src/share/vm/opto/postaloc.cpp

Tue, 24 Jun 2008 10:43:29 -0700

author
kvn
date
Tue, 24 Jun 2008 10:43:29 -0700
changeset 656
1e026f8da827
parent 505
b683f557224b
child 631
d1605aabd0a1
permissions
-rw-r--r--

6710487: More than half of JDI Regression tests hang with COOPs in -Xcomp mode
Summary: Remove DecodeNNode::decode() and EncodePNode::encode() methods.
Reviewed-by: rasbold, never

     1 /*
     2  * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_postaloc.cpp.incl"
    28 // see if this register kind does not requires two registers
    29 static bool is_single_register(uint x) {
    30 #ifdef _LP64
    31   return (x != Op_RegD && x != Op_RegL && x != Op_RegP);
    32 #else
    33   return (x != Op_RegD && x != Op_RegL);
    34 #endif
    35 }
    37 //------------------------------may_be_copy_of_callee-----------------------------
    38 // Check to see if we can possibly be a copy of a callee-save value.
    39 bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
    40   // Short circuit if there are no callee save registers
    41   if (_matcher.number_of_saved_registers() == 0) return false;
    43   // Expect only a spill-down and reload on exit for callee-save spills.
    44   // Chains of copies cannot be deep.
    45   // 5008997 - This is wishful thinking. Register allocator seems to
    46   // be splitting live ranges for callee save registers to such
    47   // an extent that in large methods the chains can be very long
    48   // (50+). The conservative answer is to return true if we don't
    49   // know as this prevents optimizations from occuring.
    51   const int limit = 60;
    52   int i;
    53   for( i=0; i < limit; i++ ) {
    54     if( def->is_Proj() && def->in(0)->is_Start() &&
    55         _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) )
    56       return true;              // Direct use of callee-save proj
    57     if( def->is_Copy() )        // Copies carry value through
    58       def = def->in(def->is_Copy());
    59     else if( def->is_Phi() )    // Phis can merge it from any direction
    60       def = def->in(1);
    61     else
    62       break;
    63     guarantee(def != NULL, "must not resurrect dead copy");
    64   }
    65   // If we reached the end and didn't find a callee save proj
    66   // then this may be a callee save proj so we return true
    67   // as the conservative answer. If we didn't reach then end
    68   // we must have discovered that it was not a callee save
    69   // else we would have returned.
    70   return i == limit;
    71 }
    75 //------------------------------yank_if_dead-----------------------------------
    76 // Removed an edge from 'old'.  Yank if dead.  Return adjustment counts to
    77 // iterators in the current block.
    78 int PhaseChaitin::yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
    79   int blk_adjust=0;
    80   while (old->outcnt() == 0 && old != C->top()) {
    81     Block *oldb = _cfg._bbs[old->_idx];
    82     oldb->find_remove(old);
    83     // Count 1 if deleting an instruction from the current block
    84     if( oldb == current_block ) blk_adjust++;
    85     _cfg._bbs.map(old->_idx,NULL);
    86     OptoReg::Name old_reg = lrgs(n2lidx(old)).reg();
    87     if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
    88       value->map(old_reg,NULL);  // Yank from value/regnd maps
    89       regnd->map(old_reg,NULL);  // This register's value is now unknown
    90     }
    91     Node *tmp = old->req() > 1 ? old->in(1) : NULL;
    92     old->disconnect_inputs(NULL);
    93     if( !tmp ) break;
    94     old = tmp;
    95   }
    96   return blk_adjust;
    97 }
    99 //------------------------------use_prior_register-----------------------------
   100 // Use the prior value instead of the current value, in an effort to make
   101 // the current value go dead.  Return block iterator adjustment, in case
   102 // we yank some instructions from this block.
   103 int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
   104   // No effect?
   105   if( def == n->in(idx) ) return 0;
   106   // Def is currently dead and can be removed?  Do not resurrect
   107   if( def->outcnt() == 0 ) return 0;
   109   // Not every pair of physical registers are assignment compatible,
   110   // e.g. on sparc floating point registers are not assignable to integer
   111   // registers.
   112   const LRG &def_lrg = lrgs(n2lidx(def));
   113   OptoReg::Name def_reg = def_lrg.reg();
   114   const RegMask &use_mask = n->in_RegMask(idx);
   115   bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
   116                                                    : (use_mask.is_AllStack() != 0));
   117   // Check for a copy to or from a misaligned pair.
   118   can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair();
   120   if (!can_use)
   121     return 0;
   123   // Capture the old def in case it goes dead...
   124   Node *old = n->in(idx);
   126   // Save-on-call copies can only be elided if the entire copy chain can go
   127   // away, lest we get the same callee-save value alive in 2 locations at
   128   // once.  We check for the obvious trivial case here.  Although it can
   129   // sometimes be elided with cooperation outside our scope, here we will just
   130   // miss the opportunity.  :-(
   131   if( may_be_copy_of_callee(def) ) {
   132     if( old->outcnt() > 1 ) return 0; // We're the not last user
   133     int idx = old->is_Copy();
   134     assert( idx, "chain of copies being removed" );
   135     Node *old2 = old->in(idx);  // Chain of copies
   136     if( old2->outcnt() > 1 ) return 0; // old is not the last user
   137     int idx2 = old2->is_Copy();
   138     if( !idx2 ) return 0;       // Not a chain of 2 copies
   139     if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
   140   }
   142   // Use the new def
   143   n->set_req(idx,def);
   144   _post_alloc++;
   146   // Is old def now dead?  We successfully yanked a copy?
   147   return yank_if_dead(old,current_block,&value,&regnd);
   148 }
   151 //------------------------------skip_copies------------------------------------
   152 // Skip through any number of copies (that don't mod oop-i-ness)
   153 Node *PhaseChaitin::skip_copies( Node *c ) {
   154   int idx = c->is_Copy();
   155   uint is_oop = lrgs(n2lidx(c))._is_oop;
   156   while (idx != 0) {
   157     guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
   158     if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop)
   159       break;  // casting copy, not the same value
   160     c = c->in(idx);
   161     idx = c->is_Copy();
   162   }
   163   return c;
   164 }
   166 //------------------------------elide_copy-------------------------------------
   167 // Remove (bypass) copies along Node n, edge k.
   168 int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
   169   int blk_adjust = 0;
   171   uint nk_idx = n2lidx(n->in(k));
   172   OptoReg::Name nk_reg = lrgs(nk_idx ).reg();
   174   // Remove obvious same-register copies
   175   Node *x = n->in(k);
   176   int idx;
   177   while( (idx=x->is_Copy()) != 0 ) {
   178     Node *copy = x->in(idx);
   179     guarantee(copy != NULL, "must not resurrect dead copy");
   180     if( lrgs(n2lidx(copy)).reg() != nk_reg ) break;
   181     blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
   182     if( n->in(k) != copy ) break; // Failed for some cutout?
   183     x = copy;                   // Progress, try again
   184   }
   186   // Phis and 2-address instructions cannot change registers so easily - their
   187   // outputs must match their input.
   188   if( !can_change_regs )
   189     return blk_adjust;          // Only check stupid copies!
   191   // Loop backedges won't have a value-mapping yet
   192   if( &value == NULL ) return blk_adjust;
   194   // Skip through all copies to the _value_ being used.  Do not change from
   195   // int to pointer.  This attempts to jump through a chain of copies, where
   196   // intermediate copies might be illegal, i.e., value is stored down to stack
   197   // then reloaded BUT survives in a register the whole way.
   198   Node *val = skip_copies(n->in(k));
   200   if( val == x ) return blk_adjust; // No progress?
   202   bool single = is_single_register(val->ideal_reg());
   203   uint val_idx = n2lidx(val);
   204   OptoReg::Name val_reg = lrgs(val_idx).reg();
   206   // See if it happens to already be in the correct register!
   207   // (either Phi's direct register, or the common case of the name
   208   // never-clobbered original-def register)
   209   if( value[val_reg] == val &&
   210       // Doubles check both halves
   211       ( single || value[val_reg-1] == val ) ) {
   212     blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
   213     if( n->in(k) == regnd[val_reg] ) // Success!  Quit trying
   214       return blk_adjust;
   215   }
   217   // See if we can skip the copy by changing registers.  Don't change from
   218   // using a register to using the stack unless we know we can remove a
   219   // copy-load.  Otherwise we might end up making a pile of Intel cisc-spill
   220   // ops reading from memory instead of just loading once and using the
   221   // register.
   223   // Also handle duplicate copies here.
   224   const Type *t = val->is_Con() ? val->bottom_type() : NULL;
   226   // Scan all registers to see if this value is around already
   227   for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
   228     Node *vv = value[reg];
   229     if( !single ) {             // Doubles check for aligned-adjacent pair
   230       if( (reg&1)==0 ) continue;  // Wrong half of a pair
   231       if( vv != value[reg-1] ) continue; // Not a complete pair
   232     }
   233     if( vv == val ||            // Got a direct hit?
   234         (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
   235          vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
   236       assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
   237       if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
   238           OptoReg::is_reg(reg) || // turning into a register use OR
   239           regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
   240         blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
   241         if( n->in(k) == regnd[reg] ) // Success!  Quit trying
   242           return blk_adjust;
   243       } // End of if not degrading to a stack
   244     } // End of if found value in another register
   245   } // End of scan all machine registers
   246   return blk_adjust;
   247 }
   250 //
   251 // Check if nreg already contains the constant value val.  Normal copy
   252 // elimination doesn't doesn't work on constants because multiple
   253 // nodes can represent the same constant so the type and rule of the
   254 // MachNode must be checked to ensure equivalence.
   255 //
   256 bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n,
   257                                               Block *current_block,
   258                                               Node_List& value, Node_List& regnd,
   259                                               OptoReg::Name nreg, OptoReg::Name nreg2) {
   260   if (value[nreg] != val && val->is_Con() &&
   261       value[nreg] != NULL && value[nreg]->is_Con() &&
   262       (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
   263       value[nreg]->bottom_type() == val->bottom_type() &&
   264       value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
   265     // This code assumes that two MachNodes representing constants
   266     // which have the same rule and the same bottom type will produce
   267     // identical effects into a register.  This seems like it must be
   268     // objectively true unless there are hidden inputs to the nodes
   269     // but if that were to change this code would need to updated.
   270     // Since they are equivalent the second one if redundant and can
   271     // be removed.
   272     //
   273     // n will be replaced with the old value but n might have
   274     // kills projections associated with it so remove them now so that
   275     // yank_if_dead will be able to elminate the copy once the uses
   276     // have been transferred to the old[value].
   277     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   278       Node* use = n->fast_out(i);
   279       if (use->is_Proj() && use->outcnt() == 0) {
   280         // Kill projections have no users and one input
   281         use->set_req(0, C->top());
   282         yank_if_dead(use, current_block, &value, &regnd);
   283         --i; --imax;
   284       }
   285     }
   286     _post_alloc++;
   287     return true;
   288   }
   289   return false;
   290 }
   293 //------------------------------post_allocate_copy_removal---------------------
   294 // Post-Allocation peephole copy removal.  We do this in 1 pass over the
   295 // basic blocks.  We maintain a mapping of registers to Nodes (an  array of
   296 // Nodes indexed by machine register or stack slot number).  NULL means that a
   297 // register is not mapped to any Node.  We can (want to have!) have several
   298 // registers map to the same Node.  We walk forward over the instructions
   299 // updating the mapping as we go.  At merge points we force a NULL if we have
   300 // to merge 2 different Nodes into the same register.  Phi functions will give
   301 // us a new Node if there is a proper value merging.  Since the blocks are
   302 // arranged in some RPO, we will visit all parent blocks before visiting any
   303 // successor blocks (except at loops).
   304 //
   305 // If we find a Copy we look to see if the Copy's source register is a stack
   306 // slot and that value has already been loaded into some machine register; if
   307 // so we use machine register directly.  This turns a Load into a reg-reg
   308 // Move.  We also look for reloads of identical constants.
   309 //
   310 // When we see a use from a reg-reg Copy, we will attempt to use the copy's
   311 // source directly and make the copy go dead.
   312 void PhaseChaitin::post_allocate_copy_removal() {
   313   NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
   314   ResourceMark rm;
   316   // Need a mapping from basic block Node_Lists.  We need a Node_List to
   317   // map from register number to value-producing Node.
   318   Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
   319   memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
   320   // Need a mapping from basic block Node_Lists.  We need a Node_List to
   321   // map from register number to register-defining Node.
   322   Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
   323   memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
   325   // We keep unused Node_Lists on a free_list to avoid wasting
   326   // memory.
   327   GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
   329   // For all blocks
   330   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   331     uint j;
   332     Block *b = _cfg._blocks[i];
   334     // Count of Phis in block
   335     uint phi_dex;
   336     for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) {
   337       Node *phi = b->_nodes[phi_dex];
   338       if( !phi->is_Phi() )
   339         break;
   340     }
   342     // If any predecessor has not been visited, we do not know the state
   343     // of registers at the start.  Check for this, while updating copies
   344     // along Phi input edges
   345     bool missing_some_inputs = false;
   346     Block *freed = NULL;
   347     for( j = 1; j < b->num_preds(); j++ ) {
   348       Block *pb = _cfg._bbs[b->pred(j)->_idx];
   349       // Remove copies along phi edges
   350       for( uint k=1; k<phi_dex; k++ )
   351         elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
   352       if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge?
   353         // See if this predecessor's mappings have been used by everybody
   354         // who wants them.  If so, free 'em.
   355         uint k;
   356         for( k=0; k<pb->_num_succs; k++ ) {
   357           Block *pbsucc = pb->_succs[k];
   358           if( !blk2value[pbsucc->_pre_order] && pbsucc != b )
   359             break;              // Found a future user
   360         }
   361         if( k >= pb->_num_succs ) { // No more uses, free!
   362           freed = pb;           // Record last block freed
   363           free_list.push(blk2value[pb->_pre_order]);
   364           free_list.push(blk2regnd[pb->_pre_order]);
   365         }
   366       } else {                  // This block has unvisited (loopback) inputs
   367         missing_some_inputs = true;
   368       }
   369     }
   372     // Extract Node_List mappings.  If 'freed' is non-zero, we just popped
   373     // 'freed's blocks off the list
   374     Node_List &regnd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
   375     Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
   376     assert( !freed || blk2value[freed->_pre_order] == &value, "" );
   377     value.map(_max_reg,NULL);
   378     regnd.map(_max_reg,NULL);
   379     // Set mappings as OUR mappings
   380     blk2value[b->_pre_order] = &value;
   381     blk2regnd[b->_pre_order] = &regnd;
   383     // Initialize value & regnd for this block
   384     if( missing_some_inputs ) {
   385       // Some predecessor has not yet been visited; zap map to empty
   386       for( uint k = 0; k < (uint)_max_reg; k++ ) {
   387         value.map(k,NULL);
   388         regnd.map(k,NULL);
   389       }
   390     } else {
   391       if( !freed ) {            // Didn't get a freebie prior block
   392         // Must clone some data
   393         freed = _cfg._bbs[b->pred(1)->_idx];
   394         Node_List &f_value = *blk2value[freed->_pre_order];
   395         Node_List &f_regnd = *blk2regnd[freed->_pre_order];
   396         for( uint k = 0; k < (uint)_max_reg; k++ ) {
   397           value.map(k,f_value[k]);
   398           regnd.map(k,f_regnd[k]);
   399         }
   400       }
   401       // Merge all inputs together, setting to NULL any conflicts.
   402       for( j = 1; j < b->num_preds(); j++ ) {
   403         Block *pb = _cfg._bbs[b->pred(j)->_idx];
   404         if( pb == freed ) continue; // Did self already via freelist
   405         Node_List &p_regnd = *blk2regnd[pb->_pre_order];
   406         for( uint k = 0; k < (uint)_max_reg; k++ ) {
   407           if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
   408             value.map(k,NULL); // Then no value handy
   409             regnd.map(k,NULL);
   410           }
   411         }
   412       }
   413     }
   415     // For all Phi's
   416     for( j = 1; j < phi_dex; j++ ) {
   417       uint k;
   418       Node *phi = b->_nodes[j];
   419       uint pidx = n2lidx(phi);
   420       OptoReg::Name preg = lrgs(n2lidx(phi)).reg();
   422       // Remove copies remaining on edges.  Check for junk phi.
   423       Node *u = NULL;
   424       for( k=1; k<phi->req(); k++ ) {
   425         Node *x = phi->in(k);
   426         if( phi != x && u != x ) // Found a different input
   427           u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
   428       }
   429       if( u != NodeSentinel ) {    // Junk Phi.  Remove
   430         b->_nodes.remove(j--); phi_dex--;
   431         _cfg._bbs.map(phi->_idx,NULL);
   432         phi->replace_by(u);
   433         phi->disconnect_inputs(NULL);
   434         continue;
   435       }
   436       // Note that if value[pidx] exists, then we merged no new values here
   437       // and the phi is useless.  This can happen even with the above phi
   438       // removal for complex flows.  I cannot keep the better known value here
   439       // because locally the phi appears to define a new merged value.  If I
   440       // keep the better value then a copy of the phi, being unable to use the
   441       // global flow analysis, can't "peek through" the phi to the original
   442       // reaching value and so will act like it's defining a new value.  This
   443       // can lead to situations where some uses are from the old and some from
   444       // the new values.  Not illegal by itself but throws the over-strong
   445       // assert in scheduling.
   446       if( pidx ) {
   447         value.map(preg,phi);
   448         regnd.map(preg,phi);
   449         OptoReg::Name preg_lo = OptoReg::add(preg,-1);
   450         if( !is_single_register(phi->ideal_reg()) ) {
   451           value.map(preg_lo,phi);
   452           regnd.map(preg_lo,phi);
   453         }
   454       }
   455     }
   457     // For all remaining instructions
   458     for( j = phi_dex; j < b->_nodes.size(); j++ ) {
   459       Node *n = b->_nodes[j];
   461       if( n->outcnt() == 0 &&   // Dead?
   462           n != C->top() &&      // (ignore TOP, it has no du info)
   463           !n->is_Proj() ) {     // fat-proj kills
   464         j -= yank_if_dead(n,b,&value,&regnd);
   465         continue;
   466       }
   468       // Improve reaching-def info.  Occasionally post-alloc's liveness gives
   469       // up (at loop backedges, because we aren't doing a full flow pass).
   470       // The presence of a live use essentially asserts that the use's def is
   471       // alive and well at the use (or else the allocator fubar'd).  Take
   472       // advantage of this info to set a reaching def for the use-reg.
   473       uint k;
   474       for( k = 1; k < n->req(); k++ ) {
   475         Node *def = n->in(k);   // n->in(k) is a USE; def is the DEF for this USE
   476         guarantee(def != NULL, "no disconnected nodes at this point");
   477         uint useidx = n2lidx(def); // useidx is the live range index for this USE
   479         if( useidx ) {
   480           OptoReg::Name ureg = lrgs(useidx).reg();
   481           if( !value[ureg] ) {
   482             int idx;            // Skip occasional useless copy
   483             while( (idx=def->is_Copy()) != 0 &&
   484                    def->in(idx) != NULL &&  // NULL should not happen
   485                    ureg == lrgs(n2lidx(def->in(idx))).reg() )
   486               def = def->in(idx);
   487             Node *valdef = skip_copies(def); // tighten up val through non-useless copies
   488             value.map(ureg,valdef); // record improved reaching-def info
   489             regnd.map(ureg,   def);
   490             // Record other half of doubles
   491             OptoReg::Name ureg_lo = OptoReg::add(ureg,-1);
   492             if( !is_single_register(def->ideal_reg()) &&
   493                 ( !RegMask::can_represent(ureg_lo) ||
   494                   lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent
   495                 !value[ureg_lo] ) {
   496               value.map(ureg_lo,valdef); // record improved reaching-def info
   497               regnd.map(ureg_lo,   def);
   498             }
   499           }
   500         }
   501       }
   503       const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
   505       // Remove copies along input edges
   506       for( k = 1; k < n->req(); k++ )
   507         j -= elide_copy( n, k, b, value, regnd, two_adr!=k );
   509       // Unallocated Nodes define no registers
   510       uint lidx = n2lidx(n);
   511       if( !lidx ) continue;
   513       // Update the register defined by this instruction
   514       OptoReg::Name nreg = lrgs(lidx).reg();
   515       // Skip through all copies to the _value_ being defined.
   516       // Do not change from int to pointer
   517       Node *val = skip_copies(n);
   519       uint n_ideal_reg = n->ideal_reg();
   520       if( is_single_register(n_ideal_reg) ) {
   521         // If Node 'n' does not change the value mapped by the register,
   522         // then 'n' is a useless copy.  Do not update the register->node
   523         // mapping so 'n' will go dead.
   524         if( value[nreg] != val ) {
   525           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) {
   526             n->replace_by(regnd[nreg]);
   527             j -= yank_if_dead(n,b,&value,&regnd);
   528           } else {
   529             // Update the mapping: record new Node defined by the register
   530             regnd.map(nreg,n);
   531             // Update mapping for defined *value*, which is the defined
   532             // Node after skipping all copies.
   533             value.map(nreg,val);
   534           }
   535         } else if( !may_be_copy_of_callee(n) && regnd[nreg]->outcnt() != 0 ) {
   536           assert( n->is_Copy(), "" );
   537           n->replace_by(regnd[nreg]);
   538           j -= yank_if_dead(n,b,&value,&regnd);
   539         }
   540       } else {
   541         // If the value occupies a register pair, record same info
   542         // in both registers.
   543         OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
   544         if( RegMask::can_represent(nreg_lo) &&     // Either a spill slot, or
   545             !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
   546           // Sparc occasionally has non-adjacent pairs.
   547           // Find the actual other value
   548           RegMask tmp = lrgs(lidx).mask();
   549           tmp.Remove(nreg);
   550           nreg_lo = tmp.find_first_elem();
   551         }
   552         if( value[nreg] != val || value[nreg_lo] != val ) {
   553           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) {
   554             n->replace_by(regnd[nreg]);
   555             j -= yank_if_dead(n,b,&value,&regnd);
   556           } else {
   557             regnd.map(nreg   , n );
   558             regnd.map(nreg_lo, n );
   559             value.map(nreg   ,val);
   560             value.map(nreg_lo,val);
   561           }
   562         } else if( !may_be_copy_of_callee(n) && regnd[nreg]->outcnt() != 0 ) {
   563           assert( n->is_Copy(), "" );
   564           n->replace_by(regnd[nreg]);
   565           j -= yank_if_dead(n,b,&value,&regnd);
   566         }
   567       }
   569       // Fat projections kill many registers
   570       if( n_ideal_reg == MachProjNode::fat_proj ) {
   571         RegMask rm = n->out_RegMask();
   572         // wow, what an expensive iterator...
   573         nreg = rm.find_first_elem();
   574         while( OptoReg::is_valid(nreg)) {
   575           rm.Remove(nreg);
   576           value.map(nreg,n);
   577           regnd.map(nreg,n);
   578           nreg = rm.find_first_elem();
   579         }
   580       }
   582     } // End of for all instructions in the block
   584   } // End for all blocks
   585 }

mercurial