   263   public:
   264     CountHandleClosure(): _count(0) {}
   265     void do_oop(oop* unused)       { _count++; }
   266     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   267     int count() { return _count; }
   268   };
   269   CountHandleClosure global_handle_count;
   270   AlwaysAliveClosure always_alive;
   271   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
   272   return global_handle_count.count();
   273 }
   274 #endif
   276 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   277                                           OopClosure*        keep_alive,
   278                                           VoidClosure*       complete_gc) {
   279 #ifndef PRODUCT
   280   if (PrintGCDetails && PrintReferenceGC) {
   281     unsigned int count = count_jni_refs();
   282     gclog_or_tty->print(", %u refs", count);
   283   }
   284 #endif
   285   JNIHandles::weak_oops_do(is_alive, keep_alive);
   286   // Finally remember to keep sentinel around
   287   keep_alive->do_oop(adr_sentinel_ref());
   288   complete_gc->do_void();
   289 }
   292 template <class T>
   293 static bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   294                                           AbstractRefProcTaskExecutor* task_executor) {
   296   // Remember old value of pending references list
   297   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   298   T old_pending_list_value = *pending_list_addr;
   300   // Enqueue references that are not made active again, and
   301   // clear the decks for the next collection (cycle).
   302   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   303   // Do the oop-check on pending_list_addr missed in
   304   // enqueue_discovered_reflist. We should probably
   305   // do a raw oop_check so that future such idempotent
   306   // oop_stores relying on the oop-check side-effect
   307   // may be elided automatically and safely without
   308   // affecting correctness.
   309   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   311   // Stop treating discovered references specially.
   312   ref->disable_discovery();
   314   // Return true if new pending references were added
   315   return old_pending_list_value != *pending_list_addr;
   316 }
   318 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   319   NOT_PRODUCT(verify_ok_to_handle_reflists());
   320   if (UseCompressedOops) {
   321     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   322   } else {
   323     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   324   }
   325 }
   327 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   328                                                     HeapWord* pending_list_addr) {
   329   // Given a list of refs linked through the "discovered" field
   330   // (java.lang.ref.Reference.discovered) chain them through the
   331   // "next" field (java.lang.ref.Reference.next) and prepend
   332   // to the pending list.
   333   if (TraceReferenceGC && PrintGCDetails) {
   334     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   335                            INTPTR_FORMAT, (address)refs_list.head());
   336   }
   337   oop obj = refs_list.head();
   338   // Walk down the list, copying the discovered field into
   339   // the next field and clearing it (except for the last
   340   // non-sentinel object which is treated specially to avoid
   341   // confusion with an active reference).
   342   while (obj != sentinel_ref()) {
   343     assert(obj->is_instanceRef(), "should be reference object");
   344     oop next = java_lang_ref_Reference::discovered(obj);
   345     if (TraceReferenceGC && PrintGCDetails) {
   346       gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next " INTPTR_FORMAT,
   347                              obj, next);
   348     }
   349     assert(java_lang_ref_Reference::next(obj) == NULL,
   350            "The reference should not be enqueued");
   351     if (next == sentinel_ref()) {  // obj is last
   352       // Swap refs_list into pendling_list_addr and
   353       // set obj's next to what we read from pending_list_addr.
   354       oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   355       // Need oop_check on pending_list_addr above;
   356       // see special oop-check code at the end of
   357       // enqueue_discovered_reflists() further below.
   358       if (old == NULL) {
   359         // obj should be made to point to itself, since
   360         // pending list was empty.
   361         java_lang_ref_Reference::set_next(obj, obj);
   362       } else {
   363         java_lang_ref_Reference::set_next(obj, old);
   364       }
   365     } else {
   366       java_lang_ref_Reference::set_next(obj, next);
   367     }
   368     java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   369     obj = next;
   370   }
   371 }
   373 // Parallel enqueue task
   374 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   375 public:
   376   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   377                      DiscoveredList      discovered_refs[],
   378                      HeapWord*           pending_list_addr,
   379                      oop                 sentinel_ref,
   380                      int                 n_queues)
   381     : EnqueueTask(ref_processor, discovered_refs,
   382                   pending_list_addr, sentinel_ref, n_queues)
   383   { }
   385   virtual void work(unsigned int work_id) {
   386     assert(work_id < (unsigned int)_ref_processor.num_q(), "Index out-of-bounds");
   387     // Simplest first cut: static partitioning.
   388     int index = work_id;
   389     for (int j = 0; j < subclasses_of_ref; j++, index += _n_queues) {
   390       _ref_processor.enqueue_discovered_reflist(
   391         _refs_lists[index], _pending_list_addr);
   392       _refs_lists[index].set_head(_sentinel_ref);
   393       _refs_lists[index].set_length(0);
   394     }
   395   }
   396 };
   398 // Enqueue references that are not made active again
   399 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   400   AbstractRefProcTaskExecutor* task_executor) {
   401   if (_processing_is_mt && task_executor != NULL) {
   402     // Parallel code
   403     RefProcEnqueueTask tsk(*this, _discoveredSoftRefs,
   404                            pending_list_addr, sentinel_ref(), _num_q);
   405     task_executor->execute(tsk);
   406   } else {
   407     // Serial code: call the parent class's implementation
   408     for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
   409       enqueue_discovered_reflist(_discoveredSoftRefs[i], pending_list_addr);
   410       _discoveredSoftRefs[i].set_head(sentinel_ref());
   411       _discoveredSoftRefs[i].set_length(0);
   412     }
   413   }
   414 }
   416 // Iterator for the list of discovered references.
   417 class DiscoveredListIterator {
   418 public:
   419   inline DiscoveredListIterator(DiscoveredList&    refs_list,
   420                                 OopClosure*        keep_alive,
   421                                 BoolObjectClosure* is_alive);
   423   // End Of List.
   424   inline bool has_next() const { return _next != ReferenceProcessor::sentinel_ref(); }
   426   // Get oop to the Reference object.
   427   inline oop obj() const { return _ref; }
   429   // Get oop to the referent object.
   430   inline oop referent() const { return _referent; }
   432   // Returns true if referent is alive.
   433   inline bool is_referent_alive() const;
   435   // Loads data for the current reference.
   436   // The "allow_null_referent" argument tells us to allow for the possibility
   437   // of a NULL referent in the discovered Reference object. This typically
   438   // happens in the case of concurrent collectors that may have done the
   439   // discovery concurrently or interleaved with mutator execution.
   440   inline void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
   442   // Move to the next discovered reference.
   443   inline void next();
   445   // Remove the current reference from the list and move to the next.
   446   inline void remove();
   448   // Make the Reference object active again.
   449   inline void make_active() { java_lang_ref_Reference::set_next(_ref, NULL); }
   451   // Make the referent alive.
   452   inline void make_referent_alive() {
   453     if (UseCompressedOops) {
   454       _keep_alive->do_oop((narrowOop*)_referent_addr);
   455     } else {
   456       _keep_alive->do_oop((oop*)_referent_addr);
   457     }
   458   }
   460   // Update the discovered field.
   461   inline void update_discovered() {
   462     // First _prev_next ref actually points into DiscoveredList (gross).
   463     if (UseCompressedOops) {
   464       _keep_alive->do_oop((narrowOop*)_prev_next);
   465     } else {
   466       _keep_alive->do_oop((oop*)_prev_next);
   467     }
   468   }
   470   // NULL out referent pointer.
   471   inline void clear_referent() { oop_store_raw(_referent_addr, NULL); }
   473   // Statistics
   474   NOT_PRODUCT(
   475   inline size_t processed() const { return _processed; }
   476   inline size_t removed() const   { return _removed; }
   477   )
   479 private:
   480   inline void move_to_next();
   482 private:
   483   DiscoveredList&    _refs_list;
   484   HeapWord*          _prev_next;
   485   oop                _ref;
   486   HeapWord*          _discovered_addr;
   487   oop                _next;
   488   HeapWord*          _referent_addr;
   489   oop                _referent;
   490   OopClosure*        _keep_alive;
   491   BoolObjectClosure* _is_alive;
   492   DEBUG_ONLY(
   493   oop                _first_seen; // cyclic linked list check
   494   )
   495   NOT_PRODUCT(
   496   size_t             _processed;
   497   size_t             _removed;
   498   )
   499 };
   501 inline DiscoveredListIterator::DiscoveredListIterator(DiscoveredList&    refs_list,
   502                                                       OopClosure*        keep_alive,
   503                                                       BoolObjectClosure* is_alive)
   504   : _refs_list(refs_list),
   505     _prev_next(refs_list.adr_head()),
   506     _ref(refs_list.head()),
   507 #ifdef ASSERT
   508     _first_seen(refs_list.head()),
   509 #endif
   510 #ifndef PRODUCT
   511     _processed(0),
   512     _removed(0),
   513 #endif
   514     _next(refs_list.head()),
   515     _keep_alive(keep_alive),
   516     _is_alive(is_alive)
   517 { }
   519 inline bool DiscoveredListIterator::is_referent_alive() const {
   520   return _is_alive->do_object_b(_referent);
   521 }
   523 inline void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   524   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   525   oop discovered = java_lang_ref_Reference::discovered(_ref);
   526   assert(_discovered_addr && discovered->is_oop_or_null(),
   527          "discovered field is bad");
   528   _next = discovered;
   529   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   530   _referent = java_lang_ref_Reference::referent(_ref);
   531   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   532          "Wrong oop found in java.lang.Reference object");
   533   assert(allow_null_referent ?
   534              _referent->is_oop_or_null()
   535            : _referent->is_oop(),
   536          "bad referent");
   537 }
   539 inline void DiscoveredListIterator::next() {
   540   _prev_next = _discovered_addr;
   541   move_to_next();
   542 }
   544 inline void DiscoveredListIterator::remove() {
   545   assert(_ref->is_oop(), "Dropping a bad reference");
   546   oop_store_raw(_discovered_addr, NULL);
   547   // First _prev_next ref actually points into DiscoveredList (gross).
   548   if (UseCompressedOops) {
   549     // Remove Reference object from list.
   550     oopDesc::encode_store_heap_oop_not_null((narrowOop*)_prev_next, _next);
   551   } else {
   552     // Remove Reference object from list.
   553     oopDesc::store_heap_oop((oop*)_prev_next, _next);
   554   }
   555   NOT_PRODUCT(_removed++);
   556   move_to_next();
   557 }
   559 inline void DiscoveredListIterator::move_to_next() {
   560   _ref = _next;
   561   assert(_ref != _first_seen, "cyclic ref_list found");
   562   NOT_PRODUCT(_processed++);
   563 }
   565 // NOTE: process_phase*() are largely similar, and at a high level
   566 // merely iterate over the extant list applying a predicate to
   567 // each of its elements and possibly removing that element from the
   568 // list and applying some further closures to that element.
   569 // We should consider the possibility of replacing these
   570 // process_phase*() methods by abstracting them into
   571 // a single general iterator invocation that receives appropriate
   572 // closures that accomplish this work.
   574 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   575 // referents are not alive, but that should be kept alive for policy reasons.
   576 // Keep alive the transitive closure of all such referents.
   577 void
   578 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   579                                    ReferencePolicy*   policy,
   580                                    BoolObjectClosure* is_alive,
   581                                    OopClosure*        keep_alive,
   582                                    VoidClosure*       complete_gc) {
   583   assert(policy != NULL, "Must have a non-NULL policy");
   584   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   585   // Decide which softly reachable refs should be kept alive.
   586   while (iter.has_next()) {
   587     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   588     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   589     if (referent_is_dead && !policy->should_clear_reference(iter.obj())) {
   590       if (TraceReferenceGC) {
   591         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   592                                iter.obj(), iter.obj()->blueprint()->internal_name());
   593       }
   594       // Make the Reference object active again
   595       iter.make_active();
   596       // keep the referent around
   597       iter.make_referent_alive();
   598       // Remove Reference object from list
   599       iter.remove();
   600     } else {
   601       iter.next();
   602     }
   603   }
   604   // Close the reachable set
   605   complete_gc->do_void();
   606   NOT_PRODUCT(
   607     if (PrintGCDetails && TraceReferenceGC) {
   608       gclog_or_tty->print(" Dropped %d dead Refs out of %d "
   609         "discovered Refs by policy ", iter.removed(), iter.processed());
   610     }
   611   )
   612 }
   614 // Traverse the list and remove any Refs that are not active, or
   615 // whose referents are either alive or NULL.
   616 void
   617 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   618                              BoolObjectClosure* is_alive,
   619                              OopClosure*        keep_alive) {
   620   assert(discovery_is_atomic(), "Error");
   621   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   622   while (iter.has_next()) {
   623     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   624     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   625     assert(next == NULL, "Should not discover inactive Reference");
   626     if (iter.is_referent_alive()) {
   627       if (TraceReferenceGC) {
   628         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   629                                iter.obj(), iter.obj()->blueprint()->internal_name());
   630       }
   631       // The referent is reachable after all.
   632       // Update the referent pointer as necessary: Note that this
   633       // should not entail any recursive marking because the
   634       // referent must already have been traversed.
   635       iter.make_referent_alive();
   636       // Remove Reference object from list
   637       iter.remove();
   638     } else {
   639       iter.next();
   640     }
   641   }
   642   NOT_PRODUCT(
   643     if (PrintGCDetails && TraceReferenceGC) {
   644       gclog_or_tty->print(" Dropped %d active Refs out of %d "
   645         "Refs in discovered list ", iter.removed(), iter.processed());
   646     }
   647   )
   648 }
   650 void
   651 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   652                                                   BoolObjectClosure* is_alive,
   653                                                   OopClosure*        keep_alive,
   654                                                   VoidClosure*       complete_gc) {
   655   assert(!discovery_is_atomic(), "Error");
   656   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   657   while (iter.has_next()) {
   658     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   659     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   660     oop next = java_lang_ref_Reference::next(iter.obj());
   661     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   662          next != NULL)) {
   663       assert(next->is_oop_or_null(), "bad next field");
   664       // Remove Reference object from list
   665       iter.remove();
   666       // Trace the cohorts
   667       iter.make_referent_alive();
   668       if (UseCompressedOops) {
   669         keep_alive->do_oop((narrowOop*)next_addr);
   670       } else {
   671         keep_alive->do_oop((oop*)next_addr);
   672       }
   673     } else {
   674       iter.next();
   675     }
   676   }
   677   // Now close the newly reachable set
   678   complete_gc->do_void();
   679   NOT_PRODUCT(
   680     if (PrintGCDetails && TraceReferenceGC) {
   681       gclog_or_tty->print(" Dropped %d active Refs out of %d "
   682         "Refs in discovered list ", iter.removed(), iter.processed());
   683     }
   684   )
   685 }
   687 // Traverse the list and process the referents, by either
   688 // clearing them or keeping them (and their reachable
   689 // closure) alive.
   690 void
   691 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   692                                    bool               clear_referent,
   693                                    BoolObjectClosure* is_alive,
   694                                    OopClosure*        keep_alive,
   695                                    VoidClosure*       complete_gc) {
   696   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   697   while (iter.has_next()) {
   698     iter.update_discovered();
   699     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   700     if (clear_referent) {
   701       // NULL out referent pointer
   702       iter.clear_referent();
   703     } else {
   704       // keep the referent around
   705       iter.make_referent_alive();
   706     }
   707     if (TraceReferenceGC) {
   708       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   709                              clear_referent ? "cleared " : "",
   710                              iter.obj(), iter.obj()->blueprint()->internal_name());
   711     }
   712     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   713     // If discovery is concurrent, we may have objects with null referents,
   714     // being those that were concurrently cleared after they were discovered
   715     // (and not subsequently precleaned).
   716     assert(   (discovery_is_atomic() && iter.referent()->is_oop())
   717            || (!discovery_is_atomic() && iter.referent()->is_oop_or_null(UseConcMarkSweepGC)),
   718            "Adding a bad referent");
   719     iter.next();
   720   }
   721   // Remember to keep sentinel pointer around
   722   iter.update_discovered();
   723   // Close the reachable set
   724   complete_gc->do_void();
   725 }
   727 void
   728 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   729   oop obj = refs_list.head();
   730   while (obj != sentinel_ref()) {
   731     oop discovered = java_lang_ref_Reference::discovered(obj);
   732     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   733     obj = discovered;
   734   }
   735   refs_list.set_head(sentinel_ref());
   736   refs_list.set_length(0);
   737 }
   739 void ReferenceProcessor::abandon_partial_discovery() {
   740   // loop over the lists
   741   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
   742     if (TraceReferenceGC && PrintGCDetails && ((i % _num_q) == 0)) {
   743       gclog_or_tty->print_cr(
   744         "\nAbandoning %s discovered list",
   745         list_name(i));
   746     }
   747     abandon_partial_discovered_list(_discoveredSoftRefs[i]);
   748   }
   749 }
   751 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   752 public:
   753   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   754                     DiscoveredList      refs_lists[],
   755                     ReferencePolicy*    policy,
   756                     bool                marks_oops_alive)
   757     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   758       _policy(policy)
   759   { }
   760   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   761                     OopClosure& keep_alive,
   762                     VoidClosure& complete_gc)
   763   {
   764     _ref_processor.process_phase1(_refs_lists[i], _policy,
   765                                   &is_alive, &keep_alive, &complete_gc);
   766   }
   767 private:
   768   ReferencePolicy* _policy;
   769 };
   771 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   772 public:
   773   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   774                     DiscoveredList      refs_lists[],
   775                     bool                marks_oops_alive)
   776     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   777   { }
   778   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   779                     OopClosure& keep_alive,
   780                     VoidClosure& complete_gc)
   781   {
   782     _ref_processor.process_phase2(_refs_lists[i],
   783                                   &is_alive, &keep_alive, &complete_gc);
   784   }
   785 };
   787 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   788 public:
   789   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   790                     DiscoveredList      refs_lists[],
   791                     bool                clear_referent,
   792                     bool                marks_oops_alive)
   793     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   794       _clear_referent(clear_referent)
   795   { }
   796   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   797                     OopClosure& keep_alive,
   798                     VoidClosure& complete_gc)
   799   {
   800     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   801                                   &is_alive, &keep_alive, &complete_gc);
   802   }
   803 private:
   804   bool _clear_referent;
   805 };
   807 // Balances reference queues.
   808 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   809 {
   810   // calculate total length
   811   size_t total_refs = 0;
   812   for (int i = 0; i < _num_q; ++i) {
   813     total_refs += ref_lists[i].length();
   814   }
   815   size_t avg_refs = total_refs / _num_q + 1;
   816   int to_idx = 0;
   817   for (int from_idx = 0; from_idx < _num_q; from_idx++) {
   818     while (ref_lists[from_idx].length() > avg_refs) {
   819       assert(to_idx < _num_q, "Sanity Check!");
   820       if (ref_lists[to_idx].length() < avg_refs) {
   821         // move superfluous refs
   822         size_t refs_to_move =
   823           MIN2(ref_lists[from_idx].length() - avg_refs,
   824                avg_refs - ref_lists[to_idx].length());
   825         oop move_head = ref_lists[from_idx].head();
   826         oop move_tail = move_head;
   827         oop new_head  = move_head;
   828         // find an element to split the list on
   829         for (size_t j = 0; j < refs_to_move; ++j) {
   830           move_tail = new_head;
   831           new_head = java_lang_ref_Reference::discovered(new_head);
   832         }
   833         java_lang_ref_Reference::set_discovered(move_tail, ref_lists[to_idx].head());
   834         ref_lists[to_idx].set_head(move_head);
   835         ref_lists[to_idx].set_length(ref_lists[to_idx].length() + refs_to_move);
   836         ref_lists[from_idx].set_head(new_head);
   837         ref_lists[from_idx].set_length(ref_lists[from_idx].length() - refs_to_move);
   838       } else {
   839         ++to_idx;
   840       }
   841     }
   842   }
   843 }
   845 void
   846 ReferenceProcessor::process_discovered_reflist(
   847   DiscoveredList               refs_lists[],
   848   ReferencePolicy*             policy,
   849   bool                         clear_referent,
   850   BoolObjectClosure*           is_alive,
   851   OopClosure*                  keep_alive,
   852   VoidClosure*                 complete_gc,
   853   AbstractRefProcTaskExecutor* task_executor)
   854 {
   855   bool mt = task_executor != NULL && _processing_is_mt;
   856   if (mt && ParallelRefProcBalancingEnabled) {
   857     balance_queues(refs_lists);
   858   }
   859   if (PrintReferenceGC && PrintGCDetails) {
   860     size_t total = 0;
   861     for (int i = 0; i < _num_q; ++i) {
   862       total += refs_lists[i].length();
   863     }
   864     gclog_or_tty->print(", %u refs", total);
   865   }
   867   // Phase 1 (soft refs only):
   868   // . Traverse the list and remove any SoftReferences whose
   869   //   referents are not alive, but that should be kept alive for
   870   //   policy reasons. Keep alive the transitive closure of all
   871   //   such referents.
   872   if (policy != NULL) {
   873     if (mt) {
   874       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   875       task_executor->execute(phase1);
   876     } else {
   877       for (int i = 0; i < _num_q; i++) {
   878         process_phase1(refs_lists[i], policy,
   879                        is_alive, keep_alive, complete_gc);
   880       }
   881     }
   882   } else { // policy == NULL
   883     assert(refs_lists != _discoveredSoftRefs,
   884            "Policy must be specified for soft references.");
   885   }
   887   // Phase 2:
   888   // . Traverse the list and remove any refs whose referents are alive.
   889   if (mt) {
   890     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   891     task_executor->execute(phase2);
   892   } else {
   893     for (int i = 0; i < _num_q; i++) {
   894       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   895     }
   896   }
   898   // Phase 3:
   899   // . Traverse the list and process referents as appropriate.
   900   if (mt) {
   901     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   902     task_executor->execute(phase3);
   903   } else {
   904     for (int i = 0; i < _num_q; i++) {
   905       process_phase3(refs_lists[i], clear_referent,
   906                      is_alive, keep_alive, complete_gc);
   907     }
   908   }
   909 }
   911 void ReferenceProcessor::clean_up_discovered_references() {
   912   // loop over the lists
   913   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
   914     if (TraceReferenceGC && PrintGCDetails && ((i % _num_q) == 0)) {
   915       gclog_or_tty->print_cr(
   916         "\nScrubbing %s discovered list of Null referents",
   917         list_name(i));
   918     }
   919     clean_up_discovered_reflist(_discoveredSoftRefs[i]);
   920   }
   921 }
   923 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
   924   assert(!discovery_is_atomic(), "Else why call this method?");
   925   DiscoveredListIterator iter(refs_list, NULL, NULL);
   926   size_t length = refs_list.length();
   927   while (iter.has_next()) {
   928     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   929     oop next = java_lang_ref_Reference::next(iter.obj());
   930     assert(next->is_oop_or_null(), "bad next field");
   931     // If referent has been cleared or Reference is not active,
   932     // drop it.
   933     if (iter.referent() == NULL || next != NULL) {
   934       debug_only(
   935         if (PrintGCDetails && TraceReferenceGC) {
   936           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
   937             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
   938             " and referent: " INTPTR_FORMAT,
   939             iter.obj(), next, iter.referent());
   940         }
   941       )
   942       // Remove Reference object from list
   943       iter.remove();
   944       --length;
   945     } else {
   946       iter.next();
   947     }
   948   }
   949   refs_list.set_length(length);
   950   NOT_PRODUCT(
   951     if (PrintGCDetails && TraceReferenceGC) {
   952       gclog_or_tty->print(
   953         " Removed %d Refs with NULL referents out of %d discovered Refs",
   954         iter.removed(), iter.processed());
   955     }
   956   )
   957 }
   959 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
   960   int id = 0;
   961   // Determine the queue index to use for this object.
   962   if (_discovery_is_mt) {
   963     // During a multi-threaded discovery phase,
   964     // each thread saves to its "own" list.
   965     Thread* thr = Thread::current();
   966     assert(thr->is_GC_task_thread(),
   967            "Dubious cast from Thread* to WorkerThread*?");
   968     id = ((WorkerThread*)thr)->id();
   969   } else {
   970     // single-threaded discovery, we save in round-robin
   971     // fashion to each of the lists.
   972     if (_processing_is_mt) {
   973       id = next_id();
   974     }
   975   }
   976   assert(0 <= id && id < _num_q, "Id is out-of-bounds (call Freud?)");
   978   // Get the discovered queue to which we will add
   979   DiscoveredList* list = NULL;
   980   switch (rt) {
   981     case REF_OTHER:
   982       // Unknown reference type, no special treatment
   983       break;
   984     case REF_SOFT:
   985       list = &_discoveredSoftRefs[id];
   986       break;
   987     case REF_WEAK:
   988       list = &_discoveredWeakRefs[id];
   989       break;
   990     case REF_FINAL:
   991       list = &_discoveredFinalRefs[id];
   992       break;
   993     case REF_PHANTOM:
   994       list = &_discoveredPhantomRefs[id];
   995       break;
   996     case REF_NONE:
   997       // we should not reach here if we are an instanceRefKlass
   998     default:
   999       ShouldNotReachHere();
  1001   return list;
  1004 inline void
  1005 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1006                                               oop             obj,
  1007                                               HeapWord*       discovered_addr) {
  1008   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1009   // First we must make sure this object is only enqueued once. CAS in a non null
  1010   // discovered_addr.
  1011   oop current_head = refs_list.head();
  1013   // Note: In the case of G1, this pre-barrier is strictly
  1014   // not necessary because the only case we are interested in
  1015   // here is when *discovered_addr is NULL, so this will expand to
  1016   // nothing. As a result, I am just manually eliding this out for G1.
  1017   if (_discovered_list_needs_barrier && !UseG1GC) {
  1018     _bs->write_ref_field_pre((void*)discovered_addr, current_head); guarantee(false, "Needs to be fixed: YSR");
  1020   oop retest = oopDesc::atomic_compare_exchange_oop(current_head, discovered_addr,
  1021                                                     NULL);
  1022   if (retest == NULL) {
  1023     // This thread just won the right to enqueue the object.
  1024     // We have separate lists for enqueueing so no synchronization
  1025     // is necessary.
  1026     refs_list.set_head(obj);
  1027     refs_list.set_length(refs_list.length() + 1);
  1028     if (_discovered_list_needs_barrier) {
  1029       _bs->write_ref_field((void*)discovered_addr, current_head); guarantee(false, "Needs to be fixed: YSR");
  1032   } else {
  1033     // If retest was non NULL, another thread beat us to it:
  1034     // The reference has already been discovered...
  1035     if (TraceReferenceGC) {
  1036       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
  1037                              obj, obj->blueprint()->internal_name());
  1042 // We mention two of several possible choices here:
  1043 // #0: if the reference object is not in the "originating generation"
  1044 //     (or part of the heap being collected, indicated by our "span"
  1045 //     we don't treat it specially (i.e. we scan it as we would
  1046 //     a normal oop, treating its references as strong references).
  1047 //     This means that references can't be enqueued unless their
  1048 //     referent is also in the same span. This is the simplest,
  1049 //     most "local" and most conservative approach, albeit one
  1050 //     that may cause weak references to be enqueued least promptly.
  1051 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1052 // #1: the reference object may be in any generation (span), but if
  1053 //     the referent is in the generation (span) being currently collected
  1054 //     then we can discover the reference object, provided
  1055 //     the object has not already been discovered by
  1056 //     a different concurrently running collector (as may be the
  1057 //     case, for instance, if the reference object is in CMS and
  1058 //     the referent in DefNewGeneration), and provided the processing
  1059 //     of this reference object by the current collector will
  1060 //     appear atomic to every other collector in the system.
  1061 //     (Thus, for instance, a concurrent collector may not
  1062 //     discover references in other generations even if the
  1063 //     referent is in its own generation). This policy may,
  1064 //     in certain cases, enqueue references somewhat sooner than
  1065 //     might Policy #0 above, but at marginally increased cost
  1066 //     and complexity in processing these references.
  1067 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1068 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1069   // We enqueue references only if we are discovering refs
  1070   // (rather than processing discovered refs).
  1071   if (!_discovering_refs || !RegisterReferences) {
  1072     return false;
  1074   // We only enqueue active references.
  1075   oop next = java_lang_ref_Reference::next(obj);
  1076   if (next != NULL) {
  1077     return false;
  1080   HeapWord* obj_addr = (HeapWord*)obj;
  1081   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1082       !_span.contains(obj_addr)) {
  1083     // Reference is not in the originating generation;
  1084     // don't treat it specially (i.e. we want to scan it as a normal
  1085     // object with strong references).
  1086     return false;
  1089   // We only enqueue references whose referents are not (yet) strongly
  1090   // reachable.
  1091   if (is_alive_non_header() != NULL) {
  1092     oop referent = java_lang_ref_Reference::referent(obj);
  1093     // We'd like to assert the following:
  1094     // assert(referent != NULL, "Refs with null referents already filtered");
  1095     // However, since this code may be executed concurrently with
  1096     // mutators, which can clear() the referent, it is not
  1097     // guaranteed that the referent is non-NULL.
  1098     if (is_alive_non_header()->do_object_b(referent)) {
  1099       return false;  // referent is reachable
  1103   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1104   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1105   assert(discovered->is_oop_or_null(), "bad discovered field");
  1106   if (discovered != NULL) {
  1107     // The reference has already been discovered...
  1108     if (TraceReferenceGC) {
  1109       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
  1110                              obj, obj->blueprint()->internal_name());
  1112     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1113       // assumes that an object is not processed twice;
  1114       // if it's been already discovered it must be on another
  1115       // generation's discovered list; so we won't discover it.
  1116       return false;
  1117     } else {
  1118       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1119              "Unrecognized policy");
  1120       // Check assumption that an object is not potentially
  1121       // discovered twice except by concurrent collectors that potentially
  1122       // trace the same Reference object twice.
  1123       assert(UseConcMarkSweepGC,
  1124              "Only possible with an incremental-update concurrent collector");
  1125       return true;
  1129   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1130     oop referent = java_lang_ref_Reference::referent(obj);
  1131     assert(referent->is_oop(), "bad referent");
  1132     // enqueue if and only if either:
  1133     // reference is in our span or
  1134     // we are an atomic collector and referent is in our span
  1135     if (_span.contains(obj_addr) ||
  1136         (discovery_is_atomic() && _span.contains(referent))) {
  1137       // should_enqueue = true;
  1138     } else {
  1139       return false;
  1141   } else {
  1142     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1143            _span.contains(obj_addr), "code inconsistency");
  1146   // Get the right type of discovered queue head.
  1147   DiscoveredList* list = get_discovered_list(rt);
  1148   if (list == NULL) {
  1149     return false;   // nothing special needs to be done
  1152   if (_discovery_is_mt) {
  1153     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1154   } else {
  1155     // If "_discovered_list_needs_barrier", we do write barriers when
  1156     // updating the discovered reference list.  Otherwise, we do a raw store
  1157     // here: the field will be visited later when processing the discovered
  1158     // references.
  1159     oop current_head = list->head();
  1160     // As in the case further above, since we are over-writing a NULL
  1161     // pre-value, we can safely elide the pre-barrier here for the case of G1.
  1162     assert(discovered == NULL, "control point invariant");
  1163     if (_discovered_list_needs_barrier && !UseG1GC) { // safe to elide for G1
  1164       _bs->write_ref_field_pre((oop*)discovered_addr, current_head);
  1166     oop_store_raw(discovered_addr, current_head);
  1167     if (_discovered_list_needs_barrier) {
  1168       _bs->write_ref_field((oop*)discovered_addr, current_head);
  1170     list->set_head(obj);
  1171     list->set_length(list->length() + 1);
  1174   // In the MT discovery case, it is currently possible to see
  1175   // the following message multiple times if several threads
  1176   // discover a reference about the same time. Only one will
  1177   // however have actually added it to the disocvered queue.
  1178   // One could let add_to_discovered_list_mt() return an
  1179   // indication for success in queueing (by 1 thread) or
  1180   // failure (by all other threads), but I decided the extra
  1181   // code was not worth the effort for something that is
  1182   // only used for debugging support.
  1183   if (TraceReferenceGC) {
  1184     oop referent = java_lang_ref_Reference::referent(obj);
  1185     if (PrintGCDetails) {
  1186       gclog_or_tty->print_cr("Enqueued reference (" INTPTR_FORMAT ": %s)",
  1187                              obj, obj->blueprint()->internal_name());
  1189     assert(referent->is_oop(), "Enqueued a bad referent");
  1191   assert(obj->is_oop(), "Enqueued a bad reference");
  1192   return true;
  1195 // Preclean the discovered references by removing those
  1196 // whose referents are alive, and by marking from those that
  1197 // are not active. These lists can be handled here
  1198 // in any order and, indeed, concurrently.
  1199 void ReferenceProcessor::preclean_discovered_references(
  1200   BoolObjectClosure* is_alive,
  1201   OopClosure* keep_alive,
  1202   VoidClosure* complete_gc,
  1203   YieldClosure* yield) {
  1205   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1207   // Soft references
  1209     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1210               false, gclog_or_tty);
  1211     for (int i = 0; i < _num_q; i++) {
  1212       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1213                                   keep_alive, complete_gc, yield);
  1216   if (yield->should_return()) {
  1217     return;
  1220   // Weak references
  1222     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1223               false, gclog_or_tty);
  1224     for (int i = 0; i < _num_q; i++) {
  1225       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1226                                   keep_alive, complete_gc, yield);
  1229   if (yield->should_return()) {
  1230     return;
  1233   // Final references
  1235     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1236               false, gclog_or_tty);
  1237     for (int i = 0; i < _num_q; i++) {
  1238       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1239                                   keep_alive, complete_gc, yield);
  1242   if (yield->should_return()) {
  1243     return;
  1246   // Phantom references
  1248     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1249               false, gclog_or_tty);
  1250     for (int i = 0; i < _num_q; i++) {
  1251       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1252                                   keep_alive, complete_gc, yield);
  1257 // Walk the given discovered ref list, and remove all reference objects
  1258 // whose referents are still alive, whose referents are NULL or which
  1259 // are not active (have a non-NULL next field). NOTE: For this to work
  1260 // correctly, refs discovery can not be happening concurrently with this
  1261 // step.
  1262 void
  1263 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1264                                                 BoolObjectClosure* is_alive,
  1265                                                 OopClosure*        keep_alive,
  1266                                                 VoidClosure*       complete_gc,
  1267                                                 YieldClosure*      yield) {
  1268   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1269   size_t length = refs_list.length();
  1270   while (iter.has_next()) {
  1271     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1272     oop obj = iter.obj();
  1273     oop next = java_lang_ref_Reference::next(obj);
  1274     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1275         next != NULL) {
  1276       // The referent has been cleared, or is alive, or the Reference is not
  1277       // active; we need to trace and mark its cohort.
  1278       if (TraceReferenceGC) {
  1279         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1280                                iter.obj(), iter.obj()->blueprint()->internal_name());
  1282       // Remove Reference object from list
  1283       iter.remove();
  1284       --length;
  1285       // Keep alive its cohort.
  1286       iter.make_referent_alive();
  1287       if (UseCompressedOops) {
  1288         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1289         keep_alive->do_oop(next_addr);
  1290       } else {
  1291         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1292         keep_alive->do_oop(next_addr);
  1294     } else {
  1295       iter.next();
  1298   refs_list.set_length(length);
  1300   // Close the reachable set
  1301   complete_gc->do_void();
  1303   NOT_PRODUCT(
  1304     if (PrintGCDetails && PrintReferenceGC) {
  1305       gclog_or_tty->print(" Dropped %d Refs out of %d "
  1306         "Refs in discovered list ", iter.removed(), iter.processed());
  1311 const char* ReferenceProcessor::list_name(int i) {
  1312    assert(i >= 0 && i <= _num_q * subclasses_of_ref, "Out of bounds index");
  1313    int j = i / _num_q;
  1314    switch (j) {
  1315      case 0: return "SoftRef";
  1316      case 1: return "WeakRef";
  1317      case 2: return "FinalRef";
  1318      case 3: return "PhantomRef";
  1320    ShouldNotReachHere();
  1321    return NULL;
  1324 #ifndef PRODUCT
  1325 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1326   // empty for now
  1328 #endif
  1330 void ReferenceProcessor::verify() {
  1331   guarantee(sentinel_ref() != NULL && sentinel_ref()->is_oop(), "Lost _sentinelRef");
  1334 #ifndef PRODUCT
  1335 void ReferenceProcessor::clear_discovered_references() {
  1336   guarantee(!_discovering_refs, "Discovering refs?");
  1337   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
  1338     oop obj = _discoveredSoftRefs[i].head();
  1339     while (obj != sentinel_ref()) {
  1340       oop next = java_lang_ref_Reference::discovered(obj);
  1341       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
  1342       obj = next;
  1344     _discoveredSoftRefs[i].set_head(sentinel_ref());
  1345     _discoveredSoftRefs[i].set_length(0);
  1348 #endif // PRODUCT

mercurial