src/share/vm/gc_interface/collectedHeap.hpp

Thu, 21 Aug 2008 23:36:31 -0400

author
tonyp
date
Thu, 21 Aug 2008 23:36:31 -0400
changeset 791
1ee8caae33af
parent 777
37f87013dfd8
parent 631
d1605aabd0a1
child 916
7d7a7c599c17
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
    26 // is an abstract class: there may be many different kinds of heaps.  This
    27 // class defines the functions that a heap must implement, and contains
    28 // infrastructure common to all heaps.
    30 class BarrierSet;
    31 class ThreadClosure;
    32 class AdaptiveSizePolicy;
    33 class Thread;
    35 //
    36 // CollectedHeap
    37 //   SharedHeap
    38 //     GenCollectedHeap
    39 //     G1CollectedHeap
    40 //   ParallelScavengeHeap
    41 //
    42 class CollectedHeap : public CHeapObj {
    43   friend class VMStructs;
    44   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
    46 #ifdef ASSERT
    47   static int       _fire_out_of_memory_count;
    48 #endif
    50  protected:
    51   MemRegion _reserved;
    52   BarrierSet* _barrier_set;
    53   bool _is_gc_active;
    54   unsigned int _total_collections;          // ... started
    55   unsigned int _total_full_collections;     // ... started
    56   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
    57   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
    59   // Reason for current garbage collection.  Should be set to
    60   // a value reflecting no collection between collections.
    61   GCCause::Cause _gc_cause;
    62   GCCause::Cause _gc_lastcause;
    63   PerfStringVariable* _perf_gc_cause;
    64   PerfStringVariable* _perf_gc_lastcause;
    66   // Constructor
    67   CollectedHeap();
    69   // Create a new tlab
    70   virtual HeapWord* allocate_new_tlab(size_t size);
    72   // Fix up tlabs to make the heap well-formed again,
    73   // optionally retiring the tlabs.
    74   virtual void fill_all_tlabs(bool retire);
    76   // Accumulate statistics on all tlabs.
    77   virtual void accumulate_statistics_all_tlabs();
    79   // Reinitialize tlabs before resuming mutators.
    80   virtual void resize_all_tlabs();
    82   debug_only(static void check_for_valid_allocation_state();)
    84  protected:
    85   // Allocate from the current thread's TLAB, with broken-out slow path.
    86   inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
    87   static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
    89   // Allocate an uninitialized block of the given size, or returns NULL if
    90   // this is impossible.
    91   inline static HeapWord* common_mem_allocate_noinit(size_t size, bool is_noref, TRAPS);
    93   // Like allocate_init, but the block returned by a successful allocation
    94   // is guaranteed initialized to zeros.
    95   inline static HeapWord* common_mem_allocate_init(size_t size, bool is_noref, TRAPS);
    97   // Same as common_mem version, except memory is allocated in the permanent area
    98   // If there is no permanent area, revert to common_mem_allocate_noinit
    99   inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
   101   // Same as common_mem version, except memory is allocated in the permanent area
   102   // If there is no permanent area, revert to common_mem_allocate_init
   103   inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
   105   // Helper functions for (VM) allocation.
   106   inline static void post_allocation_setup_common(KlassHandle klass,
   107                                                   HeapWord* obj, size_t size);
   108   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
   109                                                             HeapWord* objPtr,
   110                                                             size_t size);
   112   inline static void post_allocation_setup_obj(KlassHandle klass,
   113                                                HeapWord* obj, size_t size);
   115   inline static void post_allocation_setup_array(KlassHandle klass,
   116                                                  HeapWord* obj, size_t size,
   117                                                  int length);
   119   // Clears an allocated object.
   120   inline static void init_obj(HeapWord* obj, size_t size);
   122   // Verification functions
   123   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
   124     PRODUCT_RETURN;
   125   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
   126     PRODUCT_RETURN;
   128  public:
   129   enum Name {
   130     Abstract,
   131     SharedHeap,
   132     GenCollectedHeap,
   133     ParallelScavengeHeap,
   134     G1CollectedHeap
   135   };
   137   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
   139   /**
   140    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
   141    * and JNI_OK on success.
   142    */
   143   virtual jint initialize() = 0;
   145   // In many heaps, there will be a need to perform some initialization activities
   146   // after the Universe is fully formed, but before general heap allocation is allowed.
   147   // This is the correct place to place such initialization methods.
   148   virtual void post_initialize() = 0;
   150   MemRegion reserved_region() const { return _reserved; }
   151   address base() const { return (address)reserved_region().start(); }
   153   // Future cleanup here. The following functions should specify bytes or
   154   // heapwords as part of their signature.
   155   virtual size_t capacity() const = 0;
   156   virtual size_t used() const = 0;
   158   // Return "true" if the part of the heap that allocates Java
   159   // objects has reached the maximal committed limit that it can
   160   // reach, without a garbage collection.
   161   virtual bool is_maximal_no_gc() const = 0;
   163   virtual size_t permanent_capacity() const = 0;
   164   virtual size_t permanent_used() const = 0;
   166   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
   167   // memory that the vm could make available for storing 'normal' java objects.
   168   // This is based on the reserved address space, but should not include space
   169   // that the vm uses internally for bookkeeping or temporary storage (e.g.,
   170   // perm gen space or, in the case of the young gen, one of the survivor
   171   // spaces).
   172   virtual size_t max_capacity() const = 0;
   174   // Returns "TRUE" if "p" points into the reserved area of the heap.
   175   bool is_in_reserved(const void* p) const {
   176     return _reserved.contains(p);
   177   }
   179   bool is_in_reserved_or_null(const void* p) const {
   180     return p == NULL || is_in_reserved(p);
   181   }
   183   // Returns "TRUE" if "p" points to the head of an allocated object in the
   184   // heap. Since this method can be expensive in general, we restrict its
   185   // use to assertion checking only.
   186   virtual bool is_in(const void* p) const = 0;
   188   bool is_in_or_null(const void* p) const {
   189     return p == NULL || is_in(p);
   190   }
   192   // Let's define some terms: a "closed" subset of a heap is one that
   193   //
   194   // 1) contains all currently-allocated objects, and
   195   //
   196   // 2) is closed under reference: no object in the closed subset
   197   //    references one outside the closed subset.
   198   //
   199   // Membership in a heap's closed subset is useful for assertions.
   200   // Clearly, the entire heap is a closed subset, so the default
   201   // implementation is to use "is_in_reserved".  But this may not be too
   202   // liberal to perform useful checking.  Also, the "is_in" predicate
   203   // defines a closed subset, but may be too expensive, since "is_in"
   204   // verifies that its argument points to an object head.  The
   205   // "closed_subset" method allows a heap to define an intermediate
   206   // predicate, allowing more precise checking than "is_in_reserved" at
   207   // lower cost than "is_in."
   209   // One important case is a heap composed of disjoint contiguous spaces,
   210   // such as the Garbage-First collector.  Such heaps have a convenient
   211   // closed subset consisting of the allocated portions of those
   212   // contiguous spaces.
   214   // Return "TRUE" iff the given pointer points into the heap's defined
   215   // closed subset (which defaults to the entire heap).
   216   virtual bool is_in_closed_subset(const void* p) const {
   217     return is_in_reserved(p);
   218   }
   220   bool is_in_closed_subset_or_null(const void* p) const {
   221     return p == NULL || is_in_closed_subset(p);
   222   }
   224   // Returns "TRUE" if "p" is allocated as "permanent" data.
   225   // If the heap does not use "permanent" data, returns the same
   226   // value is_in_reserved() would return.
   227   // NOTE: this actually returns true if "p" is in reserved space
   228   // for the space not that it is actually allocated (i.e. in committed
   229   // space). If you need the more conservative answer use is_permanent().
   230   virtual bool is_in_permanent(const void *p) const = 0;
   232   // Returns "TRUE" if "p" is in the committed area of  "permanent" data.
   233   // If the heap does not use "permanent" data, returns the same
   234   // value is_in() would return.
   235   virtual bool is_permanent(const void *p) const = 0;
   237   bool is_in_permanent_or_null(const void *p) const {
   238     return p == NULL || is_in_permanent(p);
   239   }
   241   // Returns "TRUE" if "p" is a method oop in the
   242   // current heap, with high probability. This predicate
   243   // is not stable, in general.
   244   bool is_valid_method(oop p) const;
   246   void set_gc_cause(GCCause::Cause v) {
   247      if (UsePerfData) {
   248        _gc_lastcause = _gc_cause;
   249        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
   250        _perf_gc_cause->set_value(GCCause::to_string(v));
   251      }
   252     _gc_cause = v;
   253   }
   254   GCCause::Cause gc_cause() { return _gc_cause; }
   256   // Preload classes into the shared portion of the heap, and then dump
   257   // that data to a file so that it can be loaded directly by another
   258   // VM (then terminate).
   259   virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
   261   // General obj/array allocation facilities.
   262   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
   263   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
   264   inline static oop large_typearray_allocate(KlassHandle klass, int size, int length, TRAPS);
   266   // Special obj/array allocation facilities.
   267   // Some heaps may want to manage "permanent" data uniquely. These default
   268   // to the general routines if the heap does not support such handling.
   269   inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
   270   // permanent_obj_allocate_no_klass_install() does not do the installation of
   271   // the klass pointer in the newly created object (as permanent_obj_allocate()
   272   // above does).  This allows for a delay in the installation of the klass
   273   // pointer that is needed during the create of klassKlass's.  The
   274   // method post_allocation_install_obj_klass() is used to install the
   275   // klass pointer.
   276   inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
   277                                                             int size,
   278                                                             TRAPS);
   279   inline static void post_allocation_install_obj_klass(KlassHandle klass,
   280                                                        oop obj,
   281                                                        int size);
   282   inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
   284   // Raw memory allocation facilities
   285   // The obj and array allocate methods are covers for these methods.
   286   // The permanent allocation method should default to mem_allocate if
   287   // permanent memory isn't supported.
   288   virtual HeapWord* mem_allocate(size_t size,
   289                                  bool is_noref,
   290                                  bool is_tlab,
   291                                  bool* gc_overhead_limit_was_exceeded) = 0;
   292   virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
   294   // The boundary between a "large" and "small" array of primitives, in words.
   295   virtual size_t large_typearray_limit() = 0;
   297   // Some heaps may offer a contiguous region for shared non-blocking
   298   // allocation, via inlined code (by exporting the address of the top and
   299   // end fields defining the extent of the contiguous allocation region.)
   301   // This function returns "true" iff the heap supports this kind of
   302   // allocation.  (Default is "no".)
   303   virtual bool supports_inline_contig_alloc() const {
   304     return false;
   305   }
   306   // These functions return the addresses of the fields that define the
   307   // boundaries of the contiguous allocation area.  (These fields should be
   308   // physically near to one another.)
   309   virtual HeapWord** top_addr() const {
   310     guarantee(false, "inline contiguous allocation not supported");
   311     return NULL;
   312   }
   313   virtual HeapWord** end_addr() const {
   314     guarantee(false, "inline contiguous allocation not supported");
   315     return NULL;
   316   }
   318   // Some heaps may be in an unparseable state at certain times between
   319   // collections. This may be necessary for efficient implementation of
   320   // certain allocation-related activities. Calling this function before
   321   // attempting to parse a heap ensures that the heap is in a parsable
   322   // state (provided other concurrent activity does not introduce
   323   // unparsability). It is normally expected, therefore, that this
   324   // method is invoked with the world stopped.
   325   // NOTE: if you override this method, make sure you call
   326   // super::ensure_parsability so that the non-generational
   327   // part of the work gets done. See implementation of
   328   // CollectedHeap::ensure_parsability and, for instance,
   329   // that of GenCollectedHeap::ensure_parsability().
   330   // The argument "retire_tlabs" controls whether existing TLABs
   331   // are merely filled or also retired, thus preventing further
   332   // allocation from them and necessitating allocation of new TLABs.
   333   virtual void ensure_parsability(bool retire_tlabs);
   335   // Return an estimate of the maximum allocation that could be performed
   336   // without triggering any collection or expansion activity.  In a
   337   // generational collector, for example, this is probably the largest
   338   // allocation that could be supported (without expansion) in the youngest
   339   // generation.  It is "unsafe" because no locks are taken; the result
   340   // should be treated as an approximation, not a guarantee, for use in
   341   // heuristic resizing decisions.
   342   virtual size_t unsafe_max_alloc() = 0;
   344   // Section on thread-local allocation buffers (TLABs)
   345   // If the heap supports thread-local allocation buffers, it should override
   346   // the following methods:
   347   // Returns "true" iff the heap supports thread-local allocation buffers.
   348   // The default is "no".
   349   virtual bool supports_tlab_allocation() const {
   350     return false;
   351   }
   352   // The amount of space available for thread-local allocation buffers.
   353   virtual size_t tlab_capacity(Thread *thr) const {
   354     guarantee(false, "thread-local allocation buffers not supported");
   355     return 0;
   356   }
   357   // An estimate of the maximum allocation that could be performed
   358   // for thread-local allocation buffers without triggering any
   359   // collection or expansion activity.
   360   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
   361     guarantee(false, "thread-local allocation buffers not supported");
   362     return 0;
   363   }
   364   // Can a compiler initialize a new object without store barriers?
   365   // This permission only extends from the creation of a new object
   366   // via a TLAB up to the first subsequent safepoint.
   367   virtual bool can_elide_tlab_store_barriers() const = 0;
   369   // If a compiler is eliding store barriers for TLAB-allocated objects,
   370   // there is probably a corresponding slow path which can produce
   371   // an object allocated anywhere.  The compiler's runtime support
   372   // promises to call this function on such a slow-path-allocated
   373   // object before performing initializations that have elided
   374   // store barriers.  Returns new_obj, or maybe a safer copy thereof.
   375   virtual oop new_store_barrier(oop new_obj);
   377   // Can a compiler elide a store barrier when it writes
   378   // a permanent oop into the heap?  Applies when the compiler
   379   // is storing x to the heap, where x->is_perm() is true.
   380   virtual bool can_elide_permanent_oop_store_barriers() const = 0;
   382   // Does this heap support heap inspection (+PrintClassHistogram?)
   383   virtual bool supports_heap_inspection() const = 0;
   385   // Perform a collection of the heap; intended for use in implementing
   386   // "System.gc".  This probably implies as full a collection as the
   387   // "CollectedHeap" supports.
   388   virtual void collect(GCCause::Cause cause) = 0;
   390   // This interface assumes that it's being called by the
   391   // vm thread. It collects the heap assuming that the
   392   // heap lock is already held and that we are executing in
   393   // the context of the vm thread.
   394   virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
   396   // Returns the barrier set for this heap
   397   BarrierSet* barrier_set() { return _barrier_set; }
   399   // Returns "true" iff there is a stop-world GC in progress.  (I assume
   400   // that it should answer "false" for the concurrent part of a concurrent
   401   // collector -- dld).
   402   bool is_gc_active() const { return _is_gc_active; }
   404   // Total number of GC collections (started)
   405   unsigned int total_collections() const { return _total_collections; }
   406   unsigned int total_full_collections() const { return _total_full_collections;}
   408   // Increment total number of GC collections (started)
   409   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
   410   void increment_total_collections(bool full = false) {
   411     _total_collections++;
   412     if (full) {
   413       increment_total_full_collections();
   414     }
   415   }
   417   void increment_total_full_collections() { _total_full_collections++; }
   419   // Return the AdaptiveSizePolicy for the heap.
   420   virtual AdaptiveSizePolicy* size_policy() = 0;
   422   // Iterate over all the ref-containing fields of all objects, calling
   423   // "cl.do_oop" on each. This includes objects in permanent memory.
   424   virtual void oop_iterate(OopClosure* cl) = 0;
   426   // Iterate over all objects, calling "cl.do_object" on each.
   427   // This includes objects in permanent memory.
   428   virtual void object_iterate(ObjectClosure* cl) = 0;
   430   // Behaves the same as oop_iterate, except only traverses
   431   // interior pointers contained in permanent memory. If there
   432   // is no permanent memory, does nothing.
   433   virtual void permanent_oop_iterate(OopClosure* cl) = 0;
   435   // Behaves the same as object_iterate, except only traverses
   436   // object contained in permanent memory. If there is no
   437   // permanent memory, does nothing.
   438   virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
   440   // NOTE! There is no requirement that a collector implement these
   441   // functions.
   442   //
   443   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   444   // each address in the (reserved) heap is a member of exactly
   445   // one block.  The defining characteristic of a block is that it is
   446   // possible to find its size, and thus to progress forward to the next
   447   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   448   // represent Java objects, or they might be free blocks in a
   449   // free-list-based heap (or subheap), as long as the two kinds are
   450   // distinguishable and the size of each is determinable.
   452   // Returns the address of the start of the "block" that contains the
   453   // address "addr".  We say "blocks" instead of "object" since some heaps
   454   // may not pack objects densely; a chunk may either be an object or a
   455   // non-object.
   456   virtual HeapWord* block_start(const void* addr) const = 0;
   458   // Requires "addr" to be the start of a chunk, and returns its size.
   459   // "addr + size" is required to be the start of a new chunk, or the end
   460   // of the active area of the heap.
   461   virtual size_t block_size(const HeapWord* addr) const = 0;
   463   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   464   // the block is an object.
   465   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   467   // Returns the longest time (in ms) that has elapsed since the last
   468   // time that any part of the heap was examined by a garbage collection.
   469   virtual jlong millis_since_last_gc() = 0;
   471   // Perform any cleanup actions necessary before allowing a verification.
   472   virtual void prepare_for_verify() = 0;
   474   virtual void print() const = 0;
   475   virtual void print_on(outputStream* st) const = 0;
   477   // Print all GC threads (other than the VM thread)
   478   // used by this heap.
   479   virtual void print_gc_threads_on(outputStream* st) const = 0;
   480   void print_gc_threads() { print_gc_threads_on(tty); }
   481   // Iterator for all GC threads (other than VM thread)
   482   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
   484   // Print any relevant tracing info that flags imply.
   485   // Default implementation does nothing.
   486   virtual void print_tracing_info() const = 0;
   488   // Heap verification
   489   virtual void verify(bool allow_dirty, bool silent) = 0;
   491   // Non product verification and debugging.
   492 #ifndef PRODUCT
   493   // Support for PromotionFailureALot.  Return true if it's time to cause a
   494   // promotion failure.  The no-argument version uses
   495   // this->_promotion_failure_alot_count as the counter.
   496   inline bool promotion_should_fail(volatile size_t* count);
   497   inline bool promotion_should_fail();
   499   // Reset the PromotionFailureALot counters.  Should be called at the end of a
   500   // GC in which promotion failure ocurred.
   501   inline void reset_promotion_should_fail(volatile size_t* count);
   502   inline void reset_promotion_should_fail();
   503 #endif  // #ifndef PRODUCT
   505 #ifdef ASSERT
   506   static int fired_fake_oom() {
   507     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
   508   }
   509 #endif
   510 };
   512 // Class to set and reset the GC cause for a CollectedHeap.
   514 class GCCauseSetter : StackObj {
   515   CollectedHeap* _heap;
   516   GCCause::Cause _previous_cause;
   517  public:
   518   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
   519     assert(SafepointSynchronize::is_at_safepoint(),
   520            "This method manipulates heap state without locking");
   521     _heap = heap;
   522     _previous_cause = _heap->gc_cause();
   523     _heap->set_gc_cause(cause);
   524   }
   526   ~GCCauseSetter() {
   527     assert(SafepointSynchronize::is_at_safepoint(),
   528           "This method manipulates heap state without locking");
   529     _heap->set_gc_cause(_previous_cause);
   530   }
   531 };

mercurial