src/cpu/x86/vm/templateTable_x86_64.cpp

Thu, 21 Aug 2008 23:36:31 -0400

author
tonyp
date
Thu, 21 Aug 2008 23:36:31 -0400
changeset 791
1ee8caae33af
parent 779
6aae2f9d0294
parent 631
d1605aabd0a1
child 797
f8199438385b
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2003-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_x86_64.cpp.incl"
    28 #define __ _masm->
    30 // Platform-dependent initialization
    32 void TemplateTable::pd_initialize() {
    33   // No amd64 specific initialization
    34 }
    36 // Address computation: local variables
    38 static inline Address iaddress(int n) {
    39   return Address(r14, Interpreter::local_offset_in_bytes(n));
    40 }
    42 static inline Address laddress(int n) {
    43   return iaddress(n + 1);
    44 }
    46 static inline Address faddress(int n) {
    47   return iaddress(n);
    48 }
    50 static inline Address daddress(int n) {
    51   return laddress(n);
    52 }
    54 static inline Address aaddress(int n) {
    55   return iaddress(n);
    56 }
    58 static inline Address iaddress(Register r) {
    59   return Address(r14, r, Address::times_8, Interpreter::value_offset_in_bytes());
    60 }
    62 static inline Address laddress(Register r) {
    63   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    64 }
    66 static inline Address faddress(Register r) {
    67   return iaddress(r);
    68 }
    70 static inline Address daddress(Register r) {
    71   return laddress(r);
    72 }
    74 static inline Address aaddress(Register r) {
    75   return iaddress(r);
    76 }
    78 static inline Address at_rsp() {
    79   return Address(rsp, 0);
    80 }
    82 // At top of Java expression stack which may be different than esp().  It
    83 // isn't for category 1 objects.
    84 static inline Address at_tos   () {
    85   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    86 }
    88 static inline Address at_tos_p1() {
    89   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    90 }
    92 static inline Address at_tos_p2() {
    93   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    94 }
    96 static inline Address at_tos_p3() {
    97   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
    98 }
   100 // Condition conversion
   101 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   102   switch (cc) {
   103   case TemplateTable::equal        : return Assembler::notEqual;
   104   case TemplateTable::not_equal    : return Assembler::equal;
   105   case TemplateTable::less         : return Assembler::greaterEqual;
   106   case TemplateTable::less_equal   : return Assembler::greater;
   107   case TemplateTable::greater      : return Assembler::lessEqual;
   108   case TemplateTable::greater_equal: return Assembler::less;
   109   }
   110   ShouldNotReachHere();
   111   return Assembler::zero;
   112 }
   115 // Miscelaneous helper routines
   116 // Store an oop (or NULL) at the address described by obj.
   117 // If val == noreg this means store a NULL
   119 static void do_oop_store(InterpreterMacroAssembler* _masm,
   120                          Address obj,
   121                          Register val,
   122                          BarrierSet::Name barrier,
   123                          bool precise) {
   124   assert(val == noreg || val == rax, "parameter is just for looks");
   125   switch (barrier) {
   126 #ifndef SERIALGC
   127     case BarrierSet::G1SATBCT:
   128     case BarrierSet::G1SATBCTLogging:
   129       {
   130         // flatten object address if needed
   131         if (obj.index() == noreg && obj.disp() == 0) {
   132           if (obj.base() != rdx) {
   133             __ movq(rdx, obj.base());
   134           }
   135         } else {
   136           __ leaq(rdx, obj);
   137         }
   138         __ g1_write_barrier_pre(rdx, r8, rbx, val != noreg);
   139         if (val == noreg) {
   140           __ store_heap_oop(Address(rdx, 0), NULL_WORD);
   141         } else {
   142           __ store_heap_oop(Address(rdx, 0), val);
   143           __ g1_write_barrier_post(rdx, val, r8, rbx);
   144         }
   146       }
   147       break;
   148 #endif // SERIALGC
   149     case BarrierSet::CardTableModRef:
   150     case BarrierSet::CardTableExtension:
   151       {
   152         if (val == noreg) {
   153           __ store_heap_oop(obj, NULL_WORD);
   154         } else {
   155           __ store_heap_oop(obj, val);
   156           // flatten object address if needed
   157           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   158             __ store_check(obj.base());
   159           } else {
   160             __ leaq(rdx, obj);
   161             __ store_check(rdx);
   162           }
   163         }
   164       }
   165       break;
   166     case BarrierSet::ModRef:
   167     case BarrierSet::Other:
   168       if (val == noreg) {
   169         __ store_heap_oop(obj, NULL_WORD);
   170       } else {
   171         __ store_heap_oop(obj, val);
   172       }
   173       break;
   174     default      :
   175       ShouldNotReachHere();
   177   }
   178 }
   180 Address TemplateTable::at_bcp(int offset) {
   181   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   182   return Address(r13, offset);
   183 }
   185 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   186                                    Register scratch,
   187                                    bool load_bc_into_scratch/*=true*/) {
   188   if (!RewriteBytecodes) {
   189     return;
   190   }
   191   // the pair bytecodes have already done the load.
   192   if (load_bc_into_scratch) {
   193     __ movl(bc, bytecode);
   194   }
   195   Label patch_done;
   196   if (JvmtiExport::can_post_breakpoint()) {
   197     Label fast_patch;
   198     // if a breakpoint is present we can't rewrite the stream directly
   199     __ movzbl(scratch, at_bcp(0));
   200     __ cmpl(scratch, Bytecodes::_breakpoint);
   201     __ jcc(Assembler::notEqual, fast_patch);
   202     __ get_method(scratch);
   203     // Let breakpoint table handling rewrite to quicker bytecode
   204     __ call_VM(noreg,
   205                CAST_FROM_FN_PTR(address,
   206                                 InterpreterRuntime::set_original_bytecode_at),
   207                scratch, r13, bc);
   208 #ifndef ASSERT
   209     __ jmpb(patch_done);
   210     __ bind(fast_patch);
   211   }
   212 #else
   213     __ jmp(patch_done);
   214     __ bind(fast_patch);
   215   }
   216   Label okay;
   217   __ load_unsigned_byte(scratch, at_bcp(0));
   218   __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
   219   __ jcc(Assembler::equal, okay);
   220   __ cmpl(scratch, bc);
   221   __ jcc(Assembler::equal, okay);
   222   __ stop("patching the wrong bytecode");
   223   __ bind(okay);
   224 #endif
   225   // patch bytecode
   226   __ movb(at_bcp(0), bc);
   227   __ bind(patch_done);
   228 }
   231 // Individual instructions
   233 void TemplateTable::nop() {
   234   transition(vtos, vtos);
   235   // nothing to do
   236 }
   238 void TemplateTable::shouldnotreachhere() {
   239   transition(vtos, vtos);
   240   __ stop("shouldnotreachhere bytecode");
   241 }
   243 void TemplateTable::aconst_null() {
   244   transition(vtos, atos);
   245   __ xorl(rax, rax);
   246 }
   248 void TemplateTable::iconst(int value) {
   249   transition(vtos, itos);
   250   if (value == 0) {
   251     __ xorl(rax, rax);
   252   } else {
   253     __ movl(rax, value);
   254   }
   255 }
   257 void TemplateTable::lconst(int value) {
   258   transition(vtos, ltos);
   259   if (value == 0) {
   260     __ xorl(rax, rax);
   261   } else {
   262     __ movl(rax, value);
   263   }
   264 }
   266 void TemplateTable::fconst(int value) {
   267   transition(vtos, ftos);
   268   static float one = 1.0f, two = 2.0f;
   269   switch (value) {
   270   case 0:
   271     __ xorps(xmm0, xmm0);
   272     break;
   273   case 1:
   274     __ movflt(xmm0, ExternalAddress((address) &one));
   275     break;
   276   case 2:
   277     __ movflt(xmm0, ExternalAddress((address) &two));
   278     break;
   279   default:
   280     ShouldNotReachHere();
   281     break;
   282   }
   283 }
   285 void TemplateTable::dconst(int value) {
   286   transition(vtos, dtos);
   287   static double one = 1.0;
   288   switch (value) {
   289   case 0:
   290     __ xorpd(xmm0, xmm0);
   291     break;
   292   case 1:
   293     __ movdbl(xmm0, ExternalAddress((address) &one));
   294     break;
   295   default:
   296     ShouldNotReachHere();
   297     break;
   298   }
   299 }
   301 void TemplateTable::bipush() {
   302   transition(vtos, itos);
   303   __ load_signed_byte(rax, at_bcp(1));
   304 }
   306 void TemplateTable::sipush() {
   307   transition(vtos, itos);
   308   __ load_unsigned_word(rax, at_bcp(1));
   309   __ bswapl(rax);
   310   __ sarl(rax, 16);
   311 }
   313 void TemplateTable::ldc(bool wide) {
   314   transition(vtos, vtos);
   315   Label call_ldc, notFloat, notClass, Done;
   317   if (wide) {
   318     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   319   } else {
   320     __ load_unsigned_byte(rbx, at_bcp(1));
   321   }
   323   __ get_cpool_and_tags(rcx, rax);
   324   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   325   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   327   // get type
   328   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   330   // unresolved string - get the resolved string
   331   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   332   __ jccb(Assembler::equal, call_ldc);
   334   // unresolved class - get the resolved class
   335   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   336   __ jccb(Assembler::equal, call_ldc);
   338   // unresolved class in error state - call into runtime to throw the error
   339   // from the first resolution attempt
   340   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   341   __ jccb(Assembler::equal, call_ldc);
   343   // resolved class - need to call vm to get java mirror of the class
   344   __ cmpl(rdx, JVM_CONSTANT_Class);
   345   __ jcc(Assembler::notEqual, notClass);
   347   __ bind(call_ldc);
   348   __ movl(c_rarg1, wide);
   349   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   350   __ push_ptr(rax);
   351   __ verify_oop(rax);
   352   __ jmp(Done);
   354   __ bind(notClass);
   355   __ cmpl(rdx, JVM_CONSTANT_Float);
   356   __ jccb(Assembler::notEqual, notFloat);
   357   // ftos
   358   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   359   __ push_f();
   360   __ jmp(Done);
   362   __ bind(notFloat);
   363 #ifdef ASSERT
   364   {
   365     Label L;
   366     __ cmpl(rdx, JVM_CONSTANT_Integer);
   367     __ jcc(Assembler::equal, L);
   368     __ cmpl(rdx, JVM_CONSTANT_String);
   369     __ jcc(Assembler::equal, L);
   370     __ stop("unexpected tag type in ldc");
   371     __ bind(L);
   372   }
   373 #endif
   374   // atos and itos
   375   Label isOop;
   376   __ cmpl(rdx, JVM_CONSTANT_Integer);
   377   __ jcc(Assembler::notEqual, isOop);
   378   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   379   __ push_i(rax);
   380   __ jmp(Done);
   382   __ bind(isOop);
   383   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   384   __ push_ptr(rax);
   386   if (VerifyOops) {
   387     __ verify_oop(rax);
   388   }
   390   __ bind(Done);
   391 }
   393 void TemplateTable::ldc2_w() {
   394   transition(vtos, vtos);
   395   Label Long, Done;
   396   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   398   __ get_cpool_and_tags(rcx, rax);
   399   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   400   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   402   // get type
   403   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   404           JVM_CONSTANT_Double);
   405   __ jccb(Assembler::notEqual, Long);
   406   // dtos
   407   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   408   __ push_d();
   409   __ jmpb(Done);
   411   __ bind(Long);
   412   // ltos
   413   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   414   __ push_l();
   416   __ bind(Done);
   417 }
   419 void TemplateTable::locals_index(Register reg, int offset) {
   420   __ load_unsigned_byte(reg, at_bcp(offset));
   421   __ negq(reg);
   422   if (TaggedStackInterpreter) __ shlq(reg, 1);  // index = index*2
   423 }
   425 void TemplateTable::iload() {
   426   transition(vtos, itos);
   427   if (RewriteFrequentPairs) {
   428     Label rewrite, done;
   429     const Register bc = c_rarg3;
   430     assert(rbx != bc, "register damaged");
   432     // get next byte
   433     __ load_unsigned_byte(rbx,
   434                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   435     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   436     // last two iloads in a pair.  Comparing against fast_iload means that
   437     // the next bytecode is neither an iload or a caload, and therefore
   438     // an iload pair.
   439     __ cmpl(rbx, Bytecodes::_iload);
   440     __ jcc(Assembler::equal, done);
   442     __ cmpl(rbx, Bytecodes::_fast_iload);
   443     __ movl(bc, Bytecodes::_fast_iload2);
   444     __ jccb(Assembler::equal, rewrite);
   446     // if _caload, rewrite to fast_icaload
   447     __ cmpl(rbx, Bytecodes::_caload);
   448     __ movl(bc, Bytecodes::_fast_icaload);
   449     __ jccb(Assembler::equal, rewrite);
   451     // rewrite so iload doesn't check again.
   452     __ movl(bc, Bytecodes::_fast_iload);
   454     // rewrite
   455     // bc: fast bytecode
   456     __ bind(rewrite);
   457     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   458     __ bind(done);
   459   }
   461   // Get the local value into tos
   462   locals_index(rbx);
   463   __ movl(rax, iaddress(rbx));
   464   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   465 }
   467 void TemplateTable::fast_iload2() {
   468   transition(vtos, itos);
   469   locals_index(rbx);
   470   __ movl(rax, iaddress(rbx));
   471   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   472   __ push(itos);
   473   locals_index(rbx, 3);
   474   __ movl(rax, iaddress(rbx));
   475   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   476 }
   478 void TemplateTable::fast_iload() {
   479   transition(vtos, itos);
   480   locals_index(rbx);
   481   __ movl(rax, iaddress(rbx));
   482   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   483 }
   485 void TemplateTable::lload() {
   486   transition(vtos, ltos);
   487   locals_index(rbx);
   488   __ movq(rax, laddress(rbx));
   489   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   490 }
   492 void TemplateTable::fload() {
   493   transition(vtos, ftos);
   494   locals_index(rbx);
   495   __ movflt(xmm0, faddress(rbx));
   496   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   497 }
   499 void TemplateTable::dload() {
   500   transition(vtos, dtos);
   501   locals_index(rbx);
   502   __ movdbl(xmm0, daddress(rbx));
   503   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   504 }
   506 void TemplateTable::aload() {
   507   transition(vtos, atos);
   508   locals_index(rbx);
   509   __ movq(rax, aaddress(rbx));
   510   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   511 }
   513 void TemplateTable::locals_index_wide(Register reg) {
   514   __ movl(reg, at_bcp(2));
   515   __ bswapl(reg);
   516   __ shrl(reg, 16);
   517   __ negq(reg);
   518   if (TaggedStackInterpreter) __ shlq(reg, 1);  // index = index*2
   519 }
   521 void TemplateTable::wide_iload() {
   522   transition(vtos, itos);
   523   locals_index_wide(rbx);
   524   __ movl(rax, iaddress(rbx));
   525   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   526 }
   528 void TemplateTable::wide_lload() {
   529   transition(vtos, ltos);
   530   locals_index_wide(rbx);
   531   __ movq(rax, laddress(rbx));
   532   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   533 }
   535 void TemplateTable::wide_fload() {
   536   transition(vtos, ftos);
   537   locals_index_wide(rbx);
   538   __ movflt(xmm0, faddress(rbx));
   539   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   540 }
   542 void TemplateTable::wide_dload() {
   543   transition(vtos, dtos);
   544   locals_index_wide(rbx);
   545   __ movdbl(xmm0, daddress(rbx));
   546   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   547 }
   549 void TemplateTable::wide_aload() {
   550   transition(vtos, atos);
   551   locals_index_wide(rbx);
   552   __ movq(rax, aaddress(rbx));
   553   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   554 }
   556 void TemplateTable::index_check(Register array, Register index) {
   557   // destroys rbx
   558   // check array
   559   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   560   // sign extend index for use by indexed load
   561   __ movslq(index, index);
   562   // check index
   563   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   564   if (index != rbx) {
   565     // ??? convention: move aberrant index into ebx for exception message
   566     assert(rbx != array, "different registers");
   567     __ movl(rbx, index);
   568   }
   569   __ jump_cc(Assembler::aboveEqual,
   570              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   571 }
   573 void TemplateTable::iaload() {
   574   transition(itos, itos);
   575   __ pop_ptr(rdx);
   576   // eax: index
   577   // rdx: array
   578   index_check(rdx, rax); // kills rbx
   579   __ movl(rax, Address(rdx, rax,
   580                        Address::times_4,
   581                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   582 }
   584 void TemplateTable::laload() {
   585   transition(itos, ltos);
   586   __ pop_ptr(rdx);
   587   // eax: index
   588   // rdx: array
   589   index_check(rdx, rax); // kills rbx
   590   __ movq(rax, Address(rdx, rbx,
   591                        Address::times_8,
   592                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   593 }
   595 void TemplateTable::faload() {
   596   transition(itos, ftos);
   597   __ pop_ptr(rdx);
   598   // eax: index
   599   // rdx: array
   600   index_check(rdx, rax); // kills rbx
   601   __ movflt(xmm0, Address(rdx, rax,
   602                          Address::times_4,
   603                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   604 }
   606 void TemplateTable::daload() {
   607   transition(itos, dtos);
   608   __ pop_ptr(rdx);
   609   // eax: index
   610   // rdx: array
   611   index_check(rdx, rax); // kills rbx
   612   __ movdbl(xmm0, Address(rdx, rax,
   613                           Address::times_8,
   614                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   615 }
   617 void TemplateTable::aaload() {
   618   transition(itos, atos);
   619   __ pop_ptr(rdx);
   620   // eax: index
   621   // rdx: array
   622   index_check(rdx, rax); // kills rbx
   623   __ load_heap_oop(rax, Address(rdx, rax,
   624                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   625                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   626 }
   628 void TemplateTable::baload() {
   629   transition(itos, itos);
   630   __ pop_ptr(rdx);
   631   // eax: index
   632   // rdx: array
   633   index_check(rdx, rax); // kills rbx
   634   __ load_signed_byte(rax,
   635                       Address(rdx, rax,
   636                               Address::times_1,
   637                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   638 }
   640 void TemplateTable::caload() {
   641   transition(itos, itos);
   642   __ pop_ptr(rdx);
   643   // eax: index
   644   // rdx: array
   645   index_check(rdx, rax); // kills rbx
   646   __ load_unsigned_word(rax,
   647                         Address(rdx, rax,
   648                                 Address::times_2,
   649                                 arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   650 }
   652 // iload followed by caload frequent pair
   653 void TemplateTable::fast_icaload() {
   654   transition(vtos, itos);
   655   // load index out of locals
   656   locals_index(rbx);
   657   __ movl(rax, iaddress(rbx));
   658   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   660   // eax: index
   661   // rdx: array
   662   __ pop_ptr(rdx);
   663   index_check(rdx, rax); // kills rbx
   664   __ load_unsigned_word(rax,
   665                         Address(rdx, rax,
   666                                 Address::times_2,
   667                                 arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   668 }
   670 void TemplateTable::saload() {
   671   transition(itos, itos);
   672   __ pop_ptr(rdx);
   673   // eax: index
   674   // rdx: array
   675   index_check(rdx, rax); // kills rbx
   676   __ load_signed_word(rax,
   677                       Address(rdx, rax,
   678                               Address::times_2,
   679                               arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   680 }
   682 void TemplateTable::iload(int n) {
   683   transition(vtos, itos);
   684   __ movl(rax, iaddress(n));
   685   debug_only(__ verify_local_tag(frame::TagValue, n));
   686 }
   688 void TemplateTable::lload(int n) {
   689   transition(vtos, ltos);
   690   __ movq(rax, laddress(n));
   691   debug_only(__ verify_local_tag(frame::TagCategory2, n));
   692 }
   694 void TemplateTable::fload(int n) {
   695   transition(vtos, ftos);
   696   __ movflt(xmm0, faddress(n));
   697   debug_only(__ verify_local_tag(frame::TagValue, n));
   698 }
   700 void TemplateTable::dload(int n) {
   701   transition(vtos, dtos);
   702   __ movdbl(xmm0, daddress(n));
   703   debug_only(__ verify_local_tag(frame::TagCategory2, n));
   704 }
   706 void TemplateTable::aload(int n) {
   707   transition(vtos, atos);
   708   __ movq(rax, aaddress(n));
   709   debug_only(__ verify_local_tag(frame::TagReference, n));
   710 }
   712 void TemplateTable::aload_0() {
   713   transition(vtos, atos);
   714   // According to bytecode histograms, the pairs:
   715   //
   716   // _aload_0, _fast_igetfield
   717   // _aload_0, _fast_agetfield
   718   // _aload_0, _fast_fgetfield
   719   //
   720   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   721   // _aload_0 bytecode checks if the next bytecode is either
   722   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   723   // rewrites the current bytecode into a pair bytecode; otherwise it
   724   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   725   // the pair check anymore.
   726   //
   727   // Note: If the next bytecode is _getfield, the rewrite must be
   728   //       delayed, otherwise we may miss an opportunity for a pair.
   729   //
   730   // Also rewrite frequent pairs
   731   //   aload_0, aload_1
   732   //   aload_0, iload_1
   733   // These bytecodes with a small amount of code are most profitable
   734   // to rewrite
   735   if (RewriteFrequentPairs) {
   736     Label rewrite, done;
   737     const Register bc = c_rarg3;
   738     assert(rbx != bc, "register damaged");
   739     // get next byte
   740     __ load_unsigned_byte(rbx,
   741                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   743     // do actual aload_0
   744     aload(0);
   746     // if _getfield then wait with rewrite
   747     __ cmpl(rbx, Bytecodes::_getfield);
   748     __ jcc(Assembler::equal, done);
   750     // if _igetfield then reqrite to _fast_iaccess_0
   751     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   752            Bytecodes::_aload_0,
   753            "fix bytecode definition");
   754     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   755     __ movl(bc, Bytecodes::_fast_iaccess_0);
   756     __ jccb(Assembler::equal, rewrite);
   758     // if _agetfield then reqrite to _fast_aaccess_0
   759     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   760            Bytecodes::_aload_0,
   761            "fix bytecode definition");
   762     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   763     __ movl(bc, Bytecodes::_fast_aaccess_0);
   764     __ jccb(Assembler::equal, rewrite);
   766     // if _fgetfield then reqrite to _fast_faccess_0
   767     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   768            Bytecodes::_aload_0,
   769            "fix bytecode definition");
   770     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   771     __ movl(bc, Bytecodes::_fast_faccess_0);
   772     __ jccb(Assembler::equal, rewrite);
   774     // else rewrite to _fast_aload0
   775     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   776            Bytecodes::_aload_0,
   777            "fix bytecode definition");
   778     __ movl(bc, Bytecodes::_fast_aload_0);
   780     // rewrite
   781     // bc: fast bytecode
   782     __ bind(rewrite);
   783     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   785     __ bind(done);
   786   } else {
   787     aload(0);
   788   }
   789 }
   791 void TemplateTable::istore() {
   792   transition(itos, vtos);
   793   locals_index(rbx);
   794   __ movl(iaddress(rbx), rax);
   795   __ tag_local(frame::TagValue, rbx);
   796 }
   798 void TemplateTable::lstore() {
   799   transition(ltos, vtos);
   800   locals_index(rbx);
   801   __ movq(laddress(rbx), rax);
   802   __ tag_local(frame::TagCategory2, rbx);
   803 }
   805 void TemplateTable::fstore() {
   806   transition(ftos, vtos);
   807   locals_index(rbx);
   808   __ movflt(faddress(rbx), xmm0);
   809   __ tag_local(frame::TagValue, rbx);
   810 }
   812 void TemplateTable::dstore() {
   813   transition(dtos, vtos);
   814   locals_index(rbx);
   815   __ movdbl(daddress(rbx), xmm0);
   816   __ tag_local(frame::TagCategory2, rbx);
   817 }
   819 void TemplateTable::astore() {
   820   transition(vtos, vtos);
   821   __ pop_ptr(rax, rdx);    // will need to pop tag too
   822   locals_index(rbx);
   823   __ movq(aaddress(rbx), rax);
   824   __ tag_local(rdx, rbx);  // store tag from stack, might be returnAddr
   825 }
   827 void TemplateTable::wide_istore() {
   828   transition(vtos, vtos);
   829   __ pop_i();
   830   locals_index_wide(rbx);
   831   __ movl(iaddress(rbx), rax);
   832   __ tag_local(frame::TagValue, rbx);
   833 }
   835 void TemplateTable::wide_lstore() {
   836   transition(vtos, vtos);
   837   __ pop_l();
   838   locals_index_wide(rbx);
   839   __ movq(laddress(rbx), rax);
   840   __ tag_local(frame::TagCategory2, rbx);
   841 }
   843 void TemplateTable::wide_fstore() {
   844   transition(vtos, vtos);
   845   __ pop_f();
   846   locals_index_wide(rbx);
   847   __ movflt(faddress(rbx), xmm0);
   848   __ tag_local(frame::TagValue, rbx);
   849 }
   851 void TemplateTable::wide_dstore() {
   852   transition(vtos, vtos);
   853   __ pop_d();
   854   locals_index_wide(rbx);
   855   __ movdbl(daddress(rbx), xmm0);
   856   __ tag_local(frame::TagCategory2, rbx);
   857 }
   859 void TemplateTable::wide_astore() {
   860   transition(vtos, vtos);
   861   __ pop_ptr(rax, rdx);    // will need to pop tag too
   862   locals_index_wide(rbx);
   863   __ movq(aaddress(rbx), rax);
   864   __ tag_local(rdx, rbx);  // store tag from stack, might be returnAddr
   865 }
   867 void TemplateTable::iastore() {
   868   transition(itos, vtos);
   869   __ pop_i(rbx);
   870   __ pop_ptr(rdx);
   871   // eax: value
   872   // ebx: index
   873   // rdx: array
   874   index_check(rdx, rbx); // prefer index in ebx
   875   __ movl(Address(rdx, rbx,
   876                   Address::times_4,
   877                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   878           rax);
   879 }
   881 void TemplateTable::lastore() {
   882   transition(ltos, vtos);
   883   __ pop_i(rbx);
   884   __ pop_ptr(rdx);
   885   // rax: value
   886   // ebx: index
   887   // rdx: array
   888   index_check(rdx, rbx); // prefer index in ebx
   889   __ movq(Address(rdx, rbx,
   890                   Address::times_8,
   891                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   892           rax);
   893 }
   895 void TemplateTable::fastore() {
   896   transition(ftos, vtos);
   897   __ pop_i(rbx);
   898   __ pop_ptr(rdx);
   899   // xmm0: value
   900   // ebx:  index
   901   // rdx:  array
   902   index_check(rdx, rbx); // prefer index in ebx
   903   __ movflt(Address(rdx, rbx,
   904                    Address::times_4,
   905                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   906            xmm0);
   907 }
   909 void TemplateTable::dastore() {
   910   transition(dtos, vtos);
   911   __ pop_i(rbx);
   912   __ pop_ptr(rdx);
   913   // xmm0: value
   914   // ebx:  index
   915   // rdx:  array
   916   index_check(rdx, rbx); // prefer index in ebx
   917   __ movdbl(Address(rdx, rbx,
   918                    Address::times_8,
   919                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   920            xmm0);
   921 }
   923 void TemplateTable::aastore() {
   924   Label is_null, ok_is_subtype, done;
   925   transition(vtos, vtos);
   926   // stack: ..., array, index, value
   927   __ movq(rax, at_tos());    // value
   928   __ movl(rcx, at_tos_p1()); // index
   929   __ movq(rdx, at_tos_p2()); // array
   931   Address element_address(rdx, rcx,
   932                           UseCompressedOops? Address::times_4 : Address::times_8,
   933                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   935   index_check(rdx, rcx);     // kills rbx
   936   // do array store check - check for NULL value first
   937   __ testq(rax, rax);
   938   __ jcc(Assembler::zero, is_null);
   940   // Move subklass into rbx
   941   __ load_klass(rbx, rax);
   942   // Move superklass into rax
   943   __ load_klass(rax, rdx);
   944   __ movq(rax, Address(rax,
   945                        sizeof(oopDesc) +
   946                        objArrayKlass::element_klass_offset_in_bytes()));
   947   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   948   __ leaq(rdx, element_address);
   950   // Generate subtype check.  Blows rcx, rdi
   951   // Superklass in rax.  Subklass in rbx.
   952   __ gen_subtype_check(rbx, ok_is_subtype);
   954   // Come here on failure
   955   // object is at TOS
   956   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   958   // Come here on success
   959   __ bind(ok_is_subtype);
   961   // Get the value we will store
   962   __ movq(rax, at_tos());
   964   // Now store using the appropriate barrier
   965   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   966   __ jmp(done);
   968   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
   969   __ bind(is_null);
   970   __ profile_null_seen(rbx);
   972   // Store a NULL
   973   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   975   // Pop stack arguments
   976   __ bind(done);
   977   __ addq(rsp, 3 * Interpreter::stackElementSize());
   978 }
   980 void TemplateTable::bastore() {
   981   transition(itos, vtos);
   982   __ pop_i(rbx);
   983   __ pop_ptr(rdx);
   984   // eax: value
   985   // ebx: index
   986   // rdx: array
   987   index_check(rdx, rbx); // prefer index in ebx
   988   __ movb(Address(rdx, rbx,
   989                   Address::times_1,
   990                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
   991           rax);
   992 }
   994 void TemplateTable::castore() {
   995   transition(itos, vtos);
   996   __ pop_i(rbx);
   997   __ pop_ptr(rdx);
   998   // eax: value
   999   // ebx: index
  1000   // rdx: array
  1001   index_check(rdx, rbx);  // prefer index in ebx
  1002   __ movw(Address(rdx, rbx,
  1003                   Address::times_2,
  1004                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
  1005           rax);
  1008 void TemplateTable::sastore() {
  1009   castore();
  1012 void TemplateTable::istore(int n) {
  1013   transition(itos, vtos);
  1014   __ movl(iaddress(n), rax);
  1015   __ tag_local(frame::TagValue, n);
  1018 void TemplateTable::lstore(int n) {
  1019   transition(ltos, vtos);
  1020   __ movq(laddress(n), rax);
  1021   __ tag_local(frame::TagCategory2, n);
  1024 void TemplateTable::fstore(int n) {
  1025   transition(ftos, vtos);
  1026   __ movflt(faddress(n), xmm0);
  1027   __ tag_local(frame::TagValue, n);
  1030 void TemplateTable::dstore(int n) {
  1031   transition(dtos, vtos);
  1032   __ movdbl(daddress(n), xmm0);
  1033   __ tag_local(frame::TagCategory2, n);
  1036 void TemplateTable::astore(int n) {
  1037   transition(vtos, vtos);
  1038   __ pop_ptr(rax, rdx);
  1039   __ movq(aaddress(n), rax);
  1040   __ tag_local(rdx, n);
  1043 void TemplateTable::pop() {
  1044   transition(vtos, vtos);
  1045   __ addq(rsp, Interpreter::stackElementSize());
  1048 void TemplateTable::pop2() {
  1049   transition(vtos, vtos);
  1050   __ addq(rsp, 2 * Interpreter::stackElementSize());
  1053 void TemplateTable::dup() {
  1054   transition(vtos, vtos);
  1055   __ load_ptr_and_tag(0, rax, rdx);
  1056   __ push_ptr(rax, rdx);
  1057   // stack: ..., a, a
  1060 void TemplateTable::dup_x1() {
  1061   transition(vtos, vtos);
  1062   // stack: ..., a, b
  1063   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1064   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1065   __ store_ptr_and_tag(1, rax, rdx); // store b
  1066   __ store_ptr_and_tag(0, rcx, rbx); // store a
  1067   __ push_ptr(rax, rdx);             // push b
  1068   // stack: ..., b, a, b
  1071 void TemplateTable::dup_x2() {
  1072   transition(vtos, vtos);
  1073   // stack: ..., a, b, c
  1074   __ load_ptr_and_tag(0, rax, rdx);  // load c
  1075   __ load_ptr_and_tag(2, rcx, rbx);  // load a
  1076   __ store_ptr_and_tag(2, rax, rdx); // store c in a
  1077   __ push_ptr(rax, rdx);             // push c
  1078   // stack: ..., c, b, c, c
  1079   __ load_ptr_and_tag(2, rax, rdx);  // load b
  1080   __ store_ptr_and_tag(2, rcx, rbx); // store a in b
  1081   // stack: ..., c, a, c, c
  1082   __ store_ptr_and_tag(1, rax, rdx); // store b in c
  1083   // stack: ..., c, a, b, c
  1086 void TemplateTable::dup2() {
  1087   transition(vtos, vtos);
  1088   // stack: ..., a, b
  1089   __ load_ptr_and_tag(1, rax, rdx);  // load a
  1090   __ push_ptr(rax, rdx);             // push a
  1091   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1092   __ push_ptr(rax, rdx);             // push b
  1093   // stack: ..., a, b, a, b
  1096 void TemplateTable::dup2_x1() {
  1097   transition(vtos, vtos);
  1098   // stack: ..., a, b, c
  1099   __ load_ptr_and_tag(0, rcx, rbx);  // load c
  1100   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1101   __ push_ptr(rax, rdx);             // push b
  1102   __ push_ptr(rcx, rbx);             // push c
  1103   // stack: ..., a, b, c, b, c
  1104   __ store_ptr_and_tag(3, rcx, rbx); // store c in b
  1105   // stack: ..., a, c, c, b, c
  1106   __ load_ptr_and_tag(4, rcx, rbx);  // load a
  1107   __ store_ptr_and_tag(2, rcx, rbx); // store a in 2nd c
  1108   // stack: ..., a, c, a, b, c
  1109   __ store_ptr_and_tag(4, rax, rdx); // store b in a
  1110   // stack: ..., b, c, a, b, c
  1113 void TemplateTable::dup2_x2() {
  1114   transition(vtos, vtos);
  1115   // stack: ..., a, b, c, d
  1116   __ load_ptr_and_tag(0, rcx, rbx);  // load d
  1117   __ load_ptr_and_tag(1, rax, rdx);  // load c
  1118   __ push_ptr(rax, rdx);             // push c
  1119   __ push_ptr(rcx, rbx);             // push d
  1120   // stack: ..., a, b, c, d, c, d
  1121   __ load_ptr_and_tag(4, rax, rdx);  // load b
  1122   __ store_ptr_and_tag(2, rax, rdx); // store b in d
  1123   __ store_ptr_and_tag(4, rcx, rbx); // store d in b
  1124   // stack: ..., a, d, c, b, c, d
  1125   __ load_ptr_and_tag(5, rcx, rbx);  // load a
  1126   __ load_ptr_and_tag(3, rax, rdx);  // load c
  1127   __ store_ptr_and_tag(3, rcx, rbx); // store a in c
  1128   __ store_ptr_and_tag(5, rax, rdx); // store c in a
  1129   // stack: ..., c, d, a, b, c, d
  1132 void TemplateTable::swap() {
  1133   transition(vtos, vtos);
  1134   // stack: ..., a, b
  1135   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1136   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1137   __ store_ptr_and_tag(0, rcx, rbx); // store a in b
  1138   __ store_ptr_and_tag(1, rax, rdx); // store b in a
  1139   // stack: ..., b, a
  1142 void TemplateTable::iop2(Operation op) {
  1143   transition(itos, itos);
  1144   switch (op) {
  1145   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1146   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1147   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1148   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1149   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1150   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1151   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1152   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1153   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1154   default   : ShouldNotReachHere();
  1158 void TemplateTable::lop2(Operation op) {
  1159   transition(ltos, ltos);
  1160   switch (op) {
  1161   case add  :                    __ pop_l(rdx); __ addq (rax, rdx); break;
  1162   case sub  : __ movq(rdx, rax); __ pop_l(rax); __ subq (rax, rdx); break;
  1163   case _and :                    __ pop_l(rdx); __ andq (rax, rdx); break;
  1164   case _or  :                    __ pop_l(rdx); __ orq  (rax, rdx); break;
  1165   case _xor :                    __ pop_l(rdx); __ xorq (rax, rdx); break;
  1166   default : ShouldNotReachHere();
  1170 void TemplateTable::idiv() {
  1171   transition(itos, itos);
  1172   __ movl(rcx, rax);
  1173   __ pop_i(rax);
  1174   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1175   //       they are not equal, one could do a normal division (no correction
  1176   //       needed), which may speed up this implementation for the common case.
  1177   //       (see also JVM spec., p.243 & p.271)
  1178   __ corrected_idivl(rcx);
  1181 void TemplateTable::irem() {
  1182   transition(itos, itos);
  1183   __ movl(rcx, rax);
  1184   __ pop_i(rax);
  1185   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1186   //       they are not equal, one could do a normal division (no correction
  1187   //       needed), which may speed up this implementation for the common case.
  1188   //       (see also JVM spec., p.243 & p.271)
  1189   __ corrected_idivl(rcx);
  1190   __ movl(rax, rdx);
  1193 void TemplateTable::lmul() {
  1194   transition(ltos, ltos);
  1195   __ pop_l(rdx);
  1196   __ imulq(rax, rdx);
  1199 void TemplateTable::ldiv() {
  1200   transition(ltos, ltos);
  1201   __ movq(rcx, rax);
  1202   __ pop_l(rax);
  1203   // generate explicit div0 check
  1204   __ testq(rcx, rcx);
  1205   __ jump_cc(Assembler::zero,
  1206              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1207   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1208   //       they are not equal, one could do a normal division (no correction
  1209   //       needed), which may speed up this implementation for the common case.
  1210   //       (see also JVM spec., p.243 & p.271)
  1211   __ corrected_idivq(rcx); // kills rbx
  1214 void TemplateTable::lrem() {
  1215   transition(ltos, ltos);
  1216   __ movq(rcx, rax);
  1217   __ pop_l(rax);
  1218   __ testq(rcx, rcx);
  1219   __ jump_cc(Assembler::zero,
  1220              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1221   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1222   //       they are not equal, one could do a normal division (no correction
  1223   //       needed), which may speed up this implementation for the common case.
  1224   //       (see also JVM spec., p.243 & p.271)
  1225   __ corrected_idivq(rcx); // kills rbx
  1226   __ movq(rax, rdx);
  1229 void TemplateTable::lshl() {
  1230   transition(itos, ltos);
  1231   __ movl(rcx, rax);                             // get shift count
  1232   __ pop_l(rax);                                 // get shift value
  1233   __ shlq(rax);
  1236 void TemplateTable::lshr() {
  1237   transition(itos, ltos);
  1238   __ movl(rcx, rax);                             // get shift count
  1239   __ pop_l(rax);                                 // get shift value
  1240   __ sarq(rax);
  1243 void TemplateTable::lushr() {
  1244   transition(itos, ltos);
  1245   __ movl(rcx, rax);                             // get shift count
  1246   __ pop_l(rax);                                 // get shift value
  1247   __ shrq(rax);
  1250 void TemplateTable::fop2(Operation op) {
  1251   transition(ftos, ftos);
  1252   switch (op) {
  1253   case add:
  1254     __ addss(xmm0, at_rsp());
  1255     __ addq(rsp, Interpreter::stackElementSize());
  1256     break;
  1257   case sub:
  1258     __ movflt(xmm1, xmm0);
  1259     __ pop_f(xmm0);
  1260     __ subss(xmm0, xmm1);
  1261     break;
  1262   case mul:
  1263     __ mulss(xmm0, at_rsp());
  1264     __ addq(rsp, Interpreter::stackElementSize());
  1265     break;
  1266   case div:
  1267     __ movflt(xmm1, xmm0);
  1268     __ pop_f(xmm0);
  1269     __ divss(xmm0, xmm1);
  1270     break;
  1271   case rem:
  1272     __ movflt(xmm1, xmm0);
  1273     __ pop_f(xmm0);
  1274     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1275     break;
  1276   default:
  1277     ShouldNotReachHere();
  1278     break;
  1282 void TemplateTable::dop2(Operation op) {
  1283   transition(dtos, dtos);
  1284   switch (op) {
  1285   case add:
  1286     __ addsd(xmm0, at_rsp());
  1287     __ addq(rsp, 2 * Interpreter::stackElementSize());
  1288     break;
  1289   case sub:
  1290     __ movdbl(xmm1, xmm0);
  1291     __ pop_d(xmm0);
  1292     __ subsd(xmm0, xmm1);
  1293     break;
  1294   case mul:
  1295     __ mulsd(xmm0, at_rsp());
  1296     __ addq(rsp, 2 * Interpreter::stackElementSize());
  1297     break;
  1298   case div:
  1299     __ movdbl(xmm1, xmm0);
  1300     __ pop_d(xmm0);
  1301     __ divsd(xmm0, xmm1);
  1302     break;
  1303   case rem:
  1304     __ movdbl(xmm1, xmm0);
  1305     __ pop_d(xmm0);
  1306     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1307     break;
  1308   default:
  1309     ShouldNotReachHere();
  1310     break;
  1314 void TemplateTable::ineg() {
  1315   transition(itos, itos);
  1316   __ negl(rax);
  1319 void TemplateTable::lneg() {
  1320   transition(ltos, ltos);
  1321   __ negq(rax);
  1324 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1325 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1326   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1327   // of 128-bits operands for SSE instructions.
  1328   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1329   // Store the value to a 128-bits operand.
  1330   operand[0] = lo;
  1331   operand[1] = hi;
  1332   return operand;
  1335 // Buffer for 128-bits masks used by SSE instructions.
  1336 static jlong float_signflip_pool[2*2];
  1337 static jlong double_signflip_pool[2*2];
  1339 void TemplateTable::fneg() {
  1340   transition(ftos, ftos);
  1341   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1342   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1345 void TemplateTable::dneg() {
  1346   transition(dtos, dtos);
  1347   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1348   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1351 void TemplateTable::iinc() {
  1352   transition(vtos, vtos);
  1353   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1354   locals_index(rbx);
  1355   __ addl(iaddress(rbx), rdx);
  1358 void TemplateTable::wide_iinc() {
  1359   transition(vtos, vtos);
  1360   __ movl(rdx, at_bcp(4)); // get constant
  1361   locals_index_wide(rbx);
  1362   __ bswapl(rdx); // swap bytes & sign-extend constant
  1363   __ sarl(rdx, 16);
  1364   __ addl(iaddress(rbx), rdx);
  1365   // Note: should probably use only one movl to get both
  1366   //       the index and the constant -> fix this
  1369 void TemplateTable::convert() {
  1370   // Checking
  1371 #ifdef ASSERT
  1373     TosState tos_in  = ilgl;
  1374     TosState tos_out = ilgl;
  1375     switch (bytecode()) {
  1376     case Bytecodes::_i2l: // fall through
  1377     case Bytecodes::_i2f: // fall through
  1378     case Bytecodes::_i2d: // fall through
  1379     case Bytecodes::_i2b: // fall through
  1380     case Bytecodes::_i2c: // fall through
  1381     case Bytecodes::_i2s: tos_in = itos; break;
  1382     case Bytecodes::_l2i: // fall through
  1383     case Bytecodes::_l2f: // fall through
  1384     case Bytecodes::_l2d: tos_in = ltos; break;
  1385     case Bytecodes::_f2i: // fall through
  1386     case Bytecodes::_f2l: // fall through
  1387     case Bytecodes::_f2d: tos_in = ftos; break;
  1388     case Bytecodes::_d2i: // fall through
  1389     case Bytecodes::_d2l: // fall through
  1390     case Bytecodes::_d2f: tos_in = dtos; break;
  1391     default             : ShouldNotReachHere();
  1393     switch (bytecode()) {
  1394     case Bytecodes::_l2i: // fall through
  1395     case Bytecodes::_f2i: // fall through
  1396     case Bytecodes::_d2i: // fall through
  1397     case Bytecodes::_i2b: // fall through
  1398     case Bytecodes::_i2c: // fall through
  1399     case Bytecodes::_i2s: tos_out = itos; break;
  1400     case Bytecodes::_i2l: // fall through
  1401     case Bytecodes::_f2l: // fall through
  1402     case Bytecodes::_d2l: tos_out = ltos; break;
  1403     case Bytecodes::_i2f: // fall through
  1404     case Bytecodes::_l2f: // fall through
  1405     case Bytecodes::_d2f: tos_out = ftos; break;
  1406     case Bytecodes::_i2d: // fall through
  1407     case Bytecodes::_l2d: // fall through
  1408     case Bytecodes::_f2d: tos_out = dtos; break;
  1409     default             : ShouldNotReachHere();
  1411     transition(tos_in, tos_out);
  1413 #endif // ASSERT
  1415   static const int64_t is_nan = 0x8000000000000000L;
  1417   // Conversion
  1418   switch (bytecode()) {
  1419   case Bytecodes::_i2l:
  1420     __ movslq(rax, rax);
  1421     break;
  1422   case Bytecodes::_i2f:
  1423     __ cvtsi2ssl(xmm0, rax);
  1424     break;
  1425   case Bytecodes::_i2d:
  1426     __ cvtsi2sdl(xmm0, rax);
  1427     break;
  1428   case Bytecodes::_i2b:
  1429     __ movsbl(rax, rax);
  1430     break;
  1431   case Bytecodes::_i2c:
  1432     __ movzwl(rax, rax);
  1433     break;
  1434   case Bytecodes::_i2s:
  1435     __ movswl(rax, rax);
  1436     break;
  1437   case Bytecodes::_l2i:
  1438     __ movl(rax, rax);
  1439     break;
  1440   case Bytecodes::_l2f:
  1441     __ cvtsi2ssq(xmm0, rax);
  1442     break;
  1443   case Bytecodes::_l2d:
  1444     __ cvtsi2sdq(xmm0, rax);
  1445     break;
  1446   case Bytecodes::_f2i:
  1448     Label L;
  1449     __ cvttss2sil(rax, xmm0);
  1450     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1451     __ jcc(Assembler::notEqual, L);
  1452     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1453     __ bind(L);
  1455     break;
  1456   case Bytecodes::_f2l:
  1458     Label L;
  1459     __ cvttss2siq(rax, xmm0);
  1460     // NaN or overflow/underflow?
  1461     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1462     __ jcc(Assembler::notEqual, L);
  1463     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1464     __ bind(L);
  1466     break;
  1467   case Bytecodes::_f2d:
  1468     __ cvtss2sd(xmm0, xmm0);
  1469     break;
  1470   case Bytecodes::_d2i:
  1472     Label L;
  1473     __ cvttsd2sil(rax, xmm0);
  1474     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1475     __ jcc(Assembler::notEqual, L);
  1476     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1477     __ bind(L);
  1479     break;
  1480   case Bytecodes::_d2l:
  1482     Label L;
  1483     __ cvttsd2siq(rax, xmm0);
  1484     // NaN or overflow/underflow?
  1485     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1486     __ jcc(Assembler::notEqual, L);
  1487     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1488     __ bind(L);
  1490     break;
  1491   case Bytecodes::_d2f:
  1492     __ cvtsd2ss(xmm0, xmm0);
  1493     break;
  1494   default:
  1495     ShouldNotReachHere();
  1499 void TemplateTable::lcmp() {
  1500   transition(ltos, itos);
  1501   Label done;
  1502   __ pop_l(rdx);
  1503   __ cmpq(rdx, rax);
  1504   __ movl(rax, -1);
  1505   __ jccb(Assembler::less, done);
  1506   __ setb(Assembler::notEqual, rax);
  1507   __ movzbl(rax, rax);
  1508   __ bind(done);
  1511 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1512   Label done;
  1513   if (is_float) {
  1514     // XXX get rid of pop here, use ... reg, mem32
  1515     __ pop_f(xmm1);
  1516     __ ucomiss(xmm1, xmm0);
  1517   } else {
  1518     // XXX get rid of pop here, use ... reg, mem64
  1519     __ pop_d(xmm1);
  1520     __ ucomisd(xmm1, xmm0);
  1522   if (unordered_result < 0) {
  1523     __ movl(rax, -1);
  1524     __ jccb(Assembler::parity, done);
  1525     __ jccb(Assembler::below, done);
  1526     __ setb(Assembler::notEqual, rdx);
  1527     __ movzbl(rax, rdx);
  1528   } else {
  1529     __ movl(rax, 1);
  1530     __ jccb(Assembler::parity, done);
  1531     __ jccb(Assembler::above, done);
  1532     __ movl(rax, 0);
  1533     __ jccb(Assembler::equal, done);
  1534     __ decrementl(rax);
  1536   __ bind(done);
  1539 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1540   __ get_method(rcx); // rcx holds method
  1541   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1542                                      // holds bumped taken count
  1544   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
  1545                              InvocationCounter::counter_offset();
  1546   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
  1547                               InvocationCounter::counter_offset();
  1548   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1550   // Load up edx with the branch displacement
  1551   __ movl(rdx, at_bcp(1));
  1552   __ bswapl(rdx);
  1554   if (!is_wide) {
  1555     __ sarl(rdx, 16);
  1557   __ movslq(rdx, rdx);
  1559   // Handle all the JSR stuff here, then exit.
  1560   // It's much shorter and cleaner than intermingling with the non-JSR
  1561   // normal-branch stuff occuring below.
  1562   if (is_jsr) {
  1563     // Pre-load the next target bytecode into rbx
  1564     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1566     // compute return address as bci in rax
  1567     __ leaq(rax, at_bcp((is_wide ? 5 : 3) -
  1568                         in_bytes(constMethodOopDesc::codes_offset())));
  1569     __ subq(rax, Address(rcx, methodOopDesc::const_offset()));
  1570     // Adjust the bcp in r13 by the displacement in rdx
  1571     __ addq(r13, rdx);
  1572     // jsr returns atos that is not an oop
  1573     __ push_i(rax);
  1574     __ dispatch_only(vtos);
  1575     return;
  1578   // Normal (non-jsr) branch handling
  1580   // Adjust the bcp in r13 by the displacement in rdx
  1581   __ addq(r13, rdx);
  1583   assert(UseLoopCounter || !UseOnStackReplacement,
  1584          "on-stack-replacement requires loop counters");
  1585   Label backedge_counter_overflow;
  1586   Label profile_method;
  1587   Label dispatch;
  1588   if (UseLoopCounter) {
  1589     // increment backedge counter for backward branches
  1590     // rax: MDO
  1591     // ebx: MDO bumped taken-count
  1592     // rcx: method
  1593     // rdx: target offset
  1594     // r13: target bcp
  1595     // r14: locals pointer
  1596     __ testl(rdx, rdx);             // check if forward or backward branch
  1597     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1599     // increment counter
  1600     __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1601     __ incrementl(rax, InvocationCounter::count_increment); // increment
  1602                                                             // counter
  1603     __ movl(Address(rcx, be_offset), rax);        // store counter
  1605     __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1606     __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1607     __ addl(rax, Address(rcx, be_offset));        // add both counters
  1609     if (ProfileInterpreter) {
  1610       // Test to see if we should create a method data oop
  1611       __ cmp32(rax,
  1612                ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1613       __ jcc(Assembler::less, dispatch);
  1615       // if no method data exists, go to profile method
  1616       __ test_method_data_pointer(rax, profile_method);
  1618       if (UseOnStackReplacement) {
  1619         // check for overflow against ebx which is the MDO taken count
  1620         __ cmp32(rbx,
  1621                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1622         __ jcc(Assembler::below, dispatch);
  1624         // When ProfileInterpreter is on, the backedge_count comes
  1625         // from the methodDataOop, which value does not get reset on
  1626         // the call to frequency_counter_overflow().  To avoid
  1627         // excessive calls to the overflow routine while the method is
  1628         // being compiled, add a second test to make sure the overflow
  1629         // function is called only once every overflow_frequency.
  1630         const int overflow_frequency = 1024;
  1631         __ andl(rbx, overflow_frequency - 1);
  1632         __ jcc(Assembler::zero, backedge_counter_overflow);
  1635     } else {
  1636       if (UseOnStackReplacement) {
  1637         // check for overflow against eax, which is the sum of the
  1638         // counters
  1639         __ cmp32(rax,
  1640                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1641         __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1645     __ bind(dispatch);
  1648   // Pre-load the next target bytecode into rbx
  1649   __ load_unsigned_byte(rbx, Address(r13, 0));
  1651   // continue with the bytecode @ target
  1652   // eax: return bci for jsr's, unused otherwise
  1653   // ebx: target bytecode
  1654   // r13: target bcp
  1655   __ dispatch_only(vtos);
  1657   if (UseLoopCounter) {
  1658     if (ProfileInterpreter) {
  1659       // Out-of-line code to allocate method data oop.
  1660       __ bind(profile_method);
  1661       __ call_VM(noreg,
  1662                  CAST_FROM_FN_PTR(address,
  1663                                   InterpreterRuntime::profile_method), r13);
  1664       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1665       __ movq(rcx, Address(rbp, method_offset));
  1666       __ movq(rcx, Address(rcx,
  1667                            in_bytes(methodOopDesc::method_data_offset())));
  1668       __ movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1669               rcx);
  1670       __ test_method_data_pointer(rcx, dispatch);
  1671       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
  1672       __ addq(rcx, in_bytes(methodDataOopDesc::data_offset()));
  1673       __ addq(rcx, rax);
  1674       __ movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1675               rcx);
  1676       __ jmp(dispatch);
  1679     if (UseOnStackReplacement) {
  1680       // invocation counter overflow
  1681       __ bind(backedge_counter_overflow);
  1682       __ negq(rdx);
  1683       __ addq(rdx, r13); // branch bcp
  1684       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1685       __ call_VM(noreg,
  1686                  CAST_FROM_FN_PTR(address,
  1687                                   InterpreterRuntime::frequency_counter_overflow),
  1688                  rdx);
  1689       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1691       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1692       // ebx: target bytecode
  1693       // rdx: scratch
  1694       // r14: locals pointer
  1695       // r13: bcp
  1696       __ testq(rax, rax);                        // test result
  1697       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1698       // nmethod may have been invalidated (VM may block upon call_VM return)
  1699       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1700       __ cmpl(rcx, InvalidOSREntryBci);
  1701       __ jcc(Assembler::equal, dispatch);
  1703       // We have the address of an on stack replacement routine in eax
  1704       // We need to prepare to execute the OSR method. First we must
  1705       // migrate the locals and monitors off of the stack.
  1707       __ movq(r13, rax);                             // save the nmethod
  1709       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1711       // eax is OSR buffer, move it to expected parameter location
  1712       __ movq(j_rarg0, rax);
  1714       // We use j_rarg definitions here so that registers don't conflict as parameter
  1715       // registers change across platforms as we are in the midst of a calling
  1716       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1718       const Register retaddr = j_rarg2;
  1719       const Register sender_sp = j_rarg1;
  1721       // pop the interpreter frame
  1722       __ movq(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1723       __ leave();                                // remove frame anchor
  1724       __ popq(retaddr);                            // get return address
  1725       __ movq(rsp, sender_sp);                   // set sp to sender sp
  1726       // Ensure compiled code always sees stack at proper alignment
  1727       __ andq(rsp, -(StackAlignmentInBytes));
  1729       // unlike x86 we need no specialized return from compiled code
  1730       // to the interpreter or the call stub.
  1732       // push the return address
  1733       __ pushq(retaddr);
  1735       // and begin the OSR nmethod
  1736       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1742 void TemplateTable::if_0cmp(Condition cc) {
  1743   transition(itos, vtos);
  1744   // assume branch is more often taken than not (loops use backward branches)
  1745   Label not_taken;
  1746   __ testl(rax, rax);
  1747   __ jcc(j_not(cc), not_taken);
  1748   branch(false, false);
  1749   __ bind(not_taken);
  1750   __ profile_not_taken_branch(rax);
  1753 void TemplateTable::if_icmp(Condition cc) {
  1754   transition(itos, vtos);
  1755   // assume branch is more often taken than not (loops use backward branches)
  1756   Label not_taken;
  1757   __ pop_i(rdx);
  1758   __ cmpl(rdx, rax);
  1759   __ jcc(j_not(cc), not_taken);
  1760   branch(false, false);
  1761   __ bind(not_taken);
  1762   __ profile_not_taken_branch(rax);
  1765 void TemplateTable::if_nullcmp(Condition cc) {
  1766   transition(atos, vtos);
  1767   // assume branch is more often taken than not (loops use backward branches)
  1768   Label not_taken;
  1769   __ testq(rax, rax);
  1770   __ jcc(j_not(cc), not_taken);
  1771   branch(false, false);
  1772   __ bind(not_taken);
  1773   __ profile_not_taken_branch(rax);
  1776 void TemplateTable::if_acmp(Condition cc) {
  1777   transition(atos, vtos);
  1778   // assume branch is more often taken than not (loops use backward branches)
  1779   Label not_taken;
  1780   __ pop_ptr(rdx);
  1781   __ cmpq(rdx, rax);
  1782   __ jcc(j_not(cc), not_taken);
  1783   branch(false, false);
  1784   __ bind(not_taken);
  1785   __ profile_not_taken_branch(rax);
  1788 void TemplateTable::ret() {
  1789   transition(vtos, vtos);
  1790   locals_index(rbx);
  1791   __ movq(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1792   __ profile_ret(rbx, rcx);
  1793   __ get_method(rax);
  1794   __ movq(r13, Address(rax, methodOopDesc::const_offset()));
  1795   __ leaq(r13, Address(r13, rbx, Address::times_1,
  1796                        constMethodOopDesc::codes_offset()));
  1797   __ dispatch_next(vtos);
  1800 void TemplateTable::wide_ret() {
  1801   transition(vtos, vtos);
  1802   locals_index_wide(rbx);
  1803   __ movq(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1804   __ profile_ret(rbx, rcx);
  1805   __ get_method(rax);
  1806   __ movq(r13, Address(rax, methodOopDesc::const_offset()));
  1807   __ leaq(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1808   __ dispatch_next(vtos);
  1811 void TemplateTable::tableswitch() {
  1812   Label default_case, continue_execution;
  1813   transition(itos, vtos);
  1814   // align r13
  1815   __ leaq(rbx, at_bcp(BytesPerInt));
  1816   __ andq(rbx, -BytesPerInt);
  1817   // load lo & hi
  1818   __ movl(rcx, Address(rbx, BytesPerInt));
  1819   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1820   __ bswapl(rcx);
  1821   __ bswapl(rdx);
  1822   // check against lo & hi
  1823   __ cmpl(rax, rcx);
  1824   __ jcc(Assembler::less, default_case);
  1825   __ cmpl(rax, rdx);
  1826   __ jcc(Assembler::greater, default_case);
  1827   // lookup dispatch offset
  1828   __ subl(rax, rcx);
  1829   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1830   __ profile_switch_case(rax, rbx, rcx);
  1831   // continue execution
  1832   __ bind(continue_execution);
  1833   __ bswapl(rdx);
  1834   __ movslq(rdx, rdx);
  1835   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1836   __ addq(r13, rdx);
  1837   __ dispatch_only(vtos);
  1838   // handle default
  1839   __ bind(default_case);
  1840   __ profile_switch_default(rax);
  1841   __ movl(rdx, Address(rbx, 0));
  1842   __ jmp(continue_execution);
  1845 void TemplateTable::lookupswitch() {
  1846   transition(itos, itos);
  1847   __ stop("lookupswitch bytecode should have been rewritten");
  1850 void TemplateTable::fast_linearswitch() {
  1851   transition(itos, vtos);
  1852   Label loop_entry, loop, found, continue_execution;
  1853   // bswap rax so we can avoid bswapping the table entries
  1854   __ bswapl(rax);
  1855   // align r13
  1856   __ leaq(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1857                                      // this instruction (change offsets
  1858                                      // below)
  1859   __ andq(rbx, -BytesPerInt);
  1860   // set counter
  1861   __ movl(rcx, Address(rbx, BytesPerInt));
  1862   __ bswapl(rcx);
  1863   __ jmpb(loop_entry);
  1864   // table search
  1865   __ bind(loop);
  1866   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1867   __ jcc(Assembler::equal, found);
  1868   __ bind(loop_entry);
  1869   __ decrementl(rcx);
  1870   __ jcc(Assembler::greaterEqual, loop);
  1871   // default case
  1872   __ profile_switch_default(rax);
  1873   __ movl(rdx, Address(rbx, 0));
  1874   __ jmp(continue_execution);
  1875   // entry found -> get offset
  1876   __ bind(found);
  1877   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1878   __ profile_switch_case(rcx, rax, rbx);
  1879   // continue execution
  1880   __ bind(continue_execution);
  1881   __ bswapl(rdx);
  1882   __ movslq(rdx, rdx);
  1883   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1884   __ addq(r13, rdx);
  1885   __ dispatch_only(vtos);
  1888 void TemplateTable::fast_binaryswitch() {
  1889   transition(itos, vtos);
  1890   // Implementation using the following core algorithm:
  1891   //
  1892   // int binary_search(int key, LookupswitchPair* array, int n) {
  1893   //   // Binary search according to "Methodik des Programmierens" by
  1894   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1895   //   int i = 0;
  1896   //   int j = n;
  1897   //   while (i+1 < j) {
  1898   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1899   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1900   //     // where a stands for the array and assuming that the (inexisting)
  1901   //     // element a[n] is infinitely big.
  1902   //     int h = (i + j) >> 1;
  1903   //     // i < h < j
  1904   //     if (key < array[h].fast_match()) {
  1905   //       j = h;
  1906   //     } else {
  1907   //       i = h;
  1908   //     }
  1909   //   }
  1910   //   // R: a[i] <= key < a[i+1] or Q
  1911   //   // (i.e., if key is within array, i is the correct index)
  1912   //   return i;
  1913   // }
  1915   // Register allocation
  1916   const Register key   = rax; // already set (tosca)
  1917   const Register array = rbx;
  1918   const Register i     = rcx;
  1919   const Register j     = rdx;
  1920   const Register h     = rdi;
  1921   const Register temp  = rsi;
  1923   // Find array start
  1924   __ leaq(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1925                                            // get rid of this
  1926                                            // instruction (change
  1927                                            // offsets below)
  1928   __ andq(array, -BytesPerInt);
  1930   // Initialize i & j
  1931   __ xorl(i, i);                            // i = 0;
  1932   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1934   // Convert j into native byteordering
  1935   __ bswapl(j);
  1937   // And start
  1938   Label entry;
  1939   __ jmp(entry);
  1941   // binary search loop
  1943     Label loop;
  1944     __ bind(loop);
  1945     // int h = (i + j) >> 1;
  1946     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1947     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1948     // if (key < array[h].fast_match()) {
  1949     //   j = h;
  1950     // } else {
  1951     //   i = h;
  1952     // }
  1953     // Convert array[h].match to native byte-ordering before compare
  1954     __ movl(temp, Address(array, h, Address::times_8));
  1955     __ bswapl(temp);
  1956     __ cmpl(key, temp);
  1957     // j = h if (key <  array[h].fast_match())
  1958     __ cmovl(Assembler::less, j, h);
  1959     // i = h if (key >= array[h].fast_match())
  1960     __ cmovl(Assembler::greaterEqual, i, h);
  1961     // while (i+1 < j)
  1962     __ bind(entry);
  1963     __ leal(h, Address(i, 1)); // i+1
  1964     __ cmpl(h, j);             // i+1 < j
  1965     __ jcc(Assembler::less, loop);
  1968   // end of binary search, result index is i (must check again!)
  1969   Label default_case;
  1970   // Convert array[i].match to native byte-ordering before compare
  1971   __ movl(temp, Address(array, i, Address::times_8));
  1972   __ bswapl(temp);
  1973   __ cmpl(key, temp);
  1974   __ jcc(Assembler::notEqual, default_case);
  1976   // entry found -> j = offset
  1977   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  1978   __ profile_switch_case(i, key, array);
  1979   __ bswapl(j);
  1980   __ movslq(j, j);
  1981   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  1982   __ addq(r13, j);
  1983   __ dispatch_only(vtos);
  1985   // default case -> j = default offset
  1986   __ bind(default_case);
  1987   __ profile_switch_default(i);
  1988   __ movl(j, Address(array, -2 * BytesPerInt));
  1989   __ bswapl(j);
  1990   __ movslq(j, j);
  1991   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  1992   __ addq(r13, j);
  1993   __ dispatch_only(vtos);
  1997 void TemplateTable::_return(TosState state) {
  1998   transition(state, state);
  1999   assert(_desc->calls_vm(),
  2000          "inconsistent calls_vm information"); // call in remove_activation
  2002   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2003     assert(state == vtos, "only valid state");
  2004     __ movq(c_rarg1, aaddress(0));
  2005     __ load_klass(rdi, c_rarg1);
  2006     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  2007     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2008     Label skip_register_finalizer;
  2009     __ jcc(Assembler::zero, skip_register_finalizer);
  2011     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2013     __ bind(skip_register_finalizer);
  2016   __ remove_activation(state, r13);
  2017   __ jmp(r13);
  2020 // ----------------------------------------------------------------------------
  2021 // Volatile variables demand their effects be made known to all CPU's
  2022 // in order.  Store buffers on most chips allow reads & writes to
  2023 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2024 // without some kind of memory barrier (i.e., it's not sufficient that
  2025 // the interpreter does not reorder volatile references, the hardware
  2026 // also must not reorder them).
  2027 //
  2028 // According to the new Java Memory Model (JMM):
  2029 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2030 //     writes act as aquire & release, so:
  2031 // (2) A read cannot let unrelated NON-volatile memory refs that
  2032 //     happen after the read float up to before the read.  It's OK for
  2033 //     non-volatile memory refs that happen before the volatile read to
  2034 //     float down below it.
  2035 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2036 //     memory refs that happen BEFORE the write float down to after the
  2037 //     write.  It's OK for non-volatile memory refs that happen after the
  2038 //     volatile write to float up before it.
  2039 //
  2040 // We only put in barriers around volatile refs (they are expensive),
  2041 // not _between_ memory refs (that would require us to track the
  2042 // flavor of the previous memory refs).  Requirements (2) and (3)
  2043 // require some barriers before volatile stores and after volatile
  2044 // loads.  These nearly cover requirement (1) but miss the
  2045 // volatile-store-volatile-load case.  This final case is placed after
  2046 // volatile-stores although it could just as well go before
  2047 // volatile-loads.
  2048 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2049                                      order_constraint) {
  2050   // Helper function to insert a is-volatile test and memory barrier
  2051   if (os::is_MP()) { // Not needed on single CPU
  2052     __ membar(order_constraint);
  2056 void TemplateTable::resolve_cache_and_index(int byte_no,
  2057                                             Register Rcache,
  2058                                             Register index) {
  2059   assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
  2061   const Register temp = rbx;
  2062   assert_different_registers(Rcache, index, temp);
  2064   const int shift_count = (1 + byte_no) * BitsPerByte;
  2065   Label resolved;
  2066   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2067   __ movl(temp, Address(Rcache,
  2068                         index, Address::times_8,
  2069                         constantPoolCacheOopDesc::base_offset() +
  2070                         ConstantPoolCacheEntry::indices_offset()));
  2071   __ shrl(temp, shift_count);
  2072   // have we resolved this bytecode?
  2073   __ andl(temp, 0xFF);
  2074   __ cmpl(temp, (int) bytecode());
  2075   __ jcc(Assembler::equal, resolved);
  2077   // resolve first time through
  2078   address entry;
  2079   switch (bytecode()) {
  2080   case Bytecodes::_getstatic:
  2081   case Bytecodes::_putstatic:
  2082   case Bytecodes::_getfield:
  2083   case Bytecodes::_putfield:
  2084     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2085     break;
  2086   case Bytecodes::_invokevirtual:
  2087   case Bytecodes::_invokespecial:
  2088   case Bytecodes::_invokestatic:
  2089   case Bytecodes::_invokeinterface:
  2090     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2091     break;
  2092   default:
  2093     ShouldNotReachHere();
  2094     break;
  2096   __ movl(temp, (int) bytecode());
  2097   __ call_VM(noreg, entry, temp);
  2099   // Update registers with resolved info
  2100   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2101   __ bind(resolved);
  2104 // The Rcache and index registers must be set before call
  2105 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2106                                               Register cache,
  2107                                               Register index,
  2108                                               Register off,
  2109                                               Register flags,
  2110                                               bool is_static = false) {
  2111   assert_different_registers(cache, index, flags, off);
  2113   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2114   // Field offset
  2115   __ movq(off, Address(cache, index, Address::times_8,
  2116                        in_bytes(cp_base_offset +
  2117                                 ConstantPoolCacheEntry::f2_offset())));
  2118   // Flags
  2119   __ movl(flags, Address(cache, index, Address::times_8,
  2120                          in_bytes(cp_base_offset +
  2121                                   ConstantPoolCacheEntry::flags_offset())));
  2123   // klass overwrite register
  2124   if (is_static) {
  2125     __ movq(obj, Address(cache, index, Address::times_8,
  2126                          in_bytes(cp_base_offset +
  2127                                   ConstantPoolCacheEntry::f1_offset())));
  2131 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2132                                                Register method,
  2133                                                Register itable_index,
  2134                                                Register flags,
  2135                                                bool is_invokevirtual,
  2136                                                bool is_invokevfinal /*unused*/) {
  2137   // setup registers
  2138   const Register cache = rcx;
  2139   const Register index = rdx;
  2140   assert_different_registers(method, flags);
  2141   assert_different_registers(method, cache, index);
  2142   assert_different_registers(itable_index, flags);
  2143   assert_different_registers(itable_index, cache, index);
  2144   // determine constant pool cache field offsets
  2145   const int method_offset = in_bytes(
  2146     constantPoolCacheOopDesc::base_offset() +
  2147       (is_invokevirtual
  2148        ? ConstantPoolCacheEntry::f2_offset()
  2149        : ConstantPoolCacheEntry::f1_offset()));
  2150   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2151                                     ConstantPoolCacheEntry::flags_offset());
  2152   // access constant pool cache fields
  2153   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2154                                     ConstantPoolCacheEntry::f2_offset());
  2156   resolve_cache_and_index(byte_no, cache, index);
  2158   assert(wordSize == 8, "adjust code below");
  2159   __ movq(method, Address(cache, index, Address::times_8, method_offset));
  2160   if (itable_index != noreg) {
  2161     __ movq(itable_index,
  2162             Address(cache, index, Address::times_8, index_offset));
  2164   __ movl(flags , Address(cache, index, Address::times_8, flags_offset));
  2168 // The registers cache and index expected to be set before call.
  2169 // Correct values of the cache and index registers are preserved.
  2170 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2171                                             bool is_static, bool has_tos) {
  2172   // do the JVMTI work here to avoid disturbing the register state below
  2173   // We use c_rarg registers here because we want to use the register used in
  2174   // the call to the VM
  2175   if (JvmtiExport::can_post_field_access()) {
  2176     // Check to see if a field access watch has been set before we
  2177     // take the time to call into the VM.
  2178     Label L1;
  2179     assert_different_registers(cache, index, rax);
  2180     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2181     __ testl(rax, rax);
  2182     __ jcc(Assembler::zero, L1);
  2184     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2186     // cache entry pointer
  2187     __ addq(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2188     __ shll(c_rarg3, LogBytesPerWord);
  2189     __ addq(c_rarg2, c_rarg3);
  2190     if (is_static) {
  2191       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2192     } else {
  2193       __ movq(c_rarg1, at_tos()); // get object pointer without popping it
  2194       __ verify_oop(c_rarg1);
  2196     // c_rarg1: object pointer or NULL
  2197     // c_rarg2: cache entry pointer
  2198     // c_rarg3: jvalue object on the stack
  2199     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2200                                        InterpreterRuntime::post_field_access),
  2201                c_rarg1, c_rarg2, c_rarg3);
  2202     __ get_cache_and_index_at_bcp(cache, index, 1);
  2203     __ bind(L1);
  2207 void TemplateTable::pop_and_check_object(Register r) {
  2208   __ pop_ptr(r);
  2209   __ null_check(r);  // for field access must check obj.
  2210   __ verify_oop(r);
  2213 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2214   transition(vtos, vtos);
  2216   const Register cache = rcx;
  2217   const Register index = rdx;
  2218   const Register obj   = c_rarg3;
  2219   const Register off   = rbx;
  2220   const Register flags = rax;
  2221   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2223   resolve_cache_and_index(byte_no, cache, index);
  2224   jvmti_post_field_access(cache, index, is_static, false);
  2225   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2227   if (!is_static) {
  2228     // obj is on the stack
  2229     pop_and_check_object(obj);
  2232   const Address field(obj, off, Address::times_1);
  2234   Label Done, notByte, notInt, notShort, notChar,
  2235               notLong, notFloat, notObj, notDouble;
  2237   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2238   assert(btos == 0, "change code, btos != 0");
  2240   __ andl(flags, 0x0F);
  2241   __ jcc(Assembler::notZero, notByte);
  2242   // btos
  2243   __ load_signed_byte(rax, field);
  2244   __ push(btos);
  2245   // Rewrite bytecode to be faster
  2246   if (!is_static) {
  2247     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2249   __ jmp(Done);
  2251   __ bind(notByte);
  2252   __ cmpl(flags, atos);
  2253   __ jcc(Assembler::notEqual, notObj);
  2254   // atos
  2255   __ load_heap_oop(rax, field);
  2256   __ push(atos);
  2257   if (!is_static) {
  2258     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2260   __ jmp(Done);
  2262   __ bind(notObj);
  2263   __ cmpl(flags, itos);
  2264   __ jcc(Assembler::notEqual, notInt);
  2265   // itos
  2266   __ movl(rax, field);
  2267   __ push(itos);
  2268   // Rewrite bytecode to be faster
  2269   if (!is_static) {
  2270     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2272   __ jmp(Done);
  2274   __ bind(notInt);
  2275   __ cmpl(flags, ctos);
  2276   __ jcc(Assembler::notEqual, notChar);
  2277   // ctos
  2278   __ load_unsigned_word(rax, field);
  2279   __ push(ctos);
  2280   // Rewrite bytecode to be faster
  2281   if (!is_static) {
  2282     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2284   __ jmp(Done);
  2286   __ bind(notChar);
  2287   __ cmpl(flags, stos);
  2288   __ jcc(Assembler::notEqual, notShort);
  2289   // stos
  2290   __ load_signed_word(rax, field);
  2291   __ push(stos);
  2292   // Rewrite bytecode to be faster
  2293   if (!is_static) {
  2294     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2296   __ jmp(Done);
  2298   __ bind(notShort);
  2299   __ cmpl(flags, ltos);
  2300   __ jcc(Assembler::notEqual, notLong);
  2301   // ltos
  2302   __ movq(rax, field);
  2303   __ push(ltos);
  2304   // Rewrite bytecode to be faster
  2305   if (!is_static) {
  2306     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2308   __ jmp(Done);
  2310   __ bind(notLong);
  2311   __ cmpl(flags, ftos);
  2312   __ jcc(Assembler::notEqual, notFloat);
  2313   // ftos
  2314   __ movflt(xmm0, field);
  2315   __ push(ftos);
  2316   // Rewrite bytecode to be faster
  2317   if (!is_static) {
  2318     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2320   __ jmp(Done);
  2322   __ bind(notFloat);
  2323 #ifdef ASSERT
  2324   __ cmpl(flags, dtos);
  2325   __ jcc(Assembler::notEqual, notDouble);
  2326 #endif
  2327   // dtos
  2328   __ movdbl(xmm0, field);
  2329   __ push(dtos);
  2330   // Rewrite bytecode to be faster
  2331   if (!is_static) {
  2332     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2334 #ifdef ASSERT
  2335   __ jmp(Done);
  2337   __ bind(notDouble);
  2338   __ stop("Bad state");
  2339 #endif
  2341   __ bind(Done);
  2342   // [jk] not needed currently
  2343   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2344   //                                              Assembler::LoadStore));
  2348 void TemplateTable::getfield(int byte_no) {
  2349   getfield_or_static(byte_no, false);
  2352 void TemplateTable::getstatic(int byte_no) {
  2353   getfield_or_static(byte_no, true);
  2356 // The registers cache and index expected to be set before call.
  2357 // The function may destroy various registers, just not the cache and index registers.
  2358 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2359   transition(vtos, vtos);
  2361   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2363   if (JvmtiExport::can_post_field_modification()) {
  2364     // Check to see if a field modification watch has been set before
  2365     // we take the time to call into the VM.
  2366     Label L1;
  2367     assert_different_registers(cache, index, rax);
  2368     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2369     __ testl(rax, rax);
  2370     __ jcc(Assembler::zero, L1);
  2372     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2374     if (is_static) {
  2375       // Life is simple.  Null out the object pointer.
  2376       __ xorl(c_rarg1, c_rarg1);
  2377     } else {
  2378       // Life is harder. The stack holds the value on top, followed by
  2379       // the object.  We don't know the size of the value, though; it
  2380       // could be one or two words depending on its type. As a result,
  2381       // we must find the type to determine where the object is.
  2382       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2383                            Address::times_8,
  2384                            in_bytes(cp_base_offset +
  2385                                      ConstantPoolCacheEntry::flags_offset())));
  2386       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
  2387       // Make sure we don't need to mask rcx for tosBits after the
  2388       // above shift
  2389       ConstantPoolCacheEntry::verify_tosBits();
  2390       __ movq(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2391       __ cmpl(c_rarg3, ltos);
  2392       __ cmovq(Assembler::equal,
  2393                c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2394       __ cmpl(c_rarg3, dtos);
  2395       __ cmovq(Assembler::equal,
  2396                c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2398     // cache entry pointer
  2399     __ addq(c_rarg2, in_bytes(cp_base_offset));
  2400     __ shll(rscratch1, LogBytesPerWord);
  2401     __ addq(c_rarg2, rscratch1);
  2402     // object (tos)
  2403     __ movq(c_rarg3, rsp);
  2404     // c_rarg1: object pointer set up above (NULL if static)
  2405     // c_rarg2: cache entry pointer
  2406     // c_rarg3: jvalue object on the stack
  2407     __ call_VM(noreg,
  2408                CAST_FROM_FN_PTR(address,
  2409                                 InterpreterRuntime::post_field_modification),
  2410                c_rarg1, c_rarg2, c_rarg3);
  2411     __ get_cache_and_index_at_bcp(cache, index, 1);
  2412     __ bind(L1);
  2416 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2417   transition(vtos, vtos);
  2419   const Register cache = rcx;
  2420   const Register index = rdx;
  2421   const Register obj   = rcx;
  2422   const Register off   = rbx;
  2423   const Register flags = rax;
  2424   const Register bc    = c_rarg3;
  2426   resolve_cache_and_index(byte_no, cache, index);
  2427   jvmti_post_field_mod(cache, index, is_static);
  2428   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2430   // [jk] not needed currently
  2431   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2432   //                                              Assembler::StoreStore));
  2434   Label notVolatile, Done;
  2435   __ movl(rdx, flags);
  2436   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2437   __ andl(rdx, 0x1);
  2439   // field address
  2440   const Address field(obj, off, Address::times_1);
  2442   Label notByte, notInt, notShort, notChar,
  2443         notLong, notFloat, notObj, notDouble;
  2445   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2447   assert(btos == 0, "change code, btos != 0");
  2448   __ andl(flags, 0x0f);
  2449   __ jcc(Assembler::notZero, notByte);
  2450   // btos
  2451   __ pop(btos);
  2452   if (!is_static) pop_and_check_object(obj);
  2453   __ movb(field, rax);
  2454   if (!is_static) {
  2455     patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
  2457   __ jmp(Done);
  2459   __ bind(notByte);
  2460   __ cmpl(flags, atos);
  2461   __ jcc(Assembler::notEqual, notObj);
  2462   // atos
  2463   __ pop(atos);
  2464   if (!is_static) pop_and_check_object(obj);
  2466   // Store into the field
  2467   do_oop_store(_masm, field, rax, _bs->kind(), false);
  2469   if (!is_static) {
  2470     patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
  2472   __ jmp(Done);
  2474   __ bind(notObj);
  2475   __ cmpl(flags, itos);
  2476   __ jcc(Assembler::notEqual, notInt);
  2477   // itos
  2478   __ pop(itos);
  2479   if (!is_static) pop_and_check_object(obj);
  2480   __ movl(field, rax);
  2481   if (!is_static) {
  2482     patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
  2484   __ jmp(Done);
  2486   __ bind(notInt);
  2487   __ cmpl(flags, ctos);
  2488   __ jcc(Assembler::notEqual, notChar);
  2489   // ctos
  2490   __ pop(ctos);
  2491   if (!is_static) pop_and_check_object(obj);
  2492   __ movw(field, rax);
  2493   if (!is_static) {
  2494     patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
  2496   __ jmp(Done);
  2498   __ bind(notChar);
  2499   __ cmpl(flags, stos);
  2500   __ jcc(Assembler::notEqual, notShort);
  2501   // stos
  2502   __ pop(stos);
  2503   if (!is_static) pop_and_check_object(obj);
  2504   __ movw(field, rax);
  2505   if (!is_static) {
  2506     patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
  2508   __ jmp(Done);
  2510   __ bind(notShort);
  2511   __ cmpl(flags, ltos);
  2512   __ jcc(Assembler::notEqual, notLong);
  2513   // ltos
  2514   __ pop(ltos);
  2515   if (!is_static) pop_and_check_object(obj);
  2516   __ movq(field, rax);
  2517   if (!is_static) {
  2518     patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
  2520   __ jmp(Done);
  2522   __ bind(notLong);
  2523   __ cmpl(flags, ftos);
  2524   __ jcc(Assembler::notEqual, notFloat);
  2525   // ftos
  2526   __ pop(ftos);
  2527   if (!is_static) pop_and_check_object(obj);
  2528   __ movflt(field, xmm0);
  2529   if (!is_static) {
  2530     patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
  2532   __ jmp(Done);
  2534   __ bind(notFloat);
  2535 #ifdef ASSERT
  2536   __ cmpl(flags, dtos);
  2537   __ jcc(Assembler::notEqual, notDouble);
  2538 #endif
  2539   // dtos
  2540   __ pop(dtos);
  2541   if (!is_static) pop_and_check_object(obj);
  2542   __ movdbl(field, xmm0);
  2543   if (!is_static) {
  2544     patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
  2547 #ifdef ASSERT
  2548   __ jmp(Done);
  2550   __ bind(notDouble);
  2551   __ stop("Bad state");
  2552 #endif
  2554   __ bind(Done);
  2555   // Check for volatile store
  2556   __ testl(rdx, rdx);
  2557   __ jcc(Assembler::zero, notVolatile);
  2558   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2559                                                Assembler::StoreStore));
  2561   __ bind(notVolatile);
  2564 void TemplateTable::putfield(int byte_no) {
  2565   putfield_or_static(byte_no, false);
  2568 void TemplateTable::putstatic(int byte_no) {
  2569   putfield_or_static(byte_no, true);
  2572 void TemplateTable::jvmti_post_fast_field_mod() {
  2573   if (JvmtiExport::can_post_field_modification()) {
  2574     // Check to see if a field modification watch has been set before
  2575     // we take the time to call into the VM.
  2576     Label L2;
  2577     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2578     __ testl(c_rarg3, c_rarg3);
  2579     __ jcc(Assembler::zero, L2);
  2580     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2581     __ verify_oop(rbx);
  2582     __ push_ptr(rbx);                 // put the object pointer back on tos
  2583     __ subq(rsp, sizeof(jvalue));  // add space for a jvalue object
  2584     __ movq(c_rarg3, rsp);
  2585     const Address field(c_rarg3, 0);
  2587     switch (bytecode()) {          // load values into the jvalue object
  2588     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
  2589     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
  2590     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
  2591     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
  2592     case Bytecodes::_fast_sputfield: // fall through
  2593     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
  2594     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
  2595     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
  2596     default:
  2597       ShouldNotReachHere();
  2600     // Save rax because call_VM() will clobber it, then use it for
  2601     // JVMTI purposes
  2602     __ pushq(rax);
  2603     // access constant pool cache entry
  2604     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2605     __ verify_oop(rbx);
  2606     // rbx: object pointer copied above
  2607     // c_rarg2: cache entry pointer
  2608     // c_rarg3: jvalue object on the stack
  2609     __ call_VM(noreg,
  2610                CAST_FROM_FN_PTR(address,
  2611                                 InterpreterRuntime::post_field_modification),
  2612                rbx, c_rarg2, c_rarg3);
  2613     __ popq(rax);     // restore lower value
  2614     __ addq(rsp, sizeof(jvalue));  // release jvalue object space
  2615     __ bind(L2);
  2619 void TemplateTable::fast_storefield(TosState state) {
  2620   transition(state, vtos);
  2622   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2624   jvmti_post_fast_field_mod();
  2626   // access constant pool cache
  2627   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2629   // test for volatile with rdx
  2630   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2631                        in_bytes(base +
  2632                                 ConstantPoolCacheEntry::flags_offset())));
  2634   // replace index with field offset from cache entry
  2635   __ movq(rbx, Address(rcx, rbx, Address::times_8,
  2636                        in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2638   // [jk] not needed currently
  2639   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2640   //                                              Assembler::StoreStore));
  2642   Label notVolatile;
  2643   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2644   __ andl(rdx, 0x1);
  2646   // Get object from stack
  2647   pop_and_check_object(rcx);
  2649   // field address
  2650   const Address field(rcx, rbx, Address::times_1);
  2652   // access field
  2653   switch (bytecode()) {
  2654   case Bytecodes::_fast_aputfield:
  2655     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2656     break;
  2657   case Bytecodes::_fast_lputfield:
  2658     __ movq(field, rax);
  2659     break;
  2660   case Bytecodes::_fast_iputfield:
  2661     __ movl(field, rax);
  2662     break;
  2663   case Bytecodes::_fast_bputfield:
  2664     __ movb(field, rax);
  2665     break;
  2666   case Bytecodes::_fast_sputfield:
  2667     // fall through
  2668   case Bytecodes::_fast_cputfield:
  2669     __ movw(field, rax);
  2670     break;
  2671   case Bytecodes::_fast_fputfield:
  2672     __ movflt(field, xmm0);
  2673     break;
  2674   case Bytecodes::_fast_dputfield:
  2675     __ movdbl(field, xmm0);
  2676     break;
  2677   default:
  2678     ShouldNotReachHere();
  2681   // Check for volatile store
  2682   __ testl(rdx, rdx);
  2683   __ jcc(Assembler::zero, notVolatile);
  2684   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2685                                                Assembler::StoreStore));
  2686   __ bind(notVolatile);
  2690 void TemplateTable::fast_accessfield(TosState state) {
  2691   transition(atos, state);
  2693   // Do the JVMTI work here to avoid disturbing the register state below
  2694   if (JvmtiExport::can_post_field_access()) {
  2695     // Check to see if a field access watch has been set before we
  2696     // take the time to call into the VM.
  2697     Label L1;
  2698     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2699     __ testl(rcx, rcx);
  2700     __ jcc(Assembler::zero, L1);
  2701     // access constant pool cache entry
  2702     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2703     __ verify_oop(rax);
  2704     __ movq(r12, rax);  // save object pointer before call_VM() clobbers it
  2705     __ movq(c_rarg1, rax);
  2706     // c_rarg1: object pointer copied above
  2707     // c_rarg2: cache entry pointer
  2708     __ call_VM(noreg,
  2709                CAST_FROM_FN_PTR(address,
  2710                                 InterpreterRuntime::post_field_access),
  2711                c_rarg1, c_rarg2);
  2712     __ movq(rax, r12); // restore object pointer
  2713     __ reinit_heapbase();
  2714     __ bind(L1);
  2717   // access constant pool cache
  2718   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2719   // replace index with field offset from cache entry
  2720   // [jk] not needed currently
  2721   // if (os::is_MP()) {
  2722   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2723   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2724   //                                 ConstantPoolCacheEntry::flags_offset())));
  2725   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2726   //   __ andl(rdx, 0x1);
  2727   // }
  2728   __ movq(rbx, Address(rcx, rbx, Address::times_8,
  2729                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2730                                 ConstantPoolCacheEntry::f2_offset())));
  2732   // rax: object
  2733   __ verify_oop(rax);
  2734   __ null_check(rax);
  2735   Address field(rax, rbx, Address::times_1);
  2737   // access field
  2738   switch (bytecode()) {
  2739   case Bytecodes::_fast_agetfield:
  2740     __ load_heap_oop(rax, field);
  2741     __ verify_oop(rax);
  2742     break;
  2743   case Bytecodes::_fast_lgetfield:
  2744     __ movq(rax, field);
  2745     break;
  2746   case Bytecodes::_fast_igetfield:
  2747     __ movl(rax, field);
  2748     break;
  2749   case Bytecodes::_fast_bgetfield:
  2750     __ movsbl(rax, field);
  2751     break;
  2752   case Bytecodes::_fast_sgetfield:
  2753     __ load_signed_word(rax, field);
  2754     break;
  2755   case Bytecodes::_fast_cgetfield:
  2756     __ load_unsigned_word(rax, field);
  2757     break;
  2758   case Bytecodes::_fast_fgetfield:
  2759     __ movflt(xmm0, field);
  2760     break;
  2761   case Bytecodes::_fast_dgetfield:
  2762     __ movdbl(xmm0, field);
  2763     break;
  2764   default:
  2765     ShouldNotReachHere();
  2767   // [jk] not needed currently
  2768   // if (os::is_MP()) {
  2769   //   Label notVolatile;
  2770   //   __ testl(rdx, rdx);
  2771   //   __ jcc(Assembler::zero, notVolatile);
  2772   //   __ membar(Assembler::LoadLoad);
  2773   //   __ bind(notVolatile);
  2774   //};
  2777 void TemplateTable::fast_xaccess(TosState state) {
  2778   transition(vtos, state);
  2780   // get receiver
  2781   __ movq(rax, aaddress(0));
  2782   debug_only(__ verify_local_tag(frame::TagReference, 0));
  2783   // access constant pool cache
  2784   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2785   __ movq(rbx,
  2786           Address(rcx, rdx, Address::times_8,
  2787                   in_bytes(constantPoolCacheOopDesc::base_offset() +
  2788                            ConstantPoolCacheEntry::f2_offset())));
  2789   // make sure exception is reported in correct bcp range (getfield is
  2790   // next instruction)
  2791   __ incrementq(r13);
  2792   __ null_check(rax);
  2793   switch (state) {
  2794   case itos:
  2795     __ movl(rax, Address(rax, rbx, Address::times_1));
  2796     break;
  2797   case atos:
  2798     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2799     __ verify_oop(rax);
  2800     break;
  2801   case ftos:
  2802     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2803     break;
  2804   default:
  2805     ShouldNotReachHere();
  2808   // [jk] not needed currently
  2809   // if (os::is_MP()) {
  2810   //   Label notVolatile;
  2811   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2812   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2813   //                                 ConstantPoolCacheEntry::flags_offset())));
  2814   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2815   //   __ testl(rdx, 0x1);
  2816   //   __ jcc(Assembler::zero, notVolatile);
  2817   //   __ membar(Assembler::LoadLoad);
  2818   //   __ bind(notVolatile);
  2819   // }
  2821   __ decrementq(r13);
  2826 //-----------------------------------------------------------------------------
  2827 // Calls
  2829 void TemplateTable::count_calls(Register method, Register temp) {
  2830   // implemented elsewhere
  2831   ShouldNotReachHere();
  2834 void TemplateTable::prepare_invoke(Register method,
  2835                                    Register index,
  2836                                    int byte_no,
  2837                                    Bytecodes::Code code) {
  2838   // determine flags
  2839   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2840   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2841   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2842   const bool load_receiver       = code != Bytecodes::_invokestatic;
  2843   const bool receiver_null_check = is_invokespecial;
  2844   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2845   // setup registers & access constant pool cache
  2846   const Register recv   = rcx;
  2847   const Register flags  = rdx;
  2848   assert_different_registers(method, index, recv, flags);
  2850   // save 'interpreter return address'
  2851   __ save_bcp();
  2853   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual);
  2855   // load receiver if needed (note: no return address pushed yet)
  2856   if (load_receiver) {
  2857     __ movl(recv, flags);
  2858     __ andl(recv, 0xFF);
  2859     if (TaggedStackInterpreter) __ shll(recv, 1);  // index*2
  2860     __ movq(recv, Address(rsp, recv, Address::times_8,
  2861                           -Interpreter::expr_offset_in_bytes(1)));
  2862     __ verify_oop(recv);
  2865   // do null check if needed
  2866   if (receiver_null_check) {
  2867     __ null_check(recv);
  2870   if (save_flags) {
  2871     __ movl(r13, flags);
  2874   // compute return type
  2875   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2876   // Make sure we don't need to mask flags for tosBits after the above shift
  2877   ConstantPoolCacheEntry::verify_tosBits();
  2878   // load return address
  2880     ExternalAddress return_5((address)Interpreter::return_5_addrs_by_index_table());
  2881     ExternalAddress return_3((address)Interpreter::return_3_addrs_by_index_table());
  2882     __ lea(rscratch1, (is_invokeinterface ? return_5 : return_3));
  2883     __ movq(flags, Address(rscratch1, flags, Address::times_8));
  2886   // push return address
  2887   __ pushq(flags);
  2889   // Restore flag field from the constant pool cache, and restore esi
  2890   // for later null checks.  r13 is the bytecode pointer
  2891   if (save_flags) {
  2892     __ movl(flags, r13);
  2893     __ restore_bcp();
  2898 void TemplateTable::invokevirtual_helper(Register index,
  2899                                          Register recv,
  2900                                          Register flags) {
  2901   // Uses temporary registers rax, rdx  assert_different_registers(index, recv, rax, rdx);
  2903   // Test for an invoke of a final method
  2904   Label notFinal;
  2905   __ movl(rax, flags);
  2906   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2907   __ jcc(Assembler::zero, notFinal);
  2909   const Register method = index;  // method must be rbx
  2910   assert(method == rbx,
  2911          "methodOop must be rbx for interpreter calling convention");
  2913   // do the call - the index is actually the method to call
  2914   __ verify_oop(method);
  2916   // It's final, need a null check here!
  2917   __ null_check(recv);
  2919   // profile this call
  2920   __ profile_final_call(rax);
  2922   __ jump_from_interpreted(method, rax);
  2924   __ bind(notFinal);
  2926   // get receiver klass
  2927   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2928   __ load_klass(rax, recv);
  2930   __ verify_oop(rax);
  2932   // profile this call
  2933   __ profile_virtual_call(rax, r14, rdx);
  2935   // get target methodOop & entry point
  2936   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2937   assert(vtableEntry::size() * wordSize == 8,
  2938          "adjust the scaling in the code below");
  2939   __ movq(method, Address(rax, index,
  2940                                  Address::times_8,
  2941                                  base + vtableEntry::method_offset_in_bytes()));
  2942   __ movq(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
  2943   __ jump_from_interpreted(method, rdx);
  2947 void TemplateTable::invokevirtual(int byte_no) {
  2948   transition(vtos, vtos);
  2949   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2951   // rbx: index
  2952   // rcx: receiver
  2953   // rdx: flags
  2955   invokevirtual_helper(rbx, rcx, rdx);
  2959 void TemplateTable::invokespecial(int byte_no) {
  2960   transition(vtos, vtos);
  2961   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2962   // do the call
  2963   __ verify_oop(rbx);
  2964   __ profile_call(rax);
  2965   __ jump_from_interpreted(rbx, rax);
  2969 void TemplateTable::invokestatic(int byte_no) {
  2970   transition(vtos, vtos);
  2971   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2972   // do the call
  2973   __ verify_oop(rbx);
  2974   __ profile_call(rax);
  2975   __ jump_from_interpreted(rbx, rax);
  2978 void TemplateTable::fast_invokevfinal(int byte_no) {
  2979   transition(vtos, vtos);
  2980   __ stop("fast_invokevfinal not used on amd64");
  2983 void TemplateTable::invokeinterface(int byte_no) {
  2984   transition(vtos, vtos);
  2985   prepare_invoke(rax, rbx, byte_no, bytecode());
  2987   // rax: Interface
  2988   // rbx: index
  2989   // rcx: receiver
  2990   // rdx: flags
  2992   // Special case of invokeinterface called for virtual method of
  2993   // java.lang.Object.  See cpCacheOop.cpp for details.
  2994   // This code isn't produced by javac, but could be produced by
  2995   // another compliant java compiler.
  2996   Label notMethod;
  2997   __ movl(r14, rdx);
  2998   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
  2999   __ jcc(Assembler::zero, notMethod);
  3001   invokevirtual_helper(rbx, rcx, rdx);
  3002   __ bind(notMethod);
  3004   // Get receiver klass into rdx - also a null check
  3005   __ restore_locals(); // restore r14
  3006   __ load_klass(rdx, rcx);
  3007   __ verify_oop(rdx);
  3009   // profile this call
  3010   __ profile_virtual_call(rdx, r13, r14);
  3012   __ movq(r14, rdx); // Save klassOop in r14
  3014   // Compute start of first itableOffsetEntry (which is at the end of
  3015   // the vtable)
  3016   const int base = instanceKlass::vtable_start_offset() * wordSize;
  3017   // Get length of vtable
  3018   assert(vtableEntry::size() * wordSize == 8,
  3019          "adjust the scaling in the code below");
  3020   __ movl(r13, Address(rdx,
  3021                        instanceKlass::vtable_length_offset() * wordSize));
  3022   __ leaq(rdx, Address(rdx, r13, Address::times_8, base));
  3024   if (HeapWordsPerLong > 1) {
  3025     // Round up to align_object_offset boundary
  3026     __ round_to_q(rdx, BytesPerLong);
  3029   Label entry, search, interface_ok;
  3031   __ jmpb(entry);
  3032   __ bind(search);
  3033   __ addq(rdx, itableOffsetEntry::size() * wordSize);
  3035   __ bind(entry);
  3037   // Check that the entry is non-null.  A null entry means that the
  3038   // receiver class doesn't implement the interface, and wasn't the
  3039   // same as the receiver class checked when the interface was
  3040   // resolved.
  3041   __ pushq(rdx);
  3042   __ movq(rdx, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  3043   __ testq(rdx, rdx);
  3044   __ jcc(Assembler::notZero, interface_ok);
  3045   // throw exception
  3046   __ popq(rdx); // pop saved register first.
  3047   __ popq(rbx); // pop return address (pushed by prepare_invoke)
  3048   __ restore_bcp(); // r13 must be correct for exception handler (was
  3049                     // destroyed)
  3050   __ restore_locals(); // make sure locals pointer is correct as well
  3051                        // (was destroyed)
  3052   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3053                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3054   // the call_VM checks for exception, so we should never return here.
  3055   __ should_not_reach_here();
  3056   __ bind(interface_ok);
  3058   __ popq(rdx);
  3060   __ cmpq(rax, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  3061   __ jcc(Assembler::notEqual, search);
  3063   __ movl(rdx, Address(rdx, itableOffsetEntry::offset_offset_in_bytes()));
  3065   __ addq(rdx, r14); // Add offset to klassOop
  3066   assert(itableMethodEntry::size() * wordSize == 8,
  3067          "adjust the scaling in the code below");
  3068   __ movq(rbx, Address(rdx, rbx, Address::times_8));
  3069   // rbx: methodOop to call
  3070   // rcx: receiver
  3071   // Check for abstract method error
  3072   // Note: This should be done more efficiently via a
  3073   // throw_abstract_method_error interpreter entry point and a
  3074   // conditional jump to it in case of a null method.
  3076     Label L;
  3077     __ testq(rbx, rbx);
  3078     __ jcc(Assembler::notZero, L);
  3079     // throw exception
  3080     // note: must restore interpreter registers to canonical
  3081     //       state for exception handling to work correctly!
  3082     __ popq(rbx);  // pop return address (pushed by prepare_invoke)
  3083     __ restore_bcp(); // r13 must be correct for exception handler
  3084                       // (was destroyed)
  3085     __ restore_locals(); // make sure locals pointer is correct as
  3086                          // well (was destroyed)
  3087     __ call_VM(noreg,
  3088                CAST_FROM_FN_PTR(address,
  3089                              InterpreterRuntime::throw_AbstractMethodError));
  3090     // the call_VM checks for exception, so we should never return here.
  3091     __ should_not_reach_here();
  3092     __ bind(L);
  3095   __ movq(rcx, Address(rbx, methodOopDesc::interpreter_entry_offset()));
  3097   // do the call
  3098   // rcx: receiver
  3099   // rbx: methodOop
  3100   __ jump_from_interpreted(rbx, rdx);
  3103 //-----------------------------------------------------------------------------
  3104 // Allocation
  3106 void TemplateTable::_new() {
  3107   transition(vtos, atos);
  3108   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3109   Label slow_case;
  3110   Label done;
  3111   Label initialize_header;
  3112   Label initialize_object; // including clearing the fields
  3113   Label allocate_shared;
  3115   __ get_cpool_and_tags(rsi, rax);
  3116   // get instanceKlass
  3117   __ movq(rsi, Address(rsi, rdx,
  3118                        Address::times_8, sizeof(constantPoolOopDesc)));
  3120   // make sure the class we're about to instantiate has been
  3121   // resolved. Note: slow_case does a pop of stack, which is why we
  3122   // loaded class/pushed above
  3123   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3124   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3125           JVM_CONSTANT_Class);
  3126   __ jcc(Assembler::notEqual, slow_case);
  3128   // make sure klass is initialized & doesn't have finalizer
  3129   // make sure klass is fully initialized
  3130   __ cmpl(Address(rsi,
  3131                   instanceKlass::init_state_offset_in_bytes() +
  3132                   sizeof(oopDesc)),
  3133           instanceKlass::fully_initialized);
  3134   __ jcc(Assembler::notEqual, slow_case);
  3136   // get instance_size in instanceKlass (scaled to a count of bytes)
  3137   __ movl(rdx,
  3138           Address(rsi,
  3139                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3140   // test to see if it has a finalizer or is malformed in some way
  3141   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3142   __ jcc(Assembler::notZero, slow_case);
  3144   // Allocate the instance
  3145   // 1) Try to allocate in the TLAB
  3146   // 2) if fail and the object is large allocate in the shared Eden
  3147   // 3) if the above fails (or is not applicable), go to a slow case
  3148   // (creates a new TLAB, etc.)
  3150   const bool allow_shared_alloc =
  3151     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3153   if (UseTLAB) {
  3154     __ movq(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3155     __ leaq(rbx, Address(rax, rdx, Address::times_1));
  3156     __ cmpq(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3157     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3158     __ movq(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3159     if (ZeroTLAB) {
  3160       // the fields have been already cleared
  3161       __ jmp(initialize_header);
  3162     } else {
  3163       // initialize both the header and fields
  3164       __ jmp(initialize_object);
  3168   // Allocation in the shared Eden, if allowed.
  3169   //
  3170   // rdx: instance size in bytes
  3171   if (allow_shared_alloc) {
  3172     __ bind(allocate_shared);
  3174     ExternalAddress top((address)Universe::heap()->top_addr());
  3175     ExternalAddress end((address)Universe::heap()->end_addr());
  3177     const Register RtopAddr = rscratch1;
  3178     const Register RendAddr = rscratch2;
  3180     __ lea(RtopAddr, top);
  3181     __ lea(RendAddr, end);
  3182     __ movq(rax, Address(RtopAddr, 0));
  3184     // For retries rax gets set by cmpxchgq
  3185     Label retry;
  3186     __ bind(retry);
  3187     __ leaq(rbx, Address(rax, rdx, Address::times_1));
  3188     __ cmpq(rbx, Address(RendAddr, 0));
  3189     __ jcc(Assembler::above, slow_case);
  3191     // Compare rax with the top addr, and if still equal, store the new
  3192     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3193     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3194     //
  3195     // rax: object begin
  3196     // rbx: object end
  3197     // rdx: instance size in bytes
  3198     if (os::is_MP()) {
  3199       __ lock();
  3201     __ cmpxchgq(rbx, Address(RtopAddr, 0));
  3203     // if someone beat us on the allocation, try again, otherwise continue
  3204     __ jcc(Assembler::notEqual, retry);
  3207   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3208     // The object is initialized before the header.  If the object size is
  3209     // zero, go directly to the header initialization.
  3210     __ bind(initialize_object);
  3211     __ decrementl(rdx, sizeof(oopDesc));
  3212     __ jcc(Assembler::zero, initialize_header);
  3214     // Initialize object fields
  3215     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3216     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3218       Label loop;
  3219       __ bind(loop);
  3220       __ movq(Address(rax, rdx, Address::times_8,
  3221                       sizeof(oopDesc) - oopSize),
  3222               rcx);
  3223       __ decrementl(rdx);
  3224       __ jcc(Assembler::notZero, loop);
  3227     // initialize object header only.
  3228     __ bind(initialize_header);
  3229     if (UseBiasedLocking) {
  3230       __ movq(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3231       __ movq(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3232     } else {
  3233       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3234                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3236     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3237     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3238     __ store_klass(rax, rsi);      // store klass last
  3239     __ jmp(done);
  3243     SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3244     // Trigger dtrace event for fastpath
  3245     __ push(atos); // save the return value
  3246     __ call_VM_leaf(
  3247          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3248     __ pop(atos); // restore the return value
  3251   // slow case
  3252   __ bind(slow_case);
  3253   __ get_constant_pool(c_rarg1);
  3254   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3255   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3256   __ verify_oop(rax);
  3258   // continue
  3259   __ bind(done);
  3262 void TemplateTable::newarray() {
  3263   transition(itos, atos);
  3264   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3265   __ movl(c_rarg2, rax);
  3266   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3267           c_rarg1, c_rarg2);
  3270 void TemplateTable::anewarray() {
  3271   transition(itos, atos);
  3272   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3273   __ get_constant_pool(c_rarg1);
  3274   __ movl(c_rarg3, rax);
  3275   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3276           c_rarg1, c_rarg2, c_rarg3);
  3279 void TemplateTable::arraylength() {
  3280   transition(atos, itos);
  3281   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3282   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3285 void TemplateTable::checkcast() {
  3286   transition(atos, atos);
  3287   Label done, is_null, ok_is_subtype, quicked, resolved;
  3288   __ testq(rax, rax); // object is in rax
  3289   __ jcc(Assembler::zero, is_null);
  3291   // Get cpool & tags index
  3292   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3293   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3294   // See if bytecode has already been quicked
  3295   __ cmpb(Address(rdx, rbx,
  3296                   Address::times_1,
  3297                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3298           JVM_CONSTANT_Class);
  3299   __ jcc(Assembler::equal, quicked);
  3300   __ push(atos); // save receiver for result, and for GC
  3301   __ movq(r12, rcx); // save rcx XXX
  3302   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3303   __ movq(rcx, r12); // restore rcx XXX
  3304   __ reinit_heapbase();
  3305   __ pop_ptr(rdx); // restore receiver
  3306   __ jmpb(resolved);
  3308   // Get superklass in rax and subklass in rbx
  3309   __ bind(quicked);
  3310   __ movq(rdx, rax); // Save object in rdx; rax needed for subtype check
  3311   __ movq(rax, Address(rcx, rbx,
  3312                        Address::times_8, sizeof(constantPoolOopDesc)));
  3314   __ bind(resolved);
  3315   __ load_klass(rbx, rdx);
  3317   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3318   // Superklass in rax.  Subklass in rbx.
  3319   __ gen_subtype_check(rbx, ok_is_subtype);
  3321   // Come here on failure
  3322   __ push_ptr(rdx);
  3323   // object is at TOS
  3324   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3326   // Come here on success
  3327   __ bind(ok_is_subtype);
  3328   __ movq(rax, rdx); // Restore object in rdx
  3330   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3331   if (ProfileInterpreter) {
  3332     __ jmp(done);
  3333     __ bind(is_null);
  3334     __ profile_null_seen(rcx);
  3335   } else {
  3336     __ bind(is_null);   // same as 'done'
  3338   __ bind(done);
  3341 void TemplateTable::instanceof() {
  3342   transition(atos, itos);
  3343   Label done, is_null, ok_is_subtype, quicked, resolved;
  3344   __ testq(rax, rax);
  3345   __ jcc(Assembler::zero, is_null);
  3347   // Get cpool & tags index
  3348   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3349   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3350   // See if bytecode has already been quicked
  3351   __ cmpb(Address(rdx, rbx,
  3352                   Address::times_1,
  3353                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3354           JVM_CONSTANT_Class);
  3355   __ jcc(Assembler::equal, quicked);
  3357   __ push(atos); // save receiver for result, and for GC
  3358   __ movq(r12, rcx); // save rcx
  3359   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3360   __ movq(rcx, r12); // restore rcx
  3361   __ reinit_heapbase();
  3362   __ pop_ptr(rdx); // restore receiver
  3363   __ load_klass(rdx, rdx);
  3364   __ jmpb(resolved);
  3366   // Get superklass in rax and subklass in rdx
  3367   __ bind(quicked);
  3368   __ load_klass(rdx, rax);
  3369   __ movq(rax, Address(rcx, rbx,
  3370                               Address::times_8, sizeof(constantPoolOopDesc)));
  3372   __ bind(resolved);
  3374   // Generate subtype check.  Blows rcx, rdi
  3375   // Superklass in rax.  Subklass in rdx.
  3376   __ gen_subtype_check(rdx, ok_is_subtype);
  3378   // Come here on failure
  3379   __ xorl(rax, rax);
  3380   __ jmpb(done);
  3381   // Come here on success
  3382   __ bind(ok_is_subtype);
  3383   __ movl(rax, 1);
  3385   // Collect counts on whether this test sees NULLs a lot or not.
  3386   if (ProfileInterpreter) {
  3387     __ jmp(done);
  3388     __ bind(is_null);
  3389     __ profile_null_seen(rcx);
  3390   } else {
  3391     __ bind(is_null);   // same as 'done'
  3393   __ bind(done);
  3394   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3395   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3398 //-----------------------------------------------------------------------------
  3399 // Breakpoints
  3400 void TemplateTable::_breakpoint() {
  3401   // Note: We get here even if we are single stepping..
  3402   // jbug inists on setting breakpoints at every bytecode
  3403   // even if we are in single step mode.
  3405   transition(vtos, vtos);
  3407   // get the unpatched byte code
  3408   __ get_method(c_rarg1);
  3409   __ call_VM(noreg,
  3410              CAST_FROM_FN_PTR(address,
  3411                               InterpreterRuntime::get_original_bytecode_at),
  3412              c_rarg1, r13);
  3413   __ movq(rbx, rax);
  3415   // post the breakpoint event
  3416   __ get_method(c_rarg1);
  3417   __ call_VM(noreg,
  3418              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3419              c_rarg1, r13);
  3421   // complete the execution of original bytecode
  3422   __ dispatch_only_normal(vtos);
  3425 //-----------------------------------------------------------------------------
  3426 // Exceptions
  3428 void TemplateTable::athrow() {
  3429   transition(atos, vtos);
  3430   __ null_check(rax);
  3431   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3434 //-----------------------------------------------------------------------------
  3435 // Synchronization
  3436 //
  3437 // Note: monitorenter & exit are symmetric routines; which is reflected
  3438 //       in the assembly code structure as well
  3439 //
  3440 // Stack layout:
  3441 //
  3442 // [expressions  ] <--- rsp               = expression stack top
  3443 // ..
  3444 // [expressions  ]
  3445 // [monitor entry] <--- monitor block top = expression stack bot
  3446 // ..
  3447 // [monitor entry]
  3448 // [frame data   ] <--- monitor block bot
  3449 // ...
  3450 // [saved rbp    ] <--- rbp
  3451 void TemplateTable::monitorenter() {
  3452   transition(atos, vtos);
  3454   // check for NULL object
  3455   __ null_check(rax);
  3457   const Address monitor_block_top(
  3458         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3459   const Address monitor_block_bot(
  3460         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3461   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3463   Label allocated;
  3465   // initialize entry pointer
  3466   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3468   // find a free slot in the monitor block (result in c_rarg1)
  3470     Label entry, loop, exit;
  3471     __ movq(c_rarg3, monitor_block_top); // points to current entry,
  3472                                      // starting with top-most entry
  3473     __ leaq(c_rarg2, monitor_block_bot); // points to word before bottom
  3474                                      // of monitor block
  3475     __ jmpb(entry);
  3477     __ bind(loop);
  3478     // check if current entry is used
  3479     __ cmpq(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int) NULL);
  3480     // if not used then remember entry in c_rarg1
  3481     __ cmovq(Assembler::equal, c_rarg1, c_rarg3);
  3482     // check if current entry is for same object
  3483     __ cmpq(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3484     // if same object then stop searching
  3485     __ jccb(Assembler::equal, exit);
  3486     // otherwise advance to next entry
  3487     __ addq(c_rarg3, entry_size);
  3488     __ bind(entry);
  3489     // check if bottom reached
  3490     __ cmpq(c_rarg3, c_rarg2);
  3491     // if not at bottom then check this entry
  3492     __ jcc(Assembler::notEqual, loop);
  3493     __ bind(exit);
  3496   __ testq(c_rarg1, c_rarg1); // check if a slot has been found
  3497   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3499   // allocate one if there's no free slot
  3501     Label entry, loop;
  3502     // 1. compute new pointers       // rsp: old expression stack top
  3503     __ movq(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3504     __ subq(rsp, entry_size);        // move expression stack top
  3505     __ subq(c_rarg1, entry_size);        // move expression stack bottom
  3506     __ movq(c_rarg3, rsp);               // set start value for copy loop
  3507     __ movq(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3508     __ jmp(entry);
  3509     // 2. move expression stack contents
  3510     __ bind(loop);
  3511     __ movq(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3512                                             // word from old location
  3513     __ movq(Address(c_rarg3, 0), c_rarg2);  // and store it at new location
  3514     __ addq(c_rarg3, wordSize);             // advance to next word
  3515     __ bind(entry);
  3516     __ cmpq(c_rarg3, c_rarg1);              // check if bottom reached
  3517     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3518                                             // copy next word
  3521   // call run-time routine
  3522   // c_rarg1: points to monitor entry
  3523   __ bind(allocated);
  3525   // Increment bcp to point to the next bytecode, so exception
  3526   // handling for async. exceptions work correctly.
  3527   // The object has already been poped from the stack, so the
  3528   // expression stack looks correct.
  3529   __ incrementq(r13);
  3531   // store object
  3532   __ movq(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3533   __ lock_object(c_rarg1);
  3535   // check to make sure this monitor doesn't cause stack overflow after locking
  3536   __ save_bcp();  // in case of exception
  3537   __ generate_stack_overflow_check(0);
  3539   // The bcp has already been incremented. Just need to dispatch to
  3540   // next instruction.
  3541   __ dispatch_next(vtos);
  3545 void TemplateTable::monitorexit() {
  3546   transition(atos, vtos);
  3548   // check for NULL object
  3549   __ null_check(rax);
  3551   const Address monitor_block_top(
  3552         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3553   const Address monitor_block_bot(
  3554         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3555   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3557   Label found;
  3559   // find matching slot
  3561     Label entry, loop;
  3562     __ movq(c_rarg1, monitor_block_top); // points to current entry,
  3563                                      // starting with top-most entry
  3564     __ leaq(c_rarg2, monitor_block_bot); // points to word before bottom
  3565                                      // of monitor block
  3566     __ jmpb(entry);
  3568     __ bind(loop);
  3569     // check if current entry is for same object
  3570     __ cmpq(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3571     // if same object then stop searching
  3572     __ jcc(Assembler::equal, found);
  3573     // otherwise advance to next entry
  3574     __ addq(c_rarg1, entry_size);
  3575     __ bind(entry);
  3576     // check if bottom reached
  3577     __ cmpq(c_rarg1, c_rarg2);
  3578     // if not at bottom then check this entry
  3579     __ jcc(Assembler::notEqual, loop);
  3582   // error handling. Unlocking was not block-structured
  3583   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3584                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3585   __ should_not_reach_here();
  3587   // call run-time routine
  3588   // rsi: points to monitor entry
  3589   __ bind(found);
  3590   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3591   __ unlock_object(c_rarg1);
  3592   __ pop_ptr(rax); // discard object
  3596 // Wide instructions
  3597 void TemplateTable::wide() {
  3598   transition(vtos, vtos);
  3599   __ load_unsigned_byte(rbx, at_bcp(1));
  3600   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3601   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3602   // Note: the r13 increment step is part of the individual wide
  3603   // bytecode implementations
  3607 // Multi arrays
  3608 void TemplateTable::multianewarray() {
  3609   transition(vtos, atos);
  3610   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3611   // last dim is on top of stack; we want address of first one:
  3612   // first_addr = last_addr + (ndims - 1) * wordSize
  3613   if (TaggedStackInterpreter) __ shll(rax, 1);  // index*2
  3614   __ leaq(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3615   call_VM(rax,
  3616           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3617           c_rarg1);
  3618   __ load_unsigned_byte(rbx, at_bcp(3));
  3619   if (TaggedStackInterpreter) __ shll(rbx, 1);  // index*2
  3620   __ leaq(rsp, Address(rsp, rbx, Address::times_8));

mercurial