src/cpu/x86/vm/assembler_x86.cpp

Tue, 29 Apr 2014 12:20:53 -0700

author
kvn
date
Tue, 29 Apr 2014 12:20:53 -0700
changeset 6656
1eba0601f0dd
parent 6435
eb6b3ac64f0e
child 6680
78bbf4d43a14
permissions
-rw-r--r--

8041957: -XX:UseAVX=0 cause assert(UseAVX) failed
Summary: temporary set UseAVX=1 and UseSSE=2 in generate_get_cpu_info()
Reviewed-by: twisti

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #include "utilities/macros.hpp"
    40 #if INCLUDE_ALL_GCS
    41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    43 #include "gc_implementation/g1/heapRegion.hpp"
    44 #endif // INCLUDE_ALL_GCS
    46 #ifdef PRODUCT
    47 #define BLOCK_COMMENT(str) /* nothing */
    48 #define STOP(error) stop(error)
    49 #else
    50 #define BLOCK_COMMENT(str) block_comment(str)
    51 #define STOP(error) block_comment(error); stop(error)
    52 #endif
    54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    55 // Implementation of AddressLiteral
    57 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    58   _is_lval = false;
    59   _target = target;
    60   switch (rtype) {
    61   case relocInfo::oop_type:
    62   case relocInfo::metadata_type:
    63     // Oops are a special case. Normally they would be their own section
    64     // but in cases like icBuffer they are literals in the code stream that
    65     // we don't have a section for. We use none so that we get a literal address
    66     // which is always patchable.
    67     break;
    68   case relocInfo::external_word_type:
    69     _rspec = external_word_Relocation::spec(target);
    70     break;
    71   case relocInfo::internal_word_type:
    72     _rspec = internal_word_Relocation::spec(target);
    73     break;
    74   case relocInfo::opt_virtual_call_type:
    75     _rspec = opt_virtual_call_Relocation::spec();
    76     break;
    77   case relocInfo::static_call_type:
    78     _rspec = static_call_Relocation::spec();
    79     break;
    80   case relocInfo::runtime_call_type:
    81     _rspec = runtime_call_Relocation::spec();
    82     break;
    83   case relocInfo::poll_type:
    84   case relocInfo::poll_return_type:
    85     _rspec = Relocation::spec_simple(rtype);
    86     break;
    87   case relocInfo::none:
    88     break;
    89   default:
    90     ShouldNotReachHere();
    91     break;
    92   }
    93 }
    95 // Implementation of Address
    97 #ifdef _LP64
    99 Address Address::make_array(ArrayAddress adr) {
   100   // Not implementable on 64bit machines
   101   // Should have been handled higher up the call chain.
   102   ShouldNotReachHere();
   103   return Address();
   104 }
   106 // exceedingly dangerous constructor
   107 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
   108   _base  = noreg;
   109   _index = noreg;
   110   _scale = no_scale;
   111   _disp  = disp;
   112   switch (rtype) {
   113     case relocInfo::external_word_type:
   114       _rspec = external_word_Relocation::spec(loc);
   115       break;
   116     case relocInfo::internal_word_type:
   117       _rspec = internal_word_Relocation::spec(loc);
   118       break;
   119     case relocInfo::runtime_call_type:
   120       // HMM
   121       _rspec = runtime_call_Relocation::spec();
   122       break;
   123     case relocInfo::poll_type:
   124     case relocInfo::poll_return_type:
   125       _rspec = Relocation::spec_simple(rtype);
   126       break;
   127     case relocInfo::none:
   128       break;
   129     default:
   130       ShouldNotReachHere();
   131   }
   132 }
   133 #else // LP64
   135 Address Address::make_array(ArrayAddress adr) {
   136   AddressLiteral base = adr.base();
   137   Address index = adr.index();
   138   assert(index._disp == 0, "must not have disp"); // maybe it can?
   139   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   140   array._rspec = base._rspec;
   141   return array;
   142 }
   144 // exceedingly dangerous constructor
   145 Address::Address(address loc, RelocationHolder spec) {
   146   _base  = noreg;
   147   _index = noreg;
   148   _scale = no_scale;
   149   _disp  = (intptr_t) loc;
   150   _rspec = spec;
   151 }
   153 #endif // _LP64
   157 // Convert the raw encoding form into the form expected by the constructor for
   158 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   159 // that to noreg for the Address constructor.
   160 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
   161   RelocationHolder rspec;
   162   if (disp_reloc != relocInfo::none) {
   163     rspec = Relocation::spec_simple(disp_reloc);
   164   }
   165   bool valid_index = index != rsp->encoding();
   166   if (valid_index) {
   167     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   168     madr._rspec = rspec;
   169     return madr;
   170   } else {
   171     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   172     madr._rspec = rspec;
   173     return madr;
   174   }
   175 }
   177 // Implementation of Assembler
   179 int AbstractAssembler::code_fill_byte() {
   180   return (u_char)'\xF4'; // hlt
   181 }
   183 // make this go away someday
   184 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   185   if (rtype == relocInfo::none)
   186         emit_int32(data);
   187   else  emit_data(data, Relocation::spec_simple(rtype), format);
   188 }
   190 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   191   assert(imm_operand == 0, "default format must be immediate in this file");
   192   assert(inst_mark() != NULL, "must be inside InstructionMark");
   193   if (rspec.type() !=  relocInfo::none) {
   194     #ifdef ASSERT
   195       check_relocation(rspec, format);
   196     #endif
   197     // Do not use AbstractAssembler::relocate, which is not intended for
   198     // embedded words.  Instead, relocate to the enclosing instruction.
   200     // hack. call32 is too wide for mask so use disp32
   201     if (format == call32_operand)
   202       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   203     else
   204       code_section()->relocate(inst_mark(), rspec, format);
   205   }
   206   emit_int32(data);
   207 }
   209 static int encode(Register r) {
   210   int enc = r->encoding();
   211   if (enc >= 8) {
   212     enc -= 8;
   213   }
   214   return enc;
   215 }
   217 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   218   assert(dst->has_byte_register(), "must have byte register");
   219   assert(isByte(op1) && isByte(op2), "wrong opcode");
   220   assert(isByte(imm8), "not a byte");
   221   assert((op1 & 0x01) == 0, "should be 8bit operation");
   222   emit_int8(op1);
   223   emit_int8(op2 | encode(dst));
   224   emit_int8(imm8);
   225 }
   228 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   229   assert(isByte(op1) && isByte(op2), "wrong opcode");
   230   assert((op1 & 0x01) == 1, "should be 32bit operation");
   231   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   232   if (is8bit(imm32)) {
   233     emit_int8(op1 | 0x02); // set sign bit
   234     emit_int8(op2 | encode(dst));
   235     emit_int8(imm32 & 0xFF);
   236   } else {
   237     emit_int8(op1);
   238     emit_int8(op2 | encode(dst));
   239     emit_int32(imm32);
   240   }
   241 }
   243 // Force generation of a 4 byte immediate value even if it fits into 8bit
   244 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   245   assert(isByte(op1) && isByte(op2), "wrong opcode");
   246   assert((op1 & 0x01) == 1, "should be 32bit operation");
   247   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   248   emit_int8(op1);
   249   emit_int8(op2 | encode(dst));
   250   emit_int32(imm32);
   251 }
   253 // immediate-to-memory forms
   254 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   255   assert((op1 & 0x01) == 1, "should be 32bit operation");
   256   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   257   if (is8bit(imm32)) {
   258     emit_int8(op1 | 0x02); // set sign bit
   259     emit_operand(rm, adr, 1);
   260     emit_int8(imm32 & 0xFF);
   261   } else {
   262     emit_int8(op1);
   263     emit_operand(rm, adr, 4);
   264     emit_int32(imm32);
   265   }
   266 }
   269 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   270   assert(isByte(op1) && isByte(op2), "wrong opcode");
   271   emit_int8(op1);
   272   emit_int8(op2 | encode(dst) << 3 | encode(src));
   273 }
   276 void Assembler::emit_operand(Register reg, Register base, Register index,
   277                              Address::ScaleFactor scale, int disp,
   278                              RelocationHolder const& rspec,
   279                              int rip_relative_correction) {
   280   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   282   // Encode the registers as needed in the fields they are used in
   284   int regenc = encode(reg) << 3;
   285   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   286   int baseenc = base->is_valid() ? encode(base) : 0;
   288   if (base->is_valid()) {
   289     if (index->is_valid()) {
   290       assert(scale != Address::no_scale, "inconsistent address");
   291       // [base + index*scale + disp]
   292       if (disp == 0 && rtype == relocInfo::none  &&
   293           base != rbp LP64_ONLY(&& base != r13)) {
   294         // [base + index*scale]
   295         // [00 reg 100][ss index base]
   296         assert(index != rsp, "illegal addressing mode");
   297         emit_int8(0x04 | regenc);
   298         emit_int8(scale << 6 | indexenc | baseenc);
   299       } else if (is8bit(disp) && rtype == relocInfo::none) {
   300         // [base + index*scale + imm8]
   301         // [01 reg 100][ss index base] imm8
   302         assert(index != rsp, "illegal addressing mode");
   303         emit_int8(0x44 | regenc);
   304         emit_int8(scale << 6 | indexenc | baseenc);
   305         emit_int8(disp & 0xFF);
   306       } else {
   307         // [base + index*scale + disp32]
   308         // [10 reg 100][ss index base] disp32
   309         assert(index != rsp, "illegal addressing mode");
   310         emit_int8(0x84 | regenc);
   311         emit_int8(scale << 6 | indexenc | baseenc);
   312         emit_data(disp, rspec, disp32_operand);
   313       }
   314     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   315       // [rsp + disp]
   316       if (disp == 0 && rtype == relocInfo::none) {
   317         // [rsp]
   318         // [00 reg 100][00 100 100]
   319         emit_int8(0x04 | regenc);
   320         emit_int8(0x24);
   321       } else if (is8bit(disp) && rtype == relocInfo::none) {
   322         // [rsp + imm8]
   323         // [01 reg 100][00 100 100] disp8
   324         emit_int8(0x44 | regenc);
   325         emit_int8(0x24);
   326         emit_int8(disp & 0xFF);
   327       } else {
   328         // [rsp + imm32]
   329         // [10 reg 100][00 100 100] disp32
   330         emit_int8(0x84 | regenc);
   331         emit_int8(0x24);
   332         emit_data(disp, rspec, disp32_operand);
   333       }
   334     } else {
   335       // [base + disp]
   336       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   337       if (disp == 0 && rtype == relocInfo::none &&
   338           base != rbp LP64_ONLY(&& base != r13)) {
   339         // [base]
   340         // [00 reg base]
   341         emit_int8(0x00 | regenc | baseenc);
   342       } else if (is8bit(disp) && rtype == relocInfo::none) {
   343         // [base + disp8]
   344         // [01 reg base] disp8
   345         emit_int8(0x40 | regenc | baseenc);
   346         emit_int8(disp & 0xFF);
   347       } else {
   348         // [base + disp32]
   349         // [10 reg base] disp32
   350         emit_int8(0x80 | regenc | baseenc);
   351         emit_data(disp, rspec, disp32_operand);
   352       }
   353     }
   354   } else {
   355     if (index->is_valid()) {
   356       assert(scale != Address::no_scale, "inconsistent address");
   357       // [index*scale + disp]
   358       // [00 reg 100][ss index 101] disp32
   359       assert(index != rsp, "illegal addressing mode");
   360       emit_int8(0x04 | regenc);
   361       emit_int8(scale << 6 | indexenc | 0x05);
   362       emit_data(disp, rspec, disp32_operand);
   363     } else if (rtype != relocInfo::none ) {
   364       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   365       // [00 000 101] disp32
   367       emit_int8(0x05 | regenc);
   368       // Note that the RIP-rel. correction applies to the generated
   369       // disp field, but _not_ to the target address in the rspec.
   371       // disp was created by converting the target address minus the pc
   372       // at the start of the instruction. That needs more correction here.
   373       // intptr_t disp = target - next_ip;
   374       assert(inst_mark() != NULL, "must be inside InstructionMark");
   375       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   376       int64_t adjusted = disp;
   377       // Do rip-rel adjustment for 64bit
   378       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   379       assert(is_simm32(adjusted),
   380              "must be 32bit offset (RIP relative address)");
   381       emit_data((int32_t) adjusted, rspec, disp32_operand);
   383     } else {
   384       // 32bit never did this, did everything as the rip-rel/disp code above
   385       // [disp] ABSOLUTE
   386       // [00 reg 100][00 100 101] disp32
   387       emit_int8(0x04 | regenc);
   388       emit_int8(0x25);
   389       emit_data(disp, rspec, disp32_operand);
   390     }
   391   }
   392 }
   394 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   395                              Address::ScaleFactor scale, int disp,
   396                              RelocationHolder const& rspec) {
   397   emit_operand((Register)reg, base, index, scale, disp, rspec);
   398 }
   400 // Secret local extension to Assembler::WhichOperand:
   401 #define end_pc_operand (_WhichOperand_limit)
   403 address Assembler::locate_operand(address inst, WhichOperand which) {
   404   // Decode the given instruction, and return the address of
   405   // an embedded 32-bit operand word.
   407   // If "which" is disp32_operand, selects the displacement portion
   408   // of an effective address specifier.
   409   // If "which" is imm64_operand, selects the trailing immediate constant.
   410   // If "which" is call32_operand, selects the displacement of a call or jump.
   411   // Caller is responsible for ensuring that there is such an operand,
   412   // and that it is 32/64 bits wide.
   414   // If "which" is end_pc_operand, find the end of the instruction.
   416   address ip = inst;
   417   bool is_64bit = false;
   419   debug_only(bool has_disp32 = false);
   420   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   422   again_after_prefix:
   423   switch (0xFF & *ip++) {
   425   // These convenience macros generate groups of "case" labels for the switch.
   426 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   427 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   428              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   429 #define REP16(x) REP8((x)+0): \
   430               case REP8((x)+8)
   432   case CS_segment:
   433   case SS_segment:
   434   case DS_segment:
   435   case ES_segment:
   436   case FS_segment:
   437   case GS_segment:
   438     // Seems dubious
   439     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   440     assert(ip == inst+1, "only one prefix allowed");
   441     goto again_after_prefix;
   443   case 0x67:
   444   case REX:
   445   case REX_B:
   446   case REX_X:
   447   case REX_XB:
   448   case REX_R:
   449   case REX_RB:
   450   case REX_RX:
   451   case REX_RXB:
   452     NOT_LP64(assert(false, "64bit prefixes"));
   453     goto again_after_prefix;
   455   case REX_W:
   456   case REX_WB:
   457   case REX_WX:
   458   case REX_WXB:
   459   case REX_WR:
   460   case REX_WRB:
   461   case REX_WRX:
   462   case REX_WRXB:
   463     NOT_LP64(assert(false, "64bit prefixes"));
   464     is_64bit = true;
   465     goto again_after_prefix;
   467   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   468   case 0x88: // movb a, r
   469   case 0x89: // movl a, r
   470   case 0x8A: // movb r, a
   471   case 0x8B: // movl r, a
   472   case 0x8F: // popl a
   473     debug_only(has_disp32 = true);
   474     break;
   476   case 0x68: // pushq #32
   477     if (which == end_pc_operand) {
   478       return ip + 4;
   479     }
   480     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   481     return ip;                  // not produced by emit_operand
   483   case 0x66: // movw ... (size prefix)
   484     again_after_size_prefix2:
   485     switch (0xFF & *ip++) {
   486     case REX:
   487     case REX_B:
   488     case REX_X:
   489     case REX_XB:
   490     case REX_R:
   491     case REX_RB:
   492     case REX_RX:
   493     case REX_RXB:
   494     case REX_W:
   495     case REX_WB:
   496     case REX_WX:
   497     case REX_WXB:
   498     case REX_WR:
   499     case REX_WRB:
   500     case REX_WRX:
   501     case REX_WRXB:
   502       NOT_LP64(assert(false, "64bit prefix found"));
   503       goto again_after_size_prefix2;
   504     case 0x8B: // movw r, a
   505     case 0x89: // movw a, r
   506       debug_only(has_disp32 = true);
   507       break;
   508     case 0xC7: // movw a, #16
   509       debug_only(has_disp32 = true);
   510       tail_size = 2;  // the imm16
   511       break;
   512     case 0x0F: // several SSE/SSE2 variants
   513       ip--;    // reparse the 0x0F
   514       goto again_after_prefix;
   515     default:
   516       ShouldNotReachHere();
   517     }
   518     break;
   520   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   521     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   522     // these asserts are somewhat nonsensical
   523 #ifndef _LP64
   524     assert(which == imm_operand || which == disp32_operand,
   525            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   526 #else
   527     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   528            which == narrow_oop_operand && !is_64bit,
   529            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   530 #endif // _LP64
   531     return ip;
   533   case 0x69: // imul r, a, #32
   534   case 0xC7: // movl a, #32(oop?)
   535     tail_size = 4;
   536     debug_only(has_disp32 = true); // has both kinds of operands!
   537     break;
   539   case 0x0F: // movx..., etc.
   540     switch (0xFF & *ip++) {
   541     case 0x3A: // pcmpestri
   542       tail_size = 1;
   543     case 0x38: // ptest, pmovzxbw
   544       ip++; // skip opcode
   545       debug_only(has_disp32 = true); // has both kinds of operands!
   546       break;
   548     case 0x70: // pshufd r, r/a, #8
   549       debug_only(has_disp32 = true); // has both kinds of operands!
   550     case 0x73: // psrldq r, #8
   551       tail_size = 1;
   552       break;
   554     case 0x12: // movlps
   555     case 0x28: // movaps
   556     case 0x2E: // ucomiss
   557     case 0x2F: // comiss
   558     case 0x54: // andps
   559     case 0x55: // andnps
   560     case 0x56: // orps
   561     case 0x57: // xorps
   562     case 0x6E: // movd
   563     case 0x7E: // movd
   564     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   565       debug_only(has_disp32 = true);
   566       break;
   568     case 0xAD: // shrd r, a, %cl
   569     case 0xAF: // imul r, a
   570     case 0xBE: // movsbl r, a (movsxb)
   571     case 0xBF: // movswl r, a (movsxw)
   572     case 0xB6: // movzbl r, a (movzxb)
   573     case 0xB7: // movzwl r, a (movzxw)
   574     case REP16(0x40): // cmovl cc, r, a
   575     case 0xB0: // cmpxchgb
   576     case 0xB1: // cmpxchg
   577     case 0xC1: // xaddl
   578     case 0xC7: // cmpxchg8
   579     case REP16(0x90): // setcc a
   580       debug_only(has_disp32 = true);
   581       // fall out of the switch to decode the address
   582       break;
   584     case 0xC4: // pinsrw r, a, #8
   585       debug_only(has_disp32 = true);
   586     case 0xC5: // pextrw r, r, #8
   587       tail_size = 1;  // the imm8
   588       break;
   590     case 0xAC: // shrd r, a, #8
   591       debug_only(has_disp32 = true);
   592       tail_size = 1;  // the imm8
   593       break;
   595     case REP16(0x80): // jcc rdisp32
   596       if (which == end_pc_operand)  return ip + 4;
   597       assert(which == call32_operand, "jcc has no disp32 or imm");
   598       return ip;
   599     default:
   600       ShouldNotReachHere();
   601     }
   602     break;
   604   case 0x81: // addl a, #32; addl r, #32
   605     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   606     // on 32bit in the case of cmpl, the imm might be an oop
   607     tail_size = 4;
   608     debug_only(has_disp32 = true); // has both kinds of operands!
   609     break;
   611   case 0x83: // addl a, #8; addl r, #8
   612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   613     debug_only(has_disp32 = true); // has both kinds of operands!
   614     tail_size = 1;
   615     break;
   617   case 0x9B:
   618     switch (0xFF & *ip++) {
   619     case 0xD9: // fnstcw a
   620       debug_only(has_disp32 = true);
   621       break;
   622     default:
   623       ShouldNotReachHere();
   624     }
   625     break;
   627   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   628   case REP4(0x10): // adc...
   629   case REP4(0x20): // and...
   630   case REP4(0x30): // xor...
   631   case REP4(0x08): // or...
   632   case REP4(0x18): // sbb...
   633   case REP4(0x28): // sub...
   634   case 0xF7: // mull a
   635   case 0x8D: // lea r, a
   636   case 0x87: // xchg r, a
   637   case REP4(0x38): // cmp...
   638   case 0x85: // test r, a
   639     debug_only(has_disp32 = true); // has both kinds of operands!
   640     break;
   642   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   643   case 0xC6: // movb a, #8
   644   case 0x80: // cmpb a, #8
   645   case 0x6B: // imul r, a, #8
   646     debug_only(has_disp32 = true); // has both kinds of operands!
   647     tail_size = 1; // the imm8
   648     break;
   650   case 0xC4: // VEX_3bytes
   651   case 0xC5: // VEX_2bytes
   652     assert((UseAVX > 0), "shouldn't have VEX prefix");
   653     assert(ip == inst+1, "no prefixes allowed");
   654     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   655     // but they have prefix 0x0F and processed when 0x0F processed above.
   656     //
   657     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   658     // instructions (these instructions are not supported in 64-bit mode).
   659     // To distinguish them bits [7:6] are set in the VEX second byte since
   660     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   661     // those VEX bits REX and vvvv bits are inverted.
   662     //
   663     // Fortunately C2 doesn't generate these instructions so we don't need
   664     // to check for them in product version.
   666     // Check second byte
   667     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   669     // First byte
   670     if ((0xFF & *inst) == VEX_3bytes) {
   671       ip++; // third byte
   672       is_64bit = ((VEX_W & *ip) == VEX_W);
   673     }
   674     ip++; // opcode
   675     // To find the end of instruction (which == end_pc_operand).
   676     switch (0xFF & *ip) {
   677     case 0x61: // pcmpestri r, r/a, #8
   678     case 0x70: // pshufd r, r/a, #8
   679     case 0x73: // psrldq r, #8
   680       tail_size = 1;  // the imm8
   681       break;
   682     default:
   683       break;
   684     }
   685     ip++; // skip opcode
   686     debug_only(has_disp32 = true); // has both kinds of operands!
   687     break;
   689   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   690   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   691   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   692   case 0xDD: // fld_d a; fst_d a; fstp_d a
   693   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   694   case 0xDF: // fild_d a; fistp_d a
   695   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   696   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   697   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   698     debug_only(has_disp32 = true);
   699     break;
   701   case 0xE8: // call rdisp32
   702   case 0xE9: // jmp  rdisp32
   703     if (which == end_pc_operand)  return ip + 4;
   704     assert(which == call32_operand, "call has no disp32 or imm");
   705     return ip;
   707   case 0xF0:                    // Lock
   708     assert(os::is_MP(), "only on MP");
   709     goto again_after_prefix;
   711   case 0xF3:                    // For SSE
   712   case 0xF2:                    // For SSE2
   713     switch (0xFF & *ip++) {
   714     case REX:
   715     case REX_B:
   716     case REX_X:
   717     case REX_XB:
   718     case REX_R:
   719     case REX_RB:
   720     case REX_RX:
   721     case REX_RXB:
   722     case REX_W:
   723     case REX_WB:
   724     case REX_WX:
   725     case REX_WXB:
   726     case REX_WR:
   727     case REX_WRB:
   728     case REX_WRX:
   729     case REX_WRXB:
   730       NOT_LP64(assert(false, "found 64bit prefix"));
   731       ip++;
   732     default:
   733       ip++;
   734     }
   735     debug_only(has_disp32 = true); // has both kinds of operands!
   736     break;
   738   default:
   739     ShouldNotReachHere();
   741 #undef REP8
   742 #undef REP16
   743   }
   745   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   746 #ifdef _LP64
   747   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   748 #else
   749   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   750   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   751 #endif // LP64
   752   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   754   // parse the output of emit_operand
   755   int op2 = 0xFF & *ip++;
   756   int base = op2 & 0x07;
   757   int op3 = -1;
   758   const int b100 = 4;
   759   const int b101 = 5;
   760   if (base == b100 && (op2 >> 6) != 3) {
   761     op3 = 0xFF & *ip++;
   762     base = op3 & 0x07;   // refetch the base
   763   }
   764   // now ip points at the disp (if any)
   766   switch (op2 >> 6) {
   767   case 0:
   768     // [00 reg  100][ss index base]
   769     // [00 reg  100][00   100  esp]
   770     // [00 reg base]
   771     // [00 reg  100][ss index  101][disp32]
   772     // [00 reg  101]               [disp32]
   774     if (base == b101) {
   775       if (which == disp32_operand)
   776         return ip;              // caller wants the disp32
   777       ip += 4;                  // skip the disp32
   778     }
   779     break;
   781   case 1:
   782     // [01 reg  100][ss index base][disp8]
   783     // [01 reg  100][00   100  esp][disp8]
   784     // [01 reg base]               [disp8]
   785     ip += 1;                    // skip the disp8
   786     break;
   788   case 2:
   789     // [10 reg  100][ss index base][disp32]
   790     // [10 reg  100][00   100  esp][disp32]
   791     // [10 reg base]               [disp32]
   792     if (which == disp32_operand)
   793       return ip;                // caller wants the disp32
   794     ip += 4;                    // skip the disp32
   795     break;
   797   case 3:
   798     // [11 reg base]  (not a memory addressing mode)
   799     break;
   800   }
   802   if (which == end_pc_operand) {
   803     return ip + tail_size;
   804   }
   806 #ifdef _LP64
   807   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   808 #else
   809   assert(which == imm_operand, "instruction has only an imm field");
   810 #endif // LP64
   811   return ip;
   812 }
   814 address Assembler::locate_next_instruction(address inst) {
   815   // Secretly share code with locate_operand:
   816   return locate_operand(inst, end_pc_operand);
   817 }
   820 #ifdef ASSERT
   821 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   822   address inst = inst_mark();
   823   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   824   address opnd;
   826   Relocation* r = rspec.reloc();
   827   if (r->type() == relocInfo::none) {
   828     return;
   829   } else if (r->is_call() || format == call32_operand) {
   830     // assert(format == imm32_operand, "cannot specify a nonzero format");
   831     opnd = locate_operand(inst, call32_operand);
   832   } else if (r->is_data()) {
   833     assert(format == imm_operand || format == disp32_operand
   834            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   835     opnd = locate_operand(inst, (WhichOperand)format);
   836   } else {
   837     assert(format == imm_operand, "cannot specify a format");
   838     return;
   839   }
   840   assert(opnd == pc(), "must put operand where relocs can find it");
   841 }
   842 #endif // ASSERT
   844 void Assembler::emit_operand32(Register reg, Address adr) {
   845   assert(reg->encoding() < 8, "no extended registers");
   846   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   847   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   848                adr._rspec);
   849 }
   851 void Assembler::emit_operand(Register reg, Address adr,
   852                              int rip_relative_correction) {
   853   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   854                adr._rspec,
   855                rip_relative_correction);
   856 }
   858 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   859   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   860                adr._rspec);
   861 }
   863 // MMX operations
   864 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   865   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   866   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   867 }
   869 // work around gcc (3.2.1-7a) bug
   870 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   871   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   872   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   873 }
   876 void Assembler::emit_farith(int b1, int b2, int i) {
   877   assert(isByte(b1) && isByte(b2), "wrong opcode");
   878   assert(0 <= i &&  i < 8, "illegal stack offset");
   879   emit_int8(b1);
   880   emit_int8(b2 + i);
   881 }
   884 // Now the Assembler instructions (identical for 32/64 bits)
   886 void Assembler::adcl(Address dst, int32_t imm32) {
   887   InstructionMark im(this);
   888   prefix(dst);
   889   emit_arith_operand(0x81, rdx, dst, imm32);
   890 }
   892 void Assembler::adcl(Address dst, Register src) {
   893   InstructionMark im(this);
   894   prefix(dst, src);
   895   emit_int8(0x11);
   896   emit_operand(src, dst);
   897 }
   899 void Assembler::adcl(Register dst, int32_t imm32) {
   900   prefix(dst);
   901   emit_arith(0x81, 0xD0, dst, imm32);
   902 }
   904 void Assembler::adcl(Register dst, Address src) {
   905   InstructionMark im(this);
   906   prefix(src, dst);
   907   emit_int8(0x13);
   908   emit_operand(dst, src);
   909 }
   911 void Assembler::adcl(Register dst, Register src) {
   912   (void) prefix_and_encode(dst->encoding(), src->encoding());
   913   emit_arith(0x13, 0xC0, dst, src);
   914 }
   916 void Assembler::addl(Address dst, int32_t imm32) {
   917   InstructionMark im(this);
   918   prefix(dst);
   919   emit_arith_operand(0x81, rax, dst, imm32);
   920 }
   922 void Assembler::addl(Address dst, Register src) {
   923   InstructionMark im(this);
   924   prefix(dst, src);
   925   emit_int8(0x01);
   926   emit_operand(src, dst);
   927 }
   929 void Assembler::addl(Register dst, int32_t imm32) {
   930   prefix(dst);
   931   emit_arith(0x81, 0xC0, dst, imm32);
   932 }
   934 void Assembler::addl(Register dst, Address src) {
   935   InstructionMark im(this);
   936   prefix(src, dst);
   937   emit_int8(0x03);
   938   emit_operand(dst, src);
   939 }
   941 void Assembler::addl(Register dst, Register src) {
   942   (void) prefix_and_encode(dst->encoding(), src->encoding());
   943   emit_arith(0x03, 0xC0, dst, src);
   944 }
   946 void Assembler::addr_nop_4() {
   947   assert(UseAddressNop, "no CPU support");
   948   // 4 bytes: NOP DWORD PTR [EAX+0]
   949   emit_int8(0x0F);
   950   emit_int8(0x1F);
   951   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   952   emit_int8(0);    // 8-bits offset (1 byte)
   953 }
   955 void Assembler::addr_nop_5() {
   956   assert(UseAddressNop, "no CPU support");
   957   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   958   emit_int8(0x0F);
   959   emit_int8(0x1F);
   960   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   961   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   962   emit_int8(0);    // 8-bits offset (1 byte)
   963 }
   965 void Assembler::addr_nop_7() {
   966   assert(UseAddressNop, "no CPU support");
   967   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   968   emit_int8(0x0F);
   969   emit_int8(0x1F);
   970   emit_int8((unsigned char)0x80);
   971                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   972   emit_int32(0);   // 32-bits offset (4 bytes)
   973 }
   975 void Assembler::addr_nop_8() {
   976   assert(UseAddressNop, "no CPU support");
   977   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   978   emit_int8(0x0F);
   979   emit_int8(0x1F);
   980   emit_int8((unsigned char)0x84);
   981                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   982   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   983   emit_int32(0);   // 32-bits offset (4 bytes)
   984 }
   986 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   988   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   989 }
   991 void Assembler::addsd(XMMRegister dst, Address src) {
   992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   993   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   994 }
   996 void Assembler::addss(XMMRegister dst, XMMRegister src) {
   997   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   998   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
   999 }
  1001 void Assembler::addss(XMMRegister dst, Address src) {
  1002   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1003   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1006 void Assembler::aesdec(XMMRegister dst, Address src) {
  1007   assert(VM_Version::supports_aes(), "");
  1008   InstructionMark im(this);
  1009   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1010   emit_int8((unsigned char)0xDE);
  1011   emit_operand(dst, src);
  1014 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
  1015   assert(VM_Version::supports_aes(), "");
  1016   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1017   emit_int8((unsigned char)0xDE);
  1018   emit_int8(0xC0 | encode);
  1021 void Assembler::aesdeclast(XMMRegister dst, Address src) {
  1022   assert(VM_Version::supports_aes(), "");
  1023   InstructionMark im(this);
  1024   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1025   emit_int8((unsigned char)0xDF);
  1026   emit_operand(dst, src);
  1029 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
  1030   assert(VM_Version::supports_aes(), "");
  1031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1032   emit_int8((unsigned char)0xDF);
  1033   emit_int8((unsigned char)(0xC0 | encode));
  1036 void Assembler::aesenc(XMMRegister dst, Address src) {
  1037   assert(VM_Version::supports_aes(), "");
  1038   InstructionMark im(this);
  1039   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1040   emit_int8((unsigned char)0xDC);
  1041   emit_operand(dst, src);
  1044 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
  1045   assert(VM_Version::supports_aes(), "");
  1046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1047   emit_int8((unsigned char)0xDC);
  1048   emit_int8(0xC0 | encode);
  1051 void Assembler::aesenclast(XMMRegister dst, Address src) {
  1052   assert(VM_Version::supports_aes(), "");
  1053   InstructionMark im(this);
  1054   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1055   emit_int8((unsigned char)0xDD);
  1056   emit_operand(dst, src);
  1059 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
  1060   assert(VM_Version::supports_aes(), "");
  1061   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1062   emit_int8((unsigned char)0xDD);
  1063   emit_int8((unsigned char)(0xC0 | encode));
  1067 void Assembler::andl(Address dst, int32_t imm32) {
  1068   InstructionMark im(this);
  1069   prefix(dst);
  1070   emit_int8((unsigned char)0x81);
  1071   emit_operand(rsp, dst, 4);
  1072   emit_int32(imm32);
  1075 void Assembler::andl(Register dst, int32_t imm32) {
  1076   prefix(dst);
  1077   emit_arith(0x81, 0xE0, dst, imm32);
  1080 void Assembler::andl(Register dst, Address src) {
  1081   InstructionMark im(this);
  1082   prefix(src, dst);
  1083   emit_int8(0x23);
  1084   emit_operand(dst, src);
  1087 void Assembler::andl(Register dst, Register src) {
  1088   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1089   emit_arith(0x23, 0xC0, dst, src);
  1092 void Assembler::andnl(Register dst, Register src1, Register src2) {
  1093   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1094   int encode = vex_prefix_0F38_and_encode(dst, src1, src2);
  1095   emit_int8((unsigned char)0xF2);
  1096   emit_int8((unsigned char)(0xC0 | encode));
  1099 void Assembler::andnl(Register dst, Register src1, Address src2) {
  1100   InstructionMark im(this);
  1101   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1102   vex_prefix_0F38(dst, src1, src2);
  1103   emit_int8((unsigned char)0xF2);
  1104   emit_operand(dst, src2);
  1107 void Assembler::bsfl(Register dst, Register src) {
  1108   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1109   emit_int8(0x0F);
  1110   emit_int8((unsigned char)0xBC);
  1111   emit_int8((unsigned char)(0xC0 | encode));
  1114 void Assembler::bsrl(Register dst, Register src) {
  1115   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1116   emit_int8(0x0F);
  1117   emit_int8((unsigned char)0xBD);
  1118   emit_int8((unsigned char)(0xC0 | encode));
  1121 void Assembler::bswapl(Register reg) { // bswap
  1122   int encode = prefix_and_encode(reg->encoding());
  1123   emit_int8(0x0F);
  1124   emit_int8((unsigned char)(0xC8 | encode));
  1127 void Assembler::blsil(Register dst, Register src) {
  1128   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1129   int encode = vex_prefix_0F38_and_encode(rbx, dst, src);
  1130   emit_int8((unsigned char)0xF3);
  1131   emit_int8((unsigned char)(0xC0 | encode));
  1134 void Assembler::blsil(Register dst, Address src) {
  1135   InstructionMark im(this);
  1136   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1137   vex_prefix_0F38(rbx, dst, src);
  1138   emit_int8((unsigned char)0xF3);
  1139   emit_operand(rbx, src);
  1142 void Assembler::blsmskl(Register dst, Register src) {
  1143   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1144   int encode = vex_prefix_0F38_and_encode(rdx, dst, src);
  1145   emit_int8((unsigned char)0xF3);
  1146   emit_int8((unsigned char)(0xC0 | encode));
  1149 void Assembler::blsmskl(Register dst, Address src) {
  1150   InstructionMark im(this);
  1151   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1152   vex_prefix_0F38(rdx, dst, src);
  1153   emit_int8((unsigned char)0xF3);
  1154   emit_operand(rdx, src);
  1157 void Assembler::blsrl(Register dst, Register src) {
  1158   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1159   int encode = vex_prefix_0F38_and_encode(rcx, dst, src);
  1160   emit_int8((unsigned char)0xF3);
  1161   emit_int8((unsigned char)(0xC0 | encode));
  1164 void Assembler::blsrl(Register dst, Address src) {
  1165   InstructionMark im(this);
  1166   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1167   vex_prefix_0F38(rcx, dst, src);
  1168   emit_int8((unsigned char)0xF3);
  1169   emit_operand(rcx, src);
  1172 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1173   // suspect disp32 is always good
  1174   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1176   if (L.is_bound()) {
  1177     const int long_size = 5;
  1178     int offs = (int)( target(L) - pc() );
  1179     assert(offs <= 0, "assembler error");
  1180     InstructionMark im(this);
  1181     // 1110 1000 #32-bit disp
  1182     emit_int8((unsigned char)0xE8);
  1183     emit_data(offs - long_size, rtype, operand);
  1184   } else {
  1185     InstructionMark im(this);
  1186     // 1110 1000 #32-bit disp
  1187     L.add_patch_at(code(), locator());
  1189     emit_int8((unsigned char)0xE8);
  1190     emit_data(int(0), rtype, operand);
  1194 void Assembler::call(Register dst) {
  1195   int encode = prefix_and_encode(dst->encoding());
  1196   emit_int8((unsigned char)0xFF);
  1197   emit_int8((unsigned char)(0xD0 | encode));
  1201 void Assembler::call(Address adr) {
  1202   InstructionMark im(this);
  1203   prefix(adr);
  1204   emit_int8((unsigned char)0xFF);
  1205   emit_operand(rdx, adr);
  1208 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1209   assert(entry != NULL, "call most probably wrong");
  1210   InstructionMark im(this);
  1211   emit_int8((unsigned char)0xE8);
  1212   intptr_t disp = entry - (pc() + sizeof(int32_t));
  1213   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1214   // Technically, should use call32_operand, but this format is
  1215   // implied by the fact that we're emitting a call instruction.
  1217   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1218   emit_data((int) disp, rspec, operand);
  1221 void Assembler::cdql() {
  1222   emit_int8((unsigned char)0x99);
  1225 void Assembler::cld() {
  1226   emit_int8((unsigned char)0xFC);
  1229 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1230   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1231   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1232   emit_int8(0x0F);
  1233   emit_int8(0x40 | cc);
  1234   emit_int8((unsigned char)(0xC0 | encode));
  1238 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1239   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1240   prefix(src, dst);
  1241   emit_int8(0x0F);
  1242   emit_int8(0x40 | cc);
  1243   emit_operand(dst, src);
  1246 void Assembler::cmpb(Address dst, int imm8) {
  1247   InstructionMark im(this);
  1248   prefix(dst);
  1249   emit_int8((unsigned char)0x80);
  1250   emit_operand(rdi, dst, 1);
  1251   emit_int8(imm8);
  1254 void Assembler::cmpl(Address dst, int32_t imm32) {
  1255   InstructionMark im(this);
  1256   prefix(dst);
  1257   emit_int8((unsigned char)0x81);
  1258   emit_operand(rdi, dst, 4);
  1259   emit_int32(imm32);
  1262 void Assembler::cmpl(Register dst, int32_t imm32) {
  1263   prefix(dst);
  1264   emit_arith(0x81, 0xF8, dst, imm32);
  1267 void Assembler::cmpl(Register dst, Register src) {
  1268   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1269   emit_arith(0x3B, 0xC0, dst, src);
  1273 void Assembler::cmpl(Register dst, Address  src) {
  1274   InstructionMark im(this);
  1275   prefix(src, dst);
  1276   emit_int8((unsigned char)0x3B);
  1277   emit_operand(dst, src);
  1280 void Assembler::cmpw(Address dst, int imm16) {
  1281   InstructionMark im(this);
  1282   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1283   emit_int8(0x66);
  1284   emit_int8((unsigned char)0x81);
  1285   emit_operand(rdi, dst, 2);
  1286   emit_int16(imm16);
  1289 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1290 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1291 // The ZF is set if the compared values were equal, and cleared otherwise.
  1292 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1293   InstructionMark im(this);
  1294   prefix(adr, reg);
  1295   emit_int8(0x0F);
  1296   emit_int8((unsigned char)0xB1);
  1297   emit_operand(reg, adr);
  1300 void Assembler::comisd(XMMRegister dst, Address src) {
  1301   // NOTE: dbx seems to decode this as comiss even though the
  1302   // 0x66 is there. Strangly ucomisd comes out correct
  1303   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1304   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1307 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1308   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1309   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1312 void Assembler::comiss(XMMRegister dst, Address src) {
  1313   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1314   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1317 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1318   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1319   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1322 void Assembler::cpuid() {
  1323   emit_int8(0x0F);
  1324   emit_int8((unsigned char)0xA2);
  1327 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1329   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
  1332 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1333   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1334   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
  1337 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1338   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1339   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1342 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1343   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1344   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1347 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1348   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1349   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1350   emit_int8(0x2A);
  1351   emit_int8((unsigned char)(0xC0 | encode));
  1354 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1355   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1356   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
  1359 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1360   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1361   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1362   emit_int8(0x2A);
  1363   emit_int8((unsigned char)(0xC0 | encode));
  1366 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1367   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1368   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
  1371 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1372   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1373   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1376 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1377   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1378   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1382 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1383   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1384   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1385   emit_int8(0x2C);
  1386   emit_int8((unsigned char)(0xC0 | encode));
  1389 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1390   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1391   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1392   emit_int8(0x2C);
  1393   emit_int8((unsigned char)(0xC0 | encode));
  1396 void Assembler::decl(Address dst) {
  1397   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1398   InstructionMark im(this);
  1399   prefix(dst);
  1400   emit_int8((unsigned char)0xFF);
  1401   emit_operand(rcx, dst);
  1404 void Assembler::divsd(XMMRegister dst, Address src) {
  1405   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1406   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1409 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1410   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1411   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1414 void Assembler::divss(XMMRegister dst, Address src) {
  1415   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1416   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1419 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1420   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1421   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1424 void Assembler::emms() {
  1425   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1426   emit_int8(0x0F);
  1427   emit_int8(0x77);
  1430 void Assembler::hlt() {
  1431   emit_int8((unsigned char)0xF4);
  1434 void Assembler::idivl(Register src) {
  1435   int encode = prefix_and_encode(src->encoding());
  1436   emit_int8((unsigned char)0xF7);
  1437   emit_int8((unsigned char)(0xF8 | encode));
  1440 void Assembler::divl(Register src) { // Unsigned
  1441   int encode = prefix_and_encode(src->encoding());
  1442   emit_int8((unsigned char)0xF7);
  1443   emit_int8((unsigned char)(0xF0 | encode));
  1446 void Assembler::imull(Register dst, Register src) {
  1447   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1448   emit_int8(0x0F);
  1449   emit_int8((unsigned char)0xAF);
  1450   emit_int8((unsigned char)(0xC0 | encode));
  1454 void Assembler::imull(Register dst, Register src, int value) {
  1455   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1456   if (is8bit(value)) {
  1457     emit_int8(0x6B);
  1458     emit_int8((unsigned char)(0xC0 | encode));
  1459     emit_int8(value & 0xFF);
  1460   } else {
  1461     emit_int8(0x69);
  1462     emit_int8((unsigned char)(0xC0 | encode));
  1463     emit_int32(value);
  1467 void Assembler::imull(Register dst, Address src) {
  1468   InstructionMark im(this);
  1469   prefix(src, dst);
  1470   emit_int8(0x0F);
  1471   emit_int8((unsigned char) 0xAF);
  1472   emit_operand(dst, src);
  1476 void Assembler::incl(Address dst) {
  1477   // Don't use it directly. Use MacroAssembler::increment() instead.
  1478   InstructionMark im(this);
  1479   prefix(dst);
  1480   emit_int8((unsigned char)0xFF);
  1481   emit_operand(rax, dst);
  1484 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1485   InstructionMark im(this);
  1486   assert((0 <= cc) && (cc < 16), "illegal cc");
  1487   if (L.is_bound()) {
  1488     address dst = target(L);
  1489     assert(dst != NULL, "jcc most probably wrong");
  1491     const int short_size = 2;
  1492     const int long_size = 6;
  1493     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
  1494     if (maybe_short && is8bit(offs - short_size)) {
  1495       // 0111 tttn #8-bit disp
  1496       emit_int8(0x70 | cc);
  1497       emit_int8((offs - short_size) & 0xFF);
  1498     } else {
  1499       // 0000 1111 1000 tttn #32-bit disp
  1500       assert(is_simm32(offs - long_size),
  1501              "must be 32bit offset (call4)");
  1502       emit_int8(0x0F);
  1503       emit_int8((unsigned char)(0x80 | cc));
  1504       emit_int32(offs - long_size);
  1506   } else {
  1507     // Note: could eliminate cond. jumps to this jump if condition
  1508     //       is the same however, seems to be rather unlikely case.
  1509     // Note: use jccb() if label to be bound is very close to get
  1510     //       an 8-bit displacement
  1511     L.add_patch_at(code(), locator());
  1512     emit_int8(0x0F);
  1513     emit_int8((unsigned char)(0x80 | cc));
  1514     emit_int32(0);
  1518 void Assembler::jccb(Condition cc, Label& L) {
  1519   if (L.is_bound()) {
  1520     const int short_size = 2;
  1521     address entry = target(L);
  1522 #ifdef ASSERT
  1523     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1524     intptr_t delta = short_branch_delta();
  1525     if (delta != 0) {
  1526       dist += (dist < 0 ? (-delta) :delta);
  1528     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1529 #endif
  1530     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
  1531     // 0111 tttn #8-bit disp
  1532     emit_int8(0x70 | cc);
  1533     emit_int8((offs - short_size) & 0xFF);
  1534   } else {
  1535     InstructionMark im(this);
  1536     L.add_patch_at(code(), locator());
  1537     emit_int8(0x70 | cc);
  1538     emit_int8(0);
  1542 void Assembler::jmp(Address adr) {
  1543   InstructionMark im(this);
  1544   prefix(adr);
  1545   emit_int8((unsigned char)0xFF);
  1546   emit_operand(rsp, adr);
  1549 void Assembler::jmp(Label& L, bool maybe_short) {
  1550   if (L.is_bound()) {
  1551     address entry = target(L);
  1552     assert(entry != NULL, "jmp most probably wrong");
  1553     InstructionMark im(this);
  1554     const int short_size = 2;
  1555     const int long_size = 5;
  1556     intptr_t offs = entry - pc();
  1557     if (maybe_short && is8bit(offs - short_size)) {
  1558       emit_int8((unsigned char)0xEB);
  1559       emit_int8((offs - short_size) & 0xFF);
  1560     } else {
  1561       emit_int8((unsigned char)0xE9);
  1562       emit_int32(offs - long_size);
  1564   } else {
  1565     // By default, forward jumps are always 32-bit displacements, since
  1566     // we can't yet know where the label will be bound.  If you're sure that
  1567     // the forward jump will not run beyond 256 bytes, use jmpb to
  1568     // force an 8-bit displacement.
  1569     InstructionMark im(this);
  1570     L.add_patch_at(code(), locator());
  1571     emit_int8((unsigned char)0xE9);
  1572     emit_int32(0);
  1576 void Assembler::jmp(Register entry) {
  1577   int encode = prefix_and_encode(entry->encoding());
  1578   emit_int8((unsigned char)0xFF);
  1579   emit_int8((unsigned char)(0xE0 | encode));
  1582 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1583   InstructionMark im(this);
  1584   emit_int8((unsigned char)0xE9);
  1585   assert(dest != NULL, "must have a target");
  1586   intptr_t disp = dest - (pc() + sizeof(int32_t));
  1587   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1588   emit_data(disp, rspec.reloc(), call32_operand);
  1591 void Assembler::jmpb(Label& L) {
  1592   if (L.is_bound()) {
  1593     const int short_size = 2;
  1594     address entry = target(L);
  1595     assert(entry != NULL, "jmp most probably wrong");
  1596 #ifdef ASSERT
  1597     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1598     intptr_t delta = short_branch_delta();
  1599     if (delta != 0) {
  1600       dist += (dist < 0 ? (-delta) :delta);
  1602     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1603 #endif
  1604     intptr_t offs = entry - pc();
  1605     emit_int8((unsigned char)0xEB);
  1606     emit_int8((offs - short_size) & 0xFF);
  1607   } else {
  1608     InstructionMark im(this);
  1609     L.add_patch_at(code(), locator());
  1610     emit_int8((unsigned char)0xEB);
  1611     emit_int8(0);
  1615 void Assembler::ldmxcsr( Address src) {
  1616   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1617   InstructionMark im(this);
  1618   prefix(src);
  1619   emit_int8(0x0F);
  1620   emit_int8((unsigned char)0xAE);
  1621   emit_operand(as_Register(2), src);
  1624 void Assembler::leal(Register dst, Address src) {
  1625   InstructionMark im(this);
  1626 #ifdef _LP64
  1627   emit_int8(0x67); // addr32
  1628   prefix(src, dst);
  1629 #endif // LP64
  1630   emit_int8((unsigned char)0x8D);
  1631   emit_operand(dst, src);
  1634 void Assembler::lfence() {
  1635   emit_int8(0x0F);
  1636   emit_int8((unsigned char)0xAE);
  1637   emit_int8((unsigned char)0xE8);
  1640 void Assembler::lock() {
  1641   emit_int8((unsigned char)0xF0);
  1644 void Assembler::lzcntl(Register dst, Register src) {
  1645   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1646   emit_int8((unsigned char)0xF3);
  1647   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1648   emit_int8(0x0F);
  1649   emit_int8((unsigned char)0xBD);
  1650   emit_int8((unsigned char)(0xC0 | encode));
  1653 // Emit mfence instruction
  1654 void Assembler::mfence() {
  1655   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1656   emit_int8(0x0F);
  1657   emit_int8((unsigned char)0xAE);
  1658   emit_int8((unsigned char)0xF0);
  1661 void Assembler::mov(Register dst, Register src) {
  1662   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1665 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1666   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1667   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
  1670 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1671   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1672   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
  1675 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  1676   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1677   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
  1678   emit_int8(0x16);
  1679   emit_int8((unsigned char)(0xC0 | encode));
  1682 void Assembler::movb(Register dst, Address src) {
  1683   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1684   InstructionMark im(this);
  1685   prefix(src, dst, true);
  1686   emit_int8((unsigned char)0x8A);
  1687   emit_operand(dst, src);
  1691 void Assembler::movb(Address dst, int imm8) {
  1692   InstructionMark im(this);
  1693    prefix(dst);
  1694   emit_int8((unsigned char)0xC6);
  1695   emit_operand(rax, dst, 1);
  1696   emit_int8(imm8);
  1700 void Assembler::movb(Address dst, Register src) {
  1701   assert(src->has_byte_register(), "must have byte register");
  1702   InstructionMark im(this);
  1703   prefix(dst, src, true);
  1704   emit_int8((unsigned char)0x88);
  1705   emit_operand(src, dst);
  1708 void Assembler::movdl(XMMRegister dst, Register src) {
  1709   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1710   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1711   emit_int8(0x6E);
  1712   emit_int8((unsigned char)(0xC0 | encode));
  1715 void Assembler::movdl(Register dst, XMMRegister src) {
  1716   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1717   // swap src/dst to get correct prefix
  1718   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1719   emit_int8(0x7E);
  1720   emit_int8((unsigned char)(0xC0 | encode));
  1723 void Assembler::movdl(XMMRegister dst, Address src) {
  1724   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1725   InstructionMark im(this);
  1726   simd_prefix(dst, src, VEX_SIMD_66);
  1727   emit_int8(0x6E);
  1728   emit_operand(dst, src);
  1731 void Assembler::movdl(Address dst, XMMRegister src) {
  1732   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1733   InstructionMark im(this);
  1734   simd_prefix(dst, src, VEX_SIMD_66);
  1735   emit_int8(0x7E);
  1736   emit_operand(src, dst);
  1739 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1740   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1741   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1744 void Assembler::movdqa(XMMRegister dst, Address src) {
  1745   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1746   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1749 void Assembler::movdqu(XMMRegister dst, Address src) {
  1750   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1751   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1754 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1755   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1756   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1759 void Assembler::movdqu(Address dst, XMMRegister src) {
  1760   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1761   InstructionMark im(this);
  1762   simd_prefix(dst, src, VEX_SIMD_F3);
  1763   emit_int8(0x7F);
  1764   emit_operand(src, dst);
  1767 // Move Unaligned 256bit Vector
  1768 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  1769   assert(UseAVX > 0, "");
  1770   bool vector256 = true;
  1771   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1772   emit_int8(0x6F);
  1773   emit_int8((unsigned char)(0xC0 | encode));
  1776 void Assembler::vmovdqu(XMMRegister dst, Address src) {
  1777   assert(UseAVX > 0, "");
  1778   InstructionMark im(this);
  1779   bool vector256 = true;
  1780   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1781   emit_int8(0x6F);
  1782   emit_operand(dst, src);
  1785 void Assembler::vmovdqu(Address dst, XMMRegister src) {
  1786   assert(UseAVX > 0, "");
  1787   InstructionMark im(this);
  1788   bool vector256 = true;
  1789   // swap src<->dst for encoding
  1790   assert(src != xnoreg, "sanity");
  1791   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
  1792   emit_int8(0x7F);
  1793   emit_operand(src, dst);
  1796 // Uses zero extension on 64bit
  1798 void Assembler::movl(Register dst, int32_t imm32) {
  1799   int encode = prefix_and_encode(dst->encoding());
  1800   emit_int8((unsigned char)(0xB8 | encode));
  1801   emit_int32(imm32);
  1804 void Assembler::movl(Register dst, Register src) {
  1805   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1806   emit_int8((unsigned char)0x8B);
  1807   emit_int8((unsigned char)(0xC0 | encode));
  1810 void Assembler::movl(Register dst, Address src) {
  1811   InstructionMark im(this);
  1812   prefix(src, dst);
  1813   emit_int8((unsigned char)0x8B);
  1814   emit_operand(dst, src);
  1817 void Assembler::movl(Address dst, int32_t imm32) {
  1818   InstructionMark im(this);
  1819   prefix(dst);
  1820   emit_int8((unsigned char)0xC7);
  1821   emit_operand(rax, dst, 4);
  1822   emit_int32(imm32);
  1825 void Assembler::movl(Address dst, Register src) {
  1826   InstructionMark im(this);
  1827   prefix(dst, src);
  1828   emit_int8((unsigned char)0x89);
  1829   emit_operand(src, dst);
  1832 // New cpus require to use movsd and movss to avoid partial register stall
  1833 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1834 // The selection is done in MacroAssembler::movdbl() and movflt().
  1835 void Assembler::movlpd(XMMRegister dst, Address src) {
  1836   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1837   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
  1840 void Assembler::movq( MMXRegister dst, Address src ) {
  1841   assert( VM_Version::supports_mmx(), "" );
  1842   emit_int8(0x0F);
  1843   emit_int8(0x6F);
  1844   emit_operand(dst, src);
  1847 void Assembler::movq( Address dst, MMXRegister src ) {
  1848   assert( VM_Version::supports_mmx(), "" );
  1849   emit_int8(0x0F);
  1850   emit_int8(0x7F);
  1851   // workaround gcc (3.2.1-7a) bug
  1852   // In that version of gcc with only an emit_operand(MMX, Address)
  1853   // gcc will tail jump and try and reverse the parameters completely
  1854   // obliterating dst in the process. By having a version available
  1855   // that doesn't need to swap the args at the tail jump the bug is
  1856   // avoided.
  1857   emit_operand(dst, src);
  1860 void Assembler::movq(XMMRegister dst, Address src) {
  1861   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1862   InstructionMark im(this);
  1863   simd_prefix(dst, src, VEX_SIMD_F3);
  1864   emit_int8(0x7E);
  1865   emit_operand(dst, src);
  1868 void Assembler::movq(Address dst, XMMRegister src) {
  1869   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1870   InstructionMark im(this);
  1871   simd_prefix(dst, src, VEX_SIMD_66);
  1872   emit_int8((unsigned char)0xD6);
  1873   emit_operand(src, dst);
  1876 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1877   InstructionMark im(this);
  1878   prefix(src, dst);
  1879   emit_int8(0x0F);
  1880   emit_int8((unsigned char)0xBE);
  1881   emit_operand(dst, src);
  1884 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1885   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1886   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1887   emit_int8(0x0F);
  1888   emit_int8((unsigned char)0xBE);
  1889   emit_int8((unsigned char)(0xC0 | encode));
  1892 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1893   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1894   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
  1897 void Assembler::movsd(XMMRegister dst, Address src) {
  1898   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1899   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
  1902 void Assembler::movsd(Address dst, XMMRegister src) {
  1903   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1904   InstructionMark im(this);
  1905   simd_prefix(dst, src, VEX_SIMD_F2);
  1906   emit_int8(0x11);
  1907   emit_operand(src, dst);
  1910 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1911   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1912   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
  1915 void Assembler::movss(XMMRegister dst, Address src) {
  1916   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1917   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
  1920 void Assembler::movss(Address dst, XMMRegister src) {
  1921   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1922   InstructionMark im(this);
  1923   simd_prefix(dst, src, VEX_SIMD_F3);
  1924   emit_int8(0x11);
  1925   emit_operand(src, dst);
  1928 void Assembler::movswl(Register dst, Address src) { // movsxw
  1929   InstructionMark im(this);
  1930   prefix(src, dst);
  1931   emit_int8(0x0F);
  1932   emit_int8((unsigned char)0xBF);
  1933   emit_operand(dst, src);
  1936 void Assembler::movswl(Register dst, Register src) { // movsxw
  1937   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1938   emit_int8(0x0F);
  1939   emit_int8((unsigned char)0xBF);
  1940   emit_int8((unsigned char)(0xC0 | encode));
  1943 void Assembler::movw(Address dst, int imm16) {
  1944   InstructionMark im(this);
  1946   emit_int8(0x66); // switch to 16-bit mode
  1947   prefix(dst);
  1948   emit_int8((unsigned char)0xC7);
  1949   emit_operand(rax, dst, 2);
  1950   emit_int16(imm16);
  1953 void Assembler::movw(Register dst, Address src) {
  1954   InstructionMark im(this);
  1955   emit_int8(0x66);
  1956   prefix(src, dst);
  1957   emit_int8((unsigned char)0x8B);
  1958   emit_operand(dst, src);
  1961 void Assembler::movw(Address dst, Register src) {
  1962   InstructionMark im(this);
  1963   emit_int8(0x66);
  1964   prefix(dst, src);
  1965   emit_int8((unsigned char)0x89);
  1966   emit_operand(src, dst);
  1969 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1970   InstructionMark im(this);
  1971   prefix(src, dst);
  1972   emit_int8(0x0F);
  1973   emit_int8((unsigned char)0xB6);
  1974   emit_operand(dst, src);
  1977 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1978   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1979   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1980   emit_int8(0x0F);
  1981   emit_int8((unsigned char)0xB6);
  1982   emit_int8(0xC0 | encode);
  1985 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1986   InstructionMark im(this);
  1987   prefix(src, dst);
  1988   emit_int8(0x0F);
  1989   emit_int8((unsigned char)0xB7);
  1990   emit_operand(dst, src);
  1993 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1994   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1995   emit_int8(0x0F);
  1996   emit_int8((unsigned char)0xB7);
  1997   emit_int8(0xC0 | encode);
  2000 void Assembler::mull(Address src) {
  2001   InstructionMark im(this);
  2002   prefix(src);
  2003   emit_int8((unsigned char)0xF7);
  2004   emit_operand(rsp, src);
  2007 void Assembler::mull(Register src) {
  2008   int encode = prefix_and_encode(src->encoding());
  2009   emit_int8((unsigned char)0xF7);
  2010   emit_int8((unsigned char)(0xE0 | encode));
  2013 void Assembler::mulsd(XMMRegister dst, Address src) {
  2014   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2015   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  2018 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  2019   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2020   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  2023 void Assembler::mulss(XMMRegister dst, Address src) {
  2024   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2025   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  2028 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  2029   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2030   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  2033 void Assembler::negl(Register dst) {
  2034   int encode = prefix_and_encode(dst->encoding());
  2035   emit_int8((unsigned char)0xF7);
  2036   emit_int8((unsigned char)(0xD8 | encode));
  2039 void Assembler::nop(int i) {
  2040 #ifdef ASSERT
  2041   assert(i > 0, " ");
  2042   // The fancy nops aren't currently recognized by debuggers making it a
  2043   // pain to disassemble code while debugging. If asserts are on clearly
  2044   // speed is not an issue so simply use the single byte traditional nop
  2045   // to do alignment.
  2047   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
  2048   return;
  2050 #endif // ASSERT
  2052   if (UseAddressNop && VM_Version::is_intel()) {
  2053     //
  2054     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  2055     //  1: 0x90
  2056     //  2: 0x66 0x90
  2057     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2058     //  4: 0x0F 0x1F 0x40 0x00
  2059     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2060     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2061     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2062     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2063     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2064     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2065     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2067     // The rest coding is Intel specific - don't use consecutive address nops
  2069     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2070     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2071     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2072     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2074     while(i >= 15) {
  2075       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2076       i -= 15;
  2077       emit_int8(0x66);   // size prefix
  2078       emit_int8(0x66);   // size prefix
  2079       emit_int8(0x66);   // size prefix
  2080       addr_nop_8();
  2081       emit_int8(0x66);   // size prefix
  2082       emit_int8(0x66);   // size prefix
  2083       emit_int8(0x66);   // size prefix
  2084       emit_int8((unsigned char)0x90);
  2085                          // nop
  2087     switch (i) {
  2088       case 14:
  2089         emit_int8(0x66); // size prefix
  2090       case 13:
  2091         emit_int8(0x66); // size prefix
  2092       case 12:
  2093         addr_nop_8();
  2094         emit_int8(0x66); // size prefix
  2095         emit_int8(0x66); // size prefix
  2096         emit_int8(0x66); // size prefix
  2097         emit_int8((unsigned char)0x90);
  2098                          // nop
  2099         break;
  2100       case 11:
  2101         emit_int8(0x66); // size prefix
  2102       case 10:
  2103         emit_int8(0x66); // size prefix
  2104       case 9:
  2105         emit_int8(0x66); // size prefix
  2106       case 8:
  2107         addr_nop_8();
  2108         break;
  2109       case 7:
  2110         addr_nop_7();
  2111         break;
  2112       case 6:
  2113         emit_int8(0x66); // size prefix
  2114       case 5:
  2115         addr_nop_5();
  2116         break;
  2117       case 4:
  2118         addr_nop_4();
  2119         break;
  2120       case 3:
  2121         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2122         emit_int8(0x66); // size prefix
  2123       case 2:
  2124         emit_int8(0x66); // size prefix
  2125       case 1:
  2126         emit_int8((unsigned char)0x90);
  2127                          // nop
  2128         break;
  2129       default:
  2130         assert(i == 0, " ");
  2132     return;
  2134   if (UseAddressNop && VM_Version::is_amd()) {
  2135     //
  2136     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2137     //  1: 0x90
  2138     //  2: 0x66 0x90
  2139     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2140     //  4: 0x0F 0x1F 0x40 0x00
  2141     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2142     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2143     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2144     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2145     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2146     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2147     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2149     // The rest coding is AMD specific - use consecutive address nops
  2151     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2152     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2153     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2154     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2155     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2156     //     Size prefixes (0x66) are added for larger sizes
  2158     while(i >= 22) {
  2159       i -= 11;
  2160       emit_int8(0x66); // size prefix
  2161       emit_int8(0x66); // size prefix
  2162       emit_int8(0x66); // size prefix
  2163       addr_nop_8();
  2165     // Generate first nop for size between 21-12
  2166     switch (i) {
  2167       case 21:
  2168         i -= 1;
  2169         emit_int8(0x66); // size prefix
  2170       case 20:
  2171       case 19:
  2172         i -= 1;
  2173         emit_int8(0x66); // size prefix
  2174       case 18:
  2175       case 17:
  2176         i -= 1;
  2177         emit_int8(0x66); // size prefix
  2178       case 16:
  2179       case 15:
  2180         i -= 8;
  2181         addr_nop_8();
  2182         break;
  2183       case 14:
  2184       case 13:
  2185         i -= 7;
  2186         addr_nop_7();
  2187         break;
  2188       case 12:
  2189         i -= 6;
  2190         emit_int8(0x66); // size prefix
  2191         addr_nop_5();
  2192         break;
  2193       default:
  2194         assert(i < 12, " ");
  2197     // Generate second nop for size between 11-1
  2198     switch (i) {
  2199       case 11:
  2200         emit_int8(0x66); // size prefix
  2201       case 10:
  2202         emit_int8(0x66); // size prefix
  2203       case 9:
  2204         emit_int8(0x66); // size prefix
  2205       case 8:
  2206         addr_nop_8();
  2207         break;
  2208       case 7:
  2209         addr_nop_7();
  2210         break;
  2211       case 6:
  2212         emit_int8(0x66); // size prefix
  2213       case 5:
  2214         addr_nop_5();
  2215         break;
  2216       case 4:
  2217         addr_nop_4();
  2218         break;
  2219       case 3:
  2220         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2221         emit_int8(0x66); // size prefix
  2222       case 2:
  2223         emit_int8(0x66); // size prefix
  2224       case 1:
  2225         emit_int8((unsigned char)0x90);
  2226                          // nop
  2227         break;
  2228       default:
  2229         assert(i == 0, " ");
  2231     return;
  2234   // Using nops with size prefixes "0x66 0x90".
  2235   // From AMD Optimization Guide:
  2236   //  1: 0x90
  2237   //  2: 0x66 0x90
  2238   //  3: 0x66 0x66 0x90
  2239   //  4: 0x66 0x66 0x66 0x90
  2240   //  5: 0x66 0x66 0x90 0x66 0x90
  2241   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2242   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2243   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2244   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2245   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2246   //
  2247   while(i > 12) {
  2248     i -= 4;
  2249     emit_int8(0x66); // size prefix
  2250     emit_int8(0x66);
  2251     emit_int8(0x66);
  2252     emit_int8((unsigned char)0x90);
  2253                      // nop
  2255   // 1 - 12 nops
  2256   if(i > 8) {
  2257     if(i > 9) {
  2258       i -= 1;
  2259       emit_int8(0x66);
  2261     i -= 3;
  2262     emit_int8(0x66);
  2263     emit_int8(0x66);
  2264     emit_int8((unsigned char)0x90);
  2266   // 1 - 8 nops
  2267   if(i > 4) {
  2268     if(i > 6) {
  2269       i -= 1;
  2270       emit_int8(0x66);
  2272     i -= 3;
  2273     emit_int8(0x66);
  2274     emit_int8(0x66);
  2275     emit_int8((unsigned char)0x90);
  2277   switch (i) {
  2278     case 4:
  2279       emit_int8(0x66);
  2280     case 3:
  2281       emit_int8(0x66);
  2282     case 2:
  2283       emit_int8(0x66);
  2284     case 1:
  2285       emit_int8((unsigned char)0x90);
  2286       break;
  2287     default:
  2288       assert(i == 0, " ");
  2292 void Assembler::notl(Register dst) {
  2293   int encode = prefix_and_encode(dst->encoding());
  2294   emit_int8((unsigned char)0xF7);
  2295   emit_int8((unsigned char)(0xD0 | encode));
  2298 void Assembler::orl(Address dst, int32_t imm32) {
  2299   InstructionMark im(this);
  2300   prefix(dst);
  2301   emit_arith_operand(0x81, rcx, dst, imm32);
  2304 void Assembler::orl(Register dst, int32_t imm32) {
  2305   prefix(dst);
  2306   emit_arith(0x81, 0xC8, dst, imm32);
  2309 void Assembler::orl(Register dst, Address src) {
  2310   InstructionMark im(this);
  2311   prefix(src, dst);
  2312   emit_int8(0x0B);
  2313   emit_operand(dst, src);
  2316 void Assembler::orl(Register dst, Register src) {
  2317   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2318   emit_arith(0x0B, 0xC0, dst, src);
  2321 void Assembler::packuswb(XMMRegister dst, Address src) {
  2322   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2323   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2324   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2327 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2329   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2332 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2333   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  2334   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
  2337 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
  2338   assert(VM_Version::supports_avx2(), "");
  2339   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
  2340   emit_int8(0x00);
  2341   emit_int8(0xC0 | encode);
  2342   emit_int8(imm8);
  2345 void Assembler::pause() {
  2346   emit_int8((unsigned char)0xF3);
  2347   emit_int8((unsigned char)0x90);
  2350 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2351   assert(VM_Version::supports_sse4_2(), "");
  2352   InstructionMark im(this);
  2353   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2354   emit_int8(0x61);
  2355   emit_operand(dst, src);
  2356   emit_int8(imm8);
  2359 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2360   assert(VM_Version::supports_sse4_2(), "");
  2361   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2362   emit_int8(0x61);
  2363   emit_int8((unsigned char)(0xC0 | encode));
  2364   emit_int8(imm8);
  2367 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
  2368   assert(VM_Version::supports_sse4_1(), "");
  2369   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
  2370   emit_int8(0x16);
  2371   emit_int8((unsigned char)(0xC0 | encode));
  2372   emit_int8(imm8);
  2375 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
  2376   assert(VM_Version::supports_sse4_1(), "");
  2377   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
  2378   emit_int8(0x16);
  2379   emit_int8((unsigned char)(0xC0 | encode));
  2380   emit_int8(imm8);
  2383 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
  2384   assert(VM_Version::supports_sse4_1(), "");
  2385   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
  2386   emit_int8(0x22);
  2387   emit_int8((unsigned char)(0xC0 | encode));
  2388   emit_int8(imm8);
  2391 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
  2392   assert(VM_Version::supports_sse4_1(), "");
  2393   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
  2394   emit_int8(0x22);
  2395   emit_int8((unsigned char)(0xC0 | encode));
  2396   emit_int8(imm8);
  2399 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2400   assert(VM_Version::supports_sse4_1(), "");
  2401   InstructionMark im(this);
  2402   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2403   emit_int8(0x30);
  2404   emit_operand(dst, src);
  2407 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2408   assert(VM_Version::supports_sse4_1(), "");
  2409   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2410   emit_int8(0x30);
  2411   emit_int8((unsigned char)(0xC0 | encode));
  2414 // generic
  2415 void Assembler::pop(Register dst) {
  2416   int encode = prefix_and_encode(dst->encoding());
  2417   emit_int8(0x58 | encode);
  2420 void Assembler::popcntl(Register dst, Address src) {
  2421   assert(VM_Version::supports_popcnt(), "must support");
  2422   InstructionMark im(this);
  2423   emit_int8((unsigned char)0xF3);
  2424   prefix(src, dst);
  2425   emit_int8(0x0F);
  2426   emit_int8((unsigned char)0xB8);
  2427   emit_operand(dst, src);
  2430 void Assembler::popcntl(Register dst, Register src) {
  2431   assert(VM_Version::supports_popcnt(), "must support");
  2432   emit_int8((unsigned char)0xF3);
  2433   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2434   emit_int8(0x0F);
  2435   emit_int8((unsigned char)0xB8);
  2436   emit_int8((unsigned char)(0xC0 | encode));
  2439 void Assembler::popf() {
  2440   emit_int8((unsigned char)0x9D);
  2443 #ifndef _LP64 // no 32bit push/pop on amd64
  2444 void Assembler::popl(Address dst) {
  2445   // NOTE: this will adjust stack by 8byte on 64bits
  2446   InstructionMark im(this);
  2447   prefix(dst);
  2448   emit_int8((unsigned char)0x8F);
  2449   emit_operand(rax, dst);
  2451 #endif
  2453 void Assembler::prefetch_prefix(Address src) {
  2454   prefix(src);
  2455   emit_int8(0x0F);
  2458 void Assembler::prefetchnta(Address src) {
  2459   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2460   InstructionMark im(this);
  2461   prefetch_prefix(src);
  2462   emit_int8(0x18);
  2463   emit_operand(rax, src); // 0, src
  2466 void Assembler::prefetchr(Address src) {
  2467   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2468   InstructionMark im(this);
  2469   prefetch_prefix(src);
  2470   emit_int8(0x0D);
  2471   emit_operand(rax, src); // 0, src
  2474 void Assembler::prefetcht0(Address src) {
  2475   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2476   InstructionMark im(this);
  2477   prefetch_prefix(src);
  2478   emit_int8(0x18);
  2479   emit_operand(rcx, src); // 1, src
  2482 void Assembler::prefetcht1(Address src) {
  2483   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2484   InstructionMark im(this);
  2485   prefetch_prefix(src);
  2486   emit_int8(0x18);
  2487   emit_operand(rdx, src); // 2, src
  2490 void Assembler::prefetcht2(Address src) {
  2491   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2492   InstructionMark im(this);
  2493   prefetch_prefix(src);
  2494   emit_int8(0x18);
  2495   emit_operand(rbx, src); // 3, src
  2498 void Assembler::prefetchw(Address src) {
  2499   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2500   InstructionMark im(this);
  2501   prefetch_prefix(src);
  2502   emit_int8(0x0D);
  2503   emit_operand(rcx, src); // 1, src
  2506 void Assembler::prefix(Prefix p) {
  2507   emit_int8(p);
  2510 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
  2511   assert(VM_Version::supports_ssse3(), "");
  2512   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2513   emit_int8(0x00);
  2514   emit_int8((unsigned char)(0xC0 | encode));
  2517 void Assembler::pshufb(XMMRegister dst, Address src) {
  2518   assert(VM_Version::supports_ssse3(), "");
  2519   InstructionMark im(this);
  2520   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2521   emit_int8(0x00);
  2522   emit_operand(dst, src);
  2525 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2526   assert(isByte(mode), "invalid value");
  2527   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2528   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
  2529   emit_int8(mode & 0xFF);
  2533 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2534   assert(isByte(mode), "invalid value");
  2535   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2536   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2537   InstructionMark im(this);
  2538   simd_prefix(dst, src, VEX_SIMD_66);
  2539   emit_int8(0x70);
  2540   emit_operand(dst, src);
  2541   emit_int8(mode & 0xFF);
  2544 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2545   assert(isByte(mode), "invalid value");
  2546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2547   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
  2548   emit_int8(mode & 0xFF);
  2551 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2552   assert(isByte(mode), "invalid value");
  2553   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2554   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2555   InstructionMark im(this);
  2556   simd_prefix(dst, src, VEX_SIMD_F2);
  2557   emit_int8(0x70);
  2558   emit_operand(dst, src);
  2559   emit_int8(mode & 0xFF);
  2562 void Assembler::psrldq(XMMRegister dst, int shift) {
  2563   // Shift 128 bit value in xmm register by number of bytes.
  2564   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2565   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2566   emit_int8(0x73);
  2567   emit_int8((unsigned char)(0xC0 | encode));
  2568   emit_int8(shift);
  2571 void Assembler::ptest(XMMRegister dst, Address src) {
  2572   assert(VM_Version::supports_sse4_1(), "");
  2573   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2574   InstructionMark im(this);
  2575   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2576   emit_int8(0x17);
  2577   emit_operand(dst, src);
  2580 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2581   assert(VM_Version::supports_sse4_1(), "");
  2582   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2583   emit_int8(0x17);
  2584   emit_int8((unsigned char)(0xC0 | encode));
  2587 void Assembler::vptest(XMMRegister dst, Address src) {
  2588   assert(VM_Version::supports_avx(), "");
  2589   InstructionMark im(this);
  2590   bool vector256 = true;
  2591   assert(dst != xnoreg, "sanity");
  2592   int dst_enc = dst->encoding();
  2593   // swap src<->dst for encoding
  2594   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  2595   emit_int8(0x17);
  2596   emit_operand(dst, src);
  2599 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
  2600   assert(VM_Version::supports_avx(), "");
  2601   bool vector256 = true;
  2602   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  2603   emit_int8(0x17);
  2604   emit_int8((unsigned char)(0xC0 | encode));
  2607 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2608   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2609   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2610   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2613 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2615   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2618 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2619   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2620   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2621   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2624 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2625   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2626   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2629 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  2630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2631   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
  2634 void Assembler::push(int32_t imm32) {
  2635   // in 64bits we push 64bits onto the stack but only
  2636   // take a 32bit immediate
  2637   emit_int8(0x68);
  2638   emit_int32(imm32);
  2641 void Assembler::push(Register src) {
  2642   int encode = prefix_and_encode(src->encoding());
  2644   emit_int8(0x50 | encode);
  2647 void Assembler::pushf() {
  2648   emit_int8((unsigned char)0x9C);
  2651 #ifndef _LP64 // no 32bit push/pop on amd64
  2652 void Assembler::pushl(Address src) {
  2653   // Note this will push 64bit on 64bit
  2654   InstructionMark im(this);
  2655   prefix(src);
  2656   emit_int8((unsigned char)0xFF);
  2657   emit_operand(rsi, src);
  2659 #endif
  2661 void Assembler::rcll(Register dst, int imm8) {
  2662   assert(isShiftCount(imm8), "illegal shift count");
  2663   int encode = prefix_and_encode(dst->encoding());
  2664   if (imm8 == 1) {
  2665     emit_int8((unsigned char)0xD1);
  2666     emit_int8((unsigned char)(0xD0 | encode));
  2667   } else {
  2668     emit_int8((unsigned char)0xC1);
  2669     emit_int8((unsigned char)0xD0 | encode);
  2670     emit_int8(imm8);
  2674 void Assembler::rdtsc() {
  2675   emit_int8((unsigned char)0x0F);
  2676   emit_int8((unsigned char)0x31);
  2679 // copies data from [esi] to [edi] using rcx pointer sized words
  2680 // generic
  2681 void Assembler::rep_mov() {
  2682   emit_int8((unsigned char)0xF3);
  2683   // MOVSQ
  2684   LP64_ONLY(prefix(REX_W));
  2685   emit_int8((unsigned char)0xA5);
  2688 // sets rcx bytes with rax, value at [edi]
  2689 void Assembler::rep_stosb() {
  2690   emit_int8((unsigned char)0xF3); // REP
  2691   LP64_ONLY(prefix(REX_W));
  2692   emit_int8((unsigned char)0xAA); // STOSB
  2695 // sets rcx pointer sized words with rax, value at [edi]
  2696 // generic
  2697 void Assembler::rep_stos() {
  2698   emit_int8((unsigned char)0xF3); // REP
  2699   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
  2700   emit_int8((unsigned char)0xAB);
  2703 // scans rcx pointer sized words at [edi] for occurance of rax,
  2704 // generic
  2705 void Assembler::repne_scan() { // repne_scan
  2706   emit_int8((unsigned char)0xF2);
  2707   // SCASQ
  2708   LP64_ONLY(prefix(REX_W));
  2709   emit_int8((unsigned char)0xAF);
  2712 #ifdef _LP64
  2713 // scans rcx 4 byte words at [edi] for occurance of rax,
  2714 // generic
  2715 void Assembler::repne_scanl() { // repne_scan
  2716   emit_int8((unsigned char)0xF2);
  2717   // SCASL
  2718   emit_int8((unsigned char)0xAF);
  2720 #endif
  2722 void Assembler::ret(int imm16) {
  2723   if (imm16 == 0) {
  2724     emit_int8((unsigned char)0xC3);
  2725   } else {
  2726     emit_int8((unsigned char)0xC2);
  2727     emit_int16(imm16);
  2731 void Assembler::sahf() {
  2732 #ifdef _LP64
  2733   // Not supported in 64bit mode
  2734   ShouldNotReachHere();
  2735 #endif
  2736   emit_int8((unsigned char)0x9E);
  2739 void Assembler::sarl(Register dst, int imm8) {
  2740   int encode = prefix_and_encode(dst->encoding());
  2741   assert(isShiftCount(imm8), "illegal shift count");
  2742   if (imm8 == 1) {
  2743     emit_int8((unsigned char)0xD1);
  2744     emit_int8((unsigned char)(0xF8 | encode));
  2745   } else {
  2746     emit_int8((unsigned char)0xC1);
  2747     emit_int8((unsigned char)(0xF8 | encode));
  2748     emit_int8(imm8);
  2752 void Assembler::sarl(Register dst) {
  2753   int encode = prefix_and_encode(dst->encoding());
  2754   emit_int8((unsigned char)0xD3);
  2755   emit_int8((unsigned char)(0xF8 | encode));
  2758 void Assembler::sbbl(Address dst, int32_t imm32) {
  2759   InstructionMark im(this);
  2760   prefix(dst);
  2761   emit_arith_operand(0x81, rbx, dst, imm32);
  2764 void Assembler::sbbl(Register dst, int32_t imm32) {
  2765   prefix(dst);
  2766   emit_arith(0x81, 0xD8, dst, imm32);
  2770 void Assembler::sbbl(Register dst, Address src) {
  2771   InstructionMark im(this);
  2772   prefix(src, dst);
  2773   emit_int8(0x1B);
  2774   emit_operand(dst, src);
  2777 void Assembler::sbbl(Register dst, Register src) {
  2778   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2779   emit_arith(0x1B, 0xC0, dst, src);
  2782 void Assembler::setb(Condition cc, Register dst) {
  2783   assert(0 <= cc && cc < 16, "illegal cc");
  2784   int encode = prefix_and_encode(dst->encoding(), true);
  2785   emit_int8(0x0F);
  2786   emit_int8((unsigned char)0x90 | cc);
  2787   emit_int8((unsigned char)(0xC0 | encode));
  2790 void Assembler::shll(Register dst, int imm8) {
  2791   assert(isShiftCount(imm8), "illegal shift count");
  2792   int encode = prefix_and_encode(dst->encoding());
  2793   if (imm8 == 1 ) {
  2794     emit_int8((unsigned char)0xD1);
  2795     emit_int8((unsigned char)(0xE0 | encode));
  2796   } else {
  2797     emit_int8((unsigned char)0xC1);
  2798     emit_int8((unsigned char)(0xE0 | encode));
  2799     emit_int8(imm8);
  2803 void Assembler::shll(Register dst) {
  2804   int encode = prefix_and_encode(dst->encoding());
  2805   emit_int8((unsigned char)0xD3);
  2806   emit_int8((unsigned char)(0xE0 | encode));
  2809 void Assembler::shrl(Register dst, int imm8) {
  2810   assert(isShiftCount(imm8), "illegal shift count");
  2811   int encode = prefix_and_encode(dst->encoding());
  2812   emit_int8((unsigned char)0xC1);
  2813   emit_int8((unsigned char)(0xE8 | encode));
  2814   emit_int8(imm8);
  2817 void Assembler::shrl(Register dst) {
  2818   int encode = prefix_and_encode(dst->encoding());
  2819   emit_int8((unsigned char)0xD3);
  2820   emit_int8((unsigned char)(0xE8 | encode));
  2823 // copies a single word from [esi] to [edi]
  2824 void Assembler::smovl() {
  2825   emit_int8((unsigned char)0xA5);
  2828 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2829   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2830   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2833 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2834   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2835   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2838 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2839   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2840   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2843 void Assembler::std() {
  2844   emit_int8((unsigned char)0xFD);
  2847 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2848   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2849   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2852 void Assembler::stmxcsr( Address dst) {
  2853   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2854   InstructionMark im(this);
  2855   prefix(dst);
  2856   emit_int8(0x0F);
  2857   emit_int8((unsigned char)0xAE);
  2858   emit_operand(as_Register(3), dst);
  2861 void Assembler::subl(Address dst, int32_t imm32) {
  2862   InstructionMark im(this);
  2863   prefix(dst);
  2864   emit_arith_operand(0x81, rbp, dst, imm32);
  2867 void Assembler::subl(Address dst, Register src) {
  2868   InstructionMark im(this);
  2869   prefix(dst, src);
  2870   emit_int8(0x29);
  2871   emit_operand(src, dst);
  2874 void Assembler::subl(Register dst, int32_t imm32) {
  2875   prefix(dst);
  2876   emit_arith(0x81, 0xE8, dst, imm32);
  2879 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2880 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2881   prefix(dst);
  2882   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2885 void Assembler::subl(Register dst, Address src) {
  2886   InstructionMark im(this);
  2887   prefix(src, dst);
  2888   emit_int8(0x2B);
  2889   emit_operand(dst, src);
  2892 void Assembler::subl(Register dst, Register src) {
  2893   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2894   emit_arith(0x2B, 0xC0, dst, src);
  2897 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2898   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2899   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2902 void Assembler::subsd(XMMRegister dst, Address src) {
  2903   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2904   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2907 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2908   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2909   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2912 void Assembler::subss(XMMRegister dst, Address src) {
  2913   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2914   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2917 void Assembler::testb(Register dst, int imm8) {
  2918   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2919   (void) prefix_and_encode(dst->encoding(), true);
  2920   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2923 void Assembler::testl(Register dst, int32_t imm32) {
  2924   // not using emit_arith because test
  2925   // doesn't support sign-extension of
  2926   // 8bit operands
  2927   int encode = dst->encoding();
  2928   if (encode == 0) {
  2929     emit_int8((unsigned char)0xA9);
  2930   } else {
  2931     encode = prefix_and_encode(encode);
  2932     emit_int8((unsigned char)0xF7);
  2933     emit_int8((unsigned char)(0xC0 | encode));
  2935   emit_int32(imm32);
  2938 void Assembler::testl(Register dst, Register src) {
  2939   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2940   emit_arith(0x85, 0xC0, dst, src);
  2943 void Assembler::testl(Register dst, Address  src) {
  2944   InstructionMark im(this);
  2945   prefix(src, dst);
  2946   emit_int8((unsigned char)0x85);
  2947   emit_operand(dst, src);
  2950 void Assembler::tzcntl(Register dst, Register src) {
  2951   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
  2952   emit_int8((unsigned char)0xF3);
  2953   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2954   emit_int8(0x0F);
  2955   emit_int8((unsigned char)0xBC);
  2956   emit_int8((unsigned char)0xC0 | encode);
  2959 void Assembler::tzcntq(Register dst, Register src) {
  2960   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
  2961   emit_int8((unsigned char)0xF3);
  2962   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2963   emit_int8(0x0F);
  2964   emit_int8((unsigned char)0xBC);
  2965   emit_int8((unsigned char)(0xC0 | encode));
  2968 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2969   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2970   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2973 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2974   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2975   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2978 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2979   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2980   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2983 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2984   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2985   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2988 void Assembler::xabort(int8_t imm8) {
  2989   emit_int8((unsigned char)0xC6);
  2990   emit_int8((unsigned char)0xF8);
  2991   emit_int8((unsigned char)(imm8 & 0xFF));
  2994 void Assembler::xaddl(Address dst, Register src) {
  2995   InstructionMark im(this);
  2996   prefix(dst, src);
  2997   emit_int8(0x0F);
  2998   emit_int8((unsigned char)0xC1);
  2999   emit_operand(src, dst);
  3002 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
  3003   InstructionMark im(this);
  3004   relocate(rtype);
  3005   if (abort.is_bound()) {
  3006     address entry = target(abort);
  3007     assert(entry != NULL, "abort entry NULL");
  3008     intptr_t offset = entry - pc();
  3009     emit_int8((unsigned char)0xC7);
  3010     emit_int8((unsigned char)0xF8);
  3011     emit_int32(offset - 6); // 2 opcode + 4 address
  3012   } else {
  3013     abort.add_patch_at(code(), locator());
  3014     emit_int8((unsigned char)0xC7);
  3015     emit_int8((unsigned char)0xF8);
  3016     emit_int32(0);
  3020 void Assembler::xchgl(Register dst, Address src) { // xchg
  3021   InstructionMark im(this);
  3022   prefix(src, dst);
  3023   emit_int8((unsigned char)0x87);
  3024   emit_operand(dst, src);
  3027 void Assembler::xchgl(Register dst, Register src) {
  3028   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3029   emit_int8((unsigned char)0x87);
  3030   emit_int8((unsigned char)(0xC0 | encode));
  3033 void Assembler::xend() {
  3034   emit_int8((unsigned char)0x0F);
  3035   emit_int8((unsigned char)0x01);
  3036   emit_int8((unsigned char)0xD5);
  3039 void Assembler::xgetbv() {
  3040   emit_int8(0x0F);
  3041   emit_int8(0x01);
  3042   emit_int8((unsigned char)0xD0);
  3045 void Assembler::xorl(Register dst, int32_t imm32) {
  3046   prefix(dst);
  3047   emit_arith(0x81, 0xF0, dst, imm32);
  3050 void Assembler::xorl(Register dst, Address src) {
  3051   InstructionMark im(this);
  3052   prefix(src, dst);
  3053   emit_int8(0x33);
  3054   emit_operand(dst, src);
  3057 void Assembler::xorl(Register dst, Register src) {
  3058   (void) prefix_and_encode(dst->encoding(), src->encoding());
  3059   emit_arith(0x33, 0xC0, dst, src);
  3063 // AVX 3-operands scalar float-point arithmetic instructions
  3065 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  3066   assert(VM_Version::supports_avx(), "");
  3067   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3070 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3071   assert(VM_Version::supports_avx(), "");
  3072   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3075 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  3076   assert(VM_Version::supports_avx(), "");
  3077   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3080 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3081   assert(VM_Version::supports_avx(), "");
  3082   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3085 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  3086   assert(VM_Version::supports_avx(), "");
  3087   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3090 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3091   assert(VM_Version::supports_avx(), "");
  3092   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3095 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  3096   assert(VM_Version::supports_avx(), "");
  3097   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3100 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3101   assert(VM_Version::supports_avx(), "");
  3102   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3105 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  3106   assert(VM_Version::supports_avx(), "");
  3107   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3110 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3111   assert(VM_Version::supports_avx(), "");
  3112   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3115 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  3116   assert(VM_Version::supports_avx(), "");
  3117   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3120 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3121   assert(VM_Version::supports_avx(), "");
  3122   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3125 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  3126   assert(VM_Version::supports_avx(), "");
  3127   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3130 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3131   assert(VM_Version::supports_avx(), "");
  3132   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3135 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  3136   assert(VM_Version::supports_avx(), "");
  3137   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3140 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3141   assert(VM_Version::supports_avx(), "");
  3142   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3145 //====================VECTOR ARITHMETIC=====================================
  3147 // Float-point vector arithmetic
  3149 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  3150   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3151   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
  3154 void Assembler::addps(XMMRegister dst, XMMRegister src) {
  3155   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3156   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
  3159 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3160   assert(VM_Version::supports_avx(), "");
  3161   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  3164 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3165   assert(VM_Version::supports_avx(), "");
  3166   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  3169 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3170   assert(VM_Version::supports_avx(), "");
  3171   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  3174 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3175   assert(VM_Version::supports_avx(), "");
  3176   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  3179 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  3180   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3181   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
  3184 void Assembler::subps(XMMRegister dst, XMMRegister src) {
  3185   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3186   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
  3189 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3190   assert(VM_Version::supports_avx(), "");
  3191   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  3194 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3195   assert(VM_Version::supports_avx(), "");
  3196   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  3199 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3200   assert(VM_Version::supports_avx(), "");
  3201   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  3204 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3205   assert(VM_Version::supports_avx(), "");
  3206   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  3209 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  3210   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3211   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
  3214 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  3215   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3216   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
  3219 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3220   assert(VM_Version::supports_avx(), "");
  3221   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3224 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3225   assert(VM_Version::supports_avx(), "");
  3226   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3229 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3230   assert(VM_Version::supports_avx(), "");
  3231   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3234 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3235   assert(VM_Version::supports_avx(), "");
  3236   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3239 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  3240   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3241   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
  3244 void Assembler::divps(XMMRegister dst, XMMRegister src) {
  3245   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3246   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
  3249 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3250   assert(VM_Version::supports_avx(), "");
  3251   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3254 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3255   assert(VM_Version::supports_avx(), "");
  3256   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3259 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3260   assert(VM_Version::supports_avx(), "");
  3261   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3264 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3265   assert(VM_Version::supports_avx(), "");
  3266   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3269 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  3270   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3271   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3274 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  3275   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3276   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3279 void Assembler::andps(XMMRegister dst, Address src) {
  3280   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3281   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3284 void Assembler::andpd(XMMRegister dst, Address src) {
  3285   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3286   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3289 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3290   assert(VM_Version::supports_avx(), "");
  3291   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3294 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3295   assert(VM_Version::supports_avx(), "");
  3296   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3299 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3300   assert(VM_Version::supports_avx(), "");
  3301   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3304 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3305   assert(VM_Version::supports_avx(), "");
  3306   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3309 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  3310   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3311   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3314 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3315   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3316   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3319 void Assembler::xorpd(XMMRegister dst, Address src) {
  3320   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3321   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3324 void Assembler::xorps(XMMRegister dst, Address src) {
  3325   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3326   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3329 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3330   assert(VM_Version::supports_avx(), "");
  3331   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3334 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3335   assert(VM_Version::supports_avx(), "");
  3336   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3339 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3340   assert(VM_Version::supports_avx(), "");
  3341   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3344 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3345   assert(VM_Version::supports_avx(), "");
  3346   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3350 // Integer vector arithmetic
  3351 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  3352   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3353   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
  3356 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  3357   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3358   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
  3361 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  3362   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3363   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
  3366 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  3367   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3368   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
  3371 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3372   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3373   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3376 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3377   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3378   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3381 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3382   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3383   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3386 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3387   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3388   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3391 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3392   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3393   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3396 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3397   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3398   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3401 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3402   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3403   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3406 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3407   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3408   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3411 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  3412   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3413   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
  3416 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  3417   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3418   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
  3421 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  3422   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3423   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
  3426 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  3427   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3428   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
  3431 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3432   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3433   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3436 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3437   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3438   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3441 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3442   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3443   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3446 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3447   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3448   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3451 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3452   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3453   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3456 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3457   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3458   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3461 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3462   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3463   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3466 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3467   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3468   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3471 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  3472   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3473   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
  3476 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  3477   assert(VM_Version::supports_sse4_1(), "");
  3478   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  3479   emit_int8(0x40);
  3480   emit_int8((unsigned char)(0xC0 | encode));
  3483 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3484   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3485   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3488 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3489   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3490   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3491   emit_int8(0x40);
  3492   emit_int8((unsigned char)(0xC0 | encode));
  3495 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3496   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3497   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3500 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3501   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3502   InstructionMark im(this);
  3503   int dst_enc = dst->encoding();
  3504   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3505   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  3506   emit_int8(0x40);
  3507   emit_operand(dst, src);
  3510 // Shift packed integers left by specified number of bits.
  3511 void Assembler::psllw(XMMRegister dst, int shift) {
  3512   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3513   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3514   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3515   emit_int8(0x71);
  3516   emit_int8((unsigned char)(0xC0 | encode));
  3517   emit_int8(shift & 0xFF);
  3520 void Assembler::pslld(XMMRegister dst, int shift) {
  3521   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3522   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3523   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3524   emit_int8(0x72);
  3525   emit_int8((unsigned char)(0xC0 | encode));
  3526   emit_int8(shift & 0xFF);
  3529 void Assembler::psllq(XMMRegister dst, int shift) {
  3530   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3531   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3532   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3533   emit_int8(0x73);
  3534   emit_int8((unsigned char)(0xC0 | encode));
  3535   emit_int8(shift & 0xFF);
  3538 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  3539   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3540   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
  3543 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  3544   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3545   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
  3548 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  3549   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3550   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
  3553 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3554   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3555   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3556   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
  3557   emit_int8(shift & 0xFF);
  3560 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3561   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3562   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3563   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
  3564   emit_int8(shift & 0xFF);
  3567 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3568   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3569   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3570   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
  3571   emit_int8(shift & 0xFF);
  3574 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3575   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3576   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
  3579 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3580   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3581   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
  3584 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3585   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3586   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
  3589 // Shift packed integers logically right by specified number of bits.
  3590 void Assembler::psrlw(XMMRegister dst, int shift) {
  3591   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3592   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  3593   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3594   emit_int8(0x71);
  3595   emit_int8((unsigned char)(0xC0 | encode));
  3596   emit_int8(shift & 0xFF);
  3599 void Assembler::psrld(XMMRegister dst, int shift) {
  3600   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3601   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  3602   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3603   emit_int8(0x72);
  3604   emit_int8((unsigned char)(0xC0 | encode));
  3605   emit_int8(shift & 0xFF);
  3608 void Assembler::psrlq(XMMRegister dst, int shift) {
  3609   // Do not confuse it with psrldq SSE2 instruction which
  3610   // shifts 128 bit value in xmm register by number of bytes.
  3611   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3612   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3613   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3614   emit_int8(0x73);
  3615   emit_int8((unsigned char)(0xC0 | encode));
  3616   emit_int8(shift & 0xFF);
  3619 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  3620   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3621   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
  3624 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  3625   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3626   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
  3629 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  3630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3631   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
  3634 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3635   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3636   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3637   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
  3638   emit_int8(shift & 0xFF);
  3641 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3642   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3643   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3644   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
  3645   emit_int8(shift & 0xFF);
  3648 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3649   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3650   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3651   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
  3652   emit_int8(shift & 0xFF);
  3655 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3656   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3657   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
  3660 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3661   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3662   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
  3665 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3666   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3667   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
  3670 // Shift packed integers arithmetically right by specified number of bits.
  3671 void Assembler::psraw(XMMRegister dst, int shift) {
  3672   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3673   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3674   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3675   emit_int8(0x71);
  3676   emit_int8((unsigned char)(0xC0 | encode));
  3677   emit_int8(shift & 0xFF);
  3680 void Assembler::psrad(XMMRegister dst, int shift) {
  3681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3682   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  3683   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3684   emit_int8(0x72);
  3685   emit_int8((unsigned char)(0xC0 | encode));
  3686   emit_int8(shift & 0xFF);
  3689 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  3690   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3691   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
  3694 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  3695   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3696   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
  3699 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3700   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3701   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3702   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
  3703   emit_int8(shift & 0xFF);
  3706 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3707   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3708   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3709   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
  3710   emit_int8(shift & 0xFF);
  3713 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3714   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3715   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
  3718 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3719   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3720   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
  3724 // AND packed integers
  3725 void Assembler::pand(XMMRegister dst, XMMRegister src) {
  3726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3727   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
  3730 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3731   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3732   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3735 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3736   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3737   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3740 void Assembler::por(XMMRegister dst, XMMRegister src) {
  3741   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3742   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
  3745 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3746   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3747   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3750 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3751   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3752   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3755 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  3756   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3757   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
  3760 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3761   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3762   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3765 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3766   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3767   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3771 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3772   assert(VM_Version::supports_avx(), "");
  3773   bool vector256 = true;
  3774   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3775   emit_int8(0x18);
  3776   emit_int8((unsigned char)(0xC0 | encode));
  3777   // 0x00 - insert into lower 128 bits
  3778   // 0x01 - insert into upper 128 bits
  3779   emit_int8(0x01);
  3782 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
  3783   assert(VM_Version::supports_avx(), "");
  3784   InstructionMark im(this);
  3785   bool vector256 = true;
  3786   assert(dst != xnoreg, "sanity");
  3787   int dst_enc = dst->encoding();
  3788   // swap src<->dst for encoding
  3789   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3790   emit_int8(0x18);
  3791   emit_operand(dst, src);
  3792   // 0x01 - insert into upper 128 bits
  3793   emit_int8(0x01);
  3796 void Assembler::vextractf128h(Address dst, XMMRegister src) {
  3797   assert(VM_Version::supports_avx(), "");
  3798   InstructionMark im(this);
  3799   bool vector256 = true;
  3800   assert(src != xnoreg, "sanity");
  3801   int src_enc = src->encoding();
  3802   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3803   emit_int8(0x19);
  3804   emit_operand(src, dst);
  3805   // 0x01 - extract from upper 128 bits
  3806   emit_int8(0x01);
  3809 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3810   assert(VM_Version::supports_avx2(), "");
  3811   bool vector256 = true;
  3812   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3813   emit_int8(0x38);
  3814   emit_int8((unsigned char)(0xC0 | encode));
  3815   // 0x00 - insert into lower 128 bits
  3816   // 0x01 - insert into upper 128 bits
  3817   emit_int8(0x01);
  3820 void Assembler::vinserti128h(XMMRegister dst, Address src) {
  3821   assert(VM_Version::supports_avx2(), "");
  3822   InstructionMark im(this);
  3823   bool vector256 = true;
  3824   assert(dst != xnoreg, "sanity");
  3825   int dst_enc = dst->encoding();
  3826   // swap src<->dst for encoding
  3827   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3828   emit_int8(0x38);
  3829   emit_operand(dst, src);
  3830   // 0x01 - insert into upper 128 bits
  3831   emit_int8(0x01);
  3834 void Assembler::vextracti128h(Address dst, XMMRegister src) {
  3835   assert(VM_Version::supports_avx2(), "");
  3836   InstructionMark im(this);
  3837   bool vector256 = true;
  3838   assert(src != xnoreg, "sanity");
  3839   int src_enc = src->encoding();
  3840   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3841   emit_int8(0x39);
  3842   emit_operand(src, dst);
  3843   // 0x01 - extract from upper 128 bits
  3844   emit_int8(0x01);
  3847 // duplicate 4-bytes integer data from src into 8 locations in dest
  3848 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
  3849   assert(VM_Version::supports_avx2(), "");
  3850   bool vector256 = true;
  3851   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3852   emit_int8(0x58);
  3853   emit_int8((unsigned char)(0xC0 | encode));
  3856 // Carry-Less Multiplication Quadword
  3857 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
  3858   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
  3859   bool vector256 = false;
  3860   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3861   emit_int8(0x44);
  3862   emit_int8((unsigned char)(0xC0 | encode));
  3863   emit_int8((unsigned char)mask);
  3866 void Assembler::vzeroupper() {
  3867   assert(VM_Version::supports_avx(), "");
  3868   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
  3869   emit_int8(0x77);
  3873 #ifndef _LP64
  3874 // 32bit only pieces of the assembler
  3876 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3877   // NO PREFIX AS NEVER 64BIT
  3878   InstructionMark im(this);
  3879   emit_int8((unsigned char)0x81);
  3880   emit_int8((unsigned char)(0xF8 | src1->encoding()));
  3881   emit_data(imm32, rspec, 0);
  3884 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3885   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3886   InstructionMark im(this);
  3887   emit_int8((unsigned char)0x81);
  3888   emit_operand(rdi, src1);
  3889   emit_data(imm32, rspec, 0);
  3892 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3893 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3894 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3895 void Assembler::cmpxchg8(Address adr) {
  3896   InstructionMark im(this);
  3897   emit_int8(0x0F);
  3898   emit_int8((unsigned char)0xC7);
  3899   emit_operand(rcx, adr);
  3902 void Assembler::decl(Register dst) {
  3903   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3904  emit_int8(0x48 | dst->encoding());
  3907 #endif // _LP64
  3909 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3911 void Assembler::fabs() {
  3912   emit_int8((unsigned char)0xD9);
  3913   emit_int8((unsigned char)0xE1);
  3916 void Assembler::fadd(int i) {
  3917   emit_farith(0xD8, 0xC0, i);
  3920 void Assembler::fadd_d(Address src) {
  3921   InstructionMark im(this);
  3922   emit_int8((unsigned char)0xDC);
  3923   emit_operand32(rax, src);
  3926 void Assembler::fadd_s(Address src) {
  3927   InstructionMark im(this);
  3928   emit_int8((unsigned char)0xD8);
  3929   emit_operand32(rax, src);
  3932 void Assembler::fadda(int i) {
  3933   emit_farith(0xDC, 0xC0, i);
  3936 void Assembler::faddp(int i) {
  3937   emit_farith(0xDE, 0xC0, i);
  3940 void Assembler::fchs() {
  3941   emit_int8((unsigned char)0xD9);
  3942   emit_int8((unsigned char)0xE0);
  3945 void Assembler::fcom(int i) {
  3946   emit_farith(0xD8, 0xD0, i);
  3949 void Assembler::fcomp(int i) {
  3950   emit_farith(0xD8, 0xD8, i);
  3953 void Assembler::fcomp_d(Address src) {
  3954   InstructionMark im(this);
  3955   emit_int8((unsigned char)0xDC);
  3956   emit_operand32(rbx, src);
  3959 void Assembler::fcomp_s(Address src) {
  3960   InstructionMark im(this);
  3961   emit_int8((unsigned char)0xD8);
  3962   emit_operand32(rbx, src);
  3965 void Assembler::fcompp() {
  3966   emit_int8((unsigned char)0xDE);
  3967   emit_int8((unsigned char)0xD9);
  3970 void Assembler::fcos() {
  3971   emit_int8((unsigned char)0xD9);
  3972   emit_int8((unsigned char)0xFF);
  3975 void Assembler::fdecstp() {
  3976   emit_int8((unsigned char)0xD9);
  3977   emit_int8((unsigned char)0xF6);
  3980 void Assembler::fdiv(int i) {
  3981   emit_farith(0xD8, 0xF0, i);
  3984 void Assembler::fdiv_d(Address src) {
  3985   InstructionMark im(this);
  3986   emit_int8((unsigned char)0xDC);
  3987   emit_operand32(rsi, src);
  3990 void Assembler::fdiv_s(Address src) {
  3991   InstructionMark im(this);
  3992   emit_int8((unsigned char)0xD8);
  3993   emit_operand32(rsi, src);
  3996 void Assembler::fdiva(int i) {
  3997   emit_farith(0xDC, 0xF8, i);
  4000 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  4001 //       is erroneous for some of the floating-point instructions below.
  4003 void Assembler::fdivp(int i) {
  4004   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  4007 void Assembler::fdivr(int i) {
  4008   emit_farith(0xD8, 0xF8, i);
  4011 void Assembler::fdivr_d(Address src) {
  4012   InstructionMark im(this);
  4013   emit_int8((unsigned char)0xDC);
  4014   emit_operand32(rdi, src);
  4017 void Assembler::fdivr_s(Address src) {
  4018   InstructionMark im(this);
  4019   emit_int8((unsigned char)0xD8);
  4020   emit_operand32(rdi, src);
  4023 void Assembler::fdivra(int i) {
  4024   emit_farith(0xDC, 0xF0, i);
  4027 void Assembler::fdivrp(int i) {
  4028   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  4031 void Assembler::ffree(int i) {
  4032   emit_farith(0xDD, 0xC0, i);
  4035 void Assembler::fild_d(Address adr) {
  4036   InstructionMark im(this);
  4037   emit_int8((unsigned char)0xDF);
  4038   emit_operand32(rbp, adr);
  4041 void Assembler::fild_s(Address adr) {
  4042   InstructionMark im(this);
  4043   emit_int8((unsigned char)0xDB);
  4044   emit_operand32(rax, adr);
  4047 void Assembler::fincstp() {
  4048   emit_int8((unsigned char)0xD9);
  4049   emit_int8((unsigned char)0xF7);
  4052 void Assembler::finit() {
  4053   emit_int8((unsigned char)0x9B);
  4054   emit_int8((unsigned char)0xDB);
  4055   emit_int8((unsigned char)0xE3);
  4058 void Assembler::fist_s(Address adr) {
  4059   InstructionMark im(this);
  4060   emit_int8((unsigned char)0xDB);
  4061   emit_operand32(rdx, adr);
  4064 void Assembler::fistp_d(Address adr) {
  4065   InstructionMark im(this);
  4066   emit_int8((unsigned char)0xDF);
  4067   emit_operand32(rdi, adr);
  4070 void Assembler::fistp_s(Address adr) {
  4071   InstructionMark im(this);
  4072   emit_int8((unsigned char)0xDB);
  4073   emit_operand32(rbx, adr);
  4076 void Assembler::fld1() {
  4077   emit_int8((unsigned char)0xD9);
  4078   emit_int8((unsigned char)0xE8);
  4081 void Assembler::fld_d(Address adr) {
  4082   InstructionMark im(this);
  4083   emit_int8((unsigned char)0xDD);
  4084   emit_operand32(rax, adr);
  4087 void Assembler::fld_s(Address adr) {
  4088   InstructionMark im(this);
  4089   emit_int8((unsigned char)0xD9);
  4090   emit_operand32(rax, adr);
  4094 void Assembler::fld_s(int index) {
  4095   emit_farith(0xD9, 0xC0, index);
  4098 void Assembler::fld_x(Address adr) {
  4099   InstructionMark im(this);
  4100   emit_int8((unsigned char)0xDB);
  4101   emit_operand32(rbp, adr);
  4104 void Assembler::fldcw(Address src) {
  4105   InstructionMark im(this);
  4106   emit_int8((unsigned char)0xD9);
  4107   emit_operand32(rbp, src);
  4110 void Assembler::fldenv(Address src) {
  4111   InstructionMark im(this);
  4112   emit_int8((unsigned char)0xD9);
  4113   emit_operand32(rsp, src);
  4116 void Assembler::fldlg2() {
  4117   emit_int8((unsigned char)0xD9);
  4118   emit_int8((unsigned char)0xEC);
  4121 void Assembler::fldln2() {
  4122   emit_int8((unsigned char)0xD9);
  4123   emit_int8((unsigned char)0xED);
  4126 void Assembler::fldz() {
  4127   emit_int8((unsigned char)0xD9);
  4128   emit_int8((unsigned char)0xEE);
  4131 void Assembler::flog() {
  4132   fldln2();
  4133   fxch();
  4134   fyl2x();
  4137 void Assembler::flog10() {
  4138   fldlg2();
  4139   fxch();
  4140   fyl2x();
  4143 void Assembler::fmul(int i) {
  4144   emit_farith(0xD8, 0xC8, i);
  4147 void Assembler::fmul_d(Address src) {
  4148   InstructionMark im(this);
  4149   emit_int8((unsigned char)0xDC);
  4150   emit_operand32(rcx, src);
  4153 void Assembler::fmul_s(Address src) {
  4154   InstructionMark im(this);
  4155   emit_int8((unsigned char)0xD8);
  4156   emit_operand32(rcx, src);
  4159 void Assembler::fmula(int i) {
  4160   emit_farith(0xDC, 0xC8, i);
  4163 void Assembler::fmulp(int i) {
  4164   emit_farith(0xDE, 0xC8, i);
  4167 void Assembler::fnsave(Address dst) {
  4168   InstructionMark im(this);
  4169   emit_int8((unsigned char)0xDD);
  4170   emit_operand32(rsi, dst);
  4173 void Assembler::fnstcw(Address src) {
  4174   InstructionMark im(this);
  4175   emit_int8((unsigned char)0x9B);
  4176   emit_int8((unsigned char)0xD9);
  4177   emit_operand32(rdi, src);
  4180 void Assembler::fnstsw_ax() {
  4181   emit_int8((unsigned char)0xDF);
  4182   emit_int8((unsigned char)0xE0);
  4185 void Assembler::fprem() {
  4186   emit_int8((unsigned char)0xD9);
  4187   emit_int8((unsigned char)0xF8);
  4190 void Assembler::fprem1() {
  4191   emit_int8((unsigned char)0xD9);
  4192   emit_int8((unsigned char)0xF5);
  4195 void Assembler::frstor(Address src) {
  4196   InstructionMark im(this);
  4197   emit_int8((unsigned char)0xDD);
  4198   emit_operand32(rsp, src);
  4201 void Assembler::fsin() {
  4202   emit_int8((unsigned char)0xD9);
  4203   emit_int8((unsigned char)0xFE);
  4206 void Assembler::fsqrt() {
  4207   emit_int8((unsigned char)0xD9);
  4208   emit_int8((unsigned char)0xFA);
  4211 void Assembler::fst_d(Address adr) {
  4212   InstructionMark im(this);
  4213   emit_int8((unsigned char)0xDD);
  4214   emit_operand32(rdx, adr);
  4217 void Assembler::fst_s(Address adr) {
  4218   InstructionMark im(this);
  4219   emit_int8((unsigned char)0xD9);
  4220   emit_operand32(rdx, adr);
  4223 void Assembler::fstp_d(Address adr) {
  4224   InstructionMark im(this);
  4225   emit_int8((unsigned char)0xDD);
  4226   emit_operand32(rbx, adr);
  4229 void Assembler::fstp_d(int index) {
  4230   emit_farith(0xDD, 0xD8, index);
  4233 void Assembler::fstp_s(Address adr) {
  4234   InstructionMark im(this);
  4235   emit_int8((unsigned char)0xD9);
  4236   emit_operand32(rbx, adr);
  4239 void Assembler::fstp_x(Address adr) {
  4240   InstructionMark im(this);
  4241   emit_int8((unsigned char)0xDB);
  4242   emit_operand32(rdi, adr);
  4245 void Assembler::fsub(int i) {
  4246   emit_farith(0xD8, 0xE0, i);
  4249 void Assembler::fsub_d(Address src) {
  4250   InstructionMark im(this);
  4251   emit_int8((unsigned char)0xDC);
  4252   emit_operand32(rsp, src);
  4255 void Assembler::fsub_s(Address src) {
  4256   InstructionMark im(this);
  4257   emit_int8((unsigned char)0xD8);
  4258   emit_operand32(rsp, src);
  4261 void Assembler::fsuba(int i) {
  4262   emit_farith(0xDC, 0xE8, i);
  4265 void Assembler::fsubp(int i) {
  4266   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  4269 void Assembler::fsubr(int i) {
  4270   emit_farith(0xD8, 0xE8, i);
  4273 void Assembler::fsubr_d(Address src) {
  4274   InstructionMark im(this);
  4275   emit_int8((unsigned char)0xDC);
  4276   emit_operand32(rbp, src);
  4279 void Assembler::fsubr_s(Address src) {
  4280   InstructionMark im(this);
  4281   emit_int8((unsigned char)0xD8);
  4282   emit_operand32(rbp, src);
  4285 void Assembler::fsubra(int i) {
  4286   emit_farith(0xDC, 0xE0, i);
  4289 void Assembler::fsubrp(int i) {
  4290   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  4293 void Assembler::ftan() {
  4294   emit_int8((unsigned char)0xD9);
  4295   emit_int8((unsigned char)0xF2);
  4296   emit_int8((unsigned char)0xDD);
  4297   emit_int8((unsigned char)0xD8);
  4300 void Assembler::ftst() {
  4301   emit_int8((unsigned char)0xD9);
  4302   emit_int8((unsigned char)0xE4);
  4305 void Assembler::fucomi(int i) {
  4306   // make sure the instruction is supported (introduced for P6, together with cmov)
  4307   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4308   emit_farith(0xDB, 0xE8, i);
  4311 void Assembler::fucomip(int i) {
  4312   // make sure the instruction is supported (introduced for P6, together with cmov)
  4313   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4314   emit_farith(0xDF, 0xE8, i);
  4317 void Assembler::fwait() {
  4318   emit_int8((unsigned char)0x9B);
  4321 void Assembler::fxch(int i) {
  4322   emit_farith(0xD9, 0xC8, i);
  4325 void Assembler::fyl2x() {
  4326   emit_int8((unsigned char)0xD9);
  4327   emit_int8((unsigned char)0xF1);
  4330 void Assembler::frndint() {
  4331   emit_int8((unsigned char)0xD9);
  4332   emit_int8((unsigned char)0xFC);
  4335 void Assembler::f2xm1() {
  4336   emit_int8((unsigned char)0xD9);
  4337   emit_int8((unsigned char)0xF0);
  4340 void Assembler::fldl2e() {
  4341   emit_int8((unsigned char)0xD9);
  4342   emit_int8((unsigned char)0xEA);
  4345 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  4346 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  4347 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  4348 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  4350 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  4351 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4352   if (pre > 0) {
  4353     emit_int8(simd_pre[pre]);
  4355   if (rex_w) {
  4356     prefixq(adr, xreg);
  4357   } else {
  4358     prefix(adr, xreg);
  4360   if (opc > 0) {
  4361     emit_int8(0x0F);
  4362     int opc2 = simd_opc[opc];
  4363     if (opc2 > 0) {
  4364       emit_int8(opc2);
  4369 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4370   if (pre > 0) {
  4371     emit_int8(simd_pre[pre]);
  4373   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  4374                           prefix_and_encode(dst_enc, src_enc);
  4375   if (opc > 0) {
  4376     emit_int8(0x0F);
  4377     int opc2 = simd_opc[opc];
  4378     if (opc2 > 0) {
  4379       emit_int8(opc2);
  4382   return encode;
  4386 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  4387   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  4388     prefix(VEX_3bytes);
  4390     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  4391     byte1 = (~byte1) & 0xE0;
  4392     byte1 |= opc;
  4393     emit_int8(byte1);
  4395     int byte2 = ((~nds_enc) & 0xf) << 3;
  4396     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  4397     emit_int8(byte2);
  4398   } else {
  4399     prefix(VEX_2bytes);
  4401     int byte1 = vex_r ? VEX_R : 0;
  4402     byte1 = (~byte1) & 0x80;
  4403     byte1 |= ((~nds_enc) & 0xf) << 3;
  4404     byte1 |= (vector256 ? 4 : 0) | pre;
  4405     emit_int8(byte1);
  4409 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  4410   bool vex_r = (xreg_enc >= 8);
  4411   bool vex_b = adr.base_needs_rex();
  4412   bool vex_x = adr.index_needs_rex();
  4413   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4416 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  4417   bool vex_r = (dst_enc >= 8);
  4418   bool vex_b = (src_enc >= 8);
  4419   bool vex_x = false;
  4420   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4421   return (((dst_enc & 7) << 3) | (src_enc & 7));
  4425 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4426   if (UseAVX > 0) {
  4427     int xreg_enc = xreg->encoding();
  4428     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4429     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  4430   } else {
  4431     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  4432     rex_prefix(adr, xreg, pre, opc, rex_w);
  4436 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4437   int dst_enc = dst->encoding();
  4438   int src_enc = src->encoding();
  4439   if (UseAVX > 0) {
  4440     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4441     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  4442   } else {
  4443     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  4444     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  4448 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4449   InstructionMark im(this);
  4450   simd_prefix(dst, dst, src, pre);
  4451   emit_int8(opcode);
  4452   emit_operand(dst, src);
  4455 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4456   int encode = simd_prefix_and_encode(dst, dst, src, pre);
  4457   emit_int8(opcode);
  4458   emit_int8((unsigned char)(0xC0 | encode));
  4461 // Versions with no second source register (non-destructive source).
  4462 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4463   InstructionMark im(this);
  4464   simd_prefix(dst, xnoreg, src, pre);
  4465   emit_int8(opcode);
  4466   emit_operand(dst, src);
  4469 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4470   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
  4471   emit_int8(opcode);
  4472   emit_int8((unsigned char)(0xC0 | encode));
  4475 // 3-operands AVX instructions
  4476 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4477                                Address src, VexSimdPrefix pre, bool vector256) {
  4478   InstructionMark im(this);
  4479   vex_prefix(dst, nds, src, pre, vector256);
  4480   emit_int8(opcode);
  4481   emit_operand(dst, src);
  4484 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4485                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
  4486   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
  4487   emit_int8(opcode);
  4488   emit_int8((unsigned char)(0xC0 | encode));
  4491 #ifndef _LP64
  4493 void Assembler::incl(Register dst) {
  4494   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4495   emit_int8(0x40 | dst->encoding());
  4498 void Assembler::lea(Register dst, Address src) {
  4499   leal(dst, src);
  4502 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4503   InstructionMark im(this);
  4504   emit_int8((unsigned char)0xC7);
  4505   emit_operand(rax, dst);
  4506   emit_data((int)imm32, rspec, 0);
  4509 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4510   InstructionMark im(this);
  4511   int encode = prefix_and_encode(dst->encoding());
  4512   emit_int8((unsigned char)(0xB8 | encode));
  4513   emit_data((int)imm32, rspec, 0);
  4516 void Assembler::popa() { // 32bit
  4517   emit_int8(0x61);
  4520 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  4521   InstructionMark im(this);
  4522   emit_int8(0x68);
  4523   emit_data(imm32, rspec, 0);
  4526 void Assembler::pusha() { // 32bit
  4527   emit_int8(0x60);
  4530 void Assembler::set_byte_if_not_zero(Register dst) {
  4531   emit_int8(0x0F);
  4532   emit_int8((unsigned char)0x95);
  4533   emit_int8((unsigned char)(0xE0 | dst->encoding()));
  4536 void Assembler::shldl(Register dst, Register src) {
  4537   emit_int8(0x0F);
  4538   emit_int8((unsigned char)0xA5);
  4539   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
  4542 void Assembler::shrdl(Register dst, Register src) {
  4543   emit_int8(0x0F);
  4544   emit_int8((unsigned char)0xAD);
  4545   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
  4548 #else // LP64
  4550 void Assembler::set_byte_if_not_zero(Register dst) {
  4551   int enc = prefix_and_encode(dst->encoding(), true);
  4552   emit_int8(0x0F);
  4553   emit_int8((unsigned char)0x95);
  4554   emit_int8((unsigned char)(0xE0 | enc));
  4557 // 64bit only pieces of the assembler
  4558 // This should only be used by 64bit instructions that can use rip-relative
  4559 // it cannot be used by instructions that want an immediate value.
  4561 bool Assembler::reachable(AddressLiteral adr) {
  4562   int64_t disp;
  4563   // None will force a 64bit literal to the code stream. Likely a placeholder
  4564   // for something that will be patched later and we need to certain it will
  4565   // always be reachable.
  4566   if (adr.reloc() == relocInfo::none) {
  4567     return false;
  4569   if (adr.reloc() == relocInfo::internal_word_type) {
  4570     // This should be rip relative and easily reachable.
  4571     return true;
  4573   if (adr.reloc() == relocInfo::virtual_call_type ||
  4574       adr.reloc() == relocInfo::opt_virtual_call_type ||
  4575       adr.reloc() == relocInfo::static_call_type ||
  4576       adr.reloc() == relocInfo::static_stub_type ) {
  4577     // This should be rip relative within the code cache and easily
  4578     // reachable until we get huge code caches. (At which point
  4579     // ic code is going to have issues).
  4580     return true;
  4582   if (adr.reloc() != relocInfo::external_word_type &&
  4583       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  4584       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  4585       adr.reloc() != relocInfo::runtime_call_type ) {
  4586     return false;
  4589   // Stress the correction code
  4590   if (ForceUnreachable) {
  4591     // Must be runtimecall reloc, see if it is in the codecache
  4592     // Flipping stuff in the codecache to be unreachable causes issues
  4593     // with things like inline caches where the additional instructions
  4594     // are not handled.
  4595     if (CodeCache::find_blob(adr._target) == NULL) {
  4596       return false;
  4599   // For external_word_type/runtime_call_type if it is reachable from where we
  4600   // are now (possibly a temp buffer) and where we might end up
  4601   // anywhere in the codeCache then we are always reachable.
  4602   // This would have to change if we ever save/restore shared code
  4603   // to be more pessimistic.
  4604   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  4605   if (!is_simm32(disp)) return false;
  4606   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  4607   if (!is_simm32(disp)) return false;
  4609   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
  4611   // Because rip relative is a disp + address_of_next_instruction and we
  4612   // don't know the value of address_of_next_instruction we apply a fudge factor
  4613   // to make sure we will be ok no matter the size of the instruction we get placed into.
  4614   // We don't have to fudge the checks above here because they are already worst case.
  4616   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  4617   // + 4 because better safe than sorry.
  4618   const int fudge = 12 + 4;
  4619   if (disp < 0) {
  4620     disp -= fudge;
  4621   } else {
  4622     disp += fudge;
  4624   return is_simm32(disp);
  4627 // Check if the polling page is not reachable from the code cache using rip-relative
  4628 // addressing.
  4629 bool Assembler::is_polling_page_far() {
  4630   intptr_t addr = (intptr_t)os::get_polling_page();
  4631   return ForceUnreachable ||
  4632          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  4633          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  4636 void Assembler::emit_data64(jlong data,
  4637                             relocInfo::relocType rtype,
  4638                             int format) {
  4639   if (rtype == relocInfo::none) {
  4640     emit_int64(data);
  4641   } else {
  4642     emit_data64(data, Relocation::spec_simple(rtype), format);
  4646 void Assembler::emit_data64(jlong data,
  4647                             RelocationHolder const& rspec,
  4648                             int format) {
  4649   assert(imm_operand == 0, "default format must be immediate in this file");
  4650   assert(imm_operand == format, "must be immediate");
  4651   assert(inst_mark() != NULL, "must be inside InstructionMark");
  4652   // Do not use AbstractAssembler::relocate, which is not intended for
  4653   // embedded words.  Instead, relocate to the enclosing instruction.
  4654   code_section()->relocate(inst_mark(), rspec, format);
  4655 #ifdef ASSERT
  4656   check_relocation(rspec, format);
  4657 #endif
  4658   emit_int64(data);
  4661 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  4662   if (reg_enc >= 8) {
  4663     prefix(REX_B);
  4664     reg_enc -= 8;
  4665   } else if (byteinst && reg_enc >= 4) {
  4666     prefix(REX);
  4668   return reg_enc;
  4671 int Assembler::prefixq_and_encode(int reg_enc) {
  4672   if (reg_enc < 8) {
  4673     prefix(REX_W);
  4674   } else {
  4675     prefix(REX_WB);
  4676     reg_enc -= 8;
  4678   return reg_enc;
  4681 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  4682   if (dst_enc < 8) {
  4683     if (src_enc >= 8) {
  4684       prefix(REX_B);
  4685       src_enc -= 8;
  4686     } else if (byteinst && src_enc >= 4) {
  4687       prefix(REX);
  4689   } else {
  4690     if (src_enc < 8) {
  4691       prefix(REX_R);
  4692     } else {
  4693       prefix(REX_RB);
  4694       src_enc -= 8;
  4696     dst_enc -= 8;
  4698   return dst_enc << 3 | src_enc;
  4701 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  4702   if (dst_enc < 8) {
  4703     if (src_enc < 8) {
  4704       prefix(REX_W);
  4705     } else {
  4706       prefix(REX_WB);
  4707       src_enc -= 8;
  4709   } else {
  4710     if (src_enc < 8) {
  4711       prefix(REX_WR);
  4712     } else {
  4713       prefix(REX_WRB);
  4714       src_enc -= 8;
  4716     dst_enc -= 8;
  4718   return dst_enc << 3 | src_enc;
  4721 void Assembler::prefix(Register reg) {
  4722   if (reg->encoding() >= 8) {
  4723     prefix(REX_B);
  4727 void Assembler::prefix(Address adr) {
  4728   if (adr.base_needs_rex()) {
  4729     if (adr.index_needs_rex()) {
  4730       prefix(REX_XB);
  4731     } else {
  4732       prefix(REX_B);
  4734   } else {
  4735     if (adr.index_needs_rex()) {
  4736       prefix(REX_X);
  4741 void Assembler::prefixq(Address adr) {
  4742   if (adr.base_needs_rex()) {
  4743     if (adr.index_needs_rex()) {
  4744       prefix(REX_WXB);
  4745     } else {
  4746       prefix(REX_WB);
  4748   } else {
  4749     if (adr.index_needs_rex()) {
  4750       prefix(REX_WX);
  4751     } else {
  4752       prefix(REX_W);
  4758 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  4759   if (reg->encoding() < 8) {
  4760     if (adr.base_needs_rex()) {
  4761       if (adr.index_needs_rex()) {
  4762         prefix(REX_XB);
  4763       } else {
  4764         prefix(REX_B);
  4766     } else {
  4767       if (adr.index_needs_rex()) {
  4768         prefix(REX_X);
  4769       } else if (byteinst && reg->encoding() >= 4 ) {
  4770         prefix(REX);
  4773   } else {
  4774     if (adr.base_needs_rex()) {
  4775       if (adr.index_needs_rex()) {
  4776         prefix(REX_RXB);
  4777       } else {
  4778         prefix(REX_RB);
  4780     } else {
  4781       if (adr.index_needs_rex()) {
  4782         prefix(REX_RX);
  4783       } else {
  4784         prefix(REX_R);
  4790 void Assembler::prefixq(Address adr, Register src) {
  4791   if (src->encoding() < 8) {
  4792     if (adr.base_needs_rex()) {
  4793       if (adr.index_needs_rex()) {
  4794         prefix(REX_WXB);
  4795       } else {
  4796         prefix(REX_WB);
  4798     } else {
  4799       if (adr.index_needs_rex()) {
  4800         prefix(REX_WX);
  4801       } else {
  4802         prefix(REX_W);
  4805   } else {
  4806     if (adr.base_needs_rex()) {
  4807       if (adr.index_needs_rex()) {
  4808         prefix(REX_WRXB);
  4809       } else {
  4810         prefix(REX_WRB);
  4812     } else {
  4813       if (adr.index_needs_rex()) {
  4814         prefix(REX_WRX);
  4815       } else {
  4816         prefix(REX_WR);
  4822 void Assembler::prefix(Address adr, XMMRegister reg) {
  4823   if (reg->encoding() < 8) {
  4824     if (adr.base_needs_rex()) {
  4825       if (adr.index_needs_rex()) {
  4826         prefix(REX_XB);
  4827       } else {
  4828         prefix(REX_B);
  4830     } else {
  4831       if (adr.index_needs_rex()) {
  4832         prefix(REX_X);
  4835   } else {
  4836     if (adr.base_needs_rex()) {
  4837       if (adr.index_needs_rex()) {
  4838         prefix(REX_RXB);
  4839       } else {
  4840         prefix(REX_RB);
  4842     } else {
  4843       if (adr.index_needs_rex()) {
  4844         prefix(REX_RX);
  4845       } else {
  4846         prefix(REX_R);
  4852 void Assembler::prefixq(Address adr, XMMRegister src) {
  4853   if (src->encoding() < 8) {
  4854     if (adr.base_needs_rex()) {
  4855       if (adr.index_needs_rex()) {
  4856         prefix(REX_WXB);
  4857       } else {
  4858         prefix(REX_WB);
  4860     } else {
  4861       if (adr.index_needs_rex()) {
  4862         prefix(REX_WX);
  4863       } else {
  4864         prefix(REX_W);
  4867   } else {
  4868     if (adr.base_needs_rex()) {
  4869       if (adr.index_needs_rex()) {
  4870         prefix(REX_WRXB);
  4871       } else {
  4872         prefix(REX_WRB);
  4874     } else {
  4875       if (adr.index_needs_rex()) {
  4876         prefix(REX_WRX);
  4877       } else {
  4878         prefix(REX_WR);
  4884 void Assembler::adcq(Register dst, int32_t imm32) {
  4885   (void) prefixq_and_encode(dst->encoding());
  4886   emit_arith(0x81, 0xD0, dst, imm32);
  4889 void Assembler::adcq(Register dst, Address src) {
  4890   InstructionMark im(this);
  4891   prefixq(src, dst);
  4892   emit_int8(0x13);
  4893   emit_operand(dst, src);
  4896 void Assembler::adcq(Register dst, Register src) {
  4897   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4898   emit_arith(0x13, 0xC0, dst, src);
  4901 void Assembler::addq(Address dst, int32_t imm32) {
  4902   InstructionMark im(this);
  4903   prefixq(dst);
  4904   emit_arith_operand(0x81, rax, dst,imm32);
  4907 void Assembler::addq(Address dst, Register src) {
  4908   InstructionMark im(this);
  4909   prefixq(dst, src);
  4910   emit_int8(0x01);
  4911   emit_operand(src, dst);
  4914 void Assembler::addq(Register dst, int32_t imm32) {
  4915   (void) prefixq_and_encode(dst->encoding());
  4916   emit_arith(0x81, 0xC0, dst, imm32);
  4919 void Assembler::addq(Register dst, Address src) {
  4920   InstructionMark im(this);
  4921   prefixq(src, dst);
  4922   emit_int8(0x03);
  4923   emit_operand(dst, src);
  4926 void Assembler::addq(Register dst, Register src) {
  4927   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4928   emit_arith(0x03, 0xC0, dst, src);
  4931 void Assembler::andq(Address dst, int32_t imm32) {
  4932   InstructionMark im(this);
  4933   prefixq(dst);
  4934   emit_int8((unsigned char)0x81);
  4935   emit_operand(rsp, dst, 4);
  4936   emit_int32(imm32);
  4939 void Assembler::andq(Register dst, int32_t imm32) {
  4940   (void) prefixq_and_encode(dst->encoding());
  4941   emit_arith(0x81, 0xE0, dst, imm32);
  4944 void Assembler::andq(Register dst, Address src) {
  4945   InstructionMark im(this);
  4946   prefixq(src, dst);
  4947   emit_int8(0x23);
  4948   emit_operand(dst, src);
  4951 void Assembler::andq(Register dst, Register src) {
  4952   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4953   emit_arith(0x23, 0xC0, dst, src);
  4956 void Assembler::andnq(Register dst, Register src1, Register src2) {
  4957   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4958   int encode = vex_prefix_0F38_and_encode_q(dst, src1, src2);
  4959   emit_int8((unsigned char)0xF2);
  4960   emit_int8((unsigned char)(0xC0 | encode));
  4963 void Assembler::andnq(Register dst, Register src1, Address src2) {
  4964   InstructionMark im(this);
  4965   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4966   vex_prefix_0F38_q(dst, src1, src2);
  4967   emit_int8((unsigned char)0xF2);
  4968   emit_operand(dst, src2);
  4971 void Assembler::bsfq(Register dst, Register src) {
  4972   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4973   emit_int8(0x0F);
  4974   emit_int8((unsigned char)0xBC);
  4975   emit_int8((unsigned char)(0xC0 | encode));
  4978 void Assembler::bsrq(Register dst, Register src) {
  4979   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4980   emit_int8(0x0F);
  4981   emit_int8((unsigned char)0xBD);
  4982   emit_int8((unsigned char)(0xC0 | encode));
  4985 void Assembler::bswapq(Register reg) {
  4986   int encode = prefixq_and_encode(reg->encoding());
  4987   emit_int8(0x0F);
  4988   emit_int8((unsigned char)(0xC8 | encode));
  4991 void Assembler::blsiq(Register dst, Register src) {
  4992   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4993   int encode = vex_prefix_0F38_and_encode_q(rbx, dst, src);
  4994   emit_int8((unsigned char)0xF3);
  4995   emit_int8((unsigned char)(0xC0 | encode));
  4998 void Assembler::blsiq(Register dst, Address src) {
  4999   InstructionMark im(this);
  5000   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  5001   vex_prefix_0F38_q(rbx, dst, src);
  5002   emit_int8((unsigned char)0xF3);
  5003   emit_operand(rbx, src);
  5006 void Assembler::blsmskq(Register dst, Register src) {
  5007   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  5008   int encode = vex_prefix_0F38_and_encode_q(rdx, dst, src);
  5009   emit_int8((unsigned char)0xF3);
  5010   emit_int8((unsigned char)(0xC0 | encode));
  5013 void Assembler::blsmskq(Register dst, Address src) {
  5014   InstructionMark im(this);
  5015   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  5016   vex_prefix_0F38_q(rdx, dst, src);
  5017   emit_int8((unsigned char)0xF3);
  5018   emit_operand(rdx, src);
  5021 void Assembler::blsrq(Register dst, Register src) {
  5022   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  5023   int encode = vex_prefix_0F38_and_encode_q(rcx, dst, src);
  5024   emit_int8((unsigned char)0xF3);
  5025   emit_int8((unsigned char)(0xC0 | encode));
  5028 void Assembler::blsrq(Register dst, Address src) {
  5029   InstructionMark im(this);
  5030   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  5031   vex_prefix_0F38_q(rcx, dst, src);
  5032   emit_int8((unsigned char)0xF3);
  5033   emit_operand(rcx, src);
  5036 void Assembler::cdqq() {
  5037   prefix(REX_W);
  5038   emit_int8((unsigned char)0x99);
  5041 void Assembler::clflush(Address adr) {
  5042   prefix(adr);
  5043   emit_int8(0x0F);
  5044   emit_int8((unsigned char)0xAE);
  5045   emit_operand(rdi, adr);
  5048 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  5049   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5050   emit_int8(0x0F);
  5051   emit_int8(0x40 | cc);
  5052   emit_int8((unsigned char)(0xC0 | encode));
  5055 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  5056   InstructionMark im(this);
  5057   prefixq(src, dst);
  5058   emit_int8(0x0F);
  5059   emit_int8(0x40 | cc);
  5060   emit_operand(dst, src);
  5063 void Assembler::cmpq(Address dst, int32_t imm32) {
  5064   InstructionMark im(this);
  5065   prefixq(dst);
  5066   emit_int8((unsigned char)0x81);
  5067   emit_operand(rdi, dst, 4);
  5068   emit_int32(imm32);
  5071 void Assembler::cmpq(Register dst, int32_t imm32) {
  5072   (void) prefixq_and_encode(dst->encoding());
  5073   emit_arith(0x81, 0xF8, dst, imm32);
  5076 void Assembler::cmpq(Address dst, Register src) {
  5077   InstructionMark im(this);
  5078   prefixq(dst, src);
  5079   emit_int8(0x3B);
  5080   emit_operand(src, dst);
  5083 void Assembler::cmpq(Register dst, Register src) {
  5084   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5085   emit_arith(0x3B, 0xC0, dst, src);
  5088 void Assembler::cmpq(Register dst, Address  src) {
  5089   InstructionMark im(this);
  5090   prefixq(src, dst);
  5091   emit_int8(0x3B);
  5092   emit_operand(dst, src);
  5095 void Assembler::cmpxchgq(Register reg, Address adr) {
  5096   InstructionMark im(this);
  5097   prefixq(adr, reg);
  5098   emit_int8(0x0F);
  5099   emit_int8((unsigned char)0xB1);
  5100   emit_operand(reg, adr);
  5103 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  5104   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5105   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  5106   emit_int8(0x2A);
  5107   emit_int8((unsigned char)(0xC0 | encode));
  5110 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  5111   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5112   InstructionMark im(this);
  5113   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  5114   emit_int8(0x2A);
  5115   emit_operand(dst, src);
  5118 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  5119   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  5120   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  5121   emit_int8(0x2A);
  5122   emit_int8((unsigned char)(0xC0 | encode));
  5125 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  5126   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  5127   InstructionMark im(this);
  5128   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  5129   emit_int8(0x2A);
  5130   emit_operand(dst, src);
  5133 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  5134   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5135   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  5136   emit_int8(0x2C);
  5137   emit_int8((unsigned char)(0xC0 | encode));
  5140 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  5141   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  5142   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  5143   emit_int8(0x2C);
  5144   emit_int8((unsigned char)(0xC0 | encode));
  5147 void Assembler::decl(Register dst) {
  5148   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  5149   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  5150   int encode = prefix_and_encode(dst->encoding());
  5151   emit_int8((unsigned char)0xFF);
  5152   emit_int8((unsigned char)(0xC8 | encode));
  5155 void Assembler::decq(Register dst) {
  5156   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  5157   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  5158   int encode = prefixq_and_encode(dst->encoding());
  5159   emit_int8((unsigned char)0xFF);
  5160   emit_int8(0xC8 | encode);
  5163 void Assembler::decq(Address dst) {
  5164   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  5165   InstructionMark im(this);
  5166   prefixq(dst);
  5167   emit_int8((unsigned char)0xFF);
  5168   emit_operand(rcx, dst);
  5171 void Assembler::fxrstor(Address src) {
  5172   prefixq(src);
  5173   emit_int8(0x0F);
  5174   emit_int8((unsigned char)0xAE);
  5175   emit_operand(as_Register(1), src);
  5178 void Assembler::fxsave(Address dst) {
  5179   prefixq(dst);
  5180   emit_int8(0x0F);
  5181   emit_int8((unsigned char)0xAE);
  5182   emit_operand(as_Register(0), dst);
  5185 void Assembler::idivq(Register src) {
  5186   int encode = prefixq_and_encode(src->encoding());
  5187   emit_int8((unsigned char)0xF7);
  5188   emit_int8((unsigned char)(0xF8 | encode));
  5191 void Assembler::imulq(Register dst, Register src) {
  5192   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5193   emit_int8(0x0F);
  5194   emit_int8((unsigned char)0xAF);
  5195   emit_int8((unsigned char)(0xC0 | encode));
  5198 void Assembler::imulq(Register dst, Register src, int value) {
  5199   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5200   if (is8bit(value)) {
  5201     emit_int8(0x6B);
  5202     emit_int8((unsigned char)(0xC0 | encode));
  5203     emit_int8(value & 0xFF);
  5204   } else {
  5205     emit_int8(0x69);
  5206     emit_int8((unsigned char)(0xC0 | encode));
  5207     emit_int32(value);
  5211 void Assembler::imulq(Register dst, Address src) {
  5212   InstructionMark im(this);
  5213   prefixq(src, dst);
  5214   emit_int8(0x0F);
  5215   emit_int8((unsigned char) 0xAF);
  5216   emit_operand(dst, src);
  5219 void Assembler::incl(Register dst) {
  5220   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  5221   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  5222   int encode = prefix_and_encode(dst->encoding());
  5223   emit_int8((unsigned char)0xFF);
  5224   emit_int8((unsigned char)(0xC0 | encode));
  5227 void Assembler::incq(Register dst) {
  5228   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  5229   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  5230   int encode = prefixq_and_encode(dst->encoding());
  5231   emit_int8((unsigned char)0xFF);
  5232   emit_int8((unsigned char)(0xC0 | encode));
  5235 void Assembler::incq(Address dst) {
  5236   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  5237   InstructionMark im(this);
  5238   prefixq(dst);
  5239   emit_int8((unsigned char)0xFF);
  5240   emit_operand(rax, dst);
  5243 void Assembler::lea(Register dst, Address src) {
  5244   leaq(dst, src);
  5247 void Assembler::leaq(Register dst, Address src) {
  5248   InstructionMark im(this);
  5249   prefixq(src, dst);
  5250   emit_int8((unsigned char)0x8D);
  5251   emit_operand(dst, src);
  5254 void Assembler::mov64(Register dst, int64_t imm64) {
  5255   InstructionMark im(this);
  5256   int encode = prefixq_and_encode(dst->encoding());
  5257   emit_int8((unsigned char)(0xB8 | encode));
  5258   emit_int64(imm64);
  5261 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  5262   InstructionMark im(this);
  5263   int encode = prefixq_and_encode(dst->encoding());
  5264   emit_int8(0xB8 | encode);
  5265   emit_data64(imm64, rspec);
  5268 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  5269   InstructionMark im(this);
  5270   int encode = prefix_and_encode(dst->encoding());
  5271   emit_int8((unsigned char)(0xB8 | encode));
  5272   emit_data((int)imm32, rspec, narrow_oop_operand);
  5275 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  5276   InstructionMark im(this);
  5277   prefix(dst);
  5278   emit_int8((unsigned char)0xC7);
  5279   emit_operand(rax, dst, 4);
  5280   emit_data((int)imm32, rspec, narrow_oop_operand);
  5283 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  5284   InstructionMark im(this);
  5285   int encode = prefix_and_encode(src1->encoding());
  5286   emit_int8((unsigned char)0x81);
  5287   emit_int8((unsigned char)(0xF8 | encode));
  5288   emit_data((int)imm32, rspec, narrow_oop_operand);
  5291 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  5292   InstructionMark im(this);
  5293   prefix(src1);
  5294   emit_int8((unsigned char)0x81);
  5295   emit_operand(rax, src1, 4);
  5296   emit_data((int)imm32, rspec, narrow_oop_operand);
  5299 void Assembler::lzcntq(Register dst, Register src) {
  5300   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  5301   emit_int8((unsigned char)0xF3);
  5302   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5303   emit_int8(0x0F);
  5304   emit_int8((unsigned char)0xBD);
  5305   emit_int8((unsigned char)(0xC0 | encode));
  5308 void Assembler::movdq(XMMRegister dst, Register src) {
  5309   // table D-1 says MMX/SSE2
  5310   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5311   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  5312   emit_int8(0x6E);
  5313   emit_int8((unsigned char)(0xC0 | encode));
  5316 void Assembler::movdq(Register dst, XMMRegister src) {
  5317   // table D-1 says MMX/SSE2
  5318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5319   // swap src/dst to get correct prefix
  5320   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  5321   emit_int8(0x7E);
  5322   emit_int8((unsigned char)(0xC0 | encode));
  5325 void Assembler::movq(Register dst, Register src) {
  5326   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5327   emit_int8((unsigned char)0x8B);
  5328   emit_int8((unsigned char)(0xC0 | encode));
  5331 void Assembler::movq(Register dst, Address src) {
  5332   InstructionMark im(this);
  5333   prefixq(src, dst);
  5334   emit_int8((unsigned char)0x8B);
  5335   emit_operand(dst, src);
  5338 void Assembler::movq(Address dst, Register src) {
  5339   InstructionMark im(this);
  5340   prefixq(dst, src);
  5341   emit_int8((unsigned char)0x89);
  5342   emit_operand(src, dst);
  5345 void Assembler::movsbq(Register dst, Address src) {
  5346   InstructionMark im(this);
  5347   prefixq(src, dst);
  5348   emit_int8(0x0F);
  5349   emit_int8((unsigned char)0xBE);
  5350   emit_operand(dst, src);
  5353 void Assembler::movsbq(Register dst, Register src) {
  5354   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5355   emit_int8(0x0F);
  5356   emit_int8((unsigned char)0xBE);
  5357   emit_int8((unsigned char)(0xC0 | encode));
  5360 void Assembler::movslq(Register dst, int32_t imm32) {
  5361   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  5362   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  5363   // as a result we shouldn't use until tested at runtime...
  5364   ShouldNotReachHere();
  5365   InstructionMark im(this);
  5366   int encode = prefixq_and_encode(dst->encoding());
  5367   emit_int8((unsigned char)(0xC7 | encode));
  5368   emit_int32(imm32);
  5371 void Assembler::movslq(Address dst, int32_t imm32) {
  5372   assert(is_simm32(imm32), "lost bits");
  5373   InstructionMark im(this);
  5374   prefixq(dst);
  5375   emit_int8((unsigned char)0xC7);
  5376   emit_operand(rax, dst, 4);
  5377   emit_int32(imm32);
  5380 void Assembler::movslq(Register dst, Address src) {
  5381   InstructionMark im(this);
  5382   prefixq(src, dst);
  5383   emit_int8(0x63);
  5384   emit_operand(dst, src);
  5387 void Assembler::movslq(Register dst, Register src) {
  5388   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5389   emit_int8(0x63);
  5390   emit_int8((unsigned char)(0xC0 | encode));
  5393 void Assembler::movswq(Register dst, Address src) {
  5394   InstructionMark im(this);
  5395   prefixq(src, dst);
  5396   emit_int8(0x0F);
  5397   emit_int8((unsigned char)0xBF);
  5398   emit_operand(dst, src);
  5401 void Assembler::movswq(Register dst, Register src) {
  5402   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5403   emit_int8((unsigned char)0x0F);
  5404   emit_int8((unsigned char)0xBF);
  5405   emit_int8((unsigned char)(0xC0 | encode));
  5408 void Assembler::movzbq(Register dst, Address src) {
  5409   InstructionMark im(this);
  5410   prefixq(src, dst);
  5411   emit_int8((unsigned char)0x0F);
  5412   emit_int8((unsigned char)0xB6);
  5413   emit_operand(dst, src);
  5416 void Assembler::movzbq(Register dst, Register src) {
  5417   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5418   emit_int8(0x0F);
  5419   emit_int8((unsigned char)0xB6);
  5420   emit_int8(0xC0 | encode);
  5423 void Assembler::movzwq(Register dst, Address src) {
  5424   InstructionMark im(this);
  5425   prefixq(src, dst);
  5426   emit_int8((unsigned char)0x0F);
  5427   emit_int8((unsigned char)0xB7);
  5428   emit_operand(dst, src);
  5431 void Assembler::movzwq(Register dst, Register src) {
  5432   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5433   emit_int8((unsigned char)0x0F);
  5434   emit_int8((unsigned char)0xB7);
  5435   emit_int8((unsigned char)(0xC0 | encode));
  5438 void Assembler::negq(Register dst) {
  5439   int encode = prefixq_and_encode(dst->encoding());
  5440   emit_int8((unsigned char)0xF7);
  5441   emit_int8((unsigned char)(0xD8 | encode));
  5444 void Assembler::notq(Register dst) {
  5445   int encode = prefixq_and_encode(dst->encoding());
  5446   emit_int8((unsigned char)0xF7);
  5447   emit_int8((unsigned char)(0xD0 | encode));
  5450 void Assembler::orq(Address dst, int32_t imm32) {
  5451   InstructionMark im(this);
  5452   prefixq(dst);
  5453   emit_int8((unsigned char)0x81);
  5454   emit_operand(rcx, dst, 4);
  5455   emit_int32(imm32);
  5458 void Assembler::orq(Register dst, int32_t imm32) {
  5459   (void) prefixq_and_encode(dst->encoding());
  5460   emit_arith(0x81, 0xC8, dst, imm32);
  5463 void Assembler::orq(Register dst, Address src) {
  5464   InstructionMark im(this);
  5465   prefixq(src, dst);
  5466   emit_int8(0x0B);
  5467   emit_operand(dst, src);
  5470 void Assembler::orq(Register dst, Register src) {
  5471   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5472   emit_arith(0x0B, 0xC0, dst, src);
  5475 void Assembler::popa() { // 64bit
  5476   movq(r15, Address(rsp, 0));
  5477   movq(r14, Address(rsp, wordSize));
  5478   movq(r13, Address(rsp, 2 * wordSize));
  5479   movq(r12, Address(rsp, 3 * wordSize));
  5480   movq(r11, Address(rsp, 4 * wordSize));
  5481   movq(r10, Address(rsp, 5 * wordSize));
  5482   movq(r9,  Address(rsp, 6 * wordSize));
  5483   movq(r8,  Address(rsp, 7 * wordSize));
  5484   movq(rdi, Address(rsp, 8 * wordSize));
  5485   movq(rsi, Address(rsp, 9 * wordSize));
  5486   movq(rbp, Address(rsp, 10 * wordSize));
  5487   // skip rsp
  5488   movq(rbx, Address(rsp, 12 * wordSize));
  5489   movq(rdx, Address(rsp, 13 * wordSize));
  5490   movq(rcx, Address(rsp, 14 * wordSize));
  5491   movq(rax, Address(rsp, 15 * wordSize));
  5493   addq(rsp, 16 * wordSize);
  5496 void Assembler::popcntq(Register dst, Address src) {
  5497   assert(VM_Version::supports_popcnt(), "must support");
  5498   InstructionMark im(this);
  5499   emit_int8((unsigned char)0xF3);
  5500   prefixq(src, dst);
  5501   emit_int8((unsigned char)0x0F);
  5502   emit_int8((unsigned char)0xB8);
  5503   emit_operand(dst, src);
  5506 void Assembler::popcntq(Register dst, Register src) {
  5507   assert(VM_Version::supports_popcnt(), "must support");
  5508   emit_int8((unsigned char)0xF3);
  5509   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5510   emit_int8((unsigned char)0x0F);
  5511   emit_int8((unsigned char)0xB8);
  5512   emit_int8((unsigned char)(0xC0 | encode));
  5515 void Assembler::popq(Address dst) {
  5516   InstructionMark im(this);
  5517   prefixq(dst);
  5518   emit_int8((unsigned char)0x8F);
  5519   emit_operand(rax, dst);
  5522 void Assembler::pusha() { // 64bit
  5523   // we have to store original rsp.  ABI says that 128 bytes
  5524   // below rsp are local scratch.
  5525   movq(Address(rsp, -5 * wordSize), rsp);
  5527   subq(rsp, 16 * wordSize);
  5529   movq(Address(rsp, 15 * wordSize), rax);
  5530   movq(Address(rsp, 14 * wordSize), rcx);
  5531   movq(Address(rsp, 13 * wordSize), rdx);
  5532   movq(Address(rsp, 12 * wordSize), rbx);
  5533   // skip rsp
  5534   movq(Address(rsp, 10 * wordSize), rbp);
  5535   movq(Address(rsp, 9 * wordSize), rsi);
  5536   movq(Address(rsp, 8 * wordSize), rdi);
  5537   movq(Address(rsp, 7 * wordSize), r8);
  5538   movq(Address(rsp, 6 * wordSize), r9);
  5539   movq(Address(rsp, 5 * wordSize), r10);
  5540   movq(Address(rsp, 4 * wordSize), r11);
  5541   movq(Address(rsp, 3 * wordSize), r12);
  5542   movq(Address(rsp, 2 * wordSize), r13);
  5543   movq(Address(rsp, wordSize), r14);
  5544   movq(Address(rsp, 0), r15);
  5547 void Assembler::pushq(Address src) {
  5548   InstructionMark im(this);
  5549   prefixq(src);
  5550   emit_int8((unsigned char)0xFF);
  5551   emit_operand(rsi, src);
  5554 void Assembler::rclq(Register dst, int imm8) {
  5555   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5556   int encode = prefixq_and_encode(dst->encoding());
  5557   if (imm8 == 1) {
  5558     emit_int8((unsigned char)0xD1);
  5559     emit_int8((unsigned char)(0xD0 | encode));
  5560   } else {
  5561     emit_int8((unsigned char)0xC1);
  5562     emit_int8((unsigned char)(0xD0 | encode));
  5563     emit_int8(imm8);
  5566 void Assembler::sarq(Register dst, int imm8) {
  5567   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5568   int encode = prefixq_and_encode(dst->encoding());
  5569   if (imm8 == 1) {
  5570     emit_int8((unsigned char)0xD1);
  5571     emit_int8((unsigned char)(0xF8 | encode));
  5572   } else {
  5573     emit_int8((unsigned char)0xC1);
  5574     emit_int8((unsigned char)(0xF8 | encode));
  5575     emit_int8(imm8);
  5579 void Assembler::sarq(Register dst) {
  5580   int encode = prefixq_and_encode(dst->encoding());
  5581   emit_int8((unsigned char)0xD3);
  5582   emit_int8((unsigned char)(0xF8 | encode));
  5585 void Assembler::sbbq(Address dst, int32_t imm32) {
  5586   InstructionMark im(this);
  5587   prefixq(dst);
  5588   emit_arith_operand(0x81, rbx, dst, imm32);
  5591 void Assembler::sbbq(Register dst, int32_t imm32) {
  5592   (void) prefixq_and_encode(dst->encoding());
  5593   emit_arith(0x81, 0xD8, dst, imm32);
  5596 void Assembler::sbbq(Register dst, Address src) {
  5597   InstructionMark im(this);
  5598   prefixq(src, dst);
  5599   emit_int8(0x1B);
  5600   emit_operand(dst, src);
  5603 void Assembler::sbbq(Register dst, Register src) {
  5604   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5605   emit_arith(0x1B, 0xC0, dst, src);
  5608 void Assembler::shlq(Register dst, int imm8) {
  5609   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5610   int encode = prefixq_and_encode(dst->encoding());
  5611   if (imm8 == 1) {
  5612     emit_int8((unsigned char)0xD1);
  5613     emit_int8((unsigned char)(0xE0 | encode));
  5614   } else {
  5615     emit_int8((unsigned char)0xC1);
  5616     emit_int8((unsigned char)(0xE0 | encode));
  5617     emit_int8(imm8);
  5621 void Assembler::shlq(Register dst) {
  5622   int encode = prefixq_and_encode(dst->encoding());
  5623   emit_int8((unsigned char)0xD3);
  5624   emit_int8((unsigned char)(0xE0 | encode));
  5627 void Assembler::shrq(Register dst, int imm8) {
  5628   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5629   int encode = prefixq_and_encode(dst->encoding());
  5630   emit_int8((unsigned char)0xC1);
  5631   emit_int8((unsigned char)(0xE8 | encode));
  5632   emit_int8(imm8);
  5635 void Assembler::shrq(Register dst) {
  5636   int encode = prefixq_and_encode(dst->encoding());
  5637   emit_int8((unsigned char)0xD3);
  5638   emit_int8(0xE8 | encode);
  5641 void Assembler::subq(Address dst, int32_t imm32) {
  5642   InstructionMark im(this);
  5643   prefixq(dst);
  5644   emit_arith_operand(0x81, rbp, dst, imm32);
  5647 void Assembler::subq(Address dst, Register src) {
  5648   InstructionMark im(this);
  5649   prefixq(dst, src);
  5650   emit_int8(0x29);
  5651   emit_operand(src, dst);
  5654 void Assembler::subq(Register dst, int32_t imm32) {
  5655   (void) prefixq_and_encode(dst->encoding());
  5656   emit_arith(0x81, 0xE8, dst, imm32);
  5659 // Force generation of a 4 byte immediate value even if it fits into 8bit
  5660 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  5661   (void) prefixq_and_encode(dst->encoding());
  5662   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  5665 void Assembler::subq(Register dst, Address src) {
  5666   InstructionMark im(this);
  5667   prefixq(src, dst);
  5668   emit_int8(0x2B);
  5669   emit_operand(dst, src);
  5672 void Assembler::subq(Register dst, Register src) {
  5673   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5674   emit_arith(0x2B, 0xC0, dst, src);
  5677 void Assembler::testq(Register dst, int32_t imm32) {
  5678   // not using emit_arith because test
  5679   // doesn't support sign-extension of
  5680   // 8bit operands
  5681   int encode = dst->encoding();
  5682   if (encode == 0) {
  5683     prefix(REX_W);
  5684     emit_int8((unsigned char)0xA9);
  5685   } else {
  5686     encode = prefixq_and_encode(encode);
  5687     emit_int8((unsigned char)0xF7);
  5688     emit_int8((unsigned char)(0xC0 | encode));
  5690   emit_int32(imm32);
  5693 void Assembler::testq(Register dst, Register src) {
  5694   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5695   emit_arith(0x85, 0xC0, dst, src);
  5698 void Assembler::xaddq(Address dst, Register src) {
  5699   InstructionMark im(this);
  5700   prefixq(dst, src);
  5701   emit_int8(0x0F);
  5702   emit_int8((unsigned char)0xC1);
  5703   emit_operand(src, dst);
  5706 void Assembler::xchgq(Register dst, Address src) {
  5707   InstructionMark im(this);
  5708   prefixq(src, dst);
  5709   emit_int8((unsigned char)0x87);
  5710   emit_operand(dst, src);
  5713 void Assembler::xchgq(Register dst, Register src) {
  5714   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5715   emit_int8((unsigned char)0x87);
  5716   emit_int8((unsigned char)(0xc0 | encode));
  5719 void Assembler::xorq(Register dst, Register src) {
  5720   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5721   emit_arith(0x33, 0xC0, dst, src);
  5724 void Assembler::xorq(Register dst, Address src) {
  5725   InstructionMark im(this);
  5726   prefixq(src, dst);
  5727   emit_int8(0x33);
  5728   emit_operand(dst, src);
  5731 #endif // !LP64

mercurial