src/cpu/sparc/vm/assembler_sparc.cpp

Thu, 21 Aug 2008 23:36:31 -0400

author
tonyp
date
Thu, 21 Aug 2008 23:36:31 -0400
changeset 791
1ee8caae33af
parent 779
6aae2f9d0294
parent 631
d1605aabd0a1
child 855
a1980da045cc
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_assembler_sparc.cpp.incl"
    28 // Implementation of Address
    30 Address::Address( addr_type t, int which ) {
    31   switch (t) {
    32    case extra_in_argument:
    33    case extra_out_argument:
    34      _base = t == extra_in_argument ? FP : SP;
    35      _hi   = 0;
    36 // Warning:  In LP64 mode, _disp will occupy more than 10 bits.
    37 //           This is inconsistent with the other constructors but op
    38 //           codes such as ld or ldx, only access disp() to get their
    39 //           simm13 argument.
    40      _disp = ((which - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    41     break;
    42    default:
    43     ShouldNotReachHere();
    44     break;
    45   }
    46 }
    48 static const char* argumentNames[][2] = {
    49   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
    50   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
    51   {"A(n>9)","P(n>9)"}
    52 };
    54 const char* Argument::name() const {
    55   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
    56   int num = number();
    57   if (num >= nofArgs)  num = nofArgs - 1;
    58   return argumentNames[num][is_in() ? 1 : 0];
    59 }
    61 void Assembler::print_instruction(int inst) {
    62   const char* s;
    63   switch (inv_op(inst)) {
    64   default:         s = "????"; break;
    65   case call_op:    s = "call"; break;
    66   case branch_op:
    67     switch (inv_op2(inst)) {
    68       case bpr_op2:    s = "bpr";  break;
    69       case fb_op2:     s = "fb";   break;
    70       case fbp_op2:    s = "fbp";  break;
    71       case br_op2:     s = "br";   break;
    72       case bp_op2:     s = "bp";   break;
    73       case cb_op2:     s = "cb";   break;
    74       default:         s = "????"; break;
    75     }
    76   }
    77   ::tty->print("%s", s);
    78 }
    81 // Patch instruction inst at offset inst_pos to refer to dest_pos
    82 // and return the resulting instruction.
    83 // We should have pcs, not offsets, but since all is relative, it will work out
    84 // OK.
    85 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
    87   int m; // mask for displacement field
    88   int v; // new value for displacement field
    89   const int word_aligned_ones = -4;
    90   switch (inv_op(inst)) {
    91   default: ShouldNotReachHere();
    92   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
    93   case branch_op:
    94     switch (inv_op2(inst)) {
    95       case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
    96       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
    97       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
    98       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
    99       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   100       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   101       default: ShouldNotReachHere();
   102     }
   103   }
   104   return  inst & ~m  |  v;
   105 }
   107 // Return the offset of the branch destionation of instruction inst
   108 // at offset pos.
   109 // Should have pcs, but since all is relative, it works out.
   110 int Assembler::branch_destination(int inst, int pos) {
   111   int r;
   112   switch (inv_op(inst)) {
   113   default: ShouldNotReachHere();
   114   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
   115   case branch_op:
   116     switch (inv_op2(inst)) {
   117       case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
   118       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
   119       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
   120       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   121       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   122       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   123       default: ShouldNotReachHere();
   124     }
   125   }
   126   return r;
   127 }
   129 int AbstractAssembler::code_fill_byte() {
   130   return 0x00;                  // illegal instruction 0x00000000
   131 }
   133 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
   134   switch (in) {
   135   case rc_z:   return equal;
   136   case rc_lez: return lessEqual;
   137   case rc_lz:  return less;
   138   case rc_nz:  return notEqual;
   139   case rc_gz:  return greater;
   140   case rc_gez: return greaterEqual;
   141   default:
   142     ShouldNotReachHere();
   143   }
   144   return equal;
   145 }
   147 // Generate a bunch 'o stuff (including v9's
   148 #ifndef PRODUCT
   149 void Assembler::test_v9() {
   150   add(    G0, G1, G2 );
   151   add(    G3,  0, G4 );
   153   addcc(  G5, G6, G7 );
   154   addcc(  I0,  1, I1 );
   155   addc(   I2, I3, I4 );
   156   addc(   I5, -1, I6 );
   157   addccc( I7, L0, L1 );
   158   addccc( L2, (1 << 12) - 2, L3 );
   160   Label lbl1, lbl2, lbl3;
   162   bind(lbl1);
   164   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
   165   delayed()->nop();
   166   bpr( rc_lez, false, pt, L5, lbl1);
   167   delayed()->nop();
   169   fb( f_never,     true, pc() + 4,  relocInfo::none);
   170   delayed()->nop();
   171   fb( f_notEqual, false, lbl2 );
   172   delayed()->nop();
   174   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
   175   delayed()->nop();
   176   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
   177   delayed()->nop();
   179   br( equal,  true, pc() + 1024, relocInfo::none);
   180   delayed()->nop();
   181   br( lessEqual, false, lbl1 );
   182   delayed()->nop();
   183   br( never, false, lbl1 );
   184   delayed()->nop();
   186   bp( less,               true, icc, pn, pc(), relocInfo::none);
   187   delayed()->nop();
   188   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
   189   delayed()->nop();
   191   call( pc(), relocInfo::none);
   192   delayed()->nop();
   193   call( lbl3 );
   194   delayed()->nop();
   197   casa(  L6, L7, O0 );
   198   casxa( O1, O2, O3, 0 );
   200   udiv(   O4, O5, O7 );
   201   udiv(   G0, (1 << 12) - 1, G1 );
   202   sdiv(   G1, G2, G3 );
   203   sdiv(   G4, -((1 << 12) - 1), G5 );
   204   udivcc( G6, G7, I0 );
   205   udivcc( I1, -((1 << 12) - 2), I2 );
   206   sdivcc( I3, I4, I5 );
   207   sdivcc( I6, -((1 << 12) - 0), I7 );
   209   done();
   210   retry();
   212   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
   213   fsub( FloatRegisterImpl::D, F34, F0, F62 );
   215   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
   216   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
   218   ftox( FloatRegisterImpl::D, F2, F4 );
   219   ftoi( FloatRegisterImpl::Q, F4, F8 );
   221   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
   223   fxtof( FloatRegisterImpl::S, F4, F5 );
   224   fitof( FloatRegisterImpl::D, F6, F8 );
   226   fmov( FloatRegisterImpl::Q, F16, F20 );
   227   fneg( FloatRegisterImpl::S, F6, F7 );
   228   fabs( FloatRegisterImpl::D, F10, F12 );
   230   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
   231   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
   232   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
   234   fsqrt( FloatRegisterImpl::S, F13, F14 );
   236   flush( L0, L1 );
   237   flush( L2, -1 );
   239   flushw();
   241   illtrap( (1 << 22) - 2);
   243   impdep1( 17, (1 << 19) - 1 );
   244   impdep2( 3,  0 );
   246   jmpl( L3, L4, L5 );
   247   delayed()->nop();
   248   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
   249   delayed()->nop();
   252   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
   253   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
   256   ldfsr(  O3, O4 );
   257   ldfsr(  O5, -1 );
   258   ldxfsr( O6, O7 );
   259   ldxfsr( I0, -1 );
   261   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
   262   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
   264   ldsb(  I4, I5, I6 );
   265   ldsb(  I7, -1, G0 );
   266   ldsh(  G1, G3, G4 );
   267   ldsh(  G5, -1, G6 );
   268   ldsw(  G7, L0, L1 );
   269   ldsw(  L2, -1, L3 );
   270   ldub(  L4, L5, L6 );
   271   ldub(  L7, -1, O0 );
   272   lduh(  O1, O2, O3 );
   273   lduh(  O4, -1, O5 );
   274   lduw(  O6, O7, G0 );
   275   lduw(  G1, -1, G2 );
   276   ldx(   G3, G4, G5 );
   277   ldx(   G6, -1, G7 );
   278   ldd(   I0, I1, I2 );
   279   ldd(   I3, -1, I4 );
   281   ldsba(  I5, I6, 2, I7 );
   282   ldsba(  L0, -1, L1 );
   283   ldsha(  L2, L3, 3, L4 );
   284   ldsha(  L5, -1, L6 );
   285   ldswa(  L7, O0, (1 << 8) - 1, O1 );
   286   ldswa(  O2, -1, O3 );
   287   lduba(  O4, O5, 0, O6 );
   288   lduba(  O7, -1, I0 );
   289   lduha(  I1, I2, 1, I3 );
   290   lduha(  I4, -1, I5 );
   291   lduwa(  I6, I7, 2, L0 );
   292   lduwa(  L1, -1, L2 );
   293   ldxa(   L3, L4, 3, L5 );
   294   ldxa(   L6, -1, L7 );
   295   ldda(   G0, G1, 4, G2 );
   296   ldda(   G3, -1, G4 );
   298   ldstub(  G5, G6, G7 );
   299   ldstub(  O0, -1, O1 );
   301   ldstuba( O2, O3, 5, O4 );
   302   ldstuba( O5, -1, O6 );
   304   and3(    I0, L0, O0 );
   305   and3(    G7, -1, O7 );
   306   andcc(   L2, I2, G2 );
   307   andcc(   L4, -1, G4 );
   308   andn(    I5, I6, I7 );
   309   andn(    I6, -1, I7 );
   310   andncc(  I5, I6, I7 );
   311   andncc(  I7, -1, I6 );
   312   or3(     I5, I6, I7 );
   313   or3(     I7, -1, I6 );
   314   orcc(    I5, I6, I7 );
   315   orcc(    I7, -1, I6 );
   316   orn(     I5, I6, I7 );
   317   orn(     I7, -1, I6 );
   318   orncc(   I5, I6, I7 );
   319   orncc(   I7, -1, I6 );
   320   xor3(    I5, I6, I7 );
   321   xor3(    I7, -1, I6 );
   322   xorcc(   I5, I6, I7 );
   323   xorcc(   I7, -1, I6 );
   324   xnor(    I5, I6, I7 );
   325   xnor(    I7, -1, I6 );
   326   xnorcc(  I5, I6, I7 );
   327   xnorcc(  I7, -1, I6 );
   329   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
   330   membar( StoreStore );
   331   membar( LoadStore );
   332   membar( StoreLoad );
   333   membar( LoadLoad );
   334   membar( Sync );
   335   membar( MemIssue );
   336   membar( Lookaside );
   338   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
   339   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
   341   movcc( overflowClear,  false, icc, I6, L4 );
   342   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
   344   movr( rc_nz, I5, I6, I7 );
   345   movr( rc_gz, L1, -1,  L2 );
   347   mulx(  I5, I6, I7 );
   348   mulx(  I7, -1, I6 );
   349   sdivx( I5, I6, I7 );
   350   sdivx( I7, -1, I6 );
   351   udivx( I5, I6, I7 );
   352   udivx( I7, -1, I6 );
   354   umul(   I5, I6, I7 );
   355   umul(   I7, -1, I6 );
   356   smul(   I5, I6, I7 );
   357   smul(   I7, -1, I6 );
   358   umulcc( I5, I6, I7 );
   359   umulcc( I7, -1, I6 );
   360   smulcc( I5, I6, I7 );
   361   smulcc( I7, -1, I6 );
   363   mulscc(   I5, I6, I7 );
   364   mulscc(   I7, -1, I6 );
   366   nop();
   369   popc( G0,  G1);
   370   popc( -1, G2);
   372   prefetch(   L1, L2,    severalReads );
   373   prefetch(   L3, -1,    oneRead );
   374   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
   375   prefetcha(  G2, -1,    oneWrite );
   377   rett( I7, I7);
   378   delayed()->nop();
   379   rett( G0, -1, relocInfo::none);
   380   delayed()->nop();
   382   save(    I5, I6, I7 );
   383   save(    I7, -1, I6 );
   384   restore( I5, I6, I7 );
   385   restore( I7, -1, I6 );
   387   saved();
   388   restored();
   390   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
   392   sll(  I5, I6, I7 );
   393   sll(  I7, 31, I6 );
   394   srl(  I5, I6, I7 );
   395   srl(  I7,  0, I6 );
   396   sra(  I5, I6, I7 );
   397   sra(  I7, 30, I6 );
   398   sllx( I5, I6, I7 );
   399   sllx( I7, 63, I6 );
   400   srlx( I5, I6, I7 );
   401   srlx( I7,  0, I6 );
   402   srax( I5, I6, I7 );
   403   srax( I7, 62, I6 );
   405   sir( -1 );
   407   stbar();
   409   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
   410   stf(    FloatRegisterImpl::S, F18, I3, -1 );
   412   stfsr(  L1, L2 );
   413   stfsr(  I7, -1 );
   414   stxfsr( I6, I5 );
   415   stxfsr( L4, -1 );
   417   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
   418   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
   420   stb(  L5, O2, I7 );
   421   stb(  I7, I6, -1 );
   422   sth(  L5, O2, I7 );
   423   sth(  I7, I6, -1 );
   424   stw(  L5, O2, I7 );
   425   stw(  I7, I6, -1 );
   426   stx(  L5, O2, I7 );
   427   stx(  I7, I6, -1 );
   428   std(  L5, O2, I7 );
   429   std(  I7, I6, -1 );
   431   stba(  L5, O2, I7, 8 );
   432   stba(  I7, I6, -1    );
   433   stha(  L5, O2, I7, 9 );
   434   stha(  I7, I6, -1    );
   435   stwa(  L5, O2, I7, 0 );
   436   stwa(  I7, I6, -1    );
   437   stxa(  L5, O2, I7, 11 );
   438   stxa(  I7, I6, -1     );
   439   stda(  L5, O2, I7, 12 );
   440   stda(  I7, I6, -1     );
   442   sub(    I5, I6, I7 );
   443   sub(    I7, -1, I6 );
   444   subcc(  I5, I6, I7 );
   445   subcc(  I7, -1, I6 );
   446   subc(   I5, I6, I7 );
   447   subc(   I7, -1, I6 );
   448   subccc( I5, I6, I7 );
   449   subccc( I7, -1, I6 );
   451   swap( I5, I6, I7 );
   452   swap( I7, -1, I6 );
   454   swapa(   G0, G1, 13, G2 );
   455   swapa(   I7, -1,     I6 );
   457   taddcc(    I5, I6, I7 );
   458   taddcc(    I7, -1, I6 );
   459   taddcctv(  I5, I6, I7 );
   460   taddcctv(  I7, -1, I6 );
   462   tsubcc(    I5, I6, I7 );
   463   tsubcc(    I7, -1, I6 );
   464   tsubcctv(  I5, I6, I7 );
   465   tsubcctv(  I7, -1, I6 );
   467   trap( overflowClear, xcc, G0, G1 );
   468   trap( lessEqual,     icc, I7, 17 );
   470   bind(lbl2);
   471   bind(lbl3);
   473   code()->decode();
   474 }
   476 // Generate a bunch 'o stuff unique to V8
   477 void Assembler::test_v8_onlys() {
   478   Label lbl1;
   480   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
   481   delayed()->nop();
   482   cb( cp_never,    true, lbl1);
   483   delayed()->nop();
   485   cpop1(1, 2, 3, 4);
   486   cpop2(5, 6, 7, 8);
   488   ldc( I0, I1, 31);
   489   ldc( I2, -1,  0);
   491   lddc( I4, I4, 30);
   492   lddc( I6,  0, 1 );
   494   ldcsr( L0, L1, 0);
   495   ldcsr( L1, (1 << 12) - 1, 17 );
   497   stc( 31, L4, L5);
   498   stc( 30, L6, -(1 << 12) );
   500   stdc( 0, L7, G0);
   501   stdc( 1, G1, 0 );
   503   stcsr( 16, G2, G3);
   504   stcsr( 17, G4, 1 );
   506   stdcq( 4, G5, G6);
   507   stdcq( 5, G7, -1 );
   509   bind(lbl1);
   511   code()->decode();
   512 }
   513 #endif
   515 // Implementation of MacroAssembler
   517 void MacroAssembler::null_check(Register reg, int offset) {
   518   if (needs_explicit_null_check((intptr_t)offset)) {
   519     // provoke OS NULL exception if reg = NULL by
   520     // accessing M[reg] w/o changing any registers
   521     ld_ptr(reg, 0, G0);
   522   }
   523   else {
   524     // nothing to do, (later) access of M[reg + offset]
   525     // will provoke OS NULL exception if reg = NULL
   526   }
   527 }
   529 // Ring buffer jumps
   531 #ifndef PRODUCT
   532 void MacroAssembler::ret(  bool trace )   { if (trace) {
   533                                                     mov(I7, O7); // traceable register
   534                                                     JMP(O7, 2 * BytesPerInstWord);
   535                                                   } else {
   536                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   537                                                   }
   538                                                 }
   540 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   541                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   542 #endif /* PRODUCT */
   545 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
   546   assert_not_delayed();
   547   // This can only be traceable if r1 & r2 are visible after a window save
   548   if (TraceJumps) {
   549 #ifndef PRODUCT
   550     save_frame(0);
   551     verify_thread();
   552     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   553     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   554     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   555     add(O2, O1, O1);
   557     add(r1->after_save(), r2->after_save(), O2);
   558     set((intptr_t)file, O3);
   559     set(line, O4);
   560     Label L;
   561     // get nearby pc, store jmp target
   562     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   563     delayed()->st(O2, O1, 0);
   564     bind(L);
   566     // store nearby pc
   567     st(O7, O1, sizeof(intptr_t));
   568     // store file
   569     st(O3, O1, 2*sizeof(intptr_t));
   570     // store line
   571     st(O4, O1, 3*sizeof(intptr_t));
   572     add(O0, 1, O0);
   573     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   574     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   575     restore();
   576 #endif /* PRODUCT */
   577   }
   578   jmpl(r1, r2, G0);
   579 }
   580 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
   581   assert_not_delayed();
   582   // This can only be traceable if r1 is visible after a window save
   583   if (TraceJumps) {
   584 #ifndef PRODUCT
   585     save_frame(0);
   586     verify_thread();
   587     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   588     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   589     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   590     add(O2, O1, O1);
   592     add(r1->after_save(), offset, O2);
   593     set((intptr_t)file, O3);
   594     set(line, O4);
   595     Label L;
   596     // get nearby pc, store jmp target
   597     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   598     delayed()->st(O2, O1, 0);
   599     bind(L);
   601     // store nearby pc
   602     st(O7, O1, sizeof(intptr_t));
   603     // store file
   604     st(O3, O1, 2*sizeof(intptr_t));
   605     // store line
   606     st(O4, O1, 3*sizeof(intptr_t));
   607     add(O0, 1, O0);
   608     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   609     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   610     restore();
   611 #endif /* PRODUCT */
   612   }
   613   jmp(r1, offset);
   614 }
   616 // This code sequence is relocatable to any address, even on LP64.
   617 void MacroAssembler::jumpl( Address& a, Register d, int offset, const char* file, int line ) {
   618   assert_not_delayed();
   619   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   620   // variable length instruction streams.
   621   sethi(a, /*ForceRelocatable=*/ true);
   622   if (TraceJumps) {
   623 #ifndef PRODUCT
   624     // Must do the add here so relocation can find the remainder of the
   625     // value to be relocated.
   626     add(a.base(), a.disp() + offset, a.base(), a.rspec(offset));
   627     save_frame(0);
   628     verify_thread();
   629     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   630     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   631     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   632     add(O2, O1, O1);
   634     set((intptr_t)file, O3);
   635     set(line, O4);
   636     Label L;
   638     // get nearby pc, store jmp target
   639     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   640     delayed()->st(a.base()->after_save(), O1, 0);
   641     bind(L);
   643     // store nearby pc
   644     st(O7, O1, sizeof(intptr_t));
   645     // store file
   646     st(O3, O1, 2*sizeof(intptr_t));
   647     // store line
   648     st(O4, O1, 3*sizeof(intptr_t));
   649     add(O0, 1, O0);
   650     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   651     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   652     restore();
   653     jmpl(a.base(), G0, d);
   654 #else
   655     jmpl(a, d, offset);
   656 #endif /* PRODUCT */
   657   } else {
   658     jmpl(a, d, offset);
   659   }
   660 }
   662 void MacroAssembler::jump( Address& a, int offset, const char* file, int line ) {
   663   jumpl( a, G0, offset, file, line );
   664 }
   667 // Convert to C varargs format
   668 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
   669   // spill register-resident args to their memory slots
   670   // (SPARC calling convention requires callers to have already preallocated these)
   671   // Note that the inArg might in fact be an outgoing argument,
   672   // if a leaf routine or stub does some tricky argument shuffling.
   673   // This routine must work even though one of the saved arguments
   674   // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
   675   for (Argument savePtr = inArg;
   676        savePtr.is_register();
   677        savePtr = savePtr.successor()) {
   678     st_ptr(savePtr.as_register(), savePtr.address_in_frame());
   679   }
   680   // return the address of the first memory slot
   681   add(inArg.address_in_frame(), d);
   682 }
   684 // Conditional breakpoint (for assertion checks in assembly code)
   685 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
   686   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
   687 }
   689 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
   690 void MacroAssembler::breakpoint_trap() {
   691   trap(ST_RESERVED_FOR_USER_0);
   692 }
   694 // flush windows (except current) using flushw instruction if avail.
   695 void MacroAssembler::flush_windows() {
   696   if (VM_Version::v9_instructions_work())  flushw();
   697   else                                     flush_windows_trap();
   698 }
   700 // Write serialization page so VM thread can do a pseudo remote membar
   701 // We use the current thread pointer to calculate a thread specific
   702 // offset to write to within the page. This minimizes bus traffic
   703 // due to cache line collision.
   704 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
   705   Address mem_serialize_page(tmp1, os::get_memory_serialize_page());
   706   srl(thread, os::get_serialize_page_shift_count(), tmp2);
   707   if (Assembler::is_simm13(os::vm_page_size())) {
   708     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
   709   }
   710   else {
   711     set((os::vm_page_size() - sizeof(int)), tmp1);
   712     and3(tmp2, tmp1, tmp2);
   713   }
   714   load_address(mem_serialize_page);
   715   st(G0, tmp1, tmp2);
   716 }
   720 void MacroAssembler::enter() {
   721   Unimplemented();
   722 }
   724 void MacroAssembler::leave() {
   725   Unimplemented();
   726 }
   728 void MacroAssembler::mult(Register s1, Register s2, Register d) {
   729   if(VM_Version::v9_instructions_work()) {
   730     mulx (s1, s2, d);
   731   } else {
   732     smul (s1, s2, d);
   733   }
   734 }
   736 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
   737   if(VM_Version::v9_instructions_work()) {
   738     mulx (s1, simm13a, d);
   739   } else {
   740     smul (s1, simm13a, d);
   741   }
   742 }
   745 #ifdef ASSERT
   746 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
   747   const Register s1 = G3_scratch;
   748   const Register s2 = G4_scratch;
   749   Label get_psr_test;
   750   // Get the condition codes the V8 way.
   751   read_ccr_trap(s1);
   752   mov(ccr_save, s2);
   753   // This is a test of V8 which has icc but not xcc
   754   // so mask off the xcc bits
   755   and3(s2, 0xf, s2);
   756   // Compare condition codes from the V8 and V9 ways.
   757   subcc(s2, s1, G0);
   758   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
   759   delayed()->breakpoint_trap();
   760   bind(get_psr_test);
   761 }
   763 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
   764   const Register s1 = G3_scratch;
   765   const Register s2 = G4_scratch;
   766   Label set_psr_test;
   767   // Write out the saved condition codes the V8 way
   768   write_ccr_trap(ccr_save, s1, s2);
   769   // Read back the condition codes using the V9 instruction
   770   rdccr(s1);
   771   mov(ccr_save, s2);
   772   // This is a test of V8 which has icc but not xcc
   773   // so mask off the xcc bits
   774   and3(s2, 0xf, s2);
   775   and3(s1, 0xf, s1);
   776   // Compare the V8 way with the V9 way.
   777   subcc(s2, s1, G0);
   778   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
   779   delayed()->breakpoint_trap();
   780   bind(set_psr_test);
   781 }
   782 #else
   783 #define read_ccr_v8_assert(x)
   784 #define write_ccr_v8_assert(x)
   785 #endif // ASSERT
   787 void MacroAssembler::read_ccr(Register ccr_save) {
   788   if (VM_Version::v9_instructions_work()) {
   789     rdccr(ccr_save);
   790     // Test code sequence used on V8.  Do not move above rdccr.
   791     read_ccr_v8_assert(ccr_save);
   792   } else {
   793     read_ccr_trap(ccr_save);
   794   }
   795 }
   797 void MacroAssembler::write_ccr(Register ccr_save) {
   798   if (VM_Version::v9_instructions_work()) {
   799     // Test code sequence used on V8.  Do not move below wrccr.
   800     write_ccr_v8_assert(ccr_save);
   801     wrccr(ccr_save);
   802   } else {
   803     const Register temp_reg1 = G3_scratch;
   804     const Register temp_reg2 = G4_scratch;
   805     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
   806   }
   807 }
   810 // Calls to C land
   812 #ifdef ASSERT
   813 // a hook for debugging
   814 static Thread* reinitialize_thread() {
   815   return ThreadLocalStorage::thread();
   816 }
   817 #else
   818 #define reinitialize_thread ThreadLocalStorage::thread
   819 #endif
   821 #ifdef ASSERT
   822 address last_get_thread = NULL;
   823 #endif
   825 // call this when G2_thread is not known to be valid
   826 void MacroAssembler::get_thread() {
   827   save_frame(0);                // to avoid clobbering O0
   828   mov(G1, L0);                  // avoid clobbering G1
   829   mov(G5_method, L1);           // avoid clobbering G5
   830   mov(G3, L2);                  // avoid clobbering G3 also
   831   mov(G4, L5);                  // avoid clobbering G4
   832 #ifdef ASSERT
   833   Address last_get_thread_addr(L3, (address)&last_get_thread);
   834   sethi(last_get_thread_addr);
   835   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
   836   st_ptr(L4, last_get_thread_addr);
   837 #endif
   838   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
   839   delayed()->nop();
   840   mov(L0, G1);
   841   mov(L1, G5_method);
   842   mov(L2, G3);
   843   mov(L5, G4);
   844   restore(O0, 0, G2_thread);
   845 }
   847 static Thread* verify_thread_subroutine(Thread* gthread_value) {
   848   Thread* correct_value = ThreadLocalStorage::thread();
   849   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
   850   return correct_value;
   851 }
   853 void MacroAssembler::verify_thread() {
   854   if (VerifyThread) {
   855     // NOTE: this chops off the heads of the 64-bit O registers.
   856 #ifdef CC_INTERP
   857     save_frame(0);
   858 #else
   859     // make sure G2_thread contains the right value
   860     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
   861     mov(G1, L1);                // avoid clobbering G1
   862     // G2 saved below
   863     mov(G3, L3);                // avoid clobbering G3
   864     mov(G4, L4);                // avoid clobbering G4
   865     mov(G5_method, L5);         // avoid clobbering G5_method
   866 #endif /* CC_INTERP */
   867 #if defined(COMPILER2) && !defined(_LP64)
   868     // Save & restore possible 64-bit Long arguments in G-regs
   869     srlx(G1,32,L0);
   870     srlx(G4,32,L6);
   871 #endif
   872     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
   873     delayed()->mov(G2_thread, O0);
   875     mov(L1, G1);                // Restore G1
   876     // G2 restored below
   877     mov(L3, G3);                // restore G3
   878     mov(L4, G4);                // restore G4
   879     mov(L5, G5_method);         // restore G5_method
   880 #if defined(COMPILER2) && !defined(_LP64)
   881     // Save & restore possible 64-bit Long arguments in G-regs
   882     sllx(L0,32,G2);             // Move old high G1 bits high in G2
   883     sllx(G1, 0,G1);             // Clear current high G1 bits
   884     or3 (G1,G2,G1);             // Recover 64-bit G1
   885     sllx(L6,32,G2);             // Move old high G4 bits high in G2
   886     sllx(G4, 0,G4);             // Clear current high G4 bits
   887     or3 (G4,G2,G4);             // Recover 64-bit G4
   888 #endif
   889     restore(O0, 0, G2_thread);
   890   }
   891 }
   894 void MacroAssembler::save_thread(const Register thread_cache) {
   895   verify_thread();
   896   if (thread_cache->is_valid()) {
   897     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   898     mov(G2_thread, thread_cache);
   899   }
   900   if (VerifyThread) {
   901     // smash G2_thread, as if the VM were about to anyway
   902     set(0x67676767, G2_thread);
   903   }
   904 }
   907 void MacroAssembler::restore_thread(const Register thread_cache) {
   908   if (thread_cache->is_valid()) {
   909     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   910     mov(thread_cache, G2_thread);
   911     verify_thread();
   912   } else {
   913     // do it the slow way
   914     get_thread();
   915   }
   916 }
   919 // %%% maybe get rid of [re]set_last_Java_frame
   920 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
   921   assert_not_delayed();
   922   Address flags(G2_thread,
   923                 0,
   924                 in_bytes(JavaThread::frame_anchor_offset()) +
   925                          in_bytes(JavaFrameAnchor::flags_offset()));
   926   Address pc_addr(G2_thread,
   927                   0,
   928                   in_bytes(JavaThread::last_Java_pc_offset()));
   930   // Always set last_Java_pc and flags first because once last_Java_sp is visible
   931   // has_last_Java_frame is true and users will look at the rest of the fields.
   932   // (Note: flags should always be zero before we get here so doesn't need to be set.)
   934 #ifdef ASSERT
   935   // Verify that flags was zeroed on return to Java
   936   Label PcOk;
   937   save_frame(0);                // to avoid clobbering O0
   938   ld_ptr(pc_addr, L0);
   939   tst(L0);
   940 #ifdef _LP64
   941   brx(Assembler::zero, false, Assembler::pt, PcOk);
   942 #else
   943   br(Assembler::zero, false, Assembler::pt, PcOk);
   944 #endif // _LP64
   945   delayed() -> nop();
   946   stop("last_Java_pc not zeroed before leaving Java");
   947   bind(PcOk);
   949   // Verify that flags was zeroed on return to Java
   950   Label FlagsOk;
   951   ld(flags, L0);
   952   tst(L0);
   953   br(Assembler::zero, false, Assembler::pt, FlagsOk);
   954   delayed() -> restore();
   955   stop("flags not zeroed before leaving Java");
   956   bind(FlagsOk);
   957 #endif /* ASSERT */
   958   //
   959   // When returning from calling out from Java mode the frame anchor's last_Java_pc
   960   // will always be set to NULL. It is set here so that if we are doing a call to
   961   // native (not VM) that we capture the known pc and don't have to rely on the
   962   // native call having a standard frame linkage where we can find the pc.
   964   if (last_Java_pc->is_valid()) {
   965     st_ptr(last_Java_pc, pc_addr);
   966   }
   968 #ifdef _LP64
   969 #ifdef ASSERT
   970   // Make sure that we have an odd stack
   971   Label StackOk;
   972   andcc(last_java_sp, 0x01, G0);
   973   br(Assembler::notZero, false, Assembler::pt, StackOk);
   974   delayed() -> nop();
   975   stop("Stack Not Biased in set_last_Java_frame");
   976   bind(StackOk);
   977 #endif // ASSERT
   978   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
   979   add( last_java_sp, STACK_BIAS, G4_scratch );
   980   st_ptr(G4_scratch,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
   981 #else
   982   st_ptr(last_java_sp,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
   983 #endif // _LP64
   984 }
   986 void MacroAssembler::reset_last_Java_frame(void) {
   987   assert_not_delayed();
   989   Address sp_addr(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset()));
   990   Address pc_addr(G2_thread,
   991                   0,
   992                   in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::last_Java_pc_offset()));
   993   Address flags(G2_thread,
   994                 0,
   995                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
   997 #ifdef ASSERT
   998   // check that it WAS previously set
   999 #ifdef CC_INTERP
  1000     save_frame(0);
  1001 #else
  1002     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
  1003 #endif /* CC_INTERP */
  1004     ld_ptr(sp_addr, L0);
  1005     tst(L0);
  1006     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
  1007     restore();
  1008 #endif // ASSERT
  1010   st_ptr(G0, sp_addr);
  1011   // Always return last_Java_pc to zero
  1012   st_ptr(G0, pc_addr);
  1013   // Always null flags after return to Java
  1014   st(G0, flags);
  1018 void MacroAssembler::call_VM_base(
  1019   Register        oop_result,
  1020   Register        thread_cache,
  1021   Register        last_java_sp,
  1022   address         entry_point,
  1023   int             number_of_arguments,
  1024   bool            check_exceptions)
  1026   assert_not_delayed();
  1028   // determine last_java_sp register
  1029   if (!last_java_sp->is_valid()) {
  1030     last_java_sp = SP;
  1032   // debugging support
  1033   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1035   // 64-bit last_java_sp is biased!
  1036   set_last_Java_frame(last_java_sp, noreg);
  1037   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  1038   save_thread(thread_cache);
  1039   // do the call
  1040   call(entry_point, relocInfo::runtime_call_type);
  1041   if (!VerifyThread)
  1042     delayed()->mov(G2_thread, O0);  // pass thread as first argument
  1043   else
  1044     delayed()->nop();             // (thread already passed)
  1045   restore_thread(thread_cache);
  1046   reset_last_Java_frame();
  1048   // check for pending exceptions. use Gtemp as scratch register.
  1049   if (check_exceptions) {
  1050     check_and_forward_exception(Gtemp);
  1053   // get oop result if there is one and reset the value in the thread
  1054   if (oop_result->is_valid()) {
  1055     get_vm_result(oop_result);
  1059 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
  1061   Label L;
  1063   check_and_handle_popframe(scratch_reg);
  1064   check_and_handle_earlyret(scratch_reg);
  1066   Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
  1067   ld_ptr(exception_addr, scratch_reg);
  1068   br_null(scratch_reg,false,pt,L);
  1069   delayed()->nop();
  1070   // we use O7 linkage so that forward_exception_entry has the issuing PC
  1071   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1072   delayed()->nop();
  1073   bind(L);
  1077 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  1081 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
  1085 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1086   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
  1090 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  1091   // O0 is reserved for the thread
  1092   mov(arg_1, O1);
  1093   call_VM(oop_result, entry_point, 1, check_exceptions);
  1097 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1098   // O0 is reserved for the thread
  1099   mov(arg_1, O1);
  1100   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1101   call_VM(oop_result, entry_point, 2, check_exceptions);
  1105 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1106   // O0 is reserved for the thread
  1107   mov(arg_1, O1);
  1108   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1109   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1110   call_VM(oop_result, entry_point, 3, check_exceptions);
  1115 // Note: The following call_VM overloadings are useful when a "save"
  1116 // has already been performed by a stub, and the last Java frame is
  1117 // the previous one.  In that case, last_java_sp must be passed as FP
  1118 // instead of SP.
  1121 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
  1122   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1126 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
  1127   // O0 is reserved for the thread
  1128   mov(arg_1, O1);
  1129   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1133 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1134   // O0 is reserved for the thread
  1135   mov(arg_1, O1);
  1136   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1137   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1141 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1142   // O0 is reserved for the thread
  1143   mov(arg_1, O1);
  1144   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1145   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1146   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1151 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
  1152   assert_not_delayed();
  1153   save_thread(thread_cache);
  1154   // do the call
  1155   call(entry_point, relocInfo::runtime_call_type);
  1156   delayed()->nop();
  1157   restore_thread(thread_cache);
  1161 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
  1162   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
  1166 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  1167   mov(arg_1, O0);
  1168   call_VM_leaf(thread_cache, entry_point, 1);
  1172 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
  1173   mov(arg_1, O0);
  1174   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
  1175   call_VM_leaf(thread_cache, entry_point, 2);
  1179 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  1180   mov(arg_1, O0);
  1181   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
  1182   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
  1183   call_VM_leaf(thread_cache, entry_point, 3);
  1187 void MacroAssembler::get_vm_result(Register oop_result) {
  1188   verify_thread();
  1189   Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
  1190   ld_ptr(    vm_result_addr, oop_result);
  1191   st_ptr(G0, vm_result_addr);
  1192   verify_oop(oop_result);
  1196 void MacroAssembler::get_vm_result_2(Register oop_result) {
  1197   verify_thread();
  1198   Address vm_result_addr_2(G2_thread, 0, in_bytes(JavaThread::vm_result_2_offset()));
  1199   ld_ptr(vm_result_addr_2, oop_result);
  1200   st_ptr(G0, vm_result_addr_2);
  1201   verify_oop(oop_result);
  1205 // We require that C code which does not return a value in vm_result will
  1206 // leave it undisturbed.
  1207 void MacroAssembler::set_vm_result(Register oop_result) {
  1208   verify_thread();
  1209   Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
  1210   verify_oop(oop_result);
  1212 # ifdef ASSERT
  1213     // Check that we are not overwriting any other oop.
  1214 #ifdef CC_INTERP
  1215     save_frame(0);
  1216 #else
  1217     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
  1218 #endif /* CC_INTERP */
  1219     ld_ptr(vm_result_addr, L0);
  1220     tst(L0);
  1221     restore();
  1222     breakpoint_trap(notZero, Assembler::ptr_cc);
  1223     // }
  1224 # endif
  1226   st_ptr(oop_result, vm_result_addr);
  1230 void MacroAssembler::card_table_write(jbyte* byte_map_base,
  1231                                       Register tmp, Register obj) {
  1232 #ifdef _LP64
  1233   srlx(obj, CardTableModRefBS::card_shift, obj);
  1234 #else
  1235   srl(obj, CardTableModRefBS::card_shift, obj);
  1236 #endif
  1237   assert( tmp != obj, "need separate temp reg");
  1238   Address rs(tmp, (address)byte_map_base);
  1239   load_address(rs);
  1240   stb(G0, rs.base(), obj);
  1243 // %%% Note:  The following six instructions have been moved,
  1244 //            unchanged, from assembler_sparc.inline.hpp.
  1245 //            They will be refactored at a later date.
  1247 void MacroAssembler::sethi(intptr_t imm22a,
  1248                             Register d,
  1249                             bool ForceRelocatable,
  1250                             RelocationHolder const& rspec) {
  1251   Address adr( d, (address)imm22a, rspec );
  1252   MacroAssembler::sethi( adr, ForceRelocatable );
  1256 void MacroAssembler::sethi(Address& a, bool ForceRelocatable) {
  1257   address save_pc;
  1258   int shiftcnt;
  1259   // if addr of local, do not need to load it
  1260   assert(a.base() != FP  &&  a.base() != SP, "just use ld or st for locals");
  1261 #ifdef _LP64
  1262 # ifdef CHECK_DELAY
  1263   assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
  1264 # endif
  1265   v9_dep();
  1266 //  ForceRelocatable = 1;
  1267   save_pc = pc();
  1268   if (a.hi32() == 0 && a.low32() >= 0) {
  1269     Assembler::sethi(a.low32(), a.base(), a.rspec());
  1271   else if (a.hi32() == -1) {
  1272     Assembler::sethi(~a.low32(), a.base(), a.rspec());
  1273     xor3(a.base(), ~low10(~0), a.base());
  1275   else {
  1276     Assembler::sethi(a.hi32(), a.base(), a.rspec() );   // 22
  1277     if ( a.hi32() & 0x3ff )                     // Any bits?
  1278       or3( a.base(), a.hi32() & 0x3ff ,a.base() ); // High 32 bits are now in low 32
  1279     if ( a.low32() & 0xFFFFFC00 ) {             // done?
  1280       if( (a.low32() >> 20) & 0xfff ) {         // Any bits set?
  1281         sllx(a.base(), 12, a.base());           // Make room for next 12 bits
  1282         or3( a.base(), (a.low32() >> 20) & 0xfff,a.base() ); // Or in next 12
  1283         shiftcnt = 0;                           // We already shifted
  1285       else
  1286         shiftcnt = 12;
  1287       if( (a.low32() >> 10) & 0x3ff ) {
  1288         sllx(a.base(), shiftcnt+10, a.base());// Make room for last 10 bits
  1289         or3( a.base(), (a.low32() >> 10) & 0x3ff,a.base() ); // Or in next 10
  1290         shiftcnt = 0;
  1292       else
  1293         shiftcnt = 10;
  1294       sllx(a.base(), shiftcnt+10 , a.base());           // Shift leaving disp field 0'd
  1296     else
  1297       sllx( a.base(), 32, a.base() );
  1299   // Pad out the instruction sequence so it can be
  1300   // patched later.
  1301   if ( ForceRelocatable || (a.rtype() != relocInfo::none &&
  1302                             a.rtype() != relocInfo::runtime_call_type) ) {
  1303     while ( pc() < (save_pc + (7 * BytesPerInstWord )) )
  1304       nop();
  1306 #else
  1307   Assembler::sethi(a.hi(), a.base(), a.rspec());
  1308 #endif
  1312 int MacroAssembler::size_of_sethi(address a, bool worst_case) {
  1313 #ifdef _LP64
  1314   if (worst_case) return 7;
  1315   intptr_t iaddr = (intptr_t)a;
  1316   int hi32 = (int)(iaddr >> 32);
  1317   int lo32 = (int)(iaddr);
  1318   int inst_count;
  1319   if (hi32 == 0 && lo32 >= 0)
  1320     inst_count = 1;
  1321   else if (hi32 == -1)
  1322     inst_count = 2;
  1323   else {
  1324     inst_count = 2;
  1325     if ( hi32 & 0x3ff )
  1326       inst_count++;
  1327     if ( lo32 & 0xFFFFFC00 ) {
  1328       if( (lo32 >> 20) & 0xfff ) inst_count += 2;
  1329       if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
  1332   return BytesPerInstWord * inst_count;
  1333 #else
  1334   return BytesPerInstWord;
  1335 #endif
  1338 int MacroAssembler::worst_case_size_of_set() {
  1339   return size_of_sethi(NULL, true) + 1;
  1342 void MacroAssembler::set(intptr_t value, Register d,
  1343                          RelocationHolder const& rspec) {
  1344   Address val( d, (address)value, rspec);
  1346   if ( rspec.type() == relocInfo::none ) {
  1347     // can optimize
  1348     if (-4096 <= value  &&  value <= 4095) {
  1349       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
  1350       return;
  1352     if (inv_hi22(hi22(value)) == value) {
  1353       sethi(val);
  1354       return;
  1357   assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
  1358   sethi( val );
  1359   if (rspec.type() != relocInfo::none || (value & 0x3ff) != 0) {
  1360     add( d, value &  0x3ff, d, rspec);
  1364 void MacroAssembler::setsw(int value, Register d,
  1365                            RelocationHolder const& rspec) {
  1366   Address val( d, (address)value, rspec);
  1367   if ( rspec.type() == relocInfo::none ) {
  1368     // can optimize
  1369     if (-4096 <= value  &&  value <= 4095) {
  1370       or3(G0, value, d);
  1371       return;
  1373     if (inv_hi22(hi22(value)) == value) {
  1374       sethi( val );
  1375 #ifndef _LP64
  1376       if ( value < 0 ) {
  1377         assert_not_delayed();
  1378         sra (d, G0, d);
  1380 #endif
  1381       return;
  1384   assert_not_delayed();
  1385   sethi( val );
  1386   add( d, value &  0x3ff, d, rspec);
  1388   // (A negative value could be loaded in 2 insns with sethi/xor,
  1389   // but it would take a more complex relocation.)
  1390 #ifndef _LP64
  1391   if ( value < 0)
  1392     sra(d, G0, d);
  1393 #endif
  1396 // %%% End of moved six set instructions.
  1399 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  1400   assert_not_delayed();
  1401   v9_dep();
  1403   int hi = (int)(value >> 32);
  1404   int lo = (int)(value & ~0);
  1405   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1406   if (Assembler::is_simm13(lo) && value == lo) {
  1407     or3(G0, lo, d);
  1408   } else if (hi == 0) {
  1409     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
  1410     if (low10(lo) != 0)
  1411       or3(d, low10(lo), d);
  1413   else if (hi == -1) {
  1414     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
  1415     xor3(d, low10(lo) ^ ~low10(~0), d);
  1417   else if (lo == 0) {
  1418     if (Assembler::is_simm13(hi)) {
  1419       or3(G0, hi, d);
  1420     } else {
  1421       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
  1422       if (low10(hi) != 0)
  1423         or3(d, low10(hi), d);
  1425     sllx(d, 32, d);
  1427   else {
  1428     Assembler::sethi(hi, tmp);
  1429     Assembler::sethi(lo,   d); // macro assembler version sign-extends
  1430     if (low10(hi) != 0)
  1431       or3 (tmp, low10(hi), tmp);
  1432     if (low10(lo) != 0)
  1433       or3 (  d, low10(lo),   d);
  1434     sllx(tmp, 32, tmp);
  1435     or3 (d, tmp, d);
  1439 // compute size in bytes of sparc frame, given
  1440 // number of extraWords
  1441 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
  1443   int nWords = frame::memory_parameter_word_sp_offset;
  1445   nWords += extraWords;
  1447   if (nWords & 1) ++nWords; // round up to double-word
  1449   return nWords * BytesPerWord;
  1453 // save_frame: given number of "extra" words in frame,
  1454 // issue approp. save instruction (p 200, v8 manual)
  1456 void MacroAssembler::save_frame(int extraWords = 0) {
  1457   int delta = -total_frame_size_in_bytes(extraWords);
  1458   if (is_simm13(delta)) {
  1459     save(SP, delta, SP);
  1460   } else {
  1461     set(delta, G3_scratch);
  1462     save(SP, G3_scratch, SP);
  1467 void MacroAssembler::save_frame_c1(int size_in_bytes) {
  1468   if (is_simm13(-size_in_bytes)) {
  1469     save(SP, -size_in_bytes, SP);
  1470   } else {
  1471     set(-size_in_bytes, G3_scratch);
  1472     save(SP, G3_scratch, SP);
  1477 void MacroAssembler::save_frame_and_mov(int extraWords,
  1478                                         Register s1, Register d1,
  1479                                         Register s2, Register d2) {
  1480   assert_not_delayed();
  1482   // The trick here is to use precisely the same memory word
  1483   // that trap handlers also use to save the register.
  1484   // This word cannot be used for any other purpose, but
  1485   // it works fine to save the register's value, whether or not
  1486   // an interrupt flushes register windows at any given moment!
  1487   Address s1_addr;
  1488   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
  1489     s1_addr = s1->address_in_saved_window();
  1490     st_ptr(s1, s1_addr);
  1493   Address s2_addr;
  1494   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
  1495     s2_addr = s2->address_in_saved_window();
  1496     st_ptr(s2, s2_addr);
  1499   save_frame(extraWords);
  1501   if (s1_addr.base() == SP) {
  1502     ld_ptr(s1_addr.after_save(), d1);
  1503   } else if (s1->is_valid()) {
  1504     mov(s1->after_save(), d1);
  1507   if (s2_addr.base() == SP) {
  1508     ld_ptr(s2_addr.after_save(), d2);
  1509   } else if (s2->is_valid()) {
  1510     mov(s2->after_save(), d2);
  1515 Address MacroAssembler::allocate_oop_address(jobject obj, Register d) {
  1516   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1517   int oop_index = oop_recorder()->allocate_index(obj);
  1518   return Address(d, address(obj), oop_Relocation::spec(oop_index));
  1522 Address MacroAssembler::constant_oop_address(jobject obj, Register d) {
  1523   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1524   int oop_index = oop_recorder()->find_index(obj);
  1525   return Address(d, address(obj), oop_Relocation::spec(oop_index));
  1528 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
  1529   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1530   int oop_index = oop_recorder()->find_index(obj);
  1531   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  1533   assert_not_delayed();
  1534   // Relocation with special format (see relocInfo_sparc.hpp).
  1535   relocate(rspec, 1);
  1536   // Assembler::sethi(0x3fffff, d);
  1537   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
  1538   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  1539   add(d, 0x3ff, d);
  1544 void MacroAssembler::align(int modulus) {
  1545   while (offset() % modulus != 0) nop();
  1549 void MacroAssembler::safepoint() {
  1550   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
  1554 void RegistersForDebugging::print(outputStream* s) {
  1555   int j;
  1556   for ( j = 0;  j < 8;  ++j )
  1557     if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
  1558     else          s->print_cr( "fp = 0x%.16lx",    i[j]);
  1559   s->cr();
  1561   for ( j = 0;  j < 8;  ++j )
  1562     s->print_cr("l%d = 0x%.16lx", j, l[j]);
  1563   s->cr();
  1565   for ( j = 0;  j < 8;  ++j )
  1566     if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
  1567     else          s->print_cr( "sp = 0x%.16lx",    o[j]);
  1568   s->cr();
  1570   for ( j = 0;  j < 8;  ++j )
  1571     s->print_cr("g%d = 0x%.16lx", j, g[j]);
  1572   s->cr();
  1574   // print out floats with compression
  1575   for (j = 0; j < 32; ) {
  1576     jfloat val = f[j];
  1577     int last = j;
  1578     for ( ;  last+1 < 32;  ++last ) {
  1579       char b1[1024], b2[1024];
  1580       sprintf(b1, "%f", val);
  1581       sprintf(b2, "%f", f[last+1]);
  1582       if (strcmp(b1, b2))
  1583         break;
  1585     s->print("f%d", j);
  1586     if ( j != last )  s->print(" - f%d", last);
  1587     s->print(" = %f", val);
  1588     s->fill_to(25);
  1589     s->print_cr(" (0x%x)", val);
  1590     j = last + 1;
  1592   s->cr();
  1594   // and doubles (evens only)
  1595   for (j = 0; j < 32; ) {
  1596     jdouble val = d[j];
  1597     int last = j;
  1598     for ( ;  last+1 < 32;  ++last ) {
  1599       char b1[1024], b2[1024];
  1600       sprintf(b1, "%f", val);
  1601       sprintf(b2, "%f", d[last+1]);
  1602       if (strcmp(b1, b2))
  1603         break;
  1605     s->print("d%d", 2 * j);
  1606     if ( j != last )  s->print(" - d%d", last);
  1607     s->print(" = %f", val);
  1608     s->fill_to(30);
  1609     s->print("(0x%x)", *(int*)&val);
  1610     s->fill_to(42);
  1611     s->print_cr("(0x%x)", *(1 + (int*)&val));
  1612     j = last + 1;
  1614   s->cr();
  1617 void RegistersForDebugging::save_registers(MacroAssembler* a) {
  1618   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  1619   a->flush_windows();
  1620   int i;
  1621   for (i = 0; i < 8; ++i) {
  1622     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
  1623     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
  1624     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
  1625     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  1627   for (i = 0;  i < 32; ++i) {
  1628     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  1630   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
  1631     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  1635 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  1636   for (int i = 1; i < 8;  ++i) {
  1637     a->ld_ptr(r, g_offset(i), as_gRegister(i));
  1639   for (int j = 0; j < 32; ++j) {
  1640     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  1642   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
  1643     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  1648 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1649 void MacroAssembler::push_fTOS() {
  1650   // %%%%%% need to implement this
  1653 // pops double TOS element from CPU stack and pushes on FPU stack
  1654 void MacroAssembler::pop_fTOS() {
  1655   // %%%%%% need to implement this
  1658 void MacroAssembler::empty_FPU_stack() {
  1659   // %%%%%% need to implement this
  1662 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  1663   // plausibility check for oops
  1664   if (!VerifyOops) return;
  1666   if (reg == G0)  return;       // always NULL, which is always an oop
  1668   char buffer[64];
  1669 #ifdef COMPILER1
  1670   if (CommentedAssembly) {
  1671     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
  1672     block_comment(buffer);
  1674 #endif
  1676   int len = strlen(file) + strlen(msg) + 1 + 4;
  1677   sprintf(buffer, "%d", line);
  1678   len += strlen(buffer);
  1679   sprintf(buffer, " at offset %d ", offset());
  1680   len += strlen(buffer);
  1681   char * real_msg = new char[len];
  1682   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
  1684   // Call indirectly to solve generation ordering problem
  1685   Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
  1687   // Make some space on stack above the current register window.
  1688   // Enough to hold 8 64-bit registers.
  1689   add(SP,-8*8,SP);
  1691   // Save some 64-bit registers; a normal 'save' chops the heads off
  1692   // of 64-bit longs in the 32-bit build.
  1693   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1694   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1695   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  1696   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1698   set((intptr_t)real_msg, O1);
  1699   // Load address to call to into O7
  1700   load_ptr_contents(a, O7);
  1701   // Register call to verify_oop_subroutine
  1702   callr(O7, G0);
  1703   delayed()->nop();
  1704   // recover frame size
  1705   add(SP, 8*8,SP);
  1708 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  1709   // plausibility check for oops
  1710   if (!VerifyOops) return;
  1712   char buffer[64];
  1713   sprintf(buffer, "%d", line);
  1714   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  1715   sprintf(buffer, " at SP+%d ", addr.disp());
  1716   len += strlen(buffer);
  1717   char * real_msg = new char[len];
  1718   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
  1720   // Call indirectly to solve generation ordering problem
  1721   Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
  1723   // Make some space on stack above the current register window.
  1724   // Enough to hold 8 64-bit registers.
  1725   add(SP,-8*8,SP);
  1727   // Save some 64-bit registers; a normal 'save' chops the heads off
  1728   // of 64-bit longs in the 32-bit build.
  1729   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1730   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1731   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  1732   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1734   set((intptr_t)real_msg, O1);
  1735   // Load address to call to into O7
  1736   load_ptr_contents(a, O7);
  1737   // Register call to verify_oop_subroutine
  1738   callr(O7, G0);
  1739   delayed()->nop();
  1740   // recover frame size
  1741   add(SP, 8*8,SP);
  1744 // side-door communication with signalHandler in os_solaris.cpp
  1745 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
  1747 // This macro is expanded just once; it creates shared code.  Contract:
  1748 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
  1749 // registers, including flags.  May not use a register 'save', as this blows
  1750 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
  1751 // call.
  1752 void MacroAssembler::verify_oop_subroutine() {
  1753   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
  1755   // Leaf call; no frame.
  1756   Label succeed, fail, null_or_fail;
  1758   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  1759   // O0 is now the oop to be checked.  O7 is the return address.
  1760   Register O0_obj = O0;
  1762   // Save some more registers for temps.
  1763   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  1764   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  1765   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  1766   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
  1768   // Save flags
  1769   Register O5_save_flags = O5;
  1770   rdccr( O5_save_flags );
  1772   { // count number of verifies
  1773     Register O2_adr   = O2;
  1774     Register O3_accum = O3;
  1775     Address count_addr( O2_adr, (address) StubRoutines::verify_oop_count_addr() );
  1776     sethi(count_addr);
  1777     ld(count_addr, O3_accum);
  1778     inc(O3_accum);
  1779     st(O3_accum, count_addr);
  1782   Register O2_mask = O2;
  1783   Register O3_bits = O3;
  1784   Register O4_temp = O4;
  1786   // mark lower end of faulting range
  1787   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  1788   _verify_oop_implicit_branch[0] = pc();
  1790   // We can't check the mark oop because it could be in the process of
  1791   // locking or unlocking while this is running.
  1792   set(Universe::verify_oop_mask (), O2_mask);
  1793   set(Universe::verify_oop_bits (), O3_bits);
  1795   // assert((obj & oop_mask) == oop_bits);
  1796   and3(O0_obj, O2_mask, O4_temp);
  1797   cmp(O4_temp, O3_bits);
  1798   brx(notEqual, false, pn, null_or_fail);
  1799   delayed()->nop();
  1801   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
  1802     // the null_or_fail case is useless; must test for null separately
  1803     br_null(O0_obj, false, pn, succeed);
  1804     delayed()->nop();
  1807   // Check the klassOop of this object for being in the right area of memory.
  1808   // Cannot do the load in the delay above slot in case O0 is null
  1809   load_klass(O0_obj, O0_obj);
  1810   // assert((klass & klass_mask) == klass_bits);
  1811   if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
  1812     set(Universe::verify_klass_mask(), O2_mask);
  1813   if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
  1814     set(Universe::verify_klass_bits(), O3_bits);
  1815   and3(O0_obj, O2_mask, O4_temp);
  1816   cmp(O4_temp, O3_bits);
  1817   brx(notEqual, false, pn, fail);
  1818   delayed()->nop();
  1819   // Check the klass's klass
  1820   load_klass(O0_obj, O0_obj);
  1821   and3(O0_obj, O2_mask, O4_temp);
  1822   cmp(O4_temp, O3_bits);
  1823   brx(notEqual, false, pn, fail);
  1824   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1826   // mark upper end of faulting range
  1827   _verify_oop_implicit_branch[1] = pc();
  1829   //-----------------------
  1830   // all tests pass
  1831   bind(succeed);
  1833   // Restore prior 64-bit registers
  1834   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  1835   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  1836   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  1837   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  1838   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  1839   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
  1841   retl();                       // Leaf return; restore prior O7 in delay slot
  1842   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
  1844   //-----------------------
  1845   bind(null_or_fail);           // nulls are less common but OK
  1846   br_null(O0_obj, false, pt, succeed);
  1847   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1849   //-----------------------
  1850   // report failure:
  1851   bind(fail);
  1852   _verify_oop_implicit_branch[2] = pc();
  1854   wrccr( O5_save_flags ); // Restore CCR's
  1856   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1858   // stop_subroutine expects message pointer in I1.
  1859   mov(I1, O1);
  1861   // Restore prior 64-bit registers
  1862   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  1863   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  1864   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  1865   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  1866   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  1867   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
  1869   // factor long stop-sequence into subroutine to save space
  1870   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1872   // call indirectly to solve generation ordering problem
  1873   Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
  1874   load_ptr_contents(a, O5);
  1875   jmpl(O5, 0, O7);
  1876   delayed()->nop();
  1880 void MacroAssembler::stop(const char* msg) {
  1881   // save frame first to get O7 for return address
  1882   // add one word to size in case struct is odd number of words long
  1883   // It must be doubleword-aligned for storing doubles into it.
  1885     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1887     // stop_subroutine expects message pointer in I1.
  1888     set((intptr_t)msg, O1);
  1890     // factor long stop-sequence into subroutine to save space
  1891     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1893     // call indirectly to solve generation ordering problem
  1894     Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
  1895     load_ptr_contents(a, O5);
  1896     jmpl(O5, 0, O7);
  1897     delayed()->nop();
  1899     breakpoint_trap();   // make stop actually stop rather than writing
  1900                          // unnoticeable results in the output files.
  1902     // restore(); done in callee to save space!
  1906 void MacroAssembler::warn(const char* msg) {
  1907   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1908   RegistersForDebugging::save_registers(this);
  1909   mov(O0, L0);
  1910   set((intptr_t)msg, O0);
  1911   call( CAST_FROM_FN_PTR(address, warning) );
  1912   delayed()->nop();
  1913 //  ret();
  1914 //  delayed()->restore();
  1915   RegistersForDebugging::restore_registers(this, L0);
  1916   restore();
  1920 void MacroAssembler::untested(const char* what) {
  1921   // We must be able to turn interactive prompting off
  1922   // in order to run automated test scripts on the VM
  1923   // Use the flag ShowMessageBoxOnError
  1925   char* b = new char[1024];
  1926   sprintf(b, "untested: %s", what);
  1928   if ( ShowMessageBoxOnError )   stop(b);
  1929   else                           warn(b);
  1933 void MacroAssembler::stop_subroutine() {
  1934   RegistersForDebugging::save_registers(this);
  1936   // for the sake of the debugger, stick a PC on the current frame
  1937   // (this assumes that the caller has performed an extra "save")
  1938   mov(I7, L7);
  1939   add(O7, -7 * BytesPerInt, I7);
  1941   save_frame(); // one more save to free up another O7 register
  1942   mov(I0, O1); // addr of reg save area
  1944   // We expect pointer to message in I1. Caller must set it up in O1
  1945   mov(I1, O0); // get msg
  1946   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  1947   delayed()->nop();
  1949   restore();
  1951   RegistersForDebugging::restore_registers(this, O0);
  1953   save_frame(0);
  1954   call(CAST_FROM_FN_PTR(address,breakpoint));
  1955   delayed()->nop();
  1956   restore();
  1958   mov(L7, I7);
  1959   retl();
  1960   delayed()->restore(); // see stop above
  1964 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  1965   if ( ShowMessageBoxOnError ) {
  1966       JavaThreadState saved_state = JavaThread::current()->thread_state();
  1967       JavaThread::current()->set_thread_state(_thread_in_vm);
  1969         // In order to get locks work, we need to fake a in_VM state
  1970         ttyLocker ttyl;
  1971         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
  1972         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  1973           ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
  1975         if (os::message_box(msg, "Execution stopped, print registers?"))
  1976           regs->print(::tty);
  1978       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  1980   else
  1981      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  1982   assert(false, "error");
  1986 #ifndef PRODUCT
  1987 void MacroAssembler::test() {
  1988   ResourceMark rm;
  1990   CodeBuffer cb("test", 10000, 10000);
  1991   MacroAssembler* a = new MacroAssembler(&cb);
  1992   VM_Version::allow_all();
  1993   a->test_v9();
  1994   a->test_v8_onlys();
  1995   VM_Version::revert();
  1997   StubRoutines::Sparc::test_stop_entry()();
  1999 #endif
  2002 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  2003   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  2004   Label no_extras;
  2005   br( negative, true, pt, no_extras ); // if neg, clear reg
  2006   delayed()->set( 0, Rresult);         // annuled, so only if taken
  2007   bind( no_extras );
  2011 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
  2012 #ifdef _LP64
  2013   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
  2014 #else
  2015   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
  2016 #endif
  2017   bclr(1, Rresult);
  2018   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
  2022 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  2023   calc_frame_size(Rextra_words, Rresult);
  2024   neg(Rresult);
  2025   save(SP, Rresult, SP);
  2029 // ---------------------------------------------------------
  2030 Assembler::RCondition cond2rcond(Assembler::Condition c) {
  2031   switch (c) {
  2032     /*case zero: */
  2033     case Assembler::equal:        return Assembler::rc_z;
  2034     case Assembler::lessEqual:    return Assembler::rc_lez;
  2035     case Assembler::less:         return Assembler::rc_lz;
  2036     /*case notZero:*/
  2037     case Assembler::notEqual:     return Assembler::rc_nz;
  2038     case Assembler::greater:      return Assembler::rc_gz;
  2039     case Assembler::greaterEqual: return Assembler::rc_gez;
  2041   ShouldNotReachHere();
  2042   return Assembler::rc_z;
  2045 // compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
  2046 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
  2047   tst(s1);
  2048   br (c, a, p, L);
  2052 // Compares a pointer register with zero and branches on null.
  2053 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  2054 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  2055   assert_not_delayed();
  2056 #ifdef _LP64
  2057   bpr( rc_z, a, p, s1, L );
  2058 #else
  2059   tst(s1);
  2060   br ( zero, a, p, L );
  2061 #endif
  2064 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  2065   assert_not_delayed();
  2066 #ifdef _LP64
  2067   bpr( rc_nz, a, p, s1, L );
  2068 #else
  2069   tst(s1);
  2070   br ( notZero, a, p, L );
  2071 #endif
  2074 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
  2075                                      Register s1, address d,
  2076                                      relocInfo::relocType rt ) {
  2077   if (VM_Version::v9_instructions_work()) {
  2078     bpr(rc, a, p, s1, d, rt);
  2079   } else {
  2080     tst(s1);
  2081     br(reg_cond_to_cc_cond(rc), a, p, d, rt);
  2085 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
  2086                                      Register s1, Label& L ) {
  2087   if (VM_Version::v9_instructions_work()) {
  2088     bpr(rc, a, p, s1, L);
  2089   } else {
  2090     tst(s1);
  2091     br(reg_cond_to_cc_cond(rc), a, p, L);
  2096 // instruction sequences factored across compiler & interpreter
  2099 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
  2100                            Register Rb_hi, Register Rb_low,
  2101                            Register Rresult) {
  2103   Label check_low_parts, done;
  2105   cmp(Ra_hi, Rb_hi );  // compare hi parts
  2106   br(equal, true, pt, check_low_parts);
  2107   delayed()->cmp(Ra_low, Rb_low); // test low parts
  2109   // And, with an unsigned comparison, it does not matter if the numbers
  2110   // are negative or not.
  2111   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  2112   // The second one is bigger (unsignedly).
  2114   // Other notes:  The first move in each triplet can be unconditional
  2115   // (and therefore probably prefetchable).
  2116   // And the equals case for the high part does not need testing,
  2117   // since that triplet is reached only after finding the high halves differ.
  2119   if (VM_Version::v9_instructions_work()) {
  2121                                     mov  (                     -1, Rresult);
  2122     ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
  2124   else {
  2125     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
  2126     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  2129   bind( check_low_parts );
  2131   if (VM_Version::v9_instructions_work()) {
  2132     mov(                               -1, Rresult);
  2133     movcc(equal,           false, icc,  0, Rresult);
  2134     movcc(greaterUnsigned, false, icc,  1, Rresult);
  2136   else {
  2137                                                     set(-1, Rresult);
  2138     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
  2139     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  2141   bind( done );
  2144 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  2145   subcc(  G0, Rlow, Rlow );
  2146   subc(   G0, Rhi,  Rhi  );
  2149 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
  2150                            Register Rcount,
  2151                            Register Rout_high, Register Rout_low,
  2152                            Register Rtemp ) {
  2155   Register Ralt_count = Rtemp;
  2156   Register Rxfer_bits = Rtemp;
  2158   assert( Ralt_count != Rin_high
  2159       &&  Ralt_count != Rin_low
  2160       &&  Ralt_count != Rcount
  2161       &&  Rxfer_bits != Rin_low
  2162       &&  Rxfer_bits != Rin_high
  2163       &&  Rxfer_bits != Rcount
  2164       &&  Rxfer_bits != Rout_low
  2165       &&  Rout_low   != Rin_high,
  2166         "register alias checks");
  2168   Label big_shift, done;
  2170   // This code can be optimized to use the 64 bit shifts in V9.
  2171   // Here we use the 32 bit shifts.
  2173   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2174   subcc(Rcount,         31,             Ralt_count);
  2175   br(greater, true, pn, big_shift);
  2176   delayed()->
  2177   dec(Ralt_count);
  2179   // shift < 32 bits, Ralt_count = Rcount-31
  2181   // We get the transfer bits by shifting right by 32-count the low
  2182   // register. This is done by shifting right by 31-count and then by one
  2183   // more to take care of the special (rare) case where count is zero
  2184   // (shifting by 32 would not work).
  2186   neg(  Ralt_count                                 );
  2188   // The order of the next two instructions is critical in the case where
  2189   // Rin and Rout are the same and should not be reversed.
  2191   srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
  2192   if (Rcount != Rout_low) {
  2193     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2195   sll(  Rin_high,       Rcount,         Rout_high  );
  2196   if (Rcount == Rout_low) {
  2197     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2199   srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
  2200   ba (false, done);
  2201   delayed()->
  2202   or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
  2204   // shift >= 32 bits, Ralt_count = Rcount-32
  2205   bind(big_shift);
  2206   sll(  Rin_low,        Ralt_count,     Rout_high  );
  2207   clr(  Rout_low                                   );
  2209   bind(done);
  2213 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
  2214                            Register Rcount,
  2215                            Register Rout_high, Register Rout_low,
  2216                            Register Rtemp ) {
  2218   Register Ralt_count = Rtemp;
  2219   Register Rxfer_bits = Rtemp;
  2221   assert( Ralt_count != Rin_high
  2222       &&  Ralt_count != Rin_low
  2223       &&  Ralt_count != Rcount
  2224       &&  Rxfer_bits != Rin_low
  2225       &&  Rxfer_bits != Rin_high
  2226       &&  Rxfer_bits != Rcount
  2227       &&  Rxfer_bits != Rout_high
  2228       &&  Rout_high  != Rin_low,
  2229         "register alias checks");
  2231   Label big_shift, done;
  2233   // This code can be optimized to use the 64 bit shifts in V9.
  2234   // Here we use the 32 bit shifts.
  2236   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2237   subcc(Rcount,         31,             Ralt_count);
  2238   br(greater, true, pn, big_shift);
  2239   delayed()->dec(Ralt_count);
  2241   // shift < 32 bits, Ralt_count = Rcount-31
  2243   // We get the transfer bits by shifting left by 32-count the high
  2244   // register. This is done by shifting left by 31-count and then by one
  2245   // more to take care of the special (rare) case where count is zero
  2246   // (shifting by 32 would not work).
  2248   neg(  Ralt_count                                  );
  2249   if (Rcount != Rout_low) {
  2250     srl(        Rin_low,        Rcount,         Rout_low    );
  2253   // The order of the next two instructions is critical in the case where
  2254   // Rin and Rout are the same and should not be reversed.
  2256   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2257   sra(  Rin_high,       Rcount,         Rout_high   ); // high half
  2258   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2259   if (Rcount == Rout_low) {
  2260     srl(        Rin_low,        Rcount,         Rout_low    );
  2262   ba (false, done);
  2263   delayed()->
  2264   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2266   // shift >= 32 bits, Ralt_count = Rcount-32
  2267   bind(big_shift);
  2269   sra(  Rin_high,       Ralt_count,     Rout_low    );
  2270   sra(  Rin_high,       31,             Rout_high   ); // sign into hi
  2272   bind( done );
  2277 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
  2278                             Register Rcount,
  2279                             Register Rout_high, Register Rout_low,
  2280                             Register Rtemp ) {
  2282   Register Ralt_count = Rtemp;
  2283   Register Rxfer_bits = Rtemp;
  2285   assert( Ralt_count != Rin_high
  2286       &&  Ralt_count != Rin_low
  2287       &&  Ralt_count != Rcount
  2288       &&  Rxfer_bits != Rin_low
  2289       &&  Rxfer_bits != Rin_high
  2290       &&  Rxfer_bits != Rcount
  2291       &&  Rxfer_bits != Rout_high
  2292       &&  Rout_high  != Rin_low,
  2293         "register alias checks");
  2295   Label big_shift, done;
  2297   // This code can be optimized to use the 64 bit shifts in V9.
  2298   // Here we use the 32 bit shifts.
  2300   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2301   subcc(Rcount,         31,             Ralt_count);
  2302   br(greater, true, pn, big_shift);
  2303   delayed()->dec(Ralt_count);
  2305   // shift < 32 bits, Ralt_count = Rcount-31
  2307   // We get the transfer bits by shifting left by 32-count the high
  2308   // register. This is done by shifting left by 31-count and then by one
  2309   // more to take care of the special (rare) case where count is zero
  2310   // (shifting by 32 would not work).
  2312   neg(  Ralt_count                                  );
  2313   if (Rcount != Rout_low) {
  2314     srl(        Rin_low,        Rcount,         Rout_low    );
  2317   // The order of the next two instructions is critical in the case where
  2318   // Rin and Rout are the same and should not be reversed.
  2320   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2321   srl(  Rin_high,       Rcount,         Rout_high   ); // high half
  2322   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2323   if (Rcount == Rout_low) {
  2324     srl(        Rin_low,        Rcount,         Rout_low    );
  2326   ba (false, done);
  2327   delayed()->
  2328   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2330   // shift >= 32 bits, Ralt_count = Rcount-32
  2331   bind(big_shift);
  2333   srl(  Rin_high,       Ralt_count,     Rout_low    );
  2334   clr(  Rout_high                                   );
  2336   bind( done );
  2339 #ifdef _LP64
  2340 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  2341   cmp(Ra, Rb);
  2342   mov(                       -1, Rresult);
  2343   movcc(equal,   false, xcc,  0, Rresult);
  2344   movcc(greater, false, xcc,  1, Rresult);
  2346 #endif
  2349 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
  2350                                 FloatRegister Fa, FloatRegister Fb,
  2351                                 Register Rresult) {
  2353   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
  2355   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  2356   Condition eq =                          f_equal;
  2357   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
  2359   if (VM_Version::v9_instructions_work()) {
  2361     mov(                   -1, Rresult );
  2362     movcc( eq, true, fcc0,  0, Rresult );
  2363     movcc( gt, true, fcc0,  1, Rresult );
  2365   } else {
  2366     Label done;
  2368                                          set( -1, Rresult );
  2369     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
  2370     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
  2371     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
  2373     bind (done);
  2378 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2380   if (VM_Version::v9_instructions_work()) {
  2381     Assembler::fneg(w, s, d);
  2382   } else {
  2383     if (w == FloatRegisterImpl::S) {
  2384       Assembler::fneg(w, s, d);
  2385     } else if (w == FloatRegisterImpl::D) {
  2386       // number() does a sanity check on the alignment.
  2387       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2388         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2390       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2391       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2392     } else {
  2393       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2395       // number() does a sanity check on the alignment.
  2396       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2397         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2399       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2400       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2401       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2402       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2407 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2409   if (VM_Version::v9_instructions_work()) {
  2410     Assembler::fmov(w, s, d);
  2411   } else {
  2412     if (w == FloatRegisterImpl::S) {
  2413       Assembler::fmov(w, s, d);
  2414     } else if (w == FloatRegisterImpl::D) {
  2415       // number() does a sanity check on the alignment.
  2416       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2417         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2419       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2420       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2421     } else {
  2422       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2424       // number() does a sanity check on the alignment.
  2425       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2426         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2428       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2429       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2430       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2431       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2436 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2438   if (VM_Version::v9_instructions_work()) {
  2439     Assembler::fabs(w, s, d);
  2440   } else {
  2441     if (w == FloatRegisterImpl::S) {
  2442       Assembler::fabs(w, s, d);
  2443     } else if (w == FloatRegisterImpl::D) {
  2444       // number() does a sanity check on the alignment.
  2445       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2446         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2448       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2449       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2450     } else {
  2451       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2453       // number() does a sanity check on the alignment.
  2454       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2455        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2457       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2458       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2459       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2460       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2465 void MacroAssembler::save_all_globals_into_locals() {
  2466   mov(G1,L1);
  2467   mov(G2,L2);
  2468   mov(G3,L3);
  2469   mov(G4,L4);
  2470   mov(G5,L5);
  2471   mov(G6,L6);
  2472   mov(G7,L7);
  2475 void MacroAssembler::restore_globals_from_locals() {
  2476   mov(L1,G1);
  2477   mov(L2,G2);
  2478   mov(L3,G3);
  2479   mov(L4,G4);
  2480   mov(L5,G5);
  2481   mov(L6,G6);
  2482   mov(L7,G7);
  2485 // Use for 64 bit operation.
  2486 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2488   // store ptr_reg as the new top value
  2489 #ifdef _LP64
  2490   casx(top_ptr_reg, top_reg, ptr_reg);
  2491 #else
  2492   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
  2493 #endif // _LP64
  2496 // [RGV] This routine does not handle 64 bit operations.
  2497 //       use casx_under_lock() or casx directly!!!
  2498 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2500   // store ptr_reg as the new top value
  2501   if (VM_Version::v9_instructions_work()) {
  2502     cas(top_ptr_reg, top_reg, ptr_reg);
  2503   } else {
  2505     // If the register is not an out nor global, it is not visible
  2506     // after the save.  Allocate a register for it, save its
  2507     // value in the register save area (the save may not flush
  2508     // registers to the save area).
  2510     Register top_ptr_reg_after_save;
  2511     Register top_reg_after_save;
  2512     Register ptr_reg_after_save;
  2514     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
  2515       top_ptr_reg_after_save = top_ptr_reg->after_save();
  2516     } else {
  2517       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
  2518       top_ptr_reg_after_save = L0;
  2519       st(top_ptr_reg, reg_save_addr);
  2522     if (top_reg->is_out() || top_reg->is_global()) {
  2523       top_reg_after_save = top_reg->after_save();
  2524     } else {
  2525       Address reg_save_addr = top_reg->address_in_saved_window();
  2526       top_reg_after_save = L1;
  2527       st(top_reg, reg_save_addr);
  2530     if (ptr_reg->is_out() || ptr_reg->is_global()) {
  2531       ptr_reg_after_save = ptr_reg->after_save();
  2532     } else {
  2533       Address reg_save_addr = ptr_reg->address_in_saved_window();
  2534       ptr_reg_after_save = L2;
  2535       st(ptr_reg, reg_save_addr);
  2538     const Register& lock_reg = L3;
  2539     const Register& lock_ptr_reg = L4;
  2540     const Register& value_reg = L5;
  2541     const Register& yield_reg = L6;
  2542     const Register& yieldall_reg = L7;
  2544     save_frame();
  2546     if (top_ptr_reg_after_save == L0) {
  2547       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
  2550     if (top_reg_after_save == L1) {
  2551       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
  2554     if (ptr_reg_after_save == L2) {
  2555       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
  2558     Label(retry_get_lock);
  2559     Label(not_same);
  2560     Label(dont_yield);
  2562     assert(lock_addr, "lock_address should be non null for v8");
  2563     set((intptr_t)lock_addr, lock_ptr_reg);
  2564     // Initialize yield counter
  2565     mov(G0,yield_reg);
  2566     mov(G0, yieldall_reg);
  2567     set(StubRoutines::Sparc::locked, lock_reg);
  2569     bind(retry_get_lock);
  2570     cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
  2571     br(Assembler::less, false, Assembler::pt, dont_yield);
  2572     delayed()->nop();
  2574     if(use_call_vm) {
  2575       Untested("Need to verify global reg consistancy");
  2576       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
  2577     } else {
  2578       // Save the regs and make space for a C call
  2579       save(SP, -96, SP);
  2580       save_all_globals_into_locals();
  2581       call(CAST_FROM_FN_PTR(address,os::yield_all));
  2582       delayed()->mov(yieldall_reg, O0);
  2583       restore_globals_from_locals();
  2584       restore();
  2587     // reset the counter
  2588     mov(G0,yield_reg);
  2589     add(yieldall_reg, 1, yieldall_reg);
  2591     bind(dont_yield);
  2592     // try to get lock
  2593     swap(lock_ptr_reg, 0, lock_reg);
  2595     // did we get the lock?
  2596     cmp(lock_reg, StubRoutines::Sparc::unlocked);
  2597     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
  2598     delayed()->add(yield_reg,1,yield_reg);
  2600     // yes, got lock.  do we have the same top?
  2601     ld(top_ptr_reg_after_save, 0, value_reg);
  2602     cmp(value_reg, top_reg_after_save);
  2603     br(Assembler::notEqual, false, Assembler::pn, not_same);
  2604     delayed()->nop();
  2606     // yes, same top.
  2607     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
  2608     membar(Assembler::StoreStore);
  2610     bind(not_same);
  2611     mov(value_reg, ptr_reg_after_save);
  2612     st(lock_reg, lock_ptr_reg, 0); // unlock
  2614     restore();
  2618 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
  2619                                           Label& done, Label* slow_case,
  2620                                           BiasedLockingCounters* counters) {
  2621   assert(UseBiasedLocking, "why call this otherwise?");
  2623   if (PrintBiasedLockingStatistics) {
  2624     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
  2625     if (counters == NULL)
  2626       counters = BiasedLocking::counters();
  2629   Label cas_label;
  2631   // Biased locking
  2632   // See whether the lock is currently biased toward our thread and
  2633   // whether the epoch is still valid
  2634   // Note that the runtime guarantees sufficient alignment of JavaThread
  2635   // pointers to allow age to be placed into low bits
  2636   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  2637   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  2638   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  2639   brx(Assembler::notEqual, false, Assembler::pn, cas_label);
  2640   delayed()->nop();
  2642   load_klass(obj_reg, temp_reg);
  2643   ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  2644   or3(G2_thread, temp_reg, temp_reg);
  2645   xor3(mark_reg, temp_reg, temp_reg);
  2646   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  2647   if (counters != NULL) {
  2648     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
  2649     // Reload mark_reg as we may need it later
  2650     ld_ptr(Address(obj_reg, 0, oopDesc::mark_offset_in_bytes()), mark_reg);
  2652   brx(Assembler::equal, true, Assembler::pt, done);
  2653   delayed()->nop();
  2655   Label try_revoke_bias;
  2656   Label try_rebias;
  2657   Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
  2658   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2660   // At this point we know that the header has the bias pattern and
  2661   // that we are not the bias owner in the current epoch. We need to
  2662   // figure out more details about the state of the header in order to
  2663   // know what operations can be legally performed on the object's
  2664   // header.
  2666   // If the low three bits in the xor result aren't clear, that means
  2667   // the prototype header is no longer biased and we have to revoke
  2668   // the bias on this object.
  2669   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  2670   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
  2672   // Biasing is still enabled for this data type. See whether the
  2673   // epoch of the current bias is still valid, meaning that the epoch
  2674   // bits of the mark word are equal to the epoch bits of the
  2675   // prototype header. (Note that the prototype header's epoch bits
  2676   // only change at a safepoint.) If not, attempt to rebias the object
  2677   // toward the current thread. Note that we must be absolutely sure
  2678   // that the current epoch is invalid in order to do this because
  2679   // otherwise the manipulations it performs on the mark word are
  2680   // illegal.
  2681   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  2682   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
  2684   // The epoch of the current bias is still valid but we know nothing
  2685   // about the owner; it might be set or it might be clear. Try to
  2686   // acquire the bias of the object using an atomic operation. If this
  2687   // fails we will go in to the runtime to revoke the object's bias.
  2688   // Note that we first construct the presumed unbiased header so we
  2689   // don't accidentally blow away another thread's valid bias.
  2690   delayed()->and3(mark_reg,
  2691                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
  2692                   mark_reg);
  2693   or3(G2_thread, mark_reg, temp_reg);
  2694   casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  2695                   (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2696   // If the biasing toward our thread failed, this means that
  2697   // another thread succeeded in biasing it toward itself and we
  2698   // need to revoke that bias. The revocation will occur in the
  2699   // interpreter runtime in the slow case.
  2700   cmp(mark_reg, temp_reg);
  2701   if (counters != NULL) {
  2702     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  2704   if (slow_case != NULL) {
  2705     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  2706     delayed()->nop();
  2708   br(Assembler::always, false, Assembler::pt, done);
  2709   delayed()->nop();
  2711   bind(try_rebias);
  2712   // At this point we know the epoch has expired, meaning that the
  2713   // current "bias owner", if any, is actually invalid. Under these
  2714   // circumstances _only_, we are allowed to use the current header's
  2715   // value as the comparison value when doing the cas to acquire the
  2716   // bias in the current epoch. In other words, we allow transfer of
  2717   // the bias from one thread to another directly in this situation.
  2718   //
  2719   // FIXME: due to a lack of registers we currently blow away the age
  2720   // bits in this situation. Should attempt to preserve them.
  2721   load_klass(obj_reg, temp_reg);
  2722   ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  2723   or3(G2_thread, temp_reg, temp_reg);
  2724   casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  2725                   (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2726   // If the biasing toward our thread failed, this means that
  2727   // another thread succeeded in biasing it toward itself and we
  2728   // need to revoke that bias. The revocation will occur in the
  2729   // interpreter runtime in the slow case.
  2730   cmp(mark_reg, temp_reg);
  2731   if (counters != NULL) {
  2732     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  2734   if (slow_case != NULL) {
  2735     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  2736     delayed()->nop();
  2738   br(Assembler::always, false, Assembler::pt, done);
  2739   delayed()->nop();
  2741   bind(try_revoke_bias);
  2742   // The prototype mark in the klass doesn't have the bias bit set any
  2743   // more, indicating that objects of this data type are not supposed
  2744   // to be biased any more. We are going to try to reset the mark of
  2745   // this object to the prototype value and fall through to the
  2746   // CAS-based locking scheme. Note that if our CAS fails, it means
  2747   // that another thread raced us for the privilege of revoking the
  2748   // bias of this particular object, so it's okay to continue in the
  2749   // normal locking code.
  2750   //
  2751   // FIXME: due to a lack of registers we currently blow away the age
  2752   // bits in this situation. Should attempt to preserve them.
  2753   load_klass(obj_reg, temp_reg);
  2754   ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  2755   casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  2756                   (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2757   // Fall through to the normal CAS-based lock, because no matter what
  2758   // the result of the above CAS, some thread must have succeeded in
  2759   // removing the bias bit from the object's header.
  2760   if (counters != NULL) {
  2761     cmp(mark_reg, temp_reg);
  2762     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  2765   bind(cas_label);
  2768 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
  2769                                           bool allow_delay_slot_filling) {
  2770   // Check for biased locking unlock case, which is a no-op
  2771   // Note: we do not have to check the thread ID for two reasons.
  2772   // First, the interpreter checks for IllegalMonitorStateException at
  2773   // a higher level. Second, if the bias was revoked while we held the
  2774   // lock, the object could not be rebiased toward another thread, so
  2775   // the bias bit would be clear.
  2776   ld_ptr(mark_addr, temp_reg);
  2777   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  2778   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  2779   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  2780   delayed();
  2781   if (!allow_delay_slot_filling) {
  2782     nop();
  2787 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
  2788 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
  2790 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
  2791   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
  2796 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
  2797 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
  2798 // The code could be tightened up considerably.
  2799 //
  2800 // box->dhw disposition - post-conditions at DONE_LABEL.
  2801 // -   Successful inflated lock:  box->dhw != 0.
  2802 //     Any non-zero value suffices.
  2803 //     Consider G2_thread, rsp, boxReg, or unused_mark()
  2804 // -   Successful Stack-lock: box->dhw == mark.
  2805 //     box->dhw must contain the displaced mark word value
  2806 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
  2807 //     The slow-path fast_enter() and slow_enter() operators
  2808 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
  2809 // -   Biased: box->dhw is undefined
  2810 //
  2811 // SPARC refworkload performance - specifically jetstream and scimark - are
  2812 // extremely sensitive to the size of the code emitted by compiler_lock_object
  2813 // and compiler_unlock_object.  Critically, the key factor is code size, not path
  2814 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
  2815 // effect).
  2818 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
  2819                                           BiasedLockingCounters* counters) {
  2820    Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
  2822    verify_oop(Roop);
  2823    Label done ;
  2825    if (counters != NULL) {
  2826      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
  2829    if (EmitSync & 1) {
  2830      mov    (3, Rscratch) ;
  2831      st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2832      cmp    (SP, G0) ;
  2833      return ;
  2836    if (EmitSync & 2) {
  2838      // Fetch object's markword
  2839      ld_ptr(mark_addr, Rmark);
  2841      if (UseBiasedLocking) {
  2842         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2845      // Save Rbox in Rscratch to be used for the cas operation
  2846      mov(Rbox, Rscratch);
  2848      // set Rmark to markOop | markOopDesc::unlocked_value
  2849      or3(Rmark, markOopDesc::unlocked_value, Rmark);
  2851      // Initialize the box.  (Must happen before we update the object mark!)
  2852      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2854      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
  2855      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2856      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
  2857         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2859      // if compare/exchange succeeded we found an unlocked object and we now have locked it
  2860      // hence we are done
  2861      cmp(Rmark, Rscratch);
  2862 #ifdef _LP64
  2863      sub(Rscratch, STACK_BIAS, Rscratch);
  2864 #endif
  2865      brx(Assembler::equal, false, Assembler::pt, done);
  2866      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
  2868      // we did not find an unlocked object so see if this is a recursive case
  2869      // sub(Rscratch, SP, Rscratch);
  2870      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2871      andcc(Rscratch, 0xfffff003, Rscratch);
  2872      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2873      bind (done) ;
  2874      return ;
  2877    Label Egress ;
  2879    if (EmitSync & 256) {
  2880       Label IsInflated ;
  2882       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  2883       // Triage: biased, stack-locked, neutral, inflated
  2884       if (UseBiasedLocking) {
  2885         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2886         // Invariant: if control reaches this point in the emitted stream
  2887         // then Rmark has not been modified.
  2890       // Store mark into displaced mark field in the on-stack basic-lock "box"
  2891       // Critically, this must happen before the CAS
  2892       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
  2893       st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2894       andcc  (Rmark, 2, G0) ;
  2895       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  2896       delayed() ->
  2898       // Try stack-lock acquisition.
  2899       // Beware: the 1st instruction is in a delay slot
  2900       mov    (Rbox,  Rscratch);
  2901       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  2902       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  2903       casn   (mark_addr.base(), Rmark, Rscratch) ;
  2904       cmp    (Rmark, Rscratch);
  2905       brx    (Assembler::equal, false, Assembler::pt, done);
  2906       delayed()->sub(Rscratch, SP, Rscratch);
  2908       // Stack-lock attempt failed - check for recursive stack-lock.
  2909       // See the comments below about how we might remove this case.
  2910 #ifdef _LP64
  2911       sub    (Rscratch, STACK_BIAS, Rscratch);
  2912 #endif
  2913       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2914       andcc  (Rscratch, 0xfffff003, Rscratch);
  2915       br     (Assembler::always, false, Assembler::pt, done) ;
  2916       delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2918       bind   (IsInflated) ;
  2919       if (EmitSync & 64) {
  2920          // If m->owner != null goto IsLocked
  2921          // Pessimistic form: Test-and-CAS vs CAS
  2922          // The optimistic form avoids RTS->RTO cache line upgrades.
  2923          ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
  2924          andcc  (Rscratch, Rscratch, G0) ;
  2925          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  2926          delayed()->nop() ;
  2927          // m->owner == null : it's unlocked.
  2930       // Try to CAS m->owner from null to Self
  2931       // Invariant: if we acquire the lock then _recursions should be 0.
  2932       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  2933       mov    (G2_thread, Rscratch) ;
  2934       casn   (Rmark, G0, Rscratch) ;
  2935       cmp    (Rscratch, G0) ;
  2936       // Intentional fall-through into done
  2937    } else {
  2938       // Aggressively avoid the Store-before-CAS penalty
  2939       // Defer the store into box->dhw until after the CAS
  2940       Label IsInflated, Recursive ;
  2942 // Anticipate CAS -- Avoid RTS->RTO upgrade
  2943 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  2945       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  2946       // Triage: biased, stack-locked, neutral, inflated
  2948       if (UseBiasedLocking) {
  2949         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2950         // Invariant: if control reaches this point in the emitted stream
  2951         // then Rmark has not been modified.
  2953       andcc  (Rmark, 2, G0) ;
  2954       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  2955       delayed()->                         // Beware - dangling delay-slot
  2957       // Try stack-lock acquisition.
  2958       // Transiently install BUSY (0) encoding in the mark word.
  2959       // if the CAS of 0 into the mark was successful then we execute:
  2960       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
  2961       //   ST obj->mark = box    -- overwrite transient 0 value
  2962       // This presumes TSO, of course.
  2964       mov    (0, Rscratch) ;
  2965       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  2966       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  2967       casn   (mark_addr.base(), Rmark, Rscratch) ;
  2968 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  2969       cmp    (Rscratch, Rmark) ;
  2970       brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
  2971       delayed() ->
  2972         st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2973       if (counters != NULL) {
  2974         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  2976       br     (Assembler::always, false, Assembler::pt, done);
  2977       delayed() ->
  2978         st_ptr (Rbox, mark_addr) ;
  2980       bind   (Recursive) ;
  2981       // Stack-lock attempt failed - check for recursive stack-lock.
  2982       // Tests show that we can remove the recursive case with no impact
  2983       // on refworkload 0.83.  If we need to reduce the size of the code
  2984       // emitted by compiler_lock_object() the recursive case is perfect
  2985       // candidate.
  2986       //
  2987       // A more extreme idea is to always inflate on stack-lock recursion.
  2988       // This lets us eliminate the recursive checks in compiler_lock_object
  2989       // and compiler_unlock_object and the (box->dhw == 0) encoding.
  2990       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
  2991       // and showed a performance *increase*.  In the same experiment I eliminated
  2992       // the fast-path stack-lock code from the interpreter and always passed
  2993       // control to the "slow" operators in synchronizer.cpp.
  2995       // RScratch contains the fetched obj->mark value from the failed CASN.
  2996 #ifdef _LP64
  2997       sub    (Rscratch, STACK_BIAS, Rscratch);
  2998 #endif
  2999       sub(Rscratch, SP, Rscratch);
  3000       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3001       andcc  (Rscratch, 0xfffff003, Rscratch);
  3002       if (counters != NULL) {
  3003         // Accounting needs the Rscratch register
  3004         st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3005         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3006         br     (Assembler::always, false, Assembler::pt, done) ;
  3007         delayed()->nop() ;
  3008       } else {
  3009         br     (Assembler::always, false, Assembler::pt, done) ;
  3010         delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3013       bind   (IsInflated) ;
  3014       if (EmitSync & 64) {
  3015          // If m->owner != null goto IsLocked
  3016          // Test-and-CAS vs CAS
  3017          // Pessimistic form avoids futile (doomed) CAS attempts
  3018          // The optimistic form avoids RTS->RTO cache line upgrades.
  3019          ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
  3020          andcc  (Rscratch, Rscratch, G0) ;
  3021          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3022          delayed()->nop() ;
  3023          // m->owner == null : it's unlocked.
  3026       // Try to CAS m->owner from null to Self
  3027       // Invariant: if we acquire the lock then _recursions should be 0.
  3028       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3029       mov    (G2_thread, Rscratch) ;
  3030       casn   (Rmark, G0, Rscratch) ;
  3031       cmp    (Rscratch, G0) ;
  3032       // ST box->displaced_header = NonZero.
  3033       // Any non-zero value suffices:
  3034       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
  3035       st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3036       // Intentional fall-through into done
  3039    bind   (done) ;
  3042 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch) {
  3043    Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
  3045    Label done ;
  3047    if (EmitSync & 4) {
  3048      cmp  (SP, G0) ;
  3049      return ;
  3052    if (EmitSync & 8) {
  3053      if (UseBiasedLocking) {
  3054         biased_locking_exit(mark_addr, Rscratch, done);
  3057      // Test first if it is a fast recursive unlock
  3058      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
  3059      cmp(Rmark, G0);
  3060      brx(Assembler::equal, false, Assembler::pt, done);
  3061      delayed()->nop();
  3063      // Check if it is still a light weight lock, this is is true if we see
  3064      // the stack address of the basicLock in the markOop of the object
  3065      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3066      casx_under_lock(mark_addr.base(), Rbox, Rmark,
  3067        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3068      br (Assembler::always, false, Assembler::pt, done);
  3069      delayed()->cmp(Rbox, Rmark);
  3070      bind (done) ;
  3071      return ;
  3074    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
  3075    // is too large performance rolls abruptly off a cliff.
  3076    // This could be related to inlining policies, code cache management, or
  3077    // I$ effects.
  3078    Label LStacked ;
  3080    if (UseBiasedLocking) {
  3081       // TODO: eliminate redundant LDs of obj->mark
  3082       biased_locking_exit(mark_addr, Rscratch, done);
  3085    ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
  3086    ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
  3087    andcc  (Rscratch, Rscratch, G0);
  3088    brx    (Assembler::zero, false, Assembler::pn, done);
  3089    delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
  3090    andcc  (Rmark, 2, G0) ;
  3091    brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
  3092    delayed()-> nop() ;
  3094    // It's inflated
  3095    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
  3096    // the ST of 0 into _owner which releases the lock.  This prevents loads
  3097    // and stores within the critical section from reordering (floating)
  3098    // past the store that releases the lock.  But TSO is a strong memory model
  3099    // and that particular flavor of barrier is a noop, so we can safely elide it.
  3100    // Note that we use 1-0 locking by default for the inflated case.  We
  3101    // close the resultant (and rare) race by having contented threads in
  3102    // monitorenter periodically poll _owner.
  3103    ld_ptr (Address(Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
  3104    ld_ptr (Address(Rmark, 0, ObjectMonitor::recursions_offset_in_bytes()-2), Rbox) ;
  3105    xor3   (Rscratch, G2_thread, Rscratch) ;
  3106    orcc   (Rbox, Rscratch, Rbox) ;
  3107    brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3108    delayed()->
  3109    ld_ptr (Address (Rmark, 0, ObjectMonitor::EntryList_offset_in_bytes()-2), Rscratch) ;
  3110    ld_ptr (Address (Rmark, 0, ObjectMonitor::cxq_offset_in_bytes()-2), Rbox) ;
  3111    orcc   (Rbox, Rscratch, G0) ;
  3112    if (EmitSync & 65536) {
  3113       Label LSucc ;
  3114       brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
  3115       delayed()->nop() ;
  3116       br     (Assembler::always, false, Assembler::pt, done) ;
  3117       delayed()->
  3118       st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3120       bind   (LSucc) ;
  3121       st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3122       if (os::is_MP()) { membar (StoreLoad) ; }
  3123       ld_ptr (Address (Rmark, 0, ObjectMonitor::succ_offset_in_bytes()-2), Rscratch) ;
  3124       andcc  (Rscratch, Rscratch, G0) ;
  3125       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3126       delayed()-> andcc (G0, G0, G0) ;
  3127       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3128       mov    (G2_thread, Rscratch) ;
  3129       casn   (Rmark, G0, Rscratch) ;
  3130       cmp    (Rscratch, G0) ;
  3131       // invert icc.zf and goto done
  3132       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3133       delayed() -> cmp (G0, G0) ;
  3134       br     (Assembler::always, false, Assembler::pt, done);
  3135       delayed() -> cmp (G0, 1) ;
  3136    } else {
  3137       brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3138       delayed()->nop() ;
  3139       br     (Assembler::always, false, Assembler::pt, done) ;
  3140       delayed()->
  3141       st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3144    bind   (LStacked) ;
  3145    // Consider: we could replace the expensive CAS in the exit
  3146    // path with a simple ST of the displaced mark value fetched from
  3147    // the on-stack basiclock box.  That admits a race where a thread T2
  3148    // in the slow lock path -- inflating with monitor M -- could race a
  3149    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
  3150    // More precisely T1 in the stack-lock unlock path could "stomp" the
  3151    // inflated mark value M installed by T2, resulting in an orphan
  3152    // object monitor M and T2 becoming stranded.  We can remedy that situation
  3153    // by having T2 periodically poll the object's mark word using timed wait
  3154    // operations.  If T2 discovers that a stomp has occurred it vacates
  3155    // the monitor M and wakes any other threads stranded on the now-orphan M.
  3156    // In addition the monitor scavenger, which performs deflation,
  3157    // would also need to check for orpan monitors and stranded threads.
  3158    //
  3159    // Finally, inflation is also used when T2 needs to assign a hashCode
  3160    // to O and O is stack-locked by T1.  The "stomp" race could cause
  3161    // an assigned hashCode value to be lost.  We can avoid that condition
  3162    // and provide the necessary hashCode stability invariants by ensuring
  3163    // that hashCode generation is idempotent between copying GCs.
  3164    // For example we could compute the hashCode of an object O as
  3165    // O's heap address XOR some high quality RNG value that is refreshed
  3166    // at GC-time.  The monitor scavenger would install the hashCode
  3167    // found in any orphan monitors.  Again, the mechanism admits a
  3168    // lost-update "stomp" WAW race but detects and recovers as needed.
  3169    //
  3170    // A prototype implementation showed excellent results, although
  3171    // the scavenger and timeout code was rather involved.
  3173    casn   (mark_addr.base(), Rbox, Rscratch) ;
  3174    cmp    (Rbox, Rscratch);
  3175    // Intentional fall through into done ...
  3177    bind   (done) ;
  3182 void MacroAssembler::print_CPU_state() {
  3183   // %%%%% need to implement this
  3186 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3187   // %%%%% need to implement this
  3190 void MacroAssembler::push_IU_state() {
  3191   // %%%%% need to implement this
  3195 void MacroAssembler::pop_IU_state() {
  3196   // %%%%% need to implement this
  3200 void MacroAssembler::push_FPU_state() {
  3201   // %%%%% need to implement this
  3205 void MacroAssembler::pop_FPU_state() {
  3206   // %%%%% need to implement this
  3210 void MacroAssembler::push_CPU_state() {
  3211   // %%%%% need to implement this
  3215 void MacroAssembler::pop_CPU_state() {
  3216   // %%%%% need to implement this
  3221 void MacroAssembler::verify_tlab() {
  3222 #ifdef ASSERT
  3223   if (UseTLAB && VerifyOops) {
  3224     Label next, next2, ok;
  3225     Register t1 = L0;
  3226     Register t2 = L1;
  3227     Register t3 = L2;
  3229     save_frame(0);
  3230     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3231     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
  3232     or3(t1, t2, t3);
  3233     cmp(t1, t2);
  3234     br(Assembler::greaterEqual, false, Assembler::pn, next);
  3235     delayed()->nop();
  3236     stop("assert(top >= start)");
  3237     should_not_reach_here();
  3239     bind(next);
  3240     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3241     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
  3242     or3(t3, t2, t3);
  3243     cmp(t1, t2);
  3244     br(Assembler::lessEqual, false, Assembler::pn, next2);
  3245     delayed()->nop();
  3246     stop("assert(top <= end)");
  3247     should_not_reach_here();
  3249     bind(next2);
  3250     and3(t3, MinObjAlignmentInBytesMask, t3);
  3251     cmp(t3, 0);
  3252     br(Assembler::lessEqual, false, Assembler::pn, ok);
  3253     delayed()->nop();
  3254     stop("assert(aligned)");
  3255     should_not_reach_here();
  3257     bind(ok);
  3258     restore();
  3260 #endif
  3264 void MacroAssembler::eden_allocate(
  3265   Register obj,                        // result: pointer to object after successful allocation
  3266   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3267   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3268   Register t1,                         // temp register
  3269   Register t2,                         // temp register
  3270   Label&   slow_case                   // continuation point if fast allocation fails
  3271 ){
  3272   // make sure arguments make sense
  3273   assert_different_registers(obj, var_size_in_bytes, t1, t2);
  3274   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  3275   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3277   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3278     // No allocation in the shared eden.
  3279     br(Assembler::always, false, Assembler::pt, slow_case);
  3280     delayed()->nop();
  3281   } else {
  3282     // get eden boundaries
  3283     // note: we need both top & top_addr!
  3284     const Register top_addr = t1;
  3285     const Register end      = t2;
  3287     CollectedHeap* ch = Universe::heap();
  3288     set((intx)ch->top_addr(), top_addr);
  3289     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  3290     ld_ptr(top_addr, delta, end);
  3291     ld_ptr(top_addr, 0, obj);
  3293     // try to allocate
  3294     Label retry;
  3295     bind(retry);
  3296 #ifdef ASSERT
  3297     // make sure eden top is properly aligned
  3299       Label L;
  3300       btst(MinObjAlignmentInBytesMask, obj);
  3301       br(Assembler::zero, false, Assembler::pt, L);
  3302       delayed()->nop();
  3303       stop("eden top is not properly aligned");
  3304       bind(L);
  3306 #endif // ASSERT
  3307     const Register free = end;
  3308     sub(end, obj, free);                                   // compute amount of free space
  3309     if (var_size_in_bytes->is_valid()) {
  3310       // size is unknown at compile time
  3311       cmp(free, var_size_in_bytes);
  3312       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3313       delayed()->add(obj, var_size_in_bytes, end);
  3314     } else {
  3315       // size is known at compile time
  3316       cmp(free, con_size_in_bytes);
  3317       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3318       delayed()->add(obj, con_size_in_bytes, end);
  3320     // Compare obj with the value at top_addr; if still equal, swap the value of
  3321     // end with the value at top_addr. If not equal, read the value at top_addr
  3322     // into end.
  3323     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3324     // if someone beat us on the allocation, try again, otherwise continue
  3325     cmp(obj, end);
  3326     brx(Assembler::notEqual, false, Assembler::pn, retry);
  3327     delayed()->mov(end, obj);                              // nop if successfull since obj == end
  3329 #ifdef ASSERT
  3330     // make sure eden top is properly aligned
  3332       Label L;
  3333       const Register top_addr = t1;
  3335       set((intx)ch->top_addr(), top_addr);
  3336       ld_ptr(top_addr, 0, top_addr);
  3337       btst(MinObjAlignmentInBytesMask, top_addr);
  3338       br(Assembler::zero, false, Assembler::pt, L);
  3339       delayed()->nop();
  3340       stop("eden top is not properly aligned");
  3341       bind(L);
  3343 #endif // ASSERT
  3348 void MacroAssembler::tlab_allocate(
  3349   Register obj,                        // result: pointer to object after successful allocation
  3350   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3351   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3352   Register t1,                         // temp register
  3353   Label&   slow_case                   // continuation point if fast allocation fails
  3354 ){
  3355   // make sure arguments make sense
  3356   assert_different_registers(obj, var_size_in_bytes, t1);
  3357   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  3358   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3360   const Register free  = t1;
  3362   verify_tlab();
  3364   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
  3366   // calculate amount of free space
  3367   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  3368   sub(free, obj, free);
  3370   Label done;
  3371   if (var_size_in_bytes == noreg) {
  3372     cmp(free, con_size_in_bytes);
  3373   } else {
  3374     cmp(free, var_size_in_bytes);
  3376   br(Assembler::less, false, Assembler::pn, slow_case);
  3377   // calculate the new top pointer
  3378   if (var_size_in_bytes == noreg) {
  3379     delayed()->add(obj, con_size_in_bytes, free);
  3380   } else {
  3381     delayed()->add(obj, var_size_in_bytes, free);
  3384   bind(done);
  3386 #ifdef ASSERT
  3387   // make sure new free pointer is properly aligned
  3389     Label L;
  3390     btst(MinObjAlignmentInBytesMask, free);
  3391     br(Assembler::zero, false, Assembler::pt, L);
  3392     delayed()->nop();
  3393     stop("updated TLAB free is not properly aligned");
  3394     bind(L);
  3396 #endif // ASSERT
  3398   // update the tlab top pointer
  3399   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3400   verify_tlab();
  3404 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  3405   Register top = O0;
  3406   Register t1 = G1;
  3407   Register t2 = G3;
  3408   Register t3 = O1;
  3409   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  3410   Label do_refill, discard_tlab;
  3412   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3413     // No allocation in the shared eden.
  3414     br(Assembler::always, false, Assembler::pt, slow_case);
  3415     delayed()->nop();
  3418   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  3419   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  3420   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
  3422   // calculate amount of free space
  3423   sub(t1, top, t1);
  3424   srl_ptr(t1, LogHeapWordSize, t1);
  3426   // Retain tlab and allocate object in shared space if
  3427   // the amount free in the tlab is too large to discard.
  3428   cmp(t1, t2);
  3429   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
  3431   // increment waste limit to prevent getting stuck on this slow path
  3432   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  3433   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3434   if (TLABStats) {
  3435     // increment number of slow_allocations
  3436     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
  3437     add(t2, 1, t2);
  3438     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  3440   br(Assembler::always, false, Assembler::pt, try_eden);
  3441   delayed()->nop();
  3443   bind(discard_tlab);
  3444   if (TLABStats) {
  3445     // increment number of refills
  3446     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
  3447     add(t2, 1, t2);
  3448     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  3449     // accumulate wastage
  3450     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
  3451     add(t2, t1, t2);
  3452     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  3455   // if tlab is currently allocated (top or end != null) then
  3456   // fill [top, end + alignment_reserve) with array object
  3457   br_null(top, false, Assembler::pn, do_refill);
  3458   delayed()->nop();
  3460   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  3461   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  3462   // set klass to intArrayKlass
  3463   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  3464   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  3465   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  3466   st(t1, top, arrayOopDesc::length_offset_in_bytes());
  3467   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  3468   ld_ptr(t2, 0, t2);
  3469   // store klass last.  concurrent gcs assumes klass length is valid if
  3470   // klass field is not null.
  3471   store_klass(t2, top);
  3472   verify_oop(top);
  3474   // refill the tlab with an eden allocation
  3475   bind(do_refill);
  3476   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  3477   sll_ptr(t1, LogHeapWordSize, t1);
  3478   // add object_size ??
  3479   eden_allocate(top, t1, 0, t2, t3, slow_case);
  3481   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  3482   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3483 #ifdef ASSERT
  3484   // check that tlab_size (t1) is still valid
  3486     Label ok;
  3487     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
  3488     sll_ptr(t2, LogHeapWordSize, t2);
  3489     cmp(t1, t2);
  3490     br(Assembler::equal, false, Assembler::pt, ok);
  3491     delayed()->nop();
  3492     stop("assert(t1 == tlab_size)");
  3493     should_not_reach_here();
  3495     bind(ok);
  3497 #endif // ASSERT
  3498   add(top, t1, top); // t1 is tlab_size
  3499   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  3500   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  3501   verify_tlab();
  3502   br(Assembler::always, false, Assembler::pt, retry);
  3503   delayed()->nop();
  3506 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  3507   switch (cond) {
  3508     // Note some conditions are synonyms for others
  3509     case Assembler::never:                return Assembler::always;
  3510     case Assembler::zero:                 return Assembler::notZero;
  3511     case Assembler::lessEqual:            return Assembler::greater;
  3512     case Assembler::less:                 return Assembler::greaterEqual;
  3513     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
  3514     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
  3515     case Assembler::negative:             return Assembler::positive;
  3516     case Assembler::overflowSet:          return Assembler::overflowClear;
  3517     case Assembler::always:               return Assembler::never;
  3518     case Assembler::notZero:              return Assembler::zero;
  3519     case Assembler::greater:              return Assembler::lessEqual;
  3520     case Assembler::greaterEqual:         return Assembler::less;
  3521     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
  3522     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
  3523     case Assembler::positive:             return Assembler::negative;
  3524     case Assembler::overflowClear:        return Assembler::overflowSet;
  3527   ShouldNotReachHere(); return Assembler::overflowClear;
  3530 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
  3531                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  3532   Condition negated_cond = negate_condition(cond);
  3533   Label L;
  3534   brx(negated_cond, false, Assembler::pt, L);
  3535   delayed()->nop();
  3536   inc_counter(counter_ptr, Rtmp1, Rtmp2);
  3537   bind(L);
  3540 void MacroAssembler::inc_counter(address counter_ptr, Register Rtmp1, Register Rtmp2) {
  3541   Address counter_addr(Rtmp1, counter_ptr);
  3542   load_contents(counter_addr, Rtmp2);
  3543   inc(Rtmp2);
  3544   store_contents(Rtmp2, counter_addr);
  3547 SkipIfEqual::SkipIfEqual(
  3548     MacroAssembler* masm, Register temp, const bool* flag_addr,
  3549     Assembler::Condition condition) {
  3550   _masm = masm;
  3551   Address flag(temp, (address)flag_addr, relocInfo::none);
  3552   _masm->sethi(flag);
  3553   _masm->ldub(flag, temp);
  3554   _masm->tst(temp);
  3555   _masm->br(condition, false, Assembler::pt, _label);
  3556   _masm->delayed()->nop();
  3559 SkipIfEqual::~SkipIfEqual() {
  3560   _masm->bind(_label);
  3564 // Writes to stack successive pages until offset reached to check for
  3565 // stack overflow + shadow pages.  This clobbers tsp and scratch.
  3566 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
  3567                                      Register Rscratch) {
  3568   // Use stack pointer in temp stack pointer
  3569   mov(SP, Rtsp);
  3571   // Bang stack for total size given plus stack shadow page size.
  3572   // Bang one page at a time because a large size can overflow yellow and
  3573   // red zones (the bang will fail but stack overflow handling can't tell that
  3574   // it was a stack overflow bang vs a regular segv).
  3575   int offset = os::vm_page_size();
  3576   Register Roffset = Rscratch;
  3578   Label loop;
  3579   bind(loop);
  3580   set((-offset)+STACK_BIAS, Rscratch);
  3581   st(G0, Rtsp, Rscratch);
  3582   set(offset, Roffset);
  3583   sub(Rsize, Roffset, Rsize);
  3584   cmp(Rsize, G0);
  3585   br(Assembler::greater, false, Assembler::pn, loop);
  3586   delayed()->sub(Rtsp, Roffset, Rtsp);
  3588   // Bang down shadow pages too.
  3589   // The -1 because we already subtracted 1 page.
  3590   for (int i = 0; i< StackShadowPages-1; i++) {
  3591     set((-i*offset)+STACK_BIAS, Rscratch);
  3592     st(G0, Rtsp, Rscratch);
  3596 ///////////////////////////////////////////////////////////////////////////////////
  3597 #ifndef SERIALGC
  3599 static uint num_stores = 0;
  3600 static uint num_null_pre_stores = 0;
  3602 static void count_null_pre_vals(void* pre_val) {
  3603   num_stores++;
  3604   if (pre_val == NULL) num_null_pre_stores++;
  3605   if ((num_stores % 1000000) == 0) {
  3606     tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
  3607                   num_stores, num_null_pre_stores,
  3608                   100.0*(float)num_null_pre_stores/(float)num_stores);
  3612 static address satb_log_enqueue_with_frame = 0;
  3613 static u_char* satb_log_enqueue_with_frame_end = 0;
  3615 static address satb_log_enqueue_frameless = 0;
  3616 static u_char* satb_log_enqueue_frameless_end = 0;
  3618 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
  3620 // The calls to this don't work.  We'd need to do a fair amount of work to
  3621 // make it work.
  3622 static void check_index(int ind) {
  3623   assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
  3624          "Invariants.")
  3627 static void generate_satb_log_enqueue(bool with_frame) {
  3628   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
  3629   CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
  3630   MacroAssembler masm(&buf);
  3631   address start = masm.pc();
  3632   Register pre_val;
  3634   Label refill, restart;
  3635   if (with_frame) {
  3636     masm.save_frame(0);
  3637     pre_val = I0;  // Was O0 before the save.
  3638   } else {
  3639     pre_val = O0;
  3641   int satb_q_index_byte_offset =
  3642     in_bytes(JavaThread::satb_mark_queue_offset() +
  3643              PtrQueue::byte_offset_of_index());
  3644   int satb_q_buf_byte_offset =
  3645     in_bytes(JavaThread::satb_mark_queue_offset() +
  3646              PtrQueue::byte_offset_of_buf());
  3647   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
  3648          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
  3649          "check sizes in assembly below");
  3651   masm.bind(restart);
  3652   masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
  3654   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
  3655   // If the branch is taken, no harm in executing this in the delay slot.
  3656   masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
  3657   masm.sub(L0, oopSize, L0);
  3659   masm.st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
  3660   if (!with_frame) {
  3661     // Use return-from-leaf
  3662     masm.retl();
  3663     masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  3664   } else {
  3665     // Not delayed.
  3666     masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  3668   if (with_frame) {
  3669     masm.ret();
  3670     masm.delayed()->restore();
  3672   masm.bind(refill);
  3674   address handle_zero =
  3675     CAST_FROM_FN_PTR(address,
  3676                      &SATBMarkQueueSet::handle_zero_index_for_thread);
  3677   // This should be rare enough that we can afford to save all the
  3678   // scratch registers that the calling context might be using.
  3679   masm.mov(G1_scratch, L0);
  3680   masm.mov(G3_scratch, L1);
  3681   masm.mov(G4, L2);
  3682   // We need the value of O0 above (for the write into the buffer), so we
  3683   // save and restore it.
  3684   masm.mov(O0, L3);
  3685   // Since the call will overwrite O7, we save and restore that, as well.
  3686   masm.mov(O7, L4);
  3687   masm.call_VM_leaf(L5, handle_zero, G2_thread);
  3688   masm.mov(L0, G1_scratch);
  3689   masm.mov(L1, G3_scratch);
  3690   masm.mov(L2, G4);
  3691   masm.mov(L3, O0);
  3692   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  3693   masm.delayed()->mov(L4, O7);
  3695   if (with_frame) {
  3696     satb_log_enqueue_with_frame = start;
  3697     satb_log_enqueue_with_frame_end = masm.pc();
  3698   } else {
  3699     satb_log_enqueue_frameless = start;
  3700     satb_log_enqueue_frameless_end = masm.pc();
  3704 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
  3705   if (with_frame) {
  3706     if (satb_log_enqueue_with_frame == 0) {
  3707       generate_satb_log_enqueue(with_frame);
  3708       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
  3709       if (G1SATBPrintStubs) {
  3710         tty->print_cr("Generated with-frame satb enqueue:");
  3711         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
  3712                              satb_log_enqueue_with_frame_end,
  3713                              tty);
  3716   } else {
  3717     if (satb_log_enqueue_frameless == 0) {
  3718       generate_satb_log_enqueue(with_frame);
  3719       assert(satb_log_enqueue_frameless != 0, "postcondition.");
  3720       if (G1SATBPrintStubs) {
  3721         tty->print_cr("Generated frameless satb enqueue:");
  3722         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
  3723                              satb_log_enqueue_frameless_end,
  3724                              tty);
  3730 void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
  3731   assert(offset == 0 || index == noreg, "choose one");
  3733   if (G1DisablePreBarrier) return;
  3734   // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
  3735   Label filtered;
  3736   // satb_log_barrier_work0(tmp, filtered);
  3737   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  3738     ld(G2,
  3739        in_bytes(JavaThread::satb_mark_queue_offset() +
  3740                 PtrQueue::byte_offset_of_active()),
  3741        tmp);
  3742   } else {
  3743     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  3744               "Assumption");
  3745     ldsb(G2,
  3746          in_bytes(JavaThread::satb_mark_queue_offset() +
  3747                   PtrQueue::byte_offset_of_active()),
  3748          tmp);
  3750   // Check on whether to annul.
  3751   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
  3752   delayed() -> nop();
  3754   // satb_log_barrier_work1(tmp, offset);
  3755   if (index == noreg) {
  3756     if (Assembler::is_simm13(offset)) {
  3757       ld_ptr(obj, offset, tmp);
  3758     } else {
  3759       set(offset, tmp);
  3760       ld_ptr(obj, tmp, tmp);
  3762   } else {
  3763     ld_ptr(obj, index, tmp);
  3766   // satb_log_barrier_work2(obj, tmp, offset);
  3768   // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
  3770   const Register pre_val = tmp;
  3772   if (G1SATBBarrierPrintNullPreVals) {
  3773     save_frame(0);
  3774     mov(pre_val, O0);
  3775     // Save G-regs that target may use.
  3776     mov(G1, L1);
  3777     mov(G2, L2);
  3778     mov(G3, L3);
  3779     mov(G4, L4);
  3780     mov(G5, L5);
  3781     call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
  3782     delayed()->nop();
  3783     // Restore G-regs that target may have used.
  3784     mov(L1, G1);
  3785     mov(L2, G2);
  3786     mov(L3, G3);
  3787     mov(L4, G4);
  3788     mov(L5, G5);
  3789     restore(G0, G0, G0);
  3792   // Check on whether to annul.
  3793   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
  3794   delayed() -> nop();
  3796   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
  3797   // case, pre_val will be a scratch G-reg, but there's some cases in which
  3798   // it's an O-reg.  In the first case, do a normal call.  In the latter,
  3799   // do a save here and call the frameless version.
  3801   guarantee(pre_val->is_global() || pre_val->is_out(),
  3802             "Or we need to think harder.");
  3803   if (pre_val->is_global() && !preserve_o_regs) {
  3804     generate_satb_log_enqueue_if_necessary(true); // with frame.
  3805     call(satb_log_enqueue_with_frame);
  3806     delayed()->mov(pre_val, O0);
  3807   } else {
  3808     generate_satb_log_enqueue_if_necessary(false); // with frameless.
  3809     save_frame(0);
  3810     call(satb_log_enqueue_frameless);
  3811     delayed()->mov(pre_val->after_save(), O0);
  3812     restore();
  3815   bind(filtered);
  3818 static jint num_ct_writes = 0;
  3819 static jint num_ct_writes_filtered_in_hr = 0;
  3820 static jint num_ct_writes_filtered_null = 0;
  3821 static jint num_ct_writes_filtered_pop = 0;
  3822 static G1CollectedHeap* g1 = NULL;
  3824 static Thread* count_ct_writes(void* filter_val, void* new_val) {
  3825   Atomic::inc(&num_ct_writes);
  3826   if (filter_val == NULL) {
  3827     Atomic::inc(&num_ct_writes_filtered_in_hr);
  3828   } else if (new_val == NULL) {
  3829     Atomic::inc(&num_ct_writes_filtered_null);
  3830   } else {
  3831     if (g1 == NULL) {
  3832       g1 = G1CollectedHeap::heap();
  3834     if ((HeapWord*)new_val < g1->popular_object_boundary()) {
  3835       Atomic::inc(&num_ct_writes_filtered_pop);
  3838   if ((num_ct_writes % 1000000) == 0) {
  3839     jint num_ct_writes_filtered =
  3840       num_ct_writes_filtered_in_hr +
  3841       num_ct_writes_filtered_null +
  3842       num_ct_writes_filtered_pop;
  3844     tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
  3845                   "   (%5.2f%% intra-HR, %5.2f%% null, %5.2f%% popular).",
  3846                   num_ct_writes,
  3847                   100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
  3848                   100.0*(float)num_ct_writes_filtered_in_hr/
  3849                   (float)num_ct_writes,
  3850                   100.0*(float)num_ct_writes_filtered_null/
  3851                   (float)num_ct_writes,
  3852                   100.0*(float)num_ct_writes_filtered_pop/
  3853                   (float)num_ct_writes);
  3855   return Thread::current();
  3858 static address dirty_card_log_enqueue = 0;
  3859 static u_char* dirty_card_log_enqueue_end = 0;
  3861 // This gets to assume that o0 contains the object address.
  3862 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
  3863   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
  3864   CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
  3865   MacroAssembler masm(&buf);
  3866   address start = masm.pc();
  3868   Label not_already_dirty, restart, refill;
  3870 #ifdef _LP64
  3871   masm.srlx(O0, CardTableModRefBS::card_shift, O0);
  3872 #else
  3873   masm.srl(O0, CardTableModRefBS::card_shift, O0);
  3874 #endif
  3875   Address rs(O1, (address)byte_map_base);
  3876   masm.load_address(rs); // O1 := <card table base>
  3877   masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
  3879   masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
  3880                       O2, not_already_dirty);
  3881   // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
  3882   // case, harmless if not.
  3883   masm.delayed()->add(O0, O1, O3);
  3885   // We didn't take the branch, so we're already dirty: return.
  3886   // Use return-from-leaf
  3887   masm.retl();
  3888   masm.delayed()->nop();
  3890   // Not dirty.
  3891   masm.bind(not_already_dirty);
  3892   // First, dirty it.
  3893   masm.stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
  3894   int dirty_card_q_index_byte_offset =
  3895     in_bytes(JavaThread::dirty_card_queue_offset() +
  3896              PtrQueue::byte_offset_of_index());
  3897   int dirty_card_q_buf_byte_offset =
  3898     in_bytes(JavaThread::dirty_card_queue_offset() +
  3899              PtrQueue::byte_offset_of_buf());
  3900   masm.bind(restart);
  3901   masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
  3903   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
  3904                       L0, refill);
  3905   // If the branch is taken, no harm in executing this in the delay slot.
  3906   masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
  3907   masm.sub(L0, oopSize, L0);
  3909   masm.st_ptr(O3, L1, L0);  // [_buf + index] := I0
  3910   // Use return-from-leaf
  3911   masm.retl();
  3912   masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
  3914   masm.bind(refill);
  3915   address handle_zero =
  3916     CAST_FROM_FN_PTR(address,
  3917                      &DirtyCardQueueSet::handle_zero_index_for_thread);
  3918   // This should be rare enough that we can afford to save all the
  3919   // scratch registers that the calling context might be using.
  3920   masm.mov(G1_scratch, L3);
  3921   masm.mov(G3_scratch, L5);
  3922   // We need the value of O3 above (for the write into the buffer), so we
  3923   // save and restore it.
  3924   masm.mov(O3, L6);
  3925   // Since the call will overwrite O7, we save and restore that, as well.
  3926   masm.mov(O7, L4);
  3928   masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
  3929   masm.mov(L3, G1_scratch);
  3930   masm.mov(L5, G3_scratch);
  3931   masm.mov(L6, O3);
  3932   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  3933   masm.delayed()->mov(L4, O7);
  3935   dirty_card_log_enqueue = start;
  3936   dirty_card_log_enqueue_end = masm.pc();
  3937   // XXX Should have a guarantee here about not going off the end!
  3938   // Does it already do so?  Do an experiment...
  3941 static inline void
  3942 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
  3943   if (dirty_card_log_enqueue == 0) {
  3944     generate_dirty_card_log_enqueue(byte_map_base);
  3945     assert(dirty_card_log_enqueue != 0, "postcondition.");
  3946     if (G1SATBPrintStubs) {
  3947       tty->print_cr("Generated dirty_card enqueue:");
  3948       Disassembler::decode((u_char*)dirty_card_log_enqueue,
  3949                            dirty_card_log_enqueue_end,
  3950                            tty);
  3956 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  3958   Label filtered;
  3959   MacroAssembler* post_filter_masm = this;
  3961   if (new_val == G0) return;
  3962   if (G1DisablePostBarrier) return;
  3964   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
  3965   assert(bs->kind() == BarrierSet::G1SATBCT ||
  3966          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
  3967   if (G1RSBarrierRegionFilter) {
  3968     xor3(store_addr, new_val, tmp);
  3969 #ifdef _LP64
  3970     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  3971 #else
  3972     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  3973 #endif
  3974     if (G1PrintCTFilterStats) {
  3975       guarantee(tmp->is_global(), "Or stats won't work...");
  3976       // This is a sleazy hack: I'm temporarily hijacking G2, which I
  3977       // promise to restore.
  3978       mov(new_val, G2);
  3979       save_frame(0);
  3980       mov(tmp, O0);
  3981       mov(G2, O1);
  3982       // Save G-regs that target may use.
  3983       mov(G1, L1);
  3984       mov(G2, L2);
  3985       mov(G3, L3);
  3986       mov(G4, L4);
  3987       mov(G5, L5);
  3988       call(CAST_FROM_FN_PTR(address, &count_ct_writes));
  3989       delayed()->nop();
  3990       mov(O0, G2);
  3991       // Restore G-regs that target may have used.
  3992       mov(L1, G1);
  3993       mov(L3, G3);
  3994       mov(L4, G4);
  3995       mov(L5, G5);
  3996       restore(G0, G0, G0);
  3998     // XXX Should I predict this taken or not?  Does it mattern?
  3999     br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
  4000     delayed()->nop();
  4003   // Now we decide how to generate the card table write.  If we're
  4004   // enqueueing, we call out to a generated function.  Otherwise, we do it
  4005   // inline here.
  4007   if (G1RSBarrierUseQueue) {
  4008     // If the "store_addr" register is an "in" or "local" register, move it to
  4009     // a scratch reg so we can pass it as an argument.
  4010     bool use_scr = !(store_addr->is_global() || store_addr->is_out());
  4011     // Pick a scratch register different from "tmp".
  4012     Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
  4013     // Make sure we use up the delay slot!
  4014     if (use_scr) {
  4015       post_filter_masm->mov(store_addr, scr);
  4016     } else {
  4017       post_filter_masm->nop();
  4019     generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
  4020     save_frame(0);
  4021     call(dirty_card_log_enqueue);
  4022     if (use_scr) {
  4023       delayed()->mov(scr, O0);
  4024     } else {
  4025       delayed()->mov(store_addr->after_save(), O0);
  4027     restore();
  4029   } else {
  4031 #ifdef _LP64
  4032     post_filter_masm->srlx(store_addr, CardTableModRefBS::card_shift, store_addr);
  4033 #else
  4034     post_filter_masm->srl(store_addr, CardTableModRefBS::card_shift, store_addr);
  4035 #endif
  4036     assert( tmp != store_addr, "need separate temp reg");
  4037     Address rs(tmp, (address)bs->byte_map_base);
  4038     load_address(rs);
  4039     stb(G0, rs.base(), store_addr);
  4042   bind(filtered);
  4046 #endif  // SERIALGC
  4047 ///////////////////////////////////////////////////////////////////////////////////
  4049 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4050   // If we're writing constant NULL, we can skip the write barrier.
  4051   if (new_val == G0) return;
  4052   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
  4053   assert(bs->kind() == BarrierSet::CardTableModRef ||
  4054          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
  4055   card_table_write(bs->byte_map_base, tmp, store_addr);
  4058 void MacroAssembler::load_klass(Register src_oop, Register klass) {
  4059   // The number of bytes in this code is used by
  4060   // MachCallDynamicJavaNode::ret_addr_offset()
  4061   // if this changes, change that.
  4062   if (UseCompressedOops) {
  4063     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4064     decode_heap_oop_not_null(klass);
  4065   } else {
  4066     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4070 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
  4071   if (UseCompressedOops) {
  4072     assert(dst_oop != klass, "not enough registers");
  4073     encode_heap_oop_not_null(klass);
  4074     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4075   } else {
  4076     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4080 void MacroAssembler::store_klass_gap(Register s, Register d) {
  4081   if (UseCompressedOops) {
  4082     assert(s != d, "not enough registers");
  4083     st(s, d, oopDesc::klass_gap_offset_in_bytes());
  4087 void MacroAssembler::load_heap_oop(const Address& s, Register d, int offset) {
  4088   if (UseCompressedOops) {
  4089     lduw(s, d, offset);
  4090     decode_heap_oop(d);
  4091   } else {
  4092     ld_ptr(s, d, offset);
  4096 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
  4097    if (UseCompressedOops) {
  4098     lduw(s1, s2, d);
  4099     decode_heap_oop(d, d);
  4100   } else {
  4101     ld_ptr(s1, s2, d);
  4105 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
  4106    if (UseCompressedOops) {
  4107     lduw(s1, simm13a, d);
  4108     decode_heap_oop(d, d);
  4109   } else {
  4110     ld_ptr(s1, simm13a, d);
  4114 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  4115   if (UseCompressedOops) {
  4116     assert(s1 != d && s2 != d, "not enough registers");
  4117     encode_heap_oop(d);
  4118     st(d, s1, s2);
  4119   } else {
  4120     st_ptr(d, s1, s2);
  4124 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  4125   if (UseCompressedOops) {
  4126     assert(s1 != d, "not enough registers");
  4127     encode_heap_oop(d);
  4128     st(d, s1, simm13a);
  4129   } else {
  4130     st_ptr(d, s1, simm13a);
  4134 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  4135   if (UseCompressedOops) {
  4136     assert(a.base() != d, "not enough registers");
  4137     encode_heap_oop(d);
  4138     st(d, a, offset);
  4139   } else {
  4140     st_ptr(d, a, offset);
  4145 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  4146   assert (UseCompressedOops, "must be compressed");
  4147   verify_oop(src);
  4148   Label done;
  4149   if (src == dst) {
  4150     // optimize for frequent case src == dst
  4151     bpr(rc_nz, true, Assembler::pt, src, done);
  4152     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
  4153     bind(done);
  4154     srlx(src, LogMinObjAlignmentInBytes, dst);
  4155   } else {
  4156     bpr(rc_z, false, Assembler::pn, src, done);
  4157     delayed() -> mov(G0, dst);
  4158     // could be moved before branch, and annulate delay,
  4159     // but may add some unneeded work decoding null
  4160     sub(src, G6_heapbase, dst);
  4161     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4162     bind(done);
  4167 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4168   assert (UseCompressedOops, "must be compressed");
  4169   verify_oop(r);
  4170   sub(r, G6_heapbase, r);
  4171   srlx(r, LogMinObjAlignmentInBytes, r);
  4174 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  4175   assert (UseCompressedOops, "must be compressed");
  4176   verify_oop(src);
  4177   sub(src, G6_heapbase, dst);
  4178   srlx(dst, LogMinObjAlignmentInBytes, dst);
  4181 // Same algorithm as oops.inline.hpp decode_heap_oop.
  4182 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  4183   assert (UseCompressedOops, "must be compressed");
  4184   Label done;
  4185   sllx(src, LogMinObjAlignmentInBytes, dst);
  4186   bpr(rc_nz, true, Assembler::pt, dst, done);
  4187   delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  4188   bind(done);
  4189   verify_oop(dst);
  4192 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  4193   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4194   // pd_code_size_limit.
  4195   // Also do not verify_oop as this is called by verify_oop.
  4196   assert (UseCompressedOops, "must be compressed");
  4197   sllx(r, LogMinObjAlignmentInBytes, r);
  4198   add(r, G6_heapbase, r);
  4201 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  4202   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4203   // pd_code_size_limit.
  4204   // Also do not verify_oop as this is called by verify_oop.
  4205   assert (UseCompressedOops, "must be compressed");
  4206   sllx(src, LogMinObjAlignmentInBytes, dst);
  4207   add(dst, G6_heapbase, dst);
  4210 void MacroAssembler::reinit_heapbase() {
  4211   if (UseCompressedOops) {
  4212     // call indirectly to solve generation ordering problem
  4213     Address base(G6_heapbase, (address)Universe::heap_base_addr());
  4214     load_ptr_contents(base, G6_heapbase);

mercurial