src/cpu/sparc/vm/sparc.ad

Tue, 24 Jun 2008 10:43:29 -0700

author
kvn
date
Tue, 24 Jun 2008 10:43:29 -0700
changeset 656
1e026f8da827
parent 617
44abbb0d4c18
child 670
9c2ecc2ffb12
permissions
-rw-r--r--

6710487: More than half of JDI Regression tests hang with COOPs in -Xcomp mode
Summary: Remove DecodeNNode::decode() and EncodePNode::encode() methods.
Reviewed-by: rasbold, never

     1 //
     2 // Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning 'dont go here'.
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg());
   197 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg()->next());
   198 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg());
   199 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg()->next());
   200 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg());
   201 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg()->next());
   202 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg());
   203 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg()->next());
   204 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg());
   205 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg()->next());
   206 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg());
   207 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next());
   208 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg());
   209 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next());
   210 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg());
   211 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next());
   212 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg());
   213 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next());
   214 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg());
   215 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next());
   216 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg());
   217 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next());
   218 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg());
   219 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next());
   220 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg());
   221 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next());
   222 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg());
   223 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next());
   224 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg());
   225 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next());
   226 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg());
   227 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class o2_regL(R_O2H,R_O2);
   399 reg_class o7_regL(R_O7H,R_O7);
   401 // ----------------------------
   402 // Special Class for Condition Code Flags Register
   403 reg_class int_flags(CCR);
   404 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   405 reg_class float_flag0(FCC0);
   408 // ----------------------------
   409 // Float Point Register Classes
   410 // ----------------------------
   411 // Skip F30/F31, they are reserved for mem-mem copies
   412 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   414 // Paired floating point registers--they show up in the same order as the floats,
   415 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   416 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   417                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   418                    /* Use extra V9 double registers; this AD file does not support V8 */
   419                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   420                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   421                    );
   423 // Paired floating point registers--they show up in the same order as the floats,
   424 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   425 // This class is usable for mis-aligned loads as happen in I2C adapters.
   426 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   427                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   428 %}
   430 //----------DEFINITION BLOCK---------------------------------------------------
   431 // Define name --> value mappings to inform the ADLC of an integer valued name
   432 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   433 // Format:
   434 //        int_def  <name>         ( <int_value>, <expression>);
   435 // Generated Code in ad_<arch>.hpp
   436 //        #define  <name>   (<expression>)
   437 //        // value == <int_value>
   438 // Generated code in ad_<arch>.cpp adlc_verification()
   439 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   440 //
   441 definitions %{
   442 // The default cost (of an ALU instruction).
   443   int_def DEFAULT_COST      (    100,     100);
   444   int_def HUGE_COST         (1000000, 1000000);
   446 // Memory refs are twice as expensive as run-of-the-mill.
   447   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   449 // Branches are even more expensive.
   450   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   451   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   452 %}
   455 //----------SOURCE BLOCK-------------------------------------------------------
   456 // This is a block of C++ code which provides values, functions, and
   457 // definitions necessary in the rest of the architecture description
   458 source_hpp %{
   459 // Must be visible to the DFA in dfa_sparc.cpp
   460 extern bool can_branch_register( Node *bol, Node *cmp );
   462 // Macros to extract hi & lo halves from a long pair.
   463 // G0 is not part of any long pair, so assert on that.
   464 // Prevents accidently using G1 instead of G0.
   465 #define LONG_HI_REG(x) (x)
   466 #define LONG_LO_REG(x) (x)
   468 %}
   470 source %{
   471 #define __ _masm.
   473 // tertiary op of a LoadP or StoreP encoding
   474 #define REGP_OP true
   476 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   477 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   478 static Register reg_to_register_object(int register_encoding);
   480 // Used by the DFA in dfa_sparc.cpp.
   481 // Check for being able to use a V9 branch-on-register.  Requires a
   482 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   483 // extended.  Doesn't work following an integer ADD, for example, because of
   484 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   485 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   486 // replace them with zero, which could become sign-extension in a different OS
   487 // release.  There's no obvious reason why an interrupt will ever fill these
   488 // bits with non-zero junk (the registers are reloaded with standard LD
   489 // instructions which either zero-fill or sign-fill).
   490 bool can_branch_register( Node *bol, Node *cmp ) {
   491   if( !BranchOnRegister ) return false;
   492 #ifdef _LP64
   493   if( cmp->Opcode() == Op_CmpP )
   494     return true;  // No problems with pointer compares
   495 #endif
   496   if( cmp->Opcode() == Op_CmpL )
   497     return true;  // No problems with long compares
   499   if( !SparcV9RegsHiBitsZero ) return false;
   500   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   501       bol->as_Bool()->_test._test != BoolTest::eq )
   502      return false;
   504   // Check for comparing against a 'safe' value.  Any operation which
   505   // clears out the high word is safe.  Thus, loads and certain shifts
   506   // are safe, as are non-negative constants.  Any operation which
   507   // preserves zero bits in the high word is safe as long as each of its
   508   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   509   // inputs are safe.  At present, the only important case to recognize
   510   // seems to be loads.  Constants should fold away, and shifts &
   511   // logicals can use the 'cc' forms.
   512   Node *x = cmp->in(1);
   513   if( x->is_Load() ) return true;
   514   if( x->is_Phi() ) {
   515     for( uint i = 1; i < x->req(); i++ )
   516       if( !x->in(i)->is_Load() )
   517         return false;
   518     return true;
   519   }
   520   return false;
   521 }
   523 // ****************************************************************************
   525 // REQUIRED FUNCTIONALITY
   527 // !!!!! Special hack to get all type of calls to specify the byte offset
   528 //       from the start of the call to the point where the return address
   529 //       will point.
   530 //       The "return address" is the address of the call instruction, plus 8.
   532 int MachCallStaticJavaNode::ret_addr_offset() {
   533   return NativeCall::instruction_size;  // call; delay slot
   534 }
   536 int MachCallDynamicJavaNode::ret_addr_offset() {
   537   int vtable_index = this->_vtable_index;
   538   if (vtable_index < 0) {
   539     // must be invalid_vtable_index, not nonvirtual_vtable_index
   540     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   541     return (NativeMovConstReg::instruction_size +
   542            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   543   } else {
   544     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   545     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   546     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   547     int klass_load_size;
   548     if (UseCompressedOops) {
   549       klass_load_size = 3*BytesPerInstWord; // see MacroAssembler::load_klass()
   550     } else {
   551       klass_load_size = 1*BytesPerInstWord;
   552     }
   553     if( Assembler::is_simm13(v_off) ) {
   554       return klass_load_size +
   555              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   556              NativeCall::instruction_size);  // call; delay slot
   557     } else {
   558       return klass_load_size +
   559              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   560              NativeCall::instruction_size);  // call; delay slot
   561     }
   562   }
   563 }
   565 int MachCallRuntimeNode::ret_addr_offset() {
   566 #ifdef _LP64
   567   return NativeFarCall::instruction_size;  // farcall; delay slot
   568 #else
   569   return NativeCall::instruction_size;  // call; delay slot
   570 #endif
   571 }
   573 // Indicate if the safepoint node needs the polling page as an input.
   574 // Since Sparc does not have absolute addressing, it does.
   575 bool SafePointNode::needs_polling_address_input() {
   576   return true;
   577 }
   579 // emit an interrupt that is caught by the debugger (for debugging compiler)
   580 void emit_break(CodeBuffer &cbuf) {
   581   MacroAssembler _masm(&cbuf);
   582   __ breakpoint_trap();
   583 }
   585 #ifndef PRODUCT
   586 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   587   st->print("TA");
   588 }
   589 #endif
   591 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   592   emit_break(cbuf);
   593 }
   595 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   596   return MachNode::size(ra_);
   597 }
   599 // Traceable jump
   600 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   601   MacroAssembler _masm(&cbuf);
   602   Register rdest = reg_to_register_object(jump_target);
   603   __ JMP(rdest, 0);
   604   __ delayed()->nop();
   605 }
   607 // Traceable jump and set exception pc
   608 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   609   MacroAssembler _masm(&cbuf);
   610   Register rdest = reg_to_register_object(jump_target);
   611   __ JMP(rdest, 0);
   612   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   613 }
   615 void emit_nop(CodeBuffer &cbuf) {
   616   MacroAssembler _masm(&cbuf);
   617   __ nop();
   618 }
   620 void emit_illtrap(CodeBuffer &cbuf) {
   621   MacroAssembler _masm(&cbuf);
   622   __ illtrap(0);
   623 }
   626 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   627   assert(n->rule() != loadUB_rule, "");
   629   intptr_t offset = 0;
   630   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   631   const Node* addr = n->get_base_and_disp(offset, adr_type);
   632   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   633   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   634   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   635   atype = atype->add_offset(offset);
   636   assert(disp32 == offset, "wrong disp32");
   637   return atype->_offset;
   638 }
   641 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   642   assert(n->rule() != loadUB_rule, "");
   644   intptr_t offset = 0;
   645   Node* addr = n->in(2);
   646   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   647   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   648     Node* a = addr->in(2/*AddPNode::Address*/);
   649     Node* o = addr->in(3/*AddPNode::Offset*/);
   650     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   651     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   652     assert(atype->isa_oop_ptr(), "still an oop");
   653   }
   654   offset = atype->is_ptr()->_offset;
   655   if (offset != Type::OffsetBot)  offset += disp32;
   656   return offset;
   657 }
   659 // Standard Sparc opcode form2 field breakdown
   660 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   661   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   662   int op = (f30 << 30) |
   663            (f29 << 29) |
   664            (f25 << 25) |
   665            (f22 << 22) |
   666            (f20 << 20) |
   667            (f19 << 19) |
   668            (f0  <<  0);
   669   *((int*)(cbuf.code_end())) = op;
   670   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   671 }
   673 // Standard Sparc opcode form2 field breakdown
   674 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   675   f0 >>= 10;           // Drop 10 bits
   676   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   677   int op = (f30 << 30) |
   678            (f25 << 25) |
   679            (f22 << 22) |
   680            (f0  <<  0);
   681   *((int*)(cbuf.code_end())) = op;
   682   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   683 }
   685 // Standard Sparc opcode form3 field breakdown
   686 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   687   int op = (f30 << 30) |
   688            (f25 << 25) |
   689            (f19 << 19) |
   690            (f14 << 14) |
   691            (f5  <<  5) |
   692            (f0  <<  0);
   693   *((int*)(cbuf.code_end())) = op;
   694   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   695 }
   697 // Standard Sparc opcode form3 field breakdown
   698 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   699   simm13 &= (1<<13)-1; // Mask to 13 bits
   700   int op = (f30 << 30) |
   701            (f25 << 25) |
   702            (f19 << 19) |
   703            (f14 << 14) |
   704            (1   << 13) | // bit to indicate immediate-mode
   705            (simm13<<0);
   706   *((int*)(cbuf.code_end())) = op;
   707   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   708 }
   710 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   711   simm10 &= (1<<10)-1; // Mask to 10 bits
   712   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   713 }
   715 #ifdef ASSERT
   716 // Helper function for VerifyOops in emit_form3_mem_reg
   717 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   718   warning("VerifyOops encountered unexpected instruction:");
   719   n->dump(2);
   720   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   721 }
   722 #endif
   725 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   726                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   728 #ifdef ASSERT
   729   // The following code implements the +VerifyOops feature.
   730   // It verifies oop values which are loaded into or stored out of
   731   // the current method activation.  +VerifyOops complements techniques
   732   // like ScavengeALot, because it eagerly inspects oops in transit,
   733   // as they enter or leave the stack, as opposed to ScavengeALot,
   734   // which inspects oops "at rest", in the stack or heap, at safepoints.
   735   // For this reason, +VerifyOops can sometimes detect bugs very close
   736   // to their point of creation.  It can also serve as a cross-check
   737   // on the validity of oop maps, when used toegether with ScavengeALot.
   739   // It would be good to verify oops at other points, especially
   740   // when an oop is used as a base pointer for a load or store.
   741   // This is presently difficult, because it is hard to know when
   742   // a base address is biased or not.  (If we had such information,
   743   // it would be easy and useful to make a two-argument version of
   744   // verify_oop which unbiases the base, and performs verification.)
   746   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   747   bool is_verified_oop_base  = false;
   748   bool is_verified_oop_load  = false;
   749   bool is_verified_oop_store = false;
   750   int tmp_enc = -1;
   751   if (VerifyOops && src1_enc != R_SP_enc) {
   752     // classify the op, mainly for an assert check
   753     int st_op = 0, ld_op = 0;
   754     switch (primary) {
   755     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   756     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   757     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   758     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   759     case Assembler::std_op3:  st_op = Op_StoreL; break;
   760     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   761     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   763     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   764     case Assembler::lduh_op3: ld_op = Op_LoadC; break;
   765     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   766     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   767     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   768     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   769     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   770     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   771     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   772     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   773     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   775     default: ShouldNotReachHere();
   776     }
   777     if (tertiary == REGP_OP) {
   778       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   779       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   780       else                          ShouldNotReachHere();
   781       if (st_op) {
   782         // a store
   783         // inputs are (0:control, 1:memory, 2:address, 3:value)
   784         Node* n2 = n->in(3);
   785         if (n2 != NULL) {
   786           const Type* t = n2->bottom_type();
   787           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   788         }
   789       } else {
   790         // a load
   791         const Type* t = n->bottom_type();
   792         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   793       }
   794     }
   796     if (ld_op) {
   797       // a Load
   798       // inputs are (0:control, 1:memory, 2:address)
   799       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   800           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   801           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   802           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   803           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   804           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   805           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   806           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   807           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   808           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   809           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   810           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   811           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   812           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   813           !(n->rule() == loadUB_rule)) {
   814         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   815       }
   816     } else if (st_op) {
   817       // a Store
   818       // inputs are (0:control, 1:memory, 2:address, 3:value)
   819       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   820           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   821           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   822           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   823           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   824           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   825         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   826       }
   827     }
   829     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   830       Node* addr = n->in(2);
   831       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   832         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   833         if (atype != NULL) {
   834           intptr_t offset = get_offset_from_base(n, atype, disp32);
   835           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   836           if (offset != offset_2) {
   837             get_offset_from_base(n, atype, disp32);
   838             get_offset_from_base_2(n, atype, disp32);
   839           }
   840           assert(offset == offset_2, "different offsets");
   841           if (offset == disp32) {
   842             // we now know that src1 is a true oop pointer
   843             is_verified_oop_base = true;
   844             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   845               if( primary == Assembler::ldd_op3 ) {
   846                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   847               } else {
   848                 tmp_enc = dst_enc;
   849                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   850                 assert(src1_enc != dst_enc, "");
   851               }
   852             }
   853           }
   854           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   855                        || offset == oopDesc::mark_offset_in_bytes())) {
   856                       // loading the mark should not be allowed either, but
   857                       // we don't check this since it conflicts with InlineObjectHash
   858                       // usage of LoadINode to get the mark. We could keep the
   859                       // check if we create a new LoadMarkNode
   860             // but do not verify the object before its header is initialized
   861             ShouldNotReachHere();
   862           }
   863         }
   864       }
   865     }
   866   }
   867 #endif
   869   uint instr;
   870   instr = (Assembler::ldst_op << 30)
   871         | (dst_enc        << 25)
   872         | (primary        << 19)
   873         | (src1_enc       << 14);
   875   uint index = src2_enc;
   876   int disp = disp32;
   878   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   879     disp += STACK_BIAS;
   881   // We should have a compiler bailout here rather than a guarantee.
   882   // Better yet would be some mechanism to handle variable-size matches correctly.
   883   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   885   if( disp == 0 ) {
   886     // use reg-reg form
   887     // bit 13 is already zero
   888     instr |= index;
   889   } else {
   890     // use reg-imm form
   891     instr |= 0x00002000;          // set bit 13 to one
   892     instr |= disp & 0x1FFF;
   893   }
   895   uint *code = (uint*)cbuf.code_end();
   896   *code = instr;
   897   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   899 #ifdef ASSERT
   900   {
   901     MacroAssembler _masm(&cbuf);
   902     if (is_verified_oop_base) {
   903       __ verify_oop(reg_to_register_object(src1_enc));
   904     }
   905     if (is_verified_oop_store) {
   906       __ verify_oop(reg_to_register_object(dst_enc));
   907     }
   908     if (tmp_enc != -1) {
   909       __ mov(O7, reg_to_register_object(tmp_enc));
   910     }
   911     if (is_verified_oop_load) {
   912       __ verify_oop(reg_to_register_object(dst_enc));
   913     }
   914   }
   915 #endif
   916 }
   918 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   919                         int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
   921   uint instr;
   922   instr = (Assembler::ldst_op << 30)
   923         | (dst_enc        << 25)
   924         | (primary        << 19)
   925         | (src1_enc       << 14);
   927   int disp = disp32;
   928   int index    = src2_enc;
   930   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   931     disp += STACK_BIAS;
   933   // We should have a compiler bailout here rather than a guarantee.
   934   // Better yet would be some mechanism to handle variable-size matches correctly.
   935   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   937   if( disp != 0 ) {
   938     // use reg-reg form
   939     // set src2=R_O7 contains offset
   940     index = R_O7_enc;
   941     emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
   942   }
   943   instr |= (asi << 5);
   944   instr |= index;
   945   uint *code = (uint*)cbuf.code_end();
   946   *code = instr;
   947   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   948 }
   950 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
   951   // The method which records debug information at every safepoint
   952   // expects the call to be the first instruction in the snippet as
   953   // it creates a PcDesc structure which tracks the offset of a call
   954   // from the start of the codeBlob. This offset is computed as
   955   // code_end() - code_begin() of the code which has been emitted
   956   // so far.
   957   // In this particular case we have skirted around the problem by
   958   // putting the "mov" instruction in the delay slot but the problem
   959   // may bite us again at some other point and a cleaner/generic
   960   // solution using relocations would be needed.
   961   MacroAssembler _masm(&cbuf);
   962   __ set_inst_mark();
   964   // We flush the current window just so that there is a valid stack copy
   965   // the fact that the current window becomes active again instantly is
   966   // not a problem there is nothing live in it.
   968 #ifdef ASSERT
   969   int startpos = __ offset();
   970 #endif /* ASSERT */
   972 #ifdef _LP64
   973   // Calls to the runtime or native may not be reachable from compiled code,
   974   // so we generate the far call sequence on 64 bit sparc.
   975   // This code sequence is relocatable to any address, even on LP64.
   976   if ( force_far_call ) {
   977     __ relocate(rtype);
   978     Address dest(O7, (address)entry_point);
   979     __ jumpl_to(dest, O7);
   980   }
   981   else
   982 #endif
   983   {
   984      __ call((address)entry_point, rtype);
   985   }
   987   if (preserve_g2)   __ delayed()->mov(G2, L7);
   988   else __ delayed()->nop();
   990   if (preserve_g2)   __ mov(L7, G2);
   992 #ifdef ASSERT
   993   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   994 #ifdef _LP64
   995     // Trash argument dump slots.
   996     __ set(0xb0b8ac0db0b8ac0d, G1);
   997     __ mov(G1, G5);
   998     __ stx(G1, SP, STACK_BIAS + 0x80);
   999     __ stx(G1, SP, STACK_BIAS + 0x88);
  1000     __ stx(G1, SP, STACK_BIAS + 0x90);
  1001     __ stx(G1, SP, STACK_BIAS + 0x98);
  1002     __ stx(G1, SP, STACK_BIAS + 0xA0);
  1003     __ stx(G1, SP, STACK_BIAS + 0xA8);
  1004 #else // _LP64
  1005     // this is also a native call, so smash the first 7 stack locations,
  1006     // and the various registers
  1008     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1009     // while [SP+0x44..0x58] are the argument dump slots.
  1010     __ set((intptr_t)0xbaadf00d, G1);
  1011     __ mov(G1, G5);
  1012     __ sllx(G1, 32, G1);
  1013     __ or3(G1, G5, G1);
  1014     __ mov(G1, G5);
  1015     __ stx(G1, SP, 0x40);
  1016     __ stx(G1, SP, 0x48);
  1017     __ stx(G1, SP, 0x50);
  1018     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1019 #endif // _LP64
  1021 #endif /*ASSERT*/
  1024 //=============================================================================
  1025 // REQUIRED FUNCTIONALITY for encoding
  1026 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1027 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1029 void emit_ptr(CodeBuffer &cbuf, intptr_t val, Register reg, bool ForceRelocatable) {
  1030   MacroAssembler _masm(&cbuf);
  1031   if (ForceRelocatable) {
  1032     Address addr(reg, (address)val);
  1033     __ sethi(addr, ForceRelocatable);
  1034     __ add(addr, reg);
  1035   } else {
  1036     __ set(val, reg);
  1041 //=============================================================================
  1043 #ifndef PRODUCT
  1044 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1045   Compile* C = ra_->C;
  1047   for (int i = 0; i < OptoPrologueNops; i++) {
  1048     st->print_cr("NOP"); st->print("\t");
  1051   if( VerifyThread ) {
  1052     st->print_cr("Verify_Thread"); st->print("\t");
  1055   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1057   // Calls to C2R adapters often do not accept exceptional returns.
  1058   // We require that their callers must bang for them.  But be careful, because
  1059   // some VM calls (such as call site linkage) can use several kilobytes of
  1060   // stack.  But the stack safety zone should account for that.
  1061   // See bugs 4446381, 4468289, 4497237.
  1062   if (C->need_stack_bang(framesize)) {
  1063     st->print_cr("! stack bang"); st->print("\t");
  1066   if (Assembler::is_simm13(-framesize)) {
  1067     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1068   } else {
  1069     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1070     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1071     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1075 #endif
  1077 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1078   Compile* C = ra_->C;
  1079   MacroAssembler _masm(&cbuf);
  1081   for (int i = 0; i < OptoPrologueNops; i++) {
  1082     __ nop();
  1085   __ verify_thread();
  1087   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1088   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1089   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1091   // Calls to C2R adapters often do not accept exceptional returns.
  1092   // We require that their callers must bang for them.  But be careful, because
  1093   // some VM calls (such as call site linkage) can use several kilobytes of
  1094   // stack.  But the stack safety zone should account for that.
  1095   // See bugs 4446381, 4468289, 4497237.
  1096   if (C->need_stack_bang(framesize)) {
  1097     __ generate_stack_overflow_check(framesize);
  1100   if (Assembler::is_simm13(-framesize)) {
  1101     __ save(SP, -framesize, SP);
  1102   } else {
  1103     __ sethi(-framesize & ~0x3ff, G3);
  1104     __ add(G3, -framesize & 0x3ff, G3);
  1105     __ save(SP, G3, SP);
  1107   C->set_frame_complete( __ offset() );
  1110 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1111   return MachNode::size(ra_);
  1114 int MachPrologNode::reloc() const {
  1115   return 10; // a large enough number
  1118 //=============================================================================
  1119 #ifndef PRODUCT
  1120 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1121   Compile* C = ra_->C;
  1123   if( do_polling() && ra_->C->is_method_compilation() ) {
  1124     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1125 #ifdef _LP64
  1126     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1127 #else
  1128     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1129 #endif
  1132   if( do_polling() )
  1133     st->print("RET\n\t");
  1135   st->print("RESTORE");
  1137 #endif
  1139 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1140   MacroAssembler _masm(&cbuf);
  1141   Compile* C = ra_->C;
  1143   __ verify_thread();
  1145   // If this does safepoint polling, then do it here
  1146   if( do_polling() && ra_->C->is_method_compilation() ) {
  1147     Address polling_page(L0, (address)os::get_polling_page());
  1148     __ sethi(polling_page, false);
  1149     __ relocate(relocInfo::poll_return_type);
  1150     __ ld_ptr( L0, 0, G0 );
  1153   // If this is a return, then stuff the restore in the delay slot
  1154   if( do_polling() ) {
  1155     __ ret();
  1156     __ delayed()->restore();
  1157   } else {
  1158     __ restore();
  1162 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1163   return MachNode::size(ra_);
  1166 int MachEpilogNode::reloc() const {
  1167   return 16; // a large enough number
  1170 const Pipeline * MachEpilogNode::pipeline() const {
  1171   return MachNode::pipeline_class();
  1174 int MachEpilogNode::safepoint_offset() const {
  1175   assert( do_polling(), "no return for this epilog node");
  1176   return MacroAssembler::size_of_sethi(os::get_polling_page());
  1179 //=============================================================================
  1181 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1182 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1183 static enum RC rc_class( OptoReg::Name reg ) {
  1184   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1185   if (OptoReg::is_stack(reg)) return rc_stack;
  1186   VMReg r = OptoReg::as_VMReg(reg);
  1187   if (r->is_Register()) return rc_int;
  1188   assert(r->is_FloatRegister(), "must be");
  1189   return rc_float;
  1192 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1193   if( cbuf ) {
  1194     // Better yet would be some mechanism to handle variable-size matches correctly
  1195     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1196       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1197     } else {
  1198       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1201 #ifndef PRODUCT
  1202   else if( !do_size ) {
  1203     if( size != 0 ) st->print("\n\t");
  1204     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1205     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1207 #endif
  1208   return size+4;
  1211 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1212   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1213 #ifndef PRODUCT
  1214   else if( !do_size ) {
  1215     if( size != 0 ) st->print("\n\t");
  1216     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1218 #endif
  1219   return size+4;
  1222 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1223                                         PhaseRegAlloc *ra_,
  1224                                         bool do_size,
  1225                                         outputStream* st ) const {
  1226   // Get registers to move
  1227   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1228   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1229   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1230   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1232   enum RC src_second_rc = rc_class(src_second);
  1233   enum RC src_first_rc = rc_class(src_first);
  1234   enum RC dst_second_rc = rc_class(dst_second);
  1235   enum RC dst_first_rc = rc_class(dst_first);
  1237   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1239   // Generate spill code!
  1240   int size = 0;
  1242   if( src_first == dst_first && src_second == dst_second )
  1243     return size;            // Self copy, no move
  1245   // --------------------------------------
  1246   // Check for mem-mem move.  Load into unused float registers and fall into
  1247   // the float-store case.
  1248   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1249     int offset = ra_->reg2offset(src_first);
  1250     // Further check for aligned-adjacent pair, so we can use a double load
  1251     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1252       src_second    = OptoReg::Name(R_F31_num);
  1253       src_second_rc = rc_float;
  1254       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1255     } else {
  1256       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1258     src_first    = OptoReg::Name(R_F30_num);
  1259     src_first_rc = rc_float;
  1262   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1263     int offset = ra_->reg2offset(src_second);
  1264     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1265     src_second    = OptoReg::Name(R_F31_num);
  1266     src_second_rc = rc_float;
  1269   // --------------------------------------
  1270   // Check for float->int copy; requires a trip through memory
  1271   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1272     int offset = frame::register_save_words*wordSize;
  1273     if( cbuf ) {
  1274       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1275       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1276       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1277       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1279 #ifndef PRODUCT
  1280     else if( !do_size ) {
  1281       if( size != 0 ) st->print("\n\t");
  1282       st->print(  "SUB    R_SP,16,R_SP\n");
  1283       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1284       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1285       st->print("\tADD    R_SP,16,R_SP\n");
  1287 #endif
  1288     size += 16;
  1291   // --------------------------------------
  1292   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1293   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1294   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1295   // there.  Misaligned sources only come from native-long-returns (handled
  1296   // special below).
  1297 #ifndef _LP64
  1298   if( src_first_rc == rc_int &&     // source is already big-endian
  1299       src_second_rc != rc_bad &&    // 64-bit move
  1300       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1301     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1302     // Do the big-endian flop.
  1303     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1304     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1306 #endif
  1308   // --------------------------------------
  1309   // Check for integer reg-reg copy
  1310   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1311 #ifndef _LP64
  1312     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1313       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1314       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1315       //       operand contains the least significant word of the 64-bit value and vice versa.
  1316       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1317       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1318       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1319       if( cbuf ) {
  1320         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1321         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1322         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1323 #ifndef PRODUCT
  1324       } else if( !do_size ) {
  1325         if( size != 0 ) st->print("\n\t");
  1326         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1327         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1328         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1329 #endif
  1331       return size+12;
  1333     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1334       // returning a long value in I0/I1
  1335       // a SpillCopy must be able to target a return instruction's reg_class
  1336       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1337       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1338       //       operand contains the least significant word of the 64-bit value and vice versa.
  1339       OptoReg::Name tdest = dst_first;
  1341       if (src_first == dst_first) {
  1342         tdest = OptoReg::Name(R_O7_num);
  1343         size += 4;
  1346       if( cbuf ) {
  1347         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1348         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1349         // ShrL_reg_imm6
  1350         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1351         // ShrR_reg_imm6  src, 0, dst
  1352         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1353         if (tdest != dst_first) {
  1354           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1357 #ifndef PRODUCT
  1358       else if( !do_size ) {
  1359         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1360         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1361         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1362         if (tdest != dst_first) {
  1363           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1366 #endif // PRODUCT
  1367       return size+8;
  1369 #endif // !_LP64
  1370     // Else normal reg-reg copy
  1371     assert( src_second != dst_first, "smashed second before evacuating it" );
  1372     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1373     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1374     // This moves an aligned adjacent pair.
  1375     // See if we are done.
  1376     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1377       return size;
  1380   // Check for integer store
  1381   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1382     int offset = ra_->reg2offset(dst_first);
  1383     // Further check for aligned-adjacent pair, so we can use a double store
  1384     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1385       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1386     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1389   // Check for integer load
  1390   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1391     int offset = ra_->reg2offset(src_first);
  1392     // Further check for aligned-adjacent pair, so we can use a double load
  1393     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1394       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1395     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1398   // Check for float reg-reg copy
  1399   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1400     // Further check for aligned-adjacent pair, so we can use a double move
  1401     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1402       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1403     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1406   // Check for float store
  1407   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1408     int offset = ra_->reg2offset(dst_first);
  1409     // Further check for aligned-adjacent pair, so we can use a double store
  1410     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1411       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1412     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1415   // Check for float load
  1416   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1417     int offset = ra_->reg2offset(src_first);
  1418     // Further check for aligned-adjacent pair, so we can use a double load
  1419     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1420       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1421     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1424   // --------------------------------------------------------------------
  1425   // Check for hi bits still needing moving.  Only happens for misaligned
  1426   // arguments to native calls.
  1427   if( src_second == dst_second )
  1428     return size;               // Self copy; no move
  1429   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1431 #ifndef _LP64
  1432   // In the LP64 build, all registers can be moved as aligned/adjacent
  1433   // pairs, so there's never any need to move the high bits seperately.
  1434   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1435   // all sorts of silly alignment problems.
  1437   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1438   // 32-bits of a 64-bit register, but are needed in low bits of another
  1439   // register (else it's a hi-bits-to-hi-bits copy which should have
  1440   // happened already as part of a 64-bit move)
  1441   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1442     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1443     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1444     // Shift src_second down to dst_second's low bits.
  1445     if( cbuf ) {
  1446       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1447 #ifndef PRODUCT
  1448     } else if( !do_size ) {
  1449       if( size != 0 ) st->print("\n\t");
  1450       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1451 #endif
  1453     return size+4;
  1456   // Check for high word integer store.  Must down-shift the hi bits
  1457   // into a temp register, then fall into the case of storing int bits.
  1458   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1459     // Shift src_second down to dst_second's low bits.
  1460     if( cbuf ) {
  1461       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1462 #ifndef PRODUCT
  1463     } else if( !do_size ) {
  1464       if( size != 0 ) st->print("\n\t");
  1465       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1466 #endif
  1468     size+=4;
  1469     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1472   // Check for high word integer load
  1473   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1474     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1476   // Check for high word integer store
  1477   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1478     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1480   // Check for high word float store
  1481   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1482     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1484 #endif // !_LP64
  1486   Unimplemented();
  1489 #ifndef PRODUCT
  1490 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1491   implementation( NULL, ra_, false, st );
  1493 #endif
  1495 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1496   implementation( &cbuf, ra_, false, NULL );
  1499 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1500   return implementation( NULL, ra_, true, NULL );
  1503 //=============================================================================
  1504 #ifndef PRODUCT
  1505 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1506   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1508 #endif
  1510 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1511   MacroAssembler _masm(&cbuf);
  1512   for(int i = 0; i < _count; i += 1) {
  1513     __ nop();
  1517 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1518   return 4 * _count;
  1522 //=============================================================================
  1523 #ifndef PRODUCT
  1524 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1525   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1526   int reg = ra_->get_reg_first(this);
  1527   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1529 #endif
  1531 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1532   MacroAssembler _masm(&cbuf);
  1533   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1534   int reg = ra_->get_encode(this);
  1536   if (Assembler::is_simm13(offset)) {
  1537      __ add(SP, offset, reg_to_register_object(reg));
  1538   } else {
  1539      __ set(offset, O7);
  1540      __ add(SP, O7, reg_to_register_object(reg));
  1544 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1545   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1546   assert(ra_ == ra_->C->regalloc(), "sanity");
  1547   return ra_->C->scratch_emit_size(this);
  1550 //=============================================================================
  1552 // emit call stub, compiled java to interpretor
  1553 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1555   // Stub is fixed up when the corresponding call is converted from calling
  1556   // compiled code to calling interpreted code.
  1557   // set (empty), G5
  1558   // jmp -1
  1560   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1562   MacroAssembler _masm(&cbuf);
  1564   address base =
  1565   __ start_a_stub(Compile::MAX_stubs_size);
  1566   if (base == NULL)  return;  // CodeBuffer::expand failed
  1568   // static stub relocation stores the instruction address of the call
  1569   __ relocate(static_stub_Relocation::spec(mark));
  1571   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1573   __ set_inst_mark();
  1574   Address a(G3, (address)-1);
  1575   __ JUMP(a, 0);
  1577   __ delayed()->nop();
  1579   // Update current stubs pointer and restore code_end.
  1580   __ end_a_stub();
  1583 // size of call stub, compiled java to interpretor
  1584 uint size_java_to_interp() {
  1585   // This doesn't need to be accurate but it must be larger or equal to
  1586   // the real size of the stub.
  1587   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1588           NativeJump::instruction_size + // sethi; jmp; nop
  1589           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1591 // relocation entries for call stub, compiled java to interpretor
  1592 uint reloc_java_to_interp() {
  1593   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1597 //=============================================================================
  1598 #ifndef PRODUCT
  1599 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1600   st->print_cr("\nUEP:");
  1601 #ifdef    _LP64
  1602   if (UseCompressedOops) {
  1603     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1604     st->print_cr("\tSLL    R_G5,3,R_G5");
  1605     st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1606   } else {
  1607     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1609   st->print_cr("\tCMP    R_G5,R_G3" );
  1610   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1611 #else  // _LP64
  1612   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1613   st->print_cr("\tCMP    R_G5,R_G3" );
  1614   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1615 #endif // _LP64
  1617 #endif
  1619 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1620   MacroAssembler _masm(&cbuf);
  1621   Label L;
  1622   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1623   Register temp_reg   = G3;
  1624   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1626   // Load klass from reciever
  1627   __ load_klass(O0, temp_reg);
  1628   // Compare against expected klass
  1629   __ cmp(temp_reg, G5_ic_reg);
  1630   // Branch to miss code, checks xcc or icc depending
  1631   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1634 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1635   return MachNode::size(ra_);
  1639 //=============================================================================
  1641 uint size_exception_handler() {
  1642   if (TraceJumps) {
  1643     return (400); // just a guess
  1645   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1648 uint size_deopt_handler() {
  1649   if (TraceJumps) {
  1650     return (400); // just a guess
  1652   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1655 // Emit exception handler code.
  1656 int emit_exception_handler(CodeBuffer& cbuf) {
  1657   Register temp_reg = G3;
  1658   Address exception_blob(temp_reg, OptoRuntime::exception_blob()->instructions_begin());
  1659   MacroAssembler _masm(&cbuf);
  1661   address base =
  1662   __ start_a_stub(size_exception_handler());
  1663   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1665   int offset = __ offset();
  1667   __ JUMP(exception_blob, 0); // sethi;jmp
  1668   __ delayed()->nop();
  1670   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1672   __ end_a_stub();
  1674   return offset;
  1677 int emit_deopt_handler(CodeBuffer& cbuf) {
  1678   // Can't use any of the current frame's registers as we may have deopted
  1679   // at a poll and everything (including G3) can be live.
  1680   Register temp_reg = L0;
  1681   Address deopt_blob(temp_reg, SharedRuntime::deopt_blob()->unpack());
  1682   MacroAssembler _masm(&cbuf);
  1684   address base =
  1685   __ start_a_stub(size_deopt_handler());
  1686   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1688   int offset = __ offset();
  1689   __ save_frame(0);
  1690   __ JUMP(deopt_blob, 0); // sethi;jmp
  1691   __ delayed()->restore();
  1693   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1695   __ end_a_stub();
  1696   return offset;
  1700 // Given a register encoding, produce a Integer Register object
  1701 static Register reg_to_register_object(int register_encoding) {
  1702   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1703   return as_Register(register_encoding);
  1706 // Given a register encoding, produce a single-precision Float Register object
  1707 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1708   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1709   return as_SingleFloatRegister(register_encoding);
  1712 // Given a register encoding, produce a double-precision Float Register object
  1713 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1714   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1715   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1716   return as_DoubleFloatRegister(register_encoding);
  1719 int Matcher::regnum_to_fpu_offset(int regnum) {
  1720   return regnum - 32; // The FP registers are in the second chunk
  1723 #ifdef ASSERT
  1724 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1725 #endif
  1727 // Vector width in bytes
  1728 const uint Matcher::vector_width_in_bytes(void) {
  1729   return 8;
  1732 // Vector ideal reg
  1733 const uint Matcher::vector_ideal_reg(void) {
  1734   return Op_RegD;
  1737 // USII supports fxtof through the whole range of number, USIII doesn't
  1738 const bool Matcher::convL2FSupported(void) {
  1739   return VM_Version::has_fast_fxtof();
  1742 // Is this branch offset short enough that a short branch can be used?
  1743 //
  1744 // NOTE: If the platform does not provide any short branch variants, then
  1745 //       this method should return false for offset 0.
  1746 bool Matcher::is_short_branch_offset(int offset) {
  1747   return false;
  1750 const bool Matcher::isSimpleConstant64(jlong value) {
  1751   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1752   // Depends on optimizations in MacroAssembler::setx.
  1753   int hi = (int)(value >> 32);
  1754   int lo = (int)(value & ~0);
  1755   return (hi == 0) || (hi == -1) || (lo == 0);
  1758 // No scaling for the parameter the ClearArray node.
  1759 const bool Matcher::init_array_count_is_in_bytes = true;
  1761 // Threshold size for cleararray.
  1762 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1764 // Should the Matcher clone shifts on addressing modes, expecting them to
  1765 // be subsumed into complex addressing expressions or compute them into
  1766 // registers?  True for Intel but false for most RISCs
  1767 const bool Matcher::clone_shift_expressions = false;
  1769 // Is it better to copy float constants, or load them directly from memory?
  1770 // Intel can load a float constant from a direct address, requiring no
  1771 // extra registers.  Most RISCs will have to materialize an address into a
  1772 // register first, so they would do better to copy the constant from stack.
  1773 const bool Matcher::rematerialize_float_constants = false;
  1775 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1776 // needed.  Else we split the double into 2 integer pieces and move it
  1777 // piece-by-piece.  Only happens when passing doubles into C code as the
  1778 // Java calling convention forces doubles to be aligned.
  1779 #ifdef _LP64
  1780 const bool Matcher::misaligned_doubles_ok = true;
  1781 #else
  1782 const bool Matcher::misaligned_doubles_ok = false;
  1783 #endif
  1785 // No-op on SPARC.
  1786 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1789 // Advertise here if the CPU requires explicit rounding operations
  1790 // to implement the UseStrictFP mode.
  1791 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1793 // Do floats take an entire double register or just half?
  1794 const bool Matcher::float_in_double = false;
  1796 // Do ints take an entire long register or just half?
  1797 // Note that we if-def off of _LP64.
  1798 // The relevant question is how the int is callee-saved.  In _LP64
  1799 // the whole long is written but de-opt'ing will have to extract
  1800 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1801 #ifdef _LP64
  1802 const bool Matcher::int_in_long = true;
  1803 #else
  1804 const bool Matcher::int_in_long = false;
  1805 #endif
  1807 // Return whether or not this register is ever used as an argument.  This
  1808 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1809 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1810 // arguments in those registers not be available to the callee.
  1811 bool Matcher::can_be_java_arg( int reg ) {
  1812   // Standard sparc 6 args in registers
  1813   if( reg == R_I0_num ||
  1814       reg == R_I1_num ||
  1815       reg == R_I2_num ||
  1816       reg == R_I3_num ||
  1817       reg == R_I4_num ||
  1818       reg == R_I5_num ) return true;
  1819 #ifdef _LP64
  1820   // 64-bit builds can pass 64-bit pointers and longs in
  1821   // the high I registers
  1822   if( reg == R_I0H_num ||
  1823       reg == R_I1H_num ||
  1824       reg == R_I2H_num ||
  1825       reg == R_I3H_num ||
  1826       reg == R_I4H_num ||
  1827       reg == R_I5H_num ) return true;
  1829   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1830     return true;
  1833 #else
  1834   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1835   // Longs cannot be passed in O regs, because O regs become I regs
  1836   // after a 'save' and I regs get their high bits chopped off on
  1837   // interrupt.
  1838   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1839   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1840 #endif
  1841   // A few float args in registers
  1842   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1844   return false;
  1847 bool Matcher::is_spillable_arg( int reg ) {
  1848   return can_be_java_arg(reg);
  1851 // Register for DIVI projection of divmodI
  1852 RegMask Matcher::divI_proj_mask() {
  1853   ShouldNotReachHere();
  1854   return RegMask();
  1857 // Register for MODI projection of divmodI
  1858 RegMask Matcher::modI_proj_mask() {
  1859   ShouldNotReachHere();
  1860   return RegMask();
  1863 // Register for DIVL projection of divmodL
  1864 RegMask Matcher::divL_proj_mask() {
  1865   ShouldNotReachHere();
  1866   return RegMask();
  1869 // Register for MODL projection of divmodL
  1870 RegMask Matcher::modL_proj_mask() {
  1871   ShouldNotReachHere();
  1872   return RegMask();
  1875 %}
  1878 // The intptr_t operand types, defined by textual substitution.
  1879 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1880 #ifdef _LP64
  1881 #define immX    immL
  1882 #define immX13  immL13
  1883 #define iRegX   iRegL
  1884 #define g1RegX  g1RegL
  1885 #else
  1886 #define immX    immI
  1887 #define immX13  immI13
  1888 #define iRegX   iRegI
  1889 #define g1RegX  g1RegI
  1890 #endif
  1892 //----------ENCODING BLOCK-----------------------------------------------------
  1893 // This block specifies the encoding classes used by the compiler to output
  1894 // byte streams.  Encoding classes are parameterized macros used by
  1895 // Machine Instruction Nodes in order to generate the bit encoding of the
  1896 // instruction.  Operands specify their base encoding interface with the
  1897 // interface keyword.  There are currently supported four interfaces,
  1898 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1899 // operand to generate a function which returns its register number when
  1900 // queried.   CONST_INTER causes an operand to generate a function which
  1901 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1902 // operand to generate four functions which return the Base Register, the
  1903 // Index Register, the Scale Value, and the Offset Value of the operand when
  1904 // queried.  COND_INTER causes an operand to generate six functions which
  1905 // return the encoding code (ie - encoding bits for the instruction)
  1906 // associated with each basic boolean condition for a conditional instruction.
  1907 //
  1908 // Instructions specify two basic values for encoding.  Again, a function
  1909 // is available to check if the constant displacement is an oop. They use the
  1910 // ins_encode keyword to specify their encoding classes (which must be
  1911 // a sequence of enc_class names, and their parameters, specified in
  1912 // the encoding block), and they use the
  1913 // opcode keyword to specify, in order, their primary, secondary, and
  1914 // tertiary opcode.  Only the opcode sections which a particular instruction
  1915 // needs for encoding need to be specified.
  1916 encode %{
  1917   enc_class enc_untested %{
  1918 #ifdef ASSERT
  1919     MacroAssembler _masm(&cbuf);
  1920     __ untested("encoding");
  1921 #endif
  1922   %}
  1924   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  1925     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1926                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1927   %}
  1929   enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
  1930     emit_form3_mem_reg_asi(cbuf, this, $primary, $tertiary,
  1931                      $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
  1932   %}
  1934   enc_class form3_mem_prefetch_read( memory mem ) %{
  1935     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1936                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  1937   %}
  1939   enc_class form3_mem_prefetch_write( memory mem ) %{
  1940     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1941                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  1942   %}
  1944   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  1945     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1946     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1947     guarantee($mem$$index == R_G0_enc, "double index?");
  1948     emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  1949     emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  1950     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  1951     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  1952   %}
  1954   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  1955     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1956     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1957     guarantee($mem$$index == R_G0_enc, "double index?");
  1958     // Load long with 2 instructions
  1959     emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  1960     emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  1961   %}
  1963   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  1964   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  1965     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  1966     emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  1967   %}
  1969   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  1970     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1971     if( $rs2$$reg != $rd$$reg )
  1972       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  1973   %}
  1975   // Target lo half of long
  1976   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  1977     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1978     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  1979       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  1980   %}
  1982   // Source lo half of long
  1983   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  1984     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1985     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  1986       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  1987   %}
  1989   // Target hi half of long
  1990   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  1991     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  1992   %}
  1994   // Source lo half of long, and leave it sign extended.
  1995   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  1996     // Sign extend low half
  1997     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  1998   %}
  2000   // Source hi half of long, and leave it sign extended.
  2001   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2002     // Shift high half to low half
  2003     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2004   %}
  2006   // Source hi half of long
  2007   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2008     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2009     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2010       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2011   %}
  2013   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2014     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2015   %}
  2017   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2018     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2019     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2020   %}
  2022   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2023     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2024     // clear if nothing else is happening
  2025     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2026     // blt,a,pn done
  2027     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2028     // mov dst,-1 in delay slot
  2029     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2030   %}
  2032   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2033     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2034   %}
  2036   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2037     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2038   %}
  2040   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2041     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2042   %}
  2044   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2045     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2046   %}
  2048   enc_class move_return_pc_to_o1() %{
  2049     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2050   %}
  2052 #ifdef _LP64
  2053   /* %%% merge with enc_to_bool */
  2054   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2055     MacroAssembler _masm(&cbuf);
  2057     Register   src_reg = reg_to_register_object($src$$reg);
  2058     Register   dst_reg = reg_to_register_object($dst$$reg);
  2059     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2060   %}
  2061 #endif
  2063   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2064     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2065     MacroAssembler _masm(&cbuf);
  2067     Register   p_reg = reg_to_register_object($p$$reg);
  2068     Register   q_reg = reg_to_register_object($q$$reg);
  2069     Register   y_reg = reg_to_register_object($y$$reg);
  2070     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2072     __ subcc( p_reg, q_reg,   p_reg );
  2073     __ add  ( p_reg, y_reg, tmp_reg );
  2074     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2075   %}
  2077   enc_class form_d2i_helper(regD src, regF dst) %{
  2078     // fcmp %fcc0,$src,$src
  2079     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2080     // branch %fcc0 not-nan, predict taken
  2081     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2082     // fdtoi $src,$dst
  2083     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2084     // fitos $dst,$dst (if nan)
  2085     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2086     // clear $dst (if nan)
  2087     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2088     // carry on here...
  2089   %}
  2091   enc_class form_d2l_helper(regD src, regD dst) %{
  2092     // fcmp %fcc0,$src,$src  check for NAN
  2093     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2094     // branch %fcc0 not-nan, predict taken
  2095     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2096     // fdtox $src,$dst   convert in delay slot
  2097     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2098     // fxtod $dst,$dst  (if nan)
  2099     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2100     // clear $dst (if nan)
  2101     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2102     // carry on here...
  2103   %}
  2105   enc_class form_f2i_helper(regF src, regF dst) %{
  2106     // fcmps %fcc0,$src,$src
  2107     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2108     // branch %fcc0 not-nan, predict taken
  2109     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2110     // fstoi $src,$dst
  2111     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2112     // fitos $dst,$dst (if nan)
  2113     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2114     // clear $dst (if nan)
  2115     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2116     // carry on here...
  2117   %}
  2119   enc_class form_f2l_helper(regF src, regD dst) %{
  2120     // fcmps %fcc0,$src,$src
  2121     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2122     // branch %fcc0 not-nan, predict taken
  2123     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2124     // fstox $src,$dst
  2125     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2126     // fxtod $dst,$dst (if nan)
  2127     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2128     // clear $dst (if nan)
  2129     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2130     // carry on here...
  2131   %}
  2133   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2134   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2135   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2136   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2138   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2140   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2141   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2143   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2144     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2145   %}
  2147   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2148     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2149   %}
  2151   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2152     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2153   %}
  2155   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2156     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2157   %}
  2159   enc_class form3_convI2F(regF rs2, regF rd) %{
  2160     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2161   %}
  2163   // Encloding class for traceable jumps
  2164   enc_class form_jmpl(g3RegP dest) %{
  2165     emit_jmpl(cbuf, $dest$$reg);
  2166   %}
  2168   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2169     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2170   %}
  2172   enc_class form2_nop() %{
  2173     emit_nop(cbuf);
  2174   %}
  2176   enc_class form2_illtrap() %{
  2177     emit_illtrap(cbuf);
  2178   %}
  2181   // Compare longs and convert into -1, 0, 1.
  2182   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2183     // CMP $src1,$src2
  2184     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2185     // blt,a,pn done
  2186     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2187     // mov dst,-1 in delay slot
  2188     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2189     // bgt,a,pn done
  2190     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2191     // mov dst,1 in delay slot
  2192     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2193     // CLR    $dst
  2194     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2195   %}
  2197   enc_class enc_PartialSubtypeCheck() %{
  2198     MacroAssembler _masm(&cbuf);
  2199     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2200     __ delayed()->nop();
  2201   %}
  2203   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  2204     MacroAssembler _masm(&cbuf);
  2205     Label &L = *($labl$$label);
  2206     Assembler::Predict predict_taken =
  2207       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2209     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  2210     __ delayed()->nop();
  2211   %}
  2213   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  2214     MacroAssembler _masm(&cbuf);
  2215     Label &L = *($labl$$label);
  2216     Assembler::Predict predict_taken =
  2217       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2219     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  2220     __ delayed()->nop();
  2221   %}
  2223   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  2224     MacroAssembler _masm(&cbuf);
  2225     Label &L = *($labl$$label);
  2226     Assembler::Predict predict_taken =
  2227       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2229     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  2230     __ delayed()->nop();
  2231   %}
  2233   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  2234     MacroAssembler _masm(&cbuf);
  2235     Label &L = *($labl$$label);
  2236     Assembler::Predict predict_taken =
  2237       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2239     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  2240     __ delayed()->nop();
  2241   %}
  2243   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
  2244     MacroAssembler _masm(&cbuf);
  2246     Register switch_reg       = as_Register($switch_val$$reg);
  2247     Register table_reg        = O7;
  2249     address table_base = __ address_table_constant(_index2label);
  2250     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
  2252     // Load table address
  2253     Address the_pc(table_reg, table_base, rspec);
  2254     __ load_address(the_pc);
  2256     // Jump to base address + switch value
  2257     __ ld_ptr(table_reg, switch_reg, table_reg);
  2258     __ jmp(table_reg, G0);
  2259     __ delayed()->nop();
  2261   %}
  2263   enc_class enc_ba( Label labl ) %{
  2264     MacroAssembler _masm(&cbuf);
  2265     Label &L = *($labl$$label);
  2266     __ ba(false, L);
  2267     __ delayed()->nop();
  2268   %}
  2270   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2271     MacroAssembler _masm(&cbuf);
  2272     Label &L = *$labl$$label;
  2273     Assembler::Predict predict_taken =
  2274       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2276     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  2277     __ delayed()->nop();
  2278   %}
  2280   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2281     int op = (Assembler::arith_op << 30) |
  2282              ($dst$$reg << 25) |
  2283              (Assembler::movcc_op3 << 19) |
  2284              (1 << 18) |                    // cc2 bit for 'icc'
  2285              ($cmp$$cmpcode << 14) |
  2286              (0 << 13) |                    // select register move
  2287              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2288              ($src$$reg << 0);
  2289     *((int*)(cbuf.code_end())) = op;
  2290     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2291   %}
  2293   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2294     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2295     int op = (Assembler::arith_op << 30) |
  2296              ($dst$$reg << 25) |
  2297              (Assembler::movcc_op3 << 19) |
  2298              (1 << 18) |                    // cc2 bit for 'icc'
  2299              ($cmp$$cmpcode << 14) |
  2300              (1 << 13) |                    // select immediate move
  2301              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2302              (simm11 << 0);
  2303     *((int*)(cbuf.code_end())) = op;
  2304     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2305   %}
  2307   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2308     int op = (Assembler::arith_op << 30) |
  2309              ($dst$$reg << 25) |
  2310              (Assembler::movcc_op3 << 19) |
  2311              (0 << 18) |                    // cc2 bit for 'fccX'
  2312              ($cmp$$cmpcode << 14) |
  2313              (0 << 13) |                    // select register move
  2314              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2315              ($src$$reg << 0);
  2316     *((int*)(cbuf.code_end())) = op;
  2317     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2318   %}
  2320   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2321     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2322     int op = (Assembler::arith_op << 30) |
  2323              ($dst$$reg << 25) |
  2324              (Assembler::movcc_op3 << 19) |
  2325              (0 << 18) |                    // cc2 bit for 'fccX'
  2326              ($cmp$$cmpcode << 14) |
  2327              (1 << 13) |                    // select immediate move
  2328              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2329              (simm11 << 0);
  2330     *((int*)(cbuf.code_end())) = op;
  2331     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2332   %}
  2334   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2335     int op = (Assembler::arith_op << 30) |
  2336              ($dst$$reg << 25) |
  2337              (Assembler::fpop2_op3 << 19) |
  2338              (0 << 18) |
  2339              ($cmp$$cmpcode << 14) |
  2340              (1 << 13) |                    // select register move
  2341              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2342              ($primary << 5) |              // select single, double or quad
  2343              ($src$$reg << 0);
  2344     *((int*)(cbuf.code_end())) = op;
  2345     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2346   %}
  2348   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2349     int op = (Assembler::arith_op << 30) |
  2350              ($dst$$reg << 25) |
  2351              (Assembler::fpop2_op3 << 19) |
  2352              (0 << 18) |
  2353              ($cmp$$cmpcode << 14) |
  2354              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2355              ($primary << 5) |              // select single, double or quad
  2356              ($src$$reg << 0);
  2357     *((int*)(cbuf.code_end())) = op;
  2358     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2359   %}
  2361   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2362   // the condition comes from opcode-field instead of an argument.
  2363   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2364     int op = (Assembler::arith_op << 30) |
  2365              ($dst$$reg << 25) |
  2366              (Assembler::movcc_op3 << 19) |
  2367              (1 << 18) |                    // cc2 bit for 'icc'
  2368              ($primary << 14) |
  2369              (0 << 13) |                    // select register move
  2370              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2371              ($src$$reg << 0);
  2372     *((int*)(cbuf.code_end())) = op;
  2373     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2374   %}
  2376   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2377     int op = (Assembler::arith_op << 30) |
  2378              ($dst$$reg << 25) |
  2379              (Assembler::movcc_op3 << 19) |
  2380              (6 << 16) |                    // cc2 bit for 'xcc'
  2381              ($primary << 14) |
  2382              (0 << 13) |                    // select register move
  2383              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2384              ($src$$reg << 0);
  2385     *((int*)(cbuf.code_end())) = op;
  2386     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2387   %}
  2389   // Utility encoding for loading a 64 bit Pointer into a register
  2390   // The 64 bit pointer is stored in the generated code stream
  2391   enc_class SetPtr( immP src, iRegP rd ) %{
  2392     Register dest = reg_to_register_object($rd$$reg);
  2393     // [RGV] This next line should be generated from ADLC
  2394     if ( _opnds[1]->constant_is_oop() ) {
  2395       intptr_t val = $src$$constant;
  2396       MacroAssembler _masm(&cbuf);
  2397       __ set_oop_constant((jobject)val, dest);
  2398     } else {          // non-oop pointers, e.g. card mark base, heap top
  2399       emit_ptr(cbuf, $src$$constant, dest, /*ForceRelocatable=*/ false);
  2401   %}
  2403   enc_class Set13( immI13 src, iRegI rd ) %{
  2404     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2405   %}
  2407   enc_class SetHi22( immI src, iRegI rd ) %{
  2408     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2409   %}
  2411   enc_class Set32( immI src, iRegI rd ) %{
  2412     MacroAssembler _masm(&cbuf);
  2413     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2414   %}
  2416   enc_class SetNull( iRegI rd ) %{
  2417     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
  2418   %}
  2420   enc_class call_epilog %{
  2421     if( VerifyStackAtCalls ) {
  2422       MacroAssembler _masm(&cbuf);
  2423       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2424       Register temp_reg = G3;
  2425       __ add(SP, framesize, temp_reg);
  2426       __ cmp(temp_reg, FP);
  2427       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2429   %}
  2431   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2432   // to G1 so the register allocator will not have to deal with the misaligned register
  2433   // pair.
  2434   enc_class adjust_long_from_native_call %{
  2435 #ifndef _LP64
  2436     if (returns_long()) {
  2437       //    sllx  O0,32,O0
  2438       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2439       //    srl   O1,0,O1
  2440       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2441       //    or    O0,O1,G1
  2442       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2444 #endif
  2445   %}
  2447   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2448     // CALL directly to the runtime
  2449     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2450     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2451                     /*preserve_g2=*/true, /*force far call*/true);
  2452   %}
  2454   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2455     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2456     // who we intended to call.
  2457     if ( !_method ) {
  2458       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2459     } else if (_optimized_virtual) {
  2460       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2461     } else {
  2462       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2464     if( _method ) {  // Emit stub for static call
  2465       emit_java_to_interp(cbuf);
  2467   %}
  2469   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2470     MacroAssembler _masm(&cbuf);
  2471     __ set_inst_mark();
  2472     int vtable_index = this->_vtable_index;
  2473     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2474     if (vtable_index < 0) {
  2475       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2476       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2477       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2478       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2479       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2480       // !!!!!
  2481       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2482       // emit_call_dynamic_prologue( cbuf );
  2483       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2485       address  virtual_call_oop_addr = __ inst_mark();
  2486       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2487       // who we intended to call.
  2488       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2489       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2490     } else {
  2491       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2492       // Just go thru the vtable
  2493       // get receiver klass (receiver already checked for non-null)
  2494       // If we end up going thru a c2i adapter interpreter expects method in G5
  2495       int off = __ offset();
  2496       __ load_klass(O0, G3_scratch);
  2497       int klass_load_size;
  2498       if (UseCompressedOops) {
  2499         klass_load_size = 3*BytesPerInstWord;
  2500       } else {
  2501         klass_load_size = 1*BytesPerInstWord;
  2503       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2504       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2505       if( __ is_simm13(v_off) ) {
  2506         __ ld_ptr(G3, v_off, G5_method);
  2507       } else {
  2508         // Generate 2 instructions
  2509         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2510         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2511         // ld_ptr, set_hi, set
  2512         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2513                "Unexpected instruction size(s)");
  2514         __ ld_ptr(G3, G5_method, G5_method);
  2516       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2517       // However it may very well end up in handle_wrong_method if the
  2518       // method is abstract for the particular class.
  2519       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2520       // jump to target (either compiled code or c2iadapter)
  2521       __ jmpl(G3_scratch, G0, O7);
  2522       __ delayed()->nop();
  2524   %}
  2526   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2527     MacroAssembler _masm(&cbuf);
  2529     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2530     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2531                               // we might be calling a C2I adapter which needs it.
  2533     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2534     // Load nmethod
  2535     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2537     // CALL to compiled java, indirect the contents of G3
  2538     __ set_inst_mark();
  2539     __ callr(temp_reg, G0);
  2540     __ delayed()->nop();
  2541   %}
  2543 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2544     MacroAssembler _masm(&cbuf);
  2545     Register Rdividend = reg_to_register_object($src1$$reg);
  2546     Register Rdivisor = reg_to_register_object($src2$$reg);
  2547     Register Rresult = reg_to_register_object($dst$$reg);
  2549     __ sra(Rdivisor, 0, Rdivisor);
  2550     __ sra(Rdividend, 0, Rdividend);
  2551     __ sdivx(Rdividend, Rdivisor, Rresult);
  2552 %}
  2554 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2555     MacroAssembler _masm(&cbuf);
  2557     Register Rdividend = reg_to_register_object($src1$$reg);
  2558     int divisor = $imm$$constant;
  2559     Register Rresult = reg_to_register_object($dst$$reg);
  2561     __ sra(Rdividend, 0, Rdividend);
  2562     __ sdivx(Rdividend, divisor, Rresult);
  2563 %}
  2565 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2566     MacroAssembler _masm(&cbuf);
  2567     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2568     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2569     Register Rdst  = reg_to_register_object($dst$$reg);
  2571     __ sra( Rsrc1, 0, Rsrc1 );
  2572     __ sra( Rsrc2, 0, Rsrc2 );
  2573     __ mulx( Rsrc1, Rsrc2, Rdst );
  2574     __ srlx( Rdst, 32, Rdst );
  2575 %}
  2577 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2578     MacroAssembler _masm(&cbuf);
  2579     Register Rdividend = reg_to_register_object($src1$$reg);
  2580     Register Rdivisor = reg_to_register_object($src2$$reg);
  2581     Register Rresult = reg_to_register_object($dst$$reg);
  2582     Register Rscratch = reg_to_register_object($scratch$$reg);
  2584     assert(Rdividend != Rscratch, "");
  2585     assert(Rdivisor  != Rscratch, "");
  2587     __ sra(Rdividend, 0, Rdividend);
  2588     __ sra(Rdivisor, 0, Rdivisor);
  2589     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2590     __ mulx(Rscratch, Rdivisor, Rscratch);
  2591     __ sub(Rdividend, Rscratch, Rresult);
  2592 %}
  2594 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2595     MacroAssembler _masm(&cbuf);
  2597     Register Rdividend = reg_to_register_object($src1$$reg);
  2598     int divisor = $imm$$constant;
  2599     Register Rresult = reg_to_register_object($dst$$reg);
  2600     Register Rscratch = reg_to_register_object($scratch$$reg);
  2602     assert(Rdividend != Rscratch, "");
  2604     __ sra(Rdividend, 0, Rdividend);
  2605     __ sdivx(Rdividend, divisor, Rscratch);
  2606     __ mulx(Rscratch, divisor, Rscratch);
  2607     __ sub(Rdividend, Rscratch, Rresult);
  2608 %}
  2610 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2611     MacroAssembler _masm(&cbuf);
  2613     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2614     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2616     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2617 %}
  2619 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2620     MacroAssembler _masm(&cbuf);
  2622     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2623     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2625     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2626 %}
  2628 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2629     MacroAssembler _masm(&cbuf);
  2631     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2632     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2634     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2635 %}
  2637 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2638     MacroAssembler _masm(&cbuf);
  2640     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2641     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2643     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2644 %}
  2646 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2647     MacroAssembler _masm(&cbuf);
  2649     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2650     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2652     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2653 %}
  2655 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2656     MacroAssembler _masm(&cbuf);
  2658     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2659     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2661     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2662 %}
  2664 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2665     MacroAssembler _masm(&cbuf);
  2667     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2668     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2670     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2671 %}
  2673 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2674     MacroAssembler _masm(&cbuf);
  2676     Register Roop  = reg_to_register_object($oop$$reg);
  2677     Register Rbox  = reg_to_register_object($box$$reg);
  2678     Register Rscratch = reg_to_register_object($scratch$$reg);
  2679     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2681     assert(Roop  != Rscratch, "");
  2682     assert(Roop  != Rmark, "");
  2683     assert(Rbox  != Rscratch, "");
  2684     assert(Rbox  != Rmark, "");
  2686     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters);
  2687 %}
  2689 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2690     MacroAssembler _masm(&cbuf);
  2692     Register Roop  = reg_to_register_object($oop$$reg);
  2693     Register Rbox  = reg_to_register_object($box$$reg);
  2694     Register Rscratch = reg_to_register_object($scratch$$reg);
  2695     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2697     assert(Roop  != Rscratch, "");
  2698     assert(Roop  != Rmark, "");
  2699     assert(Rbox  != Rscratch, "");
  2700     assert(Rbox  != Rmark, "");
  2702     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch);
  2703   %}
  2705   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2706     MacroAssembler _masm(&cbuf);
  2707     Register Rmem = reg_to_register_object($mem$$reg);
  2708     Register Rold = reg_to_register_object($old$$reg);
  2709     Register Rnew = reg_to_register_object($new$$reg);
  2711     // casx_under_lock picks 1 of 3 encodings:
  2712     // For 32-bit pointers you get a 32-bit CAS
  2713     // For 64-bit pointers you get a 64-bit CASX
  2714     __ casx_under_lock(Rmem, Rold, Rnew, // Swap(*Rmem,Rnew) if *Rmem == Rold
  2715                         (address) StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2716     __ cmp( Rold, Rnew );
  2717   %}
  2719   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2720     Register Rmem = reg_to_register_object($mem$$reg);
  2721     Register Rold = reg_to_register_object($old$$reg);
  2722     Register Rnew = reg_to_register_object($new$$reg);
  2724     MacroAssembler _masm(&cbuf);
  2725     __ mov(Rnew, O7);
  2726     __ casx(Rmem, Rold, O7);
  2727     __ cmp( Rold, O7 );
  2728   %}
  2730   // raw int cas, used for compareAndSwap
  2731   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2732     Register Rmem = reg_to_register_object($mem$$reg);
  2733     Register Rold = reg_to_register_object($old$$reg);
  2734     Register Rnew = reg_to_register_object($new$$reg);
  2736     MacroAssembler _masm(&cbuf);
  2737     __ mov(Rnew, O7);
  2738     __ cas(Rmem, Rold, O7);
  2739     __ cmp( Rold, O7 );
  2740   %}
  2742   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2743     Register Rres = reg_to_register_object($res$$reg);
  2745     MacroAssembler _masm(&cbuf);
  2746     __ mov(1, Rres);
  2747     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2748   %}
  2750   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2751     Register Rres = reg_to_register_object($res$$reg);
  2753     MacroAssembler _masm(&cbuf);
  2754     __ mov(1, Rres);
  2755     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2756   %}
  2758   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2759     MacroAssembler _masm(&cbuf);
  2760     Register Rdst = reg_to_register_object($dst$$reg);
  2761     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2762                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2763     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2764                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2766     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2767     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2768   %}
  2770   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
  2771     MacroAssembler _masm(&cbuf);
  2772     Register dest = reg_to_register_object($dst$$reg);
  2773     Register temp = reg_to_register_object($tmp$$reg);
  2774     __ set64( $src$$constant, dest, temp );
  2775   %}
  2777   enc_class LdImmF(immF src, regF dst, o7RegP tmp) %{    // Load Immediate
  2778     address float_address = MacroAssembler(&cbuf).float_constant($src$$constant);
  2779     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
  2780 #ifdef _LP64
  2781     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2782     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2783     emit_ptr(cbuf, (intptr_t)float_address, tmp_reg, /*ForceRelocatable=*/ true);
  2784     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, $tmp$$reg, 0 );
  2785 #else  // _LP64
  2786     uint *code;
  2787     int tmp_reg = $tmp$$reg;
  2789     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2790     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) float_address );
  2792     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2793     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, tmp_reg, (intptr_t) float_address );
  2794 #endif // _LP64
  2795   %}
  2797   enc_class LdImmD(immD src, regD dst, o7RegP tmp) %{    // Load Immediate
  2798     address double_address = MacroAssembler(&cbuf).double_constant($src$$constant);
  2799     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2800 #ifdef _LP64
  2801     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2802     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2803     emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  2804     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  2805 #else // _LP64
  2806     uint *code;
  2807     int tmp_reg = $tmp$$reg;
  2809     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2810     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  2812     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2813     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  2814 #endif // _LP64
  2815   %}
  2817   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
  2818     // Load a constant replicated "count" times with width "width"
  2819     int bit_width = $width$$constant * 8;
  2820     jlong elt_val = $src$$constant;
  2821     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
  2822     jlong val = elt_val;
  2823     for (int i = 0; i < $count$$constant - 1; i++) {
  2824         val <<= bit_width;
  2825         val |= elt_val;
  2827     jdouble dval = *(jdouble*)&val; // coerce to double type
  2828     address double_address = MacroAssembler(&cbuf).double_constant(dval);
  2829     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2830 #ifdef _LP64
  2831     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2832     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2833     emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  2834     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  2835 #else // _LP64
  2836     uint *code;
  2837     int tmp_reg = $tmp$$reg;
  2839     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2840     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  2842     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2843     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  2844 #endif // _LP64
  2845   %}
  2848   enc_class ShouldNotEncodeThis ( ) %{
  2849     ShouldNotCallThis();
  2850   %}
  2852   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2853   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2854     MacroAssembler _masm(&cbuf);
  2855     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2856     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2857     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2859     Label loop;
  2860     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2862     // Loop and clear, walking backwards through the array.
  2863     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2864     __ bind(loop);
  2865     __ deccc(nof_bytes_tmp, 8);
  2866     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2867     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2868     // %%%% this mini-loop must not cross a cache boundary!
  2869   %}
  2872   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
  2873     Label Ldone, Lloop;
  2874     MacroAssembler _masm(&cbuf);
  2876     Register   str1_reg = reg_to_register_object($str1$$reg);
  2877     Register   str2_reg = reg_to_register_object($str2$$reg);
  2878     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  2879     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
  2880     Register result_reg = reg_to_register_object($result$$reg);
  2882     // Get the first character position in both strings
  2883     //         [8] char array, [12] offset, [16] count
  2884     int  value_offset = java_lang_String:: value_offset_in_bytes();
  2885     int offset_offset = java_lang_String::offset_offset_in_bytes();
  2886     int  count_offset = java_lang_String:: count_offset_in_bytes();
  2888     // load str1 (jchar*) base address into tmp1_reg
  2889     __ load_heap_oop(Address(str1_reg, 0,  value_offset), tmp1_reg);
  2890     __ ld(Address(str1_reg, 0, offset_offset), result_reg);
  2891     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
  2892     __    ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  2893     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  2894     __    load_heap_oop(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  2895     __ add(result_reg, tmp1_reg, tmp1_reg);
  2897     // load str2 (jchar*) base address into tmp2_reg
  2898     // __ ld_ptr(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  2899     __ ld(Address(str2_reg, 0, offset_offset), result_reg);
  2900     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
  2901     __    ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  2902     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  2903     __   subcc(str1_reg, str2_reg, O7); // hoisted
  2904     __ add(result_reg, tmp2_reg, tmp2_reg);
  2906     // Compute the minimum of the string lengths(str1_reg) and the
  2907     // difference of the string lengths (stack)
  2909     // discard string base pointers, after loading up the lengths
  2910     // __ ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  2911     // __ ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  2913     // See if the lengths are different, and calculate min in str1_reg.
  2914     // Stash diff in O7 in case we need it for a tie-breaker.
  2915     Label Lskip;
  2916     // __ subcc(str1_reg, str2_reg, O7); // hoisted
  2917     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  2918     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2919     // str2 is shorter, so use its count:
  2920     __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  2921     __ bind(Lskip);
  2923     // reallocate str1_reg, str2_reg, result_reg
  2924     // Note:  limit_reg holds the string length pre-scaled by 2
  2925     Register limit_reg =   str1_reg;
  2926     Register  chr2_reg =   str2_reg;
  2927     Register  chr1_reg = result_reg;
  2928     // tmp{12} are the base pointers
  2930     // Is the minimum length zero?
  2931     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2932     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2933     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2935     // Load first characters
  2936     __ lduh(tmp1_reg, 0, chr1_reg);
  2937     __ lduh(tmp2_reg, 0, chr2_reg);
  2939     // Compare first characters
  2940     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2941     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2942     assert(chr1_reg == result_reg, "result must be pre-placed");
  2943     __ delayed()->nop();
  2946       // Check after comparing first character to see if strings are equivalent
  2947       Label LSkip2;
  2948       // Check if the strings start at same location
  2949       __ cmp(tmp1_reg, tmp2_reg);
  2950       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2951       __ delayed()->nop();
  2953       // Check if the length difference is zero (in O7)
  2954       __ cmp(G0, O7);
  2955       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2956       __ delayed()->mov(G0, result_reg);  // result is zero
  2958       // Strings might not be equal
  2959       __ bind(LSkip2);
  2962     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2963     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2964     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2966     // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit
  2967     __ add(tmp1_reg, limit_reg, tmp1_reg);
  2968     __ add(tmp2_reg, limit_reg, tmp2_reg);
  2969     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2971     // Compare the rest of the characters
  2972     __ lduh(tmp1_reg, limit_reg, chr1_reg);
  2973     __ bind(Lloop);
  2974     // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  2975     __ lduh(tmp2_reg, limit_reg, chr2_reg);
  2976     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2977     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2978     assert(chr1_reg == result_reg, "result must be pre-placed");
  2979     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2980     // annul LDUH if branch is not taken to prevent access past end of string
  2981     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2982     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  2984     // If strings are equal up to min length, return the length difference.
  2985     __ mov(O7, result_reg);
  2987     // Otherwise, return the difference between the first mismatched chars.
  2988     __ bind(Ldone);
  2989   %}
  2991   enc_class enc_rethrow() %{
  2992     cbuf.set_inst_mark();
  2993     Register temp_reg = G3;
  2994     Address rethrow_stub(temp_reg, OptoRuntime::rethrow_stub());
  2995     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  2996     MacroAssembler _masm(&cbuf);
  2997 #ifdef ASSERT
  2998     __ save_frame(0);
  2999     Address last_rethrow_addr(L1, (address)&last_rethrow);
  3000     __ sethi(last_rethrow_addr);
  3001     __ get_pc(L2);
  3002     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3003     __ st_ptr(L2, last_rethrow_addr);
  3004     __ restore();
  3005 #endif
  3006     __ JUMP(rethrow_stub, 0); // sethi;jmp
  3007     __ delayed()->nop();
  3008   %}
  3010   enc_class emit_mem_nop() %{
  3011     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3012     unsigned int *code = (unsigned int*)cbuf.code_end();
  3013     *code = (unsigned int)0xc0839040;
  3014     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3015   %}
  3017   enc_class emit_fadd_nop() %{
  3018     // Generates the instruction FMOVS f31,f31
  3019     unsigned int *code = (unsigned int*)cbuf.code_end();
  3020     *code = (unsigned int)0xbfa0003f;
  3021     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3022   %}
  3024   enc_class emit_br_nop() %{
  3025     // Generates the instruction BPN,PN .
  3026     unsigned int *code = (unsigned int*)cbuf.code_end();
  3027     *code = (unsigned int)0x00400000;
  3028     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3029   %}
  3031   enc_class enc_membar_acquire %{
  3032     MacroAssembler _masm(&cbuf);
  3033     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3034   %}
  3036   enc_class enc_membar_release %{
  3037     MacroAssembler _masm(&cbuf);
  3038     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3039   %}
  3041   enc_class enc_membar_volatile %{
  3042     MacroAssembler _masm(&cbuf);
  3043     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3044   %}
  3046   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3047     MacroAssembler _masm(&cbuf);
  3048     Register src_reg = reg_to_register_object($src$$reg);
  3049     Register dst_reg = reg_to_register_object($dst$$reg);
  3050     __ sllx(src_reg, 56, dst_reg);
  3051     __ srlx(dst_reg,  8, O7);
  3052     __ or3 (dst_reg, O7, dst_reg);
  3053     __ srlx(dst_reg, 16, O7);
  3054     __ or3 (dst_reg, O7, dst_reg);
  3055     __ srlx(dst_reg, 32, O7);
  3056     __ or3 (dst_reg, O7, dst_reg);
  3057   %}
  3059   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3060     MacroAssembler _masm(&cbuf);
  3061     Register src_reg = reg_to_register_object($src$$reg);
  3062     Register dst_reg = reg_to_register_object($dst$$reg);
  3063     __ sll(src_reg, 24, dst_reg);
  3064     __ srl(dst_reg,  8, O7);
  3065     __ or3(dst_reg, O7, dst_reg);
  3066     __ srl(dst_reg, 16, O7);
  3067     __ or3(dst_reg, O7, dst_reg);
  3068   %}
  3070   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3071     MacroAssembler _masm(&cbuf);
  3072     Register src_reg = reg_to_register_object($src$$reg);
  3073     Register dst_reg = reg_to_register_object($dst$$reg);
  3074     __ sllx(src_reg, 48, dst_reg);
  3075     __ srlx(dst_reg, 16, O7);
  3076     __ or3 (dst_reg, O7, dst_reg);
  3077     __ srlx(dst_reg, 32, O7);
  3078     __ or3 (dst_reg, O7, dst_reg);
  3079   %}
  3081   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3082     MacroAssembler _masm(&cbuf);
  3083     Register src_reg = reg_to_register_object($src$$reg);
  3084     Register dst_reg = reg_to_register_object($dst$$reg);
  3085     __ sllx(src_reg, 32, dst_reg);
  3086     __ srlx(dst_reg, 32, O7);
  3087     __ or3 (dst_reg, O7, dst_reg);
  3088   %}
  3090 %}
  3092 //----------FRAME--------------------------------------------------------------
  3093 // Definition of frame structure and management information.
  3094 //
  3095 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3096 //                             |   (to get allocators register number
  3097 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3098 //  r   CALLER     |        |
  3099 //  o     |        +--------+      pad to even-align allocators stack-slot
  3100 //  w     V        |  pad0  |        numbers; owned by CALLER
  3101 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3102 //  h     ^        |   in   |  5
  3103 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3104 //  |     |        |        |  3
  3105 //  |     |        +--------+
  3106 //  V     |        | old out|      Empty on Intel, window on Sparc
  3107 //        |    old |preserve|      Must be even aligned.
  3108 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3109 //        |        |   in   |  3   area for Intel ret address
  3110 //     Owned by    |preserve|      Empty on Sparc.
  3111 //       SELF      +--------+
  3112 //        |        |  pad2  |  2   pad to align old SP
  3113 //        |        +--------+  1
  3114 //        |        | locks  |  0
  3115 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3116 //        |        |  pad1  | 11   pad to align new SP
  3117 //        |        +--------+
  3118 //        |        |        | 10
  3119 //        |        | spills |  9   spills
  3120 //        V        |        |  8   (pad0 slot for callee)
  3121 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3122 //        ^        |  out   |  7
  3123 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3124 //     Owned by    +--------+
  3125 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3126 //        |    new |preserve|      Must be even-aligned.
  3127 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3128 //        |        |        |
  3129 //
  3130 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3131 //         known from SELF's arguments and the Java calling convention.
  3132 //         Region 6-7 is determined per call site.
  3133 // Note 2: If the calling convention leaves holes in the incoming argument
  3134 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3135 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3136 //         incoming area, as the Java calling convention is completely under
  3137 //         the control of the AD file.  Doubles can be sorted and packed to
  3138 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3139 //         varargs C calling conventions.
  3140 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3141 //         even aligned with pad0 as needed.
  3142 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3143 //         region 6-11 is even aligned; it may be padded out more so that
  3144 //         the region from SP to FP meets the minimum stack alignment.
  3146 frame %{
  3147   // What direction does stack grow in (assumed to be same for native & Java)
  3148   stack_direction(TOWARDS_LOW);
  3150   // These two registers define part of the calling convention
  3151   // between compiled code and the interpreter.
  3152   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3153   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3155   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3156   cisc_spilling_operand_name(indOffset);
  3158   // Number of stack slots consumed by a Monitor enter
  3159 #ifdef _LP64
  3160   sync_stack_slots(2);
  3161 #else
  3162   sync_stack_slots(1);
  3163 #endif
  3165   // Compiled code's Frame Pointer
  3166   frame_pointer(R_SP);
  3168   // Stack alignment requirement
  3169   stack_alignment(StackAlignmentInBytes);
  3170   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3171   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3173   // Number of stack slots between incoming argument block and the start of
  3174   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3175   // EPILOG must remove this many slots.
  3176   in_preserve_stack_slots(0);
  3178   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3179   // for calls to C.  Supports the var-args backing area for register parms.
  3180   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3181 #ifdef _LP64
  3182   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3183   varargs_C_out_slots_killed(12);
  3184 #else
  3185   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3186   varargs_C_out_slots_killed( 7);
  3187 #endif
  3189   // The after-PROLOG location of the return address.  Location of
  3190   // return address specifies a type (REG or STACK) and a number
  3191   // representing the register number (i.e. - use a register name) or
  3192   // stack slot.
  3193   return_addr(REG R_I7);          // Ret Addr is in register I7
  3195   // Body of function which returns an OptoRegs array locating
  3196   // arguments either in registers or in stack slots for calling
  3197   // java
  3198   calling_convention %{
  3199     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3201   %}
  3203   // Body of function which returns an OptoRegs array locating
  3204   // arguments either in registers or in stack slots for callin
  3205   // C.
  3206   c_calling_convention %{
  3207     // This is obviously always outgoing
  3208     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3209   %}
  3211   // Location of native (C/C++) and interpreter return values.  This is specified to
  3212   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3213   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3214   // to and from the register pairs is done by the appropriate call and epilog
  3215   // opcodes.  This simplifies the register allocator.
  3216   c_return_value %{
  3217     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3218 #ifdef     _LP64
  3219     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3220     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3221     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3222     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3223 #else  // !_LP64
  3224     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3225     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3226     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3227     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3228 #endif
  3229     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3230                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3231   %}
  3233   // Location of compiled Java return values.  Same as C
  3234   return_value %{
  3235     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3236 #ifdef     _LP64
  3237     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3238     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3239     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3240     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3241 #else  // !_LP64
  3242     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3243     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3244     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3245     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3246 #endif
  3247     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3248                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3249   %}
  3251 %}
  3254 //----------ATTRIBUTES---------------------------------------------------------
  3255 //----------Operand Attributes-------------------------------------------------
  3256 op_attrib op_cost(1);          // Required cost attribute
  3258 //----------Instruction Attributes---------------------------------------------
  3259 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3260 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3261 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3262 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3263                                 // non-matching short branch variant of some
  3264                                                             // long branch?
  3266 //----------OPERANDS-----------------------------------------------------------
  3267 // Operand definitions must precede instruction definitions for correct parsing
  3268 // in the ADLC because operands constitute user defined types which are used in
  3269 // instruction definitions.
  3271 //----------Simple Operands----------------------------------------------------
  3272 // Immediate Operands
  3273 // Integer Immediate: 32-bit
  3274 operand immI() %{
  3275   match(ConI);
  3277   op_cost(0);
  3278   // formats are generated automatically for constants and base registers
  3279   format %{ %}
  3280   interface(CONST_INTER);
  3281 %}
  3283 // Integer Immediate: 13-bit
  3284 operand immI13() %{
  3285   predicate(Assembler::is_simm13(n->get_int()));
  3286   match(ConI);
  3287   op_cost(0);
  3289   format %{ %}
  3290   interface(CONST_INTER);
  3291 %}
  3293 // Unsigned (positive) Integer Immediate: 13-bit
  3294 operand immU13() %{
  3295   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3296   match(ConI);
  3297   op_cost(0);
  3299   format %{ %}
  3300   interface(CONST_INTER);
  3301 %}
  3303 // Integer Immediate: 6-bit
  3304 operand immU6() %{
  3305   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3306   match(ConI);
  3307   op_cost(0);
  3308   format %{ %}
  3309   interface(CONST_INTER);
  3310 %}
  3312 // Integer Immediate: 11-bit
  3313 operand immI11() %{
  3314   predicate(Assembler::is_simm(n->get_int(),11));
  3315   match(ConI);
  3316   op_cost(0);
  3317   format %{ %}
  3318   interface(CONST_INTER);
  3319 %}
  3321 // Integer Immediate: 0-bit
  3322 operand immI0() %{
  3323   predicate(n->get_int() == 0);
  3324   match(ConI);
  3325   op_cost(0);
  3327   format %{ %}
  3328   interface(CONST_INTER);
  3329 %}
  3331 // Integer Immediate: the value 10
  3332 operand immI10() %{
  3333   predicate(n->get_int() == 10);
  3334   match(ConI);
  3335   op_cost(0);
  3337   format %{ %}
  3338   interface(CONST_INTER);
  3339 %}
  3341 // Integer Immediate: the values 0-31
  3342 operand immU5() %{
  3343   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3344   match(ConI);
  3345   op_cost(0);
  3347   format %{ %}
  3348   interface(CONST_INTER);
  3349 %}
  3351 // Integer Immediate: the values 1-31
  3352 operand immI_1_31() %{
  3353   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3354   match(ConI);
  3355   op_cost(0);
  3357   format %{ %}
  3358   interface(CONST_INTER);
  3359 %}
  3361 // Integer Immediate: the values 32-63
  3362 operand immI_32_63() %{
  3363   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3364   match(ConI);
  3365   op_cost(0);
  3367   format %{ %}
  3368   interface(CONST_INTER);
  3369 %}
  3371 // Integer Immediate: the value 255
  3372 operand immI_255() %{
  3373   predicate( n->get_int() == 255 );
  3374   match(ConI);
  3375   op_cost(0);
  3377   format %{ %}
  3378   interface(CONST_INTER);
  3379 %}
  3381 // Long Immediate: the value FF
  3382 operand immL_FF() %{
  3383   predicate( n->get_long() == 0xFFL );
  3384   match(ConL);
  3385   op_cost(0);
  3387   format %{ %}
  3388   interface(CONST_INTER);
  3389 %}
  3391 // Long Immediate: the value FFFF
  3392 operand immL_FFFF() %{
  3393   predicate( n->get_long() == 0xFFFFL );
  3394   match(ConL);
  3395   op_cost(0);
  3397   format %{ %}
  3398   interface(CONST_INTER);
  3399 %}
  3401 // Pointer Immediate: 32 or 64-bit
  3402 operand immP() %{
  3403   match(ConP);
  3405   op_cost(5);
  3406   // formats are generated automatically for constants and base registers
  3407   format %{ %}
  3408   interface(CONST_INTER);
  3409 %}
  3411 operand immP13() %{
  3412   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3413   match(ConP);
  3414   op_cost(0);
  3416   format %{ %}
  3417   interface(CONST_INTER);
  3418 %}
  3420 operand immP0() %{
  3421   predicate(n->get_ptr() == 0);
  3422   match(ConP);
  3423   op_cost(0);
  3425   format %{ %}
  3426   interface(CONST_INTER);
  3427 %}
  3429 operand immP_poll() %{
  3430   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3431   match(ConP);
  3433   // formats are generated automatically for constants and base registers
  3434   format %{ %}
  3435   interface(CONST_INTER);
  3436 %}
  3438 // Pointer Immediate
  3439 operand immN()
  3440 %{
  3441   match(ConN);
  3443   op_cost(10);
  3444   format %{ %}
  3445   interface(CONST_INTER);
  3446 %}
  3448 // NULL Pointer Immediate
  3449 operand immN0()
  3450 %{
  3451   predicate(n->get_narrowcon() == 0);
  3452   match(ConN);
  3454   op_cost(0);
  3455   format %{ %}
  3456   interface(CONST_INTER);
  3457 %}
  3459 operand immL() %{
  3460   match(ConL);
  3461   op_cost(40);
  3462   // formats are generated automatically for constants and base registers
  3463   format %{ %}
  3464   interface(CONST_INTER);
  3465 %}
  3467 operand immL0() %{
  3468   predicate(n->get_long() == 0L);
  3469   match(ConL);
  3470   op_cost(0);
  3471   // formats are generated automatically for constants and base registers
  3472   format %{ %}
  3473   interface(CONST_INTER);
  3474 %}
  3476 // Long Immediate: 13-bit
  3477 operand immL13() %{
  3478   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3479   match(ConL);
  3480   op_cost(0);
  3482   format %{ %}
  3483   interface(CONST_INTER);
  3484 %}
  3486 // Long Immediate: low 32-bit mask
  3487 operand immL_32bits() %{
  3488   predicate(n->get_long() == 0xFFFFFFFFL);
  3489   match(ConL);
  3490   op_cost(0);
  3492   format %{ %}
  3493   interface(CONST_INTER);
  3494 %}
  3496 // Double Immediate
  3497 operand immD() %{
  3498   match(ConD);
  3500   op_cost(40);
  3501   format %{ %}
  3502   interface(CONST_INTER);
  3503 %}
  3505 operand immD0() %{
  3506 #ifdef _LP64
  3507   // on 64-bit architectures this comparision is faster
  3508   predicate(jlong_cast(n->getd()) == 0);
  3509 #else
  3510   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3511 #endif
  3512   match(ConD);
  3514   op_cost(0);
  3515   format %{ %}
  3516   interface(CONST_INTER);
  3517 %}
  3519 // Float Immediate
  3520 operand immF() %{
  3521   match(ConF);
  3523   op_cost(20);
  3524   format %{ %}
  3525   interface(CONST_INTER);
  3526 %}
  3528 // Float Immediate: 0
  3529 operand immF0() %{
  3530   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3531   match(ConF);
  3533   op_cost(0);
  3534   format %{ %}
  3535   interface(CONST_INTER);
  3536 %}
  3538 // Integer Register Operands
  3539 // Integer Register
  3540 operand iRegI() %{
  3541   constraint(ALLOC_IN_RC(int_reg));
  3542   match(RegI);
  3544   match(notemp_iRegI);
  3545   match(g1RegI);
  3546   match(o0RegI);
  3547   match(iRegIsafe);
  3549   format %{ %}
  3550   interface(REG_INTER);
  3551 %}
  3553 operand notemp_iRegI() %{
  3554   constraint(ALLOC_IN_RC(notemp_int_reg));
  3555   match(RegI);
  3557   match(o0RegI);
  3559   format %{ %}
  3560   interface(REG_INTER);
  3561 %}
  3563 operand o0RegI() %{
  3564   constraint(ALLOC_IN_RC(o0_regI));
  3565   match(iRegI);
  3567   format %{ %}
  3568   interface(REG_INTER);
  3569 %}
  3571 // Pointer Register
  3572 operand iRegP() %{
  3573   constraint(ALLOC_IN_RC(ptr_reg));
  3574   match(RegP);
  3576   match(lock_ptr_RegP);
  3577   match(g1RegP);
  3578   match(g2RegP);
  3579   match(g3RegP);
  3580   match(g4RegP);
  3581   match(i0RegP);
  3582   match(o0RegP);
  3583   match(o1RegP);
  3584   match(l7RegP);
  3586   format %{ %}
  3587   interface(REG_INTER);
  3588 %}
  3590 operand sp_ptr_RegP() %{
  3591   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3592   match(RegP);
  3593   match(iRegP);
  3595   format %{ %}
  3596   interface(REG_INTER);
  3597 %}
  3599 operand lock_ptr_RegP() %{
  3600   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3601   match(RegP);
  3602   match(i0RegP);
  3603   match(o0RegP);
  3604   match(o1RegP);
  3605   match(l7RegP);
  3607   format %{ %}
  3608   interface(REG_INTER);
  3609 %}
  3611 operand g1RegP() %{
  3612   constraint(ALLOC_IN_RC(g1_regP));
  3613   match(iRegP);
  3615   format %{ %}
  3616   interface(REG_INTER);
  3617 %}
  3619 operand g2RegP() %{
  3620   constraint(ALLOC_IN_RC(g2_regP));
  3621   match(iRegP);
  3623   format %{ %}
  3624   interface(REG_INTER);
  3625 %}
  3627 operand g3RegP() %{
  3628   constraint(ALLOC_IN_RC(g3_regP));
  3629   match(iRegP);
  3631   format %{ %}
  3632   interface(REG_INTER);
  3633 %}
  3635 operand g1RegI() %{
  3636   constraint(ALLOC_IN_RC(g1_regI));
  3637   match(iRegI);
  3639   format %{ %}
  3640   interface(REG_INTER);
  3641 %}
  3643 operand g3RegI() %{
  3644   constraint(ALLOC_IN_RC(g3_regI));
  3645   match(iRegI);
  3647   format %{ %}
  3648   interface(REG_INTER);
  3649 %}
  3651 operand g4RegI() %{
  3652   constraint(ALLOC_IN_RC(g4_regI));
  3653   match(iRegI);
  3655   format %{ %}
  3656   interface(REG_INTER);
  3657 %}
  3659 operand g4RegP() %{
  3660   constraint(ALLOC_IN_RC(g4_regP));
  3661   match(iRegP);
  3663   format %{ %}
  3664   interface(REG_INTER);
  3665 %}
  3667 operand i0RegP() %{
  3668   constraint(ALLOC_IN_RC(i0_regP));
  3669   match(iRegP);
  3671   format %{ %}
  3672   interface(REG_INTER);
  3673 %}
  3675 operand o0RegP() %{
  3676   constraint(ALLOC_IN_RC(o0_regP));
  3677   match(iRegP);
  3679   format %{ %}
  3680   interface(REG_INTER);
  3681 %}
  3683 operand o1RegP() %{
  3684   constraint(ALLOC_IN_RC(o1_regP));
  3685   match(iRegP);
  3687   format %{ %}
  3688   interface(REG_INTER);
  3689 %}
  3691 operand o2RegP() %{
  3692   constraint(ALLOC_IN_RC(o2_regP));
  3693   match(iRegP);
  3695   format %{ %}
  3696   interface(REG_INTER);
  3697 %}
  3699 operand o7RegP() %{
  3700   constraint(ALLOC_IN_RC(o7_regP));
  3701   match(iRegP);
  3703   format %{ %}
  3704   interface(REG_INTER);
  3705 %}
  3707 operand l7RegP() %{
  3708   constraint(ALLOC_IN_RC(l7_regP));
  3709   match(iRegP);
  3711   format %{ %}
  3712   interface(REG_INTER);
  3713 %}
  3715 operand o7RegI() %{
  3716   constraint(ALLOC_IN_RC(o7_regI));
  3717   match(iRegI);
  3719   format %{ %}
  3720   interface(REG_INTER);
  3721 %}
  3723 operand iRegN() %{
  3724   constraint(ALLOC_IN_RC(int_reg));
  3725   match(RegN);
  3727   format %{ %}
  3728   interface(REG_INTER);
  3729 %}
  3731 // Long Register
  3732 operand iRegL() %{
  3733   constraint(ALLOC_IN_RC(long_reg));
  3734   match(RegL);
  3736   format %{ %}
  3737   interface(REG_INTER);
  3738 %}
  3740 operand o2RegL() %{
  3741   constraint(ALLOC_IN_RC(o2_regL));
  3742   match(iRegL);
  3744   format %{ %}
  3745   interface(REG_INTER);
  3746 %}
  3748 operand o7RegL() %{
  3749   constraint(ALLOC_IN_RC(o7_regL));
  3750   match(iRegL);
  3752   format %{ %}
  3753   interface(REG_INTER);
  3754 %}
  3756 operand g1RegL() %{
  3757   constraint(ALLOC_IN_RC(g1_regL));
  3758   match(iRegL);
  3760   format %{ %}
  3761   interface(REG_INTER);
  3762 %}
  3764 // Int Register safe
  3765 // This is 64bit safe
  3766 operand iRegIsafe() %{
  3767   constraint(ALLOC_IN_RC(long_reg));
  3769   match(iRegI);
  3771   format %{ %}
  3772   interface(REG_INTER);
  3773 %}
  3775 // Condition Code Flag Register
  3776 operand flagsReg() %{
  3777   constraint(ALLOC_IN_RC(int_flags));
  3778   match(RegFlags);
  3780   format %{ "ccr" %} // both ICC and XCC
  3781   interface(REG_INTER);
  3782 %}
  3784 // Condition Code Register, unsigned comparisons.
  3785 operand flagsRegU() %{
  3786   constraint(ALLOC_IN_RC(int_flags));
  3787   match(RegFlags);
  3789   format %{ "icc_U" %}
  3790   interface(REG_INTER);
  3791 %}
  3793 // Condition Code Register, pointer comparisons.
  3794 operand flagsRegP() %{
  3795   constraint(ALLOC_IN_RC(int_flags));
  3796   match(RegFlags);
  3798 #ifdef _LP64
  3799   format %{ "xcc_P" %}
  3800 #else
  3801   format %{ "icc_P" %}
  3802 #endif
  3803   interface(REG_INTER);
  3804 %}
  3806 // Condition Code Register, long comparisons.
  3807 operand flagsRegL() %{
  3808   constraint(ALLOC_IN_RC(int_flags));
  3809   match(RegFlags);
  3811   format %{ "xcc_L" %}
  3812   interface(REG_INTER);
  3813 %}
  3815 // Condition Code Register, floating comparisons, unordered same as "less".
  3816 operand flagsRegF() %{
  3817   constraint(ALLOC_IN_RC(float_flags));
  3818   match(RegFlags);
  3819   match(flagsRegF0);
  3821   format %{ %}
  3822   interface(REG_INTER);
  3823 %}
  3825 operand flagsRegF0() %{
  3826   constraint(ALLOC_IN_RC(float_flag0));
  3827   match(RegFlags);
  3829   format %{ %}
  3830   interface(REG_INTER);
  3831 %}
  3834 // Condition Code Flag Register used by long compare
  3835 operand flagsReg_long_LTGE() %{
  3836   constraint(ALLOC_IN_RC(int_flags));
  3837   match(RegFlags);
  3838   format %{ "icc_LTGE" %}
  3839   interface(REG_INTER);
  3840 %}
  3841 operand flagsReg_long_EQNE() %{
  3842   constraint(ALLOC_IN_RC(int_flags));
  3843   match(RegFlags);
  3844   format %{ "icc_EQNE" %}
  3845   interface(REG_INTER);
  3846 %}
  3847 operand flagsReg_long_LEGT() %{
  3848   constraint(ALLOC_IN_RC(int_flags));
  3849   match(RegFlags);
  3850   format %{ "icc_LEGT" %}
  3851   interface(REG_INTER);
  3852 %}
  3855 operand regD() %{
  3856   constraint(ALLOC_IN_RC(dflt_reg));
  3857   match(RegD);
  3859   format %{ %}
  3860   interface(REG_INTER);
  3861 %}
  3863 operand regF() %{
  3864   constraint(ALLOC_IN_RC(sflt_reg));
  3865   match(RegF);
  3867   format %{ %}
  3868   interface(REG_INTER);
  3869 %}
  3871 operand regD_low() %{
  3872   constraint(ALLOC_IN_RC(dflt_low_reg));
  3873   match(RegD);
  3875   format %{ %}
  3876   interface(REG_INTER);
  3877 %}
  3879 // Special Registers
  3881 // Method Register
  3882 operand inline_cache_regP(iRegP reg) %{
  3883   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  3884   match(reg);
  3885   format %{ %}
  3886   interface(REG_INTER);
  3887 %}
  3889 operand interpreter_method_oop_regP(iRegP reg) %{
  3890   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  3891   match(reg);
  3892   format %{ %}
  3893   interface(REG_INTER);
  3894 %}
  3897 //----------Complex Operands---------------------------------------------------
  3898 // Indirect Memory Reference
  3899 operand indirect(sp_ptr_RegP reg) %{
  3900   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3901   match(reg);
  3903   op_cost(100);
  3904   format %{ "[$reg]" %}
  3905   interface(MEMORY_INTER) %{
  3906     base($reg);
  3907     index(0x0);
  3908     scale(0x0);
  3909     disp(0x0);
  3910   %}
  3911 %}
  3913 // Indirect with Offset
  3914 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  3915   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3916   match(AddP reg offset);
  3918   op_cost(100);
  3919   format %{ "[$reg + $offset]" %}
  3920   interface(MEMORY_INTER) %{
  3921     base($reg);
  3922     index(0x0);
  3923     scale(0x0);
  3924     disp($offset);
  3925   %}
  3926 %}
  3928 // Note:  Intel has a swapped version also, like this:
  3929 //operand indOffsetX(iRegI reg, immP offset) %{
  3930 //  constraint(ALLOC_IN_RC(int_reg));
  3931 //  match(AddP offset reg);
  3932 //
  3933 //  op_cost(100);
  3934 //  format %{ "[$reg + $offset]" %}
  3935 //  interface(MEMORY_INTER) %{
  3936 //    base($reg);
  3937 //    index(0x0);
  3938 //    scale(0x0);
  3939 //    disp($offset);
  3940 //  %}
  3941 //%}
  3942 //// However, it doesn't make sense for SPARC, since
  3943 // we have no particularly good way to embed oops in
  3944 // single instructions.
  3946 // Indirect with Register Index
  3947 operand indIndex(iRegP addr, iRegX index) %{
  3948   constraint(ALLOC_IN_RC(ptr_reg));
  3949   match(AddP addr index);
  3951   op_cost(100);
  3952   format %{ "[$addr + $index]" %}
  3953   interface(MEMORY_INTER) %{
  3954     base($addr);
  3955     index($index);
  3956     scale(0x0);
  3957     disp(0x0);
  3958   %}
  3959 %}
  3961 //----------Special Memory Operands--------------------------------------------
  3962 // Stack Slot Operand - This operand is used for loading and storing temporary
  3963 //                      values on the stack where a match requires a value to
  3964 //                      flow through memory.
  3965 operand stackSlotI(sRegI reg) %{
  3966   constraint(ALLOC_IN_RC(stack_slots));
  3967   op_cost(100);
  3968   //match(RegI);
  3969   format %{ "[$reg]" %}
  3970   interface(MEMORY_INTER) %{
  3971     base(0xE);   // R_SP
  3972     index(0x0);
  3973     scale(0x0);
  3974     disp($reg);  // Stack Offset
  3975   %}
  3976 %}
  3978 operand stackSlotP(sRegP reg) %{
  3979   constraint(ALLOC_IN_RC(stack_slots));
  3980   op_cost(100);
  3981   //match(RegP);
  3982   format %{ "[$reg]" %}
  3983   interface(MEMORY_INTER) %{
  3984     base(0xE);   // R_SP
  3985     index(0x0);
  3986     scale(0x0);
  3987     disp($reg);  // Stack Offset
  3988   %}
  3989 %}
  3991 operand stackSlotF(sRegF reg) %{
  3992   constraint(ALLOC_IN_RC(stack_slots));
  3993   op_cost(100);
  3994   //match(RegF);
  3995   format %{ "[$reg]" %}
  3996   interface(MEMORY_INTER) %{
  3997     base(0xE);   // R_SP
  3998     index(0x0);
  3999     scale(0x0);
  4000     disp($reg);  // Stack Offset
  4001   %}
  4002 %}
  4003 operand stackSlotD(sRegD reg) %{
  4004   constraint(ALLOC_IN_RC(stack_slots));
  4005   op_cost(100);
  4006   //match(RegD);
  4007   format %{ "[$reg]" %}
  4008   interface(MEMORY_INTER) %{
  4009     base(0xE);   // R_SP
  4010     index(0x0);
  4011     scale(0x0);
  4012     disp($reg);  // Stack Offset
  4013   %}
  4014 %}
  4015 operand stackSlotL(sRegL reg) %{
  4016   constraint(ALLOC_IN_RC(stack_slots));
  4017   op_cost(100);
  4018   //match(RegL);
  4019   format %{ "[$reg]" %}
  4020   interface(MEMORY_INTER) %{
  4021     base(0xE);   // R_SP
  4022     index(0x0);
  4023     scale(0x0);
  4024     disp($reg);  // Stack Offset
  4025   %}
  4026 %}
  4028 // Operands for expressing Control Flow
  4029 // NOTE:  Label is a predefined operand which should not be redefined in
  4030 //        the AD file.  It is generically handled within the ADLC.
  4032 //----------Conditional Branch Operands----------------------------------------
  4033 // Comparison Op  - This is the operation of the comparison, and is limited to
  4034 //                  the following set of codes:
  4035 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4036 //
  4037 // Other attributes of the comparison, such as unsignedness, are specified
  4038 // by the comparison instruction that sets a condition code flags register.
  4039 // That result is represented by a flags operand whose subtype is appropriate
  4040 // to the unsignedness (etc.) of the comparison.
  4041 //
  4042 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4043 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4044 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4046 operand cmpOp() %{
  4047   match(Bool);
  4049   format %{ "" %}
  4050   interface(COND_INTER) %{
  4051     equal(0x1);
  4052     not_equal(0x9);
  4053     less(0x3);
  4054     greater_equal(0xB);
  4055     less_equal(0x2);
  4056     greater(0xA);
  4057   %}
  4058 %}
  4060 // Comparison Op, unsigned
  4061 operand cmpOpU() %{
  4062   match(Bool);
  4064   format %{ "u" %}
  4065   interface(COND_INTER) %{
  4066     equal(0x1);
  4067     not_equal(0x9);
  4068     less(0x5);
  4069     greater_equal(0xD);
  4070     less_equal(0x4);
  4071     greater(0xC);
  4072   %}
  4073 %}
  4075 // Comparison Op, pointer (same as unsigned)
  4076 operand cmpOpP() %{
  4077   match(Bool);
  4079   format %{ "p" %}
  4080   interface(COND_INTER) %{
  4081     equal(0x1);
  4082     not_equal(0x9);
  4083     less(0x5);
  4084     greater_equal(0xD);
  4085     less_equal(0x4);
  4086     greater(0xC);
  4087   %}
  4088 %}
  4090 // Comparison Op, branch-register encoding
  4091 operand cmpOp_reg() %{
  4092   match(Bool);
  4094   format %{ "" %}
  4095   interface(COND_INTER) %{
  4096     equal        (0x1);
  4097     not_equal    (0x5);
  4098     less         (0x3);
  4099     greater_equal(0x7);
  4100     less_equal   (0x2);
  4101     greater      (0x6);
  4102   %}
  4103 %}
  4105 // Comparison Code, floating, unordered same as less
  4106 operand cmpOpF() %{
  4107   match(Bool);
  4109   format %{ "fl" %}
  4110   interface(COND_INTER) %{
  4111     equal(0x9);
  4112     not_equal(0x1);
  4113     less(0x3);
  4114     greater_equal(0xB);
  4115     less_equal(0xE);
  4116     greater(0x6);
  4117   %}
  4118 %}
  4120 // Used by long compare
  4121 operand cmpOp_commute() %{
  4122   match(Bool);
  4124   format %{ "" %}
  4125   interface(COND_INTER) %{
  4126     equal(0x1);
  4127     not_equal(0x9);
  4128     less(0xA);
  4129     greater_equal(0x2);
  4130     less_equal(0xB);
  4131     greater(0x3);
  4132   %}
  4133 %}
  4135 //----------OPERAND CLASSES----------------------------------------------------
  4136 // Operand Classes are groups of operands that are used to simplify
  4137 // instruction definitions by not requiring the AD writer to specify seperate
  4138 // instructions for every form of operand when the instruction accepts
  4139 // multiple operand types with the same basic encoding and format.  The classic
  4140 // case of this is memory operands.
  4141 // Indirect is not included since its use is limited to Compare & Swap
  4142 opclass memory( indirect, indOffset13, indIndex );
  4144 //----------PIPELINE-----------------------------------------------------------
  4145 pipeline %{
  4147 //----------ATTRIBUTES---------------------------------------------------------
  4148 attributes %{
  4149   fixed_size_instructions;           // Fixed size instructions
  4150   branch_has_delay_slot;             // Branch has delay slot following
  4151   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4152   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4153   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4154   instruction_fetch_units = 1;       // of 16 bytes
  4156   // List of nop instructions
  4157   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4158 %}
  4160 //----------RESOURCES----------------------------------------------------------
  4161 // Resources are the functional units available to the machine
  4162 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4164 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4165 // Pipeline Description specifies the stages in the machine's pipeline
  4167 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4169 //----------PIPELINE CLASSES---------------------------------------------------
  4170 // Pipeline Classes describe the stages in which input and output are
  4171 // referenced by the hardware pipeline.
  4173 // Integer ALU reg-reg operation
  4174 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4175     single_instruction;
  4176     dst   : E(write);
  4177     src1  : R(read);
  4178     src2  : R(read);
  4179     IALU  : R;
  4180 %}
  4182 // Integer ALU reg-reg long operation
  4183 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4184     instruction_count(2);
  4185     dst   : E(write);
  4186     src1  : R(read);
  4187     src2  : R(read);
  4188     IALU  : R;
  4189     IALU  : R;
  4190 %}
  4192 // Integer ALU reg-reg long dependent operation
  4193 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4194     instruction_count(1); multiple_bundles;
  4195     dst   : E(write);
  4196     src1  : R(read);
  4197     src2  : R(read);
  4198     cr    : E(write);
  4199     IALU  : R(2);
  4200 %}
  4202 // Integer ALU reg-imm operaion
  4203 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4204     single_instruction;
  4205     dst   : E(write);
  4206     src1  : R(read);
  4207     IALU  : R;
  4208 %}
  4210 // Integer ALU reg-reg operation with condition code
  4211 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4212     single_instruction;
  4213     dst   : E(write);
  4214     cr    : E(write);
  4215     src1  : R(read);
  4216     src2  : R(read);
  4217     IALU  : R;
  4218 %}
  4220 // Integer ALU reg-imm operation with condition code
  4221 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4222     single_instruction;
  4223     dst   : E(write);
  4224     cr    : E(write);
  4225     src1  : R(read);
  4226     IALU  : R;
  4227 %}
  4229 // Integer ALU zero-reg operation
  4230 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4231     single_instruction;
  4232     dst   : E(write);
  4233     src2  : R(read);
  4234     IALU  : R;
  4235 %}
  4237 // Integer ALU zero-reg operation with condition code only
  4238 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4239     single_instruction;
  4240     cr    : E(write);
  4241     src   : R(read);
  4242     IALU  : R;
  4243 %}
  4245 // Integer ALU reg-reg operation with condition code only
  4246 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4247     single_instruction;
  4248     cr    : E(write);
  4249     src1  : R(read);
  4250     src2  : R(read);
  4251     IALU  : R;
  4252 %}
  4254 // Integer ALU reg-imm operation with condition code only
  4255 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4256     single_instruction;
  4257     cr    : E(write);
  4258     src1  : R(read);
  4259     IALU  : R;
  4260 %}
  4262 // Integer ALU reg-reg-zero operation with condition code only
  4263 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4264     single_instruction;
  4265     cr    : E(write);
  4266     src1  : R(read);
  4267     src2  : R(read);
  4268     IALU  : R;
  4269 %}
  4271 // Integer ALU reg-imm-zero operation with condition code only
  4272 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4273     single_instruction;
  4274     cr    : E(write);
  4275     src1  : R(read);
  4276     IALU  : R;
  4277 %}
  4279 // Integer ALU reg-reg operation with condition code, src1 modified
  4280 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4281     single_instruction;
  4282     cr    : E(write);
  4283     src1  : E(write);
  4284     src1  : R(read);
  4285     src2  : R(read);
  4286     IALU  : R;
  4287 %}
  4289 // Integer ALU reg-imm operation with condition code, src1 modified
  4290 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4291     single_instruction;
  4292     cr    : E(write);
  4293     src1  : E(write);
  4294     src1  : R(read);
  4295     IALU  : R;
  4296 %}
  4298 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4299     multiple_bundles;
  4300     dst   : E(write)+4;
  4301     cr    : E(write);
  4302     src1  : R(read);
  4303     src2  : R(read);
  4304     IALU  : R(3);
  4305     BR    : R(2);
  4306 %}
  4308 // Integer ALU operation
  4309 pipe_class ialu_none(iRegI dst) %{
  4310     single_instruction;
  4311     dst   : E(write);
  4312     IALU  : R;
  4313 %}
  4315 // Integer ALU reg operation
  4316 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4317     single_instruction; may_have_no_code;
  4318     dst   : E(write);
  4319     src   : R(read);
  4320     IALU  : R;
  4321 %}
  4323 // Integer ALU reg conditional operation
  4324 // This instruction has a 1 cycle stall, and cannot execute
  4325 // in the same cycle as the instruction setting the condition
  4326 // code. We kludge this by pretending to read the condition code
  4327 // 1 cycle earlier, and by marking the functional units as busy
  4328 // for 2 cycles with the result available 1 cycle later than
  4329 // is really the case.
  4330 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4331     single_instruction;
  4332     op2_out : C(write);
  4333     op1     : R(read);
  4334     cr      : R(read);       // This is really E, with a 1 cycle stall
  4335     BR      : R(2);
  4336     MS      : R(2);
  4337 %}
  4339 #ifdef _LP64
  4340 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4341     instruction_count(1); multiple_bundles;
  4342     dst     : C(write)+1;
  4343     src     : R(read)+1;
  4344     IALU    : R(1);
  4345     BR      : E(2);
  4346     MS      : E(2);
  4347 %}
  4348 #endif
  4350 // Integer ALU reg operation
  4351 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4352     single_instruction; may_have_no_code;
  4353     dst   : E(write);
  4354     src   : R(read);
  4355     IALU  : R;
  4356 %}
  4357 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4358     single_instruction; may_have_no_code;
  4359     dst   : E(write);
  4360     src   : R(read);
  4361     IALU  : R;
  4362 %}
  4364 // Two integer ALU reg operations
  4365 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4366     instruction_count(2);
  4367     dst   : E(write);
  4368     src   : R(read);
  4369     A0    : R;
  4370     A1    : R;
  4371 %}
  4373 // Two integer ALU reg operations
  4374 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4375     instruction_count(2); may_have_no_code;
  4376     dst   : E(write);
  4377     src   : R(read);
  4378     A0    : R;
  4379     A1    : R;
  4380 %}
  4382 // Integer ALU imm operation
  4383 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4384     single_instruction;
  4385     dst   : E(write);
  4386     IALU  : R;
  4387 %}
  4389 // Integer ALU reg-reg with carry operation
  4390 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4391     single_instruction;
  4392     dst   : E(write);
  4393     src1  : R(read);
  4394     src2  : R(read);
  4395     IALU  : R;
  4396 %}
  4398 // Integer ALU cc operation
  4399 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4400     single_instruction;
  4401     dst   : E(write);
  4402     cc    : R(read);
  4403     IALU  : R;
  4404 %}
  4406 // Integer ALU cc / second IALU operation
  4407 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4408     instruction_count(1); multiple_bundles;
  4409     dst   : E(write)+1;
  4410     src   : R(read);
  4411     IALU  : R;
  4412 %}
  4414 // Integer ALU cc / second IALU operation
  4415 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4416     instruction_count(1); multiple_bundles;
  4417     dst   : E(write)+1;
  4418     p     : R(read);
  4419     q     : R(read);
  4420     IALU  : R;
  4421 %}
  4423 // Integer ALU hi-lo-reg operation
  4424 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4425     instruction_count(1); multiple_bundles;
  4426     dst   : E(write)+1;
  4427     IALU  : R(2);
  4428 %}
  4430 // Float ALU hi-lo-reg operation (with temp)
  4431 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4432     instruction_count(1); multiple_bundles;
  4433     dst   : E(write)+1;
  4434     IALU  : R(2);
  4435 %}
  4437 // Long Constant
  4438 pipe_class loadConL( iRegL dst, immL src ) %{
  4439     instruction_count(2); multiple_bundles;
  4440     dst   : E(write)+1;
  4441     IALU  : R(2);
  4442     IALU  : R(2);
  4443 %}
  4445 // Pointer Constant
  4446 pipe_class loadConP( iRegP dst, immP src ) %{
  4447     instruction_count(0); multiple_bundles;
  4448     fixed_latency(6);
  4449 %}
  4451 // Polling Address
  4452 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4453 #ifdef _LP64
  4454     instruction_count(0); multiple_bundles;
  4455     fixed_latency(6);
  4456 #else
  4457     dst   : E(write);
  4458     IALU  : R;
  4459 #endif
  4460 %}
  4462 // Long Constant small
  4463 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4464     instruction_count(2);
  4465     dst   : E(write);
  4466     IALU  : R;
  4467     IALU  : R;
  4468 %}
  4470 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4471 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4472     instruction_count(1); multiple_bundles;
  4473     src   : R(read);
  4474     dst   : M(write)+1;
  4475     IALU  : R;
  4476     MS    : E;
  4477 %}
  4479 // Integer ALU nop operation
  4480 pipe_class ialu_nop() %{
  4481     single_instruction;
  4482     IALU  : R;
  4483 %}
  4485 // Integer ALU nop operation
  4486 pipe_class ialu_nop_A0() %{
  4487     single_instruction;
  4488     A0    : R;
  4489 %}
  4491 // Integer ALU nop operation
  4492 pipe_class ialu_nop_A1() %{
  4493     single_instruction;
  4494     A1    : R;
  4495 %}
  4497 // Integer Multiply reg-reg operation
  4498 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4499     single_instruction;
  4500     dst   : E(write);
  4501     src1  : R(read);
  4502     src2  : R(read);
  4503     MS    : R(5);
  4504 %}
  4506 // Integer Multiply reg-imm operation
  4507 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4508     single_instruction;
  4509     dst   : E(write);
  4510     src1  : R(read);
  4511     MS    : R(5);
  4512 %}
  4514 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4515     single_instruction;
  4516     dst   : E(write)+4;
  4517     src1  : R(read);
  4518     src2  : R(read);
  4519     MS    : R(6);
  4520 %}
  4522 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4523     single_instruction;
  4524     dst   : E(write)+4;
  4525     src1  : R(read);
  4526     MS    : R(6);
  4527 %}
  4529 // Integer Divide reg-reg
  4530 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4531     instruction_count(1); multiple_bundles;
  4532     dst   : E(write);
  4533     temp  : E(write);
  4534     src1  : R(read);
  4535     src2  : R(read);
  4536     temp  : R(read);
  4537     MS    : R(38);
  4538 %}
  4540 // Integer Divide reg-imm
  4541 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4542     instruction_count(1); multiple_bundles;
  4543     dst   : E(write);
  4544     temp  : E(write);
  4545     src1  : R(read);
  4546     temp  : R(read);
  4547     MS    : R(38);
  4548 %}
  4550 // Long Divide
  4551 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4552     dst  : E(write)+71;
  4553     src1 : R(read);
  4554     src2 : R(read)+1;
  4555     MS   : R(70);
  4556 %}
  4558 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4559     dst  : E(write)+71;
  4560     src1 : R(read);
  4561     MS   : R(70);
  4562 %}
  4564 // Floating Point Add Float
  4565 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4566     single_instruction;
  4567     dst   : X(write);
  4568     src1  : E(read);
  4569     src2  : E(read);
  4570     FA    : R;
  4571 %}
  4573 // Floating Point Add Double
  4574 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4575     single_instruction;
  4576     dst   : X(write);
  4577     src1  : E(read);
  4578     src2  : E(read);
  4579     FA    : R;
  4580 %}
  4582 // Floating Point Conditional Move based on integer flags
  4583 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4584     single_instruction;
  4585     dst   : X(write);
  4586     src   : E(read);
  4587     cr    : R(read);
  4588     FA    : R(2);
  4589     BR    : R(2);
  4590 %}
  4592 // Floating Point Conditional Move based on integer flags
  4593 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4594     single_instruction;
  4595     dst   : X(write);
  4596     src   : E(read);
  4597     cr    : R(read);
  4598     FA    : R(2);
  4599     BR    : R(2);
  4600 %}
  4602 // Floating Point Multiply Float
  4603 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4604     single_instruction;
  4605     dst   : X(write);
  4606     src1  : E(read);
  4607     src2  : E(read);
  4608     FM    : R;
  4609 %}
  4611 // Floating Point Multiply Double
  4612 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4613     single_instruction;
  4614     dst   : X(write);
  4615     src1  : E(read);
  4616     src2  : E(read);
  4617     FM    : R;
  4618 %}
  4620 // Floating Point Divide Float
  4621 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4622     single_instruction;
  4623     dst   : X(write);
  4624     src1  : E(read);
  4625     src2  : E(read);
  4626     FM    : R;
  4627     FDIV  : C(14);
  4628 %}
  4630 // Floating Point Divide Double
  4631 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4632     single_instruction;
  4633     dst   : X(write);
  4634     src1  : E(read);
  4635     src2  : E(read);
  4636     FM    : R;
  4637     FDIV  : C(17);
  4638 %}
  4640 // Floating Point Move/Negate/Abs Float
  4641 pipe_class faddF_reg(regF dst, regF src) %{
  4642     single_instruction;
  4643     dst   : W(write);
  4644     src   : E(read);
  4645     FA    : R(1);
  4646 %}
  4648 // Floating Point Move/Negate/Abs Double
  4649 pipe_class faddD_reg(regD dst, regD src) %{
  4650     single_instruction;
  4651     dst   : W(write);
  4652     src   : E(read);
  4653     FA    : R;
  4654 %}
  4656 // Floating Point Convert F->D
  4657 pipe_class fcvtF2D(regD dst, regF src) %{
  4658     single_instruction;
  4659     dst   : X(write);
  4660     src   : E(read);
  4661     FA    : R;
  4662 %}
  4664 // Floating Point Convert I->D
  4665 pipe_class fcvtI2D(regD dst, regF src) %{
  4666     single_instruction;
  4667     dst   : X(write);
  4668     src   : E(read);
  4669     FA    : R;
  4670 %}
  4672 // Floating Point Convert LHi->D
  4673 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4674     single_instruction;
  4675     dst   : X(write);
  4676     src   : E(read);
  4677     FA    : R;
  4678 %}
  4680 // Floating Point Convert L->D
  4681 pipe_class fcvtL2D(regD dst, regF src) %{
  4682     single_instruction;
  4683     dst   : X(write);
  4684     src   : E(read);
  4685     FA    : R;
  4686 %}
  4688 // Floating Point Convert L->F
  4689 pipe_class fcvtL2F(regD dst, regF src) %{
  4690     single_instruction;
  4691     dst   : X(write);
  4692     src   : E(read);
  4693     FA    : R;
  4694 %}
  4696 // Floating Point Convert D->F
  4697 pipe_class fcvtD2F(regD dst, regF src) %{
  4698     single_instruction;
  4699     dst   : X(write);
  4700     src   : E(read);
  4701     FA    : R;
  4702 %}
  4704 // Floating Point Convert I->L
  4705 pipe_class fcvtI2L(regD dst, regF src) %{
  4706     single_instruction;
  4707     dst   : X(write);
  4708     src   : E(read);
  4709     FA    : R;
  4710 %}
  4712 // Floating Point Convert D->F
  4713 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4714     instruction_count(1); multiple_bundles;
  4715     dst   : X(write)+6;
  4716     src   : E(read);
  4717     FA    : R;
  4718 %}
  4720 // Floating Point Convert D->L
  4721 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4722     instruction_count(1); multiple_bundles;
  4723     dst   : X(write)+6;
  4724     src   : E(read);
  4725     FA    : R;
  4726 %}
  4728 // Floating Point Convert F->I
  4729 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4730     instruction_count(1); multiple_bundles;
  4731     dst   : X(write)+6;
  4732     src   : E(read);
  4733     FA    : R;
  4734 %}
  4736 // Floating Point Convert F->L
  4737 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4738     instruction_count(1); multiple_bundles;
  4739     dst   : X(write)+6;
  4740     src   : E(read);
  4741     FA    : R;
  4742 %}
  4744 // Floating Point Convert I->F
  4745 pipe_class fcvtI2F(regF dst, regF src) %{
  4746     single_instruction;
  4747     dst   : X(write);
  4748     src   : E(read);
  4749     FA    : R;
  4750 %}
  4752 // Floating Point Compare
  4753 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4754     single_instruction;
  4755     cr    : X(write);
  4756     src1  : E(read);
  4757     src2  : E(read);
  4758     FA    : R;
  4759 %}
  4761 // Floating Point Compare
  4762 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4763     single_instruction;
  4764     cr    : X(write);
  4765     src1  : E(read);
  4766     src2  : E(read);
  4767     FA    : R;
  4768 %}
  4770 // Floating Add Nop
  4771 pipe_class fadd_nop() %{
  4772     single_instruction;
  4773     FA  : R;
  4774 %}
  4776 // Integer Store to Memory
  4777 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4778     single_instruction;
  4779     mem   : R(read);
  4780     src   : C(read);
  4781     MS    : R;
  4782 %}
  4784 // Integer Store to Memory
  4785 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  4786     single_instruction;
  4787     mem   : R(read);
  4788     src   : C(read);
  4789     MS    : R;
  4790 %}
  4792 // Integer Store Zero to Memory
  4793 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  4794     single_instruction;
  4795     mem   : R(read);
  4796     MS    : R;
  4797 %}
  4799 // Special Stack Slot Store
  4800 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  4801     single_instruction;
  4802     stkSlot : R(read);
  4803     src     : C(read);
  4804     MS      : R;
  4805 %}
  4807 // Special Stack Slot Store
  4808 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  4809     instruction_count(2); multiple_bundles;
  4810     stkSlot : R(read);
  4811     src     : C(read);
  4812     MS      : R(2);
  4813 %}
  4815 // Float Store
  4816 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  4817     single_instruction;
  4818     mem : R(read);
  4819     src : C(read);
  4820     MS  : R;
  4821 %}
  4823 // Float Store
  4824 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  4825     single_instruction;
  4826     mem : R(read);
  4827     MS  : R;
  4828 %}
  4830 // Double Store
  4831 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  4832     instruction_count(1);
  4833     mem : R(read);
  4834     src : C(read);
  4835     MS  : R;
  4836 %}
  4838 // Double Store
  4839 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  4840     single_instruction;
  4841     mem : R(read);
  4842     MS  : R;
  4843 %}
  4845 // Special Stack Slot Float Store
  4846 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  4847     single_instruction;
  4848     stkSlot : R(read);
  4849     src     : C(read);
  4850     MS      : R;
  4851 %}
  4853 // Special Stack Slot Double Store
  4854 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  4855     single_instruction;
  4856     stkSlot : R(read);
  4857     src     : C(read);
  4858     MS      : R;
  4859 %}
  4861 // Integer Load (when sign bit propagation not needed)
  4862 pipe_class iload_mem(iRegI dst, memory mem) %{
  4863     single_instruction;
  4864     mem : R(read);
  4865     dst : C(write);
  4866     MS  : R;
  4867 %}
  4869 // Integer Load from stack operand
  4870 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  4871     single_instruction;
  4872     mem : R(read);
  4873     dst : C(write);
  4874     MS  : R;
  4875 %}
  4877 // Integer Load (when sign bit propagation or masking is needed)
  4878 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  4879     single_instruction;
  4880     mem : R(read);
  4881     dst : M(write);
  4882     MS  : R;
  4883 %}
  4885 // Float Load
  4886 pipe_class floadF_mem(regF dst, memory mem) %{
  4887     single_instruction;
  4888     mem : R(read);
  4889     dst : M(write);
  4890     MS  : R;
  4891 %}
  4893 // Float Load
  4894 pipe_class floadD_mem(regD dst, memory mem) %{
  4895     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  4896     mem : R(read);
  4897     dst : M(write);
  4898     MS  : R;
  4899 %}
  4901 // Float Load
  4902 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  4903     single_instruction;
  4904     stkSlot : R(read);
  4905     dst : M(write);
  4906     MS  : R;
  4907 %}
  4909 // Float Load
  4910 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  4911     single_instruction;
  4912     stkSlot : R(read);
  4913     dst : M(write);
  4914     MS  : R;
  4915 %}
  4917 // Memory Nop
  4918 pipe_class mem_nop() %{
  4919     single_instruction;
  4920     MS  : R;
  4921 %}
  4923 pipe_class sethi(iRegP dst, immI src) %{
  4924     single_instruction;
  4925     dst  : E(write);
  4926     IALU : R;
  4927 %}
  4929 pipe_class loadPollP(iRegP poll) %{
  4930     single_instruction;
  4931     poll : R(read);
  4932     MS   : R;
  4933 %}
  4935 pipe_class br(Universe br, label labl) %{
  4936     single_instruction_with_delay_slot;
  4937     BR  : R;
  4938 %}
  4940 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  4941     single_instruction_with_delay_slot;
  4942     cr    : E(read);
  4943     BR    : R;
  4944 %}
  4946 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  4947     single_instruction_with_delay_slot;
  4948     op1 : E(read);
  4949     BR  : R;
  4950     MS  : R;
  4951 %}
  4953 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  4954     single_instruction_with_delay_slot;
  4955     cr    : E(read);
  4956     BR    : R;
  4957 %}
  4959 pipe_class br_nop() %{
  4960     single_instruction;
  4961     BR  : R;
  4962 %}
  4964 pipe_class simple_call(method meth) %{
  4965     instruction_count(2); multiple_bundles; force_serialization;
  4966     fixed_latency(100);
  4967     BR  : R(1);
  4968     MS  : R(1);
  4969     A0  : R(1);
  4970 %}
  4972 pipe_class compiled_call(method meth) %{
  4973     instruction_count(1); multiple_bundles; force_serialization;
  4974     fixed_latency(100);
  4975     MS  : R(1);
  4976 %}
  4978 pipe_class call(method meth) %{
  4979     instruction_count(0); multiple_bundles; force_serialization;
  4980     fixed_latency(100);
  4981 %}
  4983 pipe_class tail_call(Universe ignore, label labl) %{
  4984     single_instruction; has_delay_slot;
  4985     fixed_latency(100);
  4986     BR  : R(1);
  4987     MS  : R(1);
  4988 %}
  4990 pipe_class ret(Universe ignore) %{
  4991     single_instruction; has_delay_slot;
  4992     BR  : R(1);
  4993     MS  : R(1);
  4994 %}
  4996 pipe_class ret_poll(g3RegP poll) %{
  4997     instruction_count(3); has_delay_slot;
  4998     poll : E(read);
  4999     MS   : R;
  5000 %}
  5002 // The real do-nothing guy
  5003 pipe_class empty( ) %{
  5004     instruction_count(0);
  5005 %}
  5007 pipe_class long_memory_op() %{
  5008     instruction_count(0); multiple_bundles; force_serialization;
  5009     fixed_latency(25);
  5010     MS  : R(1);
  5011 %}
  5013 // Check-cast
  5014 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5015     array : R(read);
  5016     match  : R(read);
  5017     IALU   : R(2);
  5018     BR     : R(2);
  5019     MS     : R;
  5020 %}
  5022 // Convert FPU flags into +1,0,-1
  5023 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5024     src1  : E(read);
  5025     src2  : E(read);
  5026     dst   : E(write);
  5027     FA    : R;
  5028     MS    : R(2);
  5029     BR    : R(2);
  5030 %}
  5032 // Compare for p < q, and conditionally add y
  5033 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5034     p     : E(read);
  5035     q     : E(read);
  5036     y     : E(read);
  5037     IALU  : R(3)
  5038 %}
  5040 // Perform a compare, then move conditionally in a branch delay slot.
  5041 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5042     src2   : E(read);
  5043     srcdst : E(read);
  5044     IALU   : R;
  5045     BR     : R;
  5046 %}
  5048 // Define the class for the Nop node
  5049 define %{
  5050    MachNop = ialu_nop;
  5051 %}
  5053 %}
  5055 //----------INSTRUCTIONS-------------------------------------------------------
  5057 //------------Special Stack Slot instructions - no match rules-----------------
  5058 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5059   // No match rule to avoid chain rule match.
  5060   effect(DEF dst, USE src);
  5061   ins_cost(MEMORY_REF_COST);
  5062   size(4);
  5063   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5064   opcode(Assembler::ldf_op3);
  5065   ins_encode(form3_mem_reg(src, dst));
  5066   ins_pipe(floadF_stk);
  5067 %}
  5069 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5070   // No match rule to avoid chain rule match.
  5071   effect(DEF dst, USE src);
  5072   ins_cost(MEMORY_REF_COST);
  5073   size(4);
  5074   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5075   opcode(Assembler::lddf_op3);
  5076   ins_encode(form3_mem_reg(src, dst));
  5077   ins_pipe(floadD_stk);
  5078 %}
  5080 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5081   // No match rule to avoid chain rule match.
  5082   effect(DEF dst, USE src);
  5083   ins_cost(MEMORY_REF_COST);
  5084   size(4);
  5085   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5086   opcode(Assembler::stf_op3);
  5087   ins_encode(form3_mem_reg(dst, src));
  5088   ins_pipe(fstoreF_stk_reg);
  5089 %}
  5091 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5092   // No match rule to avoid chain rule match.
  5093   effect(DEF dst, USE src);
  5094   ins_cost(MEMORY_REF_COST);
  5095   size(4);
  5096   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5097   opcode(Assembler::stdf_op3);
  5098   ins_encode(form3_mem_reg(dst, src));
  5099   ins_pipe(fstoreD_stk_reg);
  5100 %}
  5102 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5103   effect(DEF dst, USE src);
  5104   ins_cost(MEMORY_REF_COST*2);
  5105   size(8);
  5106   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5107             "STW    R_G0,$dst.lo" %}
  5108   opcode(Assembler::stw_op3);
  5109   ins_encode(form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5110   ins_pipe(lstoreI_stk_reg);
  5111 %}
  5113 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5114   // No match rule to avoid chain rule match.
  5115   effect(DEF dst, USE src);
  5116   ins_cost(MEMORY_REF_COST);
  5117   size(4);
  5118   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5119   opcode(Assembler::stx_op3);
  5120   ins_encode( form3_mem_reg( dst, src ) );
  5121   ins_pipe(istore_stk_reg);
  5122 %}
  5124 //---------- Chain stack slots between similar types --------
  5126 // Load integer from stack slot
  5127 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5128   match(Set dst src);
  5129   ins_cost(MEMORY_REF_COST);
  5131   size(4);
  5132   format %{ "LDUW   $src,$dst\t!stk" %}
  5133   opcode(Assembler::lduw_op3);
  5134   ins_encode( form3_mem_reg( src, dst ) );
  5135   ins_pipe(iload_mem);
  5136 %}
  5138 // Store integer to stack slot
  5139 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5140   match(Set dst src);
  5141   ins_cost(MEMORY_REF_COST);
  5143   size(4);
  5144   format %{ "STW    $src,$dst\t!stk" %}
  5145   opcode(Assembler::stw_op3);
  5146   ins_encode( form3_mem_reg( dst, src ) );
  5147   ins_pipe(istore_mem_reg);
  5148 %}
  5150 // Load long from stack slot
  5151 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5152   match(Set dst src);
  5154   ins_cost(MEMORY_REF_COST);
  5155   size(4);
  5156   format %{ "LDX    $src,$dst\t! long" %}
  5157   opcode(Assembler::ldx_op3);
  5158   ins_encode( form3_mem_reg( src, dst ) );
  5159   ins_pipe(iload_mem);
  5160 %}
  5162 // Store long to stack slot
  5163 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5164   match(Set dst src);
  5166   ins_cost(MEMORY_REF_COST);
  5167   size(4);
  5168   format %{ "STX    $src,$dst\t! long" %}
  5169   opcode(Assembler::stx_op3);
  5170   ins_encode( form3_mem_reg( dst, src ) );
  5171   ins_pipe(istore_mem_reg);
  5172 %}
  5174 #ifdef _LP64
  5175 // Load pointer from stack slot, 64-bit encoding
  5176 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5177   match(Set dst src);
  5178   ins_cost(MEMORY_REF_COST);
  5179   size(4);
  5180   format %{ "LDX    $src,$dst\t!ptr" %}
  5181   opcode(Assembler::ldx_op3);
  5182   ins_encode( form3_mem_reg( src, dst ) );
  5183   ins_pipe(iload_mem);
  5184 %}
  5186 // Store pointer to stack slot
  5187 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5188   match(Set dst src);
  5189   ins_cost(MEMORY_REF_COST);
  5190   size(4);
  5191   format %{ "STX    $src,$dst\t!ptr" %}
  5192   opcode(Assembler::stx_op3);
  5193   ins_encode( form3_mem_reg( dst, src ) );
  5194   ins_pipe(istore_mem_reg);
  5195 %}
  5196 #else // _LP64
  5197 // Load pointer from stack slot, 32-bit encoding
  5198 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5199   match(Set dst src);
  5200   ins_cost(MEMORY_REF_COST);
  5201   format %{ "LDUW   $src,$dst\t!ptr" %}
  5202   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5203   ins_encode( form3_mem_reg( src, dst ) );
  5204   ins_pipe(iload_mem);
  5205 %}
  5207 // Store pointer to stack slot
  5208 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5209   match(Set dst src);
  5210   ins_cost(MEMORY_REF_COST);
  5211   format %{ "STW    $src,$dst\t!ptr" %}
  5212   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5213   ins_encode( form3_mem_reg( dst, src ) );
  5214   ins_pipe(istore_mem_reg);
  5215 %}
  5216 #endif // _LP64
  5218 //------------Special Nop instructions for bundling - no match rules-----------
  5219 // Nop using the A0 functional unit
  5220 instruct Nop_A0() %{
  5221   ins_cost(0);
  5223   format %{ "NOP    ! Alu Pipeline" %}
  5224   opcode(Assembler::or_op3, Assembler::arith_op);
  5225   ins_encode( form2_nop() );
  5226   ins_pipe(ialu_nop_A0);
  5227 %}
  5229 // Nop using the A1 functional unit
  5230 instruct Nop_A1( ) %{
  5231   ins_cost(0);
  5233   format %{ "NOP    ! Alu Pipeline" %}
  5234   opcode(Assembler::or_op3, Assembler::arith_op);
  5235   ins_encode( form2_nop() );
  5236   ins_pipe(ialu_nop_A1);
  5237 %}
  5239 // Nop using the memory functional unit
  5240 instruct Nop_MS( ) %{
  5241   ins_cost(0);
  5243   format %{ "NOP    ! Memory Pipeline" %}
  5244   ins_encode( emit_mem_nop );
  5245   ins_pipe(mem_nop);
  5246 %}
  5248 // Nop using the floating add functional unit
  5249 instruct Nop_FA( ) %{
  5250   ins_cost(0);
  5252   format %{ "NOP    ! Floating Add Pipeline" %}
  5253   ins_encode( emit_fadd_nop );
  5254   ins_pipe(fadd_nop);
  5255 %}
  5257 // Nop using the branch functional unit
  5258 instruct Nop_BR( ) %{
  5259   ins_cost(0);
  5261   format %{ "NOP    ! Branch Pipeline" %}
  5262   ins_encode( emit_br_nop );
  5263   ins_pipe(br_nop);
  5264 %}
  5266 //----------Load/Store/Move Instructions---------------------------------------
  5267 //----------Load Instructions--------------------------------------------------
  5268 // Load Byte (8bit signed)
  5269 instruct loadB(iRegI dst, memory mem) %{
  5270   match(Set dst (LoadB mem));
  5271   ins_cost(MEMORY_REF_COST);
  5273   size(4);
  5274   format %{ "LDSB   $mem,$dst" %}
  5275   opcode(Assembler::ldsb_op3);
  5276   ins_encode( form3_mem_reg( mem, dst ) );
  5277   ins_pipe(iload_mask_mem);
  5278 %}
  5280 // Load Byte (8bit UNsigned) into an int reg
  5281 instruct loadUB(iRegI dst, memory mem, immI_255 bytemask) %{
  5282   match(Set dst (AndI (LoadB mem) bytemask));
  5283   ins_cost(MEMORY_REF_COST);
  5285   size(4);
  5286   format %{ "LDUB   $mem,$dst" %}
  5287   opcode(Assembler::ldub_op3);
  5288   ins_encode( form3_mem_reg( mem, dst ) );
  5289   ins_pipe(iload_mask_mem);
  5290 %}
  5292 // Load Byte (8bit UNsigned) into a Long Register
  5293 instruct loadUBL(iRegL dst, memory mem, immL_FF bytemask) %{
  5294   match(Set dst (AndL (ConvI2L (LoadB mem)) bytemask));
  5295   ins_cost(MEMORY_REF_COST);
  5297   size(4);
  5298   format %{ "LDUB   $mem,$dst" %}
  5299   opcode(Assembler::ldub_op3);
  5300   ins_encode( form3_mem_reg( mem, dst ) );
  5301   ins_pipe(iload_mask_mem);
  5302 %}
  5304 // Load Char (16bit UNsigned) into a Long Register
  5305 instruct loadUCL(iRegL dst, memory mem, immL_FFFF bytemask) %{
  5306   match(Set dst (AndL (ConvI2L (LoadC mem)) bytemask));
  5307   ins_cost(MEMORY_REF_COST);
  5309   size(4);
  5310   format %{ "LDUH   $mem,$dst" %}
  5311   opcode(Assembler::lduh_op3);
  5312   ins_encode( form3_mem_reg( mem, dst ) );
  5313   ins_pipe(iload_mask_mem);
  5314 %}
  5316 // Load Char (16bit unsigned)
  5317 instruct loadC(iRegI dst, memory mem) %{
  5318   match(Set dst (LoadC mem));
  5319   ins_cost(MEMORY_REF_COST);
  5321   size(4);
  5322   format %{ "LDUH   $mem,$dst" %}
  5323   opcode(Assembler::lduh_op3);
  5324   ins_encode( form3_mem_reg( mem, dst ) );
  5325   ins_pipe(iload_mask_mem);
  5326 %}
  5328 // Load Integer
  5329 instruct loadI(iRegI dst, memory mem) %{
  5330   match(Set dst (LoadI mem));
  5331   ins_cost(MEMORY_REF_COST);
  5332   size(4);
  5334   format %{ "LDUW   $mem,$dst" %}
  5335   opcode(Assembler::lduw_op3);
  5336   ins_encode( form3_mem_reg( mem, dst ) );
  5337   ins_pipe(iload_mem);
  5338 %}
  5340 // Load Long - aligned
  5341 instruct loadL(iRegL dst, memory mem ) %{
  5342   match(Set dst (LoadL mem));
  5343   ins_cost(MEMORY_REF_COST);
  5344   size(4);
  5345   format %{ "LDX    $mem,$dst\t! long" %}
  5346   opcode(Assembler::ldx_op3);
  5347   ins_encode( form3_mem_reg( mem, dst ) );
  5348   ins_pipe(iload_mem);
  5349 %}
  5351 // Load Long - UNaligned
  5352 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5353   match(Set dst (LoadL_unaligned mem));
  5354   effect(KILL tmp);
  5355   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5356   size(16);
  5357   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5358           "\tLDUW   $mem  ,$dst\n"
  5359           "\tSLLX   #32, $dst, $dst\n"
  5360           "\tOR     $dst, R_O7, $dst" %}
  5361   opcode(Assembler::lduw_op3);
  5362   ins_encode( form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5363   ins_pipe(iload_mem);
  5364 %}
  5366 // Load Aligned Packed Byte into a Double Register
  5367 instruct loadA8B(regD dst, memory mem) %{
  5368   match(Set dst (Load8B mem));
  5369   ins_cost(MEMORY_REF_COST);
  5370   size(4);
  5371   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5372   opcode(Assembler::lddf_op3);
  5373   ins_encode( form3_mem_reg( mem, dst ) );
  5374   ins_pipe(floadD_mem);
  5375 %}
  5377 // Load Aligned Packed Char into a Double Register
  5378 instruct loadA4C(regD dst, memory mem) %{
  5379   match(Set dst (Load4C mem));
  5380   ins_cost(MEMORY_REF_COST);
  5381   size(4);
  5382   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5383   opcode(Assembler::lddf_op3);
  5384   ins_encode( form3_mem_reg( mem, dst ) );
  5385   ins_pipe(floadD_mem);
  5386 %}
  5388 // Load Aligned Packed Short into a Double Register
  5389 instruct loadA4S(regD dst, memory mem) %{
  5390   match(Set dst (Load4S mem));
  5391   ins_cost(MEMORY_REF_COST);
  5392   size(4);
  5393   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5394   opcode(Assembler::lddf_op3);
  5395   ins_encode( form3_mem_reg( mem, dst ) );
  5396   ins_pipe(floadD_mem);
  5397 %}
  5399 // Load Aligned Packed Int into a Double Register
  5400 instruct loadA2I(regD dst, memory mem) %{
  5401   match(Set dst (Load2I mem));
  5402   ins_cost(MEMORY_REF_COST);
  5403   size(4);
  5404   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5405   opcode(Assembler::lddf_op3);
  5406   ins_encode( form3_mem_reg( mem, dst ) );
  5407   ins_pipe(floadD_mem);
  5408 %}
  5410 // Load Range
  5411 instruct loadRange(iRegI dst, memory mem) %{
  5412   match(Set dst (LoadRange mem));
  5413   ins_cost(MEMORY_REF_COST);
  5415   size(4);
  5416   format %{ "LDUW   $mem,$dst\t! range" %}
  5417   opcode(Assembler::lduw_op3);
  5418   ins_encode( form3_mem_reg( mem, dst ) );
  5419   ins_pipe(iload_mem);
  5420 %}
  5422 // Load Integer into %f register (for fitos/fitod)
  5423 instruct loadI_freg(regF dst, memory mem) %{
  5424   match(Set dst (LoadI mem));
  5425   ins_cost(MEMORY_REF_COST);
  5426   size(4);
  5428   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5429   opcode(Assembler::ldf_op3);
  5430   ins_encode( form3_mem_reg( mem, dst ) );
  5431   ins_pipe(floadF_mem);
  5432 %}
  5434 // Load Pointer
  5435 instruct loadP(iRegP dst, memory mem) %{
  5436   match(Set dst (LoadP mem));
  5437   ins_cost(MEMORY_REF_COST);
  5438   size(4);
  5440 #ifndef _LP64
  5441   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5442   opcode(Assembler::lduw_op3, 0, REGP_OP);
  5443 #else
  5444   format %{ "LDX    $mem,$dst\t! ptr" %}
  5445   opcode(Assembler::ldx_op3, 0, REGP_OP);
  5446 #endif
  5447   ins_encode( form3_mem_reg( mem, dst ) );
  5448   ins_pipe(iload_mem);
  5449 %}
  5451 // Load Compressed Pointer
  5452 instruct loadN(iRegN dst, memory mem) %{
  5453    match(Set dst (LoadN mem));
  5454    ins_cost(MEMORY_REF_COST);
  5455    size(4);
  5457    format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5458    ins_encode %{
  5459      Register base = as_Register($mem$$base);
  5460      Register index = as_Register($mem$$index);
  5461      Register dst = $dst$$Register;
  5462      if (index != G0) {
  5463        __ lduw(base, index, dst);
  5464      } else {
  5465        __ lduw(base, $mem$$disp, dst);
  5467    %}
  5468    ins_pipe(iload_mem);
  5469 %}
  5471 // Load Klass Pointer
  5472 instruct loadKlass(iRegP dst, memory mem) %{
  5473   match(Set dst (LoadKlass mem));
  5474   ins_cost(MEMORY_REF_COST);
  5475   size(4);
  5477 #ifndef _LP64
  5478   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5479   opcode(Assembler::lduw_op3, 0, REGP_OP);
  5480 #else
  5481   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5482   opcode(Assembler::ldx_op3, 0, REGP_OP);
  5483 #endif
  5484   ins_encode( form3_mem_reg( mem, dst ) );
  5485   ins_pipe(iload_mem);
  5486 %}
  5488 // Load narrow Klass Pointer
  5489 instruct loadNKlass(iRegN dst, memory mem) %{
  5490   match(Set dst (LoadNKlass mem));
  5491   ins_cost(MEMORY_REF_COST);
  5492   size(4);
  5494   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5496   ins_encode %{
  5497      Register base = as_Register($mem$$base);
  5498      Register index = as_Register($mem$$index);
  5499      Register dst = $dst$$Register;
  5500      if (index != G0) {
  5501        __ lduw(base, index, dst);
  5502      } else {
  5503        __ lduw(base, $mem$$disp, dst);
  5505   %}
  5506   ins_pipe(iload_mem);
  5507 %}
  5509 // Load Short (16bit signed)
  5510 instruct loadS(iRegI dst, memory mem) %{
  5511   match(Set dst (LoadS mem));
  5512   ins_cost(MEMORY_REF_COST);
  5514   size(4);
  5515   format %{ "LDSH   $mem,$dst" %}
  5516   opcode(Assembler::ldsh_op3);
  5517   ins_encode( form3_mem_reg( mem, dst ) );
  5518   ins_pipe(iload_mask_mem);
  5519 %}
  5521 // Load Double
  5522 instruct loadD(regD dst, memory mem) %{
  5523   match(Set dst (LoadD mem));
  5524   ins_cost(MEMORY_REF_COST);
  5526   size(4);
  5527   format %{ "LDDF   $mem,$dst" %}
  5528   opcode(Assembler::lddf_op3);
  5529   ins_encode( form3_mem_reg( mem, dst ) );
  5530   ins_pipe(floadD_mem);
  5531 %}
  5533 // Load Double - UNaligned
  5534 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  5535   match(Set dst (LoadD_unaligned mem));
  5536   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5537   size(8);
  5538   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  5539           "\tLDF    $mem+4,$dst.lo\t!" %}
  5540   opcode(Assembler::ldf_op3);
  5541   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  5542   ins_pipe(iload_mem);
  5543 %}
  5545 // Load Float
  5546 instruct loadF(regF dst, memory mem) %{
  5547   match(Set dst (LoadF mem));
  5548   ins_cost(MEMORY_REF_COST);
  5550   size(4);
  5551   format %{ "LDF    $mem,$dst" %}
  5552   opcode(Assembler::ldf_op3);
  5553   ins_encode( form3_mem_reg( mem, dst ) );
  5554   ins_pipe(floadF_mem);
  5555 %}
  5557 // Load Constant
  5558 instruct loadConI( iRegI dst, immI src ) %{
  5559   match(Set dst src);
  5560   ins_cost(DEFAULT_COST * 3/2);
  5561   format %{ "SET    $src,$dst" %}
  5562   ins_encode( Set32(src, dst) );
  5563   ins_pipe(ialu_hi_lo_reg);
  5564 %}
  5566 instruct loadConI13( iRegI dst, immI13 src ) %{
  5567   match(Set dst src);
  5569   size(4);
  5570   format %{ "MOV    $src,$dst" %}
  5571   ins_encode( Set13( src, dst ) );
  5572   ins_pipe(ialu_imm);
  5573 %}
  5575 instruct loadConP(iRegP dst, immP src) %{
  5576   match(Set dst src);
  5577   ins_cost(DEFAULT_COST * 3/2);
  5578   format %{ "SET    $src,$dst\t!ptr" %}
  5579   // This rule does not use "expand" unlike loadConI because then
  5580   // the result type is not known to be an Oop.  An ADLC
  5581   // enhancement will be needed to make that work - not worth it!
  5583   ins_encode( SetPtr( src, dst ) );
  5584   ins_pipe(loadConP);
  5586 %}
  5588 instruct loadConP0(iRegP dst, immP0 src) %{
  5589   match(Set dst src);
  5591   size(4);
  5592   format %{ "CLR    $dst\t!ptr" %}
  5593   ins_encode( SetNull( dst ) );
  5594   ins_pipe(ialu_imm);
  5595 %}
  5597 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  5598   match(Set dst src);
  5599   ins_cost(DEFAULT_COST);
  5600   format %{ "SET    $src,$dst\t!ptr" %}
  5601   ins_encode %{
  5602     Address polling_page(reg_to_register_object($dst$$reg), (address)os::get_polling_page());
  5603     __ sethi(polling_page, false );
  5604   %}
  5605   ins_pipe(loadConP_poll);
  5606 %}
  5608 instruct loadConN0(iRegN dst, immN0 src) %{
  5609   match(Set dst src);
  5611   size(4);
  5612   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  5613   ins_encode( SetNull( dst ) );
  5614   ins_pipe(ialu_imm);
  5615 %}
  5617 instruct loadConN(iRegN dst, immN src) %{
  5618   match(Set dst src);
  5619   ins_cost(DEFAULT_COST * 3/2);
  5620   format %{ "SET    $src,$dst\t! compressed ptr" %}
  5621   ins_encode %{
  5622     Register dst = $dst$$Register;
  5623     __ set_narrow_oop((jobject)$src$$constant, dst);
  5624   %}
  5625   ins_pipe(ialu_hi_lo_reg);
  5626 %}
  5628 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
  5629   // %%% maybe this should work like loadConD
  5630   match(Set dst src);
  5631   effect(KILL tmp);
  5632   ins_cost(DEFAULT_COST * 4);
  5633   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
  5634   ins_encode( LdImmL(src, dst, tmp) );
  5635   ins_pipe(loadConL);
  5636 %}
  5638 instruct loadConL0( iRegL dst, immL0 src ) %{
  5639   match(Set dst src);
  5640   ins_cost(DEFAULT_COST);
  5641   size(4);
  5642   format %{ "CLR    $dst\t! long" %}
  5643   ins_encode( Set13( src, dst ) );
  5644   ins_pipe(ialu_imm);
  5645 %}
  5647 instruct loadConL13( iRegL dst, immL13 src ) %{
  5648   match(Set dst src);
  5649   ins_cost(DEFAULT_COST * 2);
  5651   size(4);
  5652   format %{ "MOV    $src,$dst\t! long" %}
  5653   ins_encode( Set13( src, dst ) );
  5654   ins_pipe(ialu_imm);
  5655 %}
  5657 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
  5658   match(Set dst src);
  5659   effect(KILL tmp);
  5661 #ifdef _LP64
  5662   size(36);
  5663 #else
  5664   size(8);
  5665 #endif
  5667   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
  5668             "LDF    [$tmp+lo(&$src)],$dst" %}
  5669   ins_encode( LdImmF(src, dst, tmp) );
  5670   ins_pipe(loadConFD);
  5671 %}
  5673 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
  5674   match(Set dst src);
  5675   effect(KILL tmp);
  5677 #ifdef _LP64
  5678   size(36);
  5679 #else
  5680   size(8);
  5681 #endif
  5683   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
  5684             "LDDF   [$tmp+lo(&$src)],$dst" %}
  5685   ins_encode( LdImmD(src, dst, tmp) );
  5686   ins_pipe(loadConFD);
  5687 %}
  5689 // Prefetch instructions.
  5690 // Must be safe to execute with invalid address (cannot fault).
  5692 instruct prefetchr( memory mem ) %{
  5693   match( PrefetchRead mem );
  5694   ins_cost(MEMORY_REF_COST);
  5696   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  5697   opcode(Assembler::prefetch_op3);
  5698   ins_encode( form3_mem_prefetch_read( mem ) );
  5699   ins_pipe(iload_mem);
  5700 %}
  5702 instruct prefetchw( memory mem ) %{
  5703   match( PrefetchWrite mem );
  5704   ins_cost(MEMORY_REF_COST);
  5706   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  5707   opcode(Assembler::prefetch_op3);
  5708   ins_encode( form3_mem_prefetch_write( mem ) );
  5709   ins_pipe(iload_mem);
  5710 %}
  5713 //----------Store Instructions-------------------------------------------------
  5714 // Store Byte
  5715 instruct storeB(memory mem, iRegI src) %{
  5716   match(Set mem (StoreB mem src));
  5717   ins_cost(MEMORY_REF_COST);
  5719   size(4);
  5720   format %{ "STB    $src,$mem\t! byte" %}
  5721   opcode(Assembler::stb_op3);
  5722   ins_encode( form3_mem_reg( mem, src ) );
  5723   ins_pipe(istore_mem_reg);
  5724 %}
  5726 instruct storeB0(memory mem, immI0 src) %{
  5727   match(Set mem (StoreB mem src));
  5728   ins_cost(MEMORY_REF_COST);
  5730   size(4);
  5731   format %{ "STB    $src,$mem\t! byte" %}
  5732   opcode(Assembler::stb_op3);
  5733   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5734   ins_pipe(istore_mem_zero);
  5735 %}
  5737 instruct storeCM0(memory mem, immI0 src) %{
  5738   match(Set mem (StoreCM mem src));
  5739   ins_cost(MEMORY_REF_COST);
  5741   size(4);
  5742   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  5743   opcode(Assembler::stb_op3);
  5744   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5745   ins_pipe(istore_mem_zero);
  5746 %}
  5748 // Store Char/Short
  5749 instruct storeC(memory mem, iRegI src) %{
  5750   match(Set mem (StoreC mem src));
  5751   ins_cost(MEMORY_REF_COST);
  5753   size(4);
  5754   format %{ "STH    $src,$mem\t! short" %}
  5755   opcode(Assembler::sth_op3);
  5756   ins_encode( form3_mem_reg( mem, src ) );
  5757   ins_pipe(istore_mem_reg);
  5758 %}
  5760 instruct storeC0(memory mem, immI0 src) %{
  5761   match(Set mem (StoreC mem src));
  5762   ins_cost(MEMORY_REF_COST);
  5764   size(4);
  5765   format %{ "STH    $src,$mem\t! short" %}
  5766   opcode(Assembler::sth_op3);
  5767   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5768   ins_pipe(istore_mem_zero);
  5769 %}
  5771 // Store Integer
  5772 instruct storeI(memory mem, iRegI src) %{
  5773   match(Set mem (StoreI mem src));
  5774   ins_cost(MEMORY_REF_COST);
  5776   size(4);
  5777   format %{ "STW    $src,$mem" %}
  5778   opcode(Assembler::stw_op3);
  5779   ins_encode( form3_mem_reg( mem, src ) );
  5780   ins_pipe(istore_mem_reg);
  5781 %}
  5783 // Store Long
  5784 instruct storeL(memory mem, iRegL src) %{
  5785   match(Set mem (StoreL mem src));
  5786   ins_cost(MEMORY_REF_COST);
  5787   size(4);
  5788   format %{ "STX    $src,$mem\t! long" %}
  5789   opcode(Assembler::stx_op3);
  5790   ins_encode( form3_mem_reg( mem, src ) );
  5791   ins_pipe(istore_mem_reg);
  5792 %}
  5794 instruct storeI0(memory mem, immI0 src) %{
  5795   match(Set mem (StoreI mem src));
  5796   ins_cost(MEMORY_REF_COST);
  5798   size(4);
  5799   format %{ "STW    $src,$mem" %}
  5800   opcode(Assembler::stw_op3);
  5801   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5802   ins_pipe(istore_mem_zero);
  5803 %}
  5805 instruct storeL0(memory mem, immL0 src) %{
  5806   match(Set mem (StoreL mem src));
  5807   ins_cost(MEMORY_REF_COST);
  5809   size(4);
  5810   format %{ "STX    $src,$mem" %}
  5811   opcode(Assembler::stx_op3);
  5812   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5813   ins_pipe(istore_mem_zero);
  5814 %}
  5816 // Store Integer from float register (used after fstoi)
  5817 instruct storeI_Freg(memory mem, regF src) %{
  5818   match(Set mem (StoreI mem src));
  5819   ins_cost(MEMORY_REF_COST);
  5821   size(4);
  5822   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  5823   opcode(Assembler::stf_op3);
  5824   ins_encode( form3_mem_reg( mem, src ) );
  5825   ins_pipe(fstoreF_mem_reg);
  5826 %}
  5828 // Store Pointer
  5829 instruct storeP(memory dst, sp_ptr_RegP src) %{
  5830   match(Set dst (StoreP dst src));
  5831   ins_cost(MEMORY_REF_COST);
  5832   size(4);
  5834 #ifndef _LP64
  5835   format %{ "STW    $src,$dst\t! ptr" %}
  5836   opcode(Assembler::stw_op3, 0, REGP_OP);
  5837 #else
  5838   format %{ "STX    $src,$dst\t! ptr" %}
  5839   opcode(Assembler::stx_op3, 0, REGP_OP);
  5840 #endif
  5841   ins_encode( form3_mem_reg( dst, src ) );
  5842   ins_pipe(istore_mem_spORreg);
  5843 %}
  5845 instruct storeP0(memory dst, immP0 src) %{
  5846   match(Set dst (StoreP dst src));
  5847   ins_cost(MEMORY_REF_COST);
  5848   size(4);
  5850 #ifndef _LP64
  5851   format %{ "STW    $src,$dst\t! ptr" %}
  5852   opcode(Assembler::stw_op3, 0, REGP_OP);
  5853 #else
  5854   format %{ "STX    $src,$dst\t! ptr" %}
  5855   opcode(Assembler::stx_op3, 0, REGP_OP);
  5856 #endif
  5857   ins_encode( form3_mem_reg( dst, R_G0 ) );
  5858   ins_pipe(istore_mem_zero);
  5859 %}
  5861 // Store Compressed Pointer
  5862 instruct storeN(memory dst, iRegN src) %{
  5863    match(Set dst (StoreN dst src));
  5864    ins_cost(MEMORY_REF_COST);
  5865    size(4);
  5867    format %{ "STW    $src,$dst\t! compressed ptr" %}
  5868    ins_encode %{
  5869      Register base = as_Register($dst$$base);
  5870      Register index = as_Register($dst$$index);
  5871      Register src = $src$$Register;
  5872      if (index != G0) {
  5873        __ stw(src, base, index);
  5874      } else {
  5875        __ stw(src, base, $dst$$disp);
  5877    %}
  5878    ins_pipe(istore_mem_spORreg);
  5879 %}
  5881 instruct storeN0(memory dst, immN0 src) %{
  5882    match(Set dst (StoreN dst src));
  5883    ins_cost(MEMORY_REF_COST);
  5884    size(4);
  5886    format %{ "STW    $src,$dst\t! compressed ptr" %}
  5887    ins_encode %{
  5888      Register base = as_Register($dst$$base);
  5889      Register index = as_Register($dst$$index);
  5890      if (index != G0) {
  5891        __ stw(0, base, index);
  5892      } else {
  5893        __ stw(0, base, $dst$$disp);
  5895    %}
  5896    ins_pipe(istore_mem_zero);
  5897 %}
  5899 // Store Double
  5900 instruct storeD( memory mem, regD src) %{
  5901   match(Set mem (StoreD mem src));
  5902   ins_cost(MEMORY_REF_COST);
  5904   size(4);
  5905   format %{ "STDF   $src,$mem" %}
  5906   opcode(Assembler::stdf_op3);
  5907   ins_encode( form3_mem_reg( mem, src ) );
  5908   ins_pipe(fstoreD_mem_reg);
  5909 %}
  5911 instruct storeD0( memory mem, immD0 src) %{
  5912   match(Set mem (StoreD mem src));
  5913   ins_cost(MEMORY_REF_COST);
  5915   size(4);
  5916   format %{ "STX    $src,$mem" %}
  5917   opcode(Assembler::stx_op3);
  5918   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5919   ins_pipe(fstoreD_mem_zero);
  5920 %}
  5922 // Store Float
  5923 instruct storeF( memory mem, regF src) %{
  5924   match(Set mem (StoreF mem src));
  5925   ins_cost(MEMORY_REF_COST);
  5927   size(4);
  5928   format %{ "STF    $src,$mem" %}
  5929   opcode(Assembler::stf_op3);
  5930   ins_encode( form3_mem_reg( mem, src ) );
  5931   ins_pipe(fstoreF_mem_reg);
  5932 %}
  5934 instruct storeF0( memory mem, immF0 src) %{
  5935   match(Set mem (StoreF mem src));
  5936   ins_cost(MEMORY_REF_COST);
  5938   size(4);
  5939   format %{ "STW    $src,$mem\t! storeF0" %}
  5940   opcode(Assembler::stw_op3);
  5941   ins_encode( form3_mem_reg( mem, R_G0 ) );
  5942   ins_pipe(fstoreF_mem_zero);
  5943 %}
  5945 // Store Aligned Packed Bytes in Double register to memory
  5946 instruct storeA8B(memory mem, regD src) %{
  5947   match(Set mem (Store8B mem src));
  5948   ins_cost(MEMORY_REF_COST);
  5949   size(4);
  5950   format %{ "STDF   $src,$mem\t! packed8B" %}
  5951   opcode(Assembler::stdf_op3);
  5952   ins_encode( form3_mem_reg( mem, src ) );
  5953   ins_pipe(fstoreD_mem_reg);
  5954 %}
  5956 // Convert oop pointer into compressed form
  5957 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  5958   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  5959   match(Set dst (EncodeP src));
  5960   format %{ "encode_heap_oop $src, $dst" %}
  5961   ins_encode %{
  5962     __ encode_heap_oop($src$$Register, $dst$$Register);
  5963   %}
  5964   ins_pipe(ialu_reg);
  5965 %}
  5967 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  5968   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  5969   match(Set dst (EncodeP src));
  5970   format %{ "encode_heap_oop_not_null $src, $dst" %}
  5971   ins_encode %{
  5972     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  5973   %}
  5974   ins_pipe(ialu_reg);
  5975 %}
  5977 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  5978   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  5979             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  5980   match(Set dst (DecodeN src));
  5981   format %{ "decode_heap_oop $src, $dst" %}
  5982   ins_encode %{
  5983     __ decode_heap_oop($src$$Register, $dst$$Register);
  5984   %}
  5985   ins_pipe(ialu_reg);
  5986 %}
  5988 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  5989   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  5990             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  5991   match(Set dst (DecodeN src));
  5992   format %{ "decode_heap_oop_not_null $src, $dst" %}
  5993   ins_encode %{
  5994     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  5995   %}
  5996   ins_pipe(ialu_reg);
  5997 %}
  6000 // Store Zero into Aligned Packed Bytes
  6001 instruct storeA8B0(memory mem, immI0 zero) %{
  6002   match(Set mem (Store8B mem zero));
  6003   ins_cost(MEMORY_REF_COST);
  6004   size(4);
  6005   format %{ "STX    $zero,$mem\t! packed8B" %}
  6006   opcode(Assembler::stx_op3);
  6007   ins_encode( form3_mem_reg( mem, R_G0 ) );
  6008   ins_pipe(fstoreD_mem_zero);
  6009 %}
  6011 // Store Aligned Packed Chars/Shorts in Double register to memory
  6012 instruct storeA4C(memory mem, regD src) %{
  6013   match(Set mem (Store4C mem src));
  6014   ins_cost(MEMORY_REF_COST);
  6015   size(4);
  6016   format %{ "STDF   $src,$mem\t! packed4C" %}
  6017   opcode(Assembler::stdf_op3);
  6018   ins_encode( form3_mem_reg( mem, src ) );
  6019   ins_pipe(fstoreD_mem_reg);
  6020 %}
  6022 // Store Zero into Aligned Packed Chars/Shorts
  6023 instruct storeA4C0(memory mem, immI0 zero) %{
  6024   match(Set mem (Store4C mem (Replicate4C zero)));
  6025   ins_cost(MEMORY_REF_COST);
  6026   size(4);
  6027   format %{ "STX    $zero,$mem\t! packed4C" %}
  6028   opcode(Assembler::stx_op3);
  6029   ins_encode( form3_mem_reg( mem, R_G0 ) );
  6030   ins_pipe(fstoreD_mem_zero);
  6031 %}
  6033 // Store Aligned Packed Ints in Double register to memory
  6034 instruct storeA2I(memory mem, regD src) %{
  6035   match(Set mem (Store2I mem src));
  6036   ins_cost(MEMORY_REF_COST);
  6037   size(4);
  6038   format %{ "STDF   $src,$mem\t! packed2I" %}
  6039   opcode(Assembler::stdf_op3);
  6040   ins_encode( form3_mem_reg( mem, src ) );
  6041   ins_pipe(fstoreD_mem_reg);
  6042 %}
  6044 // Store Zero into Aligned Packed Ints
  6045 instruct storeA2I0(memory mem, immI0 zero) %{
  6046   match(Set mem (Store2I mem zero));
  6047   ins_cost(MEMORY_REF_COST);
  6048   size(4);
  6049   format %{ "STX    $zero,$mem\t! packed2I" %}
  6050   opcode(Assembler::stx_op3);
  6051   ins_encode( form3_mem_reg( mem, R_G0 ) );
  6052   ins_pipe(fstoreD_mem_zero);
  6053 %}
  6056 //----------MemBar Instructions-----------------------------------------------
  6057 // Memory barrier flavors
  6059 instruct membar_acquire() %{
  6060   match(MemBarAcquire);
  6061   ins_cost(4*MEMORY_REF_COST);
  6063   size(0);
  6064   format %{ "MEMBAR-acquire" %}
  6065   ins_encode( enc_membar_acquire );
  6066   ins_pipe(long_memory_op);
  6067 %}
  6069 instruct membar_acquire_lock() %{
  6070   match(MemBarAcquire);
  6071   predicate(Matcher::prior_fast_lock(n));
  6072   ins_cost(0);
  6074   size(0);
  6075   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6076   ins_encode( );
  6077   ins_pipe(empty);
  6078 %}
  6080 instruct membar_release() %{
  6081   match(MemBarRelease);
  6082   ins_cost(4*MEMORY_REF_COST);
  6084   size(0);
  6085   format %{ "MEMBAR-release" %}
  6086   ins_encode( enc_membar_release );
  6087   ins_pipe(long_memory_op);
  6088 %}
  6090 instruct membar_release_lock() %{
  6091   match(MemBarRelease);
  6092   predicate(Matcher::post_fast_unlock(n));
  6093   ins_cost(0);
  6095   size(0);
  6096   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6097   ins_encode( );
  6098   ins_pipe(empty);
  6099 %}
  6101 instruct membar_volatile() %{
  6102   match(MemBarVolatile);
  6103   ins_cost(4*MEMORY_REF_COST);
  6105   size(4);
  6106   format %{ "MEMBAR-volatile" %}
  6107   ins_encode( enc_membar_volatile );
  6108   ins_pipe(long_memory_op);
  6109 %}
  6111 instruct unnecessary_membar_volatile() %{
  6112   match(MemBarVolatile);
  6113   predicate(Matcher::post_store_load_barrier(n));
  6114   ins_cost(0);
  6116   size(0);
  6117   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6118   ins_encode( );
  6119   ins_pipe(empty);
  6120 %}
  6122 //----------Register Move Instructions-----------------------------------------
  6123 instruct roundDouble_nop(regD dst) %{
  6124   match(Set dst (RoundDouble dst));
  6125   ins_cost(0);
  6126   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6127   ins_encode( );
  6128   ins_pipe(empty);
  6129 %}
  6132 instruct roundFloat_nop(regF dst) %{
  6133   match(Set dst (RoundFloat dst));
  6134   ins_cost(0);
  6135   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6136   ins_encode( );
  6137   ins_pipe(empty);
  6138 %}
  6141 // Cast Index to Pointer for unsafe natives
  6142 instruct castX2P(iRegX src, iRegP dst) %{
  6143   match(Set dst (CastX2P src));
  6145   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6146   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6147   ins_pipe(ialu_reg);
  6148 %}
  6150 // Cast Pointer to Index for unsafe natives
  6151 instruct castP2X(iRegP src, iRegX dst) %{
  6152   match(Set dst (CastP2X src));
  6154   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6155   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6156   ins_pipe(ialu_reg);
  6157 %}
  6159 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6160   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6161   match(Set stkSlot src);   // chain rule
  6162   ins_cost(MEMORY_REF_COST);
  6163   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6164   opcode(Assembler::stdf_op3);
  6165   ins_encode(form3_mem_reg(stkSlot, src));
  6166   ins_pipe(fstoreD_stk_reg);
  6167 %}
  6169 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6170   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6171   match(Set dst stkSlot);   // chain rule
  6172   ins_cost(MEMORY_REF_COST);
  6173   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6174   opcode(Assembler::lddf_op3);
  6175   ins_encode(form3_mem_reg(stkSlot, dst));
  6176   ins_pipe(floadD_stk);
  6177 %}
  6179 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6180   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6181   match(Set stkSlot src);   // chain rule
  6182   ins_cost(MEMORY_REF_COST);
  6183   format %{ "STF   $src,$stkSlot\t!stk" %}
  6184   opcode(Assembler::stf_op3);
  6185   ins_encode(form3_mem_reg(stkSlot, src));
  6186   ins_pipe(fstoreF_stk_reg);
  6187 %}
  6189 //----------Conditional Move---------------------------------------------------
  6190 // Conditional move
  6191 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6192   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6193   ins_cost(150);
  6194   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6195   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6196   ins_pipe(ialu_reg);
  6197 %}
  6199 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6200   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6201   ins_cost(140);
  6202   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6203   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6204   ins_pipe(ialu_imm);
  6205 %}
  6207 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6208   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6209   ins_cost(150);
  6210   size(4);
  6211   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6212   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6213   ins_pipe(ialu_reg);
  6214 %}
  6216 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6217   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6218   ins_cost(140);
  6219   size(4);
  6220   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6221   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6222   ins_pipe(ialu_imm);
  6223 %}
  6225 instruct cmovII_U_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6226   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6227   ins_cost(150);
  6228   size(4);
  6229   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6230   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6231   ins_pipe(ialu_reg);
  6232 %}
  6234 instruct cmovII_U_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6235   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6236   ins_cost(140);
  6237   size(4);
  6238   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6239   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6240   ins_pipe(ialu_imm);
  6241 %}
  6243 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6244   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6245   ins_cost(150);
  6246   size(4);
  6247   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6248   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6249   ins_pipe(ialu_reg);
  6250 %}
  6252 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6253   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6254   ins_cost(140);
  6255   size(4);
  6256   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6257   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6258   ins_pipe(ialu_imm);
  6259 %}
  6261 // Conditional move for RegN. Only cmov(reg,reg).
  6262 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6263   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6264   ins_cost(150);
  6265   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6266   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6267   ins_pipe(ialu_reg);
  6268 %}
  6270 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6271 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6272   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6273   ins_cost(150);
  6274   size(4);
  6275   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6276   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6277   ins_pipe(ialu_reg);
  6278 %}
  6280 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6281   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6282   ins_cost(150);
  6283   size(4);
  6284   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6285   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6286   ins_pipe(ialu_reg);
  6287 %}
  6289 // Conditional move
  6290 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6291   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6292   ins_cost(150);
  6293   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6294   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6295   ins_pipe(ialu_reg);
  6296 %}
  6298 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6299   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6300   ins_cost(140);
  6301   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6302   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6303   ins_pipe(ialu_imm);
  6304 %}
  6306 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6307 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6308   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6309   ins_cost(150);
  6311   size(4);
  6312   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6313   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6314   ins_pipe(ialu_reg);
  6315 %}
  6317 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6318   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6319   ins_cost(140);
  6321   size(4);
  6322   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6323   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6324   ins_pipe(ialu_imm);
  6325 %}
  6327 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6328   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6329   ins_cost(150);
  6330   size(4);
  6331   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6332   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6333   ins_pipe(ialu_imm);
  6334 %}
  6336 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6337   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6338   ins_cost(140);
  6339   size(4);
  6340   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6341   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6342   ins_pipe(ialu_imm);
  6343 %}
  6345 // Conditional move
  6346 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6347   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6348   ins_cost(150);
  6349   opcode(0x101);
  6350   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6351   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6352   ins_pipe(int_conditional_float_move);
  6353 %}
  6355 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6356   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6357   ins_cost(150);
  6359   size(4);
  6360   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6361   opcode(0x101);
  6362   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6363   ins_pipe(int_conditional_float_move);
  6364 %}
  6366 // Conditional move,
  6367 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6368   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6369   ins_cost(150);
  6370   size(4);
  6371   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6372   opcode(0x1);
  6373   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6374   ins_pipe(int_conditional_double_move);
  6375 %}
  6377 // Conditional move
  6378 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6379   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6380   ins_cost(150);
  6381   size(4);
  6382   opcode(0x102);
  6383   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6384   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6385   ins_pipe(int_conditional_double_move);
  6386 %}
  6388 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6389   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6390   ins_cost(150);
  6392   size(4);
  6393   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6394   opcode(0x102);
  6395   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6396   ins_pipe(int_conditional_double_move);
  6397 %}
  6399 // Conditional move,
  6400 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6401   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6402   ins_cost(150);
  6403   size(4);
  6404   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6405   opcode(0x2);
  6406   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6407   ins_pipe(int_conditional_double_move);
  6408 %}
  6410 // Conditional move
  6411 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  6412   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6413   ins_cost(150);
  6414   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6415   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6416   ins_pipe(ialu_reg);
  6417 %}
  6419 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  6420   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6421   ins_cost(140);
  6422   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6423   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6424   ins_pipe(ialu_imm);
  6425 %}
  6427 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  6428   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6429   ins_cost(150);
  6431   size(4);
  6432   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6433   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6434   ins_pipe(ialu_reg);
  6435 %}
  6438 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  6439   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  6440   ins_cost(150);
  6442   size(4);
  6443   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  6444   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6445   ins_pipe(ialu_reg);
  6446 %}
  6450 //----------OS and Locking Instructions----------------------------------------
  6452 // This name is KNOWN by the ADLC and cannot be changed.
  6453 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  6454 // for this guy.
  6455 instruct tlsLoadP(g2RegP dst) %{
  6456   match(Set dst (ThreadLocal));
  6458   size(0);
  6459   ins_cost(0);
  6460   format %{ "# TLS is in G2" %}
  6461   ins_encode( /*empty encoding*/ );
  6462   ins_pipe(ialu_none);
  6463 %}
  6465 instruct checkCastPP( iRegP dst ) %{
  6466   match(Set dst (CheckCastPP dst));
  6468   size(0);
  6469   format %{ "# checkcastPP of $dst" %}
  6470   ins_encode( /*empty encoding*/ );
  6471   ins_pipe(empty);
  6472 %}
  6475 instruct castPP( iRegP dst ) %{
  6476   match(Set dst (CastPP dst));
  6477   format %{ "# castPP of $dst" %}
  6478   ins_encode( /*empty encoding*/ );
  6479   ins_pipe(empty);
  6480 %}
  6482 instruct castII( iRegI dst ) %{
  6483   match(Set dst (CastII dst));
  6484   format %{ "# castII of $dst" %}
  6485   ins_encode( /*empty encoding*/ );
  6486   ins_cost(0);
  6487   ins_pipe(empty);
  6488 %}
  6490 //----------Arithmetic Instructions--------------------------------------------
  6491 // Addition Instructions
  6492 // Register Addition
  6493 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6494   match(Set dst (AddI src1 src2));
  6496   size(4);
  6497   format %{ "ADD    $src1,$src2,$dst" %}
  6498   ins_encode %{
  6499     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  6500   %}
  6501   ins_pipe(ialu_reg_reg);
  6502 %}
  6504 // Immediate Addition
  6505 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6506   match(Set dst (AddI src1 src2));
  6508   size(4);
  6509   format %{ "ADD    $src1,$src2,$dst" %}
  6510   opcode(Assembler::add_op3, Assembler::arith_op);
  6511   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6512   ins_pipe(ialu_reg_imm);
  6513 %}
  6515 // Pointer Register Addition
  6516 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  6517   match(Set dst (AddP src1 src2));
  6519   size(4);
  6520   format %{ "ADD    $src1,$src2,$dst" %}
  6521   opcode(Assembler::add_op3, Assembler::arith_op);
  6522   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6523   ins_pipe(ialu_reg_reg);
  6524 %}
  6526 // Pointer Immediate Addition
  6527 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  6528   match(Set dst (AddP src1 src2));
  6530   size(4);
  6531   format %{ "ADD    $src1,$src2,$dst" %}
  6532   opcode(Assembler::add_op3, Assembler::arith_op);
  6533   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6534   ins_pipe(ialu_reg_imm);
  6535 %}
  6537 // Long Addition
  6538 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6539   match(Set dst (AddL src1 src2));
  6541   size(4);
  6542   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  6543   opcode(Assembler::add_op3, Assembler::arith_op);
  6544   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6545   ins_pipe(ialu_reg_reg);
  6546 %}
  6548 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  6549   match(Set dst (AddL src1 con));
  6551   size(4);
  6552   format %{ "ADD    $src1,$con,$dst" %}
  6553   opcode(Assembler::add_op3, Assembler::arith_op);
  6554   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  6555   ins_pipe(ialu_reg_imm);
  6556 %}
  6558 //----------Conditional_store--------------------------------------------------
  6559 // Conditional-store of the updated heap-top.
  6560 // Used during allocation of the shared heap.
  6561 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  6563 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  6564 instruct loadPLocked(iRegP dst, memory mem) %{
  6565   match(Set dst (LoadPLocked mem));
  6566   ins_cost(MEMORY_REF_COST);
  6568 #ifndef _LP64
  6569   size(4);
  6570   format %{ "LDUW   $mem,$dst\t! ptr" %}
  6571   opcode(Assembler::lduw_op3, 0, REGP_OP);
  6572 #else
  6573   format %{ "LDX    $mem,$dst\t! ptr" %}
  6574   opcode(Assembler::ldx_op3, 0, REGP_OP);
  6575 #endif
  6576   ins_encode( form3_mem_reg( mem, dst ) );
  6577   ins_pipe(iload_mem);
  6578 %}
  6580 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  6581 instruct loadLLocked(iRegL dst, memory mem) %{
  6582   match(Set dst (LoadLLocked mem));
  6583   ins_cost(MEMORY_REF_COST);
  6584   size(4);
  6585   format %{ "LDX    $mem,$dst\t! long" %}
  6586   opcode(Assembler::ldx_op3);
  6587   ins_encode( form3_mem_reg( mem, dst ) );
  6588   ins_pipe(iload_mem);
  6589 %}
  6591 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  6592   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  6593   effect( KILL newval );
  6594   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  6595             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  6596   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  6597   ins_pipe( long_memory_op );
  6598 %}
  6600 instruct storeLConditional_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6601   match(Set res (StoreLConditional mem_ptr (Binary oldval newval)));
  6602   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6603   // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap
  6604   format %{
  6605             "MOV    $newval,R_O7\n\t"
  6606             "CASXA  [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t"
  6607             "CMP    $oldval,R_O7\t\t! See if we made progress\n\t"
  6608             "MOV    1,$res\n\t"
  6609             "MOVne  xcc,R_G0,$res"
  6610   %}
  6611   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6612               enc_lflags_ne_to_boolean(res) );
  6613   ins_pipe( long_memory_op );
  6614 %}
  6616 instruct storeLConditional_flags(iRegP mem_ptr, iRegL oldval, iRegL newval, flagsRegL xcc, o7RegI tmp1, immI0 zero) %{
  6617   match(Set xcc (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero));
  6618   effect( USE mem_ptr, KILL tmp1);
  6619   // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap
  6620   format %{
  6621             "MOV    $newval,R_O7\n\t"
  6622             "CASXA  [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t"
  6623             "CMP    $oldval,R_O7\t\t! See if we made progress"
  6624   %}
  6625   ins_encode( enc_casx(mem_ptr, oldval, newval));
  6626   ins_pipe( long_memory_op );
  6627 %}
  6629 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  6631 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6632   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  6633   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6634   format %{
  6635             "MOV    $newval,O7\n\t"
  6636             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6637             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6638             "MOV    1,$res\n\t"
  6639             "MOVne  xcc,R_G0,$res"
  6640   %}
  6641   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6642               enc_lflags_ne_to_boolean(res) );
  6643   ins_pipe( long_memory_op );
  6644 %}
  6647 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6648   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  6649   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6650   format %{
  6651             "MOV    $newval,O7\n\t"
  6652             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6653             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6654             "MOV    1,$res\n\t"
  6655             "MOVne  icc,R_G0,$res"
  6656   %}
  6657   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6658               enc_iflags_ne_to_boolean(res) );
  6659   ins_pipe( long_memory_op );
  6660 %}
  6662 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6663   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  6664   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6665   format %{
  6666             "MOV    $newval,O7\n\t"
  6667             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6668             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6669             "MOV    1,$res\n\t"
  6670             "MOVne  xcc,R_G0,$res"
  6671   %}
  6672 #ifdef _LP64
  6673   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6674               enc_lflags_ne_to_boolean(res) );
  6675 #else
  6676   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6677               enc_iflags_ne_to_boolean(res) );
  6678 #endif
  6679   ins_pipe( long_memory_op );
  6680 %}
  6682 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6683   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  6684   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6685   format %{
  6686             "MOV    $newval,O7\n\t"
  6687             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6688             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6689             "MOV    1,$res\n\t"
  6690             "MOVne  icc,R_G0,$res"
  6691   %}
  6692   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6693               enc_iflags_ne_to_boolean(res) );
  6694   ins_pipe( long_memory_op );
  6695 %}
  6697 //---------------------
  6698 // Subtraction Instructions
  6699 // Register Subtraction
  6700 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6701   match(Set dst (SubI src1 src2));
  6703   size(4);
  6704   format %{ "SUB    $src1,$src2,$dst" %}
  6705   opcode(Assembler::sub_op3, Assembler::arith_op);
  6706   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6707   ins_pipe(ialu_reg_reg);
  6708 %}
  6710 // Immediate Subtraction
  6711 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6712   match(Set dst (SubI src1 src2));
  6714   size(4);
  6715   format %{ "SUB    $src1,$src2,$dst" %}
  6716   opcode(Assembler::sub_op3, Assembler::arith_op);
  6717   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6718   ins_pipe(ialu_reg_imm);
  6719 %}
  6721 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  6722   match(Set dst (SubI zero src2));
  6724   size(4);
  6725   format %{ "NEG    $src2,$dst" %}
  6726   opcode(Assembler::sub_op3, Assembler::arith_op);
  6727   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  6728   ins_pipe(ialu_zero_reg);
  6729 %}
  6731 // Long subtraction
  6732 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6733   match(Set dst (SubL src1 src2));
  6735   size(4);
  6736   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6737   opcode(Assembler::sub_op3, Assembler::arith_op);
  6738   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6739   ins_pipe(ialu_reg_reg);
  6740 %}
  6742 // Immediate Subtraction
  6743 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  6744   match(Set dst (SubL src1 con));
  6746   size(4);
  6747   format %{ "SUB    $src1,$con,$dst\t! long" %}
  6748   opcode(Assembler::sub_op3, Assembler::arith_op);
  6749   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  6750   ins_pipe(ialu_reg_imm);
  6751 %}
  6753 // Long negation
  6754 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  6755   match(Set dst (SubL zero src2));
  6757   size(4);
  6758   format %{ "NEG    $src2,$dst\t! long" %}
  6759   opcode(Assembler::sub_op3, Assembler::arith_op);
  6760   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  6761   ins_pipe(ialu_zero_reg);
  6762 %}
  6764 // Multiplication Instructions
  6765 // Integer Multiplication
  6766 // Register Multiplication
  6767 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6768   match(Set dst (MulI src1 src2));
  6770   size(4);
  6771   format %{ "MULX   $src1,$src2,$dst" %}
  6772   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6773   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6774   ins_pipe(imul_reg_reg);
  6775 %}
  6777 // Immediate Multiplication
  6778 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6779   match(Set dst (MulI src1 src2));
  6781   size(4);
  6782   format %{ "MULX   $src1,$src2,$dst" %}
  6783   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6784   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6785   ins_pipe(imul_reg_imm);
  6786 %}
  6788 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6789   match(Set dst (MulL src1 src2));
  6790   ins_cost(DEFAULT_COST * 5);
  6791   size(4);
  6792   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  6793   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6794   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6795   ins_pipe(mulL_reg_reg);
  6796 %}
  6798 // Immediate Multiplication
  6799 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  6800   match(Set dst (MulL src1 src2));
  6801   ins_cost(DEFAULT_COST * 5);
  6802   size(4);
  6803   format %{ "MULX   $src1,$src2,$dst" %}
  6804   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6805   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6806   ins_pipe(mulL_reg_imm);
  6807 %}
  6809 // Integer Division
  6810 // Register Division
  6811 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  6812   match(Set dst (DivI src1 src2));
  6813   ins_cost((2+71)*DEFAULT_COST);
  6815   format %{ "SRA     $src2,0,$src2\n\t"
  6816             "SRA     $src1,0,$src1\n\t"
  6817             "SDIVX   $src1,$src2,$dst" %}
  6818   ins_encode( idiv_reg( src1, src2, dst ) );
  6819   ins_pipe(sdiv_reg_reg);
  6820 %}
  6822 // Immediate Division
  6823 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  6824   match(Set dst (DivI src1 src2));
  6825   ins_cost((2+71)*DEFAULT_COST);
  6827   format %{ "SRA     $src1,0,$src1\n\t"
  6828             "SDIVX   $src1,$src2,$dst" %}
  6829   ins_encode( idiv_imm( src1, src2, dst ) );
  6830   ins_pipe(sdiv_reg_imm);
  6831 %}
  6833 //----------Div-By-10-Expansion------------------------------------------------
  6834 // Extract hi bits of a 32x32->64 bit multiply.
  6835 // Expand rule only, not matched
  6836 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  6837   effect( DEF dst, USE src1, USE src2 );
  6838   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  6839             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  6840   ins_encode( enc_mul_hi(dst,src1,src2));
  6841   ins_pipe(sdiv_reg_reg);
  6842 %}
  6844 // Magic constant, reciprical of 10
  6845 instruct loadConI_x66666667(iRegIsafe dst) %{
  6846   effect( DEF dst );
  6848   size(8);
  6849   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  6850   ins_encode( Set32(0x66666667, dst) );
  6851   ins_pipe(ialu_hi_lo_reg);
  6852 %}
  6854 // Register Shift Right Arithmatic Long by 32-63
  6855 instruct sra_31( iRegI dst, iRegI src ) %{
  6856   effect( DEF dst, USE src );
  6857   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  6858   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  6859   ins_pipe(ialu_reg_reg);
  6860 %}
  6862 // Arithmetic Shift Right by 8-bit immediate
  6863 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  6864   effect( DEF dst, USE src );
  6865   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  6866   opcode(Assembler::sra_op3, Assembler::arith_op);
  6867   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  6868   ins_pipe(ialu_reg_imm);
  6869 %}
  6871 // Integer DIV with 10
  6872 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  6873   match(Set dst (DivI src div));
  6874   ins_cost((6+6)*DEFAULT_COST);
  6875   expand %{
  6876     iRegIsafe tmp1;               // Killed temps;
  6877     iRegIsafe tmp2;               // Killed temps;
  6878     iRegI tmp3;                   // Killed temps;
  6879     iRegI tmp4;                   // Killed temps;
  6880     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  6881     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  6882     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  6883     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  6884     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  6885   %}
  6886 %}
  6888 // Register Long Division
  6889 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6890   match(Set dst (DivL src1 src2));
  6891   ins_cost(DEFAULT_COST*71);
  6892   size(4);
  6893   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6894   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6895   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6896   ins_pipe(divL_reg_reg);
  6897 %}
  6899 // Register Long Division
  6900 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  6901   match(Set dst (DivL src1 src2));
  6902   ins_cost(DEFAULT_COST*71);
  6903   size(4);
  6904   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6905   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6906   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6907   ins_pipe(divL_reg_imm);
  6908 %}
  6910 // Integer Remainder
  6911 // Register Remainder
  6912 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  6913   match(Set dst (ModI src1 src2));
  6914   effect( KILL ccr, KILL temp);
  6916   format %{ "SREM   $src1,$src2,$dst" %}
  6917   ins_encode( irem_reg(src1, src2, dst, temp) );
  6918   ins_pipe(sdiv_reg_reg);
  6919 %}
  6921 // Immediate Remainder
  6922 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  6923   match(Set dst (ModI src1 src2));
  6924   effect( KILL ccr, KILL temp);
  6926   format %{ "SREM   $src1,$src2,$dst" %}
  6927   ins_encode( irem_imm(src1, src2, dst, temp) );
  6928   ins_pipe(sdiv_reg_imm);
  6929 %}
  6931 // Register Long Remainder
  6932 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  6933   effect(DEF dst, USE src1, USE src2);
  6934   size(4);
  6935   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6936   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6937   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6938   ins_pipe(divL_reg_reg);
  6939 %}
  6941 // Register Long Division
  6942 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  6943   effect(DEF dst, USE src1, USE src2);
  6944   size(4);
  6945   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6946   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6947   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6948   ins_pipe(divL_reg_imm);
  6949 %}
  6951 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  6952   effect(DEF dst, USE src1, USE src2);
  6953   size(4);
  6954   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  6955   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6956   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6957   ins_pipe(mulL_reg_reg);
  6958 %}
  6960 // Immediate Multiplication
  6961 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  6962   effect(DEF dst, USE src1, USE src2);
  6963   size(4);
  6964   format %{ "MULX   $src1,$src2,$dst" %}
  6965   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6966   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6967   ins_pipe(mulL_reg_imm);
  6968 %}
  6970 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  6971   effect(DEF dst, USE src1, USE src2);
  6972   size(4);
  6973   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6974   opcode(Assembler::sub_op3, Assembler::arith_op);
  6975   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6976   ins_pipe(ialu_reg_reg);
  6977 %}
  6979 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  6980   effect(DEF dst, USE src1, USE src2);
  6981   size(4);
  6982   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6983   opcode(Assembler::sub_op3, Assembler::arith_op);
  6984   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6985   ins_pipe(ialu_reg_reg);
  6986 %}
  6988 // Register Long Remainder
  6989 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6990   match(Set dst (ModL src1 src2));
  6991   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  6992   expand %{
  6993     iRegL tmp1;
  6994     iRegL tmp2;
  6995     divL_reg_reg_1(tmp1, src1, src2);
  6996     mulL_reg_reg_1(tmp2, tmp1, src2);
  6997     subL_reg_reg_1(dst,  src1, tmp2);
  6998   %}
  6999 %}
  7001 // Register Long Remainder
  7002 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7003   match(Set dst (ModL src1 src2));
  7004   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7005   expand %{
  7006     iRegL tmp1;
  7007     iRegL tmp2;
  7008     divL_reg_imm13_1(tmp1, src1, src2);
  7009     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7010     subL_reg_reg_2  (dst,  src1, tmp2);
  7011   %}
  7012 %}
  7014 // Integer Shift Instructions
  7015 // Register Shift Left
  7016 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7017   match(Set dst (LShiftI src1 src2));
  7019   size(4);
  7020   format %{ "SLL    $src1,$src2,$dst" %}
  7021   opcode(Assembler::sll_op3, Assembler::arith_op);
  7022   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7023   ins_pipe(ialu_reg_reg);
  7024 %}
  7026 // Register Shift Left Immediate
  7027 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7028   match(Set dst (LShiftI src1 src2));
  7030   size(4);
  7031   format %{ "SLL    $src1,$src2,$dst" %}
  7032   opcode(Assembler::sll_op3, Assembler::arith_op);
  7033   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7034   ins_pipe(ialu_reg_imm);
  7035 %}
  7037 // Register Shift Left
  7038 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7039   match(Set dst (LShiftL src1 src2));
  7041   size(4);
  7042   format %{ "SLLX   $src1,$src2,$dst" %}
  7043   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7044   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7045   ins_pipe(ialu_reg_reg);
  7046 %}
  7048 // Register Shift Left Immediate
  7049 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7050   match(Set dst (LShiftL src1 src2));
  7052   size(4);
  7053   format %{ "SLLX   $src1,$src2,$dst" %}
  7054   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7055   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7056   ins_pipe(ialu_reg_imm);
  7057 %}
  7059 // Register Arithmetic Shift Right
  7060 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7061   match(Set dst (RShiftI src1 src2));
  7062   size(4);
  7063   format %{ "SRA    $src1,$src2,$dst" %}
  7064   opcode(Assembler::sra_op3, Assembler::arith_op);
  7065   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7066   ins_pipe(ialu_reg_reg);
  7067 %}
  7069 // Register Arithmetic Shift Right Immediate
  7070 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7071   match(Set dst (RShiftI src1 src2));
  7073   size(4);
  7074   format %{ "SRA    $src1,$src2,$dst" %}
  7075   opcode(Assembler::sra_op3, Assembler::arith_op);
  7076   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7077   ins_pipe(ialu_reg_imm);
  7078 %}
  7080 // Register Shift Right Arithmatic Long
  7081 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7082   match(Set dst (RShiftL src1 src2));
  7084   size(4);
  7085   format %{ "SRAX   $src1,$src2,$dst" %}
  7086   opcode(Assembler::srax_op3, Assembler::arith_op);
  7087   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7088   ins_pipe(ialu_reg_reg);
  7089 %}
  7091 // Register Shift Left Immediate
  7092 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7093   match(Set dst (RShiftL src1 src2));
  7095   size(4);
  7096   format %{ "SRAX   $src1,$src2,$dst" %}
  7097   opcode(Assembler::srax_op3, Assembler::arith_op);
  7098   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7099   ins_pipe(ialu_reg_imm);
  7100 %}
  7102 // Register Shift Right
  7103 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7104   match(Set dst (URShiftI src1 src2));
  7106   size(4);
  7107   format %{ "SRL    $src1,$src2,$dst" %}
  7108   opcode(Assembler::srl_op3, Assembler::arith_op);
  7109   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7110   ins_pipe(ialu_reg_reg);
  7111 %}
  7113 // Register Shift Right Immediate
  7114 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7115   match(Set dst (URShiftI src1 src2));
  7117   size(4);
  7118   format %{ "SRL    $src1,$src2,$dst" %}
  7119   opcode(Assembler::srl_op3, Assembler::arith_op);
  7120   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7121   ins_pipe(ialu_reg_imm);
  7122 %}
  7124 // Register Shift Right
  7125 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7126   match(Set dst (URShiftL src1 src2));
  7128   size(4);
  7129   format %{ "SRLX   $src1,$src2,$dst" %}
  7130   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7131   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7132   ins_pipe(ialu_reg_reg);
  7133 %}
  7135 // Register Shift Right Immediate
  7136 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7137   match(Set dst (URShiftL src1 src2));
  7139   size(4);
  7140   format %{ "SRLX   $src1,$src2,$dst" %}
  7141   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7142   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7143   ins_pipe(ialu_reg_imm);
  7144 %}
  7146 // Register Shift Right Immediate with a CastP2X
  7147 #ifdef _LP64
  7148 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7149   match(Set dst (URShiftL (CastP2X src1) src2));
  7150   size(4);
  7151   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7152   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7153   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7154   ins_pipe(ialu_reg_imm);
  7155 %}
  7156 #else
  7157 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7158   match(Set dst (URShiftI (CastP2X src1) src2));
  7159   size(4);
  7160   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7161   opcode(Assembler::srl_op3, Assembler::arith_op);
  7162   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7163   ins_pipe(ialu_reg_imm);
  7164 %}
  7165 #endif
  7168 //----------Floating Point Arithmetic Instructions-----------------------------
  7170 //  Add float single precision
  7171 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7172   match(Set dst (AddF src1 src2));
  7174   size(4);
  7175   format %{ "FADDS  $src1,$src2,$dst" %}
  7176   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7177   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7178   ins_pipe(faddF_reg_reg);
  7179 %}
  7181 //  Add float double precision
  7182 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7183   match(Set dst (AddD src1 src2));
  7185   size(4);
  7186   format %{ "FADDD  $src1,$src2,$dst" %}
  7187   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7188   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7189   ins_pipe(faddD_reg_reg);
  7190 %}
  7192 //  Sub float single precision
  7193 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7194   match(Set dst (SubF src1 src2));
  7196   size(4);
  7197   format %{ "FSUBS  $src1,$src2,$dst" %}
  7198   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7199   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7200   ins_pipe(faddF_reg_reg);
  7201 %}
  7203 //  Sub float double precision
  7204 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7205   match(Set dst (SubD src1 src2));
  7207   size(4);
  7208   format %{ "FSUBD  $src1,$src2,$dst" %}
  7209   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7210   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7211   ins_pipe(faddD_reg_reg);
  7212 %}
  7214 //  Mul float single precision
  7215 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7216   match(Set dst (MulF src1 src2));
  7218   size(4);
  7219   format %{ "FMULS  $src1,$src2,$dst" %}
  7220   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7221   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7222   ins_pipe(fmulF_reg_reg);
  7223 %}
  7225 //  Mul float double precision
  7226 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7227   match(Set dst (MulD src1 src2));
  7229   size(4);
  7230   format %{ "FMULD  $src1,$src2,$dst" %}
  7231   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7232   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7233   ins_pipe(fmulD_reg_reg);
  7234 %}
  7236 //  Div float single precision
  7237 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7238   match(Set dst (DivF src1 src2));
  7240   size(4);
  7241   format %{ "FDIVS  $src1,$src2,$dst" %}
  7242   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7243   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7244   ins_pipe(fdivF_reg_reg);
  7245 %}
  7247 //  Div float double precision
  7248 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7249   match(Set dst (DivD src1 src2));
  7251   size(4);
  7252   format %{ "FDIVD  $src1,$src2,$dst" %}
  7253   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7254   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7255   ins_pipe(fdivD_reg_reg);
  7256 %}
  7258 //  Absolute float double precision
  7259 instruct absD_reg(regD dst, regD src) %{
  7260   match(Set dst (AbsD src));
  7262   format %{ "FABSd  $src,$dst" %}
  7263   ins_encode(fabsd(dst, src));
  7264   ins_pipe(faddD_reg);
  7265 %}
  7267 //  Absolute float single precision
  7268 instruct absF_reg(regF dst, regF src) %{
  7269   match(Set dst (AbsF src));
  7271   format %{ "FABSs  $src,$dst" %}
  7272   ins_encode(fabss(dst, src));
  7273   ins_pipe(faddF_reg);
  7274 %}
  7276 instruct negF_reg(regF dst, regF src) %{
  7277   match(Set dst (NegF src));
  7279   size(4);
  7280   format %{ "FNEGs  $src,$dst" %}
  7281   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7282   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7283   ins_pipe(faddF_reg);
  7284 %}
  7286 instruct negD_reg(regD dst, regD src) %{
  7287   match(Set dst (NegD src));
  7289   format %{ "FNEGd  $src,$dst" %}
  7290   ins_encode(fnegd(dst, src));
  7291   ins_pipe(faddD_reg);
  7292 %}
  7294 //  Sqrt float double precision
  7295 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7296   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7298   size(4);
  7299   format %{ "FSQRTS $src,$dst" %}
  7300   ins_encode(fsqrts(dst, src));
  7301   ins_pipe(fdivF_reg_reg);
  7302 %}
  7304 //  Sqrt float double precision
  7305 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7306   match(Set dst (SqrtD src));
  7308   size(4);
  7309   format %{ "FSQRTD $src,$dst" %}
  7310   ins_encode(fsqrtd(dst, src));
  7311   ins_pipe(fdivD_reg_reg);
  7312 %}
  7314 //----------Logical Instructions-----------------------------------------------
  7315 // And Instructions
  7316 // Register And
  7317 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7318   match(Set dst (AndI src1 src2));
  7320   size(4);
  7321   format %{ "AND    $src1,$src2,$dst" %}
  7322   opcode(Assembler::and_op3, Assembler::arith_op);
  7323   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7324   ins_pipe(ialu_reg_reg);
  7325 %}
  7327 // Immediate And
  7328 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7329   match(Set dst (AndI src1 src2));
  7331   size(4);
  7332   format %{ "AND    $src1,$src2,$dst" %}
  7333   opcode(Assembler::and_op3, Assembler::arith_op);
  7334   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7335   ins_pipe(ialu_reg_imm);
  7336 %}
  7338 // Register And Long
  7339 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7340   match(Set dst (AndL src1 src2));
  7342   ins_cost(DEFAULT_COST);
  7343   size(4);
  7344   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7345   opcode(Assembler::and_op3, Assembler::arith_op);
  7346   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7347   ins_pipe(ialu_reg_reg);
  7348 %}
  7350 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7351   match(Set dst (AndL src1 con));
  7353   ins_cost(DEFAULT_COST);
  7354   size(4);
  7355   format %{ "AND    $src1,$con,$dst\t! long" %}
  7356   opcode(Assembler::and_op3, Assembler::arith_op);
  7357   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7358   ins_pipe(ialu_reg_imm);
  7359 %}
  7361 // Or Instructions
  7362 // Register Or
  7363 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7364   match(Set dst (OrI src1 src2));
  7366   size(4);
  7367   format %{ "OR     $src1,$src2,$dst" %}
  7368   opcode(Assembler::or_op3, Assembler::arith_op);
  7369   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7370   ins_pipe(ialu_reg_reg);
  7371 %}
  7373 // Immediate Or
  7374 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7375   match(Set dst (OrI src1 src2));
  7377   size(4);
  7378   format %{ "OR     $src1,$src2,$dst" %}
  7379   opcode(Assembler::or_op3, Assembler::arith_op);
  7380   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7381   ins_pipe(ialu_reg_imm);
  7382 %}
  7384 // Register Or Long
  7385 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7386   match(Set dst (OrL src1 src2));
  7388   ins_cost(DEFAULT_COST);
  7389   size(4);
  7390   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7391   opcode(Assembler::or_op3, Assembler::arith_op);
  7392   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7393   ins_pipe(ialu_reg_reg);
  7394 %}
  7396 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7397   match(Set dst (OrL src1 con));
  7398   ins_cost(DEFAULT_COST*2);
  7400   ins_cost(DEFAULT_COST);
  7401   size(4);
  7402   format %{ "OR     $src1,$con,$dst\t! long" %}
  7403   opcode(Assembler::or_op3, Assembler::arith_op);
  7404   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7405   ins_pipe(ialu_reg_imm);
  7406 %}
  7408 // Xor Instructions
  7409 // Register Xor
  7410 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7411   match(Set dst (XorI src1 src2));
  7413   size(4);
  7414   format %{ "XOR    $src1,$src2,$dst" %}
  7415   opcode(Assembler::xor_op3, Assembler::arith_op);
  7416   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7417   ins_pipe(ialu_reg_reg);
  7418 %}
  7420 // Immediate Xor
  7421 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7422   match(Set dst (XorI src1 src2));
  7424   size(4);
  7425   format %{ "XOR    $src1,$src2,$dst" %}
  7426   opcode(Assembler::xor_op3, Assembler::arith_op);
  7427   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7428   ins_pipe(ialu_reg_imm);
  7429 %}
  7431 // Register Xor Long
  7432 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7433   match(Set dst (XorL src1 src2));
  7435   ins_cost(DEFAULT_COST);
  7436   size(4);
  7437   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  7438   opcode(Assembler::xor_op3, Assembler::arith_op);
  7439   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7440   ins_pipe(ialu_reg_reg);
  7441 %}
  7443 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7444   match(Set dst (XorL src1 con));
  7446   ins_cost(DEFAULT_COST);
  7447   size(4);
  7448   format %{ "XOR    $src1,$con,$dst\t! long" %}
  7449   opcode(Assembler::xor_op3, Assembler::arith_op);
  7450   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7451   ins_pipe(ialu_reg_imm);
  7452 %}
  7454 //----------Convert to Boolean-------------------------------------------------
  7455 // Nice hack for 32-bit tests but doesn't work for
  7456 // 64-bit pointers.
  7457 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  7458   match(Set dst (Conv2B src));
  7459   effect( KILL ccr );
  7460   ins_cost(DEFAULT_COST*2);
  7461   format %{ "CMP    R_G0,$src\n\t"
  7462             "ADDX   R_G0,0,$dst" %}
  7463   ins_encode( enc_to_bool( src, dst ) );
  7464   ins_pipe(ialu_reg_ialu);
  7465 %}
  7467 #ifndef _LP64
  7468 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  7469   match(Set dst (Conv2B src));
  7470   effect( KILL ccr );
  7471   ins_cost(DEFAULT_COST*2);
  7472   format %{ "CMP    R_G0,$src\n\t"
  7473             "ADDX   R_G0,0,$dst" %}
  7474   ins_encode( enc_to_bool( src, dst ) );
  7475   ins_pipe(ialu_reg_ialu);
  7476 %}
  7477 #else
  7478 instruct convP2B( iRegI dst, iRegP src ) %{
  7479   match(Set dst (Conv2B src));
  7480   ins_cost(DEFAULT_COST*2);
  7481   format %{ "MOV    $src,$dst\n\t"
  7482             "MOVRNZ $src,1,$dst" %}
  7483   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  7484   ins_pipe(ialu_clr_and_mover);
  7485 %}
  7486 #endif
  7488 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  7489   match(Set dst (CmpLTMask p q));
  7490   effect( KILL ccr );
  7491   ins_cost(DEFAULT_COST*4);
  7492   format %{ "CMP    $p,$q\n\t"
  7493             "MOV    #0,$dst\n\t"
  7494             "BLT,a  .+8\n\t"
  7495             "MOV    #-1,$dst" %}
  7496   ins_encode( enc_ltmask(p,q,dst) );
  7497   ins_pipe(ialu_reg_reg_ialu);
  7498 %}
  7500 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  7501   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  7502   effect(KILL ccr, TEMP tmp);
  7503   ins_cost(DEFAULT_COST*3);
  7505   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  7506             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  7507             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  7508   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  7509   ins_pipe( cadd_cmpltmask );
  7510 %}
  7512 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  7513   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
  7514   effect( KILL ccr, TEMP tmp);
  7515   ins_cost(DEFAULT_COST*3);
  7517   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  7518             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  7519             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  7520   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  7521   ins_pipe( cadd_cmpltmask );
  7522 %}
  7524 //----------Arithmetic Conversion Instructions---------------------------------
  7525 // The conversions operations are all Alpha sorted.  Please keep it that way!
  7527 instruct convD2F_reg(regF dst, regD src) %{
  7528   match(Set dst (ConvD2F src));
  7529   size(4);
  7530   format %{ "FDTOS  $src,$dst" %}
  7531   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  7532   ins_encode(form3_opf_rs2D_rdF(src, dst));
  7533   ins_pipe(fcvtD2F);
  7534 %}
  7537 // Convert a double to an int in a float register.
  7538 // If the double is a NAN, stuff a zero in instead.
  7539 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  7540   effect(DEF dst, USE src, KILL fcc0);
  7541   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  7542             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7543             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  7544             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  7545             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  7546       "skip:" %}
  7547   ins_encode(form_d2i_helper(src,dst));
  7548   ins_pipe(fcvtD2I);
  7549 %}
  7551 instruct convD2I_reg(stackSlotI dst, regD src) %{
  7552   match(Set dst (ConvD2I src));
  7553   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7554   expand %{
  7555     regF tmp;
  7556     convD2I_helper(tmp, src);
  7557     regF_to_stkI(dst, tmp);
  7558   %}
  7559 %}
  7561 // Convert a double to a long in a double register.
  7562 // If the double is a NAN, stuff a zero in instead.
  7563 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  7564   effect(DEF dst, USE src, KILL fcc0);
  7565   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  7566             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7567             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  7568             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  7569             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  7570       "skip:" %}
  7571   ins_encode(form_d2l_helper(src,dst));
  7572   ins_pipe(fcvtD2L);
  7573 %}
  7576 // Double to Long conversion
  7577 instruct convD2L_reg(stackSlotL dst, regD src) %{
  7578   match(Set dst (ConvD2L src));
  7579   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7580   expand %{
  7581     regD tmp;
  7582     convD2L_helper(tmp, src);
  7583     regD_to_stkL(dst, tmp);
  7584   %}
  7585 %}
  7588 instruct convF2D_reg(regD dst, regF src) %{
  7589   match(Set dst (ConvF2D src));
  7590   format %{ "FSTOD  $src,$dst" %}
  7591   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  7592   ins_encode(form3_opf_rs2F_rdD(src, dst));
  7593   ins_pipe(fcvtF2D);
  7594 %}
  7597 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  7598   effect(DEF dst, USE src, KILL fcc0);
  7599   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  7600             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7601             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  7602             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  7603             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  7604       "skip:" %}
  7605   ins_encode(form_f2i_helper(src,dst));
  7606   ins_pipe(fcvtF2I);
  7607 %}
  7609 instruct convF2I_reg(stackSlotI dst, regF src) %{
  7610   match(Set dst (ConvF2I src));
  7611   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7612   expand %{
  7613     regF tmp;
  7614     convF2I_helper(tmp, src);
  7615     regF_to_stkI(dst, tmp);
  7616   %}
  7617 %}
  7620 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  7621   effect(DEF dst, USE src, KILL fcc0);
  7622   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  7623             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7624             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  7625             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  7626             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  7627       "skip:" %}
  7628   ins_encode(form_f2l_helper(src,dst));
  7629   ins_pipe(fcvtF2L);
  7630 %}
  7632 // Float to Long conversion
  7633 instruct convF2L_reg(stackSlotL dst, regF src) %{
  7634   match(Set dst (ConvF2L src));
  7635   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7636   expand %{
  7637     regD tmp;
  7638     convF2L_helper(tmp, src);
  7639     regD_to_stkL(dst, tmp);
  7640   %}
  7641 %}
  7644 instruct convI2D_helper(regD dst, regF tmp) %{
  7645   effect(USE tmp, DEF dst);
  7646   format %{ "FITOD  $tmp,$dst" %}
  7647   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  7648   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  7649   ins_pipe(fcvtI2D);
  7650 %}
  7652 instruct convI2D_reg(stackSlotI src, regD dst) %{
  7653   match(Set dst (ConvI2D src));
  7654   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7655   expand %{
  7656     regF tmp;
  7657     stkI_to_regF( tmp, src);
  7658     convI2D_helper( dst, tmp);
  7659   %}
  7660 %}
  7662 instruct convI2D_mem( regD_low dst, memory mem ) %{
  7663   match(Set dst (ConvI2D (LoadI mem)));
  7664   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7665   size(8);
  7666   format %{ "LDF    $mem,$dst\n\t"
  7667             "FITOD  $dst,$dst" %}
  7668   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  7669   ins_encode( form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  7670   ins_pipe(floadF_mem);
  7671 %}
  7674 instruct convI2F_helper(regF dst, regF tmp) %{
  7675   effect(DEF dst, USE tmp);
  7676   format %{ "FITOS  $tmp,$dst" %}
  7677   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  7678   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  7679   ins_pipe(fcvtI2F);
  7680 %}
  7682 instruct convI2F_reg( regF dst, stackSlotI src ) %{
  7683   match(Set dst (ConvI2F src));
  7684   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7685   expand %{
  7686     regF tmp;
  7687     stkI_to_regF(tmp,src);
  7688     convI2F_helper(dst, tmp);
  7689   %}
  7690 %}
  7692 instruct convI2F_mem( regF dst, memory mem ) %{
  7693   match(Set dst (ConvI2F (LoadI mem)));
  7694   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7695   size(8);
  7696   format %{ "LDF    $mem,$dst\n\t"
  7697             "FITOS  $dst,$dst" %}
  7698   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  7699   ins_encode( form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  7700   ins_pipe(floadF_mem);
  7701 %}
  7704 instruct convI2L_reg(iRegL dst, iRegI src) %{
  7705   match(Set dst (ConvI2L src));
  7706   size(4);
  7707   format %{ "SRA    $src,0,$dst\t! int->long" %}
  7708   opcode(Assembler::sra_op3, Assembler::arith_op);
  7709   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7710   ins_pipe(ialu_reg_reg);
  7711 %}
  7713 // Zero-extend convert int to long
  7714 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  7715   match(Set dst (AndL (ConvI2L src) mask) );
  7716   size(4);
  7717   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  7718   opcode(Assembler::srl_op3, Assembler::arith_op);
  7719   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7720   ins_pipe(ialu_reg_reg);
  7721 %}
  7723 // Zero-extend long
  7724 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  7725   match(Set dst (AndL src mask) );
  7726   size(4);
  7727   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  7728   opcode(Assembler::srl_op3, Assembler::arith_op);
  7729   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7730   ins_pipe(ialu_reg_reg);
  7731 %}
  7733 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  7734   match(Set dst (MoveF2I src));
  7735   effect(DEF dst, USE src);
  7736   ins_cost(MEMORY_REF_COST);
  7738   size(4);
  7739   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  7740   opcode(Assembler::lduw_op3);
  7741   ins_encode( form3_mem_reg( src, dst ) );
  7742   ins_pipe(iload_mem);
  7743 %}
  7745 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  7746   match(Set dst (MoveI2F src));
  7747   effect(DEF dst, USE src);
  7748   ins_cost(MEMORY_REF_COST);
  7750   size(4);
  7751   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  7752   opcode(Assembler::ldf_op3);
  7753   ins_encode(form3_mem_reg(src, dst));
  7754   ins_pipe(floadF_stk);
  7755 %}
  7757 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  7758   match(Set dst (MoveD2L src));
  7759   effect(DEF dst, USE src);
  7760   ins_cost(MEMORY_REF_COST);
  7762   size(4);
  7763   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  7764   opcode(Assembler::ldx_op3);
  7765   ins_encode( form3_mem_reg( src, dst ) );
  7766   ins_pipe(iload_mem);
  7767 %}
  7769 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  7770   match(Set dst (MoveL2D src));
  7771   effect(DEF dst, USE src);
  7772   ins_cost(MEMORY_REF_COST);
  7774   size(4);
  7775   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  7776   opcode(Assembler::lddf_op3);
  7777   ins_encode(form3_mem_reg(src, dst));
  7778   ins_pipe(floadD_stk);
  7779 %}
  7781 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  7782   match(Set dst (MoveF2I src));
  7783   effect(DEF dst, USE src);
  7784   ins_cost(MEMORY_REF_COST);
  7786   size(4);
  7787   format %{ "STF   $src,$dst\t!MoveF2I" %}
  7788   opcode(Assembler::stf_op3);
  7789   ins_encode(form3_mem_reg(dst, src));
  7790   ins_pipe(fstoreF_stk_reg);
  7791 %}
  7793 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  7794   match(Set dst (MoveI2F src));
  7795   effect(DEF dst, USE src);
  7796   ins_cost(MEMORY_REF_COST);
  7798   size(4);
  7799   format %{ "STW    $src,$dst\t!MoveI2F" %}
  7800   opcode(Assembler::stw_op3);
  7801   ins_encode( form3_mem_reg( dst, src ) );
  7802   ins_pipe(istore_mem_reg);
  7803 %}
  7805 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  7806   match(Set dst (MoveD2L src));
  7807   effect(DEF dst, USE src);
  7808   ins_cost(MEMORY_REF_COST);
  7810   size(4);
  7811   format %{ "STDF   $src,$dst\t!MoveD2L" %}
  7812   opcode(Assembler::stdf_op3);
  7813   ins_encode(form3_mem_reg(dst, src));
  7814   ins_pipe(fstoreD_stk_reg);
  7815 %}
  7817 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  7818   match(Set dst (MoveL2D src));
  7819   effect(DEF dst, USE src);
  7820   ins_cost(MEMORY_REF_COST);
  7822   size(4);
  7823   format %{ "STX    $src,$dst\t!MoveL2D" %}
  7824   opcode(Assembler::stx_op3);
  7825   ins_encode( form3_mem_reg( dst, src ) );
  7826   ins_pipe(istore_mem_reg);
  7827 %}
  7830 //-----------
  7831 // Long to Double conversion using V8 opcodes.
  7832 // Still useful because cheetah traps and becomes
  7833 // amazingly slow for some common numbers.
  7835 // Magic constant, 0x43300000
  7836 instruct loadConI_x43300000(iRegI dst) %{
  7837   effect(DEF dst);
  7838   size(4);
  7839   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  7840   ins_encode(SetHi22(0x43300000, dst));
  7841   ins_pipe(ialu_none);
  7842 %}
  7844 // Magic constant, 0x41f00000
  7845 instruct loadConI_x41f00000(iRegI dst) %{
  7846   effect(DEF dst);
  7847   size(4);
  7848   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  7849   ins_encode(SetHi22(0x41f00000, dst));
  7850   ins_pipe(ialu_none);
  7851 %}
  7853 // Construct a double from two float halves
  7854 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  7855   effect(DEF dst, USE src1, USE src2);
  7856   size(8);
  7857   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  7858             "FMOVS  $src2.lo,$dst.lo" %}
  7859   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  7860   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  7861   ins_pipe(faddD_reg_reg);
  7862 %}
  7864 // Convert integer in high half of a double register (in the lower half of
  7865 // the double register file) to double
  7866 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  7867   effect(DEF dst, USE src);
  7868   size(4);
  7869   format %{ "FITOD  $src,$dst" %}
  7870   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  7871   ins_encode(form3_opf_rs2D_rdD(src, dst));
  7872   ins_pipe(fcvtLHi2D);
  7873 %}
  7875 // Add float double precision
  7876 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  7877   effect(DEF dst, USE src1, USE src2);
  7878   size(4);
  7879   format %{ "FADDD  $src1,$src2,$dst" %}
  7880   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7881   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7882   ins_pipe(faddD_reg_reg);
  7883 %}
  7885 // Sub float double precision
  7886 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  7887   effect(DEF dst, USE src1, USE src2);
  7888   size(4);
  7889   format %{ "FSUBD  $src1,$src2,$dst" %}
  7890   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7891   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7892   ins_pipe(faddD_reg_reg);
  7893 %}
  7895 // Mul float double precision
  7896 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  7897   effect(DEF dst, USE src1, USE src2);
  7898   size(4);
  7899   format %{ "FMULD  $src1,$src2,$dst" %}
  7900   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7901   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7902   ins_pipe(fmulD_reg_reg);
  7903 %}
  7905 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  7906   match(Set dst (ConvL2D src));
  7907   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  7909   expand %{
  7910     regD_low   tmpsrc;
  7911     iRegI      ix43300000;
  7912     iRegI      ix41f00000;
  7913     stackSlotL lx43300000;
  7914     stackSlotL lx41f00000;
  7915     regD_low   dx43300000;
  7916     regD       dx41f00000;
  7917     regD       tmp1;
  7918     regD_low   tmp2;
  7919     regD       tmp3;
  7920     regD       tmp4;
  7922     stkL_to_regD(tmpsrc, src);
  7924     loadConI_x43300000(ix43300000);
  7925     loadConI_x41f00000(ix41f00000);
  7926     regI_to_stkLHi(lx43300000, ix43300000);
  7927     regI_to_stkLHi(lx41f00000, ix41f00000);
  7928     stkL_to_regD(dx43300000, lx43300000);
  7929     stkL_to_regD(dx41f00000, lx41f00000);
  7931     convI2D_regDHi_regD(tmp1, tmpsrc);
  7932     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  7933     subD_regD_regD(tmp3, tmp2, dx43300000);
  7934     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  7935     addD_regD_regD(dst, tmp3, tmp4);
  7936   %}
  7937 %}
  7939 // Long to Double conversion using fast fxtof
  7940 instruct convL2D_helper(regD dst, regD tmp) %{
  7941   effect(DEF dst, USE tmp);
  7942   size(4);
  7943   format %{ "FXTOD  $tmp,$dst" %}
  7944   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  7945   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  7946   ins_pipe(fcvtL2D);
  7947 %}
  7949 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  7950   predicate(VM_Version::has_fast_fxtof());
  7951   match(Set dst (ConvL2D src));
  7952   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  7953   expand %{
  7954     regD tmp;
  7955     stkL_to_regD(tmp, src);
  7956     convL2D_helper(dst, tmp);
  7957   %}
  7958 %}
  7960 //-----------
  7961 // Long to Float conversion using V8 opcodes.
  7962 // Still useful because cheetah traps and becomes
  7963 // amazingly slow for some common numbers.
  7965 // Long to Float conversion using fast fxtof
  7966 instruct convL2F_helper(regF dst, regD tmp) %{
  7967   effect(DEF dst, USE tmp);
  7968   size(4);
  7969   format %{ "FXTOS  $tmp,$dst" %}
  7970   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  7971   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  7972   ins_pipe(fcvtL2F);
  7973 %}
  7975 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  7976   match(Set dst (ConvL2F src));
  7977   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7978   expand %{
  7979     regD tmp;
  7980     stkL_to_regD(tmp, src);
  7981     convL2F_helper(dst, tmp);
  7982   %}
  7983 %}
  7984 //-----------
  7986 instruct convL2I_reg(iRegI dst, iRegL src) %{
  7987   match(Set dst (ConvL2I src));
  7988 #ifndef _LP64
  7989   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  7990   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  7991   ins_pipe(ialu_move_reg_I_to_L);
  7992 #else
  7993   size(4);
  7994   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  7995   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  7996   ins_pipe(ialu_reg);
  7997 #endif
  7998 %}
  8000 // Register Shift Right Immediate
  8001 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8002   match(Set dst (ConvL2I (RShiftL src cnt)));
  8004   size(4);
  8005   format %{ "SRAX   $src,$cnt,$dst" %}
  8006   opcode(Assembler::srax_op3, Assembler::arith_op);
  8007   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8008   ins_pipe(ialu_reg_imm);
  8009 %}
  8011 // Replicate scalar to packed byte values in Double register
  8012 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8013   effect(DEF dst, USE src);
  8014   format %{ "SLLX  $src,56,$dst\n\t"
  8015             "SRLX  $dst, 8,O7\n\t"
  8016             "OR    $dst,O7,$dst\n\t"
  8017             "SRLX  $dst,16,O7\n\t"
  8018             "OR    $dst,O7,$dst\n\t"
  8019             "SRLX  $dst,32,O7\n\t"
  8020             "OR    $dst,O7,$dst\t! replicate8B" %}
  8021   ins_encode( enc_repl8b(src, dst));
  8022   ins_pipe(ialu_reg);
  8023 %}
  8025 // Replicate scalar to packed byte values in Double register
  8026 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8027   match(Set dst (Replicate8B src));
  8028   expand %{
  8029     iRegL tmp;
  8030     Repl8B_reg_helper(tmp, src);
  8031     regL_to_stkD(dst, tmp);
  8032   %}
  8033 %}
  8035 // Replicate scalar constant to packed byte values in Double register
  8036 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
  8037   match(Set dst (Replicate8B src));
  8038 #ifdef _LP64
  8039   size(36);
  8040 #else
  8041   size(8);
  8042 #endif
  8043   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
  8044             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
  8045   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
  8046   ins_pipe(loadConFD);
  8047 %}
  8049 // Replicate scalar to packed char values into stack slot
  8050 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8051   effect(DEF dst, USE src);
  8052   format %{ "SLLX  $src,48,$dst\n\t"
  8053             "SRLX  $dst,16,O7\n\t"
  8054             "OR    $dst,O7,$dst\n\t"
  8055             "SRLX  $dst,32,O7\n\t"
  8056             "OR    $dst,O7,$dst\t! replicate4C" %}
  8057   ins_encode( enc_repl4s(src, dst) );
  8058   ins_pipe(ialu_reg);
  8059 %}
  8061 // Replicate scalar to packed char values into stack slot
  8062 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8063   match(Set dst (Replicate4C src));
  8064   expand %{
  8065     iRegL tmp;
  8066     Repl4C_reg_helper(tmp, src);
  8067     regL_to_stkD(dst, tmp);
  8068   %}
  8069 %}
  8071 // Replicate scalar constant to packed char values in Double register
  8072 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
  8073   match(Set dst (Replicate4C src));
  8074 #ifdef _LP64
  8075   size(36);
  8076 #else
  8077   size(8);
  8078 #endif
  8079   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
  8080             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8081   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8082   ins_pipe(loadConFD);
  8083 %}
  8085 // Replicate scalar to packed short values into stack slot
  8086 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8087   effect(DEF dst, USE src);
  8088   format %{ "SLLX  $src,48,$dst\n\t"
  8089             "SRLX  $dst,16,O7\n\t"
  8090             "OR    $dst,O7,$dst\n\t"
  8091             "SRLX  $dst,32,O7\n\t"
  8092             "OR    $dst,O7,$dst\t! replicate4S" %}
  8093   ins_encode( enc_repl4s(src, dst) );
  8094   ins_pipe(ialu_reg);
  8095 %}
  8097 // Replicate scalar to packed short values into stack slot
  8098 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8099   match(Set dst (Replicate4S src));
  8100   expand %{
  8101     iRegL tmp;
  8102     Repl4S_reg_helper(tmp, src);
  8103     regL_to_stkD(dst, tmp);
  8104   %}
  8105 %}
  8107 // Replicate scalar constant to packed short values in Double register
  8108 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
  8109   match(Set dst (Replicate4S src));
  8110 #ifdef _LP64
  8111   size(36);
  8112 #else
  8113   size(8);
  8114 #endif
  8115   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
  8116             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8117   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8118   ins_pipe(loadConFD);
  8119 %}
  8121 // Replicate scalar to packed int values in Double register
  8122 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8123   effect(DEF dst, USE src);
  8124   format %{ "SLLX  $src,32,$dst\n\t"
  8125             "SRLX  $dst,32,O7\n\t"
  8126             "OR    $dst,O7,$dst\t! replicate2I" %}
  8127   ins_encode( enc_repl2i(src, dst));
  8128   ins_pipe(ialu_reg);
  8129 %}
  8131 // Replicate scalar to packed int values in Double register
  8132 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8133   match(Set dst (Replicate2I src));
  8134   expand %{
  8135     iRegL tmp;
  8136     Repl2I_reg_helper(tmp, src);
  8137     regL_to_stkD(dst, tmp);
  8138   %}
  8139 %}
  8141 // Replicate scalar zero constant to packed int values in Double register
  8142 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
  8143   match(Set dst (Replicate2I src));
  8144 #ifdef _LP64
  8145   size(36);
  8146 #else
  8147   size(8);
  8148 #endif
  8149   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
  8150             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
  8151   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
  8152   ins_pipe(loadConFD);
  8153 %}
  8155 //----------Control Flow Instructions------------------------------------------
  8156 // Compare Instructions
  8157 // Compare Integers
  8158 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8159   match(Set icc (CmpI op1 op2));
  8160   effect( DEF icc, USE op1, USE op2 );
  8162   size(4);
  8163   format %{ "CMP    $op1,$op2" %}
  8164   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8165   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8166   ins_pipe(ialu_cconly_reg_reg);
  8167 %}
  8169 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8170   match(Set icc (CmpU op1 op2));
  8172   size(4);
  8173   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8174   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8175   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8176   ins_pipe(ialu_cconly_reg_reg);
  8177 %}
  8179 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8180   match(Set icc (CmpI op1 op2));
  8181   effect( DEF icc, USE op1 );
  8183   size(4);
  8184   format %{ "CMP    $op1,$op2" %}
  8185   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8186   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8187   ins_pipe(ialu_cconly_reg_imm);
  8188 %}
  8190 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8191   match(Set icc (CmpI (AndI op1 op2) zero));
  8193   size(4);
  8194   format %{ "BTST   $op2,$op1" %}
  8195   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8196   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8197   ins_pipe(ialu_cconly_reg_reg_zero);
  8198 %}
  8200 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8201   match(Set icc (CmpI (AndI op1 op2) zero));
  8203   size(4);
  8204   format %{ "BTST   $op2,$op1" %}
  8205   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8206   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8207   ins_pipe(ialu_cconly_reg_imm_zero);
  8208 %}
  8210 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8211   match(Set xcc (CmpL op1 op2));
  8212   effect( DEF xcc, USE op1, USE op2 );
  8214   size(4);
  8215   format %{ "CMP    $op1,$op2\t\t! long" %}
  8216   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8217   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8218   ins_pipe(ialu_cconly_reg_reg);
  8219 %}
  8221 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8222   match(Set xcc (CmpL op1 con));
  8223   effect( DEF xcc, USE op1, USE con );
  8225   size(4);
  8226   format %{ "CMP    $op1,$con\t\t! long" %}
  8227   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8228   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8229   ins_pipe(ialu_cconly_reg_reg);
  8230 %}
  8232 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8233   match(Set xcc (CmpL (AndL op1 op2) zero));
  8234   effect( DEF xcc, USE op1, USE op2 );
  8236   size(4);
  8237   format %{ "BTST   $op1,$op2\t\t! long" %}
  8238   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8239   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8240   ins_pipe(ialu_cconly_reg_reg);
  8241 %}
  8243 // useful for checking the alignment of a pointer:
  8244 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8245   match(Set xcc (CmpL (AndL op1 con) zero));
  8246   effect( DEF xcc, USE op1, USE con );
  8248   size(4);
  8249   format %{ "BTST   $op1,$con\t\t! long" %}
  8250   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8251   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8252   ins_pipe(ialu_cconly_reg_reg);
  8253 %}
  8255 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8256   match(Set icc (CmpU op1 op2));
  8258   size(4);
  8259   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8260   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8261   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8262   ins_pipe(ialu_cconly_reg_imm);
  8263 %}
  8265 // Compare Pointers
  8266 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8267   match(Set pcc (CmpP op1 op2));
  8269   size(4);
  8270   format %{ "CMP    $op1,$op2\t! ptr" %}
  8271   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8272   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8273   ins_pipe(ialu_cconly_reg_reg);
  8274 %}
  8276 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8277   match(Set pcc (CmpP op1 op2));
  8279   size(4);
  8280   format %{ "CMP    $op1,$op2\t! ptr" %}
  8281   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8282   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8283   ins_pipe(ialu_cconly_reg_imm);
  8284 %}
  8286 // Compare Narrow oops
  8287 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8288   match(Set icc (CmpN op1 op2));
  8290   size(4);
  8291   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8292   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8293   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8294   ins_pipe(ialu_cconly_reg_reg);
  8295 %}
  8297 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8298   match(Set icc (CmpN op1 op2));
  8300   size(4);
  8301   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8302   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8303   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8304   ins_pipe(ialu_cconly_reg_imm);
  8305 %}
  8307 //----------Max and Min--------------------------------------------------------
  8308 // Min Instructions
  8309 // Conditional move for min
  8310 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8311   effect( USE_DEF op2, USE op1, USE icc );
  8313   size(4);
  8314   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8315   opcode(Assembler::less);
  8316   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8317   ins_pipe(ialu_reg_flags);
  8318 %}
  8320 // Min Register with Register.
  8321 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8322   match(Set op2 (MinI op1 op2));
  8323   ins_cost(DEFAULT_COST*2);
  8324   expand %{
  8325     flagsReg icc;
  8326     compI_iReg(icc,op1,op2);
  8327     cmovI_reg_lt(op2,op1,icc);
  8328   %}
  8329 %}
  8331 // Max Instructions
  8332 // Conditional move for max
  8333 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8334   effect( USE_DEF op2, USE op1, USE icc );
  8335   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8336   opcode(Assembler::greater);
  8337   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8338   ins_pipe(ialu_reg_flags);
  8339 %}
  8341 // Max Register with Register
  8342 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8343   match(Set op2 (MaxI op1 op2));
  8344   ins_cost(DEFAULT_COST*2);
  8345   expand %{
  8346     flagsReg icc;
  8347     compI_iReg(icc,op1,op2);
  8348     cmovI_reg_gt(op2,op1,icc);
  8349   %}
  8350 %}
  8353 //----------Float Compares----------------------------------------------------
  8354 // Compare floating, generate condition code
  8355 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8356   match(Set fcc (CmpF src1 src2));
  8358   size(4);
  8359   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8360   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8361   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8362   ins_pipe(faddF_fcc_reg_reg_zero);
  8363 %}
  8365 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  8366   match(Set fcc (CmpD src1 src2));
  8368   size(4);
  8369   format %{ "FCMPd  $fcc,$src1,$src2" %}
  8370   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  8371   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  8372   ins_pipe(faddD_fcc_reg_reg_zero);
  8373 %}
  8376 // Compare floating, generate -1,0,1
  8377 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  8378   match(Set dst (CmpF3 src1 src2));
  8379   effect(KILL fcc0);
  8380   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8381   format %{ "fcmpl  $dst,$src1,$src2" %}
  8382   // Primary = float
  8383   opcode( true );
  8384   ins_encode( floating_cmp( dst, src1, src2 ) );
  8385   ins_pipe( floating_cmp );
  8386 %}
  8388 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  8389   match(Set dst (CmpD3 src1 src2));
  8390   effect(KILL fcc0);
  8391   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8392   format %{ "dcmpl  $dst,$src1,$src2" %}
  8393   // Primary = double (not float)
  8394   opcode( false );
  8395   ins_encode( floating_cmp( dst, src1, src2 ) );
  8396   ins_pipe( floating_cmp );
  8397 %}
  8399 //----------Branches---------------------------------------------------------
  8400 // Jump
  8401 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  8402 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  8403   match(Jump switch_val);
  8405   ins_cost(350);
  8407   format %{  "SETHI  [hi(table_base)],O7\n\t"
  8408              "ADD    O7, lo(table_base), O7\n\t"
  8409              "LD     [O7+$switch_val], O7\n\t"
  8410              "JUMP   O7"
  8411          %}
  8412   ins_encode( jump_enc( switch_val, table) );
  8413   ins_pc_relative(1);
  8414   ins_pipe(ialu_reg_reg);
  8415 %}
  8417 // Direct Branch.  Use V8 version with longer range.
  8418 instruct branch(label labl) %{
  8419   match(Goto);
  8420   effect(USE labl);
  8422   size(8);
  8423   ins_cost(BRANCH_COST);
  8424   format %{ "BA     $labl" %}
  8425   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  8426   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  8427   ins_encode( enc_ba( labl ) );
  8428   ins_pc_relative(1);
  8429   ins_pipe(br);
  8430 %}
  8432 // Conditional Direct Branch
  8433 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  8434   match(If cmp icc);
  8435   effect(USE labl);
  8437   size(8);
  8438   ins_cost(BRANCH_COST);
  8439   format %{ "BP$cmp   $icc,$labl" %}
  8440   // Prim = bits 24-22, Secnd = bits 31-30
  8441   ins_encode( enc_bp( labl, cmp, icc ) );
  8442   ins_pc_relative(1);
  8443   ins_pipe(br_cc);
  8444 %}
  8446 // Branch-on-register tests all 64 bits.  We assume that values
  8447 // in 64-bit registers always remains zero or sign extended
  8448 // unless our code munges the high bits.  Interrupts can chop
  8449 // the high order bits to zero or sign at any time.
  8450 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  8451   match(If cmp (CmpI op1 zero));
  8452   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8453   effect(USE labl);
  8455   size(8);
  8456   ins_cost(BRANCH_COST);
  8457   format %{ "BR$cmp   $op1,$labl" %}
  8458   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8459   ins_pc_relative(1);
  8460   ins_pipe(br_reg);
  8461 %}
  8463 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  8464   match(If cmp (CmpP op1 null));
  8465   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8466   effect(USE labl);
  8468   size(8);
  8469   ins_cost(BRANCH_COST);
  8470   format %{ "BR$cmp   $op1,$labl" %}
  8471   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8472   ins_pc_relative(1);
  8473   ins_pipe(br_reg);
  8474 %}
  8476 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  8477   match(If cmp (CmpL op1 zero));
  8478   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8479   effect(USE labl);
  8481   size(8);
  8482   ins_cost(BRANCH_COST);
  8483   format %{ "BR$cmp   $op1,$labl" %}
  8484   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8485   ins_pc_relative(1);
  8486   ins_pipe(br_reg);
  8487 %}
  8489 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  8490   match(If cmp icc);
  8491   effect(USE labl);
  8493   format %{ "BP$cmp  $icc,$labl" %}
  8494   // Prim = bits 24-22, Secnd = bits 31-30
  8495   ins_encode( enc_bp( labl, cmp, icc ) );
  8496   ins_pc_relative(1);
  8497   ins_pipe(br_cc);
  8498 %}
  8500 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  8501   match(If cmp pcc);
  8502   effect(USE labl);
  8504   size(8);
  8505   ins_cost(BRANCH_COST);
  8506   format %{ "BP$cmp  $pcc,$labl" %}
  8507   // Prim = bits 24-22, Secnd = bits 31-30
  8508   ins_encode( enc_bpx( labl, cmp, pcc ) );
  8509   ins_pc_relative(1);
  8510   ins_pipe(br_cc);
  8511 %}
  8513 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  8514   match(If cmp fcc);
  8515   effect(USE labl);
  8517   size(8);
  8518   ins_cost(BRANCH_COST);
  8519   format %{ "FBP$cmp $fcc,$labl" %}
  8520   // Prim = bits 24-22, Secnd = bits 31-30
  8521   ins_encode( enc_fbp( labl, cmp, fcc ) );
  8522   ins_pc_relative(1);
  8523   ins_pipe(br_fcc);
  8524 %}
  8526 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  8527   match(CountedLoopEnd cmp icc);
  8528   effect(USE labl);
  8530   size(8);
  8531   ins_cost(BRANCH_COST);
  8532   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  8533   // Prim = bits 24-22, Secnd = bits 31-30
  8534   ins_encode( enc_bp( labl, cmp, icc ) );
  8535   ins_pc_relative(1);
  8536   ins_pipe(br_cc);
  8537 %}
  8539 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  8540   match(CountedLoopEnd cmp icc);
  8541   effect(USE labl);
  8543   size(8);
  8544   ins_cost(BRANCH_COST);
  8545   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  8546   // Prim = bits 24-22, Secnd = bits 31-30
  8547   ins_encode( enc_bp( labl, cmp, icc ) );
  8548   ins_pc_relative(1);
  8549   ins_pipe(br_cc);
  8550 %}
  8552 // ============================================================================
  8553 // Long Compare
  8554 //
  8555 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  8556 // is tricky.  The flavor of compare used depends on whether we are testing
  8557 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  8558 // The GE test is the negated LT test.  The LE test can be had by commuting
  8559 // the operands (yielding a GE test) and then negating; negate again for the
  8560 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  8561 // NE test is negated from that.
  8563 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  8564 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  8565 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  8566 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  8567 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  8568 // foo match ends up with the wrong leaf.  One fix is to not match both
  8569 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  8570 // both forms beat the trinary form of long-compare and both are very useful
  8571 // on Intel which has so few registers.
  8573 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  8574   match(If cmp xcc);
  8575   effect(USE labl);
  8577   size(8);
  8578   ins_cost(BRANCH_COST);
  8579   format %{ "BP$cmp   $xcc,$labl" %}
  8580   // Prim = bits 24-22, Secnd = bits 31-30
  8581   ins_encode( enc_bpl( labl, cmp, xcc ) );
  8582   ins_pc_relative(1);
  8583   ins_pipe(br_cc);
  8584 %}
  8586 // Manifest a CmpL3 result in an integer register.  Very painful.
  8587 // This is the test to avoid.
  8588 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  8589   match(Set dst (CmpL3 src1 src2) );
  8590   effect( KILL ccr );
  8591   ins_cost(6*DEFAULT_COST);
  8592   size(24);
  8593   format %{ "CMP    $src1,$src2\t\t! long\n"
  8594           "\tBLT,a,pn done\n"
  8595           "\tMOV    -1,$dst\t! delay slot\n"
  8596           "\tBGT,a,pn done\n"
  8597           "\tMOV    1,$dst\t! delay slot\n"
  8598           "\tCLR    $dst\n"
  8599     "done:"     %}
  8600   ins_encode( cmpl_flag(src1,src2,dst) );
  8601   ins_pipe(cmpL_reg);
  8602 %}
  8604 // Conditional move
  8605 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  8606   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  8607   ins_cost(150);
  8608   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  8609   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8610   ins_pipe(ialu_reg);
  8611 %}
  8613 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  8614   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  8615   ins_cost(140);
  8616   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  8617   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8618   ins_pipe(ialu_imm);
  8619 %}
  8621 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  8622   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  8623   ins_cost(150);
  8624   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8625   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8626   ins_pipe(ialu_reg);
  8627 %}
  8629 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  8630   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  8631   ins_cost(140);
  8632   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8633   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8634   ins_pipe(ialu_imm);
  8635 %}
  8637 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  8638   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  8639   ins_cost(150);
  8640   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8641   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8642   ins_pipe(ialu_reg);
  8643 %}
  8645 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  8646   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  8647   ins_cost(150);
  8648   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8649   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8650   ins_pipe(ialu_reg);
  8651 %}
  8653 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  8654   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  8655   ins_cost(140);
  8656   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8657   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8658   ins_pipe(ialu_imm);
  8659 %}
  8661 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  8662   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  8663   ins_cost(150);
  8664   opcode(0x101);
  8665   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  8666   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  8667   ins_pipe(int_conditional_float_move);
  8668 %}
  8670 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  8671   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  8672   ins_cost(150);
  8673   opcode(0x102);
  8674   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  8675   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  8676   ins_pipe(int_conditional_float_move);
  8677 %}
  8679 // ============================================================================
  8680 // Safepoint Instruction
  8681 instruct safePoint_poll(iRegP poll) %{
  8682   match(SafePoint poll);
  8683   effect(USE poll);
  8685   size(4);
  8686 #ifdef _LP64
  8687   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  8688 #else
  8689   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  8690 #endif
  8691   ins_encode %{
  8692     __ relocate(relocInfo::poll_type);
  8693     __ ld_ptr($poll$$Register, 0, G0);
  8694   %}
  8695   ins_pipe(loadPollP);
  8696 %}
  8698 // ============================================================================
  8699 // Call Instructions
  8700 // Call Java Static Instruction
  8701 instruct CallStaticJavaDirect( method meth ) %{
  8702   match(CallStaticJava);
  8703   effect(USE meth);
  8705   size(8);
  8706   ins_cost(CALL_COST);
  8707   format %{ "CALL,static  ; NOP ==> " %}
  8708   ins_encode( Java_Static_Call( meth ), call_epilog );
  8709   ins_pc_relative(1);
  8710   ins_pipe(simple_call);
  8711 %}
  8713 // Call Java Dynamic Instruction
  8714 instruct CallDynamicJavaDirect( method meth ) %{
  8715   match(CallDynamicJava);
  8716   effect(USE meth);
  8718   ins_cost(CALL_COST);
  8719   format %{ "SET    (empty),R_G5\n\t"
  8720             "CALL,dynamic  ; NOP ==> " %}
  8721   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  8722   ins_pc_relative(1);
  8723   ins_pipe(call);
  8724 %}
  8726 // Call Runtime Instruction
  8727 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  8728   match(CallRuntime);
  8729   effect(USE meth, KILL l7);
  8730   ins_cost(CALL_COST);
  8731   format %{ "CALL,runtime" %}
  8732   ins_encode( Java_To_Runtime( meth ),
  8733               call_epilog, adjust_long_from_native_call );
  8734   ins_pc_relative(1);
  8735   ins_pipe(simple_call);
  8736 %}
  8738 // Call runtime without safepoint - same as CallRuntime
  8739 instruct CallLeafDirect(method meth, l7RegP l7) %{
  8740   match(CallLeaf);
  8741   effect(USE meth, KILL l7);
  8742   ins_cost(CALL_COST);
  8743   format %{ "CALL,runtime leaf" %}
  8744   ins_encode( Java_To_Runtime( meth ),
  8745               call_epilog,
  8746               adjust_long_from_native_call );
  8747   ins_pc_relative(1);
  8748   ins_pipe(simple_call);
  8749 %}
  8751 // Call runtime without safepoint - same as CallLeaf
  8752 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  8753   match(CallLeafNoFP);
  8754   effect(USE meth, KILL l7);
  8755   ins_cost(CALL_COST);
  8756   format %{ "CALL,runtime leaf nofp" %}
  8757   ins_encode( Java_To_Runtime( meth ),
  8758               call_epilog,
  8759               adjust_long_from_native_call );
  8760   ins_pc_relative(1);
  8761   ins_pipe(simple_call);
  8762 %}
  8764 // Tail Call; Jump from runtime stub to Java code.
  8765 // Also known as an 'interprocedural jump'.
  8766 // Target of jump will eventually return to caller.
  8767 // TailJump below removes the return address.
  8768 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  8769   match(TailCall jump_target method_oop );
  8771   ins_cost(CALL_COST);
  8772   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  8773   ins_encode(form_jmpl(jump_target));
  8774   ins_pipe(tail_call);
  8775 %}
  8778 // Return Instruction
  8779 instruct Ret() %{
  8780   match(Return);
  8782   // The epilogue node did the ret already.
  8783   size(0);
  8784   format %{ "! return" %}
  8785   ins_encode();
  8786   ins_pipe(empty);
  8787 %}
  8790 // Tail Jump; remove the return address; jump to target.
  8791 // TailCall above leaves the return address around.
  8792 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  8793 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  8794 // "restore" before this instruction (in Epilogue), we need to materialize it
  8795 // in %i0.
  8796 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  8797   match( TailJump jump_target ex_oop );
  8798   ins_cost(CALL_COST);
  8799   format %{ "! discard R_O7\n\t"
  8800             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  8801   ins_encode(form_jmpl_set_exception_pc(jump_target));
  8802   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  8803   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  8804   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  8805   ins_pipe(tail_call);
  8806 %}
  8808 // Create exception oop: created by stack-crawling runtime code.
  8809 // Created exception is now available to this handler, and is setup
  8810 // just prior to jumping to this handler.  No code emitted.
  8811 instruct CreateException( o0RegP ex_oop )
  8812 %{
  8813   match(Set ex_oop (CreateEx));
  8814   ins_cost(0);
  8816   size(0);
  8817   // use the following format syntax
  8818   format %{ "! exception oop is in R_O0; no code emitted" %}
  8819   ins_encode();
  8820   ins_pipe(empty);
  8821 %}
  8824 // Rethrow exception:
  8825 // The exception oop will come in the first argument position.
  8826 // Then JUMP (not call) to the rethrow stub code.
  8827 instruct RethrowException()
  8828 %{
  8829   match(Rethrow);
  8830   ins_cost(CALL_COST);
  8832   // use the following format syntax
  8833   format %{ "Jmp    rethrow_stub" %}
  8834   ins_encode(enc_rethrow);
  8835   ins_pipe(tail_call);
  8836 %}
  8839 // Die now
  8840 instruct ShouldNotReachHere( )
  8841 %{
  8842   match(Halt);
  8843   ins_cost(CALL_COST);
  8845   size(4);
  8846   // Use the following format syntax
  8847   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  8848   ins_encode( form2_illtrap() );
  8849   ins_pipe(tail_call);
  8850 %}
  8852 // ============================================================================
  8853 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  8854 // array for an instance of the superklass.  Set a hidden internal cache on a
  8855 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  8856 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  8857 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  8858   match(Set index (PartialSubtypeCheck sub super));
  8859   effect( KILL pcc, KILL o7 );
  8860   ins_cost(DEFAULT_COST*10);
  8861   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  8862   ins_encode( enc_PartialSubtypeCheck() );
  8863   ins_pipe(partial_subtype_check_pipe);
  8864 %}
  8866 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  8867   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  8868   effect( KILL idx, KILL o7 );
  8869   ins_cost(DEFAULT_COST*10);
  8870   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  8871   ins_encode( enc_PartialSubtypeCheck() );
  8872   ins_pipe(partial_subtype_check_pipe);
  8873 %}
  8876 // ============================================================================
  8877 // inlined locking and unlocking
  8879 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  8880   match(Set pcc (FastLock object box));
  8882   effect(KILL scratch, TEMP scratch2);
  8883   ins_cost(100);
  8885   size(4*112);       // conservative overestimation ...
  8886   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  8887   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  8888   ins_pipe(long_memory_op);
  8889 %}
  8892 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  8893   match(Set pcc (FastUnlock object box));
  8894   effect(KILL scratch, TEMP scratch2);
  8895   ins_cost(100);
  8897   size(4*120);       // conservative overestimation ...
  8898   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  8899   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  8900   ins_pipe(long_memory_op);
  8901 %}
  8903 // Count and Base registers are fixed because the allocator cannot
  8904 // kill unknown registers.  The encodings are generic.
  8905 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  8906   match(Set dummy (ClearArray cnt base));
  8907   effect(TEMP temp, KILL ccr);
  8908   ins_cost(300);
  8909   format %{ "MOV    $cnt,$temp\n"
  8910     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  8911     "        BRge   loop\t\t! Clearing loop\n"
  8912     "        STX    G0,[$base+$temp]\t! delay slot" %}
  8913   ins_encode( enc_Clear_Array(cnt, base, temp) );
  8914   ins_pipe(long_memory_op);
  8915 %}
  8917 instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
  8918                         o7RegI tmp3, flagsReg ccr) %{
  8919   match(Set result (StrComp str1 str2));
  8920   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
  8921   ins_cost(300);
  8922   format %{ "String Compare $str1,$str2 -> $result" %}
  8923   ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) );
  8924   ins_pipe(long_memory_op);
  8925 %}
  8927 // ============================================================================
  8928 //------------Bytes reverse--------------------------------------------------
  8930 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  8931   match(Set dst (ReverseBytesI src));
  8932   effect(DEF dst, USE src);
  8934   // Op cost is artificially doubled to make sure that load or store
  8935   // instructions are preferred over this one which requires a spill
  8936   // onto a stack slot.
  8937   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  8938   size(8);
  8939   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  8940   opcode(Assembler::lduwa_op3);
  8941   ins_encode( form3_mem_reg_little(src, dst) );
  8942   ins_pipe( iload_mem );
  8943 %}
  8945 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  8946   match(Set dst (ReverseBytesL src));
  8947   effect(DEF dst, USE src);
  8949   // Op cost is artificially doubled to make sure that load or store
  8950   // instructions are preferred over this one which requires a spill
  8951   // onto a stack slot.
  8952   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  8953   size(8);
  8954   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  8956   opcode(Assembler::ldxa_op3);
  8957   ins_encode( form3_mem_reg_little(src, dst) );
  8958   ins_pipe( iload_mem );
  8959 %}
  8961 // Load Integer reversed byte order
  8962 instruct loadI_reversed(iRegI dst, memory src) %{
  8963   match(Set dst (ReverseBytesI (LoadI src)));
  8965   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8966   size(8);
  8967   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  8969   opcode(Assembler::lduwa_op3);
  8970   ins_encode( form3_mem_reg_little( src, dst) );
  8971   ins_pipe(iload_mem);
  8972 %}
  8974 // Load Long - aligned and reversed
  8975 instruct loadL_reversed(iRegL dst, memory src) %{
  8976   match(Set dst (ReverseBytesL (LoadL src)));
  8978   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8979   size(8);
  8980   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  8982   opcode(Assembler::ldxa_op3);
  8983   ins_encode( form3_mem_reg_little( src, dst ) );
  8984   ins_pipe(iload_mem);
  8985 %}
  8987 // Store Integer reversed byte order
  8988 instruct storeI_reversed(memory dst, iRegI src) %{
  8989   match(Set dst (StoreI dst (ReverseBytesI src)));
  8991   ins_cost(MEMORY_REF_COST);
  8992   size(8);
  8993   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  8995   opcode(Assembler::stwa_op3);
  8996   ins_encode( form3_mem_reg_little( dst, src) );
  8997   ins_pipe(istore_mem_reg);
  8998 %}
  9000 // Store Long reversed byte order
  9001 instruct storeL_reversed(memory dst, iRegL src) %{
  9002   match(Set dst (StoreL dst (ReverseBytesL src)));
  9004   ins_cost(MEMORY_REF_COST);
  9005   size(8);
  9006   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  9008   opcode(Assembler::stxa_op3);
  9009   ins_encode( form3_mem_reg_little( dst, src) );
  9010   ins_pipe(istore_mem_reg);
  9011 %}
  9013 //----------PEEPHOLE RULES-----------------------------------------------------
  9014 // These must follow all instruction definitions as they use the names
  9015 // defined in the instructions definitions.
  9016 //
  9017 // peepmatch ( root_instr_name [preceeding_instruction]* );
  9018 //
  9019 // peepconstraint %{
  9020 // (instruction_number.operand_name relational_op instruction_number.operand_name
  9021 //  [, ...] );
  9022 // // instruction numbers are zero-based using left to right order in peepmatch
  9023 //
  9024 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  9025 // // provide an instruction_number.operand_name for each operand that appears
  9026 // // in the replacement instruction's match rule
  9027 //
  9028 // ---------VM FLAGS---------------------------------------------------------
  9029 //
  9030 // All peephole optimizations can be turned off using -XX:-OptoPeephole
  9031 //
  9032 // Each peephole rule is given an identifying number starting with zero and
  9033 // increasing by one in the order seen by the parser.  An individual peephole
  9034 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  9035 // on the command-line.
  9036 //
  9037 // ---------CURRENT LIMITATIONS----------------------------------------------
  9038 //
  9039 // Only match adjacent instructions in same basic block
  9040 // Only equality constraints
  9041 // Only constraints between operands, not (0.dest_reg == EAX_enc)
  9042 // Only one replacement instruction
  9043 //
  9044 // ---------EXAMPLE----------------------------------------------------------
  9045 //
  9046 // // pertinent parts of existing instructions in architecture description
  9047 // instruct movI(eRegI dst, eRegI src) %{
  9048 //   match(Set dst (CopyI src));
  9049 // %}
  9050 //
  9051 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  9052 //   match(Set dst (AddI dst src));
  9053 //   effect(KILL cr);
  9054 // %}
  9055 //
  9056 // // Change (inc mov) to lea
  9057 // peephole %{
  9058 //   // increment preceeded by register-register move
  9059 //   peepmatch ( incI_eReg movI );
  9060 //   // require that the destination register of the increment
  9061 //   // match the destination register of the move
  9062 //   peepconstraint ( 0.dst == 1.dst );
  9063 //   // construct a replacement instruction that sets
  9064 //   // the destination to ( move's source register + one )
  9065 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
  9066 // %}
  9067 //
  9069 // // Change load of spilled value to only a spill
  9070 // instruct storeI(memory mem, eRegI src) %{
  9071 //   match(Set mem (StoreI mem src));
  9072 // %}
  9073 //
  9074 // instruct loadI(eRegI dst, memory mem) %{
  9075 //   match(Set dst (LoadI mem));
  9076 // %}
  9077 //
  9078 // peephole %{
  9079 //   peepmatch ( loadI storeI );
  9080 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  9081 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
  9082 // %}
  9084 //----------SMARTSPILL RULES---------------------------------------------------
  9085 // These must follow all instruction definitions as they use the names
  9086 // defined in the instructions definitions.
  9087 //
  9088 // SPARC will probably not have any of these rules due to RISC instruction set.
  9090 //----------PIPELINE-----------------------------------------------------------
  9091 // Rules which define the behavior of the target architectures pipeline.

mercurial