src/cpu/x86/vm/templateTable_x86_32.cpp

Thu, 21 Aug 2008 23:36:31 -0400

author
tonyp
date
Thu, 21 Aug 2008 23:36:31 -0400
changeset 791
1ee8caae33af
parent 777
37f87013dfd8
parent 631
d1605aabd0a1
child 797
f8199438385b
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_x86_32.cpp.incl"
    28 #ifndef CC_INTERP
    29 #define __ _masm->
    31 //----------------------------------------------------------------------------------------------------
    32 // Platform-dependent initialization
    34 void TemplateTable::pd_initialize() {
    35   // No i486 specific initialization
    36 }
    38 //----------------------------------------------------------------------------------------------------
    39 // Address computation
    41 // local variables
    42 static inline Address iaddress(int n)            {
    43   return Address(rdi, Interpreter::local_offset_in_bytes(n));
    44 }
    46 static inline Address laddress(int n)            { return iaddress(n + 1); }
    47 static inline Address haddress(int n)            { return iaddress(n + 0); }
    48 static inline Address faddress(int n)            { return iaddress(n); }
    49 static inline Address daddress(int n)            { return laddress(n); }
    50 static inline Address aaddress(int n)            { return iaddress(n); }
    52 static inline Address iaddress(Register r)       {
    53   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::value_offset_in_bytes());
    54 }
    55 static inline Address laddress(Register r)       {
    56   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
    57 }
    58 static inline Address haddress(Register r)       {
    59   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
    60 }
    62 static inline Address faddress(Register r)       { return iaddress(r); };
    63 static inline Address daddress(Register r)       {
    64   assert(!TaggedStackInterpreter, "This doesn't work");
    65   return laddress(r);
    66 };
    67 static inline Address aaddress(Register r)       { return iaddress(r); };
    69 // expression stack
    70 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
    71 // data beyond the rsp which is potentially unsafe in an MT environment;
    72 // an interrupt may overwrite that data.)
    73 static inline Address at_rsp   () {
    74   return Address(rsp, 0);
    75 }
    77 // At top of Java expression stack which may be different than rsp().  It
    78 // isn't for category 1 objects.
    79 static inline Address at_tos   () {
    80   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    81   return tos;
    82 }
    84 static inline Address at_tos_p1() {
    85   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    86 }
    88 static inline Address at_tos_p2() {
    89   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    90 }
    92 // Condition conversion
    93 static Assembler::Condition j_not(TemplateTable::Condition cc) {
    94   switch (cc) {
    95     case TemplateTable::equal        : return Assembler::notEqual;
    96     case TemplateTable::not_equal    : return Assembler::equal;
    97     case TemplateTable::less         : return Assembler::greaterEqual;
    98     case TemplateTable::less_equal   : return Assembler::greater;
    99     case TemplateTable::greater      : return Assembler::lessEqual;
   100     case TemplateTable::greater_equal: return Assembler::less;
   101   }
   102   ShouldNotReachHere();
   103   return Assembler::zero;
   104 }
   107 //----------------------------------------------------------------------------------------------------
   108 // Miscelaneous helper routines
   110 // Store an oop (or NULL) at the address described by obj.
   111 // If val == noreg this means store a NULL
   113 static void do_oop_store(InterpreterMacroAssembler* _masm,
   114                          Address obj,
   115                          Register val,
   116                          BarrierSet::Name barrier,
   117                          bool precise) {
   118   assert(val == noreg || val == rax, "parameter is just for looks");
   119   switch (barrier) {
   120 #ifndef SERIALGC
   121     case BarrierSet::G1SATBCT:
   122     case BarrierSet::G1SATBCTLogging:
   123       {
   124         // flatten object address if needed
   125         // We do it regardless of precise because we need the registers
   126         if (obj.index() == noreg && obj.disp() == 0) {
   127           if (obj.base() != rdx) {
   128             __ movl(rdx, obj.base());
   129           }
   130         } else {
   131           __ leal(rdx, obj);
   132         }
   133         __ get_thread(rcx);
   134         __ save_bcp();
   135         __ g1_write_barrier_pre(rdx, rcx, rsi, rbx, val != noreg);
   137         // Do the actual store
   138         // noreg means NULL
   139         if (val == noreg) {
   140           __ movl(Address(rdx, 0), NULL_WORD);
   141           // No post barrier for NULL
   142         } else {
   143           __ movl(Address(rdx, 0), val);
   144           __ g1_write_barrier_post(rdx, rax, rcx, rbx, rsi);
   145         }
   146         __ restore_bcp();
   148       }
   149       break;
   150 #endif // SERIALGC
   151     case BarrierSet::CardTableModRef:
   152     case BarrierSet::CardTableExtension:
   153       {
   154         if (val == noreg) {
   155           __ movl(obj, NULL_WORD);
   156         } else {
   157           __ movl(obj, val);
   158           // flatten object address if needed
   159           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   160             __ store_check(obj.base());
   161           } else {
   162             __ leal(rdx, obj);
   163             __ store_check(rdx);
   164           }
   165         }
   166       }
   167       break;
   168     case BarrierSet::ModRef:
   169     case BarrierSet::Other:
   170       if (val == noreg) {
   171         __ movl(obj, NULL_WORD);
   172       } else {
   173         __ movl(obj, val);
   174       }
   175       break;
   176     default      :
   177       ShouldNotReachHere();
   179   }
   180 }
   182 Address TemplateTable::at_bcp(int offset) {
   183   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   184   return Address(rsi, offset);
   185 }
   188 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   189                                    Register scratch,
   190                                    bool load_bc_into_scratch/*=true*/) {
   192   if (!RewriteBytecodes) return;
   193   // the pair bytecodes have already done the load.
   194   if (load_bc_into_scratch) __ movl(bc, bytecode);
   195   Label patch_done;
   196   if (JvmtiExport::can_post_breakpoint()) {
   197     Label fast_patch;
   198     // if a breakpoint is present we can't rewrite the stream directly
   199     __ movzxb(scratch, at_bcp(0));
   200     __ cmpl(scratch, Bytecodes::_breakpoint);
   201     __ jcc(Assembler::notEqual, fast_patch);
   202     __ get_method(scratch);
   203     // Let breakpoint table handling rewrite to quicker bytecode
   204     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc);
   205 #ifndef ASSERT
   206     __ jmpb(patch_done);
   207     __ bind(fast_patch);
   208   }
   209 #else
   210     __ jmp(patch_done);
   211     __ bind(fast_patch);
   212   }
   213   Label okay;
   214   __ load_unsigned_byte(scratch, at_bcp(0));
   215   __ cmpl(scratch, (int)Bytecodes::java_code(bytecode));
   216   __ jccb(Assembler::equal, okay);
   217   __ cmpl(scratch, bc);
   218   __ jcc(Assembler::equal, okay);
   219   __ stop("patching the wrong bytecode");
   220   __ bind(okay);
   221 #endif
   222   // patch bytecode
   223   __ movb(at_bcp(0), bc);
   224   __ bind(patch_done);
   225 }
   227 //----------------------------------------------------------------------------------------------------
   228 // Individual instructions
   230 void TemplateTable::nop() {
   231   transition(vtos, vtos);
   232   // nothing to do
   233 }
   235 void TemplateTable::shouldnotreachhere() {
   236   transition(vtos, vtos);
   237   __ stop("shouldnotreachhere bytecode");
   238 }
   242 void TemplateTable::aconst_null() {
   243   transition(vtos, atos);
   244   __ xorl(rax, rax);
   245 }
   248 void TemplateTable::iconst(int value) {
   249   transition(vtos, itos);
   250   if (value == 0) {
   251     __ xorl(rax, rax);
   252   } else {
   253     __ movl(rax, value);
   254   }
   255 }
   258 void TemplateTable::lconst(int value) {
   259   transition(vtos, ltos);
   260   if (value == 0) {
   261     __ xorl(rax, rax);
   262   } else {
   263     __ movl(rax, value);
   264   }
   265   assert(value >= 0, "check this code");
   266   __ xorl(rdx, rdx);
   267 }
   270 void TemplateTable::fconst(int value) {
   271   transition(vtos, ftos);
   272          if (value == 0) { __ fldz();
   273   } else if (value == 1) { __ fld1();
   274   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
   275   } else                 { ShouldNotReachHere();
   276   }
   277 }
   280 void TemplateTable::dconst(int value) {
   281   transition(vtos, dtos);
   282          if (value == 0) { __ fldz();
   283   } else if (value == 1) { __ fld1();
   284   } else                 { ShouldNotReachHere();
   285   }
   286 }
   289 void TemplateTable::bipush() {
   290   transition(vtos, itos);
   291   __ load_signed_byte(rax, at_bcp(1));
   292 }
   295 void TemplateTable::sipush() {
   296   transition(vtos, itos);
   297   __ load_unsigned_word(rax, at_bcp(1));
   298   __ bswap(rax);
   299   __ sarl(rax, 16);
   300 }
   302 void TemplateTable::ldc(bool wide) {
   303   transition(vtos, vtos);
   304   Label call_ldc, notFloat, notClass, Done;
   306   if (wide) {
   307     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   308   } else {
   309     __ load_unsigned_byte(rbx, at_bcp(1));
   310   }
   311   __ get_cpool_and_tags(rcx, rax);
   312   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   313   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   315   // get type
   316   __ xorl(rdx, rdx);
   317   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   319   // unresolved string - get the resolved string
   320   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   321   __ jccb(Assembler::equal, call_ldc);
   323   // unresolved class - get the resolved class
   324   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   325   __ jccb(Assembler::equal, call_ldc);
   327   // unresolved class in error (resolution failed) - call into runtime
   328   // so that the same error from first resolution attempt is thrown.
   329   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   330   __ jccb(Assembler::equal, call_ldc);
   332   // resolved class - need to call vm to get java mirror of the class
   333   __ cmpl(rdx, JVM_CONSTANT_Class);
   334   __ jcc(Assembler::notEqual, notClass);
   336   __ bind(call_ldc);
   337   __ movl(rcx, wide);
   338   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
   339   __ push(atos);
   340   __ jmp(Done);
   342   __ bind(notClass);
   343   __ cmpl(rdx, JVM_CONSTANT_Float);
   344   __ jccb(Assembler::notEqual, notFloat);
   345   // ftos
   346   __ fld_s(    Address(rcx, rbx, Address::times_4, base_offset));
   347   __ push(ftos);
   348   __ jmp(Done);
   350   __ bind(notFloat);
   351 #ifdef ASSERT
   352   { Label L;
   353     __ cmpl(rdx, JVM_CONSTANT_Integer);
   354     __ jcc(Assembler::equal, L);
   355     __ cmpl(rdx, JVM_CONSTANT_String);
   356     __ jcc(Assembler::equal, L);
   357     __ stop("unexpected tag type in ldc");
   358     __ bind(L);
   359   }
   360 #endif
   361   Label isOop;
   362   // atos and itos
   363   __ movl(rax, Address(rcx, rbx, Address::times_4, base_offset));
   364   // String is only oop type we will see here
   365   __ cmpl(rdx, JVM_CONSTANT_String);
   366   __ jccb(Assembler::equal, isOop);
   367   __ push(itos);
   368   __ jmp(Done);
   369   __ bind(isOop);
   370   __ push(atos);
   372   if (VerifyOops) {
   373     __ verify_oop(rax);
   374   }
   375   __ bind(Done);
   376 }
   378 void TemplateTable::ldc2_w() {
   379   transition(vtos, vtos);
   380   Label Long, Done;
   381   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   383   __ get_cpool_and_tags(rcx, rax);
   384   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   385   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   387   // get type
   388   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
   389   __ jccb(Assembler::notEqual, Long);
   390   // dtos
   391   __ fld_d(    Address(rcx, rbx, Address::times_4, base_offset));
   392   __ push(dtos);
   393   __ jmpb(Done);
   395   __ bind(Long);
   396   // ltos
   397   __ movl(rax, Address(rcx, rbx, Address::times_4, base_offset + 0 * wordSize));
   398   __ movl(rdx, Address(rcx, rbx, Address::times_4, base_offset + 1 * wordSize));
   400   __ push(ltos);
   402   __ bind(Done);
   403 }
   406 void TemplateTable::locals_index(Register reg, int offset) {
   407   __ load_unsigned_byte(reg, at_bcp(offset));
   408   __ negl(reg);
   409 }
   412 void TemplateTable::iload() {
   413   transition(vtos, itos);
   414   if (RewriteFrequentPairs) {
   415     Label rewrite, done;
   417     // get next byte
   418     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   419     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   420     // last two iloads in a pair.  Comparing against fast_iload means that
   421     // the next bytecode is neither an iload or a caload, and therefore
   422     // an iload pair.
   423     __ cmpl(rbx, Bytecodes::_iload);
   424     __ jcc(Assembler::equal, done);
   426     __ cmpl(rbx, Bytecodes::_fast_iload);
   427     __ movl(rcx, Bytecodes::_fast_iload2);
   428     __ jccb(Assembler::equal, rewrite);
   430     // if _caload, rewrite to fast_icaload
   431     __ cmpl(rbx, Bytecodes::_caload);
   432     __ movl(rcx, Bytecodes::_fast_icaload);
   433     __ jccb(Assembler::equal, rewrite);
   435     // rewrite so iload doesn't check again.
   436     __ movl(rcx, Bytecodes::_fast_iload);
   438     // rewrite
   439     // rcx: fast bytecode
   440     __ bind(rewrite);
   441     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
   442     __ bind(done);
   443   }
   445   // Get the local value into tos
   446   locals_index(rbx);
   447   __ movl(rax, iaddress(rbx));
   448   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   449 }
   452 void TemplateTable::fast_iload2() {
   453   transition(vtos, itos);
   454   locals_index(rbx);
   455   __ movl(rax, iaddress(rbx));
   456   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   457   __ push(itos);
   458   locals_index(rbx, 3);
   459   __ movl(rax, iaddress(rbx));
   460   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   461 }
   463 void TemplateTable::fast_iload() {
   464   transition(vtos, itos);
   465   locals_index(rbx);
   466   __ movl(rax, iaddress(rbx));
   467   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   468 }
   471 void TemplateTable::lload() {
   472   transition(vtos, ltos);
   473   locals_index(rbx);
   474   __ movl(rax, laddress(rbx));
   475   __ movl(rdx, haddress(rbx));
   476   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   477 }
   480 void TemplateTable::fload() {
   481   transition(vtos, ftos);
   482   locals_index(rbx);
   483   __ fld_s(faddress(rbx));
   484   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   485 }
   488 void TemplateTable::dload() {
   489   transition(vtos, dtos);
   490   locals_index(rbx);
   491   if (TaggedStackInterpreter) {
   492     // Get double out of locals array, onto temp stack and load with
   493     // float instruction into ST0
   494     __ movl(rax, laddress(rbx));
   495     __ movl(rdx, haddress(rbx));
   496     __ pushl(rdx);  // push hi first
   497     __ pushl(rax);
   498     __ fld_d(Address(rsp, 0));
   499     __ addl(rsp, 2*wordSize);
   500     debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   501   } else {
   502     __ fld_d(daddress(rbx));
   503   }
   504 }
   507 void TemplateTable::aload() {
   508   transition(vtos, atos);
   509   locals_index(rbx);
   510   __ movl(rax, iaddress(rbx));
   511   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   512 }
   515 void TemplateTable::locals_index_wide(Register reg) {
   516   __ movl(reg, at_bcp(2));
   517   __ bswap(reg);
   518   __ shrl(reg, 16);
   519   __ negl(reg);
   520 }
   523 void TemplateTable::wide_iload() {
   524   transition(vtos, itos);
   525   locals_index_wide(rbx);
   526   __ movl(rax, iaddress(rbx));
   527   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   528 }
   531 void TemplateTable::wide_lload() {
   532   transition(vtos, ltos);
   533   locals_index_wide(rbx);
   534   __ movl(rax, laddress(rbx));
   535   __ movl(rdx, haddress(rbx));
   536   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   537 }
   540 void TemplateTable::wide_fload() {
   541   transition(vtos, ftos);
   542   locals_index_wide(rbx);
   543   __ fld_s(faddress(rbx));
   544   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   545 }
   548 void TemplateTable::wide_dload() {
   549   transition(vtos, dtos);
   550   locals_index_wide(rbx);
   551   if (TaggedStackInterpreter) {
   552     // Get double out of locals array, onto temp stack and load with
   553     // float instruction into ST0
   554     __ movl(rax, laddress(rbx));
   555     __ movl(rdx, haddress(rbx));
   556     __ pushl(rdx);  // push hi first
   557     __ pushl(rax);
   558     __ fld_d(Address(rsp, 0));
   559     __ addl(rsp, 2*wordSize);
   560     debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   561   } else {
   562     __ fld_d(daddress(rbx));
   563   }
   564 }
   567 void TemplateTable::wide_aload() {
   568   transition(vtos, atos);
   569   locals_index_wide(rbx);
   570   __ movl(rax, iaddress(rbx));
   571   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   572 }
   574 void TemplateTable::index_check(Register array, Register index) {
   575   // Pop ptr into array
   576   __ pop_ptr(array);
   577   index_check_without_pop(array, index);
   578 }
   580 void TemplateTable::index_check_without_pop(Register array, Register index) {
   581   // destroys rbx,
   582   // check array
   583   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   584   // check index
   585   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   586   if (index != rbx) {
   587     // ??? convention: move aberrant index into rbx, for exception message
   588     assert(rbx != array, "different registers");
   589     __ movl(rbx, index);
   590   }
   591   __ jump_cc(Assembler::aboveEqual,
   592              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   593 }
   596 void TemplateTable::iaload() {
   597   transition(itos, itos);
   598   // rdx: array
   599   index_check(rdx, rax);  // kills rbx,
   600   // rax,: index
   601   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
   602 }
   605 void TemplateTable::laload() {
   606   transition(itos, ltos);
   607   // rax,: index
   608   // rdx: array
   609   index_check(rdx, rax);
   610   __ movl(rbx, rax);
   611   // rbx,: index
   612   __ movl(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
   613   __ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize));
   614 }
   617 void TemplateTable::faload() {
   618   transition(itos, ftos);
   619   // rdx: array
   620   index_check(rdx, rax);  // kills rbx,
   621   // rax,: index
   622   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   623 }
   626 void TemplateTable::daload() {
   627   transition(itos, dtos);
   628   // rdx: array
   629   index_check(rdx, rax);  // kills rbx,
   630   // rax,: index
   631   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   632 }
   635 void TemplateTable::aaload() {
   636   transition(itos, atos);
   637   // rdx: array
   638   index_check(rdx, rax);  // kills rbx,
   639   // rax,: index
   640   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   641 }
   644 void TemplateTable::baload() {
   645   transition(itos, itos);
   646   // rdx: array
   647   index_check(rdx, rax);  // kills rbx,
   648   // rax,: index
   649   // can do better code for P5 - fix this at some point
   650   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   651   __ movl(rax, rbx);
   652 }
   655 void TemplateTable::caload() {
   656   transition(itos, itos);
   657   // rdx: array
   658   index_check(rdx, rax);  // kills rbx,
   659   // rax,: index
   660   // can do better code for P5 - may want to improve this at some point
   661   __ load_unsigned_word(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   662   __ movl(rax, rbx);
   663 }
   665 // iload followed by caload frequent pair
   666 void TemplateTable::fast_icaload() {
   667   transition(vtos, itos);
   668   // load index out of locals
   669   locals_index(rbx);
   670   __ movl(rax, iaddress(rbx));
   671   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   673   // rdx: array
   674   index_check(rdx, rax);
   675   // rax,: index
   676   __ load_unsigned_word(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   677   __ movl(rax, rbx);
   678 }
   680 void TemplateTable::saload() {
   681   transition(itos, itos);
   682   // rdx: array
   683   index_check(rdx, rax);  // kills rbx,
   684   // rax,: index
   685   // can do better code for P5 - may want to improve this at some point
   686   __ load_signed_word(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   687   __ movl(rax, rbx);
   688 }
   691 void TemplateTable::iload(int n) {
   692   transition(vtos, itos);
   693   __ movl(rax, iaddress(n));
   694   debug_only(__ verify_local_tag(frame::TagValue, n));
   695 }
   698 void TemplateTable::lload(int n) {
   699   transition(vtos, ltos);
   700   __ movl(rax, laddress(n));
   701   __ movl(rdx, haddress(n));
   702   debug_only(__ verify_local_tag(frame::TagCategory2, n));
   703 }
   706 void TemplateTable::fload(int n) {
   707   transition(vtos, ftos);
   708   __ fld_s(faddress(n));
   709   debug_only(__ verify_local_tag(frame::TagValue, n));
   710 }
   713 void TemplateTable::dload(int n) {
   714   transition(vtos, dtos);
   715   if (TaggedStackInterpreter) {
   716     // Get double out of locals array, onto temp stack and load with
   717     // float instruction into ST0
   718     __ movl(rax, laddress(n));
   719     __ movl(rdx, haddress(n));
   720     __ pushl(rdx);  // push hi first
   721     __ pushl(rax);
   722     __ fld_d(Address(rsp, 0));
   723     __ addl(rsp, 2*wordSize);  // reset rsp
   724     debug_only(__ verify_local_tag(frame::TagCategory2, n));
   725   } else {
   726     __ fld_d(daddress(n));
   727   }
   728 }
   731 void TemplateTable::aload(int n) {
   732   transition(vtos, atos);
   733   __ movl(rax, aaddress(n));
   734   debug_only(__ verify_local_tag(frame::TagReference, n));
   735 }
   738 void TemplateTable::aload_0() {
   739   transition(vtos, atos);
   740   // According to bytecode histograms, the pairs:
   741   //
   742   // _aload_0, _fast_igetfield
   743   // _aload_0, _fast_agetfield
   744   // _aload_0, _fast_fgetfield
   745   //
   746   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   747   // bytecode checks if the next bytecode is either _fast_igetfield,
   748   // _fast_agetfield or _fast_fgetfield and then rewrites the
   749   // current bytecode into a pair bytecode; otherwise it rewrites the current
   750   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   751   //
   752   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
   753   //       otherwise we may miss an opportunity for a pair.
   754   //
   755   // Also rewrite frequent pairs
   756   //   aload_0, aload_1
   757   //   aload_0, iload_1
   758   // These bytecodes with a small amount of code are most profitable to rewrite
   759   if (RewriteFrequentPairs) {
   760     Label rewrite, done;
   761     // get next byte
   762     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   764     // do actual aload_0
   765     aload(0);
   767     // if _getfield then wait with rewrite
   768     __ cmpl(rbx, Bytecodes::_getfield);
   769     __ jcc(Assembler::equal, done);
   771     // if _igetfield then reqrite to _fast_iaccess_0
   772     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   773     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   774     __ movl(rcx, Bytecodes::_fast_iaccess_0);
   775     __ jccb(Assembler::equal, rewrite);
   777     // if _agetfield then reqrite to _fast_aaccess_0
   778     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   779     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   780     __ movl(rcx, Bytecodes::_fast_aaccess_0);
   781     __ jccb(Assembler::equal, rewrite);
   783     // if _fgetfield then reqrite to _fast_faccess_0
   784     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   785     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   786     __ movl(rcx, Bytecodes::_fast_faccess_0);
   787     __ jccb(Assembler::equal, rewrite);
   789     // else rewrite to _fast_aload0
   790     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
   791     __ movl(rcx, Bytecodes::_fast_aload_0);
   793     // rewrite
   794     // rcx: fast bytecode
   795     __ bind(rewrite);
   796     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
   798     __ bind(done);
   799   } else {
   800     aload(0);
   801   }
   802 }
   804 void TemplateTable::istore() {
   805   transition(itos, vtos);
   806   locals_index(rbx);
   807   __ movl(iaddress(rbx), rax);
   808   __ tag_local(frame::TagValue, rbx);
   809 }
   812 void TemplateTable::lstore() {
   813   transition(ltos, vtos);
   814   locals_index(rbx);
   815   __ movl(laddress(rbx), rax);
   816   __ movl(haddress(rbx), rdx);
   817   __ tag_local(frame::TagCategory2, rbx);
   818 }
   821 void TemplateTable::fstore() {
   822   transition(ftos, vtos);
   823   locals_index(rbx);
   824   __ fstp_s(faddress(rbx));
   825   __ tag_local(frame::TagValue, rbx);
   826 }
   829 void TemplateTable::dstore() {
   830   transition(dtos, vtos);
   831   locals_index(rbx);
   832   if (TaggedStackInterpreter) {
   833     // Store double on stack and reload into locals nonadjacently
   834     __ subl(rsp, 2 * wordSize);
   835     __ fstp_d(Address(rsp, 0));
   836     __ popl(rax);
   837     __ popl(rdx);
   838     __ movl(laddress(rbx), rax);
   839     __ movl(haddress(rbx), rdx);
   840     __ tag_local(frame::TagCategory2, rbx);
   841   } else {
   842     __ fstp_d(daddress(rbx));
   843   }
   844 }
   847 void TemplateTable::astore() {
   848   transition(vtos, vtos);
   849   __ pop_ptr(rax, rdx);   // will need to pop tag too
   850   locals_index(rbx);
   851   __ movl(aaddress(rbx), rax);
   852   __ tag_local(rdx, rbx);    // need to store same tag in local may be returnAddr
   853 }
   856 void TemplateTable::wide_istore() {
   857   transition(vtos, vtos);
   858   __ pop_i(rax);
   859   locals_index_wide(rbx);
   860   __ movl(iaddress(rbx), rax);
   861   __ tag_local(frame::TagValue, rbx);
   862 }
   865 void TemplateTable::wide_lstore() {
   866   transition(vtos, vtos);
   867   __ pop_l(rax, rdx);
   868   locals_index_wide(rbx);
   869   __ movl(laddress(rbx), rax);
   870   __ movl(haddress(rbx), rdx);
   871   __ tag_local(frame::TagCategory2, rbx);
   872 }
   875 void TemplateTable::wide_fstore() {
   876   wide_istore();
   877 }
   880 void TemplateTable::wide_dstore() {
   881   wide_lstore();
   882 }
   885 void TemplateTable::wide_astore() {
   886   transition(vtos, vtos);
   887   __ pop_ptr(rax, rdx);
   888   locals_index_wide(rbx);
   889   __ movl(aaddress(rbx), rax);
   890   __ tag_local(rdx, rbx);
   891 }
   894 void TemplateTable::iastore() {
   895   transition(itos, vtos);
   896   __ pop_i(rbx);
   897   // rax,: value
   898   // rdx: array
   899   index_check(rdx, rbx);  // prefer index in rbx,
   900   // rbx,: index
   901   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
   902 }
   905 void TemplateTable::lastore() {
   906   transition(ltos, vtos);
   907   __ pop_i(rbx);
   908   // rax,: low(value)
   909   // rcx: array
   910   // rdx: high(value)
   911   index_check(rcx, rbx);  // prefer index in rbx,
   912   // rbx,: index
   913   __ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
   914   __ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx);
   915 }
   918 void TemplateTable::fastore() {
   919   transition(ftos, vtos);
   920   __ pop_i(rbx);
   921   // rdx: array
   922   // st0: value
   923   index_check(rdx, rbx);  // prefer index in rbx,
   924   // rbx,: index
   925   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   926 }
   929 void TemplateTable::dastore() {
   930   transition(dtos, vtos);
   931   __ pop_i(rbx);
   932   // rdx: array
   933   // st0: value
   934   index_check(rdx, rbx);  // prefer index in rbx,
   935   // rbx,: index
   936   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   937 }
   940 void TemplateTable::aastore() {
   941   Label is_null, ok_is_subtype, done;
   942   transition(vtos, vtos);
   943   // stack: ..., array, index, value
   944   __ movl(rax, at_tos());     // Value
   945   __ movl(rcx, at_tos_p1());  // Index
   946   __ movl(rdx, at_tos_p2());  // Array
   948   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   949   index_check_without_pop(rdx, rcx);      // kills rbx,
   950   // do array store check - check for NULL value first
   951   __ testl(rax, rax);
   952   __ jcc(Assembler::zero, is_null);
   954   // Move subklass into EBX
   955   __ movl(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
   956   // Move superklass into EAX
   957   __ movl(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
   958   __ movl(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
   959   // Compress array+index*4+12 into a single register.  Frees ECX.
   960   __ leal(rdx, element_address);
   962   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
   963   // Superklass in EAX.  Subklass in EBX.
   964   __ gen_subtype_check( rbx, ok_is_subtype );
   966   // Come here on failure
   967   // object is at TOS
   968   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   970   // Come here on success
   971   __ bind(ok_is_subtype);
   973   // Get the value to store
   974   __ movl(rax, at_rsp());
   975   // and store it with appropriate barrier
   976   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   978   __ jmp(done);
   980   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
   981   __ bind(is_null);
   982   __ profile_null_seen(rbx);
   984   // Store NULL, (noreg means NULL to do_oop_store)
   985   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   987   // Pop stack arguments
   988   __ bind(done);
   989   __ addl(rsp, 3 * Interpreter::stackElementSize());
   990 }
   993 void TemplateTable::bastore() {
   994   transition(itos, vtos);
   995   __ pop_i(rbx);
   996   // rax,: value
   997   // rdx: array
   998   index_check(rdx, rbx);  // prefer index in rbx,
   999   // rbx,: index
  1000   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
  1004 void TemplateTable::castore() {
  1005   transition(itos, vtos);
  1006   __ pop_i(rbx);
  1007   // rax,: value
  1008   // rdx: array
  1009   index_check(rdx, rbx);  // prefer index in rbx,
  1010   // rbx,: index
  1011   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
  1015 void TemplateTable::sastore() {
  1016   castore();
  1020 void TemplateTable::istore(int n) {
  1021   transition(itos, vtos);
  1022   __ movl(iaddress(n), rax);
  1023   __ tag_local(frame::TagValue, n);
  1027 void TemplateTable::lstore(int n) {
  1028   transition(ltos, vtos);
  1029   __ movl(laddress(n), rax);
  1030   __ movl(haddress(n), rdx);
  1031   __ tag_local(frame::TagCategory2, n);
  1035 void TemplateTable::fstore(int n) {
  1036   transition(ftos, vtos);
  1037   __ fstp_s(faddress(n));
  1038   __ tag_local(frame::TagValue, n);
  1042 void TemplateTable::dstore(int n) {
  1043   transition(dtos, vtos);
  1044   if (TaggedStackInterpreter) {
  1045     __ subl(rsp, 2 * wordSize);
  1046     __ fstp_d(Address(rsp, 0));
  1047     __ popl(rax);
  1048     __ popl(rdx);
  1049     __ movl(laddress(n), rax);
  1050     __ movl(haddress(n), rdx);
  1051     __ tag_local(frame::TagCategory2, n);
  1052   } else {
  1053     __ fstp_d(daddress(n));
  1058 void TemplateTable::astore(int n) {
  1059   transition(vtos, vtos);
  1060   __ pop_ptr(rax, rdx);
  1061   __ movl(aaddress(n), rax);
  1062   __ tag_local(rdx, n);
  1066 void TemplateTable::pop() {
  1067   transition(vtos, vtos);
  1068   __ addl(rsp, Interpreter::stackElementSize());
  1072 void TemplateTable::pop2() {
  1073   transition(vtos, vtos);
  1074   __ addl(rsp, 2*Interpreter::stackElementSize());
  1078 void TemplateTable::dup() {
  1079   transition(vtos, vtos);
  1080   // stack: ..., a
  1081   __ load_ptr_and_tag(0, rax, rdx);
  1082   __ push_ptr(rax, rdx);
  1083   // stack: ..., a, a
  1087 void TemplateTable::dup_x1() {
  1088   transition(vtos, vtos);
  1089   // stack: ..., a, b
  1090   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1091   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1092   __ store_ptr_and_tag(1, rax, rdx); // store b
  1093   __ store_ptr_and_tag(0, rcx, rbx); // store a
  1094   __ push_ptr(rax, rdx);             // push b
  1095   // stack: ..., b, a, b
  1099 void TemplateTable::dup_x2() {
  1100   transition(vtos, vtos);
  1101   // stack: ..., a, b, c
  1102   __ load_ptr_and_tag(0, rax, rdx);  // load c
  1103   __ load_ptr_and_tag(2, rcx, rbx);  // load a
  1104   __ store_ptr_and_tag(2, rax, rdx); // store c in a
  1105   __ push_ptr(rax, rdx);             // push c
  1106   // stack: ..., c, b, c, c
  1107   __ load_ptr_and_tag(2, rax, rdx);  // load b
  1108   __ store_ptr_and_tag(2, rcx, rbx); // store a in b
  1109   // stack: ..., c, a, c, c
  1110   __ store_ptr_and_tag(1, rax, rdx); // store b in c
  1111   // stack: ..., c, a, b, c
  1115 void TemplateTable::dup2() {
  1116   transition(vtos, vtos);
  1117   // stack: ..., a, b
  1118   __ load_ptr_and_tag(1, rax, rdx);  // load a
  1119   __ push_ptr(rax, rdx);             // push a
  1120   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1121   __ push_ptr(rax, rdx);             // push b
  1122   // stack: ..., a, b, a, b
  1126 void TemplateTable::dup2_x1() {
  1127   transition(vtos, vtos);
  1128   // stack: ..., a, b, c
  1129   __ load_ptr_and_tag(0, rcx, rbx);  // load c
  1130   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1131   __ push_ptr(rax, rdx);             // push b
  1132   __ push_ptr(rcx, rbx);             // push c
  1133   // stack: ..., a, b, c, b, c
  1134   __ store_ptr_and_tag(3, rcx, rbx); // store c in b
  1135   // stack: ..., a, c, c, b, c
  1136   __ load_ptr_and_tag(4, rcx, rbx);  // load a
  1137   __ store_ptr_and_tag(2, rcx, rbx); // store a in 2nd c
  1138   // stack: ..., a, c, a, b, c
  1139   __ store_ptr_and_tag(4, rax, rdx); // store b in a
  1140   // stack: ..., b, c, a, b, c
  1141   // stack: ..., b, c, a, b, c
  1145 void TemplateTable::dup2_x2() {
  1146   transition(vtos, vtos);
  1147   // stack: ..., a, b, c, d
  1148   __ load_ptr_and_tag(0, rcx, rbx);  // load d
  1149   __ load_ptr_and_tag(1, rax, rdx);  // load c
  1150   __ push_ptr(rax, rdx);             // push c
  1151   __ push_ptr(rcx, rbx);             // push d
  1152   // stack: ..., a, b, c, d, c, d
  1153   __ load_ptr_and_tag(4, rax, rdx);  // load b
  1154   __ store_ptr_and_tag(2, rax, rdx); // store b in d
  1155   __ store_ptr_and_tag(4, rcx, rbx); // store d in b
  1156   // stack: ..., a, d, c, b, c, d
  1157   __ load_ptr_and_tag(5, rcx, rbx);  // load a
  1158   __ load_ptr_and_tag(3, rax, rdx);  // load c
  1159   __ store_ptr_and_tag(3, rcx, rbx); // store a in c
  1160   __ store_ptr_and_tag(5, rax, rdx); // store c in a
  1161   // stack: ..., c, d, a, b, c, d
  1162   // stack: ..., c, d, a, b, c, d
  1166 void TemplateTable::swap() {
  1167   transition(vtos, vtos);
  1168   // stack: ..., a, b
  1169   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1170   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1171   __ store_ptr_and_tag(0, rcx, rbx); // store a in b
  1172   __ store_ptr_and_tag(1, rax, rdx); // store b in a
  1173   // stack: ..., b, a
  1177 void TemplateTable::iop2(Operation op) {
  1178   transition(itos, itos);
  1179   switch (op) {
  1180     case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1181     case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1182     case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1183     case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1184     case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1185     case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1186     case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1187     case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1188     case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1189     default   : ShouldNotReachHere();
  1194 void TemplateTable::lop2(Operation op) {
  1195   transition(ltos, ltos);
  1196   __ pop_l(rbx, rcx);
  1197   switch (op) {
  1198     case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
  1199     case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx);
  1200                __ movl(rax, rbx); __ movl(rdx, rcx); break;
  1201     case _and: __ andl(rax, rbx); __ andl(rdx, rcx); break;
  1202     case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break;
  1203     case _xor: __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
  1204     default : ShouldNotReachHere();
  1209 void TemplateTable::idiv() {
  1210   transition(itos, itos);
  1211   __ movl(rcx, rax);
  1212   __ pop_i(rax);
  1213   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1214   //       they are not equal, one could do a normal division (no correction
  1215   //       needed), which may speed up this implementation for the common case.
  1216   //       (see also JVM spec., p.243 & p.271)
  1217   __ corrected_idivl(rcx);
  1221 void TemplateTable::irem() {
  1222   transition(itos, itos);
  1223   __ movl(rcx, rax);
  1224   __ pop_i(rax);
  1225   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1226   //       they are not equal, one could do a normal division (no correction
  1227   //       needed), which may speed up this implementation for the common case.
  1228   //       (see also JVM spec., p.243 & p.271)
  1229   __ corrected_idivl(rcx);
  1230   __ movl(rax, rdx);
  1234 void TemplateTable::lmul() {
  1235   transition(ltos, ltos);
  1236   __ pop_l(rbx, rcx);
  1237   __ pushl(rcx); __ pushl(rbx);
  1238   __ pushl(rdx); __ pushl(rax);
  1239   __ lmul(2 * wordSize, 0);
  1240   __ addl(rsp, 4 * wordSize);  // take off temporaries
  1244 void TemplateTable::ldiv() {
  1245   transition(ltos, ltos);
  1246   __ pop_l(rbx, rcx);
  1247   __ pushl(rcx); __ pushl(rbx);
  1248   __ pushl(rdx); __ pushl(rax);
  1249   // check if y = 0
  1250   __ orl(rax, rdx);
  1251   __ jump_cc(Assembler::zero,
  1252              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1253   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1254   __ addl(rsp, 4 * wordSize);  // take off temporaries
  1258 void TemplateTable::lrem() {
  1259   transition(ltos, ltos);
  1260   __ pop_l(rbx, rcx);
  1261   __ pushl(rcx); __ pushl(rbx);
  1262   __ pushl(rdx); __ pushl(rax);
  1263   // check if y = 0
  1264   __ orl(rax, rdx);
  1265   __ jump_cc(Assembler::zero,
  1266              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1267   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1268   __ addl(rsp, 4 * wordSize);
  1272 void TemplateTable::lshl() {
  1273   transition(itos, ltos);
  1274   __ movl(rcx, rax);                             // get shift count
  1275   __ pop_l(rax, rdx);                            // get shift value
  1276   __ lshl(rdx, rax);
  1280 void TemplateTable::lshr() {
  1281   transition(itos, ltos);
  1282   __ movl(rcx, rax);                             // get shift count
  1283   __ pop_l(rax, rdx);                            // get shift value
  1284   __ lshr(rdx, rax, true);
  1288 void TemplateTable::lushr() {
  1289   transition(itos, ltos);
  1290   __ movl(rcx, rax);                             // get shift count
  1291   __ pop_l(rax, rdx);                            // get shift value
  1292   __ lshr(rdx, rax);
  1296 void TemplateTable::fop2(Operation op) {
  1297   transition(ftos, ftos);
  1298   __ pop_ftos_to_rsp();  // pop ftos into rsp
  1299   switch (op) {
  1300     case add: __ fadd_s (at_rsp());                break;
  1301     case sub: __ fsubr_s(at_rsp());                break;
  1302     case mul: __ fmul_s (at_rsp());                break;
  1303     case div: __ fdivr_s(at_rsp());                break;
  1304     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
  1305     default : ShouldNotReachHere();
  1307   __ f2ieee();
  1308   __ popl(rax);  // pop float thing off
  1312 void TemplateTable::dop2(Operation op) {
  1313   transition(dtos, dtos);
  1314   __ pop_dtos_to_rsp();  // pop dtos into rsp
  1316   switch (op) {
  1317     case add: __ fadd_d (at_rsp());                break;
  1318     case sub: __ fsubr_d(at_rsp());                break;
  1319     case mul: {
  1320       Label L_strict;
  1321       Label L_join;
  1322       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1323       __ get_method(rcx);
  1324       __ movl(rcx, access_flags);
  1325       __ testl(rcx, JVM_ACC_STRICT);
  1326       __ jccb(Assembler::notZero, L_strict);
  1327       __ fmul_d (at_rsp());
  1328       __ jmpb(L_join);
  1329       __ bind(L_strict);
  1330       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1331       __ fmulp();
  1332       __ fmul_d (at_rsp());
  1333       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1334       __ fmulp();
  1335       __ bind(L_join);
  1336       break;
  1338     case div: {
  1339       Label L_strict;
  1340       Label L_join;
  1341       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1342       __ get_method(rcx);
  1343       __ movl(rcx, access_flags);
  1344       __ testl(rcx, JVM_ACC_STRICT);
  1345       __ jccb(Assembler::notZero, L_strict);
  1346       __ fdivr_d(at_rsp());
  1347       __ jmp(L_join);
  1348       __ bind(L_strict);
  1349       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1350       __ fmul_d (at_rsp());
  1351       __ fdivrp();
  1352       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1353       __ fmulp();
  1354       __ bind(L_join);
  1355       break;
  1357     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
  1358     default : ShouldNotReachHere();
  1360   __ d2ieee();
  1361   // Pop double precision number from rsp.
  1362   __ popl(rax);
  1363   __ popl(rdx);
  1367 void TemplateTable::ineg() {
  1368   transition(itos, itos);
  1369   __ negl(rax);
  1373 void TemplateTable::lneg() {
  1374   transition(ltos, ltos);
  1375   __ lneg(rdx, rax);
  1379 void TemplateTable::fneg() {
  1380   transition(ftos, ftos);
  1381   __ fchs();
  1385 void TemplateTable::dneg() {
  1386   transition(dtos, dtos);
  1387   __ fchs();
  1391 void TemplateTable::iinc() {
  1392   transition(vtos, vtos);
  1393   __ load_signed_byte(rdx, at_bcp(2));           // get constant
  1394   locals_index(rbx);
  1395   __ addl(iaddress(rbx), rdx);
  1399 void TemplateTable::wide_iinc() {
  1400   transition(vtos, vtos);
  1401   __ movl(rdx, at_bcp(4));                       // get constant
  1402   locals_index_wide(rbx);
  1403   __ bswap(rdx);                                 // swap bytes & sign-extend constant
  1404   __ sarl(rdx, 16);
  1405   __ addl(iaddress(rbx), rdx);
  1406   // Note: should probably use only one movl to get both
  1407   //       the index and the constant -> fix this
  1411 void TemplateTable::convert() {
  1412   // Checking
  1413 #ifdef ASSERT
  1414   { TosState tos_in  = ilgl;
  1415     TosState tos_out = ilgl;
  1416     switch (bytecode()) {
  1417       case Bytecodes::_i2l: // fall through
  1418       case Bytecodes::_i2f: // fall through
  1419       case Bytecodes::_i2d: // fall through
  1420       case Bytecodes::_i2b: // fall through
  1421       case Bytecodes::_i2c: // fall through
  1422       case Bytecodes::_i2s: tos_in = itos; break;
  1423       case Bytecodes::_l2i: // fall through
  1424       case Bytecodes::_l2f: // fall through
  1425       case Bytecodes::_l2d: tos_in = ltos; break;
  1426       case Bytecodes::_f2i: // fall through
  1427       case Bytecodes::_f2l: // fall through
  1428       case Bytecodes::_f2d: tos_in = ftos; break;
  1429       case Bytecodes::_d2i: // fall through
  1430       case Bytecodes::_d2l: // fall through
  1431       case Bytecodes::_d2f: tos_in = dtos; break;
  1432       default             : ShouldNotReachHere();
  1434     switch (bytecode()) {
  1435       case Bytecodes::_l2i: // fall through
  1436       case Bytecodes::_f2i: // fall through
  1437       case Bytecodes::_d2i: // fall through
  1438       case Bytecodes::_i2b: // fall through
  1439       case Bytecodes::_i2c: // fall through
  1440       case Bytecodes::_i2s: tos_out = itos; break;
  1441       case Bytecodes::_i2l: // fall through
  1442       case Bytecodes::_f2l: // fall through
  1443       case Bytecodes::_d2l: tos_out = ltos; break;
  1444       case Bytecodes::_i2f: // fall through
  1445       case Bytecodes::_l2f: // fall through
  1446       case Bytecodes::_d2f: tos_out = ftos; break;
  1447       case Bytecodes::_i2d: // fall through
  1448       case Bytecodes::_l2d: // fall through
  1449       case Bytecodes::_f2d: tos_out = dtos; break;
  1450       default             : ShouldNotReachHere();
  1452     transition(tos_in, tos_out);
  1454 #endif // ASSERT
  1456   // Conversion
  1457   // (Note: use pushl(rcx)/popl(rcx) for 1/2-word stack-ptr manipulation)
  1458   switch (bytecode()) {
  1459     case Bytecodes::_i2l:
  1460       __ extend_sign(rdx, rax);
  1461       break;
  1462     case Bytecodes::_i2f:
  1463       __ pushl(rax);         // store int on tos
  1464       __ fild_s(at_rsp());   // load int to ST0
  1465       __ f2ieee();           // truncate to float size
  1466       __ popl(rcx);          // adjust rsp
  1467       break;
  1468     case Bytecodes::_i2d:
  1469       __ pushl(rax);         // add one slot for d2ieee()
  1470       __ pushl(rax);         // store int on tos
  1471       __ fild_s(at_rsp());   // load int to ST0
  1472       __ d2ieee();           // truncate to double size
  1473       __ popl(rcx);          // adjust rsp
  1474       __ popl(rcx);
  1475       break;
  1476     case Bytecodes::_i2b:
  1477       __ shll(rax, 24);      // truncate upper 24 bits
  1478       __ sarl(rax, 24);      // and sign-extend byte
  1479       break;
  1480     case Bytecodes::_i2c:
  1481       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
  1482       break;
  1483     case Bytecodes::_i2s:
  1484       __ shll(rax, 16);      // truncate upper 16 bits
  1485       __ sarl(rax, 16);      // and sign-extend short
  1486       break;
  1487     case Bytecodes::_l2i:
  1488       /* nothing to do */
  1489       break;
  1490     case Bytecodes::_l2f:
  1491       __ pushl(rdx);         // store long on tos
  1492       __ pushl(rax);
  1493       __ fild_d(at_rsp());   // load long to ST0
  1494       __ f2ieee();           // truncate to float size
  1495       __ popl(rcx);          // adjust rsp
  1496       __ popl(rcx);
  1497       break;
  1498     case Bytecodes::_l2d:
  1499       __ pushl(rdx);         // store long on tos
  1500       __ pushl(rax);
  1501       __ fild_d(at_rsp());   // load long to ST0
  1502       __ d2ieee();           // truncate to double size
  1503       __ popl(rcx);          // adjust rsp
  1504       __ popl(rcx);
  1505       break;
  1506     case Bytecodes::_f2i:
  1507       __ pushl(rcx);         // reserve space for argument
  1508       __ fstp_s(at_rsp());   // pass float argument on stack
  1509       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1510       break;
  1511     case Bytecodes::_f2l:
  1512       __ pushl(rcx);         // reserve space for argument
  1513       __ fstp_s(at_rsp());   // pass float argument on stack
  1514       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1515       break;
  1516     case Bytecodes::_f2d:
  1517       /* nothing to do */
  1518       break;
  1519     case Bytecodes::_d2i:
  1520       __ pushl(rcx);         // reserve space for argument
  1521       __ pushl(rcx);
  1522       __ fstp_d(at_rsp());   // pass double argument on stack
  1523       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
  1524       break;
  1525     case Bytecodes::_d2l:
  1526       __ pushl(rcx);         // reserve space for argument
  1527       __ pushl(rcx);
  1528       __ fstp_d(at_rsp());   // pass double argument on stack
  1529       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
  1530       break;
  1531     case Bytecodes::_d2f:
  1532       __ pushl(rcx);         // reserve space for f2ieee()
  1533       __ f2ieee();           // truncate to float size
  1534       __ popl(rcx);          // adjust rsp
  1535       break;
  1536     default             :
  1537       ShouldNotReachHere();
  1542 void TemplateTable::lcmp() {
  1543   transition(ltos, itos);
  1544   // y = rdx:rax
  1545   __ pop_l(rbx, rcx);             // get x = rcx:rbx
  1546   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
  1547   __ movl(rax, rcx);
  1551 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1552   if (is_float) {
  1553     __ pop_ftos_to_rsp();
  1554     __ fld_s(at_rsp());
  1555   } else {
  1556     __ pop_dtos_to_rsp();
  1557     __ fld_d(at_rsp());
  1558     __ popl(rdx);
  1560   __ popl(rcx);
  1561   __ fcmp2int(rax, unordered_result < 0);
  1565 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1566   __ get_method(rcx);           // ECX holds method
  1567   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
  1569   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset();
  1570   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset();
  1571   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1573   // Load up EDX with the branch displacement
  1574   __ movl(rdx, at_bcp(1));
  1575   __ bswap(rdx);
  1576   if (!is_wide) __ sarl(rdx, 16);
  1578   // Handle all the JSR stuff here, then exit.
  1579   // It's much shorter and cleaner than intermingling with the
  1580   // non-JSR normal-branch stuff occuring below.
  1581   if (is_jsr) {
  1582     // Pre-load the next target bytecode into EBX
  1583     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
  1585     // compute return address as bci in rax,
  1586     __ leal(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset())));
  1587     __ subl(rax, Address(rcx, methodOopDesc::const_offset()));
  1588     // Adjust the bcp in rsi by the displacement in EDX
  1589     __ addl(rsi, rdx);
  1590     // Push return address
  1591     __ push_i(rax);
  1592     // jsr returns vtos
  1593     __ dispatch_only_noverify(vtos);
  1594     return;
  1597   // Normal (non-jsr) branch handling
  1599   // Adjust the bcp in rsi by the displacement in EDX
  1600   __ addl(rsi, rdx);
  1602   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
  1603   Label backedge_counter_overflow;
  1604   Label profile_method;
  1605   Label dispatch;
  1606   if (UseLoopCounter) {
  1607     // increment backedge counter for backward branches
  1608     // rax,: MDO
  1609     // rbx,: MDO bumped taken-count
  1610     // rcx: method
  1611     // rdx: target offset
  1612     // rsi: target bcp
  1613     // rdi: locals pointer
  1614     __ testl(rdx, rdx);             // check if forward or backward branch
  1615     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1617     // increment counter
  1618     __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1619     __ increment(rax, InvocationCounter::count_increment); // increment counter
  1620     __ movl(Address(rcx, be_offset), rax);        // store counter
  1622     __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1623     __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
  1624     __ addl(rax, Address(rcx, be_offset));        // add both counters
  1626     if (ProfileInterpreter) {
  1627       // Test to see if we should create a method data oop
  1628       __ cmp32(rax,
  1629                ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1630       __ jcc(Assembler::less, dispatch);
  1632       // if no method data exists, go to profile method
  1633       __ test_method_data_pointer(rax, profile_method);
  1635       if (UseOnStackReplacement) {
  1636         // check for overflow against rbx, which is the MDO taken count
  1637         __ cmp32(rbx,
  1638                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1639         __ jcc(Assembler::below, dispatch);
  1641         // When ProfileInterpreter is on, the backedge_count comes from the
  1642         // methodDataOop, which value does not get reset on the call to
  1643         // frequency_counter_overflow().  To avoid excessive calls to the overflow
  1644         // routine while the method is being compiled, add a second test to make
  1645         // sure the overflow function is called only once every overflow_frequency.
  1646         const int overflow_frequency = 1024;
  1647         __ andl(rbx, overflow_frequency-1);
  1648         __ jcc(Assembler::zero, backedge_counter_overflow);
  1651     } else {
  1652       if (UseOnStackReplacement) {
  1653         // check for overflow against rax, which is the sum of the counters
  1654         __ cmp32(rax,
  1655                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1656         __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1660     __ bind(dispatch);
  1663   // Pre-load the next target bytecode into EBX
  1664   __ load_unsigned_byte(rbx, Address(rsi, 0));
  1666   // continue with the bytecode @ target
  1667   // rax,: return bci for jsr's, unused otherwise
  1668   // rbx,: target bytecode
  1669   // rsi: target bcp
  1670   __ dispatch_only(vtos);
  1672   if (UseLoopCounter) {
  1673     if (ProfileInterpreter) {
  1674       // Out-of-line code to allocate method data oop.
  1675       __ bind(profile_method);
  1676       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), rsi);
  1677       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1678       __ movl(rcx, Address(rbp, method_offset));
  1679       __ movl(rcx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1680       __ movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
  1681       __ test_method_data_pointer(rcx, dispatch);
  1682       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
  1683       __ addl(rcx, in_bytes(methodDataOopDesc::data_offset()));
  1684       __ addl(rcx, rax);
  1685       __ movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
  1686       __ jmp(dispatch);
  1689     if (UseOnStackReplacement) {
  1691       // invocation counter overflow
  1692       __ bind(backedge_counter_overflow);
  1693       __ negl(rdx);
  1694       __ addl(rdx, rsi);        // branch bcp
  1695       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
  1696       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1698       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
  1699       // rbx,: target bytecode
  1700       // rdx: scratch
  1701       // rdi: locals pointer
  1702       // rsi: bcp
  1703       __ testl(rax, rax);                        // test result
  1704       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1705       // nmethod may have been invalidated (VM may block upon call_VM return)
  1706       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1707       __ cmpl(rcx, InvalidOSREntryBci);
  1708       __ jcc(Assembler::equal, dispatch);
  1710       // We have the address of an on stack replacement routine in rax,
  1711       // We need to prepare to execute the OSR method. First we must
  1712       // migrate the locals and monitors off of the stack.
  1714       __ movl(rbx, rax);                             // save the nmethod
  1716       const Register thread = rcx;
  1717       __ get_thread(thread);
  1718       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1719       // rax, is OSR buffer, move it to expected parameter location
  1720       __ movl(rcx, rax);
  1722       // pop the interpreter frame
  1723       __ movl(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1724       __ leave();                                // remove frame anchor
  1725       __ popl(rdi);                              // get return address
  1726       __ movl(rsp, rdx);                         // set sp to sender sp
  1729       Label skip;
  1730       Label chkint;
  1732       // The interpreter frame we have removed may be returning to
  1733       // either the callstub or the interpreter. Since we will
  1734       // now be returning from a compiled (OSR) nmethod we must
  1735       // adjust the return to the return were it can handler compiled
  1736       // results and clean the fpu stack. This is very similar to
  1737       // what a i2c adapter must do.
  1739       // Are we returning to the call stub?
  1741       __ cmp32(rdi, ExternalAddress(StubRoutines::_call_stub_return_address));
  1742       __ jcc(Assembler::notEqual, chkint);
  1744       // yes adjust to the specialized call stub  return.
  1745       assert(StubRoutines::i486::get_call_stub_compiled_return() != NULL, "must be set");
  1746       __ lea(rdi, ExternalAddress(StubRoutines::i486::get_call_stub_compiled_return()));
  1747       __ jmp(skip);
  1749       __ bind(chkint);
  1751       // Are we returning to the interpreter? Look for sentinel
  1753       __ cmpl(Address(rdi, -8), Interpreter::return_sentinel);
  1754       __ jcc(Assembler::notEqual, skip);
  1756       // Adjust to compiled return back to interpreter
  1758       __ movl(rdi, Address(rdi, -4));
  1759       __ bind(skip);
  1761       // Align stack pointer for compiled code (note that caller is
  1762       // responsible for undoing this fixup by remembering the old SP
  1763       // in an rbp,-relative location)
  1764       __ andl(rsp, -(StackAlignmentInBytes));
  1766       // push the (possibly adjusted) return address
  1767       __ pushl(rdi);
  1769       // and begin the OSR nmethod
  1770       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
  1776 void TemplateTable::if_0cmp(Condition cc) {
  1777   transition(itos, vtos);
  1778   // assume branch is more often taken than not (loops use backward branches)
  1779   Label not_taken;
  1780   __ testl(rax, rax);
  1781   __ jcc(j_not(cc), not_taken);
  1782   branch(false, false);
  1783   __ bind(not_taken);
  1784   __ profile_not_taken_branch(rax);
  1788 void TemplateTable::if_icmp(Condition cc) {
  1789   transition(itos, vtos);
  1790   // assume branch is more often taken than not (loops use backward branches)
  1791   Label not_taken;
  1792   __ pop_i(rdx);
  1793   __ cmpl(rdx, rax);
  1794   __ jcc(j_not(cc), not_taken);
  1795   branch(false, false);
  1796   __ bind(not_taken);
  1797   __ profile_not_taken_branch(rax);
  1801 void TemplateTable::if_nullcmp(Condition cc) {
  1802   transition(atos, vtos);
  1803   // assume branch is more often taken than not (loops use backward branches)
  1804   Label not_taken;
  1805   __ testl(rax, rax);
  1806   __ jcc(j_not(cc), not_taken);
  1807   branch(false, false);
  1808   __ bind(not_taken);
  1809   __ profile_not_taken_branch(rax);
  1813 void TemplateTable::if_acmp(Condition cc) {
  1814   transition(atos, vtos);
  1815   // assume branch is more often taken than not (loops use backward branches)
  1816   Label not_taken;
  1817   __ pop_ptr(rdx);
  1818   __ cmpl(rdx, rax);
  1819   __ jcc(j_not(cc), not_taken);
  1820   branch(false, false);
  1821   __ bind(not_taken);
  1822   __ profile_not_taken_branch(rax);
  1826 void TemplateTable::ret() {
  1827   transition(vtos, vtos);
  1828   locals_index(rbx);
  1829   __ movl(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1830   __ profile_ret(rbx, rcx);
  1831   __ get_method(rax);
  1832   __ movl(rsi, Address(rax, methodOopDesc::const_offset()));
  1833   __ leal(rsi, Address(rsi, rbx, Address::times_1,
  1834                        constMethodOopDesc::codes_offset()));
  1835   __ dispatch_next(vtos);
  1839 void TemplateTable::wide_ret() {
  1840   transition(vtos, vtos);
  1841   locals_index_wide(rbx);
  1842   __ movl(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1843   __ profile_ret(rbx, rcx);
  1844   __ get_method(rax);
  1845   __ movl(rsi, Address(rax, methodOopDesc::const_offset()));
  1846   __ leal(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1847   __ dispatch_next(vtos);
  1851 void TemplateTable::tableswitch() {
  1852   Label default_case, continue_execution;
  1853   transition(itos, vtos);
  1854   // align rsi
  1855   __ leal(rbx, at_bcp(wordSize));
  1856   __ andl(rbx, -wordSize);
  1857   // load lo & hi
  1858   __ movl(rcx, Address(rbx, 1 * wordSize));
  1859   __ movl(rdx, Address(rbx, 2 * wordSize));
  1860   __ bswap(rcx);
  1861   __ bswap(rdx);
  1862   // check against lo & hi
  1863   __ cmpl(rax, rcx);
  1864   __ jccb(Assembler::less, default_case);
  1865   __ cmpl(rax, rdx);
  1866   __ jccb(Assembler::greater, default_case);
  1867   // lookup dispatch offset
  1868   __ subl(rax, rcx);
  1869   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * wordSize));
  1870   __ profile_switch_case(rax, rbx, rcx);
  1871   // continue execution
  1872   __ bind(continue_execution);
  1873   __ bswap(rdx);
  1874   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1875   __ addl(rsi, rdx);
  1876   __ dispatch_only(vtos);
  1877   // handle default
  1878   __ bind(default_case);
  1879   __ profile_switch_default(rax);
  1880   __ movl(rdx, Address(rbx, 0));
  1881   __ jmp(continue_execution);
  1885 void TemplateTable::lookupswitch() {
  1886   transition(itos, itos);
  1887   __ stop("lookupswitch bytecode should have been rewritten");
  1891 void TemplateTable::fast_linearswitch() {
  1892   transition(itos, vtos);
  1893   Label loop_entry, loop, found, continue_execution;
  1894   // bswap rax, so we can avoid bswapping the table entries
  1895   __ bswap(rax);
  1896   // align rsi
  1897   __ leal(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
  1898   __ andl(rbx, -wordSize);
  1899   // set counter
  1900   __ movl(rcx, Address(rbx, wordSize));
  1901   __ bswap(rcx);
  1902   __ jmpb(loop_entry);
  1903   // table search
  1904   __ bind(loop);
  1905   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
  1906   __ jccb(Assembler::equal, found);
  1907   __ bind(loop_entry);
  1908   __ decrement(rcx);
  1909   __ jcc(Assembler::greaterEqual, loop);
  1910   // default case
  1911   __ profile_switch_default(rax);
  1912   __ movl(rdx, Address(rbx, 0));
  1913   __ jmpb(continue_execution);
  1914   // entry found -> get offset
  1915   __ bind(found);
  1916   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
  1917   __ profile_switch_case(rcx, rax, rbx);
  1918   // continue execution
  1919   __ bind(continue_execution);
  1920   __ bswap(rdx);
  1921   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1922   __ addl(rsi, rdx);
  1923   __ dispatch_only(vtos);
  1927 void TemplateTable::fast_binaryswitch() {
  1928   transition(itos, vtos);
  1929   // Implementation using the following core algorithm:
  1930   //
  1931   // int binary_search(int key, LookupswitchPair* array, int n) {
  1932   //   // Binary search according to "Methodik des Programmierens" by
  1933   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1934   //   int i = 0;
  1935   //   int j = n;
  1936   //   while (i+1 < j) {
  1937   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1938   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1939   //     // where a stands for the array and assuming that the (inexisting)
  1940   //     // element a[n] is infinitely big.
  1941   //     int h = (i + j) >> 1;
  1942   //     // i < h < j
  1943   //     if (key < array[h].fast_match()) {
  1944   //       j = h;
  1945   //     } else {
  1946   //       i = h;
  1947   //     }
  1948   //   }
  1949   //   // R: a[i] <= key < a[i+1] or Q
  1950   //   // (i.e., if key is within array, i is the correct index)
  1951   //   return i;
  1952   // }
  1954   // register allocation
  1955   const Register key   = rax;                    // already set (tosca)
  1956   const Register array = rbx;
  1957   const Register i     = rcx;
  1958   const Register j     = rdx;
  1959   const Register h     = rdi;                    // needs to be restored
  1960   const Register temp  = rsi;
  1961   // setup array
  1962   __ save_bcp();
  1964   __ leal(array, at_bcp(3*wordSize));            // btw: should be able to get rid of this instruction (change offsets below)
  1965   __ andl(array, -wordSize);
  1966   // initialize i & j
  1967   __ xorl(i, i);                                 // i = 0;
  1968   __ movl(j, Address(array, -wordSize));         // j = length(array);
  1969   // Convert j into native byteordering
  1970   __ bswap(j);
  1971   // and start
  1972   Label entry;
  1973   __ jmp(entry);
  1975   // binary search loop
  1976   { Label loop;
  1977     __ bind(loop);
  1978     // int h = (i + j) >> 1;
  1979     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1980     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1981     // if (key < array[h].fast_match()) {
  1982     //   j = h;
  1983     // } else {
  1984     //   i = h;
  1985     // }
  1986     // Convert array[h].match to native byte-ordering before compare
  1987     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
  1988     __ bswap(temp);
  1989     __ cmpl(key, temp);
  1990     if (VM_Version::supports_cmov()) {
  1991       __ cmovl(Assembler::less        , j, h);   // j = h if (key <  array[h].fast_match())
  1992       __ cmovl(Assembler::greaterEqual, i, h);   // i = h if (key >= array[h].fast_match())
  1993     } else {
  1994       Label set_i, end_of_if;
  1995       __ jccb(Assembler::greaterEqual, set_i);    // {
  1996       __ movl(j, h);                             //   j = h;
  1997       __ jmp(end_of_if);                         // }
  1998       __ bind(set_i);                            // else {
  1999       __ movl(i, h);                             //   i = h;
  2000       __ bind(end_of_if);                        // }
  2002     // while (i+1 < j)
  2003     __ bind(entry);
  2004     __ leal(h, Address(i, 1));                   // i+1
  2005     __ cmpl(h, j);                               // i+1 < j
  2006     __ jcc(Assembler::less, loop);
  2009   // end of binary search, result index is i (must check again!)
  2010   Label default_case;
  2011   // Convert array[i].match to native byte-ordering before compare
  2012   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
  2013   __ bswap(temp);
  2014   __ cmpl(key, temp);
  2015   __ jcc(Assembler::notEqual, default_case);
  2017   // entry found -> j = offset
  2018   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
  2019   __ profile_switch_case(i, key, array);
  2020   __ bswap(j);
  2021   __ restore_bcp();
  2022   __ restore_locals();                           // restore rdi
  2023   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  2025   __ addl(rsi, j);
  2026   __ dispatch_only(vtos);
  2028   // default case -> j = default offset
  2029   __ bind(default_case);
  2030   __ profile_switch_default(i);
  2031   __ movl(j, Address(array, -2*wordSize));
  2032   __ bswap(j);
  2033   __ restore_bcp();
  2034   __ restore_locals();                           // restore rdi
  2035   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  2036   __ addl(rsi, j);
  2037   __ dispatch_only(vtos);
  2041 void TemplateTable::_return(TosState state) {
  2042   transition(state, state);
  2043   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
  2045   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2046     assert(state == vtos, "only valid state");
  2047     __ movl(rax, aaddress(0));
  2048     __ movl(rdi, Address(rax, oopDesc::klass_offset_in_bytes()));
  2049     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  2050     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2051     Label skip_register_finalizer;
  2052     __ jcc(Assembler::zero, skip_register_finalizer);
  2054     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
  2056     __ bind(skip_register_finalizer);
  2059   __ remove_activation(state, rsi);
  2060   __ jmp(rsi);
  2064 // ----------------------------------------------------------------------------
  2065 // Volatile variables demand their effects be made known to all CPU's in
  2066 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2067 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2068 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2069 // reorder volatile references, the hardware also must not reorder them).
  2070 //
  2071 // According to the new Java Memory Model (JMM):
  2072 // (1) All volatiles are serialized wrt to each other.
  2073 // ALSO reads & writes act as aquire & release, so:
  2074 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2075 // the read float up to before the read.  It's OK for non-volatile memory refs
  2076 // that happen before the volatile read to float down below it.
  2077 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2078 // that happen BEFORE the write float down to after the write.  It's OK for
  2079 // non-volatile memory refs that happen after the volatile write to float up
  2080 // before it.
  2081 //
  2082 // We only put in barriers around volatile refs (they are expensive), not
  2083 // _between_ memory refs (that would require us to track the flavor of the
  2084 // previous memory refs).  Requirements (2) and (3) require some barriers
  2085 // before volatile stores and after volatile loads.  These nearly cover
  2086 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2087 // case is placed after volatile-stores although it could just as well go
  2088 // before volatile-loads.
  2089 void TemplateTable::volatile_barrier( ) {
  2090   // Helper function to insert a is-volatile test and memory barrier
  2091   if( !os::is_MP() ) return;    // Not needed on single CPU
  2092   __ membar();
  2095 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register index) {
  2096   assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
  2098   Register temp = rbx;
  2100   assert_different_registers(Rcache, index, temp);
  2102   const int shift_count = (1 + byte_no)*BitsPerByte;
  2103   Label resolved;
  2104   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2105   __ movl(temp, Address(Rcache, index, Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2106   __ shrl(temp, shift_count);
  2107   // have we resolved this bytecode?
  2108   __ andl(temp, 0xFF);
  2109   __ cmpl(temp, (int)bytecode());
  2110   __ jcc(Assembler::equal, resolved);
  2112   // resolve first time through
  2113   address entry;
  2114   switch (bytecode()) {
  2115     case Bytecodes::_getstatic      : // fall through
  2116     case Bytecodes::_putstatic      : // fall through
  2117     case Bytecodes::_getfield       : // fall through
  2118     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2119     case Bytecodes::_invokevirtual  : // fall through
  2120     case Bytecodes::_invokespecial  : // fall through
  2121     case Bytecodes::_invokestatic   : // fall through
  2122     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2123     default                         : ShouldNotReachHere();                                 break;
  2125   __ movl(temp, (int)bytecode());
  2126   __ call_VM(noreg, entry, temp);
  2127   // Update registers with resolved info
  2128   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2129   __ bind(resolved);
  2133 // The cache and index registers must be set before call
  2134 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2135                                               Register cache,
  2136                                               Register index,
  2137                                               Register off,
  2138                                               Register flags,
  2139                                               bool is_static = false) {
  2140   assert_different_registers(cache, index, flags, off);
  2142   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2143   // Field offset
  2144   __ movl(off, Address(cache, index, Address::times_4,
  2145            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
  2146   // Flags
  2147   __ movl(flags, Address(cache, index, Address::times_4,
  2148            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
  2150   // klass     overwrite register
  2151   if (is_static) {
  2152     __ movl(obj, Address(cache, index, Address::times_4,
  2153              in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
  2157 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2158                                                Register method,
  2159                                                Register itable_index,
  2160                                                Register flags,
  2161                                                bool is_invokevirtual,
  2162                                                bool is_invokevfinal /*unused*/) {
  2163   // setup registers
  2164   const Register cache = rcx;
  2165   const Register index = rdx;
  2166   assert_different_registers(method, flags);
  2167   assert_different_registers(method, cache, index);
  2168   assert_different_registers(itable_index, flags);
  2169   assert_different_registers(itable_index, cache, index);
  2170   // determine constant pool cache field offsets
  2171   const int method_offset = in_bytes(
  2172     constantPoolCacheOopDesc::base_offset() +
  2173       (is_invokevirtual
  2174        ? ConstantPoolCacheEntry::f2_offset()
  2175        : ConstantPoolCacheEntry::f1_offset()
  2177     );
  2178   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2179                                     ConstantPoolCacheEntry::flags_offset());
  2180   // access constant pool cache fields
  2181   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2182                                     ConstantPoolCacheEntry::f2_offset());
  2184   resolve_cache_and_index(byte_no, cache, index);
  2186   assert(wordSize == 4, "adjust code below");
  2187   __ movl(method, Address(cache, index, Address::times_4, method_offset));
  2188   if (itable_index != noreg) {
  2189     __ movl(itable_index, Address(cache, index, Address::times_4, index_offset));
  2191   __ movl(flags , Address(cache, index, Address::times_4, flags_offset ));
  2195 // The registers cache and index expected to be set before call.
  2196 // Correct values of the cache and index registers are preserved.
  2197 void TemplateTable::jvmti_post_field_access(Register cache,
  2198                                             Register index,
  2199                                             bool is_static,
  2200                                             bool has_tos) {
  2201   if (JvmtiExport::can_post_field_access()) {
  2202     // Check to see if a field access watch has been set before we take
  2203     // the time to call into the VM.
  2204     Label L1;
  2205     assert_different_registers(cache, index, rax);
  2206     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2207     __ testl(rax,rax);
  2208     __ jcc(Assembler::zero, L1);
  2210     // cache entry pointer
  2211     __ addl(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2212     __ shll(index, LogBytesPerWord);
  2213     __ addl(cache, index);
  2214     if (is_static) {
  2215       __ movl(rax, 0);      // NULL object reference
  2216     } else {
  2217       __ pop(atos);         // Get the object
  2218       __ verify_oop(rax);
  2219       __ push(atos);        // Restore stack state
  2221     // rax,:   object pointer or NULL
  2222     // cache: cache entry pointer
  2223     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2224                rax, cache);
  2225     __ get_cache_and_index_at_bcp(cache, index, 1);
  2226     __ bind(L1);
  2230 void TemplateTable::pop_and_check_object(Register r) {
  2231   __ pop_ptr(r);
  2232   __ null_check(r);  // for field access must check obj.
  2233   __ verify_oop(r);
  2236 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2237   transition(vtos, vtos);
  2239   const Register cache = rcx;
  2240   const Register index = rdx;
  2241   const Register obj   = rcx;
  2242   const Register off   = rbx;
  2243   const Register flags = rax;
  2245   resolve_cache_and_index(byte_no, cache, index);
  2246   jvmti_post_field_access(cache, index, is_static, false);
  2247   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2249   if (!is_static) pop_and_check_object(obj);
  2251   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2252   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2254   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2256   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2257   assert(btos == 0, "change code, btos != 0");
  2258   // btos
  2259   __ andl(flags, 0x0f);
  2260   __ jcc(Assembler::notZero, notByte);
  2262   __ load_signed_byte(rax, lo );
  2263   __ push(btos);
  2264   // Rewrite bytecode to be faster
  2265   if (!is_static) {
  2266     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2268   __ jmp(Done);
  2270   __ bind(notByte);
  2271   // itos
  2272   __ cmpl(flags, itos );
  2273   __ jcc(Assembler::notEqual, notInt);
  2275   __ movl(rax, lo );
  2276   __ push(itos);
  2277   // Rewrite bytecode to be faster
  2278   if (!is_static) {
  2279     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
  2281   __ jmp(Done);
  2283   __ bind(notInt);
  2284   // atos
  2285   __ cmpl(flags, atos );
  2286   __ jcc(Assembler::notEqual, notObj);
  2288   __ movl(rax, lo );
  2289   __ push(atos);
  2290   if (!is_static) {
  2291     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
  2293   __ jmp(Done);
  2295   __ bind(notObj);
  2296   // ctos
  2297   __ cmpl(flags, ctos );
  2298   __ jcc(Assembler::notEqual, notChar);
  2300   __ load_unsigned_word(rax, lo );
  2301   __ push(ctos);
  2302   if (!is_static) {
  2303     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
  2305   __ jmp(Done);
  2307   __ bind(notChar);
  2308   // stos
  2309   __ cmpl(flags, stos );
  2310   __ jcc(Assembler::notEqual, notShort);
  2312   __ load_signed_word(rax, lo );
  2313   __ push(stos);
  2314   if (!is_static) {
  2315     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
  2317   __ jmp(Done);
  2319   __ bind(notShort);
  2320   // ltos
  2321   __ cmpl(flags, ltos );
  2322   __ jcc(Assembler::notEqual, notLong);
  2324   // Generate code as if volatile.  There just aren't enough registers to
  2325   // save that information and this code is faster than the test.
  2326   __ fild_d(lo);                // Must load atomically
  2327   __ subl(rsp,2*wordSize);      // Make space for store
  2328   __ fistp_d(Address(rsp,0));
  2329   __ popl(rax);
  2330   __ popl(rdx);
  2332   __ push(ltos);
  2333   // Don't rewrite to _fast_lgetfield for potential volatile case.
  2334   __ jmp(Done);
  2336   __ bind(notLong);
  2337   // ftos
  2338   __ cmpl(flags, ftos );
  2339   __ jcc(Assembler::notEqual, notFloat);
  2341   __ fld_s(lo);
  2342   __ push(ftos);
  2343   if (!is_static) {
  2344     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
  2346   __ jmp(Done);
  2348   __ bind(notFloat);
  2349   // dtos
  2350   __ cmpl(flags, dtos );
  2351   __ jcc(Assembler::notEqual, notDouble);
  2353   __ fld_d(lo);
  2354   __ push(dtos);
  2355   if (!is_static) {
  2356     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
  2358   __ jmpb(Done);
  2360   __ bind(notDouble);
  2362   __ stop("Bad state");
  2364   __ bind(Done);
  2365   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2366   // volatile_barrier( );
  2370 void TemplateTable::getfield(int byte_no) {
  2371   getfield_or_static(byte_no, false);
  2375 void TemplateTable::getstatic(int byte_no) {
  2376   getfield_or_static(byte_no, true);
  2379 // The registers cache and index expected to be set before call.
  2380 // The function may destroy various registers, just not the cache and index registers.
  2381 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2383   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2385   if (JvmtiExport::can_post_field_modification()) {
  2386     // Check to see if a field modification watch has been set before we take
  2387     // the time to call into the VM.
  2388     Label L1;
  2389     assert_different_registers(cache, index, rax);
  2390     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2391     __ testl(rax, rax);
  2392     __ jcc(Assembler::zero, L1);
  2394     // The cache and index registers have been already set.
  2395     // This allows to eliminate this call but the cache and index
  2396     // registers have to be correspondingly used after this line.
  2397     __ get_cache_and_index_at_bcp(rax, rdx, 1);
  2399     if (is_static) {
  2400       // Life is simple.  Null out the object pointer.
  2401       __ xorl(rbx, rbx);
  2402     } else {
  2403       // Life is harder. The stack holds the value on top, followed by the object.
  2404       // We don't know the size of the value, though; it could be one or two words
  2405       // depending on its type. As a result, we must find the type to determine where
  2406       // the object is.
  2407       Label two_word, valsize_known;
  2408       __ movl(rcx, Address(rax, rdx, Address::times_4, in_bytes(cp_base_offset +
  2409                                    ConstantPoolCacheEntry::flags_offset())));
  2410       __ movl(rbx, rsp);
  2411       __ shrl(rcx, ConstantPoolCacheEntry::tosBits);
  2412       // Make sure we don't need to mask rcx for tosBits after the above shift
  2413       ConstantPoolCacheEntry::verify_tosBits();
  2414       __ cmpl(rcx, ltos);
  2415       __ jccb(Assembler::equal, two_word);
  2416       __ cmpl(rcx, dtos);
  2417       __ jccb(Assembler::equal, two_word);
  2418       __ addl(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
  2419       __ jmpb(valsize_known);
  2421       __ bind(two_word);
  2422       __ addl(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
  2424       __ bind(valsize_known);
  2425       // setup object pointer
  2426       __ movl(rbx, Address(rbx, 0));
  2428     // cache entry pointer
  2429     __ addl(rax, in_bytes(cp_base_offset));
  2430     __ shll(rdx, LogBytesPerWord);
  2431     __ addl(rax, rdx);
  2432     // object (tos)
  2433     __ movl(rcx, rsp);
  2434     // rbx,: object pointer set up above (NULL if static)
  2435     // rax,: cache entry pointer
  2436     // rcx: jvalue object on the stack
  2437     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2438                rbx, rax, rcx);
  2439     __ get_cache_and_index_at_bcp(cache, index, 1);
  2440     __ bind(L1);
  2445 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2446   transition(vtos, vtos);
  2448   const Register cache = rcx;
  2449   const Register index = rdx;
  2450   const Register obj   = rcx;
  2451   const Register off   = rbx;
  2452   const Register flags = rax;
  2454   resolve_cache_and_index(byte_no, cache, index);
  2455   jvmti_post_field_mod(cache, index, is_static);
  2456   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2458   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2459   // volatile_barrier( );
  2461   Label notVolatile, Done;
  2462   __ movl(rdx, flags);
  2463   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2464   __ andl(rdx, 0x1);
  2466   // field addresses
  2467   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2468   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2470   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2472   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2473   assert(btos == 0, "change code, btos != 0");
  2474   // btos
  2475   __ andl(flags, 0x0f);
  2476   __ jcc(Assembler::notZero, notByte);
  2478   __ pop(btos);
  2479   if (!is_static) pop_and_check_object(obj);
  2480   __ movb(lo, rax );
  2481   if (!is_static) {
  2482     patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx);
  2484   __ jmp(Done);
  2486   __ bind(notByte);
  2487   // itos
  2488   __ cmpl(flags, itos );
  2489   __ jcc(Assembler::notEqual, notInt);
  2491   __ pop(itos);
  2492   if (!is_static) pop_and_check_object(obj);
  2494   __ movl(lo, rax );
  2495   if (!is_static) {
  2496     patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx);
  2498   __ jmp(Done);
  2500   __ bind(notInt);
  2501   // atos
  2502   __ cmpl(flags, atos );
  2503   __ jcc(Assembler::notEqual, notObj);
  2505   __ pop(atos);
  2506   if (!is_static) pop_and_check_object(obj);
  2508   do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2510   if (!is_static) {
  2511     patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx);
  2514   __ jmp(Done);
  2516   __ bind(notObj);
  2517   // ctos
  2518   __ cmpl(flags, ctos );
  2519   __ jcc(Assembler::notEqual, notChar);
  2521   __ pop(ctos);
  2522   if (!is_static) pop_and_check_object(obj);
  2523   __ movw(lo, rax );
  2524   if (!is_static) {
  2525     patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx);
  2527   __ jmp(Done);
  2529   __ bind(notChar);
  2530   // stos
  2531   __ cmpl(flags, stos );
  2532   __ jcc(Assembler::notEqual, notShort);
  2534   __ pop(stos);
  2535   if (!is_static) pop_and_check_object(obj);
  2536   __ movw(lo, rax );
  2537   if (!is_static) {
  2538     patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx);
  2540   __ jmp(Done);
  2542   __ bind(notShort);
  2543   // ltos
  2544   __ cmpl(flags, ltos );
  2545   __ jcc(Assembler::notEqual, notLong);
  2547   Label notVolatileLong;
  2548   __ testl(rdx, rdx);
  2549   __ jcc(Assembler::zero, notVolatileLong);
  2551   __ pop(ltos);  // overwrites rdx, do this after testing volatile.
  2552   if (!is_static) pop_and_check_object(obj);
  2554   // Replace with real volatile test
  2555   __ pushl(rdx);
  2556   __ pushl(rax);                // Must update atomically with FIST
  2557   __ fild_d(Address(rsp,0));    // So load into FPU register
  2558   __ fistp_d(lo);               // and put into memory atomically
  2559   __ addl(rsp,2*wordSize);
  2560   volatile_barrier();
  2561   // Don't rewrite volatile version
  2562   __ jmp(notVolatile);
  2564   __ bind(notVolatileLong);
  2566   __ pop(ltos);  // overwrites rdx
  2567   if (!is_static) pop_and_check_object(obj);
  2568   __ movl(hi, rdx);
  2569   __ movl(lo, rax);
  2570   if (!is_static) {
  2571     patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx);
  2573   __ jmp(notVolatile);
  2575   __ bind(notLong);
  2576   // ftos
  2577   __ cmpl(flags, ftos );
  2578   __ jcc(Assembler::notEqual, notFloat);
  2580   __ pop(ftos);
  2581   if (!is_static) pop_and_check_object(obj);
  2582   __ fstp_s(lo);
  2583   if (!is_static) {
  2584     patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx);
  2586   __ jmp(Done);
  2588   __ bind(notFloat);
  2589   // dtos
  2590   __ cmpl(flags, dtos );
  2591   __ jcc(Assembler::notEqual, notDouble);
  2593   __ pop(dtos);
  2594   if (!is_static) pop_and_check_object(obj);
  2595   __ fstp_d(lo);
  2596   if (!is_static) {
  2597     patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx);
  2599   __ jmp(Done);
  2601   __ bind(notDouble);
  2603   __ stop("Bad state");
  2605   __ bind(Done);
  2607   // Check for volatile store
  2608   __ testl(rdx, rdx);
  2609   __ jcc(Assembler::zero, notVolatile);
  2610   volatile_barrier( );
  2611   __ bind(notVolatile);
  2615 void TemplateTable::putfield(int byte_no) {
  2616   putfield_or_static(byte_no, false);
  2620 void TemplateTable::putstatic(int byte_no) {
  2621   putfield_or_static(byte_no, true);
  2624 void TemplateTable::jvmti_post_fast_field_mod() {
  2625   if (JvmtiExport::can_post_field_modification()) {
  2626     // Check to see if a field modification watch has been set before we take
  2627     // the time to call into the VM.
  2628     Label L2;
  2629     __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2630     __ testl(rcx,rcx);
  2631     __ jcc(Assembler::zero, L2);
  2632     __ pop_ptr(rbx);               // copy the object pointer from tos
  2633     __ verify_oop(rbx);
  2634     __ push_ptr(rbx);              // put the object pointer back on tos
  2635     __ subl(rsp, sizeof(jvalue));  // add space for a jvalue object
  2636     __ movl(rcx, rsp);
  2637     __ push_ptr(rbx);                 // save object pointer so we can steal rbx,
  2638     __ movl(rbx, 0);
  2639     const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize);
  2640     const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize);
  2641     switch (bytecode()) {          // load values into the jvalue object
  2642     case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break;
  2643     case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break;
  2644     case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break;
  2645     case Bytecodes::_fast_iputfield: __ movl(lo_value, rax);                         break;
  2646     case Bytecodes::_fast_lputfield: __ movl(hi_value, rdx); __ movl(lo_value, rax); break;
  2647     // need to call fld_s() after fstp_s() to restore the value for below
  2648     case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value);        break;
  2649     // need to call fld_d() after fstp_d() to restore the value for below
  2650     case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value);        break;
  2651     // since rcx is not an object we don't call store_check() here
  2652     case Bytecodes::_fast_aputfield: __ movl(lo_value, rax);                         break;
  2653     default:  ShouldNotReachHere();
  2655     __ pop_ptr(rbx);  // restore copy of object pointer
  2657     // Save rax, and sometimes rdx because call_VM() will clobber them,
  2658     // then use them for JVM/DI purposes
  2659     __ pushl(rax);
  2660     if (bytecode() == Bytecodes::_fast_lputfield) __ pushl(rdx);
  2661     // access constant pool cache entry
  2662     __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
  2663     __ verify_oop(rbx);
  2664     // rbx,: object pointer copied above
  2665     // rax,: cache entry pointer
  2666     // rcx: jvalue object on the stack
  2667     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
  2668     if (bytecode() == Bytecodes::_fast_lputfield) __ popl(rdx);  // restore high value
  2669     __ popl(rax);     // restore lower value
  2670     __ addl(rsp, sizeof(jvalue));  // release jvalue object space
  2671     __ bind(L2);
  2675 void TemplateTable::fast_storefield(TosState state) {
  2676   transition(state, vtos);
  2678   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2680   jvmti_post_fast_field_mod();
  2682   // access constant pool cache
  2683   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2685   // test for volatile with rdx but rdx is tos register for lputfield.
  2686   if (bytecode() == Bytecodes::_fast_lputfield) __ pushl(rdx);
  2687   __ movl(rdx, Address(rcx, rbx, Address::times_4, in_bytes(base +
  2688                        ConstantPoolCacheEntry::flags_offset())));
  2690   // replace index with field offset from cache entry
  2691   __ movl(rbx, Address(rcx, rbx, Address::times_4, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2693   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2694   // volatile_barrier( );
  2696   Label notVolatile, Done;
  2697   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2698   __ andl(rdx, 0x1);
  2699   // Check for volatile store
  2700   __ testl(rdx, rdx);
  2701   __ jcc(Assembler::zero, notVolatile);
  2703   if (bytecode() == Bytecodes::_fast_lputfield) __ popl(rdx);
  2705   // Get object from stack
  2706   pop_and_check_object(rcx);
  2708   // field addresses
  2709   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
  2710   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
  2712   // access field
  2713   switch (bytecode()) {
  2714     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2715     case Bytecodes::_fast_sputfield: // fall through
  2716     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2717     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2718     case Bytecodes::_fast_lputfield: __ movl(hi, rdx); __ movl(lo, rax);        break;
  2719     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2720     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2721     case Bytecodes::_fast_aputfield: {
  2722       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2723       break;
  2725     default:
  2726       ShouldNotReachHere();
  2729   Label done;
  2730   volatile_barrier( );
  2731   // Barriers are so large that short branch doesn't reach!
  2732   __ jmp(done);
  2734   // Same code as above, but don't need rdx to test for volatile.
  2735   __ bind(notVolatile);
  2737   if (bytecode() == Bytecodes::_fast_lputfield) __ popl(rdx);
  2739   // Get object from stack
  2740   pop_and_check_object(rcx);
  2742   // access field
  2743   switch (bytecode()) {
  2744     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2745     case Bytecodes::_fast_sputfield: // fall through
  2746     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2747     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2748     case Bytecodes::_fast_lputfield: __ movl(hi, rdx); __ movl(lo, rax);        break;
  2749     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2750     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2751     case Bytecodes::_fast_aputfield: {
  2752       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2753       break;
  2755     default:
  2756       ShouldNotReachHere();
  2758   __ bind(done);
  2762 void TemplateTable::fast_accessfield(TosState state) {
  2763   transition(atos, state);
  2765   // do the JVMTI work here to avoid disturbing the register state below
  2766   if (JvmtiExport::can_post_field_access()) {
  2767     // Check to see if a field access watch has been set before we take
  2768     // the time to call into the VM.
  2769     Label L1;
  2770     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2771     __ testl(rcx,rcx);
  2772     __ jcc(Assembler::zero, L1);
  2773     // access constant pool cache entry
  2774     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
  2775     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2776     __ verify_oop(rax);
  2777     // rax,: object pointer copied above
  2778     // rcx: cache entry pointer
  2779     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
  2780     __ pop_ptr(rax);   // restore object pointer
  2781     __ bind(L1);
  2784   // access constant pool cache
  2785   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2786   // replace index with field offset from cache entry
  2787   __ movl(rbx, Address(rcx, rbx, Address::times_4, in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2790   // rax,: object
  2791   __ verify_oop(rax);
  2792   __ null_check(rax);
  2793   // field addresses
  2794   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2795   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
  2797   // access field
  2798   switch (bytecode()) {
  2799     case Bytecodes::_fast_bgetfield: __ movsxb(rax, lo );                 break;
  2800     case Bytecodes::_fast_sgetfield: __ load_signed_word(rax, lo );       break;
  2801     case Bytecodes::_fast_cgetfield: __ load_unsigned_word(rax, lo );     break;
  2802     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
  2803     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
  2804     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
  2805     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
  2806     case Bytecodes::_fast_agetfield: __ movl(rax, lo); __ verify_oop(rax); break;
  2807     default:
  2808       ShouldNotReachHere();
  2811   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
  2812   // volatile_barrier( );
  2815 void TemplateTable::fast_xaccess(TosState state) {
  2816   transition(vtos, state);
  2817   // get receiver
  2818   __ movl(rax, aaddress(0));
  2819   debug_only(__ verify_local_tag(frame::TagReference, 0));
  2820   // access constant pool cache
  2821   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2822   __ movl(rbx, Address(rcx, rdx, Address::times_4, in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2823   // make sure exception is reported in correct bcp range (getfield is next instruction)
  2824   __ increment(rsi);
  2825   __ null_check(rax);
  2826   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2827   if (state == itos) {
  2828     __ movl(rax, lo);
  2829   } else if (state == atos) {
  2830     __ movl(rax, lo);
  2831     __ verify_oop(rax);
  2832   } else if (state == ftos) {
  2833     __ fld_s(lo);
  2834   } else {
  2835     ShouldNotReachHere();
  2837   __ decrement(rsi);
  2842 //----------------------------------------------------------------------------------------------------
  2843 // Calls
  2845 void TemplateTable::count_calls(Register method, Register temp) {
  2846   // implemented elsewhere
  2847   ShouldNotReachHere();
  2851 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no, Bytecodes::Code code) {
  2852   // determine flags
  2853   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2854   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2855   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2856   const bool load_receiver       = code != Bytecodes::_invokestatic;
  2857   const bool receiver_null_check = is_invokespecial;
  2858   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2859   // setup registers & access constant pool cache
  2860   const Register recv   = rcx;
  2861   const Register flags  = rdx;
  2862   assert_different_registers(method, index, recv, flags);
  2864   // save 'interpreter return address'
  2865   __ save_bcp();
  2867   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual);
  2869   // load receiver if needed (note: no return address pushed yet)
  2870   if (load_receiver) {
  2871     __ movl(recv, flags);
  2872     __ andl(recv, 0xFF);
  2873     // recv count is 0 based?
  2874     __ movl(recv, Address(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1)));
  2875     __ verify_oop(recv);
  2878   // do null check if needed
  2879   if (receiver_null_check) {
  2880     __ null_check(recv);
  2883   if (save_flags) {
  2884     __ movl(rsi, flags);
  2887   // compute return type
  2888   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2889   // Make sure we don't need to mask flags for tosBits after the above shift
  2890   ConstantPoolCacheEntry::verify_tosBits();
  2891   // load return address
  2892   { const int table =
  2893       is_invokeinterface
  2894       ? (int)Interpreter::return_5_addrs_by_index_table()
  2895       : (int)Interpreter::return_3_addrs_by_index_table();
  2896     __ movl(flags, Address(noreg, flags, Address::times_4, table));
  2899   // push return address
  2900   __ pushl(flags);
  2902   // Restore flag value from the constant pool cache, and restore rsi
  2903   // for later null checks.  rsi is the bytecode pointer
  2904   if (save_flags) {
  2905     __ movl(flags, rsi);
  2906     __ restore_bcp();
  2911 void TemplateTable::invokevirtual_helper(Register index, Register recv,
  2912                         Register flags) {
  2914   // Uses temporary registers rax, rdx
  2915   assert_different_registers(index, recv, rax, rdx);
  2917   // Test for an invoke of a final method
  2918   Label notFinal;
  2919   __ movl(rax, flags);
  2920   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2921   __ jcc(Assembler::zero, notFinal);
  2923   Register method = index;  // method must be rbx,
  2924   assert(method == rbx, "methodOop must be rbx, for interpreter calling convention");
  2926   // do the call - the index is actually the method to call
  2927   __ verify_oop(method);
  2929   // It's final, need a null check here!
  2930   __ null_check(recv);
  2932   // profile this call
  2933   __ profile_final_call(rax);
  2935   __ jump_from_interpreted(method, rax);
  2937   __ bind(notFinal);
  2939   // get receiver klass
  2940   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2941   // Keep recv in rcx for callee expects it there
  2942   __ movl(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
  2943   __ verify_oop(rax);
  2945   // profile this call
  2946   __ profile_virtual_call(rax, rdi, rdx);
  2948   // get target methodOop & entry point
  2949   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2950   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
  2951   __ movl(method, Address(rax, index, Address::times_4, base + vtableEntry::method_offset_in_bytes()));
  2952   __ jump_from_interpreted(method, rdx);
  2956 void TemplateTable::invokevirtual(int byte_no) {
  2957   transition(vtos, vtos);
  2958   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2960   // rbx,: index
  2961   // rcx: receiver
  2962   // rdx: flags
  2964   invokevirtual_helper(rbx, rcx, rdx);
  2968 void TemplateTable::invokespecial(int byte_no) {
  2969   transition(vtos, vtos);
  2970   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2971   // do the call
  2972   __ verify_oop(rbx);
  2973   __ profile_call(rax);
  2974   __ jump_from_interpreted(rbx, rax);
  2978 void TemplateTable::invokestatic(int byte_no) {
  2979   transition(vtos, vtos);
  2980   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2981   // do the call
  2982   __ verify_oop(rbx);
  2983   __ profile_call(rax);
  2984   __ jump_from_interpreted(rbx, rax);
  2988 void TemplateTable::fast_invokevfinal(int byte_no) {
  2989   transition(vtos, vtos);
  2990   __ stop("fast_invokevfinal not used on x86");
  2994 void TemplateTable::invokeinterface(int byte_no) {
  2995   transition(vtos, vtos);
  2996   prepare_invoke(rax, rbx, byte_no, bytecode());
  2998   // rax,: Interface
  2999   // rbx,: index
  3000   // rcx: receiver
  3001   // rdx: flags
  3003   // Special case of invokeinterface called for virtual method of
  3004   // java.lang.Object.  See cpCacheOop.cpp for details.
  3005   // This code isn't produced by javac, but could be produced by
  3006   // another compliant java compiler.
  3007   Label notMethod;
  3008   __ movl(rdi, rdx);
  3009   __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface));
  3010   __ jcc(Assembler::zero, notMethod);
  3012   invokevirtual_helper(rbx, rcx, rdx);
  3013   __ bind(notMethod);
  3015   // Get receiver klass into rdx - also a null check
  3016   __ restore_locals();  // restore rdi
  3017   __ movl(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
  3018   __ verify_oop(rdx);
  3020   // profile this call
  3021   __ profile_virtual_call(rdx, rsi, rdi);
  3023   __ movl(rdi, rdx); // Save klassOop in rdi
  3025   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  3026   const int base = instanceKlass::vtable_start_offset() * wordSize;
  3027   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
  3028   __ movl(rsi, Address(rdx, instanceKlass::vtable_length_offset() * wordSize)); // Get length of vtable
  3029   __ leal(rdx, Address(rdx, rsi, Address::times_4, base));
  3030   if (HeapWordsPerLong > 1) {
  3031     // Round up to align_object_offset boundary
  3032     __ round_to(rdx, BytesPerLong);
  3035   Label entry, search, interface_ok;
  3037   __ jmpb(entry);
  3038   __ bind(search);
  3039   __ addl(rdx, itableOffsetEntry::size() * wordSize);
  3041   __ bind(entry);
  3043   // Check that the entry is non-null.  A null entry means that the receiver
  3044   // class doesn't implement the interface, and wasn't the same as the
  3045   // receiver class checked when the interface was resolved.
  3046   __ pushl(rdx);
  3047   __ movl(rdx, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  3048   __ testl(rdx, rdx);
  3049   __ jcc(Assembler::notZero, interface_ok);
  3050   // throw exception
  3051   __ popl(rdx);          // pop saved register first.
  3052   __ popl(rbx);          // pop return address (pushed by prepare_invoke)
  3053   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3054   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3055   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3056                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3057   // the call_VM checks for exception, so we should never return here.
  3058   __ should_not_reach_here();
  3059   __ bind(interface_ok);
  3061     __ popl(rdx);
  3063     __ cmpl(rax, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  3064     __ jcc(Assembler::notEqual, search);
  3066     __ movl(rdx, Address(rdx, itableOffsetEntry::offset_offset_in_bytes()));
  3067     __ addl(rdx, rdi); // Add offset to klassOop
  3068     assert(itableMethodEntry::size() * wordSize == 4, "adjust the scaling in the code below");
  3069     __ movl(rbx, Address(rdx, rbx, Address::times_4));
  3070     // rbx,: methodOop to call
  3071     // rcx: receiver
  3072     // Check for abstract method error
  3073     // Note: This should be done more efficiently via a throw_abstract_method_error
  3074     //       interpreter entry point and a conditional jump to it in case of a null
  3075     //       method.
  3076     { Label L;
  3077       __ testl(rbx, rbx);
  3078       __ jcc(Assembler::notZero, L);
  3079       // throw exception
  3080           // note: must restore interpreter registers to canonical
  3081           //       state for exception handling to work correctly!
  3082           __ popl(rbx);          // pop return address (pushed by prepare_invoke)
  3083           __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3084           __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3085       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3086       // the call_VM checks for exception, so we should never return here.
  3087       __ should_not_reach_here();
  3088       __ bind(L);
  3091   // do the call
  3092   // rcx: receiver
  3093   // rbx,: methodOop
  3094   __ jump_from_interpreted(rbx, rdx);
  3097 //----------------------------------------------------------------------------------------------------
  3098 // Allocation
  3100 void TemplateTable::_new() {
  3101   transition(vtos, atos);
  3102   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3103   Label slow_case;
  3104   Label done;
  3105   Label initialize_header;
  3106   Label initialize_object;  // including clearing the fields
  3107   Label allocate_shared;
  3109   __ get_cpool_and_tags(rcx, rax);
  3110   // get instanceKlass
  3111   __ movl(rcx, Address(rcx, rdx, Address::times_4, sizeof(constantPoolOopDesc)));
  3112   __ pushl(rcx);  // save the contexts of klass for initializing the header
  3114   // make sure the class we're about to instantiate has been resolved.
  3115   // Note: slow_case does a pop of stack, which is why we loaded class/pushed above
  3116   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3117   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
  3118   __ jcc(Assembler::notEqual, slow_case);
  3120   // make sure klass is initialized & doesn't have finalizer
  3121   // make sure klass is fully initialized
  3122   __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
  3123   __ jcc(Assembler::notEqual, slow_case);
  3125   // get instance_size in instanceKlass (scaled to a count of bytes)
  3126   __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3127   // test to see if it has a finalizer or is malformed in some way
  3128   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3129   __ jcc(Assembler::notZero, slow_case);
  3131   //
  3132   // Allocate the instance
  3133   // 1) Try to allocate in the TLAB
  3134   // 2) if fail and the object is large allocate in the shared Eden
  3135   // 3) if the above fails (or is not applicable), go to a slow case
  3136   // (creates a new TLAB, etc.)
  3138   const bool allow_shared_alloc =
  3139     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3141   if (UseTLAB) {
  3142     const Register thread = rcx;
  3144     __ get_thread(thread);
  3145     __ movl(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
  3146     __ leal(rbx, Address(rax, rdx, Address::times_1));
  3147     __ cmpl(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
  3148     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3149     __ movl(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3150     if (ZeroTLAB) {
  3151       // the fields have been already cleared
  3152       __ jmp(initialize_header);
  3153     } else {
  3154       // initialize both the header and fields
  3155       __ jmp(initialize_object);
  3159   // Allocation in the shared Eden, if allowed.
  3160   //
  3161   // rdx: instance size in bytes
  3162   if (allow_shared_alloc) {
  3163     __ bind(allocate_shared);
  3165     ExternalAddress heap_top((address)Universe::heap()->top_addr());
  3167     Label retry;
  3168     __ bind(retry);
  3169     __ mov32(rax, heap_top);
  3170     __ leal(rbx, Address(rax, rdx, Address::times_1));
  3171     __ cmp32(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
  3172     __ jcc(Assembler::above, slow_case);
  3174     // Compare rax, with the top addr, and if still equal, store the new
  3175     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
  3176     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3177     //
  3178     // rax,: object begin
  3179     // rbx,: object end
  3180     // rdx: instance size in bytes
  3181     if (os::is_MP()) __ lock();
  3182     __ cmpxchgptr(rbx, heap_top);
  3184     // if someone beat us on the allocation, try again, otherwise continue
  3185     __ jcc(Assembler::notEqual, retry);
  3188   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3189     // The object is initialized before the header.  If the object size is
  3190     // zero, go directly to the header initialization.
  3191     __ bind(initialize_object);
  3192     __ decrement(rdx, sizeof(oopDesc));
  3193     __ jcc(Assembler::zero, initialize_header);
  3195   // Initialize topmost object field, divide rdx by 8, check if odd and
  3196   // test if zero.
  3197     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
  3198     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
  3200   // rdx must have been multiple of 8
  3201 #ifdef ASSERT
  3202     // make sure rdx was multiple of 8
  3203     Label L;
  3204     // Ignore partial flag stall after shrl() since it is debug VM
  3205     __ jccb(Assembler::carryClear, L);
  3206     __ stop("object size is not multiple of 2 - adjust this code");
  3207     __ bind(L);
  3208     // rdx must be > 0, no extra check needed here
  3209 #endif
  3211     // initialize remaining object fields: rdx was a multiple of 8
  3212     { Label loop;
  3213     __ bind(loop);
  3214     __ movl(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
  3215     __ movl(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx);
  3216     __ decrement(rdx);
  3217     __ jcc(Assembler::notZero, loop);
  3220     // initialize object header only.
  3221     __ bind(initialize_header);
  3222     if (UseBiasedLocking) {
  3223       __ popl(rcx);   // get saved klass back in the register.
  3224       __ movl(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3225       __ movl(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
  3226     } else {
  3227       __ movl(Address(rax, oopDesc::mark_offset_in_bytes ()),
  3228               (int)markOopDesc::prototype()); // header
  3229       __ popl(rcx);   // get saved klass back in the register.
  3231     __ movl(Address(rax, oopDesc::klass_offset_in_bytes()), rcx);  // klass
  3234       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
  3235       // Trigger dtrace event for fastpath
  3236       __ push(atos);
  3237       __ call_VM_leaf(
  3238            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3239       __ pop(atos);
  3242     __ jmp(done);
  3245   // slow case
  3246   __ bind(slow_case);
  3247   __ popl(rcx);   // restore stack pointer to what it was when we came in.
  3248   __ get_constant_pool(rax);
  3249   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3250   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
  3252   // continue
  3253   __ bind(done);
  3257 void TemplateTable::newarray() {
  3258   transition(itos, atos);
  3259   __ push_i(rax);                                 // make sure everything is on the stack
  3260   __ load_unsigned_byte(rdx, at_bcp(1));
  3261   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
  3262   __ pop_i(rdx);                                  // discard size
  3266 void TemplateTable::anewarray() {
  3267   transition(itos, atos);
  3268   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3269   __ get_constant_pool(rcx);
  3270   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
  3274 void TemplateTable::arraylength() {
  3275   transition(atos, itos);
  3276   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3277   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3281 void TemplateTable::checkcast() {
  3282   transition(atos, atos);
  3283   Label done, is_null, ok_is_subtype, quicked, resolved;
  3284   __ testl(rax, rax);   // Object is in EAX
  3285   __ jcc(Assembler::zero, is_null);
  3287   // Get cpool & tags index
  3288   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3289   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3290   // See if bytecode has already been quicked
  3291   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3292   __ jcc(Assembler::equal, quicked);
  3294   __ push(atos);
  3295   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3296   __ pop_ptr(rdx);
  3297   __ jmpb(resolved);
  3299   // Get superklass in EAX and subklass in EBX
  3300   __ bind(quicked);
  3301   __ movl(rdx, rax);          // Save object in EDX; EAX needed for subtype check
  3302   __ movl(rax, Address(rcx, rbx, Address::times_4, sizeof(constantPoolOopDesc)));
  3304   __ bind(resolved);
  3305   __ movl(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3307   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
  3308   // Superklass in EAX.  Subklass in EBX.
  3309   __ gen_subtype_check( rbx, ok_is_subtype );
  3311   // Come here on failure
  3312   __ pushl(rdx);
  3313   // object is at TOS
  3314   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3316   // Come here on success
  3317   __ bind(ok_is_subtype);
  3318   __ movl(rax,rdx);           // Restore object in EDX
  3320   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3321   if (ProfileInterpreter) {
  3322     __ jmp(done);
  3323     __ bind(is_null);
  3324     __ profile_null_seen(rcx);
  3325   } else {
  3326     __ bind(is_null);   // same as 'done'
  3328   __ bind(done);
  3332 void TemplateTable::instanceof() {
  3333   transition(atos, itos);
  3334   Label done, is_null, ok_is_subtype, quicked, resolved;
  3335   __ testl(rax, rax);
  3336   __ jcc(Assembler::zero, is_null);
  3338   // Get cpool & tags index
  3339   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3340   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3341   // See if bytecode has already been quicked
  3342   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3343   __ jcc(Assembler::equal, quicked);
  3345   __ push(atos);
  3346   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3347   __ pop_ptr(rdx);
  3348   __ movl(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3349   __ jmp(resolved);
  3351   // Get superklass in EAX and subklass in EDX
  3352   __ bind(quicked);
  3353   __ movl(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
  3354   __ movl(rax, Address(rcx, rbx, Address::times_4, sizeof(constantPoolOopDesc)));
  3356   __ bind(resolved);
  3358   // Generate subtype check.  Blows ECX.  Resets EDI.
  3359   // Superklass in EAX.  Subklass in EDX.
  3360   __ gen_subtype_check( rdx, ok_is_subtype );
  3362   // Come here on failure
  3363   __ xorl(rax,rax);
  3364   __ jmpb(done);
  3365   // Come here on success
  3366   __ bind(ok_is_subtype);
  3367   __ movl(rax, 1);
  3369   // Collect counts on whether this test sees NULLs a lot or not.
  3370   if (ProfileInterpreter) {
  3371     __ jmp(done);
  3372     __ bind(is_null);
  3373     __ profile_null_seen(rcx);
  3374   } else {
  3375     __ bind(is_null);   // same as 'done'
  3377   __ bind(done);
  3378   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
  3379   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
  3383 //----------------------------------------------------------------------------------------------------
  3384 // Breakpoints
  3385 void TemplateTable::_breakpoint() {
  3387   // Note: We get here even if we are single stepping..
  3388   // jbug inists on setting breakpoints at every bytecode
  3389   // even if we are in single step mode.
  3391   transition(vtos, vtos);
  3393   // get the unpatched byte code
  3394   __ get_method(rcx);
  3395   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
  3396   __ movl(rbx, rax);
  3398   // post the breakpoint event
  3399   __ get_method(rcx);
  3400   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
  3402   // complete the execution of original bytecode
  3403   __ dispatch_only_normal(vtos);
  3407 //----------------------------------------------------------------------------------------------------
  3408 // Exceptions
  3410 void TemplateTable::athrow() {
  3411   transition(atos, vtos);
  3412   __ null_check(rax);
  3413   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3417 //----------------------------------------------------------------------------------------------------
  3418 // Synchronization
  3419 //
  3420 // Note: monitorenter & exit are symmetric routines; which is reflected
  3421 //       in the assembly code structure as well
  3422 //
  3423 // Stack layout:
  3424 //
  3425 // [expressions  ] <--- rsp               = expression stack top
  3426 // ..
  3427 // [expressions  ]
  3428 // [monitor entry] <--- monitor block top = expression stack bot
  3429 // ..
  3430 // [monitor entry]
  3431 // [frame data   ] <--- monitor block bot
  3432 // ...
  3433 // [saved rbp,    ] <--- rbp,
  3436 void TemplateTable::monitorenter() {
  3437   transition(atos, vtos);
  3439   // check for NULL object
  3440   __ null_check(rax);
  3442   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3443   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3444   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3445   Label allocated;
  3447   // initialize entry pointer
  3448   __ xorl(rdx, rdx);                             // points to free slot or NULL
  3450   // find a free slot in the monitor block (result in rdx)
  3451   { Label entry, loop, exit;
  3452     __ movl(rcx, monitor_block_top);             // points to current entry, starting with top-most entry
  3453     __ leal(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3454     __ jmpb(entry);
  3456     __ bind(loop);
  3457     __ cmpl(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);  // check if current entry is used
  3459 // TODO - need new func here - kbt
  3460     if (VM_Version::supports_cmov()) {
  3461       __ cmovl(Assembler::equal, rdx, rcx);      // if not used then remember entry in rdx
  3462     } else {
  3463       Label L;
  3464       __ jccb(Assembler::notEqual, L);
  3465       __ movl(rdx, rcx);                         // if not used then remember entry in rdx
  3466       __ bind(L);
  3468     __ cmpl(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3469     __ jccb(Assembler::equal, exit);              // if same object then stop searching
  3470     __ addl(rcx, entry_size);                    // otherwise advance to next entry
  3471     __ bind(entry);
  3472     __ cmpl(rcx, rbx);                           // check if bottom reached
  3473     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3474     __ bind(exit);
  3477   __ testl(rdx, rdx);                            // check if a slot has been found
  3478   __ jccb(Assembler::notZero, allocated);         // if found, continue with that one
  3480   // allocate one if there's no free slot
  3481   { Label entry, loop;
  3482     // 1. compute new pointers                   // rsp: old expression stack top
  3483     __ movl(rdx, monitor_block_bot);             // rdx: old expression stack bottom
  3484     __ subl(rsp, entry_size);                    // move expression stack top
  3485     __ subl(rdx, entry_size);                    // move expression stack bottom
  3486     __ movl(rcx, rsp);                           // set start value for copy loop
  3487     __ movl(monitor_block_bot, rdx);             // set new monitor block top
  3488     __ jmp(entry);
  3489     // 2. move expression stack contents
  3490     __ bind(loop);
  3491     __ movl(rbx, Address(rcx, entry_size));      // load expression stack word from old location
  3492     __ movl(Address(rcx, 0), rbx);               // and store it at new location
  3493     __ addl(rcx, wordSize);                      // advance to next word
  3494     __ bind(entry);
  3495     __ cmpl(rcx, rdx);                           // check if bottom reached
  3496     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  3499   // call run-time routine
  3500   // rdx: points to monitor entry
  3501   __ bind(allocated);
  3503   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3504   // The object has already been poped from the stack, so the expression stack looks correct.
  3505   __ increment(rsi);
  3507   __ movl(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
  3508   __ lock_object(rdx);
  3510   // check to make sure this monitor doesn't cause stack overflow after locking
  3511   __ save_bcp();  // in case of exception
  3512   __ generate_stack_overflow_check(0);
  3514   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3515   __ dispatch_next(vtos);
  3519 void TemplateTable::monitorexit() {
  3520   transition(atos, vtos);
  3522   // check for NULL object
  3523   __ null_check(rax);
  3525   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3526   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3527   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3528   Label found;
  3530   // find matching slot
  3531   { Label entry, loop;
  3532     __ movl(rdx, monitor_block_top);             // points to current entry, starting with top-most entry
  3533     __ leal(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3534     __ jmpb(entry);
  3536     __ bind(loop);
  3537     __ cmpl(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3538     __ jcc(Assembler::equal, found);             // if same object then stop searching
  3539     __ addl(rdx, entry_size);                    // otherwise advance to next entry
  3540     __ bind(entry);
  3541     __ cmpl(rdx, rbx);                           // check if bottom reached
  3542     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3545   // error handling. Unlocking was not block-structured
  3546   Label end;
  3547   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3548   __ should_not_reach_here();
  3550   // call run-time routine
  3551   // rcx: points to monitor entry
  3552   __ bind(found);
  3553   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
  3554   __ unlock_object(rdx);
  3555   __ pop_ptr(rax);                                  // discard object
  3556   __ bind(end);
  3560 //----------------------------------------------------------------------------------------------------
  3561 // Wide instructions
  3563 void TemplateTable::wide() {
  3564   transition(vtos, vtos);
  3565   __ load_unsigned_byte(rbx, at_bcp(1));
  3566   __ jmp(Address(noreg, rbx, Address::times_4, int(Interpreter::_wentry_point)));
  3567   // Note: the rsi increment step is part of the individual wide bytecode implementations
  3571 //----------------------------------------------------------------------------------------------------
  3572 // Multi arrays
  3574 void TemplateTable::multianewarray() {
  3575   transition(vtos, atos);
  3576   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3577   // last dim is on top of stack; we want address of first one:
  3578   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
  3579   // the latter wordSize to point to the beginning of the array.
  3580   __ leal(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
  3581   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
  3582   __ load_unsigned_byte(rbx, at_bcp(3));
  3583   __ leal(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
  3586 #endif /* !CC_INTERP */

mercurial