src/cpu/x86/vm/x86_32.ad

Tue, 20 Dec 2011 16:56:50 +0100

author
roland
date
Tue, 20 Dec 2011 16:56:50 +0100
changeset 3392
1dc233a8c7fe
parent 3390
65149e74c706
child 3406
e9a5e0a812c8
permissions
-rw-r--r--

7121140: Allocation paths require explicit memory synchronization operations for RMO systems
Summary: adds store store barrier after initialization of header and body of objects.
Reviewed-by: never, kvn

     1 //
     2 // Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source_hpp %{
   239 // Must be visible to the DFA in dfa_x86_32.cpp
   240 extern bool is_operand_hi32_zero(Node* n);
   241 %}
   243 source %{
   244 #define   RELOC_IMM32    Assembler::imm_operand
   245 #define   RELOC_DISP32   Assembler::disp32_operand
   247 #define __ _masm.
   249 // How to find the high register of a Long pair, given the low register
   250 #define   HIGH_FROM_LOW(x) ((x)+2)
   252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   254 // fast versions of NegF/NegD and AbsF/AbsD.
   256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   259   // of 128-bits operands for SSE instructions.
   260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   261   // Store the value to a 128-bits operand.
   262   operand[0] = lo;
   263   operand[1] = hi;
   264   return operand;
   265 }
   267 // Buffer for 128-bits masks used by SSE instructions.
   268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   270 // Static initialization during VM startup.
   271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   276 // Offset hacking within calls.
   277 static int pre_call_FPU_size() {
   278   if (Compile::current()->in_24_bit_fp_mode())
   279     return 6; // fldcw
   280   return 0;
   281 }
   283 static int preserve_SP_size() {
   284   return 2;  // op, rm(reg/reg)
   285 }
   287 // !!!!! Special hack to get all type of calls to specify the byte offset
   288 //       from the start of the call to the point where the return address
   289 //       will point.
   290 int MachCallStaticJavaNode::ret_addr_offset() {
   291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   292   if (_method_handle_invoke)
   293     offset += preserve_SP_size();
   294   return offset;
   295 }
   297 int MachCallDynamicJavaNode::ret_addr_offset() {
   298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   299 }
   301 static int sizeof_FFree_Float_Stack_All = -1;
   303 int MachCallRuntimeNode::ret_addr_offset() {
   304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   306 }
   308 // Indicate if the safepoint node needs the polling page as an input.
   309 // Since x86 does have absolute addressing, it doesn't.
   310 bool SafePointNode::needs_polling_address_input() {
   311   return false;
   312 }
   314 //
   315 // Compute padding required for nodes which need alignment
   316 //
   318 // The address of the call instruction needs to be 4-byte aligned to
   319 // ensure that it does not span a cache line so that it can be patched.
   320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   322   current_offset += 1;      // skip call opcode byte
   323   return round_to(current_offset, alignment_required()) - current_offset;
   324 }
   326 // The address of the call instruction needs to be 4-byte aligned to
   327 // ensure that it does not span a cache line so that it can be patched.
   328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   331   current_offset += 1;      // skip call opcode byte
   332   return round_to(current_offset, alignment_required()) - current_offset;
   333 }
   335 // The address of the call instruction needs to be 4-byte aligned to
   336 // ensure that it does not span a cache line so that it can be patched.
   337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   339   current_offset += 5;      // skip MOV instruction
   340   current_offset += 1;      // skip call opcode byte
   341   return round_to(current_offset, alignment_required()) - current_offset;
   342 }
   344 #ifndef PRODUCT
   345 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
   346   st->print("INT3");
   347 }
   348 #endif
   350 // EMIT_RM()
   351 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   352   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   353   cbuf.insts()->emit_int8(c);
   354 }
   356 // EMIT_CC()
   357 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   358   unsigned char c = (unsigned char)( f1 | f2 );
   359   cbuf.insts()->emit_int8(c);
   360 }
   362 // EMIT_OPCODE()
   363 void emit_opcode(CodeBuffer &cbuf, int code) {
   364   cbuf.insts()->emit_int8((unsigned char) code);
   365 }
   367 // EMIT_OPCODE() w/ relocation information
   368 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   369   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   370   emit_opcode(cbuf, code);
   371 }
   373 // EMIT_D8()
   374 void emit_d8(CodeBuffer &cbuf, int d8) {
   375   cbuf.insts()->emit_int8((unsigned char) d8);
   376 }
   378 // EMIT_D16()
   379 void emit_d16(CodeBuffer &cbuf, int d16) {
   380   cbuf.insts()->emit_int16(d16);
   381 }
   383 // EMIT_D32()
   384 void emit_d32(CodeBuffer &cbuf, int d32) {
   385   cbuf.insts()->emit_int32(d32);
   386 }
   388 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   389 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   390         int format) {
   391   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   392   cbuf.insts()->emit_int32(d32);
   393 }
   395 // emit 32 bit value and construct relocation entry from RelocationHolder
   396 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   397         int format) {
   398 #ifdef ASSERT
   399   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   400     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   401   }
   402 #endif
   403   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   404   cbuf.insts()->emit_int32(d32);
   405 }
   407 // Access stack slot for load or store
   408 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   409   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   410   if( -128 <= disp && disp <= 127 ) {
   411     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   412     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   413     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   414   } else {
   415     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   416     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   417     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   418   }
   419 }
   421    // eRegI ereg, memory mem) %{    // emit_reg_mem
   422 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   423   // There is no index & no scale, use form without SIB byte
   424   if ((index == 0x4) &&
   425       (scale == 0) && (base != ESP_enc)) {
   426     // If no displacement, mode is 0x0; unless base is [EBP]
   427     if ( (displace == 0) && (base != EBP_enc) ) {
   428       emit_rm(cbuf, 0x0, reg_encoding, base);
   429     }
   430     else {                    // If 8-bit displacement, mode 0x1
   431       if ((displace >= -128) && (displace <= 127)
   432           && !(displace_is_oop) ) {
   433         emit_rm(cbuf, 0x1, reg_encoding, base);
   434         emit_d8(cbuf, displace);
   435       }
   436       else {                  // If 32-bit displacement
   437         if (base == -1) { // Special flag for absolute address
   438           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   439           // (manual lies; no SIB needed here)
   440           if ( displace_is_oop ) {
   441             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   442           } else {
   443             emit_d32      (cbuf, displace);
   444           }
   445         }
   446         else {                // Normal base + offset
   447           emit_rm(cbuf, 0x2, reg_encoding, base);
   448           if ( displace_is_oop ) {
   449             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   450           } else {
   451             emit_d32      (cbuf, displace);
   452           }
   453         }
   454       }
   455     }
   456   }
   457   else {                      // Else, encode with the SIB byte
   458     // If no displacement, mode is 0x0; unless base is [EBP]
   459     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   460       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   461       emit_rm(cbuf, scale, index, base);
   462     }
   463     else {                    // If 8-bit displacement, mode 0x1
   464       if ((displace >= -128) && (displace <= 127)
   465           && !(displace_is_oop) ) {
   466         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   467         emit_rm(cbuf, scale, index, base);
   468         emit_d8(cbuf, displace);
   469       }
   470       else {                  // If 32-bit displacement
   471         if (base == 0x04 ) {
   472           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   473           emit_rm(cbuf, scale, index, 0x04);
   474         } else {
   475           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   476           emit_rm(cbuf, scale, index, base);
   477         }
   478         if ( displace_is_oop ) {
   479           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   480         } else {
   481           emit_d32      (cbuf, displace);
   482         }
   483       }
   484     }
   485   }
   486 }
   489 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   490   if( dst_encoding == src_encoding ) {
   491     // reg-reg copy, use an empty encoding
   492   } else {
   493     emit_opcode( cbuf, 0x8B );
   494     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   495   }
   496 }
   498 void emit_cmpfp_fixup(MacroAssembler& _masm) {
   499   Label exit;
   500   __ jccb(Assembler::noParity, exit);
   501   __ pushf();
   502   //
   503   // comiss/ucomiss instructions set ZF,PF,CF flags and
   504   // zero OF,AF,SF for NaN values.
   505   // Fixup flags by zeroing ZF,PF so that compare of NaN
   506   // values returns 'less than' result (CF is set).
   507   // Leave the rest of flags unchanged.
   508   //
   509   //    7 6 5 4 3 2 1 0
   510   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
   511   //    0 0 1 0 1 0 1 1   (0x2B)
   512   //
   513   __ andl(Address(rsp, 0), 0xffffff2b);
   514   __ popf();
   515   __ bind(exit);
   516 }
   518 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
   519   Label done;
   520   __ movl(dst, -1);
   521   __ jcc(Assembler::parity, done);
   522   __ jcc(Assembler::below, done);
   523   __ setb(Assembler::notEqual, dst);
   524   __ movzbl(dst, dst);
   525   __ bind(done);
   526 }
   529 //=============================================================================
   530 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   532 int Compile::ConstantTable::calculate_table_base_offset() const {
   533   return 0;  // absolute addressing, no offset
   534 }
   536 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   537   // Empty encoding
   538 }
   540 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   541   return 0;
   542 }
   544 #ifndef PRODUCT
   545 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   546   st->print("# MachConstantBaseNode (empty encoding)");
   547 }
   548 #endif
   551 //=============================================================================
   552 #ifndef PRODUCT
   553 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   554   Compile* C = ra_->C;
   555   if( C->in_24_bit_fp_mode() ) {
   556     st->print("FLDCW  24 bit fpu control word");
   557     st->print_cr(""); st->print("\t");
   558   }
   560   int framesize = C->frame_slots() << LogBytesPerInt;
   561   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   562   // Remove two words for return addr and rbp,
   563   framesize -= 2*wordSize;
   565   // Calls to C2R adapters often do not accept exceptional returns.
   566   // We require that their callers must bang for them.  But be careful, because
   567   // some VM calls (such as call site linkage) can use several kilobytes of
   568   // stack.  But the stack safety zone should account for that.
   569   // See bugs 4446381, 4468289, 4497237.
   570   if (C->need_stack_bang(framesize)) {
   571     st->print_cr("# stack bang"); st->print("\t");
   572   }
   573   st->print_cr("PUSHL  EBP"); st->print("\t");
   575   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   576     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
   577     st->print_cr(""); st->print("\t");
   578     framesize -= wordSize;
   579   }
   581   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   582     if (framesize) {
   583       st->print("SUB    ESP,%d\t# Create frame",framesize);
   584     }
   585   } else {
   586     st->print("SUB    ESP,%d\t# Create frame",framesize);
   587   }
   588 }
   589 #endif
   592 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   593   Compile* C = ra_->C;
   595   if (UseSSE >= 2 && VerifyFPU) {
   596     MacroAssembler masm(&cbuf);
   597     masm.verify_FPU(0, "FPU stack must be clean on entry");
   598   }
   600   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   601   // NativeJump::patch_verified_entry will be able to patch out the entry
   602   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   603   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   604   // 6 bytes. So if we don't do the fldcw or the push then we must
   605   // use the 6 byte frame allocation even if we have no frame. :-(
   606   // If method sets FPU control word do it now
   607   if( C->in_24_bit_fp_mode() ) {
   608     MacroAssembler masm(&cbuf);
   609     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   610   }
   612   int framesize = C->frame_slots() << LogBytesPerInt;
   613   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   614   // Remove two words for return addr and rbp,
   615   framesize -= 2*wordSize;
   617   // Calls to C2R adapters often do not accept exceptional returns.
   618   // We require that their callers must bang for them.  But be careful, because
   619   // some VM calls (such as call site linkage) can use several kilobytes of
   620   // stack.  But the stack safety zone should account for that.
   621   // See bugs 4446381, 4468289, 4497237.
   622   if (C->need_stack_bang(framesize)) {
   623     MacroAssembler masm(&cbuf);
   624     masm.generate_stack_overflow_check(framesize);
   625   }
   627   // We always push rbp, so that on return to interpreter rbp, will be
   628   // restored correctly and we can correct the stack.
   629   emit_opcode(cbuf, 0x50 | EBP_enc);
   631   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   632     emit_opcode(cbuf, 0x68); // push 0xbadb100d
   633     emit_d32(cbuf, 0xbadb100d);
   634     framesize -= wordSize;
   635   }
   637   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   638     if (framesize) {
   639       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   640       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   641       emit_d8(cbuf, framesize);
   642     }
   643   } else {
   644     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   645     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   646     emit_d32(cbuf, framesize);
   647   }
   648   C->set_frame_complete(cbuf.insts_size());
   650 #ifdef ASSERT
   651   if (VerifyStackAtCalls) {
   652     Label L;
   653     MacroAssembler masm(&cbuf);
   654     masm.push(rax);
   655     masm.mov(rax, rsp);
   656     masm.andptr(rax, StackAlignmentInBytes-1);
   657     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   658     masm.pop(rax);
   659     masm.jcc(Assembler::equal, L);
   660     masm.stop("Stack is not properly aligned!");
   661     masm.bind(L);
   662   }
   663 #endif
   665   if (C->has_mach_constant_base_node()) {
   666     // NOTE: We set the table base offset here because users might be
   667     // emitted before MachConstantBaseNode.
   668     Compile::ConstantTable& constant_table = C->constant_table();
   669     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
   670   }
   671 }
   673 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   674   return MachNode::size(ra_); // too many variables; just compute it the hard way
   675 }
   677 int MachPrologNode::reloc() const {
   678   return 0; // a large enough number
   679 }
   681 //=============================================================================
   682 #ifndef PRODUCT
   683 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   684   Compile *C = ra_->C;
   685   int framesize = C->frame_slots() << LogBytesPerInt;
   686   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   687   // Remove two words for return addr and rbp,
   688   framesize -= 2*wordSize;
   690   if( C->in_24_bit_fp_mode() ) {
   691     st->print("FLDCW  standard control word");
   692     st->cr(); st->print("\t");
   693   }
   694   if( framesize ) {
   695     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   696     st->cr(); st->print("\t");
   697   }
   698   st->print_cr("POPL   EBP"); st->print("\t");
   699   if( do_polling() && C->is_method_compilation() ) {
   700     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   701     st->cr(); st->print("\t");
   702   }
   703 }
   704 #endif
   706 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   707   Compile *C = ra_->C;
   709   // If method set FPU control word, restore to standard control word
   710   if( C->in_24_bit_fp_mode() ) {
   711     MacroAssembler masm(&cbuf);
   712     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   713   }
   715   int framesize = C->frame_slots() << LogBytesPerInt;
   716   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   717   // Remove two words for return addr and rbp,
   718   framesize -= 2*wordSize;
   720   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   722   if( framesize >= 128 ) {
   723     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   724     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   725     emit_d32(cbuf, framesize);
   726   }
   727   else if( framesize ) {
   728     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   729     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   730     emit_d8(cbuf, framesize);
   731   }
   733   emit_opcode(cbuf, 0x58 | EBP_enc);
   735   if( do_polling() && C->is_method_compilation() ) {
   736     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   737     emit_opcode(cbuf,0x85);
   738     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   739     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   740   }
   741 }
   743 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   744   Compile *C = ra_->C;
   745   // If method set FPU control word, restore to standard control word
   746   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   747   if( do_polling() && C->is_method_compilation() ) size += 6;
   749   int framesize = C->frame_slots() << LogBytesPerInt;
   750   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   751   // Remove two words for return addr and rbp,
   752   framesize -= 2*wordSize;
   754   size++; // popl rbp,
   756   if( framesize >= 128 ) {
   757     size += 6;
   758   } else {
   759     size += framesize ? 3 : 0;
   760   }
   761   return size;
   762 }
   764 int MachEpilogNode::reloc() const {
   765   return 0; // a large enough number
   766 }
   768 const Pipeline * MachEpilogNode::pipeline() const {
   769   return MachNode::pipeline_class();
   770 }
   772 int MachEpilogNode::safepoint_offset() const { return 0; }
   774 //=============================================================================
   776 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   777 static enum RC rc_class( OptoReg::Name reg ) {
   779   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   780   if (OptoReg::is_stack(reg)) return rc_stack;
   782   VMReg r = OptoReg::as_VMReg(reg);
   783   if (r->is_Register()) return rc_int;
   784   if (r->is_FloatRegister()) {
   785     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   786     return rc_float;
   787   }
   788   assert(r->is_XMMRegister(), "must be");
   789   return rc_xmm;
   790 }
   792 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   793                         int opcode, const char *op_str, int size, outputStream* st ) {
   794   if( cbuf ) {
   795     emit_opcode  (*cbuf, opcode );
   796     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   797 #ifndef PRODUCT
   798   } else if( !do_size ) {
   799     if( size != 0 ) st->print("\n\t");
   800     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   801       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   802       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   803     } else { // FLD, FST, PUSH, POP
   804       st->print("%s [ESP + #%d]",op_str,offset);
   805     }
   806 #endif
   807   }
   808   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   809   return size+3+offset_size;
   810 }
   812 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   813 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   814                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   815   if (cbuf) {
   816     MacroAssembler _masm(cbuf);
   817     if (reg_lo+1 == reg_hi) { // double move?
   818       if (is_load) {
   819         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   820       } else {
   821         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   822       }
   823     } else {
   824       if (is_load) {
   825         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   826       } else {
   827         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   828       }
   829     }
   830 #ifndef PRODUCT
   831   } else if (!do_size) {
   832     if (size != 0) st->print("\n\t");
   833     if (reg_lo+1 == reg_hi) { // double move?
   834       if (is_load) st->print("%s %s,[ESP + #%d]",
   835                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   836                               Matcher::regName[reg_lo], offset);
   837       else         st->print("MOVSD  [ESP + #%d],%s",
   838                               offset, Matcher::regName[reg_lo]);
   839     } else {
   840       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
   841                               Matcher::regName[reg_lo], offset);
   842       else         st->print("MOVSS  [ESP + #%d],%s",
   843                               offset, Matcher::regName[reg_lo]);
   844     }
   845 #endif
   846   }
   847   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   848   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes.
   849   return size+5+offset_size;
   850 }
   853 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   854                             int src_hi, int dst_hi, int size, outputStream* st ) {
   855   if (cbuf) {
   856     MacroAssembler _masm(cbuf);
   857     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   858       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   859                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   860     } else {
   861       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   862                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   863     }
   864 #ifndef PRODUCT
   865   } else if (!do_size) {
   866     if (size != 0) st->print("\n\t");
   867     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
   868       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   869         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   870       } else {
   871         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   872       }
   873     } else {
   874       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   875         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   876       } else {
   877         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   878       }
   879     }
   880 #endif
   881   }
   882   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes.
   883   // Only MOVAPS SSE prefix uses 1 byte.
   884   int sz = 4;
   885   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
   886       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
   887   return size + sz;
   888 }
   890 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   891                             int src_hi, int dst_hi, int size, outputStream* st ) {
   892   // 32-bit
   893   if (cbuf) {
   894     MacroAssembler _masm(cbuf);
   895     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   896              as_Register(Matcher::_regEncode[src_lo]));
   897 #ifndef PRODUCT
   898   } else if (!do_size) {
   899     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   900 #endif
   901   }
   902   return 4;
   903 }
   906 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   907                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   908   // 32-bit
   909   if (cbuf) {
   910     MacroAssembler _masm(cbuf);
   911     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
   912              as_XMMRegister(Matcher::_regEncode[src_lo]));
   913 #ifndef PRODUCT
   914   } else if (!do_size) {
   915     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   916 #endif
   917   }
   918   return 4;
   919 }
   921 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   922   if( cbuf ) {
   923     emit_opcode(*cbuf, 0x8B );
   924     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   925 #ifndef PRODUCT
   926   } else if( !do_size ) {
   927     if( size != 0 ) st->print("\n\t");
   928     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   929 #endif
   930   }
   931   return size+2;
   932 }
   934 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   935                                  int offset, int size, outputStream* st ) {
   936   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   937     if( cbuf ) {
   938       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   939       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   940 #ifndef PRODUCT
   941     } else if( !do_size ) {
   942       if( size != 0 ) st->print("\n\t");
   943       st->print("FLD    %s",Matcher::regName[src_lo]);
   944 #endif
   945     }
   946     size += 2;
   947   }
   949   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   950   const char *op_str;
   951   int op;
   952   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   953     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   954     op = 0xDD;
   955   } else {                   // 32-bit store
   956     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   957     op = 0xD9;
   958     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   959   }
   961   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   962 }
   964 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   965   // Get registers to move
   966   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   967   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   968   OptoReg::Name dst_second = ra_->get_reg_second(this );
   969   OptoReg::Name dst_first = ra_->get_reg_first(this );
   971   enum RC src_second_rc = rc_class(src_second);
   972   enum RC src_first_rc = rc_class(src_first);
   973   enum RC dst_second_rc = rc_class(dst_second);
   974   enum RC dst_first_rc = rc_class(dst_first);
   976   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   978   // Generate spill code!
   979   int size = 0;
   981   if( src_first == dst_first && src_second == dst_second )
   982     return size;            // Self copy, no move
   984   // --------------------------------------
   985   // Check for mem-mem move.  push/pop to move.
   986   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   987     if( src_second == dst_first ) { // overlapping stack copy ranges
   988       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   989       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   990       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   991       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   992     }
   993     // move low bits
   994     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   995     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   996     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   997       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   998       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   999     }
  1000     return size;
  1003   // --------------------------------------
  1004   // Check for integer reg-reg copy
  1005   if( src_first_rc == rc_int && dst_first_rc == rc_int )
  1006     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
  1008   // Check for integer store
  1009   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
  1010     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
  1012   // Check for integer load
  1013   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
  1014     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
  1016   // Check for integer reg-xmm reg copy
  1017   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
  1018     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1019             "no 64 bit integer-float reg moves" );
  1020     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1022   // --------------------------------------
  1023   // Check for float reg-reg copy
  1024   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1025     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1026             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
  1027     if( cbuf ) {
  1029       // Note the mucking with the register encode to compensate for the 0/1
  1030       // indexing issue mentioned in a comment in the reg_def sections
  1031       // for FPR registers many lines above here.
  1033       if( src_first != FPR1L_num ) {
  1034         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
  1035         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
  1036         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1037         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1038      } else {
  1039         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
  1040         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
  1042 #ifndef PRODUCT
  1043     } else if( !do_size ) {
  1044       if( size != 0 ) st->print("\n\t");
  1045       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1046       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1047 #endif
  1049     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1052   // Check for float store
  1053   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1054     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1057   // Check for float load
  1058   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1059     int offset = ra_->reg2offset(src_first);
  1060     const char *op_str;
  1061     int op;
  1062     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1063       op_str = "FLD_D";
  1064       op = 0xDD;
  1065     } else {                   // 32-bit load
  1066       op_str = "FLD_S";
  1067       op = 0xD9;
  1068       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1070     if( cbuf ) {
  1071       emit_opcode  (*cbuf, op );
  1072       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
  1073       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1074       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1075 #ifndef PRODUCT
  1076     } else if( !do_size ) {
  1077       if( size != 0 ) st->print("\n\t");
  1078       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1079 #endif
  1081     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1082     return size + 3+offset_size+2;
  1085   // Check for xmm reg-reg copy
  1086   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1087     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1088             (src_first+1 == src_second && dst_first+1 == dst_second),
  1089             "no non-adjacent float-moves" );
  1090     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1093   // Check for xmm reg-integer reg copy
  1094   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1095     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1096             "no 64 bit float-integer reg moves" );
  1097     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1100   // Check for xmm store
  1101   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1102     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1105   // Check for float xmm load
  1106   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1107     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1110   // Copy from float reg to xmm reg
  1111   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1112     // copy to the top of stack from floating point reg
  1113     // and use LEA to preserve flags
  1114     if( cbuf ) {
  1115       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1116       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1117       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1118       emit_d8(*cbuf,0xF8);
  1119 #ifndef PRODUCT
  1120     } else if( !do_size ) {
  1121       if( size != 0 ) st->print("\n\t");
  1122       st->print("LEA    ESP,[ESP-8]");
  1123 #endif
  1125     size += 4;
  1127     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1129     // Copy from the temp memory to the xmm reg.
  1130     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1132     if( cbuf ) {
  1133       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1134       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1135       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1136       emit_d8(*cbuf,0x08);
  1137 #ifndef PRODUCT
  1138     } else if( !do_size ) {
  1139       if( size != 0 ) st->print("\n\t");
  1140       st->print("LEA    ESP,[ESP+8]");
  1141 #endif
  1143     size += 4;
  1144     return size;
  1147   assert( size > 0, "missed a case" );
  1149   // --------------------------------------------------------------------
  1150   // Check for second bits still needing moving.
  1151   if( src_second == dst_second )
  1152     return size;               // Self copy; no move
  1153   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1155   // Check for second word int-int move
  1156   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1157     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1159   // Check for second word integer store
  1160   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1161     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1163   // Check for second word integer load
  1164   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1165     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1168   Unimplemented();
  1171 #ifndef PRODUCT
  1172 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1173   implementation( NULL, ra_, false, st );
  1175 #endif
  1177 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1178   implementation( &cbuf, ra_, false, NULL );
  1181 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1182   return implementation( NULL, ra_, true, NULL );
  1185 //=============================================================================
  1186 #ifndef PRODUCT
  1187 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1188   st->print("NOP \t# %d bytes pad for loops and calls", _count);
  1190 #endif
  1192 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1193   MacroAssembler _masm(&cbuf);
  1194   __ nop(_count);
  1197 uint MachNopNode::size(PhaseRegAlloc *) const {
  1198   return _count;
  1202 //=============================================================================
  1203 #ifndef PRODUCT
  1204 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1205   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1206   int reg = ra_->get_reg_first(this);
  1207   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1209 #endif
  1211 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1212   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1213   int reg = ra_->get_encode(this);
  1214   if( offset >= 128 ) {
  1215     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1216     emit_rm(cbuf, 0x2, reg, 0x04);
  1217     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1218     emit_d32(cbuf, offset);
  1220   else {
  1221     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1222     emit_rm(cbuf, 0x1, reg, 0x04);
  1223     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1224     emit_d8(cbuf, offset);
  1228 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1229   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1230   if( offset >= 128 ) {
  1231     return 7;
  1233   else {
  1234     return 4;
  1238 //=============================================================================
  1240 // emit call stub, compiled java to interpreter
  1241 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1242   // Stub is fixed up when the corresponding call is converted from calling
  1243   // compiled code to calling interpreted code.
  1244   // mov rbx,0
  1245   // jmp -1
  1247   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1249   // Note that the code buffer's insts_mark is always relative to insts.
  1250   // That's why we must use the macroassembler to generate a stub.
  1251   MacroAssembler _masm(&cbuf);
  1253   address base =
  1254   __ start_a_stub(Compile::MAX_stubs_size);
  1255   if (base == NULL)  return;  // CodeBuffer::expand failed
  1256   // static stub relocation stores the instruction address of the call
  1257   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1258   // static stub relocation also tags the methodOop in the code-stream.
  1259   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1260   // This is recognized as unresolved by relocs/nativeInst/ic code
  1261   __ jump(RuntimeAddress(__ pc()));
  1263   __ end_a_stub();
  1264   // Update current stubs pointer and restore insts_end.
  1266 // size of call stub, compiled java to interpretor
  1267 uint size_java_to_interp() {
  1268   return 10;  // movl; jmp
  1270 // relocation entries for call stub, compiled java to interpretor
  1271 uint reloc_java_to_interp() {
  1272   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1275 //=============================================================================
  1276 #ifndef PRODUCT
  1277 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1278   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1279   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1280   st->print_cr("\tNOP");
  1281   st->print_cr("\tNOP");
  1282   if( !OptoBreakpoint )
  1283     st->print_cr("\tNOP");
  1285 #endif
  1287 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1288   MacroAssembler masm(&cbuf);
  1289 #ifdef ASSERT
  1290   uint insts_size = cbuf.insts_size();
  1291 #endif
  1292   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1293   masm.jump_cc(Assembler::notEqual,
  1294                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1295   /* WARNING these NOPs are critical so that verified entry point is properly
  1296      aligned for patching by NativeJump::patch_verified_entry() */
  1297   int nops_cnt = 2;
  1298   if( !OptoBreakpoint ) // Leave space for int3
  1299      nops_cnt += 1;
  1300   masm.nop(nops_cnt);
  1302   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1305 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1306   return OptoBreakpoint ? 11 : 12;
  1310 //=============================================================================
  1311 uint size_exception_handler() {
  1312   // NativeCall instruction size is the same as NativeJump.
  1313   // exception handler starts out as jump and can be patched to
  1314   // a call be deoptimization.  (4932387)
  1315   // Note that this value is also credited (in output.cpp) to
  1316   // the size of the code section.
  1317   return NativeJump::instruction_size;
  1320 // Emit exception handler code.  Stuff framesize into a register
  1321 // and call a VM stub routine.
  1322 int emit_exception_handler(CodeBuffer& cbuf) {
  1324   // Note that the code buffer's insts_mark is always relative to insts.
  1325   // That's why we must use the macroassembler to generate a handler.
  1326   MacroAssembler _masm(&cbuf);
  1327   address base =
  1328   __ start_a_stub(size_exception_handler());
  1329   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1330   int offset = __ offset();
  1331   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
  1332   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1333   __ end_a_stub();
  1334   return offset;
  1337 uint size_deopt_handler() {
  1338   // NativeCall instruction size is the same as NativeJump.
  1339   // exception handler starts out as jump and can be patched to
  1340   // a call be deoptimization.  (4932387)
  1341   // Note that this value is also credited (in output.cpp) to
  1342   // the size of the code section.
  1343   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1346 // Emit deopt handler code.
  1347 int emit_deopt_handler(CodeBuffer& cbuf) {
  1349   // Note that the code buffer's insts_mark is always relative to insts.
  1350   // That's why we must use the macroassembler to generate a handler.
  1351   MacroAssembler _masm(&cbuf);
  1352   address base =
  1353   __ start_a_stub(size_exception_handler());
  1354   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1355   int offset = __ offset();
  1356   InternalAddress here(__ pc());
  1357   __ pushptr(here.addr());
  1359   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1360   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1361   __ end_a_stub();
  1362   return offset;
  1366 const bool Matcher::match_rule_supported(int opcode) {
  1367   if (!has_match_rule(opcode))
  1368     return false;
  1370   return true;  // Per default match rules are supported.
  1373 int Matcher::regnum_to_fpu_offset(int regnum) {
  1374   return regnum - 32; // The FP registers are in the second chunk
  1377 // This is UltraSparc specific, true just means we have fast l2f conversion
  1378 const bool Matcher::convL2FSupported(void) {
  1379   return true;
  1382 // Vector width in bytes
  1383 const uint Matcher::vector_width_in_bytes(void) {
  1384   return UseSSE >= 2 ? 8 : 0;
  1387 // Vector ideal reg
  1388 const uint Matcher::vector_ideal_reg(void) {
  1389   return Op_RegD;
  1392 // Is this branch offset short enough that a short branch can be used?
  1393 //
  1394 // NOTE: If the platform does not provide any short branch variants, then
  1395 //       this method should return false for offset 0.
  1396 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1397   // The passed offset is relative to address of the branch.
  1398   // On 86 a branch displacement is calculated relative to address
  1399   // of a next instruction.
  1400   offset -= br_size;
  1402   // the short version of jmpConUCF2 contains multiple branches,
  1403   // making the reach slightly less
  1404   if (rule == jmpConUCF2_rule)
  1405     return (-126 <= offset && offset <= 125);
  1406   return (-128 <= offset && offset <= 127);
  1409 const bool Matcher::isSimpleConstant64(jlong value) {
  1410   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1411   return false;
  1414 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1415 const bool Matcher::init_array_count_is_in_bytes = false;
  1417 // Threshold size for cleararray.
  1418 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1420 // Needs 2 CMOV's for longs.
  1421 const int Matcher::long_cmove_cost() { return 1; }
  1423 // No CMOVF/CMOVD with SSE/SSE2
  1424 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
  1426 // Should the Matcher clone shifts on addressing modes, expecting them to
  1427 // be subsumed into complex addressing expressions or compute them into
  1428 // registers?  True for Intel but false for most RISCs
  1429 const bool Matcher::clone_shift_expressions = true;
  1431 // Do we need to mask the count passed to shift instructions or does
  1432 // the cpu only look at the lower 5/6 bits anyway?
  1433 const bool Matcher::need_masked_shift_count = false;
  1435 bool Matcher::narrow_oop_use_complex_address() {
  1436   ShouldNotCallThis();
  1437   return true;
  1441 // Is it better to copy float constants, or load them directly from memory?
  1442 // Intel can load a float constant from a direct address, requiring no
  1443 // extra registers.  Most RISCs will have to materialize an address into a
  1444 // register first, so they would do better to copy the constant from stack.
  1445 const bool Matcher::rematerialize_float_constants = true;
  1447 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1448 // needed.  Else we split the double into 2 integer pieces and move it
  1449 // piece-by-piece.  Only happens when passing doubles into C code as the
  1450 // Java calling convention forces doubles to be aligned.
  1451 const bool Matcher::misaligned_doubles_ok = true;
  1454 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1455   // Get the memory operand from the node
  1456   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1457   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1458   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1459   uint opcnt     = 1;                 // First operand
  1460   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1461   while( idx >= skipped+num_edges ) {
  1462     skipped += num_edges;
  1463     opcnt++;                          // Bump operand count
  1464     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1465     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1468   MachOper *memory = node->_opnds[opcnt];
  1469   MachOper *new_memory = NULL;
  1470   switch (memory->opcode()) {
  1471   case DIRECT:
  1472   case INDOFFSET32X:
  1473     // No transformation necessary.
  1474     return;
  1475   case INDIRECT:
  1476     new_memory = new (C) indirect_win95_safeOper( );
  1477     break;
  1478   case INDOFFSET8:
  1479     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1480     break;
  1481   case INDOFFSET32:
  1482     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1483     break;
  1484   case INDINDEXOFFSET:
  1485     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1486     break;
  1487   case INDINDEXSCALE:
  1488     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1489     break;
  1490   case INDINDEXSCALEOFFSET:
  1491     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1492     break;
  1493   case LOAD_LONG_INDIRECT:
  1494   case LOAD_LONG_INDOFFSET32:
  1495     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1496     return;
  1497   default:
  1498     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1499     return;
  1501   node->_opnds[opcnt] = new_memory;
  1504 // Advertise here if the CPU requires explicit rounding operations
  1505 // to implement the UseStrictFP mode.
  1506 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1508 // Are floats conerted to double when stored to stack during deoptimization?
  1509 // On x32 it is stored with convertion only when FPU is used for floats.
  1510 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1512 // Do ints take an entire long register or just half?
  1513 const bool Matcher::int_in_long = false;
  1515 // Return whether or not this register is ever used as an argument.  This
  1516 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1517 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1518 // arguments in those registers not be available to the callee.
  1519 bool Matcher::can_be_java_arg( int reg ) {
  1520   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1521   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1522   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1523   return false;
  1526 bool Matcher::is_spillable_arg( int reg ) {
  1527   return can_be_java_arg(reg);
  1530 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1531   // Use hardware integer DIV instruction when
  1532   // it is faster than a code which use multiply.
  1533   // Only when constant divisor fits into 32 bit
  1534   // (min_jint is excluded to get only correct
  1535   // positive 32 bit values from negative).
  1536   return VM_Version::has_fast_idiv() &&
  1537          (divisor == (int)divisor && divisor != min_jint);
  1540 // Register for DIVI projection of divmodI
  1541 RegMask Matcher::divI_proj_mask() {
  1542   return EAX_REG_mask();
  1545 // Register for MODI projection of divmodI
  1546 RegMask Matcher::modI_proj_mask() {
  1547   return EDX_REG_mask();
  1550 // Register for DIVL projection of divmodL
  1551 RegMask Matcher::divL_proj_mask() {
  1552   ShouldNotReachHere();
  1553   return RegMask();
  1556 // Register for MODL projection of divmodL
  1557 RegMask Matcher::modL_proj_mask() {
  1558   ShouldNotReachHere();
  1559   return RegMask();
  1562 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1563   return EBP_REG_mask();
  1566 // Returns true if the high 32 bits of the value is known to be zero.
  1567 bool is_operand_hi32_zero(Node* n) {
  1568   int opc = n->Opcode();
  1569   if (opc == Op_LoadUI2L) {
  1570     return true;
  1572   if (opc == Op_AndL) {
  1573     Node* o2 = n->in(2);
  1574     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1575       return true;
  1578   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1579     return true;
  1581   return false;
  1584 %}
  1586 //----------ENCODING BLOCK-----------------------------------------------------
  1587 // This block specifies the encoding classes used by the compiler to output
  1588 // byte streams.  Encoding classes generate functions which are called by
  1589 // Machine Instruction Nodes in order to generate the bit encoding of the
  1590 // instruction.  Operands specify their base encoding interface with the
  1591 // interface keyword.  There are currently supported four interfaces,
  1592 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1593 // operand to generate a function which returns its register number when
  1594 // queried.   CONST_INTER causes an operand to generate a function which
  1595 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1596 // operand to generate four functions which return the Base Register, the
  1597 // Index Register, the Scale Value, and the Offset Value of the operand when
  1598 // queried.  COND_INTER causes an operand to generate six functions which
  1599 // return the encoding code (ie - encoding bits for the instruction)
  1600 // associated with each basic boolean condition for a conditional instruction.
  1601 // Instructions specify two basic values for encoding.  They use the
  1602 // ins_encode keyword to specify their encoding class (which must be one of
  1603 // the class names specified in the encoding block), and they use the
  1604 // opcode keyword to specify, in order, their primary, secondary, and
  1605 // tertiary opcode.  Only the opcode sections which a particular instruction
  1606 // needs for encoding need to be specified.
  1607 encode %{
  1608   // Build emit functions for each basic byte or larger field in the intel
  1609   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1610   // code in the enc_class source block.  Emit functions will live in the
  1611   // main source block for now.  In future, we can generalize this by
  1612   // adding a syntax that specifies the sizes of fields in an order,
  1613   // so that the adlc can build the emit functions automagically
  1615   // Emit primary opcode
  1616   enc_class OpcP %{
  1617     emit_opcode(cbuf, $primary);
  1618   %}
  1620   // Emit secondary opcode
  1621   enc_class OpcS %{
  1622     emit_opcode(cbuf, $secondary);
  1623   %}
  1625   // Emit opcode directly
  1626   enc_class Opcode(immI d8) %{
  1627     emit_opcode(cbuf, $d8$$constant);
  1628   %}
  1630   enc_class SizePrefix %{
  1631     emit_opcode(cbuf,0x66);
  1632   %}
  1634   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1635     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1636   %}
  1638   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1639     emit_opcode(cbuf,$opcode$$constant);
  1640     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1641   %}
  1643   enc_class mov_r32_imm0( eRegI dst ) %{
  1644     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1645     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1646   %}
  1648   enc_class cdq_enc %{
  1649     // Full implementation of Java idiv and irem; checks for
  1650     // special case as described in JVM spec., p.243 & p.271.
  1651     //
  1652     //         normal case                           special case
  1653     //
  1654     // input : rax,: dividend                         min_int
  1655     //         reg: divisor                          -1
  1656     //
  1657     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1658     //         rdx: remainder (= rax, irem reg)       0
  1659     //
  1660     //  Code sequnce:
  1661     //
  1662     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1663     //  0F 85 0B 00 00 00    jne         normal_case
  1664     //  33 D2                xor         rdx,edx
  1665     //  83 F9 FF             cmp         rcx,0FFh
  1666     //  0F 84 03 00 00 00    je          done
  1667     //                  normal_case:
  1668     //  99                   cdq
  1669     //  F7 F9                idiv        rax,ecx
  1670     //                  done:
  1671     //
  1672     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1673     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1674     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1675     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1676     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1677     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1678     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1679     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1680     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1681     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1682     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1683     // normal_case:
  1684     emit_opcode(cbuf,0x99);                                         // cdq
  1685     // idiv (note: must be emitted by the user of this rule)
  1686     // normal:
  1687   %}
  1689   // Dense encoding for older common ops
  1690   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1691     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1692   %}
  1695   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1696   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1697     // Check for 8-bit immediate, and set sign extend bit in opcode
  1698     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1699       emit_opcode(cbuf, $primary | 0x02);
  1701     else {                          // If 32-bit immediate
  1702       emit_opcode(cbuf, $primary);
  1704   %}
  1706   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1707     // Emit primary opcode and set sign-extend bit
  1708     // Check for 8-bit immediate, and set sign extend bit in opcode
  1709     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1710       emit_opcode(cbuf, $primary | 0x02);    }
  1711     else {                          // If 32-bit immediate
  1712       emit_opcode(cbuf, $primary);
  1714     // Emit r/m byte with secondary opcode, after primary opcode.
  1715     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1716   %}
  1718   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1719     // Check for 8-bit immediate, and set sign extend bit in opcode
  1720     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1721       $$$emit8$imm$$constant;
  1723     else {                          // If 32-bit immediate
  1724       // Output immediate
  1725       $$$emit32$imm$$constant;
  1727   %}
  1729   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1730     // Emit primary opcode and set sign-extend bit
  1731     // Check for 8-bit immediate, and set sign extend bit in opcode
  1732     int con = (int)$imm$$constant; // Throw away top bits
  1733     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1734     // Emit r/m byte with secondary opcode, after primary opcode.
  1735     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1736     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1737     else                               emit_d32(cbuf,con);
  1738   %}
  1740   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1741     // Emit primary opcode and set sign-extend bit
  1742     // Check for 8-bit immediate, and set sign extend bit in opcode
  1743     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1744     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1745     // Emit r/m byte with tertiary opcode, after primary opcode.
  1746     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1747     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1748     else                               emit_d32(cbuf,con);
  1749   %}
  1751   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1752     emit_cc(cbuf, $secondary, $dst$$reg );
  1753   %}
  1755   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1756     int destlo = $dst$$reg;
  1757     int desthi = HIGH_FROM_LOW(destlo);
  1758     // bswap lo
  1759     emit_opcode(cbuf, 0x0F);
  1760     emit_cc(cbuf, 0xC8, destlo);
  1761     // bswap hi
  1762     emit_opcode(cbuf, 0x0F);
  1763     emit_cc(cbuf, 0xC8, desthi);
  1764     // xchg lo and hi
  1765     emit_opcode(cbuf, 0x87);
  1766     emit_rm(cbuf, 0x3, destlo, desthi);
  1767   %}
  1769   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1770     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1771   %}
  1773   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1774     $$$emit8$primary;
  1775     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1776   %}
  1778   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
  1779     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1780     emit_d8(cbuf, op >> 8 );
  1781     emit_d8(cbuf, op & 255);
  1782   %}
  1784   // emulate a CMOV with a conditional branch around a MOV
  1785   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1786     // Invert sense of branch from sense of CMOV
  1787     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1788     emit_d8( cbuf, $brOffs$$constant );
  1789   %}
  1791   enc_class enc_PartialSubtypeCheck( ) %{
  1792     Register Redi = as_Register(EDI_enc); // result register
  1793     Register Reax = as_Register(EAX_enc); // super class
  1794     Register Recx = as_Register(ECX_enc); // killed
  1795     Register Resi = as_Register(ESI_enc); // sub class
  1796     Label miss;
  1798     MacroAssembler _masm(&cbuf);
  1799     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1800                                      NULL, &miss,
  1801                                      /*set_cond_codes:*/ true);
  1802     if ($primary) {
  1803       __ xorptr(Redi, Redi);
  1805     __ bind(miss);
  1806   %}
  1808   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1809     MacroAssembler masm(&cbuf);
  1810     int start = masm.offset();
  1811     if (UseSSE >= 2) {
  1812       if (VerifyFPU) {
  1813         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1815     } else {
  1816       // External c_calling_convention expects the FPU stack to be 'clean'.
  1817       // Compiled code leaves it dirty.  Do cleanup now.
  1818       masm.empty_FPU_stack();
  1820     if (sizeof_FFree_Float_Stack_All == -1) {
  1821       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1822     } else {
  1823       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1825   %}
  1827   enc_class Verify_FPU_For_Leaf %{
  1828     if( VerifyFPU ) {
  1829       MacroAssembler masm(&cbuf);
  1830       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1832   %}
  1834   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1835     // This is the instruction starting address for relocation info.
  1836     cbuf.set_insts_mark();
  1837     $$$emit8$primary;
  1838     // CALL directly to the runtime
  1839     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1840                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1842     if (UseSSE >= 2) {
  1843       MacroAssembler _masm(&cbuf);
  1844       BasicType rt = tf()->return_type();
  1846       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1847         // A C runtime call where the return value is unused.  In SSE2+
  1848         // mode the result needs to be removed from the FPU stack.  It's
  1849         // likely that this function call could be removed by the
  1850         // optimizer if the C function is a pure function.
  1851         __ ffree(0);
  1852       } else if (rt == T_FLOAT) {
  1853         __ lea(rsp, Address(rsp, -4));
  1854         __ fstp_s(Address(rsp, 0));
  1855         __ movflt(xmm0, Address(rsp, 0));
  1856         __ lea(rsp, Address(rsp,  4));
  1857       } else if (rt == T_DOUBLE) {
  1858         __ lea(rsp, Address(rsp, -8));
  1859         __ fstp_d(Address(rsp, 0));
  1860         __ movdbl(xmm0, Address(rsp, 0));
  1861         __ lea(rsp, Address(rsp,  8));
  1864   %}
  1867   enc_class pre_call_FPU %{
  1868     // If method sets FPU control word restore it here
  1869     debug_only(int off0 = cbuf.insts_size());
  1870     if( Compile::current()->in_24_bit_fp_mode() ) {
  1871       MacroAssembler masm(&cbuf);
  1872       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1874     debug_only(int off1 = cbuf.insts_size());
  1875     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1876   %}
  1878   enc_class post_call_FPU %{
  1879     // If method sets FPU control word do it here also
  1880     if( Compile::current()->in_24_bit_fp_mode() ) {
  1881       MacroAssembler masm(&cbuf);
  1882       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1884   %}
  1886   enc_class preserve_SP %{
  1887     debug_only(int off0 = cbuf.insts_size());
  1888     MacroAssembler _masm(&cbuf);
  1889     // RBP is preserved across all calls, even compiled calls.
  1890     // Use it to preserve RSP in places where the callee might change the SP.
  1891     __ movptr(rbp_mh_SP_save, rsp);
  1892     debug_only(int off1 = cbuf.insts_size());
  1893     assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
  1894   %}
  1896   enc_class restore_SP %{
  1897     MacroAssembler _masm(&cbuf);
  1898     __ movptr(rsp, rbp_mh_SP_save);
  1899   %}
  1901   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1902     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1903     // who we intended to call.
  1904     cbuf.set_insts_mark();
  1905     $$$emit8$primary;
  1906     if ( !_method ) {
  1907       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1908                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1909     } else if(_optimized_virtual) {
  1910       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1911                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1912     } else {
  1913       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1914                      static_call_Relocation::spec(), RELOC_IMM32 );
  1916     if( _method ) {  // Emit stub for static call
  1917       emit_java_to_interp(cbuf);
  1919   %}
  1921   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1922     // !!!!!
  1923     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1924     // emit_call_dynamic_prologue( cbuf );
  1925     cbuf.set_insts_mark();
  1926     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1927     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1928     address  virtual_call_oop_addr = cbuf.insts_mark();
  1929     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1930     // who we intended to call.
  1931     cbuf.set_insts_mark();
  1932     $$$emit8$primary;
  1933     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1934                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1935   %}
  1937   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1938     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1939     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1941     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1942     cbuf.set_insts_mark();
  1943     $$$emit8$primary;
  1944     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1945     emit_d8(cbuf, disp);             // Displacement
  1947   %}
  1949 //   Following encoding is no longer used, but may be restored if calling
  1950 //   convention changes significantly.
  1951 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1952 //
  1953 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1954 //     // int ic_reg     = Matcher::inline_cache_reg();
  1955 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1956 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1957 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1958 //
  1959 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1960 //     // // so we load it immediately before the call
  1961 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1962 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1963 //
  1964 //     // xor rbp,ebp
  1965 //     emit_opcode(cbuf, 0x33);
  1966 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1967 //
  1968 //     // CALL to interpreter.
  1969 //     cbuf.set_insts_mark();
  1970 //     $$$emit8$primary;
  1971 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1972 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1973 //   %}
  1975   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1976     $$$emit8$primary;
  1977     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1978     $$$emit8$shift$$constant;
  1979   %}
  1981   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1982     // Load immediate does not have a zero or sign extended version
  1983     // for 8-bit immediates
  1984     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1985     $$$emit32$src$$constant;
  1986   %}
  1988   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  1989     // Load immediate does not have a zero or sign extended version
  1990     // for 8-bit immediates
  1991     emit_opcode(cbuf, $primary + $dst$$reg);
  1992     $$$emit32$src$$constant;
  1993   %}
  1995   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1996     // Load immediate does not have a zero or sign extended version
  1997     // for 8-bit immediates
  1998     int dst_enc = $dst$$reg;
  1999     int src_con = $src$$constant & 0x0FFFFFFFFL;
  2000     if (src_con == 0) {
  2001       // xor dst, dst
  2002       emit_opcode(cbuf, 0x33);
  2003       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  2004     } else {
  2005       emit_opcode(cbuf, $primary + dst_enc);
  2006       emit_d32(cbuf, src_con);
  2008   %}
  2010   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  2011     // Load immediate does not have a zero or sign extended version
  2012     // for 8-bit immediates
  2013     int dst_enc = $dst$$reg + 2;
  2014     int src_con = ((julong)($src$$constant)) >> 32;
  2015     if (src_con == 0) {
  2016       // xor dst, dst
  2017       emit_opcode(cbuf, 0x33);
  2018       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  2019     } else {
  2020       emit_opcode(cbuf, $primary + dst_enc);
  2021       emit_d32(cbuf, src_con);
  2023   %}
  2026   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2027   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  2028     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2029   %}
  2031   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  2032     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2033   %}
  2035   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  2036     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2037   %}
  2039   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2040     $$$emit8$primary;
  2041     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2042   %}
  2044   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2045     $$$emit8$secondary;
  2046     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2047   %}
  2049   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2050     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2051   %}
  2053   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2054     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2055   %}
  2057   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  2058     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2059   %}
  2061   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2062     // Output immediate
  2063     $$$emit32$src$$constant;
  2064   %}
  2066   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
  2067     // Output Float immediate bits
  2068     jfloat jf = $src$$constant;
  2069     int    jf_as_bits = jint_cast( jf );
  2070     emit_d32(cbuf, jf_as_bits);
  2071   %}
  2073   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
  2074     // Output Float immediate bits
  2075     jfloat jf = $src$$constant;
  2076     int    jf_as_bits = jint_cast( jf );
  2077     emit_d32(cbuf, jf_as_bits);
  2078   %}
  2080   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2081     // Output immediate
  2082     $$$emit16$src$$constant;
  2083   %}
  2085   enc_class Con_d32(immI src) %{
  2086     emit_d32(cbuf,$src$$constant);
  2087   %}
  2089   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2090     // Output immediate memory reference
  2091     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2092     emit_d32(cbuf, 0x00);
  2093   %}
  2095   enc_class lock_prefix( ) %{
  2096     if( os::is_MP() )
  2097       emit_opcode(cbuf,0xF0);         // [Lock]
  2098   %}
  2100   // Cmp-xchg long value.
  2101   // Note: we need to swap rbx, and rcx before and after the
  2102   //       cmpxchg8 instruction because the instruction uses
  2103   //       rcx as the high order word of the new value to store but
  2104   //       our register encoding uses rbx,.
  2105   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2107     // XCHG  rbx,ecx
  2108     emit_opcode(cbuf,0x87);
  2109     emit_opcode(cbuf,0xD9);
  2110     // [Lock]
  2111     if( os::is_MP() )
  2112       emit_opcode(cbuf,0xF0);
  2113     // CMPXCHG8 [Eptr]
  2114     emit_opcode(cbuf,0x0F);
  2115     emit_opcode(cbuf,0xC7);
  2116     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2117     // XCHG  rbx,ecx
  2118     emit_opcode(cbuf,0x87);
  2119     emit_opcode(cbuf,0xD9);
  2120   %}
  2122   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2123     // [Lock]
  2124     if( os::is_MP() )
  2125       emit_opcode(cbuf,0xF0);
  2127     // CMPXCHG [Eptr]
  2128     emit_opcode(cbuf,0x0F);
  2129     emit_opcode(cbuf,0xB1);
  2130     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2131   %}
  2133   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2134     int res_encoding = $res$$reg;
  2136     // MOV  res,0
  2137     emit_opcode( cbuf, 0xB8 + res_encoding);
  2138     emit_d32( cbuf, 0 );
  2139     // JNE,s  fail
  2140     emit_opcode(cbuf,0x75);
  2141     emit_d8(cbuf, 5 );
  2142     // MOV  res,1
  2143     emit_opcode( cbuf, 0xB8 + res_encoding);
  2144     emit_d32( cbuf, 1 );
  2145     // fail:
  2146   %}
  2148   enc_class set_instruction_start( ) %{
  2149     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2150   %}
  2152   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2153     int reg_encoding = $ereg$$reg;
  2154     int base  = $mem$$base;
  2155     int index = $mem$$index;
  2156     int scale = $mem$$scale;
  2157     int displace = $mem$$disp;
  2158     bool disp_is_oop = $mem->disp_is_oop();
  2159     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2160   %}
  2162   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2163     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2164     int base  = $mem$$base;
  2165     int index = $mem$$index;
  2166     int scale = $mem$$scale;
  2167     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2168     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2169     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2170   %}
  2172   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2173     int r1, r2;
  2174     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2175     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2176     emit_opcode(cbuf,0x0F);
  2177     emit_opcode(cbuf,$tertiary);
  2178     emit_rm(cbuf, 0x3, r1, r2);
  2179     emit_d8(cbuf,$cnt$$constant);
  2180     emit_d8(cbuf,$primary);
  2181     emit_rm(cbuf, 0x3, $secondary, r1);
  2182     emit_d8(cbuf,$cnt$$constant);
  2183   %}
  2185   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2186     emit_opcode( cbuf, 0x8B ); // Move
  2187     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2188     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2189       emit_d8(cbuf,$primary);
  2190       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2191       emit_d8(cbuf,$cnt$$constant-32);
  2193     emit_d8(cbuf,$primary);
  2194     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2195     emit_d8(cbuf,31);
  2196   %}
  2198   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2199     int r1, r2;
  2200     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2201     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2203     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2204     emit_rm(cbuf, 0x3, r1, r2);
  2205     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2206       emit_opcode(cbuf,$primary);
  2207       emit_rm(cbuf, 0x3, $secondary, r1);
  2208       emit_d8(cbuf,$cnt$$constant-32);
  2210     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2211     emit_rm(cbuf, 0x3, r2, r2);
  2212   %}
  2214   // Clone of RegMem but accepts an extra parameter to access each
  2215   // half of a double in memory; it never needs relocation info.
  2216   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2217     emit_opcode(cbuf,$opcode$$constant);
  2218     int reg_encoding = $rm_reg$$reg;
  2219     int base     = $mem$$base;
  2220     int index    = $mem$$index;
  2221     int scale    = $mem$$scale;
  2222     int displace = $mem$$disp + $disp_for_half$$constant;
  2223     bool disp_is_oop = false;
  2224     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2225   %}
  2227   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2228   //
  2229   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2230   // and it never needs relocation information.
  2231   // Frequently used to move data between FPU's Stack Top and memory.
  2232   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2233     int rm_byte_opcode = $rm_opcode$$constant;
  2234     int base     = $mem$$base;
  2235     int index    = $mem$$index;
  2236     int scale    = $mem$$scale;
  2237     int displace = $mem$$disp;
  2238     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2239     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2240   %}
  2242   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2243     int rm_byte_opcode = $rm_opcode$$constant;
  2244     int base     = $mem$$base;
  2245     int index    = $mem$$index;
  2246     int scale    = $mem$$scale;
  2247     int displace = $mem$$disp;
  2248     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2249     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2250   %}
  2252   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2253     int reg_encoding = $dst$$reg;
  2254     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2255     int index        = 0x04;            // 0x04 indicates no index
  2256     int scale        = 0x00;            // 0x00 indicates no scale
  2257     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2258     bool disp_is_oop = false;
  2259     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2260   %}
  2262   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2263     // Compare dst,src
  2264     emit_opcode(cbuf,0x3B);
  2265     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2266     // jmp dst < src around move
  2267     emit_opcode(cbuf,0x7C);
  2268     emit_d8(cbuf,2);
  2269     // move dst,src
  2270     emit_opcode(cbuf,0x8B);
  2271     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2272   %}
  2274   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2275     // Compare dst,src
  2276     emit_opcode(cbuf,0x3B);
  2277     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2278     // jmp dst > src around move
  2279     emit_opcode(cbuf,0x7F);
  2280     emit_d8(cbuf,2);
  2281     // move dst,src
  2282     emit_opcode(cbuf,0x8B);
  2283     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2284   %}
  2286   enc_class enc_FPR_store(memory mem, regDPR src) %{
  2287     // If src is FPR1, we can just FST to store it.
  2288     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2289     int reg_encoding = 0x2; // Just store
  2290     int base  = $mem$$base;
  2291     int index = $mem$$index;
  2292     int scale = $mem$$scale;
  2293     int displace = $mem$$disp;
  2294     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2295     if( $src$$reg != FPR1L_enc ) {
  2296       reg_encoding = 0x3;  // Store & pop
  2297       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2298       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2300     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2301     emit_opcode(cbuf,$primary);
  2302     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2303   %}
  2305   enc_class neg_reg(eRegI dst) %{
  2306     // NEG $dst
  2307     emit_opcode(cbuf,0xF7);
  2308     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2309   %}
  2311   enc_class setLT_reg(eCXRegI dst) %{
  2312     // SETLT $dst
  2313     emit_opcode(cbuf,0x0F);
  2314     emit_opcode(cbuf,0x9C);
  2315     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2316   %}
  2318   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2319     int tmpReg = $tmp$$reg;
  2321     // SUB $p,$q
  2322     emit_opcode(cbuf,0x2B);
  2323     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2324     // SBB $tmp,$tmp
  2325     emit_opcode(cbuf,0x1B);
  2326     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2327     // AND $tmp,$y
  2328     emit_opcode(cbuf,0x23);
  2329     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2330     // ADD $p,$tmp
  2331     emit_opcode(cbuf,0x03);
  2332     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2333   %}
  2335   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2336     int tmpReg = $tmp$$reg;
  2338     // SUB $p,$q
  2339     emit_opcode(cbuf,0x2B);
  2340     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2341     // SBB $tmp,$tmp
  2342     emit_opcode(cbuf,0x1B);
  2343     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2344     // AND $tmp,$y
  2345     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2346     emit_opcode(cbuf,0x23);
  2347     int reg_encoding = tmpReg;
  2348     int base  = $mem$$base;
  2349     int index = $mem$$index;
  2350     int scale = $mem$$scale;
  2351     int displace = $mem$$disp;
  2352     bool disp_is_oop = $mem->disp_is_oop();
  2353     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2354     // ADD $p,$tmp
  2355     emit_opcode(cbuf,0x03);
  2356     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2357   %}
  2359   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2360     // TEST shift,32
  2361     emit_opcode(cbuf,0xF7);
  2362     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2363     emit_d32(cbuf,0x20);
  2364     // JEQ,s small
  2365     emit_opcode(cbuf, 0x74);
  2366     emit_d8(cbuf, 0x04);
  2367     // MOV    $dst.hi,$dst.lo
  2368     emit_opcode( cbuf, 0x8B );
  2369     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2370     // CLR    $dst.lo
  2371     emit_opcode(cbuf, 0x33);
  2372     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2373 // small:
  2374     // SHLD   $dst.hi,$dst.lo,$shift
  2375     emit_opcode(cbuf,0x0F);
  2376     emit_opcode(cbuf,0xA5);
  2377     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2378     // SHL    $dst.lo,$shift"
  2379     emit_opcode(cbuf,0xD3);
  2380     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2381   %}
  2383   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2384     // TEST shift,32
  2385     emit_opcode(cbuf,0xF7);
  2386     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2387     emit_d32(cbuf,0x20);
  2388     // JEQ,s small
  2389     emit_opcode(cbuf, 0x74);
  2390     emit_d8(cbuf, 0x04);
  2391     // MOV    $dst.lo,$dst.hi
  2392     emit_opcode( cbuf, 0x8B );
  2393     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2394     // CLR    $dst.hi
  2395     emit_opcode(cbuf, 0x33);
  2396     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2397 // small:
  2398     // SHRD   $dst.lo,$dst.hi,$shift
  2399     emit_opcode(cbuf,0x0F);
  2400     emit_opcode(cbuf,0xAD);
  2401     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2402     // SHR    $dst.hi,$shift"
  2403     emit_opcode(cbuf,0xD3);
  2404     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2405   %}
  2407   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2408     // TEST shift,32
  2409     emit_opcode(cbuf,0xF7);
  2410     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2411     emit_d32(cbuf,0x20);
  2412     // JEQ,s small
  2413     emit_opcode(cbuf, 0x74);
  2414     emit_d8(cbuf, 0x05);
  2415     // MOV    $dst.lo,$dst.hi
  2416     emit_opcode( cbuf, 0x8B );
  2417     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2418     // SAR    $dst.hi,31
  2419     emit_opcode(cbuf, 0xC1);
  2420     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2421     emit_d8(cbuf, 0x1F );
  2422 // small:
  2423     // SHRD   $dst.lo,$dst.hi,$shift
  2424     emit_opcode(cbuf,0x0F);
  2425     emit_opcode(cbuf,0xAD);
  2426     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2427     // SAR    $dst.hi,$shift"
  2428     emit_opcode(cbuf,0xD3);
  2429     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2430   %}
  2433   // ----------------- Encodings for floating point unit -----------------
  2434   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2435   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
  2436     $$$emit8$primary;
  2437     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2438   %}
  2440   // Pop argument in FPR0 with FSTP ST(0)
  2441   enc_class PopFPU() %{
  2442     emit_opcode( cbuf, 0xDD );
  2443     emit_d8( cbuf, 0xD8 );
  2444   %}
  2446   // !!!!! equivalent to Pop_Reg_F
  2447   enc_class Pop_Reg_DPR( regDPR dst ) %{
  2448     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2449     emit_d8( cbuf, 0xD8+$dst$$reg );
  2450   %}
  2452   enc_class Push_Reg_DPR( regDPR dst ) %{
  2453     emit_opcode( cbuf, 0xD9 );
  2454     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2455   %}
  2457   enc_class strictfp_bias1( regDPR dst ) %{
  2458     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2459     emit_opcode( cbuf, 0x2D );
  2460     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2461     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2462     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2463   %}
  2465   enc_class strictfp_bias2( regDPR dst ) %{
  2466     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2467     emit_opcode( cbuf, 0x2D );
  2468     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2469     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2470     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2471   %}
  2473   // Special case for moving an integer register to a stack slot.
  2474   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2475     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2476   %}
  2478   // Special case for moving a register to a stack slot.
  2479   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2480     // Opcode already emitted
  2481     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2482     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2483     emit_d32(cbuf, $dst$$disp);   // Displacement
  2484   %}
  2486   // Push the integer in stackSlot 'src' onto FP-stack
  2487   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2488     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2489   %}
  2491   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2492   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2493     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2494   %}
  2496   // Same as Pop_Mem_F except for opcode
  2497   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2498   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2499     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2500   %}
  2502   enc_class Pop_Reg_FPR( regFPR dst ) %{
  2503     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2504     emit_d8( cbuf, 0xD8+$dst$$reg );
  2505   %}
  2507   enc_class Push_Reg_FPR( regFPR dst ) %{
  2508     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2509     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2510   %}
  2512   // Push FPU's float to a stack-slot, and pop FPU-stack
  2513   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
  2514     int pop = 0x02;
  2515     if ($src$$reg != FPR1L_enc) {
  2516       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2517       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2518       pop = 0x03;
  2520     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2521   %}
  2523   // Push FPU's double to a stack-slot, and pop FPU-stack
  2524   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
  2525     int pop = 0x02;
  2526     if ($src$$reg != FPR1L_enc) {
  2527       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2528       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2529       pop = 0x03;
  2531     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2532   %}
  2534   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2535   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
  2536     int pop = 0xD0 - 1; // -1 since we skip FLD
  2537     if ($src$$reg != FPR1L_enc) {
  2538       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2539       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2540       pop = 0xD8;
  2542     emit_opcode( cbuf, 0xDD );
  2543     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2544   %}
  2547   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
  2548     // load dst in FPR0
  2549     emit_opcode( cbuf, 0xD9 );
  2550     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2551     if ($src$$reg != FPR1L_enc) {
  2552       // fincstp
  2553       emit_opcode (cbuf, 0xD9);
  2554       emit_opcode (cbuf, 0xF7);
  2555       // swap src with FPR1:
  2556       // FXCH FPR1 with src
  2557       emit_opcode(cbuf, 0xD9);
  2558       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2559       // fdecstp
  2560       emit_opcode (cbuf, 0xD9);
  2561       emit_opcode (cbuf, 0xF6);
  2563   %}
  2565   enc_class Push_ModD_encoding(regD src0, regD src1) %{
  2566     MacroAssembler _masm(&cbuf);
  2567     __ subptr(rsp, 8);
  2568     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  2569     __ fld_d(Address(rsp, 0));
  2570     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  2571     __ fld_d(Address(rsp, 0));
  2572   %}
  2574   enc_class Push_ModF_encoding(regF src0, regF src1) %{
  2575     MacroAssembler _masm(&cbuf);
  2576     __ subptr(rsp, 4);
  2577     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
  2578     __ fld_s(Address(rsp, 0));
  2579     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
  2580     __ fld_s(Address(rsp, 0));
  2581   %}
  2583   enc_class Push_ResultD(regD dst) %{
  2584     MacroAssembler _masm(&cbuf);
  2585     __ fstp_d(Address(rsp, 0));
  2586     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  2587     __ addptr(rsp, 8);
  2588   %}
  2590   enc_class Push_ResultF(regF dst, immI d8) %{
  2591     MacroAssembler _masm(&cbuf);
  2592     __ fstp_s(Address(rsp, 0));
  2593     __ movflt($dst$$XMMRegister, Address(rsp, 0));
  2594     __ addptr(rsp, $d8$$constant);
  2595   %}
  2597   enc_class Push_SrcD(regD src) %{
  2598     MacroAssembler _masm(&cbuf);
  2599     __ subptr(rsp, 8);
  2600     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2601     __ fld_d(Address(rsp, 0));
  2602   %}
  2604   enc_class push_stack_temp_qword() %{
  2605     MacroAssembler _masm(&cbuf);
  2606     __ subptr(rsp, 8);
  2607   %}
  2609   enc_class pop_stack_temp_qword() %{
  2610     MacroAssembler _masm(&cbuf);
  2611     __ addptr(rsp, 8);
  2612   %}
  2614   enc_class push_xmm_to_fpr1(regD src) %{
  2615     MacroAssembler _masm(&cbuf);
  2616     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2617     __ fld_d(Address(rsp, 0));
  2618   %}
  2620   // Compute X^Y using Intel's fast hardware instructions, if possible.
  2621   // Otherwise return a NaN.
  2622   enc_class pow_exp_core_encoding %{
  2623     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
  2624     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
  2625     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
  2626     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
  2627     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
  2628     emit_opcode(cbuf,0x1C);
  2629     emit_d8(cbuf,0x24);
  2630     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
  2631     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
  2632     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
  2633     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
  2634     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
  2635     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
  2636     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
  2637     emit_d32(cbuf,0xFFFFF800);
  2638     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
  2639     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
  2640     emit_d32(cbuf,1023);
  2641     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
  2642     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
  2643     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
  2644     emit_rm(cbuf,0x3,0x4,EAX_enc);
  2645     emit_d8(cbuf,20);
  2646     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
  2647     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
  2648     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
  2649     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
  2650     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
  2651     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
  2652     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
  2653     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2654     emit_d32(cbuf,0);
  2655     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
  2656     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  2657   %}
  2659   enc_class Push_Result_Mod_DPR( regDPR src) %{
  2660     if ($src$$reg != FPR1L_enc) {
  2661       // fincstp
  2662       emit_opcode (cbuf, 0xD9);
  2663       emit_opcode (cbuf, 0xF7);
  2664       // FXCH FPR1 with src
  2665       emit_opcode(cbuf, 0xD9);
  2666       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2667       // fdecstp
  2668       emit_opcode (cbuf, 0xD9);
  2669       emit_opcode (cbuf, 0xF6);
  2671     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2672     // // FSTP   FPR$dst$$reg
  2673     // emit_opcode( cbuf, 0xDD );
  2674     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2675   %}
  2677   enc_class fnstsw_sahf_skip_parity() %{
  2678     // fnstsw ax
  2679     emit_opcode( cbuf, 0xDF );
  2680     emit_opcode( cbuf, 0xE0 );
  2681     // sahf
  2682     emit_opcode( cbuf, 0x9E );
  2683     // jnp  ::skip
  2684     emit_opcode( cbuf, 0x7B );
  2685     emit_opcode( cbuf, 0x05 );
  2686   %}
  2688   enc_class emitModDPR() %{
  2689     // fprem must be iterative
  2690     // :: loop
  2691     // fprem
  2692     emit_opcode( cbuf, 0xD9 );
  2693     emit_opcode( cbuf, 0xF8 );
  2694     // wait
  2695     emit_opcode( cbuf, 0x9b );
  2696     // fnstsw ax
  2697     emit_opcode( cbuf, 0xDF );
  2698     emit_opcode( cbuf, 0xE0 );
  2699     // sahf
  2700     emit_opcode( cbuf, 0x9E );
  2701     // jp  ::loop
  2702     emit_opcode( cbuf, 0x0F );
  2703     emit_opcode( cbuf, 0x8A );
  2704     emit_opcode( cbuf, 0xF4 );
  2705     emit_opcode( cbuf, 0xFF );
  2706     emit_opcode( cbuf, 0xFF );
  2707     emit_opcode( cbuf, 0xFF );
  2708   %}
  2710   enc_class fpu_flags() %{
  2711     // fnstsw_ax
  2712     emit_opcode( cbuf, 0xDF);
  2713     emit_opcode( cbuf, 0xE0);
  2714     // test ax,0x0400
  2715     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2716     emit_opcode( cbuf, 0xA9 );
  2717     emit_d16   ( cbuf, 0x0400 );
  2718     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2719     // // test rax,0x0400
  2720     // emit_opcode( cbuf, 0xA9 );
  2721     // emit_d32   ( cbuf, 0x00000400 );
  2722     //
  2723     // jz exit (no unordered comparison)
  2724     emit_opcode( cbuf, 0x74 );
  2725     emit_d8    ( cbuf, 0x02 );
  2726     // mov ah,1 - treat as LT case (set carry flag)
  2727     emit_opcode( cbuf, 0xB4 );
  2728     emit_d8    ( cbuf, 0x01 );
  2729     // sahf
  2730     emit_opcode( cbuf, 0x9E);
  2731   %}
  2733   enc_class cmpF_P6_fixup() %{
  2734     // Fixup the integer flags in case comparison involved a NaN
  2735     //
  2736     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2737     emit_opcode( cbuf, 0x7B );
  2738     emit_d8    ( cbuf, 0x03 );
  2739     // MOV AH,1 - treat as LT case (set carry flag)
  2740     emit_opcode( cbuf, 0xB4 );
  2741     emit_d8    ( cbuf, 0x01 );
  2742     // SAHF
  2743     emit_opcode( cbuf, 0x9E);
  2744     // NOP     // target for branch to avoid branch to branch
  2745     emit_opcode( cbuf, 0x90);
  2746   %}
  2748 //     fnstsw_ax();
  2749 //     sahf();
  2750 //     movl(dst, nan_result);
  2751 //     jcc(Assembler::parity, exit);
  2752 //     movl(dst, less_result);
  2753 //     jcc(Assembler::below, exit);
  2754 //     movl(dst, equal_result);
  2755 //     jcc(Assembler::equal, exit);
  2756 //     movl(dst, greater_result);
  2758 // less_result     =  1;
  2759 // greater_result  = -1;
  2760 // equal_result    = 0;
  2761 // nan_result      = -1;
  2763   enc_class CmpF_Result(eRegI dst) %{
  2764     // fnstsw_ax();
  2765     emit_opcode( cbuf, 0xDF);
  2766     emit_opcode( cbuf, 0xE0);
  2767     // sahf
  2768     emit_opcode( cbuf, 0x9E);
  2769     // movl(dst, nan_result);
  2770     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2771     emit_d32( cbuf, -1 );
  2772     // jcc(Assembler::parity, exit);
  2773     emit_opcode( cbuf, 0x7A );
  2774     emit_d8    ( cbuf, 0x13 );
  2775     // movl(dst, less_result);
  2776     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2777     emit_d32( cbuf, -1 );
  2778     // jcc(Assembler::below, exit);
  2779     emit_opcode( cbuf, 0x72 );
  2780     emit_d8    ( cbuf, 0x0C );
  2781     // movl(dst, equal_result);
  2782     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2783     emit_d32( cbuf, 0 );
  2784     // jcc(Assembler::equal, exit);
  2785     emit_opcode( cbuf, 0x74 );
  2786     emit_d8    ( cbuf, 0x05 );
  2787     // movl(dst, greater_result);
  2788     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2789     emit_d32( cbuf, 1 );
  2790   %}
  2793   // Compare the longs and set flags
  2794   // BROKEN!  Do Not use as-is
  2795   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2796     // CMP    $src1.hi,$src2.hi
  2797     emit_opcode( cbuf, 0x3B );
  2798     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2799     // JNE,s  done
  2800     emit_opcode(cbuf,0x75);
  2801     emit_d8(cbuf, 2 );
  2802     // CMP    $src1.lo,$src2.lo
  2803     emit_opcode( cbuf, 0x3B );
  2804     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2805 // done:
  2806   %}
  2808   enc_class convert_int_long( regL dst, eRegI src ) %{
  2809     // mov $dst.lo,$src
  2810     int dst_encoding = $dst$$reg;
  2811     int src_encoding = $src$$reg;
  2812     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2813     // mov $dst.hi,$src
  2814     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2815     // sar $dst.hi,31
  2816     emit_opcode( cbuf, 0xC1 );
  2817     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2818     emit_d8(cbuf, 0x1F );
  2819   %}
  2821   enc_class convert_long_double( eRegL src ) %{
  2822     // push $src.hi
  2823     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2824     // push $src.lo
  2825     emit_opcode(cbuf, 0x50+$src$$reg  );
  2826     // fild 64-bits at [SP]
  2827     emit_opcode(cbuf,0xdf);
  2828     emit_d8(cbuf, 0x6C);
  2829     emit_d8(cbuf, 0x24);
  2830     emit_d8(cbuf, 0x00);
  2831     // pop stack
  2832     emit_opcode(cbuf, 0x83); // add  SP, #8
  2833     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2834     emit_d8(cbuf, 0x8);
  2835   %}
  2837   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2838     // IMUL   EDX:EAX,$src1
  2839     emit_opcode( cbuf, 0xF7 );
  2840     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2841     // SAR    EDX,$cnt-32
  2842     int shift_count = ((int)$cnt$$constant) - 32;
  2843     if (shift_count > 0) {
  2844       emit_opcode(cbuf, 0xC1);
  2845       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2846       emit_d8(cbuf, shift_count);
  2848   %}
  2850   // this version doesn't have add sp, 8
  2851   enc_class convert_long_double2( eRegL src ) %{
  2852     // push $src.hi
  2853     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2854     // push $src.lo
  2855     emit_opcode(cbuf, 0x50+$src$$reg  );
  2856     // fild 64-bits at [SP]
  2857     emit_opcode(cbuf,0xdf);
  2858     emit_d8(cbuf, 0x6C);
  2859     emit_d8(cbuf, 0x24);
  2860     emit_d8(cbuf, 0x00);
  2861   %}
  2863   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2864     // Basic idea: long = (long)int * (long)int
  2865     // IMUL EDX:EAX, src
  2866     emit_opcode( cbuf, 0xF7 );
  2867     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2868   %}
  2870   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2871     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2872     // MUL EDX:EAX, src
  2873     emit_opcode( cbuf, 0xF7 );
  2874     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2875   %}
  2877   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  2878     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2879     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2880     // MOV    $tmp,$src.lo
  2881     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2882     // IMUL   $tmp,EDX
  2883     emit_opcode( cbuf, 0x0F );
  2884     emit_opcode( cbuf, 0xAF );
  2885     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2886     // MOV    EDX,$src.hi
  2887     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2888     // IMUL   EDX,EAX
  2889     emit_opcode( cbuf, 0x0F );
  2890     emit_opcode( cbuf, 0xAF );
  2891     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2892     // ADD    $tmp,EDX
  2893     emit_opcode( cbuf, 0x03 );
  2894     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2895     // MUL   EDX:EAX,$src.lo
  2896     emit_opcode( cbuf, 0xF7 );
  2897     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  2898     // ADD    EDX,ESI
  2899     emit_opcode( cbuf, 0x03 );
  2900     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  2901   %}
  2903   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  2904     // Basic idea: lo(result) = lo(src * y_lo)
  2905     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  2906     // IMUL   $tmp,EDX,$src
  2907     emit_opcode( cbuf, 0x6B );
  2908     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2909     emit_d8( cbuf, (int)$src$$constant );
  2910     // MOV    EDX,$src
  2911     emit_opcode(cbuf, 0xB8 + EDX_enc);
  2912     emit_d32( cbuf, (int)$src$$constant );
  2913     // MUL   EDX:EAX,EDX
  2914     emit_opcode( cbuf, 0xF7 );
  2915     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  2916     // ADD    EDX,ESI
  2917     emit_opcode( cbuf, 0x03 );
  2918     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  2919   %}
  2921   enc_class long_div( eRegL src1, eRegL src2 ) %{
  2922     // PUSH src1.hi
  2923     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2924     // PUSH src1.lo
  2925     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2926     // PUSH src2.hi
  2927     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2928     // PUSH src2.lo
  2929     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2930     // CALL directly to the runtime
  2931     cbuf.set_insts_mark();
  2932     emit_opcode(cbuf,0xE8);       // Call into runtime
  2933     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2934     // Restore stack
  2935     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2936     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2937     emit_d8(cbuf, 4*4);
  2938   %}
  2940   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  2941     // PUSH src1.hi
  2942     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2943     // PUSH src1.lo
  2944     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2945     // PUSH src2.hi
  2946     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2947     // PUSH src2.lo
  2948     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2949     // CALL directly to the runtime
  2950     cbuf.set_insts_mark();
  2951     emit_opcode(cbuf,0xE8);       // Call into runtime
  2952     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2953     // Restore stack
  2954     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2955     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2956     emit_d8(cbuf, 4*4);
  2957   %}
  2959   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  2960     // MOV   $tmp,$src.lo
  2961     emit_opcode(cbuf, 0x8B);
  2962     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2963     // OR    $tmp,$src.hi
  2964     emit_opcode(cbuf, 0x0B);
  2965     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2966   %}
  2968   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  2969     // CMP    $src1.lo,$src2.lo
  2970     emit_opcode( cbuf, 0x3B );
  2971     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2972     // JNE,s  skip
  2973     emit_cc(cbuf, 0x70, 0x5);
  2974     emit_d8(cbuf,2);
  2975     // CMP    $src1.hi,$src2.hi
  2976     emit_opcode( cbuf, 0x3B );
  2977     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2978   %}
  2980   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  2981     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  2982     emit_opcode( cbuf, 0x3B );
  2983     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2984     // MOV    $tmp,$src1.hi
  2985     emit_opcode( cbuf, 0x8B );
  2986     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  2987     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  2988     emit_opcode( cbuf, 0x1B );
  2989     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  2990   %}
  2992   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  2993     // XOR    $tmp,$tmp
  2994     emit_opcode(cbuf,0x33);  // XOR
  2995     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  2996     // CMP    $tmp,$src.lo
  2997     emit_opcode( cbuf, 0x3B );
  2998     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  2999     // SBB    $tmp,$src.hi
  3000     emit_opcode( cbuf, 0x1B );
  3001     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  3002   %}
  3004  // Sniff, sniff... smells like Gnu Superoptimizer
  3005   enc_class neg_long( eRegL dst ) %{
  3006     emit_opcode(cbuf,0xF7);    // NEG hi
  3007     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3008     emit_opcode(cbuf,0xF7);    // NEG lo
  3009     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  3010     emit_opcode(cbuf,0x83);    // SBB hi,0
  3011     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3012     emit_d8    (cbuf,0 );
  3013   %}
  3016   // Because the transitions from emitted code to the runtime
  3017   // monitorenter/exit helper stubs are so slow it's critical that
  3018   // we inline both the stack-locking fast-path and the inflated fast path.
  3019   //
  3020   // See also: cmpFastLock and cmpFastUnlock.
  3021   //
  3022   // What follows is a specialized inline transliteration of the code
  3023   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  3024   // another option would be to emit TrySlowEnter and TrySlowExit methods
  3025   // at startup-time.  These methods would accept arguments as
  3026   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  3027   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  3028   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  3029   // In practice, however, the # of lock sites is bounded and is usually small.
  3030   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  3031   // if the processor uses simple bimodal branch predictors keyed by EIP
  3032   // Since the helper routines would be called from multiple synchronization
  3033   // sites.
  3034   //
  3035   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  3036   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  3037   // to those specialized methods.  That'd give us a mostly platform-independent
  3038   // implementation that the JITs could optimize and inline at their pleasure.
  3039   // Done correctly, the only time we'd need to cross to native could would be
  3040   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  3041   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  3042   // (b) explicit barriers or fence operations.
  3043   //
  3044   // TODO:
  3045   //
  3046   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  3047   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  3048   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  3049   //    the lock operators would typically be faster than reifying Self.
  3050   //
  3051   // *  Ideally I'd define the primitives as:
  3052   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  3053   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  3054   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  3055   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  3056   //    Furthermore the register assignments are overconstrained, possibly resulting in
  3057   //    sub-optimal code near the synchronization site.
  3058   //
  3059   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  3060   //    Alternately, use a better sp-proximity test.
  3061   //
  3062   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  3063   //    Either one is sufficient to uniquely identify a thread.
  3064   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  3065   //
  3066   // *  Intrinsify notify() and notifyAll() for the common cases where the
  3067   //    object is locked by the calling thread but the waitlist is empty.
  3068   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  3069   //
  3070   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  3071   //    But beware of excessive branch density on AMD Opterons.
  3072   //
  3073   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  3074   //    or failure of the fast-path.  If the fast-path fails then we pass
  3075   //    control to the slow-path, typically in C.  In Fast_Lock and
  3076   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3077   //    will emit a conditional branch immediately after the node.
  3078   //    So we have branches to branches and lots of ICC.ZF games.
  3079   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3080   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3081   //    will drop through the node.  ICC.ZF is undefined at exit.
  3082   //    In the case of failure, the node will branch directly to the
  3083   //    FailureLabel
  3086   // obj: object to lock
  3087   // box: on-stack box address (displaced header location) - KILLED
  3088   // rax,: tmp -- KILLED
  3089   // scr: tmp -- KILLED
  3090   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3092     Register objReg = as_Register($obj$$reg);
  3093     Register boxReg = as_Register($box$$reg);
  3094     Register tmpReg = as_Register($tmp$$reg);
  3095     Register scrReg = as_Register($scr$$reg);
  3097     // Ensure the register assignents are disjoint
  3098     guarantee (objReg != boxReg, "") ;
  3099     guarantee (objReg != tmpReg, "") ;
  3100     guarantee (objReg != scrReg, "") ;
  3101     guarantee (boxReg != tmpReg, "") ;
  3102     guarantee (boxReg != scrReg, "") ;
  3103     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3105     MacroAssembler masm(&cbuf);
  3107     if (_counters != NULL) {
  3108       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3110     if (EmitSync & 1) {
  3111         // set box->dhw = unused_mark (3)
  3112         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3113         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3114         masm.cmpptr (rsp, (int32_t)0) ;                        
  3115     } else 
  3116     if (EmitSync & 2) { 
  3117         Label DONE_LABEL ;           
  3118         if (UseBiasedLocking) {
  3119            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3120            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3123         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3124         masm.orptr (tmpReg, 0x1);
  3125         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3126         if (os::is_MP()) { masm.lock();  }
  3127         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3128         masm.jcc(Assembler::equal, DONE_LABEL);
  3129         // Recursive locking
  3130         masm.subptr(tmpReg, rsp);
  3131         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3132         masm.movptr(Address(boxReg, 0), tmpReg);
  3133         masm.bind(DONE_LABEL) ; 
  3134     } else {  
  3135       // Possible cases that we'll encounter in fast_lock 
  3136       // ------------------------------------------------
  3137       // * Inflated
  3138       //    -- unlocked
  3139       //    -- Locked
  3140       //       = by self
  3141       //       = by other
  3142       // * biased
  3143       //    -- by Self
  3144       //    -- by other
  3145       // * neutral
  3146       // * stack-locked
  3147       //    -- by self
  3148       //       = sp-proximity test hits
  3149       //       = sp-proximity test generates false-negative
  3150       //    -- by other
  3151       //
  3153       Label IsInflated, DONE_LABEL, PopDone ;
  3155       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3156       // order to reduce the number of conditional branches in the most common cases.
  3157       // Beware -- there's a subtle invariant that fetch of the markword
  3158       // at [FETCH], below, will never observe a biased encoding (*101b).
  3159       // If this invariant is not held we risk exclusion (safety) failure.
  3160       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3161         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3164       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3165       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3166       masm.jccb  (Assembler::notZero, IsInflated) ;
  3168       // Attempt stack-locking ...
  3169       masm.orptr (tmpReg, 0x1);
  3170       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3171       if (os::is_MP()) { masm.lock();  }
  3172       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3173       if (_counters != NULL) {
  3174         masm.cond_inc32(Assembler::equal,
  3175                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3177       masm.jccb (Assembler::equal, DONE_LABEL);
  3179       // Recursive locking
  3180       masm.subptr(tmpReg, rsp);
  3181       masm.andptr(tmpReg, 0xFFFFF003 );
  3182       masm.movptr(Address(boxReg, 0), tmpReg);
  3183       if (_counters != NULL) {
  3184         masm.cond_inc32(Assembler::equal,
  3185                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3187       masm.jmp  (DONE_LABEL) ;
  3189       masm.bind (IsInflated) ;
  3191       // The object is inflated.
  3192       //
  3193       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3194       //   Use markOopDesc::monitor_value instead of "2".
  3195       //   use markOop::unused_mark() instead of "3".
  3196       // The tmpReg value is an objectMonitor reference ORed with
  3197       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3198       // objectmonitor pointer by masking off the "2" bit or we can just
  3199       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3200       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3201       //
  3202       // I use the latter as it avoids AGI stalls.
  3203       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3204       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3205       //
  3206       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3208       // boxReg refers to the on-stack BasicLock in the current frame.
  3209       // We'd like to write:
  3210       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3211       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3212       // additional latency as we have another ST in the store buffer that must drain.
  3214       if (EmitSync & 8192) { 
  3215          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3216          masm.get_thread (scrReg) ; 
  3217          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3218          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3219          if (os::is_MP()) { masm.lock(); } 
  3220          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3221       } else 
  3222       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3223          masm.movptr(scrReg, boxReg) ; 
  3224          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3226          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3227          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3228             // prefetchw [eax + Offset(_owner)-2]
  3229             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3232          if ((EmitSync & 64) == 0) {
  3233            // Optimistic form: consider XORL tmpReg,tmpReg
  3234            masm.movptr(tmpReg, NULL_WORD) ; 
  3235          } else { 
  3236            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3237            // Test-And-CAS instead of CAS
  3238            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3239            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3240            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3243          // Appears unlocked - try to swing _owner from null to non-null.
  3244          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3245          // to CAS the register containing Self into m->Owner.
  3246          // But we don't have enough registers, so instead we can either try to CAS
  3247          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3248          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3249          // (rsp or the address of the box) into  m->owner is harmless.
  3250          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3251          if (os::is_MP()) { masm.lock();  }
  3252          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3253          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3254          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3255          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3256          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3257          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3259          // If the CAS fails we can either retry or pass control to the slow-path.  
  3260          // We use the latter tactic.  
  3261          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3262          // If the CAS was successful ...
  3263          //   Self has acquired the lock
  3264          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3265          // Intentional fall-through into DONE_LABEL ...
  3266       } else {
  3267          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3268          masm.movptr(boxReg, tmpReg) ; 
  3270          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3271          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3272             // prefetchw [eax + Offset(_owner)-2]
  3273             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3276          if ((EmitSync & 64) == 0) {
  3277            // Optimistic form
  3278            masm.xorptr  (tmpReg, tmpReg) ; 
  3279          } else { 
  3280            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3281            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3282            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3283            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3286          // Appears unlocked - try to swing _owner from null to non-null.
  3287          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3288          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3289          masm.get_thread (scrReg) ;
  3290          if (os::is_MP()) { masm.lock(); }
  3291          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3293          // If the CAS fails we can either retry or pass control to the slow-path.
  3294          // We use the latter tactic.
  3295          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3296          // If the CAS was successful ...
  3297          //   Self has acquired the lock
  3298          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3299          // Intentional fall-through into DONE_LABEL ...
  3302       // DONE_LABEL is a hot target - we'd really like to place it at the
  3303       // start of cache line by padding with NOPs.
  3304       // See the AMD and Intel software optimization manuals for the
  3305       // most efficient "long" NOP encodings.
  3306       // Unfortunately none of our alignment mechanisms suffice.
  3307       masm.bind(DONE_LABEL);
  3309       // Avoid branch-to-branch on AMD processors
  3310       // This appears to be superstition.
  3311       if (EmitSync & 32) masm.nop() ;
  3314       // At DONE_LABEL the icc ZFlag is set as follows ...
  3315       // Fast_Unlock uses the same protocol.
  3316       // ZFlag == 1 -> Success
  3317       // ZFlag == 0 -> Failure - force control through the slow-path
  3319   %}
  3321   // obj: object to unlock
  3322   // box: box address (displaced header location), killed.  Must be EAX.
  3323   // rbx,: killed tmp; cannot be obj nor box.
  3324   //
  3325   // Some commentary on balanced locking:
  3326   //
  3327   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3328   // Methods that don't have provably balanced locking are forced to run in the
  3329   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3330   // The interpreter provides two properties:
  3331   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3332   //      objects acquired the current activation (frame).  Recall that the
  3333   //      interpreter maintains an on-stack list of locks currently held by
  3334   //      a frame.
  3335   // I2:  If a method attempts to unlock an object that is not held by the
  3336   //      the frame the interpreter throws IMSX.
  3337   //
  3338   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3339   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3340   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3341   // is still locked by A().
  3342   //
  3343   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3344   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3345   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3346   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3348   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3350     Register objReg = as_Register($obj$$reg);
  3351     Register boxReg = as_Register($box$$reg);
  3352     Register tmpReg = as_Register($tmp$$reg);
  3354     guarantee (objReg != boxReg, "") ;
  3355     guarantee (objReg != tmpReg, "") ;
  3356     guarantee (boxReg != tmpReg, "") ;
  3357     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3358     MacroAssembler masm(&cbuf);
  3360     if (EmitSync & 4) {
  3361       // Disable - inhibit all inlining.  Force control through the slow-path
  3362       masm.cmpptr (rsp, 0) ; 
  3363     } else 
  3364     if (EmitSync & 8) {
  3365       Label DONE_LABEL ;
  3366       if (UseBiasedLocking) {
  3367          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3369       // classic stack-locking code ...
  3370       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3371       masm.testptr(tmpReg, tmpReg) ;
  3372       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3373       if (os::is_MP()) { masm.lock(); }
  3374       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3375       masm.bind(DONE_LABEL);
  3376     } else {
  3377       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3379       // Critically, the biased locking test must have precedence over
  3380       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3381       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3382          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3385       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3386       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3387       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3389       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3390       masm.jccb  (Assembler::zero, Stacked) ;
  3392       masm.bind  (Inflated) ;
  3393       // It's inflated.
  3394       // Despite our balanced locking property we still check that m->_owner == Self
  3395       // as java routines or native JNI code called by this thread might
  3396       // have released the lock.
  3397       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3398       // state in _succ so we can avoid fetching EntryList|cxq.
  3399       //
  3400       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3401       // such as recursive enter and exit -- but we have to be wary of
  3402       // I$ bloat, T$ effects and BP$ effects.
  3403       //
  3404       // If there's no contention try a 1-0 exit.  That is, exit without
  3405       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3406       // we detect and recover from the race that the 1-0 exit admits.
  3407       //
  3408       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3409       // before it STs null into _owner, releasing the lock.  Updates
  3410       // to data protected by the critical section must be visible before
  3411       // we drop the lock (and thus before any other thread could acquire
  3412       // the lock and observe the fields protected by the lock).
  3413       // IA32's memory-model is SPO, so STs are ordered with respect to
  3414       // each other and there's no need for an explicit barrier (fence).
  3415       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3417       masm.get_thread (boxReg) ;
  3418       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3419         // prefetchw [ebx + Offset(_owner)-2]
  3420         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3423       // Note that we could employ various encoding schemes to reduce
  3424       // the number of loads below (currently 4) to just 2 or 3.
  3425       // Refer to the comments in synchronizer.cpp.
  3426       // In practice the chain of fetches doesn't seem to impact performance, however.
  3427       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3428          // Attempt to reduce branch density - AMD's branch predictor.
  3429          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3430          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3431          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3432          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3433          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3434          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3435          masm.jmpb  (DONE_LABEL) ; 
  3436       } else { 
  3437          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3438          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3439          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3440          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3441          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3442          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3443          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3444          masm.jmpb  (DONE_LABEL) ; 
  3447       // The Following code fragment (EmitSync & 65536) improves the performance of
  3448       // contended applications and contended synchronization microbenchmarks.
  3449       // Unfortunately the emission of the code - even though not executed - causes regressions
  3450       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3451       // with an equal number of never-executed NOPs results in the same regression.
  3452       // We leave it off by default.
  3454       if ((EmitSync & 65536) != 0) {
  3455          Label LSuccess, LGoSlowPath ;
  3457          masm.bind  (CheckSucc) ;
  3459          // Optional pre-test ... it's safe to elide this
  3460          if ((EmitSync & 16) == 0) { 
  3461             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3462             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3465          // We have a classic Dekker-style idiom:
  3466          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3467          // There are a number of ways to implement the barrier:
  3468          // (1) lock:andl &m->_owner, 0
  3469          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3470          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3471          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3472          // (2) If supported, an explicit MFENCE is appealing.
  3473          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3474          //     particularly if the write-buffer is full as might be the case if
  3475          //     if stores closely precede the fence or fence-equivalent instruction.
  3476          //     In more modern implementations MFENCE appears faster, however.
  3477          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3478          //     The $lines underlying the top-of-stack should be in M-state.
  3479          //     The locked add instruction is serializing, of course.
  3480          // (4) Use xchg, which is serializing
  3481          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3482          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3483          //     The integer condition codes will tell us if succ was 0.
  3484          //     Since _succ and _owner should reside in the same $line and
  3485          //     we just stored into _owner, it's likely that the $line
  3486          //     remains in M-state for the lock:orl.
  3487          //
  3488          // We currently use (3), although it's likely that switching to (2)
  3489          // is correct for the future.
  3491          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3492          if (os::is_MP()) { 
  3493             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3494               masm.mfence();
  3495             } else { 
  3496               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3499          // Ratify _succ remains non-null
  3500          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3501          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3503          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3504          if (os::is_MP()) { masm.lock(); }
  3505          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3506          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3507          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3508          // Now install Self over rsp.  This is safe as we're transitioning from
  3509          // non-null to non=null
  3510          masm.get_thread (boxReg) ;
  3511          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3512          // Intentional fall-through into LGoSlowPath ...
  3514          masm.bind  (LGoSlowPath) ; 
  3515          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3516          masm.jmpb  (DONE_LABEL) ; 
  3518          masm.bind  (LSuccess) ; 
  3519          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3520          masm.jmpb  (DONE_LABEL) ; 
  3523       masm.bind (Stacked) ;
  3524       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3525       // It must be stack-locked.
  3526       // Try to reset the header to displaced header.
  3527       // The "box" value on the stack is stable, so we can reload
  3528       // and be assured we observe the same value as above.
  3529       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3530       if (os::is_MP()) {   masm.lock();    }
  3531       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3532       // Intention fall-thru into DONE_LABEL
  3535       // DONE_LABEL is a hot target - we'd really like to place it at the
  3536       // start of cache line by padding with NOPs.
  3537       // See the AMD and Intel software optimization manuals for the
  3538       // most efficient "long" NOP encodings.
  3539       // Unfortunately none of our alignment mechanisms suffice.
  3540       if ((EmitSync & 65536) == 0) {
  3541          masm.bind (CheckSucc) ;
  3543       masm.bind(DONE_LABEL);
  3545       // Avoid branch to branch on AMD processors
  3546       if (EmitSync & 32768) { masm.nop() ; }
  3548   %}
  3551   enc_class enc_pop_rdx() %{
  3552     emit_opcode(cbuf,0x5A);
  3553   %}
  3555   enc_class enc_rethrow() %{
  3556     cbuf.set_insts_mark();
  3557     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3558     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  3559                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3560   %}
  3563   // Convert a double to an int.  Java semantics require we do complex
  3564   // manglelations in the corner cases.  So we set the rounding mode to
  3565   // 'zero', store the darned double down as an int, and reset the
  3566   // rounding mode to 'nearest'.  The hardware throws an exception which
  3567   // patches up the correct value directly to the stack.
  3568   enc_class DPR2I_encoding( regDPR src ) %{
  3569     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3570     // exceptions here, so that a NAN or other corner-case value will
  3571     // thrown an exception (but normal values get converted at full speed).
  3572     // However, I2C adapters and other float-stack manglers leave pending
  3573     // invalid-op exceptions hanging.  We would have to clear them before
  3574     // enabling them and that is more expensive than just testing for the
  3575     // invalid value Intel stores down in the corner cases.
  3576     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3577     emit_opcode(cbuf,0x2D);
  3578     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3579     // Allocate a word
  3580     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3581     emit_opcode(cbuf,0xEC);
  3582     emit_d8(cbuf,0x04);
  3583     // Encoding assumes a double has been pushed into FPR0.
  3584     // Store down the double as an int, popping the FPU stack
  3585     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3586     emit_opcode(cbuf,0x1C);
  3587     emit_d8(cbuf,0x24);
  3588     // Restore the rounding mode; mask the exception
  3589     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3590     emit_opcode(cbuf,0x2D);
  3591     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3592         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3593         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3595     // Load the converted int; adjust CPU stack
  3596     emit_opcode(cbuf,0x58);       // POP EAX
  3597     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3598     emit_d32   (cbuf,0x80000000); //         0x80000000
  3599     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3600     emit_d8    (cbuf,0x07);       // Size of slow_call
  3601     // Push src onto stack slow-path
  3602     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3603     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3604     // CALL directly to the runtime
  3605     cbuf.set_insts_mark();
  3606     emit_opcode(cbuf,0xE8);       // Call into runtime
  3607     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3608     // Carry on here...
  3609   %}
  3611   enc_class DPR2L_encoding( regDPR src ) %{
  3612     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3613     emit_opcode(cbuf,0x2D);
  3614     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3615     // Allocate a word
  3616     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3617     emit_opcode(cbuf,0xEC);
  3618     emit_d8(cbuf,0x08);
  3619     // Encoding assumes a double has been pushed into FPR0.
  3620     // Store down the double as a long, popping the FPU stack
  3621     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3622     emit_opcode(cbuf,0x3C);
  3623     emit_d8(cbuf,0x24);
  3624     // Restore the rounding mode; mask the exception
  3625     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3626     emit_opcode(cbuf,0x2D);
  3627     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3628         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3629         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3631     // Load the converted int; adjust CPU stack
  3632     emit_opcode(cbuf,0x58);       // POP EAX
  3633     emit_opcode(cbuf,0x5A);       // POP EDX
  3634     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3635     emit_d8    (cbuf,0xFA);       // rdx
  3636     emit_d32   (cbuf,0x80000000); //         0x80000000
  3637     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3638     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3639     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3640     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3641     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3642     emit_d8    (cbuf,0x07);       // Size of slow_call
  3643     // Push src onto stack slow-path
  3644     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3645     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3646     // CALL directly to the runtime
  3647     cbuf.set_insts_mark();
  3648     emit_opcode(cbuf,0xE8);       // Call into runtime
  3649     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3650     // Carry on here...
  3651   %}
  3653   enc_class FMul_ST_reg( eRegFPR src1 ) %{
  3654     // Operand was loaded from memory into fp ST (stack top)
  3655     // FMUL   ST,$src  /* D8 C8+i */
  3656     emit_opcode(cbuf, 0xD8);
  3657     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  3658   %}
  3660   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
  3661     // FADDP  ST,src2  /* D8 C0+i */
  3662     emit_opcode(cbuf, 0xD8);
  3663     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3664     //could use FADDP  src2,fpST  /* DE C0+i */
  3665   %}
  3667   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
  3668     // FADDP  src2,ST  /* DE C0+i */
  3669     emit_opcode(cbuf, 0xDE);
  3670     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3671   %}
  3673   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
  3674     // Operand has been loaded into fp ST (stack top)
  3675       // FSUB   ST,$src1
  3676       emit_opcode(cbuf, 0xD8);
  3677       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  3679       // FDIV
  3680       emit_opcode(cbuf, 0xD8);
  3681       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  3682   %}
  3684   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
  3685     // Operand was loaded from memory into fp ST (stack top)
  3686     // FADD   ST,$src  /* D8 C0+i */
  3687     emit_opcode(cbuf, 0xD8);
  3688     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3690     // FMUL  ST,src2  /* D8 C*+i */
  3691     emit_opcode(cbuf, 0xD8);
  3692     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3693   %}
  3696   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
  3697     // Operand was loaded from memory into fp ST (stack top)
  3698     // FADD   ST,$src  /* D8 C0+i */
  3699     emit_opcode(cbuf, 0xD8);
  3700     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3702     // FMULP  src2,ST  /* DE C8+i */
  3703     emit_opcode(cbuf, 0xDE);
  3704     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3705   %}
  3707   // Atomically load the volatile long
  3708   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  3709     emit_opcode(cbuf,0xDF);
  3710     int rm_byte_opcode = 0x05;
  3711     int base     = $mem$$base;
  3712     int index    = $mem$$index;
  3713     int scale    = $mem$$scale;
  3714     int displace = $mem$$disp;
  3715     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  3716     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  3717     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  3718   %}
  3720   // Volatile Store Long.  Must be atomic, so move it into
  3721   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  3722   // target address before the store (for null-ptr checks)
  3723   // so the memory operand is used twice in the encoding.
  3724   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  3725     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  3726     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  3727     emit_opcode(cbuf,0xDF);
  3728     int rm_byte_opcode = 0x07;
  3729     int base     = $mem$$base;
  3730     int index    = $mem$$index;
  3731     int scale    = $mem$$scale;
  3732     int displace = $mem$$disp;
  3733     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  3734     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  3735   %}
  3737   // Safepoint Poll.  This polls the safepoint page, and causes an
  3738   // exception if it is not readable. Unfortunately, it kills the condition code
  3739   // in the process
  3740   // We current use TESTL [spp],EDI
  3741   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  3743   enc_class Safepoint_Poll() %{
  3744     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  3745     emit_opcode(cbuf,0x85);
  3746     emit_rm (cbuf, 0x0, 0x7, 0x5);
  3747     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  3748   %}
  3749 %}
  3752 //----------FRAME--------------------------------------------------------------
  3753 // Definition of frame structure and management information.
  3754 //
  3755 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3756 //                             |   (to get allocators register number
  3757 //  G  Owned by    |        |  v    add OptoReg::stack0())
  3758 //  r   CALLER     |        |
  3759 //  o     |        +--------+      pad to even-align allocators stack-slot
  3760 //  w     V        |  pad0  |        numbers; owned by CALLER
  3761 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3762 //  h     ^        |   in   |  5
  3763 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3764 //  |     |        |        |  3
  3765 //  |     |        +--------+
  3766 //  V     |        | old out|      Empty on Intel, window on Sparc
  3767 //        |    old |preserve|      Must be even aligned.
  3768 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  3769 //        |        |   in   |  3   area for Intel ret address
  3770 //     Owned by    |preserve|      Empty on Sparc.
  3771 //       SELF      +--------+
  3772 //        |        |  pad2  |  2   pad to align old SP
  3773 //        |        +--------+  1
  3774 //        |        | locks  |  0
  3775 //        |        +--------+----> OptoReg::stack0(), even aligned
  3776 //        |        |  pad1  | 11   pad to align new SP
  3777 //        |        +--------+
  3778 //        |        |        | 10
  3779 //        |        | spills |  9   spills
  3780 //        V        |        |  8   (pad0 slot for callee)
  3781 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3782 //        ^        |  out   |  7
  3783 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3784 //     Owned by    +--------+
  3785 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3786 //        |    new |preserve|      Must be even-aligned.
  3787 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3788 //        |        |        |
  3789 //
  3790 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3791 //         known from SELF's arguments and the Java calling convention.
  3792 //         Region 6-7 is determined per call site.
  3793 // Note 2: If the calling convention leaves holes in the incoming argument
  3794 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3795 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3796 //         incoming area, as the Java calling convention is completely under
  3797 //         the control of the AD file.  Doubles can be sorted and packed to
  3798 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3799 //         varargs C calling conventions.
  3800 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3801 //         even aligned with pad0 as needed.
  3802 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3803 //         region 6-11 is even aligned; it may be padded out more so that
  3804 //         the region from SP to FP meets the minimum stack alignment.
  3806 frame %{
  3807   // What direction does stack grow in (assumed to be same for C & Java)
  3808   stack_direction(TOWARDS_LOW);
  3810   // These three registers define part of the calling convention
  3811   // between compiled code and the interpreter.
  3812   inline_cache_reg(EAX);                // Inline Cache Register
  3813   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  3815   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3816   cisc_spilling_operand_name(indOffset32);
  3818   // Number of stack slots consumed by locking an object
  3819   sync_stack_slots(1);
  3821   // Compiled code's Frame Pointer
  3822   frame_pointer(ESP);
  3823   // Interpreter stores its frame pointer in a register which is
  3824   // stored to the stack by I2CAdaptors.
  3825   // I2CAdaptors convert from interpreted java to compiled java.
  3826   interpreter_frame_pointer(EBP);
  3828   // Stack alignment requirement
  3829   // Alignment size in bytes (128-bit -> 16 bytes)
  3830   stack_alignment(StackAlignmentInBytes);
  3832   // Number of stack slots between incoming argument block and the start of
  3833   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3834   // EPILOG must remove this many slots.  Intel needs one slot for
  3835   // return address and one for rbp, (must save rbp)
  3836   in_preserve_stack_slots(2+VerifyStackAtCalls);
  3838   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3839   // for calls to C.  Supports the var-args backing area for register parms.
  3840   varargs_C_out_slots_killed(0);
  3842   // The after-PROLOG location of the return address.  Location of
  3843   // return address specifies a type (REG or STACK) and a number
  3844   // representing the register number (i.e. - use a register name) or
  3845   // stack slot.
  3846   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3847   // Otherwise, it is above the locks and verification slot and alignment word
  3848   return_addr(STACK - 1 +
  3849               round_to(1+VerifyStackAtCalls+
  3850               Compile::current()->fixed_slots(),
  3851               (StackAlignmentInBytes/wordSize)));
  3853   // Body of function which returns an integer array locating
  3854   // arguments either in registers or in stack slots.  Passed an array
  3855   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3856   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3857   // arguments for a CALLEE.  Incoming stack arguments are
  3858   // automatically biased by the preserve_stack_slots field above.
  3859   calling_convention %{
  3860     // No difference between ingoing/outgoing just pass false
  3861     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3862   %}
  3865   // Body of function which returns an integer array locating
  3866   // arguments either in registers or in stack slots.  Passed an array
  3867   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3868   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3869   // arguments for a CALLEE.  Incoming stack arguments are
  3870   // automatically biased by the preserve_stack_slots field above.
  3871   c_calling_convention %{
  3872     // This is obviously always outgoing
  3873     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3874   %}
  3876   // Location of C & interpreter return values
  3877   c_return_value %{
  3878     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3879     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3880     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3882     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  3883     // that C functions return float and double results in XMM0.
  3884     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3885       return OptoRegPair(XMM0b_num,XMM0a_num);
  3886     if( ideal_reg == Op_RegF && UseSSE>=2 )
  3887       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  3889     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3890   %}
  3892   // Location of return values
  3893   return_value %{
  3894     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3895     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3896     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3897     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3898       return OptoRegPair(XMM0b_num,XMM0a_num);
  3899     if( ideal_reg == Op_RegF && UseSSE>=1 )
  3900       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  3901     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3902   %}
  3904 %}
  3906 //----------ATTRIBUTES---------------------------------------------------------
  3907 //----------Operand Attributes-------------------------------------------------
  3908 op_attrib op_cost(0);        // Required cost attribute
  3910 //----------Instruction Attributes---------------------------------------------
  3911 ins_attrib ins_cost(100);       // Required cost attribute
  3912 ins_attrib ins_size(8);         // Required size attribute (in bits)
  3913 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3914                                 // non-matching short branch variant of some
  3915                                                             // long branch?
  3916 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  3917                                 // specifies the alignment that some part of the instruction (not
  3918                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3919                                 // function must be provided for the instruction
  3921 //----------OPERANDS-----------------------------------------------------------
  3922 // Operand definitions must precede instruction definitions for correct parsing
  3923 // in the ADLC because operands constitute user defined types which are used in
  3924 // instruction definitions.
  3926 //----------Simple Operands----------------------------------------------------
  3927 // Immediate Operands
  3928 // Integer Immediate
  3929 operand immI() %{
  3930   match(ConI);
  3932   op_cost(10);
  3933   format %{ %}
  3934   interface(CONST_INTER);
  3935 %}
  3937 // Constant for test vs zero
  3938 operand immI0() %{
  3939   predicate(n->get_int() == 0);
  3940   match(ConI);
  3942   op_cost(0);
  3943   format %{ %}
  3944   interface(CONST_INTER);
  3945 %}
  3947 // Constant for increment
  3948 operand immI1() %{
  3949   predicate(n->get_int() == 1);
  3950   match(ConI);
  3952   op_cost(0);
  3953   format %{ %}
  3954   interface(CONST_INTER);
  3955 %}
  3957 // Constant for decrement
  3958 operand immI_M1() %{
  3959   predicate(n->get_int() == -1);
  3960   match(ConI);
  3962   op_cost(0);
  3963   format %{ %}
  3964   interface(CONST_INTER);
  3965 %}
  3967 // Valid scale values for addressing modes
  3968 operand immI2() %{
  3969   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3970   match(ConI);
  3972   format %{ %}
  3973   interface(CONST_INTER);
  3974 %}
  3976 operand immI8() %{
  3977   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3978   match(ConI);
  3980   op_cost(5);
  3981   format %{ %}
  3982   interface(CONST_INTER);
  3983 %}
  3985 operand immI16() %{
  3986   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3987   match(ConI);
  3989   op_cost(10);
  3990   format %{ %}
  3991   interface(CONST_INTER);
  3992 %}
  3994 // Constant for long shifts
  3995 operand immI_32() %{
  3996   predicate( n->get_int() == 32 );
  3997   match(ConI);
  3999   op_cost(0);
  4000   format %{ %}
  4001   interface(CONST_INTER);
  4002 %}
  4004 operand immI_1_31() %{
  4005   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  4006   match(ConI);
  4008   op_cost(0);
  4009   format %{ %}
  4010   interface(CONST_INTER);
  4011 %}
  4013 operand immI_32_63() %{
  4014   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  4015   match(ConI);
  4016   op_cost(0);
  4018   format %{ %}
  4019   interface(CONST_INTER);
  4020 %}
  4022 operand immI_1() %{
  4023   predicate( n->get_int() == 1 );
  4024   match(ConI);
  4026   op_cost(0);
  4027   format %{ %}
  4028   interface(CONST_INTER);
  4029 %}
  4031 operand immI_2() %{
  4032   predicate( n->get_int() == 2 );
  4033   match(ConI);
  4035   op_cost(0);
  4036   format %{ %}
  4037   interface(CONST_INTER);
  4038 %}
  4040 operand immI_3() %{
  4041   predicate( n->get_int() == 3 );
  4042   match(ConI);
  4044   op_cost(0);
  4045   format %{ %}
  4046   interface(CONST_INTER);
  4047 %}
  4049 // Pointer Immediate
  4050 operand immP() %{
  4051   match(ConP);
  4053   op_cost(10);
  4054   format %{ %}
  4055   interface(CONST_INTER);
  4056 %}
  4058 // NULL Pointer Immediate
  4059 operand immP0() %{
  4060   predicate( n->get_ptr() == 0 );
  4061   match(ConP);
  4062   op_cost(0);
  4064   format %{ %}
  4065   interface(CONST_INTER);
  4066 %}
  4068 // Long Immediate
  4069 operand immL() %{
  4070   match(ConL);
  4072   op_cost(20);
  4073   format %{ %}
  4074   interface(CONST_INTER);
  4075 %}
  4077 // Long Immediate zero
  4078 operand immL0() %{
  4079   predicate( n->get_long() == 0L );
  4080   match(ConL);
  4081   op_cost(0);
  4083   format %{ %}
  4084   interface(CONST_INTER);
  4085 %}
  4087 // Long Immediate zero
  4088 operand immL_M1() %{
  4089   predicate( n->get_long() == -1L );
  4090   match(ConL);
  4091   op_cost(0);
  4093   format %{ %}
  4094   interface(CONST_INTER);
  4095 %}
  4097 // Long immediate from 0 to 127.
  4098 // Used for a shorter form of long mul by 10.
  4099 operand immL_127() %{
  4100   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4101   match(ConL);
  4102   op_cost(0);
  4104   format %{ %}
  4105   interface(CONST_INTER);
  4106 %}
  4108 // Long Immediate: low 32-bit mask
  4109 operand immL_32bits() %{
  4110   predicate(n->get_long() == 0xFFFFFFFFL);
  4111   match(ConL);
  4112   op_cost(0);
  4114   format %{ %}
  4115   interface(CONST_INTER);
  4116 %}
  4118 // Long Immediate: low 32-bit mask
  4119 operand immL32() %{
  4120   predicate(n->get_long() == (int)(n->get_long()));
  4121   match(ConL);
  4122   op_cost(20);
  4124   format %{ %}
  4125   interface(CONST_INTER);
  4126 %}
  4128 //Double Immediate zero
  4129 operand immDPR0() %{
  4130   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4131   // bug that generates code such that NaNs compare equal to 0.0
  4132   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4133   match(ConD);
  4135   op_cost(5);
  4136   format %{ %}
  4137   interface(CONST_INTER);
  4138 %}
  4140 // Double Immediate one
  4141 operand immDPR1() %{
  4142   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4143   match(ConD);
  4145   op_cost(5);
  4146   format %{ %}
  4147   interface(CONST_INTER);
  4148 %}
  4150 // Double Immediate
  4151 operand immDPR() %{
  4152   predicate(UseSSE<=1);
  4153   match(ConD);
  4155   op_cost(5);
  4156   format %{ %}
  4157   interface(CONST_INTER);
  4158 %}
  4160 operand immD() %{
  4161   predicate(UseSSE>=2);
  4162   match(ConD);
  4164   op_cost(5);
  4165   format %{ %}
  4166   interface(CONST_INTER);
  4167 %}
  4169 // Double Immediate zero
  4170 operand immD0() %{
  4171   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4172   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4173   // compare equal to -0.0.
  4174   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4175   match(ConD);
  4177   format %{ %}
  4178   interface(CONST_INTER);
  4179 %}
  4181 // Float Immediate zero
  4182 operand immFPR0() %{
  4183   predicate(UseSSE == 0 && n->getf() == 0.0F);
  4184   match(ConF);
  4186   op_cost(5);
  4187   format %{ %}
  4188   interface(CONST_INTER);
  4189 %}
  4191 // Float Immediate one
  4192 operand immFPR1() %{
  4193   predicate(UseSSE == 0 && n->getf() == 1.0F);
  4194   match(ConF);
  4196   op_cost(5);
  4197   format %{ %}
  4198   interface(CONST_INTER);
  4199 %}
  4201 // Float Immediate
  4202 operand immFPR() %{
  4203   predicate( UseSSE == 0 );
  4204   match(ConF);
  4206   op_cost(5);
  4207   format %{ %}
  4208   interface(CONST_INTER);
  4209 %}
  4211 // Float Immediate
  4212 operand immF() %{
  4213   predicate(UseSSE >= 1);
  4214   match(ConF);
  4216   op_cost(5);
  4217   format %{ %}
  4218   interface(CONST_INTER);
  4219 %}
  4221 // Float Immediate zero.  Zero and not -0.0
  4222 operand immF0() %{
  4223   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4224   match(ConF);
  4226   op_cost(5);
  4227   format %{ %}
  4228   interface(CONST_INTER);
  4229 %}
  4231 // Immediates for special shifts (sign extend)
  4233 // Constants for increment
  4234 operand immI_16() %{
  4235   predicate( n->get_int() == 16 );
  4236   match(ConI);
  4238   format %{ %}
  4239   interface(CONST_INTER);
  4240 %}
  4242 operand immI_24() %{
  4243   predicate( n->get_int() == 24 );
  4244   match(ConI);
  4246   format %{ %}
  4247   interface(CONST_INTER);
  4248 %}
  4250 // Constant for byte-wide masking
  4251 operand immI_255() %{
  4252   predicate( n->get_int() == 255 );
  4253   match(ConI);
  4255   format %{ %}
  4256   interface(CONST_INTER);
  4257 %}
  4259 // Constant for short-wide masking
  4260 operand immI_65535() %{
  4261   predicate(n->get_int() == 65535);
  4262   match(ConI);
  4264   format %{ %}
  4265   interface(CONST_INTER);
  4266 %}
  4268 // Register Operands
  4269 // Integer Register
  4270 operand eRegI() %{
  4271   constraint(ALLOC_IN_RC(e_reg));
  4272   match(RegI);
  4273   match(xRegI);
  4274   match(eAXRegI);
  4275   match(eBXRegI);
  4276   match(eCXRegI);
  4277   match(eDXRegI);
  4278   match(eDIRegI);
  4279   match(eSIRegI);
  4281   format %{ %}
  4282   interface(REG_INTER);
  4283 %}
  4285 // Subset of Integer Register
  4286 operand xRegI(eRegI reg) %{
  4287   constraint(ALLOC_IN_RC(x_reg));
  4288   match(reg);
  4289   match(eAXRegI);
  4290   match(eBXRegI);
  4291   match(eCXRegI);
  4292   match(eDXRegI);
  4294   format %{ %}
  4295   interface(REG_INTER);
  4296 %}
  4298 // Special Registers
  4299 operand eAXRegI(xRegI reg) %{
  4300   constraint(ALLOC_IN_RC(eax_reg));
  4301   match(reg);
  4302   match(eRegI);
  4304   format %{ "EAX" %}
  4305   interface(REG_INTER);
  4306 %}
  4308 // Special Registers
  4309 operand eBXRegI(xRegI reg) %{
  4310   constraint(ALLOC_IN_RC(ebx_reg));
  4311   match(reg);
  4312   match(eRegI);
  4314   format %{ "EBX" %}
  4315   interface(REG_INTER);
  4316 %}
  4318 operand eCXRegI(xRegI reg) %{
  4319   constraint(ALLOC_IN_RC(ecx_reg));
  4320   match(reg);
  4321   match(eRegI);
  4323   format %{ "ECX" %}
  4324   interface(REG_INTER);
  4325 %}
  4327 operand eDXRegI(xRegI reg) %{
  4328   constraint(ALLOC_IN_RC(edx_reg));
  4329   match(reg);
  4330   match(eRegI);
  4332   format %{ "EDX" %}
  4333   interface(REG_INTER);
  4334 %}
  4336 operand eDIRegI(xRegI reg) %{
  4337   constraint(ALLOC_IN_RC(edi_reg));
  4338   match(reg);
  4339   match(eRegI);
  4341   format %{ "EDI" %}
  4342   interface(REG_INTER);
  4343 %}
  4345 operand naxRegI() %{
  4346   constraint(ALLOC_IN_RC(nax_reg));
  4347   match(RegI);
  4348   match(eCXRegI);
  4349   match(eDXRegI);
  4350   match(eSIRegI);
  4351   match(eDIRegI);
  4353   format %{ %}
  4354   interface(REG_INTER);
  4355 %}
  4357 operand nadxRegI() %{
  4358   constraint(ALLOC_IN_RC(nadx_reg));
  4359   match(RegI);
  4360   match(eBXRegI);
  4361   match(eCXRegI);
  4362   match(eSIRegI);
  4363   match(eDIRegI);
  4365   format %{ %}
  4366   interface(REG_INTER);
  4367 %}
  4369 operand ncxRegI() %{
  4370   constraint(ALLOC_IN_RC(ncx_reg));
  4371   match(RegI);
  4372   match(eAXRegI);
  4373   match(eDXRegI);
  4374   match(eSIRegI);
  4375   match(eDIRegI);
  4377   format %{ %}
  4378   interface(REG_INTER);
  4379 %}
  4381 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  4382 // //
  4383 operand eSIRegI(xRegI reg) %{
  4384    constraint(ALLOC_IN_RC(esi_reg));
  4385    match(reg);
  4386    match(eRegI);
  4388    format %{ "ESI" %}
  4389    interface(REG_INTER);
  4390 %}
  4392 // Pointer Register
  4393 operand anyRegP() %{
  4394   constraint(ALLOC_IN_RC(any_reg));
  4395   match(RegP);
  4396   match(eAXRegP);
  4397   match(eBXRegP);
  4398   match(eCXRegP);
  4399   match(eDIRegP);
  4400   match(eRegP);
  4402   format %{ %}
  4403   interface(REG_INTER);
  4404 %}
  4406 operand eRegP() %{
  4407   constraint(ALLOC_IN_RC(e_reg));
  4408   match(RegP);
  4409   match(eAXRegP);
  4410   match(eBXRegP);
  4411   match(eCXRegP);
  4412   match(eDIRegP);
  4414   format %{ %}
  4415   interface(REG_INTER);
  4416 %}
  4418 // On windows95, EBP is not safe to use for implicit null tests.
  4419 operand eRegP_no_EBP() %{
  4420   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  4421   match(RegP);
  4422   match(eAXRegP);
  4423   match(eBXRegP);
  4424   match(eCXRegP);
  4425   match(eDIRegP);
  4427   op_cost(100);
  4428   format %{ %}
  4429   interface(REG_INTER);
  4430 %}
  4432 operand naxRegP() %{
  4433   constraint(ALLOC_IN_RC(nax_reg));
  4434   match(RegP);
  4435   match(eBXRegP);
  4436   match(eDXRegP);
  4437   match(eCXRegP);
  4438   match(eSIRegP);
  4439   match(eDIRegP);
  4441   format %{ %}
  4442   interface(REG_INTER);
  4443 %}
  4445 operand nabxRegP() %{
  4446   constraint(ALLOC_IN_RC(nabx_reg));
  4447   match(RegP);
  4448   match(eCXRegP);
  4449   match(eDXRegP);
  4450   match(eSIRegP);
  4451   match(eDIRegP);
  4453   format %{ %}
  4454   interface(REG_INTER);
  4455 %}
  4457 operand pRegP() %{
  4458   constraint(ALLOC_IN_RC(p_reg));
  4459   match(RegP);
  4460   match(eBXRegP);
  4461   match(eDXRegP);
  4462   match(eSIRegP);
  4463   match(eDIRegP);
  4465   format %{ %}
  4466   interface(REG_INTER);
  4467 %}
  4469 // Special Registers
  4470 // Return a pointer value
  4471 operand eAXRegP(eRegP reg) %{
  4472   constraint(ALLOC_IN_RC(eax_reg));
  4473   match(reg);
  4474   format %{ "EAX" %}
  4475   interface(REG_INTER);
  4476 %}
  4478 // Used in AtomicAdd
  4479 operand eBXRegP(eRegP reg) %{
  4480   constraint(ALLOC_IN_RC(ebx_reg));
  4481   match(reg);
  4482   format %{ "EBX" %}
  4483   interface(REG_INTER);
  4484 %}
  4486 // Tail-call (interprocedural jump) to interpreter
  4487 operand eCXRegP(eRegP reg) %{
  4488   constraint(ALLOC_IN_RC(ecx_reg));
  4489   match(reg);
  4490   format %{ "ECX" %}
  4491   interface(REG_INTER);
  4492 %}
  4494 operand eSIRegP(eRegP reg) %{
  4495   constraint(ALLOC_IN_RC(esi_reg));
  4496   match(reg);
  4497   format %{ "ESI" %}
  4498   interface(REG_INTER);
  4499 %}
  4501 // Used in rep stosw
  4502 operand eDIRegP(eRegP reg) %{
  4503   constraint(ALLOC_IN_RC(edi_reg));
  4504   match(reg);
  4505   format %{ "EDI" %}
  4506   interface(REG_INTER);
  4507 %}
  4509 operand eBPRegP() %{
  4510   constraint(ALLOC_IN_RC(ebp_reg));
  4511   match(RegP);
  4512   format %{ "EBP" %}
  4513   interface(REG_INTER);
  4514 %}
  4516 operand eRegL() %{
  4517   constraint(ALLOC_IN_RC(long_reg));
  4518   match(RegL);
  4519   match(eADXRegL);
  4521   format %{ %}
  4522   interface(REG_INTER);
  4523 %}
  4525 operand eADXRegL( eRegL reg ) %{
  4526   constraint(ALLOC_IN_RC(eadx_reg));
  4527   match(reg);
  4529   format %{ "EDX:EAX" %}
  4530   interface(REG_INTER);
  4531 %}
  4533 operand eBCXRegL( eRegL reg ) %{
  4534   constraint(ALLOC_IN_RC(ebcx_reg));
  4535   match(reg);
  4537   format %{ "EBX:ECX" %}
  4538   interface(REG_INTER);
  4539 %}
  4541 // Special case for integer high multiply
  4542 operand eADXRegL_low_only() %{
  4543   constraint(ALLOC_IN_RC(eadx_reg));
  4544   match(RegL);
  4546   format %{ "EAX" %}
  4547   interface(REG_INTER);
  4548 %}
  4550 // Flags register, used as output of compare instructions
  4551 operand eFlagsReg() %{
  4552   constraint(ALLOC_IN_RC(int_flags));
  4553   match(RegFlags);
  4555   format %{ "EFLAGS" %}
  4556   interface(REG_INTER);
  4557 %}
  4559 // Flags register, used as output of FLOATING POINT compare instructions
  4560 operand eFlagsRegU() %{
  4561   constraint(ALLOC_IN_RC(int_flags));
  4562   match(RegFlags);
  4564   format %{ "EFLAGS_U" %}
  4565   interface(REG_INTER);
  4566 %}
  4568 operand eFlagsRegUCF() %{
  4569   constraint(ALLOC_IN_RC(int_flags));
  4570   match(RegFlags);
  4571   predicate(false);
  4573   format %{ "EFLAGS_U_CF" %}
  4574   interface(REG_INTER);
  4575 %}
  4577 // Condition Code Register used by long compare
  4578 operand flagsReg_long_LTGE() %{
  4579   constraint(ALLOC_IN_RC(int_flags));
  4580   match(RegFlags);
  4581   format %{ "FLAGS_LTGE" %}
  4582   interface(REG_INTER);
  4583 %}
  4584 operand flagsReg_long_EQNE() %{
  4585   constraint(ALLOC_IN_RC(int_flags));
  4586   match(RegFlags);
  4587   format %{ "FLAGS_EQNE" %}
  4588   interface(REG_INTER);
  4589 %}
  4590 operand flagsReg_long_LEGT() %{
  4591   constraint(ALLOC_IN_RC(int_flags));
  4592   match(RegFlags);
  4593   format %{ "FLAGS_LEGT" %}
  4594   interface(REG_INTER);
  4595 %}
  4597 // Float register operands
  4598 operand regDPR() %{
  4599   predicate( UseSSE < 2 );
  4600   constraint(ALLOC_IN_RC(dbl_reg));
  4601   match(RegD);
  4602   match(regDPR1);
  4603   match(regDPR2);
  4604   format %{ %}
  4605   interface(REG_INTER);
  4606 %}
  4608 operand regDPR1(regDPR reg) %{
  4609   predicate( UseSSE < 2 );
  4610   constraint(ALLOC_IN_RC(dbl_reg0));
  4611   match(reg);
  4612   format %{ "FPR1" %}
  4613   interface(REG_INTER);
  4614 %}
  4616 operand regDPR2(regDPR reg) %{
  4617   predicate( UseSSE < 2 );
  4618   constraint(ALLOC_IN_RC(dbl_reg1));
  4619   match(reg);
  4620   format %{ "FPR2" %}
  4621   interface(REG_INTER);
  4622 %}
  4624 operand regnotDPR1(regDPR reg) %{
  4625   predicate( UseSSE < 2 );
  4626   constraint(ALLOC_IN_RC(dbl_notreg0));
  4627   match(reg);
  4628   format %{ %}
  4629   interface(REG_INTER);
  4630 %}
  4632 // XMM Double register operands
  4633 operand regD() %{
  4634   predicate( UseSSE>=2 );
  4635   constraint(ALLOC_IN_RC(xdb_reg));
  4636   match(RegD);
  4637   match(regD6);
  4638   match(regD7);
  4639   format %{ %}
  4640   interface(REG_INTER);
  4641 %}
  4643 // XMM6 double register operands
  4644 operand regD6(regD reg) %{
  4645   predicate( UseSSE>=2 );
  4646   constraint(ALLOC_IN_RC(xdb_reg6));
  4647   match(reg);
  4648   format %{ "XMM6" %}
  4649   interface(REG_INTER);
  4650 %}
  4652 // XMM7 double register operands
  4653 operand regD7(regD reg) %{
  4654   predicate( UseSSE>=2 );
  4655   constraint(ALLOC_IN_RC(xdb_reg7));
  4656   match(reg);
  4657   format %{ "XMM7" %}
  4658   interface(REG_INTER);
  4659 %}
  4661 // Float register operands
  4662 operand regFPR() %{
  4663   predicate( UseSSE < 2 );
  4664   constraint(ALLOC_IN_RC(flt_reg));
  4665   match(RegF);
  4666   match(regFPR1);
  4667   format %{ %}
  4668   interface(REG_INTER);
  4669 %}
  4671 // Float register operands
  4672 operand regFPR1(regFPR reg) %{
  4673   predicate( UseSSE < 2 );
  4674   constraint(ALLOC_IN_RC(flt_reg0));
  4675   match(reg);
  4676   format %{ "FPR1" %}
  4677   interface(REG_INTER);
  4678 %}
  4680 // XMM register operands
  4681 operand regF() %{
  4682   predicate( UseSSE>=1 );
  4683   constraint(ALLOC_IN_RC(xmm_reg));
  4684   match(RegF);
  4685   format %{ %}
  4686   interface(REG_INTER);
  4687 %}
  4690 //----------Memory Operands----------------------------------------------------
  4691 // Direct Memory Operand
  4692 operand direct(immP addr) %{
  4693   match(addr);
  4695   format %{ "[$addr]" %}
  4696   interface(MEMORY_INTER) %{
  4697     base(0xFFFFFFFF);
  4698     index(0x4);
  4699     scale(0x0);
  4700     disp($addr);
  4701   %}
  4702 %}
  4704 // Indirect Memory Operand
  4705 operand indirect(eRegP reg) %{
  4706   constraint(ALLOC_IN_RC(e_reg));
  4707   match(reg);
  4709   format %{ "[$reg]" %}
  4710   interface(MEMORY_INTER) %{
  4711     base($reg);
  4712     index(0x4);
  4713     scale(0x0);
  4714     disp(0x0);
  4715   %}
  4716 %}
  4718 // Indirect Memory Plus Short Offset Operand
  4719 operand indOffset8(eRegP reg, immI8 off) %{
  4720   match(AddP reg off);
  4722   format %{ "[$reg + $off]" %}
  4723   interface(MEMORY_INTER) %{
  4724     base($reg);
  4725     index(0x4);
  4726     scale(0x0);
  4727     disp($off);
  4728   %}
  4729 %}
  4731 // Indirect Memory Plus Long Offset Operand
  4732 operand indOffset32(eRegP reg, immI off) %{
  4733   match(AddP reg off);
  4735   format %{ "[$reg + $off]" %}
  4736   interface(MEMORY_INTER) %{
  4737     base($reg);
  4738     index(0x4);
  4739     scale(0x0);
  4740     disp($off);
  4741   %}
  4742 %}
  4744 // Indirect Memory Plus Long Offset Operand
  4745 operand indOffset32X(eRegI reg, immP off) %{
  4746   match(AddP off reg);
  4748   format %{ "[$reg + $off]" %}
  4749   interface(MEMORY_INTER) %{
  4750     base($reg);
  4751     index(0x4);
  4752     scale(0x0);
  4753     disp($off);
  4754   %}
  4755 %}
  4757 // Indirect Memory Plus Index Register Plus Offset Operand
  4758 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  4759   match(AddP (AddP reg ireg) off);
  4761   op_cost(10);
  4762   format %{"[$reg + $off + $ireg]" %}
  4763   interface(MEMORY_INTER) %{
  4764     base($reg);
  4765     index($ireg);
  4766     scale(0x0);
  4767     disp($off);
  4768   %}
  4769 %}
  4771 // Indirect Memory Plus Index Register Plus Offset Operand
  4772 operand indIndex(eRegP reg, eRegI ireg) %{
  4773   match(AddP reg ireg);
  4775   op_cost(10);
  4776   format %{"[$reg + $ireg]" %}
  4777   interface(MEMORY_INTER) %{
  4778     base($reg);
  4779     index($ireg);
  4780     scale(0x0);
  4781     disp(0x0);
  4782   %}
  4783 %}
  4785 // // -------------------------------------------------------------------------
  4786 // // 486 architecture doesn't support "scale * index + offset" with out a base
  4787 // // -------------------------------------------------------------------------
  4788 // // Scaled Memory Operands
  4789 // // Indirect Memory Times Scale Plus Offset Operand
  4790 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  4791 //   match(AddP off (LShiftI ireg scale));
  4792 //
  4793 //   op_cost(10);
  4794 //   format %{"[$off + $ireg << $scale]" %}
  4795 //   interface(MEMORY_INTER) %{
  4796 //     base(0x4);
  4797 //     index($ireg);
  4798 //     scale($scale);
  4799 //     disp($off);
  4800 //   %}
  4801 // %}
  4803 // Indirect Memory Times Scale Plus Index Register
  4804 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  4805   match(AddP reg (LShiftI ireg scale));
  4807   op_cost(10);
  4808   format %{"[$reg + $ireg << $scale]" %}
  4809   interface(MEMORY_INTER) %{
  4810     base($reg);
  4811     index($ireg);
  4812     scale($scale);
  4813     disp(0x0);
  4814   %}
  4815 %}
  4817 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4818 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  4819   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4821   op_cost(10);
  4822   format %{"[$reg + $off + $ireg << $scale]" %}
  4823   interface(MEMORY_INTER) %{
  4824     base($reg);
  4825     index($ireg);
  4826     scale($scale);
  4827     disp($off);
  4828   %}
  4829 %}
  4831 //----------Load Long Memory Operands------------------------------------------
  4832 // The load-long idiom will use it's address expression again after loading
  4833 // the first word of the long.  If the load-long destination overlaps with
  4834 // registers used in the addressing expression, the 2nd half will be loaded
  4835 // from a clobbered address.  Fix this by requiring that load-long use
  4836 // address registers that do not overlap with the load-long target.
  4838 // load-long support
  4839 operand load_long_RegP() %{
  4840   constraint(ALLOC_IN_RC(esi_reg));
  4841   match(RegP);
  4842   match(eSIRegP);
  4843   op_cost(100);
  4844   format %{  %}
  4845   interface(REG_INTER);
  4846 %}
  4848 // Indirect Memory Operand Long
  4849 operand load_long_indirect(load_long_RegP reg) %{
  4850   constraint(ALLOC_IN_RC(esi_reg));
  4851   match(reg);
  4853   format %{ "[$reg]" %}
  4854   interface(MEMORY_INTER) %{
  4855     base($reg);
  4856     index(0x4);
  4857     scale(0x0);
  4858     disp(0x0);
  4859   %}
  4860 %}
  4862 // Indirect Memory Plus Long Offset Operand
  4863 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  4864   match(AddP reg off);
  4866   format %{ "[$reg + $off]" %}
  4867   interface(MEMORY_INTER) %{
  4868     base($reg);
  4869     index(0x4);
  4870     scale(0x0);
  4871     disp($off);
  4872   %}
  4873 %}
  4875 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  4878 //----------Special Memory Operands--------------------------------------------
  4879 // Stack Slot Operand - This operand is used for loading and storing temporary
  4880 //                      values on the stack where a match requires a value to
  4881 //                      flow through memory.
  4882 operand stackSlotP(sRegP reg) %{
  4883   constraint(ALLOC_IN_RC(stack_slots));
  4884   // No match rule because this operand is only generated in matching
  4885   format %{ "[$reg]" %}
  4886   interface(MEMORY_INTER) %{
  4887     base(0x4);   // ESP
  4888     index(0x4);  // No Index
  4889     scale(0x0);  // No Scale
  4890     disp($reg);  // Stack Offset
  4891   %}
  4892 %}
  4894 operand stackSlotI(sRegI reg) %{
  4895   constraint(ALLOC_IN_RC(stack_slots));
  4896   // No match rule because this operand is only generated in matching
  4897   format %{ "[$reg]" %}
  4898   interface(MEMORY_INTER) %{
  4899     base(0x4);   // ESP
  4900     index(0x4);  // No Index
  4901     scale(0x0);  // No Scale
  4902     disp($reg);  // Stack Offset
  4903   %}
  4904 %}
  4906 operand stackSlotF(sRegF reg) %{
  4907   constraint(ALLOC_IN_RC(stack_slots));
  4908   // No match rule because this operand is only generated in matching
  4909   format %{ "[$reg]" %}
  4910   interface(MEMORY_INTER) %{
  4911     base(0x4);   // ESP
  4912     index(0x4);  // No Index
  4913     scale(0x0);  // No Scale
  4914     disp($reg);  // Stack Offset
  4915   %}
  4916 %}
  4918 operand stackSlotD(sRegD reg) %{
  4919   constraint(ALLOC_IN_RC(stack_slots));
  4920   // No match rule because this operand is only generated in matching
  4921   format %{ "[$reg]" %}
  4922   interface(MEMORY_INTER) %{
  4923     base(0x4);   // ESP
  4924     index(0x4);  // No Index
  4925     scale(0x0);  // No Scale
  4926     disp($reg);  // Stack Offset
  4927   %}
  4928 %}
  4930 operand stackSlotL(sRegL reg) %{
  4931   constraint(ALLOC_IN_RC(stack_slots));
  4932   // No match rule because this operand is only generated in matching
  4933   format %{ "[$reg]" %}
  4934   interface(MEMORY_INTER) %{
  4935     base(0x4);   // ESP
  4936     index(0x4);  // No Index
  4937     scale(0x0);  // No Scale
  4938     disp($reg);  // Stack Offset
  4939   %}
  4940 %}
  4942 //----------Memory Operands - Win95 Implicit Null Variants----------------
  4943 // Indirect Memory Operand
  4944 operand indirect_win95_safe(eRegP_no_EBP reg)
  4945 %{
  4946   constraint(ALLOC_IN_RC(e_reg));
  4947   match(reg);
  4949   op_cost(100);
  4950   format %{ "[$reg]" %}
  4951   interface(MEMORY_INTER) %{
  4952     base($reg);
  4953     index(0x4);
  4954     scale(0x0);
  4955     disp(0x0);
  4956   %}
  4957 %}
  4959 // Indirect Memory Plus Short Offset Operand
  4960 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  4961 %{
  4962   match(AddP reg off);
  4964   op_cost(100);
  4965   format %{ "[$reg + $off]" %}
  4966   interface(MEMORY_INTER) %{
  4967     base($reg);
  4968     index(0x4);
  4969     scale(0x0);
  4970     disp($off);
  4971   %}
  4972 %}
  4974 // Indirect Memory Plus Long Offset Operand
  4975 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  4976 %{
  4977   match(AddP reg off);
  4979   op_cost(100);
  4980   format %{ "[$reg + $off]" %}
  4981   interface(MEMORY_INTER) %{
  4982     base($reg);
  4983     index(0x4);
  4984     scale(0x0);
  4985     disp($off);
  4986   %}
  4987 %}
  4989 // Indirect Memory Plus Index Register Plus Offset Operand
  4990 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  4991 %{
  4992   match(AddP (AddP reg ireg) off);
  4994   op_cost(100);
  4995   format %{"[$reg + $off + $ireg]" %}
  4996   interface(MEMORY_INTER) %{
  4997     base($reg);
  4998     index($ireg);
  4999     scale(0x0);
  5000     disp($off);
  5001   %}
  5002 %}
  5004 // Indirect Memory Times Scale Plus Index Register
  5005 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  5006 %{
  5007   match(AddP reg (LShiftI ireg scale));
  5009   op_cost(100);
  5010   format %{"[$reg + $ireg << $scale]" %}
  5011   interface(MEMORY_INTER) %{
  5012     base($reg);
  5013     index($ireg);
  5014     scale($scale);
  5015     disp(0x0);
  5016   %}
  5017 %}
  5019 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5020 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  5021 %{
  5022   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5024   op_cost(100);
  5025   format %{"[$reg + $off + $ireg << $scale]" %}
  5026   interface(MEMORY_INTER) %{
  5027     base($reg);
  5028     index($ireg);
  5029     scale($scale);
  5030     disp($off);
  5031   %}
  5032 %}
  5034 //----------Conditional Branch Operands----------------------------------------
  5035 // Comparison Op  - This is the operation of the comparison, and is limited to
  5036 //                  the following set of codes:
  5037 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5038 //
  5039 // Other attributes of the comparison, such as unsignedness, are specified
  5040 // by the comparison instruction that sets a condition code flags register.
  5041 // That result is represented by a flags operand whose subtype is appropriate
  5042 // to the unsignedness (etc.) of the comparison.
  5043 //
  5044 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5045 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5046 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5048 // Comparision Code
  5049 operand cmpOp() %{
  5050   match(Bool);
  5052   format %{ "" %}
  5053   interface(COND_INTER) %{
  5054     equal(0x4, "e");
  5055     not_equal(0x5, "ne");
  5056     less(0xC, "l");
  5057     greater_equal(0xD, "ge");
  5058     less_equal(0xE, "le");
  5059     greater(0xF, "g");
  5060   %}
  5061 %}
  5063 // Comparison Code, unsigned compare.  Used by FP also, with
  5064 // C2 (unordered) turned into GT or LT already.  The other bits
  5065 // C0 and C3 are turned into Carry & Zero flags.
  5066 operand cmpOpU() %{
  5067   match(Bool);
  5069   format %{ "" %}
  5070   interface(COND_INTER) %{
  5071     equal(0x4, "e");
  5072     not_equal(0x5, "ne");
  5073     less(0x2, "b");
  5074     greater_equal(0x3, "nb");
  5075     less_equal(0x6, "be");
  5076     greater(0x7, "nbe");
  5077   %}
  5078 %}
  5080 // Floating comparisons that don't require any fixup for the unordered case
  5081 operand cmpOpUCF() %{
  5082   match(Bool);
  5083   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5084             n->as_Bool()->_test._test == BoolTest::ge ||
  5085             n->as_Bool()->_test._test == BoolTest::le ||
  5086             n->as_Bool()->_test._test == BoolTest::gt);
  5087   format %{ "" %}
  5088   interface(COND_INTER) %{
  5089     equal(0x4, "e");
  5090     not_equal(0x5, "ne");
  5091     less(0x2, "b");
  5092     greater_equal(0x3, "nb");
  5093     less_equal(0x6, "be");
  5094     greater(0x7, "nbe");
  5095   %}
  5096 %}
  5099 // Floating comparisons that can be fixed up with extra conditional jumps
  5100 operand cmpOpUCF2() %{
  5101   match(Bool);
  5102   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5103             n->as_Bool()->_test._test == BoolTest::eq);
  5104   format %{ "" %}
  5105   interface(COND_INTER) %{
  5106     equal(0x4, "e");
  5107     not_equal(0x5, "ne");
  5108     less(0x2, "b");
  5109     greater_equal(0x3, "nb");
  5110     less_equal(0x6, "be");
  5111     greater(0x7, "nbe");
  5112   %}
  5113 %}
  5115 // Comparison Code for FP conditional move
  5116 operand cmpOp_fcmov() %{
  5117   match(Bool);
  5119   format %{ "" %}
  5120   interface(COND_INTER) %{
  5121     equal        (0x0C8);
  5122     not_equal    (0x1C8);
  5123     less         (0x0C0);
  5124     greater_equal(0x1C0);
  5125     less_equal   (0x0D0);
  5126     greater      (0x1D0);
  5127   %}
  5128 %}
  5130 // Comparision Code used in long compares
  5131 operand cmpOp_commute() %{
  5132   match(Bool);
  5134   format %{ "" %}
  5135   interface(COND_INTER) %{
  5136     equal(0x4, "e");
  5137     not_equal(0x5, "ne");
  5138     less(0xF, "g");
  5139     greater_equal(0xE, "le");
  5140     less_equal(0xD, "ge");
  5141     greater(0xC, "l");
  5142   %}
  5143 %}
  5145 //----------OPERAND CLASSES----------------------------------------------------
  5146 // Operand Classes are groups of operands that are used as to simplify
  5147 // instruction definitions by not requiring the AD writer to specify separate
  5148 // instructions for every form of operand when the instruction accepts
  5149 // multiple operand types with the same basic encoding and format.  The classic
  5150 // case of this is memory operands.
  5152 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5153                indIndex, indIndexScale, indIndexScaleOffset);
  5155 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5156 // This means some kind of offset is always required and you cannot use
  5157 // an oop as the offset (done when working on static globals).
  5158 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5159                     indIndex, indIndexScale, indIndexScaleOffset);
  5162 //----------PIPELINE-----------------------------------------------------------
  5163 // Rules which define the behavior of the target architectures pipeline.
  5164 pipeline %{
  5166 //----------ATTRIBUTES---------------------------------------------------------
  5167 attributes %{
  5168   variable_size_instructions;        // Fixed size instructions
  5169   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5170   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5171   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5172   instruction_fetch_units = 1;       // of 16 bytes
  5174   // List of nop instructions
  5175   nops( MachNop );
  5176 %}
  5178 //----------RESOURCES----------------------------------------------------------
  5179 // Resources are the functional units available to the machine
  5181 // Generic P2/P3 pipeline
  5182 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5183 // 3 instructions decoded per cycle.
  5184 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5185 // 2 ALU op, only ALU0 handles mul/div instructions.
  5186 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5187            MS0, MS1, MEM = MS0 | MS1,
  5188            BR, FPU,
  5189            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5191 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5192 // Pipeline Description specifies the stages in the machine's pipeline
  5194 // Generic P2/P3 pipeline
  5195 pipe_desc(S0, S1, S2, S3, S4, S5);
  5197 //----------PIPELINE CLASSES---------------------------------------------------
  5198 // Pipeline Classes describe the stages in which input and output are
  5199 // referenced by the hardware pipeline.
  5201 // Naming convention: ialu or fpu
  5202 // Then: _reg
  5203 // Then: _reg if there is a 2nd register
  5204 // Then: _long if it's a pair of instructions implementing a long
  5205 // Then: _fat if it requires the big decoder
  5206 //   Or: _mem if it requires the big decoder and a memory unit.
  5208 // Integer ALU reg operation
  5209 pipe_class ialu_reg(eRegI dst) %{
  5210     single_instruction;
  5211     dst    : S4(write);
  5212     dst    : S3(read);
  5213     DECODE : S0;        // any decoder
  5214     ALU    : S3;        // any alu
  5215 %}
  5217 // Long ALU reg operation
  5218 pipe_class ialu_reg_long(eRegL dst) %{
  5219     instruction_count(2);
  5220     dst    : S4(write);
  5221     dst    : S3(read);
  5222     DECODE : S0(2);     // any 2 decoders
  5223     ALU    : S3(2);     // both alus
  5224 %}
  5226 // Integer ALU reg operation using big decoder
  5227 pipe_class ialu_reg_fat(eRegI dst) %{
  5228     single_instruction;
  5229     dst    : S4(write);
  5230     dst    : S3(read);
  5231     D0     : S0;        // big decoder only
  5232     ALU    : S3;        // any alu
  5233 %}
  5235 // Long ALU reg operation using big decoder
  5236 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5237     instruction_count(2);
  5238     dst    : S4(write);
  5239     dst    : S3(read);
  5240     D0     : S0(2);     // big decoder only; twice
  5241     ALU    : S3(2);     // any 2 alus
  5242 %}
  5244 // Integer ALU reg-reg operation
  5245 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5246     single_instruction;
  5247     dst    : S4(write);
  5248     src    : S3(read);
  5249     DECODE : S0;        // any decoder
  5250     ALU    : S3;        // any alu
  5251 %}
  5253 // Long ALU reg-reg operation
  5254 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5255     instruction_count(2);
  5256     dst    : S4(write);
  5257     src    : S3(read);
  5258     DECODE : S0(2);     // any 2 decoders
  5259     ALU    : S3(2);     // both alus
  5260 %}
  5262 // Integer ALU reg-reg operation
  5263 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5264     single_instruction;
  5265     dst    : S4(write);
  5266     src    : S3(read);
  5267     D0     : S0;        // big decoder only
  5268     ALU    : S3;        // any alu
  5269 %}
  5271 // Long ALU reg-reg operation
  5272 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5273     instruction_count(2);
  5274     dst    : S4(write);
  5275     src    : S3(read);
  5276     D0     : S0(2);     // big decoder only; twice
  5277     ALU    : S3(2);     // both alus
  5278 %}
  5280 // Integer ALU reg-mem operation
  5281 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5282     single_instruction;
  5283     dst    : S5(write);
  5284     mem    : S3(read);
  5285     D0     : S0;        // big decoder only
  5286     ALU    : S4;        // any alu
  5287     MEM    : S3;        // any mem
  5288 %}
  5290 // Long ALU reg-mem operation
  5291 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5292     instruction_count(2);
  5293     dst    : S5(write);
  5294     mem    : S3(read);
  5295     D0     : S0(2);     // big decoder only; twice
  5296     ALU    : S4(2);     // any 2 alus
  5297     MEM    : S3(2);     // both mems
  5298 %}
  5300 // Integer mem operation (prefetch)
  5301 pipe_class ialu_mem(memory mem)
  5302 %{
  5303     single_instruction;
  5304     mem    : S3(read);
  5305     D0     : S0;        // big decoder only
  5306     MEM    : S3;        // any mem
  5307 %}
  5309 // Integer Store to Memory
  5310 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  5311     single_instruction;
  5312     mem    : S3(read);
  5313     src    : S5(read);
  5314     D0     : S0;        // big decoder only
  5315     ALU    : S4;        // any alu
  5316     MEM    : S3;
  5317 %}
  5319 // Long Store to Memory
  5320 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5321     instruction_count(2);
  5322     mem    : S3(read);
  5323     src    : S5(read);
  5324     D0     : S0(2);     // big decoder only; twice
  5325     ALU    : S4(2);     // any 2 alus
  5326     MEM    : S3(2);     // Both mems
  5327 %}
  5329 // Integer Store to Memory
  5330 pipe_class ialu_mem_imm(memory mem) %{
  5331     single_instruction;
  5332     mem    : S3(read);
  5333     D0     : S0;        // big decoder only
  5334     ALU    : S4;        // any alu
  5335     MEM    : S3;
  5336 %}
  5338 // Integer ALU0 reg-reg operation
  5339 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  5340     single_instruction;
  5341     dst    : S4(write);
  5342     src    : S3(read);
  5343     D0     : S0;        // Big decoder only
  5344     ALU0   : S3;        // only alu0
  5345 %}
  5347 // Integer ALU0 reg-mem operation
  5348 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  5349     single_instruction;
  5350     dst    : S5(write);
  5351     mem    : S3(read);
  5352     D0     : S0;        // big decoder only
  5353     ALU0   : S4;        // ALU0 only
  5354     MEM    : S3;        // any mem
  5355 %}
  5357 // Integer ALU reg-reg operation
  5358 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  5359     single_instruction;
  5360     cr     : S4(write);
  5361     src1   : S3(read);
  5362     src2   : S3(read);
  5363     DECODE : S0;        // any decoder
  5364     ALU    : S3;        // any alu
  5365 %}
  5367 // Integer ALU reg-imm operation
  5368 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  5369     single_instruction;
  5370     cr     : S4(write);
  5371     src1   : S3(read);
  5372     DECODE : S0;        // any decoder
  5373     ALU    : S3;        // any alu
  5374 %}
  5376 // Integer ALU reg-mem operation
  5377 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  5378     single_instruction;
  5379     cr     : S4(write);
  5380     src1   : S3(read);
  5381     src2   : S3(read);
  5382     D0     : S0;        // big decoder only
  5383     ALU    : S4;        // any alu
  5384     MEM    : S3;
  5385 %}
  5387 // Conditional move reg-reg
  5388 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  5389     instruction_count(4);
  5390     y      : S4(read);
  5391     q      : S3(read);
  5392     p      : S3(read);
  5393     DECODE : S0(4);     // any decoder
  5394 %}
  5396 // Conditional move reg-reg
  5397 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  5398     single_instruction;
  5399     dst    : S4(write);
  5400     src    : S3(read);
  5401     cr     : S3(read);
  5402     DECODE : S0;        // any decoder
  5403 %}
  5405 // Conditional move reg-mem
  5406 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  5407     single_instruction;
  5408     dst    : S4(write);
  5409     src    : S3(read);
  5410     cr     : S3(read);
  5411     DECODE : S0;        // any decoder
  5412     MEM    : S3;
  5413 %}
  5415 // Conditional move reg-reg long
  5416 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  5417     single_instruction;
  5418     dst    : S4(write);
  5419     src    : S3(read);
  5420     cr     : S3(read);
  5421     DECODE : S0(2);     // any 2 decoders
  5422 %}
  5424 // Conditional move double reg-reg
  5425 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
  5426     single_instruction;
  5427     dst    : S4(write);
  5428     src    : S3(read);
  5429     cr     : S3(read);
  5430     DECODE : S0;        // any decoder
  5431 %}
  5433 // Float reg-reg operation
  5434 pipe_class fpu_reg(regDPR dst) %{
  5435     instruction_count(2);
  5436     dst    : S3(read);
  5437     DECODE : S0(2);     // any 2 decoders
  5438     FPU    : S3;
  5439 %}
  5441 // Float reg-reg operation
  5442 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
  5443     instruction_count(2);
  5444     dst    : S4(write);
  5445     src    : S3(read);
  5446     DECODE : S0(2);     // any 2 decoders
  5447     FPU    : S3;
  5448 %}
  5450 // Float reg-reg operation
  5451 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
  5452     instruction_count(3);
  5453     dst    : S4(write);
  5454     src1   : S3(read);
  5455     src2   : S3(read);
  5456     DECODE : S0(3);     // any 3 decoders
  5457     FPU    : S3(2);
  5458 %}
  5460 // Float reg-reg operation
  5461 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
  5462     instruction_count(4);
  5463     dst    : S4(write);
  5464     src1   : S3(read);
  5465     src2   : S3(read);
  5466     src3   : S3(read);
  5467     DECODE : S0(4);     // any 3 decoders
  5468     FPU    : S3(2);
  5469 %}
  5471 // Float reg-reg operation
  5472 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
  5473     instruction_count(4);
  5474     dst    : S4(write);
  5475     src1   : S3(read);
  5476     src2   : S3(read);
  5477     src3   : S3(read);
  5478     DECODE : S1(3);     // any 3 decoders
  5479     D0     : S0;        // Big decoder only
  5480     FPU    : S3(2);
  5481     MEM    : S3;
  5482 %}
  5484 // Float reg-mem operation
  5485 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
  5486     instruction_count(2);
  5487     dst    : S5(write);
  5488     mem    : S3(read);
  5489     D0     : S0;        // big decoder only
  5490     DECODE : S1;        // any decoder for FPU POP
  5491     FPU    : S4;
  5492     MEM    : S3;        // any mem
  5493 %}
  5495 // Float reg-mem operation
  5496 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
  5497     instruction_count(3);
  5498     dst    : S5(write);
  5499     src1   : S3(read);
  5500     mem    : S3(read);
  5501     D0     : S0;        // big decoder only
  5502     DECODE : S1(2);     // any decoder for FPU POP
  5503     FPU    : S4;
  5504     MEM    : S3;        // any mem
  5505 %}
  5507 // Float mem-reg operation
  5508 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
  5509     instruction_count(2);
  5510     src    : S5(read);
  5511     mem    : S3(read);
  5512     DECODE : S0;        // any decoder for FPU PUSH
  5513     D0     : S1;        // big decoder only
  5514     FPU    : S4;
  5515     MEM    : S3;        // any mem
  5516 %}
  5518 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
  5519     instruction_count(3);
  5520     src1   : S3(read);
  5521     src2   : S3(read);
  5522     mem    : S3(read);
  5523     DECODE : S0(2);     // any decoder for FPU PUSH
  5524     D0     : S1;        // big decoder only
  5525     FPU    : S4;
  5526     MEM    : S3;        // any mem
  5527 %}
  5529 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
  5530     instruction_count(3);
  5531     src1   : S3(read);
  5532     src2   : S3(read);
  5533     mem    : S4(read);
  5534     DECODE : S0;        // any decoder for FPU PUSH
  5535     D0     : S0(2);     // big decoder only
  5536     FPU    : S4;
  5537     MEM    : S3(2);     // any mem
  5538 %}
  5540 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  5541     instruction_count(2);
  5542     src1   : S3(read);
  5543     dst    : S4(read);
  5544     D0     : S0(2);     // big decoder only
  5545     MEM    : S3(2);     // any mem
  5546 %}
  5548 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  5549     instruction_count(3);
  5550     src1   : S3(read);
  5551     src2   : S3(read);
  5552     dst    : S4(read);
  5553     D0     : S0(3);     // big decoder only
  5554     FPU    : S4;
  5555     MEM    : S3(3);     // any mem
  5556 %}
  5558 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
  5559     instruction_count(3);
  5560     src1   : S4(read);
  5561     mem    : S4(read);
  5562     DECODE : S0;        // any decoder for FPU PUSH
  5563     D0     : S0(2);     // big decoder only
  5564     FPU    : S4;
  5565     MEM    : S3(2);     // any mem
  5566 %}
  5568 // Float load constant
  5569 pipe_class fpu_reg_con(regDPR dst) %{
  5570     instruction_count(2);
  5571     dst    : S5(write);
  5572     D0     : S0;        // big decoder only for the load
  5573     DECODE : S1;        // any decoder for FPU POP
  5574     FPU    : S4;
  5575     MEM    : S3;        // any mem
  5576 %}
  5578 // Float load constant
  5579 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
  5580     instruction_count(3);
  5581     dst    : S5(write);
  5582     src    : S3(read);
  5583     D0     : S0;        // big decoder only for the load
  5584     DECODE : S1(2);     // any decoder for FPU POP
  5585     FPU    : S4;
  5586     MEM    : S3;        // any mem
  5587 %}
  5589 // UnConditional branch
  5590 pipe_class pipe_jmp( label labl ) %{
  5591     single_instruction;
  5592     BR   : S3;
  5593 %}
  5595 // Conditional branch
  5596 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  5597     single_instruction;
  5598     cr    : S1(read);
  5599     BR    : S3;
  5600 %}
  5602 // Allocation idiom
  5603 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  5604     instruction_count(1); force_serialization;
  5605     fixed_latency(6);
  5606     heap_ptr : S3(read);
  5607     DECODE   : S0(3);
  5608     D0       : S2;
  5609     MEM      : S3;
  5610     ALU      : S3(2);
  5611     dst      : S5(write);
  5612     BR       : S5;
  5613 %}
  5615 // Generic big/slow expanded idiom
  5616 pipe_class pipe_slow(  ) %{
  5617     instruction_count(10); multiple_bundles; force_serialization;
  5618     fixed_latency(100);
  5619     D0  : S0(2);
  5620     MEM : S3(2);
  5621 %}
  5623 // The real do-nothing guy
  5624 pipe_class empty( ) %{
  5625     instruction_count(0);
  5626 %}
  5628 // Define the class for the Nop node
  5629 define %{
  5630    MachNop = empty;
  5631 %}
  5633 %}
  5635 //----------INSTRUCTIONS-------------------------------------------------------
  5636 //
  5637 // match      -- States which machine-independent subtree may be replaced
  5638 //               by this instruction.
  5639 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5640 //               selection to identify a minimum cost tree of machine
  5641 //               instructions that matches a tree of machine-independent
  5642 //               instructions.
  5643 // format     -- A string providing the disassembly for this instruction.
  5644 //               The value of an instruction's operand may be inserted
  5645 //               by referring to it with a '$' prefix.
  5646 // opcode     -- Three instruction opcodes may be provided.  These are referred
  5647 //               to within an encode class as $primary, $secondary, and $tertiary
  5648 //               respectively.  The primary opcode is commonly used to
  5649 //               indicate the type of machine instruction, while secondary
  5650 //               and tertiary are often used for prefix options or addressing
  5651 //               modes.
  5652 // ins_encode -- A list of encode classes with parameters. The encode class
  5653 //               name must have been defined in an 'enc_class' specification
  5654 //               in the encode section of the architecture description.
  5656 //----------BSWAP-Instruction--------------------------------------------------
  5657 instruct bytes_reverse_int(eRegI dst) %{
  5658   match(Set dst (ReverseBytesI dst));
  5660   format %{ "BSWAP  $dst" %}
  5661   opcode(0x0F, 0xC8);
  5662   ins_encode( OpcP, OpcSReg(dst) );
  5663   ins_pipe( ialu_reg );
  5664 %}
  5666 instruct bytes_reverse_long(eRegL dst) %{
  5667   match(Set dst (ReverseBytesL dst));
  5669   format %{ "BSWAP  $dst.lo\n\t"
  5670             "BSWAP  $dst.hi\n\t"
  5671             "XCHG   $dst.lo $dst.hi" %}
  5673   ins_cost(125);
  5674   ins_encode( bswap_long_bytes(dst) );
  5675   ins_pipe( ialu_reg_reg);
  5676 %}
  5678 instruct bytes_reverse_unsigned_short(eRegI dst) %{
  5679   match(Set dst (ReverseBytesUS dst));
  5681   format %{ "BSWAP  $dst\n\t" 
  5682             "SHR    $dst,16\n\t" %}
  5683   ins_encode %{
  5684     __ bswapl($dst$$Register);
  5685     __ shrl($dst$$Register, 16); 
  5686   %}
  5687   ins_pipe( ialu_reg );
  5688 %}
  5690 instruct bytes_reverse_short(eRegI dst) %{
  5691   match(Set dst (ReverseBytesS dst));
  5693   format %{ "BSWAP  $dst\n\t" 
  5694             "SAR    $dst,16\n\t" %}
  5695   ins_encode %{
  5696     __ bswapl($dst$$Register);
  5697     __ sarl($dst$$Register, 16); 
  5698   %}
  5699   ins_pipe( ialu_reg );
  5700 %}
  5703 //---------- Zeros Count Instructions ------------------------------------------
  5705 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  5706   predicate(UseCountLeadingZerosInstruction);
  5707   match(Set dst (CountLeadingZerosI src));
  5708   effect(KILL cr);
  5710   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  5711   ins_encode %{
  5712     __ lzcntl($dst$$Register, $src$$Register);
  5713   %}
  5714   ins_pipe(ialu_reg);
  5715 %}
  5717 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
  5718   predicate(!UseCountLeadingZerosInstruction);
  5719   match(Set dst (CountLeadingZerosI src));
  5720   effect(KILL cr);
  5722   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  5723             "JNZ    skip\n\t"
  5724             "MOV    $dst, -1\n"
  5725       "skip:\n\t"
  5726             "NEG    $dst\n\t"
  5727             "ADD    $dst, 31" %}
  5728   ins_encode %{
  5729     Register Rdst = $dst$$Register;
  5730     Register Rsrc = $src$$Register;
  5731     Label skip;
  5732     __ bsrl(Rdst, Rsrc);
  5733     __ jccb(Assembler::notZero, skip);
  5734     __ movl(Rdst, -1);
  5735     __ bind(skip);
  5736     __ negl(Rdst);
  5737     __ addl(Rdst, BitsPerInt - 1);
  5738   %}
  5739   ins_pipe(ialu_reg);
  5740 %}
  5742 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  5743   predicate(UseCountLeadingZerosInstruction);
  5744   match(Set dst (CountLeadingZerosL src));
  5745   effect(TEMP dst, KILL cr);
  5747   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  5748             "JNC    done\n\t"
  5749             "LZCNT  $dst, $src.lo\n\t"
  5750             "ADD    $dst, 32\n"
  5751       "done:" %}
  5752   ins_encode %{
  5753     Register Rdst = $dst$$Register;
  5754     Register Rsrc = $src$$Register;
  5755     Label done;
  5756     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5757     __ jccb(Assembler::carryClear, done);
  5758     __ lzcntl(Rdst, Rsrc);
  5759     __ addl(Rdst, BitsPerInt);
  5760     __ bind(done);
  5761   %}
  5762   ins_pipe(ialu_reg);
  5763 %}
  5765 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
  5766   predicate(!UseCountLeadingZerosInstruction);
  5767   match(Set dst (CountLeadingZerosL src));
  5768   effect(TEMP dst, KILL cr);
  5770   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  5771             "JZ     msw_is_zero\n\t"
  5772             "ADD    $dst, 32\n\t"
  5773             "JMP    not_zero\n"
  5774       "msw_is_zero:\n\t"
  5775             "BSR    $dst, $src.lo\n\t"
  5776             "JNZ    not_zero\n\t"
  5777             "MOV    $dst, -1\n"
  5778       "not_zero:\n\t"
  5779             "NEG    $dst\n\t"
  5780             "ADD    $dst, 63\n" %}
  5781  ins_encode %{
  5782     Register Rdst = $dst$$Register;
  5783     Register Rsrc = $src$$Register;
  5784     Label msw_is_zero;
  5785     Label not_zero;
  5786     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  5787     __ jccb(Assembler::zero, msw_is_zero);
  5788     __ addl(Rdst, BitsPerInt);
  5789     __ jmpb(not_zero);
  5790     __ bind(msw_is_zero);
  5791     __ bsrl(Rdst, Rsrc);
  5792     __ jccb(Assembler::notZero, not_zero);
  5793     __ movl(Rdst, -1);
  5794     __ bind(not_zero);
  5795     __ negl(Rdst);
  5796     __ addl(Rdst, BitsPerLong - 1);
  5797   %}
  5798   ins_pipe(ialu_reg);
  5799 %}
  5801 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  5802   match(Set dst (CountTrailingZerosI src));
  5803   effect(KILL cr);
  5805   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  5806             "JNZ    done\n\t"
  5807             "MOV    $dst, 32\n"
  5808       "done:" %}
  5809   ins_encode %{
  5810     Register Rdst = $dst$$Register;
  5811     Label done;
  5812     __ bsfl(Rdst, $src$$Register);
  5813     __ jccb(Assembler::notZero, done);
  5814     __ movl(Rdst, BitsPerInt);
  5815     __ bind(done);
  5816   %}
  5817   ins_pipe(ialu_reg);
  5818 %}
  5820 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  5821   match(Set dst (CountTrailingZerosL src));
  5822   effect(TEMP dst, KILL cr);
  5824   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  5825             "JNZ    done\n\t"
  5826             "BSF    $dst, $src.hi\n\t"
  5827             "JNZ    msw_not_zero\n\t"
  5828             "MOV    $dst, 32\n"
  5829       "msw_not_zero:\n\t"
  5830             "ADD    $dst, 32\n"
  5831       "done:" %}
  5832   ins_encode %{
  5833     Register Rdst = $dst$$Register;
  5834     Register Rsrc = $src$$Register;
  5835     Label msw_not_zero;
  5836     Label done;
  5837     __ bsfl(Rdst, Rsrc);
  5838     __ jccb(Assembler::notZero, done);
  5839     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  5840     __ jccb(Assembler::notZero, msw_not_zero);
  5841     __ movl(Rdst, BitsPerInt);
  5842     __ bind(msw_not_zero);
  5843     __ addl(Rdst, BitsPerInt);
  5844     __ bind(done);
  5845   %}
  5846   ins_pipe(ialu_reg);
  5847 %}
  5850 //---------- Population Count Instructions -------------------------------------
  5852 instruct popCountI(eRegI dst, eRegI src) %{
  5853   predicate(UsePopCountInstruction);
  5854   match(Set dst (PopCountI src));
  5856   format %{ "POPCNT $dst, $src" %}
  5857   ins_encode %{
  5858     __ popcntl($dst$$Register, $src$$Register);
  5859   %}
  5860   ins_pipe(ialu_reg);
  5861 %}
  5863 instruct popCountI_mem(eRegI dst, memory mem) %{
  5864   predicate(UsePopCountInstruction);
  5865   match(Set dst (PopCountI (LoadI mem)));
  5867   format %{ "POPCNT $dst, $mem" %}
  5868   ins_encode %{
  5869     __ popcntl($dst$$Register, $mem$$Address);
  5870   %}
  5871   ins_pipe(ialu_reg);
  5872 %}
  5874 // Note: Long.bitCount(long) returns an int.
  5875 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  5876   predicate(UsePopCountInstruction);
  5877   match(Set dst (PopCountL src));
  5878   effect(KILL cr, TEMP tmp, TEMP dst);
  5880   format %{ "POPCNT $dst, $src.lo\n\t"
  5881             "POPCNT $tmp, $src.hi\n\t"
  5882             "ADD    $dst, $tmp" %}
  5883   ins_encode %{
  5884     __ popcntl($dst$$Register, $src$$Register);
  5885     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  5886     __ addl($dst$$Register, $tmp$$Register);
  5887   %}
  5888   ins_pipe(ialu_reg);
  5889 %}
  5891 // Note: Long.bitCount(long) returns an int.
  5892 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  5893   predicate(UsePopCountInstruction);
  5894   match(Set dst (PopCountL (LoadL mem)));
  5895   effect(KILL cr, TEMP tmp, TEMP dst);
  5897   format %{ "POPCNT $dst, $mem\n\t"
  5898             "POPCNT $tmp, $mem+4\n\t"
  5899             "ADD    $dst, $tmp" %}
  5900   ins_encode %{
  5901     //__ popcntl($dst$$Register, $mem$$Address$$first);
  5902     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  5903     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  5904     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  5905     __ addl($dst$$Register, $tmp$$Register);
  5906   %}
  5907   ins_pipe(ialu_reg);
  5908 %}
  5911 //----------Load/Store/Move Instructions---------------------------------------
  5912 //----------Load Instructions--------------------------------------------------
  5913 // Load Byte (8bit signed)
  5914 instruct loadB(xRegI dst, memory mem) %{
  5915   match(Set dst (LoadB mem));
  5917   ins_cost(125);
  5918   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  5920   ins_encode %{
  5921     __ movsbl($dst$$Register, $mem$$Address);
  5922   %}
  5924   ins_pipe(ialu_reg_mem);
  5925 %}
  5927 // Load Byte (8bit signed) into Long Register
  5928 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5929   match(Set dst (ConvI2L (LoadB mem)));
  5930   effect(KILL cr);
  5932   ins_cost(375);
  5933   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  5934             "MOV    $dst.hi,$dst.lo\n\t"
  5935             "SAR    $dst.hi,7" %}
  5937   ins_encode %{
  5938     __ movsbl($dst$$Register, $mem$$Address);
  5939     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5940     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  5941   %}
  5943   ins_pipe(ialu_reg_mem);
  5944 %}
  5946 // Load Unsigned Byte (8bit UNsigned)
  5947 instruct loadUB(xRegI dst, memory mem) %{
  5948   match(Set dst (LoadUB mem));
  5950   ins_cost(125);
  5951   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  5953   ins_encode %{
  5954     __ movzbl($dst$$Register, $mem$$Address);
  5955   %}
  5957   ins_pipe(ialu_reg_mem);
  5958 %}
  5960 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  5961 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5962   match(Set dst (ConvI2L (LoadUB mem)));
  5963   effect(KILL cr);
  5965   ins_cost(250);
  5966   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  5967             "XOR    $dst.hi,$dst.hi" %}
  5969   ins_encode %{
  5970     Register Rdst = $dst$$Register;
  5971     __ movzbl(Rdst, $mem$$Address);
  5972     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5973   %}
  5975   ins_pipe(ialu_reg_mem);
  5976 %}
  5978 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  5979 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  5980   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5981   effect(KILL cr);
  5983   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  5984             "XOR    $dst.hi,$dst.hi\n\t"
  5985             "AND    $dst.lo,$mask" %}
  5986   ins_encode %{
  5987     Register Rdst = $dst$$Register;
  5988     __ movzbl(Rdst, $mem$$Address);
  5989     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5990     __ andl(Rdst, $mask$$constant);
  5991   %}
  5992   ins_pipe(ialu_reg_mem);
  5993 %}
  5995 // Load Short (16bit signed)
  5996 instruct loadS(eRegI dst, memory mem) %{
  5997   match(Set dst (LoadS mem));
  5999   ins_cost(125);
  6000   format %{ "MOVSX  $dst,$mem\t# short" %}
  6002   ins_encode %{
  6003     __ movswl($dst$$Register, $mem$$Address);
  6004   %}
  6006   ins_pipe(ialu_reg_mem);
  6007 %}
  6009 // Load Short (16 bit signed) to Byte (8 bit signed)
  6010 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6011   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6013   ins_cost(125);
  6014   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  6015   ins_encode %{
  6016     __ movsbl($dst$$Register, $mem$$Address);
  6017   %}
  6018   ins_pipe(ialu_reg_mem);
  6019 %}
  6021 // Load Short (16bit signed) into Long Register
  6022 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6023   match(Set dst (ConvI2L (LoadS mem)));
  6024   effect(KILL cr);
  6026   ins_cost(375);
  6027   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  6028             "MOV    $dst.hi,$dst.lo\n\t"
  6029             "SAR    $dst.hi,15" %}
  6031   ins_encode %{
  6032     __ movswl($dst$$Register, $mem$$Address);
  6033     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6034     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  6035   %}
  6037   ins_pipe(ialu_reg_mem);
  6038 %}
  6040 // Load Unsigned Short/Char (16bit unsigned)
  6041 instruct loadUS(eRegI dst, memory mem) %{
  6042   match(Set dst (LoadUS mem));
  6044   ins_cost(125);
  6045   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  6047   ins_encode %{
  6048     __ movzwl($dst$$Register, $mem$$Address);
  6049   %}
  6051   ins_pipe(ialu_reg_mem);
  6052 %}
  6054 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  6055 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6056   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  6058   ins_cost(125);
  6059   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  6060   ins_encode %{
  6061     __ movsbl($dst$$Register, $mem$$Address);
  6062   %}
  6063   ins_pipe(ialu_reg_mem);
  6064 %}
  6066 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6067 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6068   match(Set dst (ConvI2L (LoadUS mem)));
  6069   effect(KILL cr);
  6071   ins_cost(250);
  6072   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  6073             "XOR    $dst.hi,$dst.hi" %}
  6075   ins_encode %{
  6076     __ movzwl($dst$$Register, $mem$$Address);
  6077     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6078   %}
  6080   ins_pipe(ialu_reg_mem);
  6081 %}
  6083 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  6084 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6085   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6086   effect(KILL cr);
  6088   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  6089             "XOR    $dst.hi,$dst.hi" %}
  6090   ins_encode %{
  6091     Register Rdst = $dst$$Register;
  6092     __ movzbl(Rdst, $mem$$Address);
  6093     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6094   %}
  6095   ins_pipe(ialu_reg_mem);
  6096 %}
  6098 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6099 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6100   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6101   effect(KILL cr);
  6103   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6104             "XOR    $dst.hi,$dst.hi\n\t"
  6105             "AND    $dst.lo,$mask" %}
  6106   ins_encode %{
  6107     Register Rdst = $dst$$Register;
  6108     __ movzwl(Rdst, $mem$$Address);
  6109     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6110     __ andl(Rdst, $mask$$constant);
  6111   %}
  6112   ins_pipe(ialu_reg_mem);
  6113 %}
  6115 // Load Integer
  6116 instruct loadI(eRegI dst, memory mem) %{
  6117   match(Set dst (LoadI mem));
  6119   ins_cost(125);
  6120   format %{ "MOV    $dst,$mem\t# int" %}
  6122   ins_encode %{
  6123     __ movl($dst$$Register, $mem$$Address);
  6124   %}
  6126   ins_pipe(ialu_reg_mem);
  6127 %}
  6129 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6130 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6131   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6133   ins_cost(125);
  6134   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6135   ins_encode %{
  6136     __ movsbl($dst$$Register, $mem$$Address);
  6137   %}
  6138   ins_pipe(ialu_reg_mem);
  6139 %}
  6141 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6142 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
  6143   match(Set dst (AndI (LoadI mem) mask));
  6145   ins_cost(125);
  6146   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6147   ins_encode %{
  6148     __ movzbl($dst$$Register, $mem$$Address);
  6149   %}
  6150   ins_pipe(ialu_reg_mem);
  6151 %}
  6153 // Load Integer (32 bit signed) to Short (16 bit signed)
  6154 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
  6155   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6157   ins_cost(125);
  6158   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6159   ins_encode %{
  6160     __ movswl($dst$$Register, $mem$$Address);
  6161   %}
  6162   ins_pipe(ialu_reg_mem);
  6163 %}
  6165 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6166 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
  6167   match(Set dst (AndI (LoadI mem) mask));
  6169   ins_cost(125);
  6170   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6171   ins_encode %{
  6172     __ movzwl($dst$$Register, $mem$$Address);
  6173   %}
  6174   ins_pipe(ialu_reg_mem);
  6175 %}
  6177 // Load Integer into Long Register
  6178 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6179   match(Set dst (ConvI2L (LoadI mem)));
  6180   effect(KILL cr);
  6182   ins_cost(375);
  6183   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6184             "MOV    $dst.hi,$dst.lo\n\t"
  6185             "SAR    $dst.hi,31" %}
  6187   ins_encode %{
  6188     __ movl($dst$$Register, $mem$$Address);
  6189     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6190     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6191   %}
  6193   ins_pipe(ialu_reg_mem);
  6194 %}
  6196 // Load Integer with mask 0xFF into Long Register
  6197 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6198   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6199   effect(KILL cr);
  6201   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6202             "XOR    $dst.hi,$dst.hi" %}
  6203   ins_encode %{
  6204     Register Rdst = $dst$$Register;
  6205     __ movzbl(Rdst, $mem$$Address);
  6206     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6207   %}
  6208   ins_pipe(ialu_reg_mem);
  6209 %}
  6211 // Load Integer with mask 0xFFFF into Long Register
  6212 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6213   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6214   effect(KILL cr);
  6216   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6217             "XOR    $dst.hi,$dst.hi" %}
  6218   ins_encode %{
  6219     Register Rdst = $dst$$Register;
  6220     __ movzwl(Rdst, $mem$$Address);
  6221     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6222   %}
  6223   ins_pipe(ialu_reg_mem);
  6224 %}
  6226 // Load Integer with 32-bit mask into Long Register
  6227 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6228   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6229   effect(KILL cr);
  6231   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6232             "XOR    $dst.hi,$dst.hi\n\t"
  6233             "AND    $dst.lo,$mask" %}
  6234   ins_encode %{
  6235     Register Rdst = $dst$$Register;
  6236     __ movl(Rdst, $mem$$Address);
  6237     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6238     __ andl(Rdst, $mask$$constant);
  6239   %}
  6240   ins_pipe(ialu_reg_mem);
  6241 %}
  6243 // Load Unsigned Integer into Long Register
  6244 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6245   match(Set dst (LoadUI2L mem));
  6246   effect(KILL cr);
  6248   ins_cost(250);
  6249   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6250             "XOR    $dst.hi,$dst.hi" %}
  6252   ins_encode %{
  6253     __ movl($dst$$Register, $mem$$Address);
  6254     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6255   %}
  6257   ins_pipe(ialu_reg_mem);
  6258 %}
  6260 // Load Long.  Cannot clobber address while loading, so restrict address
  6261 // register to ESI
  6262 instruct loadL(eRegL dst, load_long_memory mem) %{
  6263   predicate(!((LoadLNode*)n)->require_atomic_access());
  6264   match(Set dst (LoadL mem));
  6266   ins_cost(250);
  6267   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6268             "MOV    $dst.hi,$mem+4" %}
  6270   ins_encode %{
  6271     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6272     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6273     __ movl($dst$$Register, Amemlo);
  6274     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6275   %}
  6277   ins_pipe(ialu_reg_long_mem);
  6278 %}
  6280 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6281 // then store it down to the stack and reload on the int
  6282 // side.
  6283 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6284   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6285   match(Set dst (LoadL mem));
  6287   ins_cost(200);
  6288   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6289             "FISTp  $dst" %}
  6290   ins_encode(enc_loadL_volatile(mem,dst));
  6291   ins_pipe( fpu_reg_mem );
  6292 %}
  6294 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
  6295   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6296   match(Set dst (LoadL mem));
  6297   effect(TEMP tmp);
  6298   ins_cost(180);
  6299   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6300             "MOVSD  $dst,$tmp" %}
  6301   ins_encode %{
  6302     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6303     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  6304   %}
  6305   ins_pipe( pipe_slow );
  6306 %}
  6308 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
  6309   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6310   match(Set dst (LoadL mem));
  6311   effect(TEMP tmp);
  6312   ins_cost(160);
  6313   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6314             "MOVD   $dst.lo,$tmp\n\t"
  6315             "PSRLQ  $tmp,32\n\t"
  6316             "MOVD   $dst.hi,$tmp" %}
  6317   ins_encode %{
  6318     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6319     __ movdl($dst$$Register, $tmp$$XMMRegister);
  6320     __ psrlq($tmp$$XMMRegister, 32);
  6321     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  6322   %}
  6323   ins_pipe( pipe_slow );
  6324 %}
  6326 // Load Range
  6327 instruct loadRange(eRegI dst, memory mem) %{
  6328   match(Set dst (LoadRange mem));
  6330   ins_cost(125);
  6331   format %{ "MOV    $dst,$mem" %}
  6332   opcode(0x8B);
  6333   ins_encode( OpcP, RegMem(dst,mem));
  6334   ins_pipe( ialu_reg_mem );
  6335 %}
  6338 // Load Pointer
  6339 instruct loadP(eRegP dst, memory mem) %{
  6340   match(Set dst (LoadP mem));
  6342   ins_cost(125);
  6343   format %{ "MOV    $dst,$mem" %}
  6344   opcode(0x8B);
  6345   ins_encode( OpcP, RegMem(dst,mem));
  6346   ins_pipe( ialu_reg_mem );
  6347 %}
  6349 // Load Klass Pointer
  6350 instruct loadKlass(eRegP dst, memory mem) %{
  6351   match(Set dst (LoadKlass mem));
  6353   ins_cost(125);
  6354   format %{ "MOV    $dst,$mem" %}
  6355   opcode(0x8B);
  6356   ins_encode( OpcP, RegMem(dst,mem));
  6357   ins_pipe( ialu_reg_mem );
  6358 %}
  6360 // Load Double
  6361 instruct loadDPR(regDPR dst, memory mem) %{
  6362   predicate(UseSSE<=1);
  6363   match(Set dst (LoadD mem));
  6365   ins_cost(150);
  6366   format %{ "FLD_D  ST,$mem\n\t"
  6367             "FSTP   $dst" %}
  6368   opcode(0xDD);               /* DD /0 */
  6369   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6370               Pop_Reg_DPR(dst) );
  6371   ins_pipe( fpu_reg_mem );
  6372 %}
  6374 // Load Double to XMM
  6375 instruct loadD(regD dst, memory mem) %{
  6376   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6377   match(Set dst (LoadD mem));
  6378   ins_cost(145);
  6379   format %{ "MOVSD  $dst,$mem" %}
  6380   ins_encode %{
  6381     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6382   %}
  6383   ins_pipe( pipe_slow );
  6384 %}
  6386 instruct loadD_partial(regD dst, memory mem) %{
  6387   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6388   match(Set dst (LoadD mem));
  6389   ins_cost(145);
  6390   format %{ "MOVLPD $dst,$mem" %}
  6391   ins_encode %{
  6392     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6393   %}
  6394   ins_pipe( pipe_slow );
  6395 %}
  6397 // Load to XMM register (single-precision floating point)
  6398 // MOVSS instruction
  6399 instruct loadF(regF dst, memory mem) %{
  6400   predicate(UseSSE>=1);
  6401   match(Set dst (LoadF mem));
  6402   ins_cost(145);
  6403   format %{ "MOVSS  $dst,$mem" %}
  6404   ins_encode %{
  6405     __ movflt ($dst$$XMMRegister, $mem$$Address);
  6406   %}
  6407   ins_pipe( pipe_slow );
  6408 %}
  6410 // Load Float
  6411 instruct loadFPR(regFPR dst, memory mem) %{
  6412   predicate(UseSSE==0);
  6413   match(Set dst (LoadF mem));
  6415   ins_cost(150);
  6416   format %{ "FLD_S  ST,$mem\n\t"
  6417             "FSTP   $dst" %}
  6418   opcode(0xD9);               /* D9 /0 */
  6419   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6420               Pop_Reg_FPR(dst) );
  6421   ins_pipe( fpu_reg_mem );
  6422 %}
  6424 // Load Aligned Packed Byte to XMM register
  6425 instruct loadA8B(regD dst, memory mem) %{
  6426   predicate(UseSSE>=1);
  6427   match(Set dst (Load8B mem));
  6428   ins_cost(125);
  6429   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6430   ins_encode %{
  6431     __ movq($dst$$XMMRegister, $mem$$Address);
  6432   %}
  6433   ins_pipe( pipe_slow );
  6434 %}
  6436 // Load Aligned Packed Short to XMM register
  6437 instruct loadA4S(regD dst, memory mem) %{
  6438   predicate(UseSSE>=1);
  6439   match(Set dst (Load4S mem));
  6440   ins_cost(125);
  6441   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  6442   ins_encode %{
  6443     __ movq($dst$$XMMRegister, $mem$$Address);
  6444   %}
  6445   ins_pipe( pipe_slow );
  6446 %}
  6448 // Load Aligned Packed Char to XMM register
  6449 instruct loadA4C(regD dst, memory mem) %{
  6450   predicate(UseSSE>=1);
  6451   match(Set dst (Load4C mem));
  6452   ins_cost(125);
  6453   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  6454   ins_encode %{
  6455     __ movq($dst$$XMMRegister, $mem$$Address);
  6456   %}
  6457   ins_pipe( pipe_slow );
  6458 %}
  6460 // Load Aligned Packed Integer to XMM register
  6461 instruct load2IU(regD dst, memory mem) %{
  6462   predicate(UseSSE>=1);
  6463   match(Set dst (Load2I mem));
  6464   ins_cost(125);
  6465   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  6466   ins_encode %{
  6467     __ movq($dst$$XMMRegister, $mem$$Address);
  6468   %}
  6469   ins_pipe( pipe_slow );
  6470 %}
  6472 // Load Aligned Packed Single to XMM
  6473 instruct loadA2F(regD dst, memory mem) %{
  6474   predicate(UseSSE>=1);
  6475   match(Set dst (Load2F mem));
  6476   ins_cost(145);
  6477   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  6478   ins_encode %{
  6479     __ movq($dst$$XMMRegister, $mem$$Address);
  6480   %}
  6481   ins_pipe( pipe_slow );
  6482 %}
  6484 // Load Effective Address
  6485 instruct leaP8(eRegP dst, indOffset8 mem) %{
  6486   match(Set dst mem);
  6488   ins_cost(110);
  6489   format %{ "LEA    $dst,$mem" %}
  6490   opcode(0x8D);
  6491   ins_encode( OpcP, RegMem(dst,mem));
  6492   ins_pipe( ialu_reg_reg_fat );
  6493 %}
  6495 instruct leaP32(eRegP dst, indOffset32 mem) %{
  6496   match(Set dst mem);
  6498   ins_cost(110);
  6499   format %{ "LEA    $dst,$mem" %}
  6500   opcode(0x8D);
  6501   ins_encode( OpcP, RegMem(dst,mem));
  6502   ins_pipe( ialu_reg_reg_fat );
  6503 %}
  6505 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  6506   match(Set dst mem);
  6508   ins_cost(110);
  6509   format %{ "LEA    $dst,$mem" %}
  6510   opcode(0x8D);
  6511   ins_encode( OpcP, RegMem(dst,mem));
  6512   ins_pipe( ialu_reg_reg_fat );
  6513 %}
  6515 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  6516   match(Set dst mem);
  6518   ins_cost(110);
  6519   format %{ "LEA    $dst,$mem" %}
  6520   opcode(0x8D);
  6521   ins_encode( OpcP, RegMem(dst,mem));
  6522   ins_pipe( ialu_reg_reg_fat );
  6523 %}
  6525 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  6526   match(Set dst mem);
  6528   ins_cost(110);
  6529   format %{ "LEA    $dst,$mem" %}
  6530   opcode(0x8D);
  6531   ins_encode( OpcP, RegMem(dst,mem));
  6532   ins_pipe( ialu_reg_reg_fat );
  6533 %}
  6535 // Load Constant
  6536 instruct loadConI(eRegI dst, immI src) %{
  6537   match(Set dst src);
  6539   format %{ "MOV    $dst,$src" %}
  6540   ins_encode( LdImmI(dst, src) );
  6541   ins_pipe( ialu_reg_fat );
  6542 %}
  6544 // Load Constant zero
  6545 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  6546   match(Set dst src);
  6547   effect(KILL cr);
  6549   ins_cost(50);
  6550   format %{ "XOR    $dst,$dst" %}
  6551   opcode(0x33);  /* + rd */
  6552   ins_encode( OpcP, RegReg( dst, dst ) );
  6553   ins_pipe( ialu_reg );
  6554 %}
  6556 instruct loadConP(eRegP dst, immP src) %{
  6557   match(Set dst src);
  6559   format %{ "MOV    $dst,$src" %}
  6560   opcode(0xB8);  /* + rd */
  6561   ins_encode( LdImmP(dst, src) );
  6562   ins_pipe( ialu_reg_fat );
  6563 %}
  6565 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  6566   match(Set dst src);
  6567   effect(KILL cr);
  6568   ins_cost(200);
  6569   format %{ "MOV    $dst.lo,$src.lo\n\t"
  6570             "MOV    $dst.hi,$src.hi" %}
  6571   opcode(0xB8);
  6572   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  6573   ins_pipe( ialu_reg_long_fat );
  6574 %}
  6576 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  6577   match(Set dst src);
  6578   effect(KILL cr);
  6579   ins_cost(150);
  6580   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  6581             "XOR    $dst.hi,$dst.hi" %}
  6582   opcode(0x33,0x33);
  6583   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  6584   ins_pipe( ialu_reg_long );
  6585 %}
  6587 // The instruction usage is guarded by predicate in operand immFPR().
  6588 instruct loadConFPR(regFPR dst, immFPR con) %{
  6589   match(Set dst con);
  6590   ins_cost(125);
  6591   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  6592             "FSTP   $dst" %}
  6593   ins_encode %{
  6594     __ fld_s($constantaddress($con));
  6595     __ fstp_d($dst$$reg);
  6596   %}
  6597   ins_pipe(fpu_reg_con);
  6598 %}
  6600 // The instruction usage is guarded by predicate in operand immFPR0().
  6601 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
  6602   match(Set dst con);
  6603   ins_cost(125);
  6604   format %{ "FLDZ   ST\n\t"
  6605             "FSTP   $dst" %}
  6606   ins_encode %{
  6607     __ fldz();
  6608     __ fstp_d($dst$$reg);
  6609   %}
  6610   ins_pipe(fpu_reg_con);
  6611 %}
  6613 // The instruction usage is guarded by predicate in operand immFPR1().
  6614 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
  6615   match(Set dst con);
  6616   ins_cost(125);
  6617   format %{ "FLD1   ST\n\t"
  6618             "FSTP   $dst" %}
  6619   ins_encode %{
  6620     __ fld1();
  6621     __ fstp_d($dst$$reg);
  6622   %}
  6623   ins_pipe(fpu_reg_con);
  6624 %}
  6626 // The instruction usage is guarded by predicate in operand immF().
  6627 instruct loadConF(regF dst, immF con) %{
  6628   match(Set dst con);
  6629   ins_cost(125);
  6630   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  6631   ins_encode %{
  6632     __ movflt($dst$$XMMRegister, $constantaddress($con));
  6633   %}
  6634   ins_pipe(pipe_slow);
  6635 %}
  6637 // The instruction usage is guarded by predicate in operand immF0().
  6638 instruct loadConF0(regF dst, immF0 src) %{
  6639   match(Set dst src);
  6640   ins_cost(100);
  6641   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  6642   ins_encode %{
  6643     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  6644   %}
  6645   ins_pipe(pipe_slow);
  6646 %}
  6648 // The instruction usage is guarded by predicate in operand immDPR().
  6649 instruct loadConDPR(regDPR dst, immDPR con) %{
  6650   match(Set dst con);
  6651   ins_cost(125);
  6653   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  6654             "FSTP   $dst" %}
  6655   ins_encode %{
  6656     __ fld_d($constantaddress($con));
  6657     __ fstp_d($dst$$reg);
  6658   %}
  6659   ins_pipe(fpu_reg_con);
  6660 %}
  6662 // The instruction usage is guarded by predicate in operand immDPR0().
  6663 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
  6664   match(Set dst con);
  6665   ins_cost(125);
  6667   format %{ "FLDZ   ST\n\t"
  6668             "FSTP   $dst" %}
  6669   ins_encode %{
  6670     __ fldz();
  6671     __ fstp_d($dst$$reg);
  6672   %}
  6673   ins_pipe(fpu_reg_con);
  6674 %}
  6676 // The instruction usage is guarded by predicate in operand immDPR1().
  6677 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
  6678   match(Set dst con);
  6679   ins_cost(125);
  6681   format %{ "FLD1   ST\n\t"
  6682             "FSTP   $dst" %}
  6683   ins_encode %{
  6684     __ fld1();
  6685     __ fstp_d($dst$$reg);
  6686   %}
  6687   ins_pipe(fpu_reg_con);
  6688 %}
  6690 // The instruction usage is guarded by predicate in operand immD().
  6691 instruct loadConD(regD dst, immD con) %{
  6692   match(Set dst con);
  6693   ins_cost(125);
  6694   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  6695   ins_encode %{
  6696     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  6697   %}
  6698   ins_pipe(pipe_slow);
  6699 %}
  6701 // The instruction usage is guarded by predicate in operand immD0().
  6702 instruct loadConD0(regD dst, immD0 src) %{
  6703   match(Set dst src);
  6704   ins_cost(100);
  6705   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  6706   ins_encode %{
  6707     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
  6708   %}
  6709   ins_pipe( pipe_slow );
  6710 %}
  6712 // Load Stack Slot
  6713 instruct loadSSI(eRegI dst, stackSlotI src) %{
  6714   match(Set dst src);
  6715   ins_cost(125);
  6717   format %{ "MOV    $dst,$src" %}
  6718   opcode(0x8B);
  6719   ins_encode( OpcP, RegMem(dst,src));
  6720   ins_pipe( ialu_reg_mem );
  6721 %}
  6723 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6724   match(Set dst src);
  6726   ins_cost(200);
  6727   format %{ "MOV    $dst,$src.lo\n\t"
  6728             "MOV    $dst+4,$src.hi" %}
  6729   opcode(0x8B, 0x8B);
  6730   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  6731   ins_pipe( ialu_mem_long_reg );
  6732 %}
  6734 // Load Stack Slot
  6735 instruct loadSSP(eRegP dst, stackSlotP src) %{
  6736   match(Set dst src);
  6737   ins_cost(125);
  6739   format %{ "MOV    $dst,$src" %}
  6740   opcode(0x8B);
  6741   ins_encode( OpcP, RegMem(dst,src));
  6742   ins_pipe( ialu_reg_mem );
  6743 %}
  6745 // Load Stack Slot
  6746 instruct loadSSF(regFPR dst, stackSlotF src) %{
  6747   match(Set dst src);
  6748   ins_cost(125);
  6750   format %{ "FLD_S  $src\n\t"
  6751             "FSTP   $dst" %}
  6752   opcode(0xD9);               /* D9 /0, FLD m32real */
  6753   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6754               Pop_Reg_FPR(dst) );
  6755   ins_pipe( fpu_reg_mem );
  6756 %}
  6758 // Load Stack Slot
  6759 instruct loadSSD(regDPR dst, stackSlotD src) %{
  6760   match(Set dst src);
  6761   ins_cost(125);
  6763   format %{ "FLD_D  $src\n\t"
  6764             "FSTP   $dst" %}
  6765   opcode(0xDD);               /* DD /0, FLD m64real */
  6766   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6767               Pop_Reg_DPR(dst) );
  6768   ins_pipe( fpu_reg_mem );
  6769 %}
  6771 // Prefetch instructions.
  6772 // Must be safe to execute with invalid address (cannot fault).
  6774 instruct prefetchr0( memory mem ) %{
  6775   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6776   match(PrefetchRead mem);
  6777   ins_cost(0);
  6778   size(0);
  6779   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  6780   ins_encode();
  6781   ins_pipe(empty);
  6782 %}
  6784 instruct prefetchr( memory mem ) %{
  6785   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
  6786   match(PrefetchRead mem);
  6787   ins_cost(100);
  6789   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  6790   ins_encode %{
  6791     __ prefetchr($mem$$Address);
  6792   %}
  6793   ins_pipe(ialu_mem);
  6794 %}
  6796 instruct prefetchrNTA( memory mem ) %{
  6797   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  6798   match(PrefetchRead mem);
  6799   ins_cost(100);
  6801   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  6802   ins_encode %{
  6803     __ prefetchnta($mem$$Address);
  6804   %}
  6805   ins_pipe(ialu_mem);
  6806 %}
  6808 instruct prefetchrT0( memory mem ) %{
  6809   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  6810   match(PrefetchRead mem);
  6811   ins_cost(100);
  6813   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  6814   ins_encode %{
  6815     __ prefetcht0($mem$$Address);
  6816   %}
  6817   ins_pipe(ialu_mem);
  6818 %}
  6820 instruct prefetchrT2( memory mem ) %{
  6821   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  6822   match(PrefetchRead mem);
  6823   ins_cost(100);
  6825   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  6826   ins_encode %{
  6827     __ prefetcht2($mem$$Address);
  6828   %}
  6829   ins_pipe(ialu_mem);
  6830 %}
  6832 instruct prefetchw0( memory mem ) %{
  6833   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6834   match(PrefetchWrite mem);
  6835   ins_cost(0);
  6836   size(0);
  6837   format %{ "Prefetch (non-SSE is empty encoding)" %}
  6838   ins_encode();
  6839   ins_pipe(empty);
  6840 %}
  6842 instruct prefetchw( memory mem ) %{
  6843   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
  6844   match( PrefetchWrite mem );
  6845   ins_cost(100);
  6847   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  6848   ins_encode %{
  6849     __ prefetchw($mem$$Address);
  6850   %}
  6851   ins_pipe(ialu_mem);
  6852 %}
  6854 instruct prefetchwNTA( memory mem ) %{
  6855   predicate(UseSSE>=1);
  6856   match(PrefetchWrite mem);
  6857   ins_cost(100);
  6859   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  6860   ins_encode %{
  6861     __ prefetchnta($mem$$Address);
  6862   %}
  6863   ins_pipe(ialu_mem);
  6864 %}
  6866 // Prefetch instructions for allocation.
  6868 instruct prefetchAlloc0( memory mem ) %{
  6869   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
  6870   match(PrefetchAllocation mem);
  6871   ins_cost(0);
  6872   size(0);
  6873   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
  6874   ins_encode();
  6875   ins_pipe(empty);
  6876 %}
  6878 instruct prefetchAlloc( memory mem ) %{
  6879   predicate(AllocatePrefetchInstr==3);
  6880   match( PrefetchAllocation mem );
  6881   ins_cost(100);
  6883   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
  6884   ins_encode %{
  6885     __ prefetchw($mem$$Address);
  6886   %}
  6887   ins_pipe(ialu_mem);
  6888 %}
  6890 instruct prefetchAllocNTA( memory mem ) %{
  6891   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  6892   match(PrefetchAllocation mem);
  6893   ins_cost(100);
  6895   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
  6896   ins_encode %{
  6897     __ prefetchnta($mem$$Address);
  6898   %}
  6899   ins_pipe(ialu_mem);
  6900 %}
  6902 instruct prefetchAllocT0( memory mem ) %{
  6903   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  6904   match(PrefetchAllocation mem);
  6905   ins_cost(100);
  6907   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
  6908   ins_encode %{
  6909     __ prefetcht0($mem$$Address);
  6910   %}
  6911   ins_pipe(ialu_mem);
  6912 %}
  6914 instruct prefetchAllocT2( memory mem ) %{
  6915   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  6916   match(PrefetchAllocation mem);
  6917   ins_cost(100);
  6919   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
  6920   ins_encode %{
  6921     __ prefetcht2($mem$$Address);
  6922   %}
  6923   ins_pipe(ialu_mem);
  6924 %}
  6926 //----------Store Instructions-------------------------------------------------
  6928 // Store Byte
  6929 instruct storeB(memory mem, xRegI src) %{
  6930   match(Set mem (StoreB mem src));
  6932   ins_cost(125);
  6933   format %{ "MOV8   $mem,$src" %}
  6934   opcode(0x88);
  6935   ins_encode( OpcP, RegMem( src, mem ) );
  6936   ins_pipe( ialu_mem_reg );
  6937 %}
  6939 // Store Char/Short
  6940 instruct storeC(memory mem, eRegI src) %{
  6941   match(Set mem (StoreC mem src));
  6943   ins_cost(125);
  6944   format %{ "MOV16  $mem,$src" %}
  6945   opcode(0x89, 0x66);
  6946   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  6947   ins_pipe( ialu_mem_reg );
  6948 %}
  6950 // Store Integer
  6951 instruct storeI(memory mem, eRegI src) %{
  6952   match(Set mem (StoreI mem src));
  6954   ins_cost(125);
  6955   format %{ "MOV    $mem,$src" %}
  6956   opcode(0x89);
  6957   ins_encode( OpcP, RegMem( src, mem ) );
  6958   ins_pipe( ialu_mem_reg );
  6959 %}
  6961 // Store Long
  6962 instruct storeL(long_memory mem, eRegL src) %{
  6963   predicate(!((StoreLNode*)n)->require_atomic_access());
  6964   match(Set mem (StoreL mem src));
  6966   ins_cost(200);
  6967   format %{ "MOV    $mem,$src.lo\n\t"
  6968             "MOV    $mem+4,$src.hi" %}
  6969   opcode(0x89, 0x89);
  6970   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  6971   ins_pipe( ialu_mem_long_reg );
  6972 %}
  6974 // Store Long to Integer
  6975 instruct storeL2I(memory mem, eRegL src) %{
  6976   match(Set mem (StoreI mem (ConvL2I src)));
  6978   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  6979   ins_encode %{
  6980     __ movl($mem$$Address, $src$$Register);
  6981   %}
  6982   ins_pipe(ialu_mem_reg);
  6983 %}
  6985 // Volatile Store Long.  Must be atomic, so move it into
  6986 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6987 // target address before the store (for null-ptr checks)
  6988 // so the memory operand is used twice in the encoding.
  6989 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  6990   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  6991   match(Set mem (StoreL mem src));
  6992   effect( KILL cr );
  6993   ins_cost(400);
  6994   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6995             "FILD   $src\n\t"
  6996             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  6997   opcode(0x3B);
  6998   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  6999   ins_pipe( fpu_reg_mem );
  7000 %}
  7002 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
  7003   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7004   match(Set mem (StoreL mem src));
  7005   effect( TEMP tmp, KILL cr );
  7006   ins_cost(380);
  7007   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7008             "MOVSD  $tmp,$src\n\t"
  7009             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7010   ins_encode %{
  7011     __ cmpl(rax, $mem$$Address);
  7012     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
  7013     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  7014   %}
  7015   ins_pipe( pipe_slow );
  7016 %}
  7018 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
  7019   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7020   match(Set mem (StoreL mem src));
  7021   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  7022   ins_cost(360);
  7023   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7024             "MOVD   $tmp,$src.lo\n\t"
  7025             "MOVD   $tmp2,$src.hi\n\t"
  7026             "PUNPCKLDQ $tmp,$tmp2\n\t"
  7027             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7028   ins_encode %{
  7029     __ cmpl(rax, $mem$$Address);
  7030     __ movdl($tmp$$XMMRegister, $src$$Register);
  7031     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
  7032     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
  7033     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  7034   %}
  7035   ins_pipe( pipe_slow );
  7036 %}
  7038 // Store Pointer; for storing unknown oops and raw pointers
  7039 instruct storeP(memory mem, anyRegP src) %{
  7040   match(Set mem (StoreP mem src));
  7042   ins_cost(125);
  7043   format %{ "MOV    $mem,$src" %}
  7044   opcode(0x89);
  7045   ins_encode( OpcP, RegMem( src, mem ) );
  7046   ins_pipe( ialu_mem_reg );
  7047 %}
  7049 // Store Integer Immediate
  7050 instruct storeImmI(memory mem, immI src) %{
  7051   match(Set mem (StoreI mem src));
  7053   ins_cost(150);
  7054   format %{ "MOV    $mem,$src" %}
  7055   opcode(0xC7);               /* C7 /0 */
  7056   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7057   ins_pipe( ialu_mem_imm );
  7058 %}
  7060 // Store Short/Char Immediate
  7061 instruct storeImmI16(memory mem, immI16 src) %{
  7062   predicate(UseStoreImmI16);
  7063   match(Set mem (StoreC mem src));
  7065   ins_cost(150);
  7066   format %{ "MOV16  $mem,$src" %}
  7067   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  7068   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  7069   ins_pipe( ialu_mem_imm );
  7070 %}
  7072 // Store Pointer Immediate; null pointers or constant oops that do not
  7073 // need card-mark barriers.
  7074 instruct storeImmP(memory mem, immP src) %{
  7075   match(Set mem (StoreP mem src));
  7077   ins_cost(150);
  7078   format %{ "MOV    $mem,$src" %}
  7079   opcode(0xC7);               /* C7 /0 */
  7080   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7081   ins_pipe( ialu_mem_imm );
  7082 %}
  7084 // Store Byte Immediate
  7085 instruct storeImmB(memory mem, immI8 src) %{
  7086   match(Set mem (StoreB mem src));
  7088   ins_cost(150);
  7089   format %{ "MOV8   $mem,$src" %}
  7090   opcode(0xC6);               /* C6 /0 */
  7091   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7092   ins_pipe( ialu_mem_imm );
  7093 %}
  7095 // Store Aligned Packed Byte XMM register to memory
  7096 instruct storeA8B(memory mem, regD src) %{
  7097   predicate(UseSSE>=1);
  7098   match(Set mem (Store8B mem src));
  7099   ins_cost(145);
  7100   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7101   ins_encode %{
  7102     __ movq($mem$$Address, $src$$XMMRegister);
  7103   %}
  7104   ins_pipe( pipe_slow );
  7105 %}
  7107 // Store Aligned Packed Char/Short XMM register to memory
  7108 instruct storeA4C(memory mem, regD src) %{
  7109   predicate(UseSSE>=1);
  7110   match(Set mem (Store4C mem src));
  7111   ins_cost(145);
  7112   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7113   ins_encode %{
  7114     __ movq($mem$$Address, $src$$XMMRegister);
  7115   %}
  7116   ins_pipe( pipe_slow );
  7117 %}
  7119 // Store Aligned Packed Integer XMM register to memory
  7120 instruct storeA2I(memory mem, regD src) %{
  7121   predicate(UseSSE>=1);
  7122   match(Set mem (Store2I mem src));
  7123   ins_cost(145);
  7124   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7125   ins_encode %{
  7126     __ movq($mem$$Address, $src$$XMMRegister);
  7127   %}
  7128   ins_pipe( pipe_slow );
  7129 %}
  7131 // Store CMS card-mark Immediate
  7132 instruct storeImmCM(memory mem, immI8 src) %{
  7133   match(Set mem (StoreCM mem src));
  7135   ins_cost(150);
  7136   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7137   opcode(0xC6);               /* C6 /0 */
  7138   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7139   ins_pipe( ialu_mem_imm );
  7140 %}
  7142 // Store Double
  7143 instruct storeDPR( memory mem, regDPR1 src) %{
  7144   predicate(UseSSE<=1);
  7145   match(Set mem (StoreD mem src));
  7147   ins_cost(100);
  7148   format %{ "FST_D  $mem,$src" %}
  7149   opcode(0xDD);       /* DD /2 */
  7150   ins_encode( enc_FPR_store(mem,src) );
  7151   ins_pipe( fpu_mem_reg );
  7152 %}
  7154 // Store double does rounding on x86
  7155 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
  7156   predicate(UseSSE<=1);
  7157   match(Set mem (StoreD mem (RoundDouble src)));
  7159   ins_cost(100);
  7160   format %{ "FST_D  $mem,$src\t# round" %}
  7161   opcode(0xDD);       /* DD /2 */
  7162   ins_encode( enc_FPR_store(mem,src) );
  7163   ins_pipe( fpu_mem_reg );
  7164 %}
  7166 // Store XMM register to memory (double-precision floating points)
  7167 // MOVSD instruction
  7168 instruct storeD(memory mem, regD src) %{
  7169   predicate(UseSSE>=2);
  7170   match(Set mem (StoreD mem src));
  7171   ins_cost(95);
  7172   format %{ "MOVSD  $mem,$src" %}
  7173   ins_encode %{
  7174     __ movdbl($mem$$Address, $src$$XMMRegister);
  7175   %}
  7176   ins_pipe( pipe_slow );
  7177 %}
  7179 // Store XMM register to memory (single-precision floating point)
  7180 // MOVSS instruction
  7181 instruct storeF(memory mem, regF src) %{
  7182   predicate(UseSSE>=1);
  7183   match(Set mem (StoreF mem src));
  7184   ins_cost(95);
  7185   format %{ "MOVSS  $mem,$src" %}
  7186   ins_encode %{
  7187     __ movflt($mem$$Address, $src$$XMMRegister);
  7188   %}
  7189   ins_pipe( pipe_slow );
  7190 %}
  7192 // Store Aligned Packed Single Float XMM register to memory
  7193 instruct storeA2F(memory mem, regD src) %{
  7194   predicate(UseSSE>=1);
  7195   match(Set mem (Store2F mem src));
  7196   ins_cost(145);
  7197   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7198   ins_encode %{
  7199     __ movq($mem$$Address, $src$$XMMRegister);
  7200   %}
  7201   ins_pipe( pipe_slow );
  7202 %}
  7204 // Store Float
  7205 instruct storeFPR( memory mem, regFPR1 src) %{
  7206   predicate(UseSSE==0);
  7207   match(Set mem (StoreF mem src));
  7209   ins_cost(100);
  7210   format %{ "FST_S  $mem,$src" %}
  7211   opcode(0xD9);       /* D9 /2 */
  7212   ins_encode( enc_FPR_store(mem,src) );
  7213   ins_pipe( fpu_mem_reg );
  7214 %}
  7216 // Store Float does rounding on x86
  7217 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
  7218   predicate(UseSSE==0);
  7219   match(Set mem (StoreF mem (RoundFloat src)));
  7221   ins_cost(100);
  7222   format %{ "FST_S  $mem,$src\t# round" %}
  7223   opcode(0xD9);       /* D9 /2 */
  7224   ins_encode( enc_FPR_store(mem,src) );
  7225   ins_pipe( fpu_mem_reg );
  7226 %}
  7228 // Store Float does rounding on x86
  7229 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
  7230   predicate(UseSSE<=1);
  7231   match(Set mem (StoreF mem (ConvD2F src)));
  7233   ins_cost(100);
  7234   format %{ "FST_S  $mem,$src\t# D-round" %}
  7235   opcode(0xD9);       /* D9 /2 */
  7236   ins_encode( enc_FPR_store(mem,src) );
  7237   ins_pipe( fpu_mem_reg );
  7238 %}
  7240 // Store immediate Float value (it is faster than store from FPU register)
  7241 // The instruction usage is guarded by predicate in operand immFPR().
  7242 instruct storeFPR_imm( memory mem, immFPR src) %{
  7243   match(Set mem (StoreF mem src));
  7245   ins_cost(50);
  7246   format %{ "MOV    $mem,$src\t# store float" %}
  7247   opcode(0xC7);               /* C7 /0 */
  7248   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
  7249   ins_pipe( ialu_mem_imm );
  7250 %}
  7252 // Store immediate Float value (it is faster than store from XMM register)
  7253 // The instruction usage is guarded by predicate in operand immF().
  7254 instruct storeF_imm( memory mem, immF src) %{
  7255   match(Set mem (StoreF mem src));
  7257   ins_cost(50);
  7258   format %{ "MOV    $mem,$src\t# store float" %}
  7259   opcode(0xC7);               /* C7 /0 */
  7260   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7261   ins_pipe( ialu_mem_imm );
  7262 %}
  7264 // Store Integer to stack slot
  7265 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7266   match(Set dst src);
  7268   ins_cost(100);
  7269   format %{ "MOV    $dst,$src" %}
  7270   opcode(0x89);
  7271   ins_encode( OpcPRegSS( dst, src ) );
  7272   ins_pipe( ialu_mem_reg );
  7273 %}
  7275 // Store Integer to stack slot
  7276 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7277   match(Set dst src);
  7279   ins_cost(100);
  7280   format %{ "MOV    $dst,$src" %}
  7281   opcode(0x89);
  7282   ins_encode( OpcPRegSS( dst, src ) );
  7283   ins_pipe( ialu_mem_reg );
  7284 %}
  7286 // Store Long to stack slot
  7287 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7288   match(Set dst src);
  7290   ins_cost(200);
  7291   format %{ "MOV    $dst,$src.lo\n\t"
  7292             "MOV    $dst+4,$src.hi" %}
  7293   opcode(0x89, 0x89);
  7294   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7295   ins_pipe( ialu_mem_long_reg );
  7296 %}
  7298 //----------MemBar Instructions-----------------------------------------------
  7299 // Memory barrier flavors
  7301 instruct membar_acquire() %{
  7302   match(MemBarAcquire);
  7303   ins_cost(400);
  7305   size(0);
  7306   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7307   ins_encode();
  7308   ins_pipe(empty);
  7309 %}
  7311 instruct membar_acquire_lock() %{
  7312   match(MemBarAcquireLock);
  7313   ins_cost(0);
  7315   size(0);
  7316   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7317   ins_encode( );
  7318   ins_pipe(empty);
  7319 %}
  7321 instruct membar_release() %{
  7322   match(MemBarRelease);
  7323   ins_cost(400);
  7325   size(0);
  7326   format %{ "MEMBAR-release ! (empty encoding)" %}
  7327   ins_encode( );
  7328   ins_pipe(empty);
  7329 %}
  7331 instruct membar_release_lock() %{
  7332   match(MemBarReleaseLock);
  7333   ins_cost(0);
  7335   size(0);
  7336   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7337   ins_encode( );
  7338   ins_pipe(empty);
  7339 %}
  7341 instruct membar_volatile(eFlagsReg cr) %{
  7342   match(MemBarVolatile);
  7343   effect(KILL cr);
  7344   ins_cost(400);
  7346   format %{ 
  7347     $$template
  7348     if (os::is_MP()) {
  7349       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7350     } else {
  7351       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7353   %}
  7354   ins_encode %{
  7355     __ membar(Assembler::StoreLoad);
  7356   %}
  7357   ins_pipe(pipe_slow);
  7358 %}
  7360 instruct unnecessary_membar_volatile() %{
  7361   match(MemBarVolatile);
  7362   predicate(Matcher::post_store_load_barrier(n));
  7363   ins_cost(0);
  7365   size(0);
  7366   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7367   ins_encode( );
  7368   ins_pipe(empty);
  7369 %}
  7371 instruct membar_storestore() %{
  7372   match(MemBarStoreStore);
  7373   ins_cost(0);
  7375   size(0);
  7376   format %{ "MEMBAR-storestore (empty encoding)" %}
  7377   ins_encode( );
  7378   ins_pipe(empty);
  7379 %}
  7381 //----------Move Instructions--------------------------------------------------
  7382 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7383   match(Set dst (CastX2P src));
  7384   format %{ "# X2P  $dst, $src" %}
  7385   ins_encode( /*empty encoding*/ );
  7386   ins_cost(0);
  7387   ins_pipe(empty);
  7388 %}
  7390 instruct castP2X(eRegI dst, eRegP src ) %{
  7391   match(Set dst (CastP2X src));
  7392   ins_cost(50);
  7393   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7394   ins_encode( enc_Copy( dst, src) );
  7395   ins_pipe( ialu_reg_reg );
  7396 %}
  7398 //----------Conditional Move---------------------------------------------------
  7399 // Conditional move
  7400 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, eRegI dst, eRegI src) %{
  7401   predicate(!VM_Version::supports_cmov() );
  7402   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7403   ins_cost(200);
  7404   format %{ "J$cop,us skip\t# signed cmove\n\t"
  7405             "MOV    $dst,$src\n"
  7406       "skip:" %}
  7407   ins_encode %{
  7408     Label Lskip;
  7409     // Invert sense of branch from sense of CMOV
  7410     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7411     __ movl($dst$$Register, $src$$Register);
  7412     __ bind(Lskip);
  7413   %}
  7414   ins_pipe( pipe_cmov_reg );
  7415 %}
  7417 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src) %{
  7418   predicate(!VM_Version::supports_cmov() );
  7419   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7420   ins_cost(200);
  7421   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
  7422             "MOV    $dst,$src\n"
  7423       "skip:" %}
  7424   ins_encode %{
  7425     Label Lskip;
  7426     // Invert sense of branch from sense of CMOV
  7427     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7428     __ movl($dst$$Register, $src$$Register);
  7429     __ bind(Lskip);
  7430   %}
  7431   ins_pipe( pipe_cmov_reg );
  7432 %}
  7434 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7435   predicate(VM_Version::supports_cmov() );
  7436   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7437   ins_cost(200);
  7438   format %{ "CMOV$cop $dst,$src" %}
  7439   opcode(0x0F,0x40);
  7440   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7441   ins_pipe( pipe_cmov_reg );
  7442 %}
  7444 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7445   predicate(VM_Version::supports_cmov() );
  7446   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7447   ins_cost(200);
  7448   format %{ "CMOV$cop $dst,$src" %}
  7449   opcode(0x0F,0x40);
  7450   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7451   ins_pipe( pipe_cmov_reg );
  7452 %}
  7454 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7455   predicate(VM_Version::supports_cmov() );
  7456   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7457   ins_cost(200);
  7458   expand %{
  7459     cmovI_regU(cop, cr, dst, src);
  7460   %}
  7461 %}
  7463 // Conditional move
  7464 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7465   predicate(VM_Version::supports_cmov() );
  7466   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7467   ins_cost(250);
  7468   format %{ "CMOV$cop $dst,$src" %}
  7469   opcode(0x0F,0x40);
  7470   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7471   ins_pipe( pipe_cmov_mem );
  7472 %}
  7474 // Conditional move
  7475 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7476   predicate(VM_Version::supports_cmov() );
  7477   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7478   ins_cost(250);
  7479   format %{ "CMOV$cop $dst,$src" %}
  7480   opcode(0x0F,0x40);
  7481   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7482   ins_pipe( pipe_cmov_mem );
  7483 %}
  7485 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7486   predicate(VM_Version::supports_cmov() );
  7487   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7488   ins_cost(250);
  7489   expand %{
  7490     cmovI_memU(cop, cr, dst, src);
  7491   %}
  7492 %}
  7494 // Conditional move
  7495 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7496   predicate(VM_Version::supports_cmov() );
  7497   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7498   ins_cost(200);
  7499   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7500   opcode(0x0F,0x40);
  7501   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7502   ins_pipe( pipe_cmov_reg );
  7503 %}
  7505 // Conditional move (non-P6 version)
  7506 // Note:  a CMoveP is generated for  stubs and native wrappers
  7507 //        regardless of whether we are on a P6, so we
  7508 //        emulate a cmov here
  7509 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7510   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7511   ins_cost(300);
  7512   format %{ "Jn$cop   skip\n\t"
  7513           "MOV    $dst,$src\t# pointer\n"
  7514       "skip:" %}
  7515   opcode(0x8b);
  7516   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7517   ins_pipe( pipe_cmov_reg );
  7518 %}
  7520 // Conditional move
  7521 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7522   predicate(VM_Version::supports_cmov() );
  7523   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7524   ins_cost(200);
  7525   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7526   opcode(0x0F,0x40);
  7527   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7528   ins_pipe( pipe_cmov_reg );
  7529 %}
  7531 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7532   predicate(VM_Version::supports_cmov() );
  7533   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7534   ins_cost(200);
  7535   expand %{
  7536     cmovP_regU(cop, cr, dst, src);
  7537   %}
  7538 %}
  7540 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7541 // correctly meets the two pointer arguments; one is an incoming
  7542 // register but the other is a memory operand.  ALSO appears to
  7543 // be buggy with implicit null checks.
  7544 //
  7545 //// Conditional move
  7546 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7547 //  predicate(VM_Version::supports_cmov() );
  7548 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7549 //  ins_cost(250);
  7550 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7551 //  opcode(0x0F,0x40);
  7552 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7553 //  ins_pipe( pipe_cmov_mem );
  7554 //%}
  7555 //
  7556 //// Conditional move
  7557 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7558 //  predicate(VM_Version::supports_cmov() );
  7559 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7560 //  ins_cost(250);
  7561 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7562 //  opcode(0x0F,0x40);
  7563 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7564 //  ins_pipe( pipe_cmov_mem );
  7565 //%}
  7567 // Conditional move
  7568 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
  7569   predicate(UseSSE<=1);
  7570   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7571   ins_cost(200);
  7572   format %{ "FCMOV$cop $dst,$src\t# double" %}
  7573   opcode(0xDA);
  7574   ins_encode( enc_cmov_dpr(cop,src) );
  7575   ins_pipe( pipe_cmovDPR_reg );
  7576 %}
  7578 // Conditional move
  7579 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
  7580   predicate(UseSSE==0);
  7581   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7582   ins_cost(200);
  7583   format %{ "FCMOV$cop $dst,$src\t# float" %}
  7584   opcode(0xDA);
  7585   ins_encode( enc_cmov_dpr(cop,src) );
  7586   ins_pipe( pipe_cmovDPR_reg );
  7587 %}
  7589 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7590 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
  7591   predicate(UseSSE<=1);
  7592   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7593   ins_cost(200);
  7594   format %{ "Jn$cop   skip\n\t"
  7595             "MOV    $dst,$src\t# double\n"
  7596       "skip:" %}
  7597   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7598   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
  7599   ins_pipe( pipe_cmovDPR_reg );
  7600 %}
  7602 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7603 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
  7604   predicate(UseSSE==0);
  7605   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7606   ins_cost(200);
  7607   format %{ "Jn$cop    skip\n\t"
  7608             "MOV    $dst,$src\t# float\n"
  7609       "skip:" %}
  7610   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7611   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
  7612   ins_pipe( pipe_cmovDPR_reg );
  7613 %}
  7615 // No CMOVE with SSE/SSE2
  7616 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  7617   predicate (UseSSE>=1);
  7618   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7619   ins_cost(200);
  7620   format %{ "Jn$cop   skip\n\t"
  7621             "MOVSS  $dst,$src\t# float\n"
  7622       "skip:" %}
  7623   ins_encode %{
  7624     Label skip;
  7625     // Invert sense of branch from sense of CMOV
  7626     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7627     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7628     __ bind(skip);
  7629   %}
  7630   ins_pipe( pipe_slow );
  7631 %}
  7633 // No CMOVE with SSE/SSE2
  7634 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  7635   predicate (UseSSE>=2);
  7636   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7637   ins_cost(200);
  7638   format %{ "Jn$cop   skip\n\t"
  7639             "MOVSD  $dst,$src\t# float\n"
  7640       "skip:" %}
  7641   ins_encode %{
  7642     Label skip;
  7643     // Invert sense of branch from sense of CMOV
  7644     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7645     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7646     __ bind(skip);
  7647   %}
  7648   ins_pipe( pipe_slow );
  7649 %}
  7651 // unsigned version
  7652 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
  7653   predicate (UseSSE>=1);
  7654   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7655   ins_cost(200);
  7656   format %{ "Jn$cop   skip\n\t"
  7657             "MOVSS  $dst,$src\t# float\n"
  7658       "skip:" %}
  7659   ins_encode %{
  7660     Label skip;
  7661     // Invert sense of branch from sense of CMOV
  7662     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7663     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7664     __ bind(skip);
  7665   %}
  7666   ins_pipe( pipe_slow );
  7667 %}
  7669 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
  7670   predicate (UseSSE>=1);
  7671   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7672   ins_cost(200);
  7673   expand %{
  7674     fcmovF_regU(cop, cr, dst, src);
  7675   %}
  7676 %}
  7678 // unsigned version
  7679 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
  7680   predicate (UseSSE>=2);
  7681   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7682   ins_cost(200);
  7683   format %{ "Jn$cop   skip\n\t"
  7684             "MOVSD  $dst,$src\t# float\n"
  7685       "skip:" %}
  7686   ins_encode %{
  7687     Label skip;
  7688     // Invert sense of branch from sense of CMOV
  7689     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7690     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7691     __ bind(skip);
  7692   %}
  7693   ins_pipe( pipe_slow );
  7694 %}
  7696 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
  7697   predicate (UseSSE>=2);
  7698   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7699   ins_cost(200);
  7700   expand %{
  7701     fcmovD_regU(cop, cr, dst, src);
  7702   %}
  7703 %}
  7705 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  7706   predicate(VM_Version::supports_cmov() );
  7707   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7708   ins_cost(200);
  7709   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7710             "CMOV$cop $dst.hi,$src.hi" %}
  7711   opcode(0x0F,0x40);
  7712   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7713   ins_pipe( pipe_cmov_reg_long );
  7714 %}
  7716 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  7717   predicate(VM_Version::supports_cmov() );
  7718   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7719   ins_cost(200);
  7720   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7721             "CMOV$cop $dst.hi,$src.hi" %}
  7722   opcode(0x0F,0x40);
  7723   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7724   ins_pipe( pipe_cmov_reg_long );
  7725 %}
  7727 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  7728   predicate(VM_Version::supports_cmov() );
  7729   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7730   ins_cost(200);
  7731   expand %{
  7732     cmovL_regU(cop, cr, dst, src);
  7733   %}
  7734 %}
  7736 //----------Arithmetic Instructions--------------------------------------------
  7737 //----------Addition Instructions----------------------------------------------
  7738 // Integer Addition Instructions
  7739 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  7740   match(Set dst (AddI dst src));
  7741   effect(KILL cr);
  7743   size(2);
  7744   format %{ "ADD    $dst,$src" %}
  7745   opcode(0x03);
  7746   ins_encode( OpcP, RegReg( dst, src) );
  7747   ins_pipe( ialu_reg_reg );
  7748 %}
  7750 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  7751   match(Set dst (AddI dst src));
  7752   effect(KILL cr);
  7754   format %{ "ADD    $dst,$src" %}
  7755   opcode(0x81, 0x00); /* /0 id */
  7756   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7757   ins_pipe( ialu_reg );
  7758 %}
  7760 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  7761   predicate(UseIncDec);
  7762   match(Set dst (AddI dst src));
  7763   effect(KILL cr);
  7765   size(1);
  7766   format %{ "INC    $dst" %}
  7767   opcode(0x40); /*  */
  7768   ins_encode( Opc_plus( primary, dst ) );
  7769   ins_pipe( ialu_reg );
  7770 %}
  7772 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  7773   match(Set dst (AddI src0 src1));
  7774   ins_cost(110);
  7776   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7777   opcode(0x8D); /* 0x8D /r */
  7778   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7779   ins_pipe( ialu_reg_reg );
  7780 %}
  7782 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7783   match(Set dst (AddP src0 src1));
  7784   ins_cost(110);
  7786   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7787   opcode(0x8D); /* 0x8D /r */
  7788   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7789   ins_pipe( ialu_reg_reg );
  7790 %}
  7792 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  7793   predicate(UseIncDec);
  7794   match(Set dst (AddI dst src));
  7795   effect(KILL cr);
  7797   size(1);
  7798   format %{ "DEC    $dst" %}
  7799   opcode(0x48); /*  */
  7800   ins_encode( Opc_plus( primary, dst ) );
  7801   ins_pipe( ialu_reg );
  7802 %}
  7804 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  7805   match(Set dst (AddP dst src));
  7806   effect(KILL cr);
  7808   size(2);
  7809   format %{ "ADD    $dst,$src" %}
  7810   opcode(0x03);
  7811   ins_encode( OpcP, RegReg( dst, src) );
  7812   ins_pipe( ialu_reg_reg );
  7813 %}
  7815 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7816   match(Set dst (AddP dst src));
  7817   effect(KILL cr);
  7819   format %{ "ADD    $dst,$src" %}
  7820   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7821   // ins_encode( RegImm( dst, src) );
  7822   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7823   ins_pipe( ialu_reg );
  7824 %}
  7826 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  7827   match(Set dst (AddI dst (LoadI src)));
  7828   effect(KILL cr);
  7830   ins_cost(125);
  7831   format %{ "ADD    $dst,$src" %}
  7832   opcode(0x03);
  7833   ins_encode( OpcP, RegMem( dst, src) );
  7834   ins_pipe( ialu_reg_mem );
  7835 %}
  7837 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  7838   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7839   effect(KILL cr);
  7841   ins_cost(150);
  7842   format %{ "ADD    $dst,$src" %}
  7843   opcode(0x01);  /* Opcode 01 /r */
  7844   ins_encode( OpcP, RegMem( src, dst ) );
  7845   ins_pipe( ialu_mem_reg );
  7846 %}
  7848 // Add Memory with Immediate
  7849 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7850   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7851   effect(KILL cr);
  7853   ins_cost(125);
  7854   format %{ "ADD    $dst,$src" %}
  7855   opcode(0x81);               /* Opcode 81 /0 id */
  7856   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  7857   ins_pipe( ialu_mem_imm );
  7858 %}
  7860 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  7861   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7862   effect(KILL cr);
  7864   ins_cost(125);
  7865   format %{ "INC    $dst" %}
  7866   opcode(0xFF);               /* Opcode FF /0 */
  7867   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  7868   ins_pipe( ialu_mem_imm );
  7869 %}
  7871 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  7872   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7873   effect(KILL cr);
  7875   ins_cost(125);
  7876   format %{ "DEC    $dst" %}
  7877   opcode(0xFF);               /* Opcode FF /1 */
  7878   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  7879   ins_pipe( ialu_mem_imm );
  7880 %}
  7883 instruct checkCastPP( eRegP dst ) %{
  7884   match(Set dst (CheckCastPP dst));
  7886   size(0);
  7887   format %{ "#checkcastPP of $dst" %}
  7888   ins_encode( /*empty encoding*/ );
  7889   ins_pipe( empty );
  7890 %}
  7892 instruct castPP( eRegP dst ) %{
  7893   match(Set dst (CastPP dst));
  7894   format %{ "#castPP of $dst" %}
  7895   ins_encode( /*empty encoding*/ );
  7896   ins_pipe( empty );
  7897 %}
  7899 instruct castII( eRegI dst ) %{
  7900   match(Set dst (CastII dst));
  7901   format %{ "#castII of $dst" %}
  7902   ins_encode( /*empty encoding*/ );
  7903   ins_cost(0);
  7904   ins_pipe( empty );
  7905 %}
  7908 // Load-locked - same as a regular pointer load when used with compare-swap
  7909 instruct loadPLocked(eRegP dst, memory mem) %{
  7910   match(Set dst (LoadPLocked mem));
  7912   ins_cost(125);
  7913   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  7914   opcode(0x8B);
  7915   ins_encode( OpcP, RegMem(dst,mem));
  7916   ins_pipe( ialu_reg_mem );
  7917 %}
  7919 // LoadLong-locked - same as a volatile long load when used with compare-swap
  7920 instruct loadLLocked(stackSlotL dst, memory mem) %{
  7921   predicate(UseSSE<=1);
  7922   match(Set dst (LoadLLocked mem));
  7924   ins_cost(200);
  7925   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  7926             "FISTp  $dst" %}
  7927   ins_encode(enc_loadL_volatile(mem,dst));
  7928   ins_pipe( fpu_reg_mem );
  7929 %}
  7931 instruct loadLX_Locked(stackSlotL dst, memory mem, regD tmp) %{
  7932   predicate(UseSSE>=2);
  7933   match(Set dst (LoadLLocked mem));
  7934   effect(TEMP tmp);
  7935   ins_cost(180);
  7936   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  7937             "MOVSD  $dst,$tmp" %}
  7938   ins_encode %{
  7939     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  7940     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  7941   %}
  7942   ins_pipe( pipe_slow );
  7943 %}
  7945 instruct loadLX_reg_Locked(eRegL dst, memory mem, regD tmp) %{
  7946   predicate(UseSSE>=2);
  7947   match(Set dst (LoadLLocked mem));
  7948   effect(TEMP tmp);
  7949   ins_cost(160);
  7950   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  7951             "MOVD   $dst.lo,$tmp\n\t"
  7952             "PSRLQ  $tmp,32\n\t"
  7953             "MOVD   $dst.hi,$tmp" %}
  7954   ins_encode %{
  7955     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  7956     __ movdl($dst$$Register, $tmp$$XMMRegister);
  7957     __ psrlq($tmp$$XMMRegister, 32);
  7958     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  7959   %}
  7960   ins_pipe( pipe_slow );
  7961 %}
  7963 // Conditional-store of the updated heap-top.
  7964 // Used during allocation of the shared heap.
  7965 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7966 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  7967   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7968   // EAX is killed if there is contention, but then it's also unused.
  7969   // In the common case of no contention, EAX holds the new oop address.
  7970   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  7971   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  7972   ins_pipe( pipe_cmpxchg );
  7973 %}
  7975 // Conditional-store of an int value.
  7976 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  7977 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  7978   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  7979   effect(KILL oldval);
  7980   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  7981   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  7982   ins_pipe( pipe_cmpxchg );
  7983 %}
  7985 // Conditional-store of a long value.
  7986 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  7987 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7988   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  7989   effect(KILL oldval);
  7990   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  7991             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  7992             "XCHG   EBX,ECX"
  7993   %}
  7994   ins_encode %{
  7995     // Note: we need to swap rbx, and rcx before and after the
  7996     //       cmpxchg8 instruction because the instruction uses
  7997     //       rcx as the high order word of the new value to store but
  7998     //       our register encoding uses rbx.
  7999     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8000     if( os::is_MP() )
  8001       __ lock();
  8002     __ cmpxchg8($mem$$Address);
  8003     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8004   %}
  8005   ins_pipe( pipe_cmpxchg );
  8006 %}
  8008 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  8010 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8011   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  8012   effect(KILL cr, KILL oldval);
  8013   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8014             "MOV    $res,0\n\t"
  8015             "JNE,s  fail\n\t"
  8016             "MOV    $res,1\n"
  8017           "fail:" %}
  8018   ins_encode( enc_cmpxchg8(mem_ptr),
  8019               enc_flags_ne_to_boolean(res) );
  8020   ins_pipe( pipe_cmpxchg );
  8021 %}
  8023 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  8024   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  8025   effect(KILL cr, KILL oldval);
  8026   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8027             "MOV    $res,0\n\t"
  8028             "JNE,s  fail\n\t"
  8029             "MOV    $res,1\n"
  8030           "fail:" %}
  8031   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8032   ins_pipe( pipe_cmpxchg );
  8033 %}
  8035 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  8036   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8037   effect(KILL cr, KILL oldval);
  8038   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8039             "MOV    $res,0\n\t"
  8040             "JNE,s  fail\n\t"
  8041             "MOV    $res,1\n"
  8042           "fail:" %}
  8043   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8044   ins_pipe( pipe_cmpxchg );
  8045 %}
  8047 //----------Subtraction Instructions-------------------------------------------
  8048 // Integer Subtraction Instructions
  8049 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8050   match(Set dst (SubI dst src));
  8051   effect(KILL cr);
  8053   size(2);
  8054   format %{ "SUB    $dst,$src" %}
  8055   opcode(0x2B);
  8056   ins_encode( OpcP, RegReg( dst, src) );
  8057   ins_pipe( ialu_reg_reg );
  8058 %}
  8060 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8061   match(Set dst (SubI dst src));
  8062   effect(KILL cr);
  8064   format %{ "SUB    $dst,$src" %}
  8065   opcode(0x81,0x05);  /* Opcode 81 /5 */
  8066   // ins_encode( RegImm( dst, src) );
  8067   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8068   ins_pipe( ialu_reg );
  8069 %}
  8071 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8072   match(Set dst (SubI dst (LoadI src)));
  8073   effect(KILL cr);
  8075   ins_cost(125);
  8076   format %{ "SUB    $dst,$src" %}
  8077   opcode(0x2B);
  8078   ins_encode( OpcP, RegMem( dst, src) );
  8079   ins_pipe( ialu_reg_mem );
  8080 %}
  8082 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8083   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8084   effect(KILL cr);
  8086   ins_cost(150);
  8087   format %{ "SUB    $dst,$src" %}
  8088   opcode(0x29);  /* Opcode 29 /r */
  8089   ins_encode( OpcP, RegMem( src, dst ) );
  8090   ins_pipe( ialu_mem_reg );
  8091 %}
  8093 // Subtract from a pointer
  8094 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  8095   match(Set dst (AddP dst (SubI zero src)));
  8096   effect(KILL cr);
  8098   size(2);
  8099   format %{ "SUB    $dst,$src" %}
  8100   opcode(0x2B);
  8101   ins_encode( OpcP, RegReg( dst, src) );
  8102   ins_pipe( ialu_reg_reg );
  8103 %}
  8105 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  8106   match(Set dst (SubI zero dst));
  8107   effect(KILL cr);
  8109   size(2);
  8110   format %{ "NEG    $dst" %}
  8111   opcode(0xF7,0x03);  // Opcode F7 /3
  8112   ins_encode( OpcP, RegOpc( dst ) );
  8113   ins_pipe( ialu_reg );
  8114 %}
  8117 //----------Multiplication/Division Instructions-------------------------------
  8118 // Integer Multiplication Instructions
  8119 // Multiply Register
  8120 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8121   match(Set dst (MulI dst src));
  8122   effect(KILL cr);
  8124   size(3);
  8125   ins_cost(300);
  8126   format %{ "IMUL   $dst,$src" %}
  8127   opcode(0xAF, 0x0F);
  8128   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8129   ins_pipe( ialu_reg_reg_alu0 );
  8130 %}
  8132 // Multiply 32-bit Immediate
  8133 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8134   match(Set dst (MulI src imm));
  8135   effect(KILL cr);
  8137   ins_cost(300);
  8138   format %{ "IMUL   $dst,$src,$imm" %}
  8139   opcode(0x69);  /* 69 /r id */
  8140   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8141   ins_pipe( ialu_reg_reg_alu0 );
  8142 %}
  8144 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8145   match(Set dst src);
  8146   effect(KILL cr);
  8148   // Note that this is artificially increased to make it more expensive than loadConL
  8149   ins_cost(250);
  8150   format %{ "MOV    EAX,$src\t// low word only" %}
  8151   opcode(0xB8);
  8152   ins_encode( LdImmL_Lo(dst, src) );
  8153   ins_pipe( ialu_reg_fat );
  8154 %}
  8156 // Multiply by 32-bit Immediate, taking the shifted high order results
  8157 //  (special case for shift by 32)
  8158 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8159   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8160   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8161              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8162              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8163   effect(USE src1, KILL cr);
  8165   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8166   ins_cost(0*100 + 1*400 - 150);
  8167   format %{ "IMUL   EDX:EAX,$src1" %}
  8168   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8169   ins_pipe( pipe_slow );
  8170 %}
  8172 // Multiply by 32-bit Immediate, taking the shifted high order results
  8173 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8174   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8175   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8176              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8177              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8178   effect(USE src1, KILL cr);
  8180   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8181   ins_cost(1*100 + 1*400 - 150);
  8182   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8183             "SAR    EDX,$cnt-32" %}
  8184   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8185   ins_pipe( pipe_slow );
  8186 %}
  8188 // Multiply Memory 32-bit Immediate
  8189 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8190   match(Set dst (MulI (LoadI src) imm));
  8191   effect(KILL cr);
  8193   ins_cost(300);
  8194   format %{ "IMUL   $dst,$src,$imm" %}
  8195   opcode(0x69);  /* 69 /r id */
  8196   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8197   ins_pipe( ialu_reg_mem_alu0 );
  8198 %}
  8200 // Multiply Memory
  8201 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8202   match(Set dst (MulI dst (LoadI src)));
  8203   effect(KILL cr);
  8205   ins_cost(350);
  8206   format %{ "IMUL   $dst,$src" %}
  8207   opcode(0xAF, 0x0F);
  8208   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8209   ins_pipe( ialu_reg_mem_alu0 );
  8210 %}
  8212 // Multiply Register Int to Long
  8213 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8214   // Basic Idea: long = (long)int * (long)int
  8215   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8216   effect(DEF dst, USE src, USE src1, KILL flags);
  8218   ins_cost(300);
  8219   format %{ "IMUL   $dst,$src1" %}
  8221   ins_encode( long_int_multiply( dst, src1 ) );
  8222   ins_pipe( ialu_reg_reg_alu0 );
  8223 %}
  8225 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8226   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8227   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8228   effect(KILL flags);
  8230   ins_cost(300);
  8231   format %{ "MUL    $dst,$src1" %}
  8233   ins_encode( long_uint_multiply(dst, src1) );
  8234   ins_pipe( ialu_reg_reg_alu0 );
  8235 %}
  8237 // Multiply Register Long
  8238 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8239   match(Set dst (MulL dst src));
  8240   effect(KILL cr, TEMP tmp);
  8241   ins_cost(4*100+3*400);
  8242 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8243 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8244   format %{ "MOV    $tmp,$src.lo\n\t"
  8245             "IMUL   $tmp,EDX\n\t"
  8246             "MOV    EDX,$src.hi\n\t"
  8247             "IMUL   EDX,EAX\n\t"
  8248             "ADD    $tmp,EDX\n\t"
  8249             "MUL    EDX:EAX,$src.lo\n\t"
  8250             "ADD    EDX,$tmp" %}
  8251   ins_encode( long_multiply( dst, src, tmp ) );
  8252   ins_pipe( pipe_slow );
  8253 %}
  8255 // Multiply Register Long where the left operand's high 32 bits are zero
  8256 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8257   predicate(is_operand_hi32_zero(n->in(1)));
  8258   match(Set dst (MulL dst src));
  8259   effect(KILL cr, TEMP tmp);
  8260   ins_cost(2*100+2*400);
  8261 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8262 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8263   format %{ "MOV    $tmp,$src.hi\n\t"
  8264             "IMUL   $tmp,EAX\n\t"
  8265             "MUL    EDX:EAX,$src.lo\n\t"
  8266             "ADD    EDX,$tmp" %}
  8267   ins_encode %{
  8268     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8269     __ imull($tmp$$Register, rax);
  8270     __ mull($src$$Register);
  8271     __ addl(rdx, $tmp$$Register);
  8272   %}
  8273   ins_pipe( pipe_slow );
  8274 %}
  8276 // Multiply Register Long where the right operand's high 32 bits are zero
  8277 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8278   predicate(is_operand_hi32_zero(n->in(2)));
  8279   match(Set dst (MulL dst src));
  8280   effect(KILL cr, TEMP tmp);
  8281   ins_cost(2*100+2*400);
  8282 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8283 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8284   format %{ "MOV    $tmp,$src.lo\n\t"
  8285             "IMUL   $tmp,EDX\n\t"
  8286             "MUL    EDX:EAX,$src.lo\n\t"
  8287             "ADD    EDX,$tmp" %}
  8288   ins_encode %{
  8289     __ movl($tmp$$Register, $src$$Register);
  8290     __ imull($tmp$$Register, rdx);
  8291     __ mull($src$$Register);
  8292     __ addl(rdx, $tmp$$Register);
  8293   %}
  8294   ins_pipe( pipe_slow );
  8295 %}
  8297 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8298 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8299   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8300   match(Set dst (MulL dst src));
  8301   effect(KILL cr);
  8302   ins_cost(1*400);
  8303 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8304 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8305   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8306   ins_encode %{
  8307     __ mull($src$$Register);
  8308   %}
  8309   ins_pipe( pipe_slow );
  8310 %}
  8312 // Multiply Register Long by small constant
  8313 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8314   match(Set dst (MulL dst src));
  8315   effect(KILL cr, TEMP tmp);
  8316   ins_cost(2*100+2*400);
  8317   size(12);
  8318 // Basic idea: lo(result) = lo(src * EAX)
  8319 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8320   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8321             "MOV    EDX,$src\n\t"
  8322             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8323             "ADD    EDX,$tmp" %}
  8324   ins_encode( long_multiply_con( dst, src, tmp ) );
  8325   ins_pipe( pipe_slow );
  8326 %}
  8328 // Integer DIV with Register
  8329 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8330   match(Set rax (DivI rax div));
  8331   effect(KILL rdx, KILL cr);
  8332   size(26);
  8333   ins_cost(30*100+10*100);
  8334   format %{ "CMP    EAX,0x80000000\n\t"
  8335             "JNE,s  normal\n\t"
  8336             "XOR    EDX,EDX\n\t"
  8337             "CMP    ECX,-1\n\t"
  8338             "JE,s   done\n"
  8339     "normal: CDQ\n\t"
  8340             "IDIV   $div\n\t"
  8341     "done:"        %}
  8342   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8343   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8344   ins_pipe( ialu_reg_reg_alu0 );
  8345 %}
  8347 // Divide Register Long
  8348 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8349   match(Set dst (DivL src1 src2));
  8350   effect( KILL cr, KILL cx, KILL bx );
  8351   ins_cost(10000);
  8352   format %{ "PUSH   $src1.hi\n\t"
  8353             "PUSH   $src1.lo\n\t"
  8354             "PUSH   $src2.hi\n\t"
  8355             "PUSH   $src2.lo\n\t"
  8356             "CALL   SharedRuntime::ldiv\n\t"
  8357             "ADD    ESP,16" %}
  8358   ins_encode( long_div(src1,src2) );
  8359   ins_pipe( pipe_slow );
  8360 %}
  8362 // Integer DIVMOD with Register, both quotient and mod results
  8363 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8364   match(DivModI rax div);
  8365   effect(KILL cr);
  8366   size(26);
  8367   ins_cost(30*100+10*100);
  8368   format %{ "CMP    EAX,0x80000000\n\t"
  8369             "JNE,s  normal\n\t"
  8370             "XOR    EDX,EDX\n\t"
  8371             "CMP    ECX,-1\n\t"
  8372             "JE,s   done\n"
  8373     "normal: CDQ\n\t"
  8374             "IDIV   $div\n\t"
  8375     "done:"        %}
  8376   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8377   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8378   ins_pipe( pipe_slow );
  8379 %}
  8381 // Integer MOD with Register
  8382 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8383   match(Set rdx (ModI rax div));
  8384   effect(KILL rax, KILL cr);
  8386   size(26);
  8387   ins_cost(300);
  8388   format %{ "CDQ\n\t"
  8389             "IDIV   $div" %}
  8390   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8391   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8392   ins_pipe( ialu_reg_reg_alu0 );
  8393 %}
  8395 // Remainder Register Long
  8396 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8397   match(Set dst (ModL src1 src2));
  8398   effect( KILL cr, KILL cx, KILL bx );
  8399   ins_cost(10000);
  8400   format %{ "PUSH   $src1.hi\n\t"
  8401             "PUSH   $src1.lo\n\t"
  8402             "PUSH   $src2.hi\n\t"
  8403             "PUSH   $src2.lo\n\t"
  8404             "CALL   SharedRuntime::lrem\n\t"
  8405             "ADD    ESP,16" %}
  8406   ins_encode( long_mod(src1,src2) );
  8407   ins_pipe( pipe_slow );
  8408 %}
  8410 // Divide Register Long (no special case since divisor != -1)
  8411 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8412   match(Set dst (DivL dst imm));
  8413   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8414   ins_cost(1000);
  8415   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  8416             "XOR    $tmp2,$tmp2\n\t"
  8417             "CMP    $tmp,EDX\n\t"
  8418             "JA,s   fast\n\t"
  8419             "MOV    $tmp2,EAX\n\t"
  8420             "MOV    EAX,EDX\n\t"
  8421             "MOV    EDX,0\n\t"
  8422             "JLE,s  pos\n\t"
  8423             "LNEG   EAX : $tmp2\n\t"
  8424             "DIV    $tmp # unsigned division\n\t"
  8425             "XCHG   EAX,$tmp2\n\t"
  8426             "DIV    $tmp\n\t"
  8427             "LNEG   $tmp2 : EAX\n\t"
  8428             "JMP,s  done\n"
  8429     "pos:\n\t"
  8430             "DIV    $tmp\n\t"
  8431             "XCHG   EAX,$tmp2\n"
  8432     "fast:\n\t"
  8433             "DIV    $tmp\n"
  8434     "done:\n\t"
  8435             "MOV    EDX,$tmp2\n\t"
  8436             "NEG    EDX:EAX # if $imm < 0" %}
  8437   ins_encode %{
  8438     int con = (int)$imm$$constant;
  8439     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8440     int pcon = (con > 0) ? con : -con;
  8441     Label Lfast, Lpos, Ldone;
  8443     __ movl($tmp$$Register, pcon);
  8444     __ xorl($tmp2$$Register,$tmp2$$Register);
  8445     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8446     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  8448     __ movl($tmp2$$Register, $dst$$Register); // save
  8449     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8450     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8451     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8453     // Negative dividend.
  8454     // convert value to positive to use unsigned division
  8455     __ lneg($dst$$Register, $tmp2$$Register);
  8456     __ divl($tmp$$Register);
  8457     __ xchgl($dst$$Register, $tmp2$$Register);
  8458     __ divl($tmp$$Register);
  8459     // revert result back to negative
  8460     __ lneg($tmp2$$Register, $dst$$Register);
  8461     __ jmpb(Ldone);
  8463     __ bind(Lpos);
  8464     __ divl($tmp$$Register); // Use unsigned division
  8465     __ xchgl($dst$$Register, $tmp2$$Register);
  8466     // Fallthrow for final divide, tmp2 has 32 bit hi result
  8468     __ bind(Lfast);
  8469     // fast path: src is positive
  8470     __ divl($tmp$$Register); // Use unsigned division
  8472     __ bind(Ldone);
  8473     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  8474     if (con < 0) {
  8475       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  8477   %}
  8478   ins_pipe( pipe_slow );
  8479 %}
  8481 // Remainder Register Long (remainder fit into 32 bits)
  8482 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8483   match(Set dst (ModL dst imm));
  8484   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8485   ins_cost(1000);
  8486   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  8487             "CMP    $tmp,EDX\n\t"
  8488             "JA,s   fast\n\t"
  8489             "MOV    $tmp2,EAX\n\t"
  8490             "MOV    EAX,EDX\n\t"
  8491             "MOV    EDX,0\n\t"
  8492             "JLE,s  pos\n\t"
  8493             "LNEG   EAX : $tmp2\n\t"
  8494             "DIV    $tmp # unsigned division\n\t"
  8495             "MOV    EAX,$tmp2\n\t"
  8496             "DIV    $tmp\n\t"
  8497             "NEG    EDX\n\t"
  8498             "JMP,s  done\n"
  8499     "pos:\n\t"
  8500             "DIV    $tmp\n\t"
  8501             "MOV    EAX,$tmp2\n"
  8502     "fast:\n\t"
  8503             "DIV    $tmp\n"
  8504     "done:\n\t"
  8505             "MOV    EAX,EDX\n\t"
  8506             "SAR    EDX,31\n\t" %}
  8507   ins_encode %{
  8508     int con = (int)$imm$$constant;
  8509     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8510     int pcon = (con > 0) ? con : -con;
  8511     Label  Lfast, Lpos, Ldone;
  8513     __ movl($tmp$$Register, pcon);
  8514     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8515     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  8517     __ movl($tmp2$$Register, $dst$$Register); // save
  8518     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8519     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8520     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8522     // Negative dividend.
  8523     // convert value to positive to use unsigned division
  8524     __ lneg($dst$$Register, $tmp2$$Register);
  8525     __ divl($tmp$$Register);
  8526     __ movl($dst$$Register, $tmp2$$Register);
  8527     __ divl($tmp$$Register);
  8528     // revert remainder back to negative
  8529     __ negl(HIGH_FROM_LOW($dst$$Register));
  8530     __ jmpb(Ldone);
  8532     __ bind(Lpos);
  8533     __ divl($tmp$$Register);
  8534     __ movl($dst$$Register, $tmp2$$Register);
  8536     __ bind(Lfast);
  8537     // fast path: src is positive
  8538     __ divl($tmp$$Register);
  8540     __ bind(Ldone);
  8541     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8542     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  8544   %}
  8545   ins_pipe( pipe_slow );
  8546 %}
  8548 // Integer Shift Instructions
  8549 // Shift Left by one
  8550 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8551   match(Set dst (LShiftI dst shift));
  8552   effect(KILL cr);
  8554   size(2);
  8555   format %{ "SHL    $dst,$shift" %}
  8556   opcode(0xD1, 0x4);  /* D1 /4 */
  8557   ins_encode( OpcP, RegOpc( dst ) );
  8558   ins_pipe( ialu_reg );
  8559 %}
  8561 // Shift Left by 8-bit immediate
  8562 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8563   match(Set dst (LShiftI dst shift));
  8564   effect(KILL cr);
  8566   size(3);
  8567   format %{ "SHL    $dst,$shift" %}
  8568   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8569   ins_encode( RegOpcImm( dst, shift) );
  8570   ins_pipe( ialu_reg );
  8571 %}
  8573 // Shift Left by variable
  8574 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8575   match(Set dst (LShiftI dst shift));
  8576   effect(KILL cr);
  8578   size(2);
  8579   format %{ "SHL    $dst,$shift" %}
  8580   opcode(0xD3, 0x4);  /* D3 /4 */
  8581   ins_encode( OpcP, RegOpc( dst ) );
  8582   ins_pipe( ialu_reg_reg );
  8583 %}
  8585 // Arithmetic shift right by one
  8586 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8587   match(Set dst (RShiftI dst shift));
  8588   effect(KILL cr);
  8590   size(2);
  8591   format %{ "SAR    $dst,$shift" %}
  8592   opcode(0xD1, 0x7);  /* D1 /7 */
  8593   ins_encode( OpcP, RegOpc( dst ) );
  8594   ins_pipe( ialu_reg );
  8595 %}
  8597 // Arithmetic shift right by one
  8598 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8599   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8600   effect(KILL cr);
  8601   format %{ "SAR    $dst,$shift" %}
  8602   opcode(0xD1, 0x7);  /* D1 /7 */
  8603   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8604   ins_pipe( ialu_mem_imm );
  8605 %}
  8607 // Arithmetic Shift Right by 8-bit immediate
  8608 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8609   match(Set dst (RShiftI dst shift));
  8610   effect(KILL cr);
  8612   size(3);
  8613   format %{ "SAR    $dst,$shift" %}
  8614   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8615   ins_encode( RegOpcImm( dst, shift ) );
  8616   ins_pipe( ialu_mem_imm );
  8617 %}
  8619 // Arithmetic Shift Right by 8-bit immediate
  8620 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8621   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8622   effect(KILL cr);
  8624   format %{ "SAR    $dst,$shift" %}
  8625   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8626   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8627   ins_pipe( ialu_mem_imm );
  8628 %}
  8630 // Arithmetic Shift Right by variable
  8631 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8632   match(Set dst (RShiftI dst shift));
  8633   effect(KILL cr);
  8635   size(2);
  8636   format %{ "SAR    $dst,$shift" %}
  8637   opcode(0xD3, 0x7);  /* D3 /7 */
  8638   ins_encode( OpcP, RegOpc( dst ) );
  8639   ins_pipe( ialu_reg_reg );
  8640 %}
  8642 // Logical shift right by one
  8643 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8644   match(Set dst (URShiftI dst shift));
  8645   effect(KILL cr);
  8647   size(2);
  8648   format %{ "SHR    $dst,$shift" %}
  8649   opcode(0xD1, 0x5);  /* D1 /5 */
  8650   ins_encode( OpcP, RegOpc( dst ) );
  8651   ins_pipe( ialu_reg );
  8652 %}
  8654 // Logical Shift Right by 8-bit immediate
  8655 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8656   match(Set dst (URShiftI dst shift));
  8657   effect(KILL cr);
  8659   size(3);
  8660   format %{ "SHR    $dst,$shift" %}
  8661   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8662   ins_encode( RegOpcImm( dst, shift) );
  8663   ins_pipe( ialu_reg );
  8664 %}
  8667 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8668 // This idiom is used by the compiler for the i2b bytecode.
  8669 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
  8670   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8672   size(3);
  8673   format %{ "MOVSX  $dst,$src :8" %}
  8674   ins_encode %{
  8675     __ movsbl($dst$$Register, $src$$Register);
  8676   %}
  8677   ins_pipe(ialu_reg_reg);
  8678 %}
  8680 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8681 // This idiom is used by the compiler the i2s bytecode.
  8682 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
  8683   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8685   size(3);
  8686   format %{ "MOVSX  $dst,$src :16" %}
  8687   ins_encode %{
  8688     __ movswl($dst$$Register, $src$$Register);
  8689   %}
  8690   ins_pipe(ialu_reg_reg);
  8691 %}
  8694 // Logical Shift Right by variable
  8695 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8696   match(Set dst (URShiftI dst shift));
  8697   effect(KILL cr);
  8699   size(2);
  8700   format %{ "SHR    $dst,$shift" %}
  8701   opcode(0xD3, 0x5);  /* D3 /5 */
  8702   ins_encode( OpcP, RegOpc( dst ) );
  8703   ins_pipe( ialu_reg_reg );
  8704 %}
  8707 //----------Logical Instructions-----------------------------------------------
  8708 //----------Integer Logical Instructions---------------------------------------
  8709 // And Instructions
  8710 // And Register with Register
  8711 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8712   match(Set dst (AndI dst src));
  8713   effect(KILL cr);
  8715   size(2);
  8716   format %{ "AND    $dst,$src" %}
  8717   opcode(0x23);
  8718   ins_encode( OpcP, RegReg( dst, src) );
  8719   ins_pipe( ialu_reg_reg );
  8720 %}
  8722 // And Register with Immediate
  8723 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8724   match(Set dst (AndI dst src));
  8725   effect(KILL cr);
  8727   format %{ "AND    $dst,$src" %}
  8728   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8729   // ins_encode( RegImm( dst, src) );
  8730   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8731   ins_pipe( ialu_reg );
  8732 %}
  8734 // And Register with Memory
  8735 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8736   match(Set dst (AndI dst (LoadI src)));
  8737   effect(KILL cr);
  8739   ins_cost(125);
  8740   format %{ "AND    $dst,$src" %}
  8741   opcode(0x23);
  8742   ins_encode( OpcP, RegMem( dst, src) );
  8743   ins_pipe( ialu_reg_mem );
  8744 %}
  8746 // And Memory with Register
  8747 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8748   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8749   effect(KILL cr);
  8751   ins_cost(150);
  8752   format %{ "AND    $dst,$src" %}
  8753   opcode(0x21);  /* Opcode 21 /r */
  8754   ins_encode( OpcP, RegMem( src, dst ) );
  8755   ins_pipe( ialu_mem_reg );
  8756 %}
  8758 // And Memory with Immediate
  8759 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8760   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8761   effect(KILL cr);
  8763   ins_cost(125);
  8764   format %{ "AND    $dst,$src" %}
  8765   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8766   // ins_encode( MemImm( dst, src) );
  8767   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8768   ins_pipe( ialu_mem_imm );
  8769 %}
  8771 // Or Instructions
  8772 // Or Register with Register
  8773 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8774   match(Set dst (OrI dst src));
  8775   effect(KILL cr);
  8777   size(2);
  8778   format %{ "OR     $dst,$src" %}
  8779   opcode(0x0B);
  8780   ins_encode( OpcP, RegReg( dst, src) );
  8781   ins_pipe( ialu_reg_reg );
  8782 %}
  8784 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  8785   match(Set dst (OrI dst (CastP2X src)));
  8786   effect(KILL cr);
  8788   size(2);
  8789   format %{ "OR     $dst,$src" %}
  8790   opcode(0x0B);
  8791   ins_encode( OpcP, RegReg( dst, src) );
  8792   ins_pipe( ialu_reg_reg );
  8793 %}
  8796 // Or Register with Immediate
  8797 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8798   match(Set dst (OrI dst src));
  8799   effect(KILL cr);
  8801   format %{ "OR     $dst,$src" %}
  8802   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8803   // ins_encode( RegImm( dst, src) );
  8804   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8805   ins_pipe( ialu_reg );
  8806 %}
  8808 // Or Register with Memory
  8809 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8810   match(Set dst (OrI dst (LoadI src)));
  8811   effect(KILL cr);
  8813   ins_cost(125);
  8814   format %{ "OR     $dst,$src" %}
  8815   opcode(0x0B);
  8816   ins_encode( OpcP, RegMem( dst, src) );
  8817   ins_pipe( ialu_reg_mem );
  8818 %}
  8820 // Or Memory with Register
  8821 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8822   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8823   effect(KILL cr);
  8825   ins_cost(150);
  8826   format %{ "OR     $dst,$src" %}
  8827   opcode(0x09);  /* Opcode 09 /r */
  8828   ins_encode( OpcP, RegMem( src, dst ) );
  8829   ins_pipe( ialu_mem_reg );
  8830 %}
  8832 // Or Memory with Immediate
  8833 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8834   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8835   effect(KILL cr);
  8837   ins_cost(125);
  8838   format %{ "OR     $dst,$src" %}
  8839   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8840   // ins_encode( MemImm( dst, src) );
  8841   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8842   ins_pipe( ialu_mem_imm );
  8843 %}
  8845 // ROL/ROR
  8846 // ROL expand
  8847 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8848   effect(USE_DEF dst, USE shift, KILL cr);
  8850   format %{ "ROL    $dst, $shift" %}
  8851   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8852   ins_encode( OpcP, RegOpc( dst ));
  8853   ins_pipe( ialu_reg );
  8854 %}
  8856 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8857   effect(USE_DEF dst, USE shift, KILL cr);
  8859   format %{ "ROL    $dst, $shift" %}
  8860   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8861   ins_encode( RegOpcImm(dst, shift) );
  8862   ins_pipe(ialu_reg);
  8863 %}
  8865 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8866   effect(USE_DEF dst, USE shift, KILL cr);
  8868   format %{ "ROL    $dst, $shift" %}
  8869   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8870   ins_encode(OpcP, RegOpc(dst));
  8871   ins_pipe( ialu_reg_reg );
  8872 %}
  8873 // end of ROL expand
  8875 // ROL 32bit by one once
  8876 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8877   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8879   expand %{
  8880     rolI_eReg_imm1(dst, lshift, cr);
  8881   %}
  8882 %}
  8884 // ROL 32bit var by imm8 once
  8885 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8886   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8887   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8889   expand %{
  8890     rolI_eReg_imm8(dst, lshift, cr);
  8891   %}
  8892 %}
  8894 // ROL 32bit var by var once
  8895 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8896   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8898   expand %{
  8899     rolI_eReg_CL(dst, shift, cr);
  8900   %}
  8901 %}
  8903 // ROL 32bit var by var once
  8904 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8905   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8907   expand %{
  8908     rolI_eReg_CL(dst, shift, cr);
  8909   %}
  8910 %}
  8912 // ROR expand
  8913 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8914   effect(USE_DEF dst, USE shift, KILL cr);
  8916   format %{ "ROR    $dst, $shift" %}
  8917   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8918   ins_encode( OpcP, RegOpc( dst ) );
  8919   ins_pipe( ialu_reg );
  8920 %}
  8922 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8923   effect (USE_DEF dst, USE shift, KILL cr);
  8925   format %{ "ROR    $dst, $shift" %}
  8926   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8927   ins_encode( RegOpcImm(dst, shift) );
  8928   ins_pipe( ialu_reg );
  8929 %}
  8931 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8932   effect(USE_DEF dst, USE shift, KILL cr);
  8934   format %{ "ROR    $dst, $shift" %}
  8935   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8936   ins_encode(OpcP, RegOpc(dst));
  8937   ins_pipe( ialu_reg_reg );
  8938 %}
  8939 // end of ROR expand
  8941 // ROR right once
  8942 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8943   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8945   expand %{
  8946     rorI_eReg_imm1(dst, rshift, cr);
  8947   %}
  8948 %}
  8950 // ROR 32bit by immI8 once
  8951 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8952   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8953   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8955   expand %{
  8956     rorI_eReg_imm8(dst, rshift, cr);
  8957   %}
  8958 %}
  8960 // ROR 32bit var by var once
  8961 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8962   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8964   expand %{
  8965     rorI_eReg_CL(dst, shift, cr);
  8966   %}
  8967 %}
  8969 // ROR 32bit var by var once
  8970 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8971   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8973   expand %{
  8974     rorI_eReg_CL(dst, shift, cr);
  8975   %}
  8976 %}
  8978 // Xor Instructions
  8979 // Xor Register with Register
  8980 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8981   match(Set dst (XorI dst src));
  8982   effect(KILL cr);
  8984   size(2);
  8985   format %{ "XOR    $dst,$src" %}
  8986   opcode(0x33);
  8987   ins_encode( OpcP, RegReg( dst, src) );
  8988   ins_pipe( ialu_reg_reg );
  8989 %}
  8991 // Xor Register with Immediate -1
  8992 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  8993   match(Set dst (XorI dst imm));  
  8995   size(2);
  8996   format %{ "NOT    $dst" %}  
  8997   ins_encode %{
  8998      __ notl($dst$$Register);
  8999   %}
  9000   ins_pipe( ialu_reg );
  9001 %}
  9003 // Xor Register with Immediate
  9004 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9005   match(Set dst (XorI dst src));
  9006   effect(KILL cr);
  9008   format %{ "XOR    $dst,$src" %}
  9009   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  9010   // ins_encode( RegImm( dst, src) );
  9011   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9012   ins_pipe( ialu_reg );
  9013 %}
  9015 // Xor Register with Memory
  9016 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9017   match(Set dst (XorI dst (LoadI src)));
  9018   effect(KILL cr);
  9020   ins_cost(125);
  9021   format %{ "XOR    $dst,$src" %}
  9022   opcode(0x33);
  9023   ins_encode( OpcP, RegMem(dst, src) );
  9024   ins_pipe( ialu_reg_mem );
  9025 %}
  9027 // Xor Memory with Register
  9028 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9029   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9030   effect(KILL cr);
  9032   ins_cost(150);
  9033   format %{ "XOR    $dst,$src" %}
  9034   opcode(0x31);  /* Opcode 31 /r */
  9035   ins_encode( OpcP, RegMem( src, dst ) );
  9036   ins_pipe( ialu_mem_reg );
  9037 %}
  9039 // Xor Memory with Immediate
  9040 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9041   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9042   effect(KILL cr);
  9044   ins_cost(125);
  9045   format %{ "XOR    $dst,$src" %}
  9046   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  9047   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9048   ins_pipe( ialu_mem_imm );
  9049 %}
  9051 //----------Convert Int to Boolean---------------------------------------------
  9053 instruct movI_nocopy(eRegI dst, eRegI src) %{
  9054   effect( DEF dst, USE src );
  9055   format %{ "MOV    $dst,$src" %}
  9056   ins_encode( enc_Copy( dst, src) );
  9057   ins_pipe( ialu_reg_reg );
  9058 %}
  9060 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9061   effect( USE_DEF dst, USE src, KILL cr );
  9063   size(4);
  9064   format %{ "NEG    $dst\n\t"
  9065             "ADC    $dst,$src" %}
  9066   ins_encode( neg_reg(dst),
  9067               OpcRegReg(0x13,dst,src) );
  9068   ins_pipe( ialu_reg_reg_long );
  9069 %}
  9071 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9072   match(Set dst (Conv2B src));
  9074   expand %{
  9075     movI_nocopy(dst,src);
  9076     ci2b(dst,src,cr);
  9077   %}
  9078 %}
  9080 instruct movP_nocopy(eRegI dst, eRegP src) %{
  9081   effect( DEF dst, USE src );
  9082   format %{ "MOV    $dst,$src" %}
  9083   ins_encode( enc_Copy( dst, src) );
  9084   ins_pipe( ialu_reg_reg );
  9085 %}
  9087 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9088   effect( USE_DEF dst, USE src, KILL cr );
  9089   format %{ "NEG    $dst\n\t"
  9090             "ADC    $dst,$src" %}
  9091   ins_encode( neg_reg(dst),
  9092               OpcRegReg(0x13,dst,src) );
  9093   ins_pipe( ialu_reg_reg_long );
  9094 %}
  9096 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9097   match(Set dst (Conv2B src));
  9099   expand %{
  9100     movP_nocopy(dst,src);
  9101     cp2b(dst,src,cr);
  9102   %}
  9103 %}
  9105 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  9106   match(Set dst (CmpLTMask p q));
  9107   effect( KILL cr );
  9108   ins_cost(400);
  9110   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9111   format %{ "XOR    $dst,$dst\n\t"
  9112             "CMP    $p,$q\n\t"
  9113             "SETlt  $dst\n\t"
  9114             "NEG    $dst" %}
  9115   ins_encode( OpcRegReg(0x33,dst,dst),
  9116               OpcRegReg(0x3B,p,q),
  9117               setLT_reg(dst), neg_reg(dst) );
  9118   ins_pipe( pipe_slow );
  9119 %}
  9121 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9122   match(Set dst (CmpLTMask dst zero));
  9123   effect( DEF dst, KILL cr );
  9124   ins_cost(100);
  9126   format %{ "SAR    $dst,31" %}
  9127   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9128   ins_encode( RegOpcImm( dst, 0x1F ) );
  9129   ins_pipe( ialu_reg );
  9130 %}
  9133 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9134   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9135   effect( KILL tmp, KILL cr );
  9136   ins_cost(400);
  9137   // annoyingly, $tmp has no edges so you cant ask for it in
  9138   // any format or encoding
  9139   format %{ "SUB    $p,$q\n\t"
  9140             "SBB    ECX,ECX\n\t"
  9141             "AND    ECX,$y\n\t"
  9142             "ADD    $p,ECX" %}
  9143   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9144   ins_pipe( pipe_cmplt );
  9145 %}
  9147 /* If I enable this, I encourage spilling in the inner loop of compress.
  9148 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9149   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9150   effect( USE_KILL tmp, KILL cr );
  9151   ins_cost(400);
  9153   format %{ "SUB    $p,$q\n\t"
  9154             "SBB    ECX,ECX\n\t"
  9155             "AND    ECX,$y\n\t"
  9156             "ADD    $p,ECX" %}
  9157   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9158 %}
  9159 */
  9161 //----------Long Instructions------------------------------------------------
  9162 // Add Long Register with Register
  9163 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9164   match(Set dst (AddL dst src));
  9165   effect(KILL cr);
  9166   ins_cost(200);
  9167   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9168             "ADC    $dst.hi,$src.hi" %}
  9169   opcode(0x03, 0x13);
  9170   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9171   ins_pipe( ialu_reg_reg_long );
  9172 %}
  9174 // Add Long Register with Immediate
  9175 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9176   match(Set dst (AddL dst src));
  9177   effect(KILL cr);
  9178   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9179             "ADC    $dst.hi,$src.hi" %}
  9180   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9181   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9182   ins_pipe( ialu_reg_long );
  9183 %}
  9185 // Add Long Register with Memory
  9186 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9187   match(Set dst (AddL dst (LoadL mem)));
  9188   effect(KILL cr);
  9189   ins_cost(125);
  9190   format %{ "ADD    $dst.lo,$mem\n\t"
  9191             "ADC    $dst.hi,$mem+4" %}
  9192   opcode(0x03, 0x13);
  9193   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9194   ins_pipe( ialu_reg_long_mem );
  9195 %}
  9197 // Subtract Long Register with Register.
  9198 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9199   match(Set dst (SubL dst src));
  9200   effect(KILL cr);
  9201   ins_cost(200);
  9202   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9203             "SBB    $dst.hi,$src.hi" %}
  9204   opcode(0x2B, 0x1B);
  9205   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9206   ins_pipe( ialu_reg_reg_long );
  9207 %}
  9209 // Subtract Long Register with Immediate
  9210 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9211   match(Set dst (SubL dst src));
  9212   effect(KILL cr);
  9213   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9214             "SBB    $dst.hi,$src.hi" %}
  9215   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9216   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9217   ins_pipe( ialu_reg_long );
  9218 %}
  9220 // Subtract Long Register with Memory
  9221 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9222   match(Set dst (SubL dst (LoadL mem)));
  9223   effect(KILL cr);
  9224   ins_cost(125);
  9225   format %{ "SUB    $dst.lo,$mem\n\t"
  9226             "SBB    $dst.hi,$mem+4" %}
  9227   opcode(0x2B, 0x1B);
  9228   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9229   ins_pipe( ialu_reg_long_mem );
  9230 %}
  9232 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9233   match(Set dst (SubL zero dst));
  9234   effect(KILL cr);
  9235   ins_cost(300);
  9236   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9237   ins_encode( neg_long(dst) );
  9238   ins_pipe( ialu_reg_reg_long );
  9239 %}
  9241 // And Long Register with Register
  9242 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9243   match(Set dst (AndL dst src));
  9244   effect(KILL cr);
  9245   format %{ "AND    $dst.lo,$src.lo\n\t"
  9246             "AND    $dst.hi,$src.hi" %}
  9247   opcode(0x23,0x23);
  9248   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9249   ins_pipe( ialu_reg_reg_long );
  9250 %}
  9252 // And Long Register with Immediate
  9253 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9254   match(Set dst (AndL dst src));
  9255   effect(KILL cr);
  9256   format %{ "AND    $dst.lo,$src.lo\n\t"
  9257             "AND    $dst.hi,$src.hi" %}
  9258   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9259   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9260   ins_pipe( ialu_reg_long );
  9261 %}
  9263 // And Long Register with Memory
  9264 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9265   match(Set dst (AndL dst (LoadL mem)));
  9266   effect(KILL cr);
  9267   ins_cost(125);
  9268   format %{ "AND    $dst.lo,$mem\n\t"
  9269             "AND    $dst.hi,$mem+4" %}
  9270   opcode(0x23, 0x23);
  9271   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9272   ins_pipe( ialu_reg_long_mem );
  9273 %}
  9275 // Or Long Register with Register
  9276 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9277   match(Set dst (OrL dst src));
  9278   effect(KILL cr);
  9279   format %{ "OR     $dst.lo,$src.lo\n\t"
  9280             "OR     $dst.hi,$src.hi" %}
  9281   opcode(0x0B,0x0B);
  9282   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9283   ins_pipe( ialu_reg_reg_long );
  9284 %}
  9286 // Or Long Register with Immediate
  9287 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9288   match(Set dst (OrL dst src));
  9289   effect(KILL cr);
  9290   format %{ "OR     $dst.lo,$src.lo\n\t"
  9291             "OR     $dst.hi,$src.hi" %}
  9292   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9293   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9294   ins_pipe( ialu_reg_long );
  9295 %}
  9297 // Or Long Register with Memory
  9298 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9299   match(Set dst (OrL dst (LoadL mem)));
  9300   effect(KILL cr);
  9301   ins_cost(125);
  9302   format %{ "OR     $dst.lo,$mem\n\t"
  9303             "OR     $dst.hi,$mem+4" %}
  9304   opcode(0x0B,0x0B);
  9305   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9306   ins_pipe( ialu_reg_long_mem );
  9307 %}
  9309 // Xor Long Register with Register
  9310 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9311   match(Set dst (XorL dst src));
  9312   effect(KILL cr);
  9313   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9314             "XOR    $dst.hi,$src.hi" %}
  9315   opcode(0x33,0x33);
  9316   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9317   ins_pipe( ialu_reg_reg_long );
  9318 %}
  9320 // Xor Long Register with Immediate -1
  9321 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9322   match(Set dst (XorL dst imm));  
  9323   format %{ "NOT    $dst.lo\n\t"
  9324             "NOT    $dst.hi" %}
  9325   ins_encode %{
  9326      __ notl($dst$$Register);
  9327      __ notl(HIGH_FROM_LOW($dst$$Register));
  9328   %}
  9329   ins_pipe( ialu_reg_long );
  9330 %}
  9332 // Xor Long Register with Immediate
  9333 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9334   match(Set dst (XorL dst src));
  9335   effect(KILL cr);
  9336   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9337             "XOR    $dst.hi,$src.hi" %}
  9338   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9339   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9340   ins_pipe( ialu_reg_long );
  9341 %}
  9343 // Xor Long Register with Memory
  9344 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9345   match(Set dst (XorL dst (LoadL mem)));
  9346   effect(KILL cr);
  9347   ins_cost(125);
  9348   format %{ "XOR    $dst.lo,$mem\n\t"
  9349             "XOR    $dst.hi,$mem+4" %}
  9350   opcode(0x33,0x33);
  9351   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9352   ins_pipe( ialu_reg_long_mem );
  9353 %}
  9355 // Shift Left Long by 1
  9356 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9357   predicate(UseNewLongLShift);
  9358   match(Set dst (LShiftL dst cnt));
  9359   effect(KILL cr);
  9360   ins_cost(100);
  9361   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9362             "ADC    $dst.hi,$dst.hi" %}
  9363   ins_encode %{
  9364     __ addl($dst$$Register,$dst$$Register);
  9365     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9366   %}
  9367   ins_pipe( ialu_reg_long );
  9368 %}
  9370 // Shift Left Long by 2
  9371 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9372   predicate(UseNewLongLShift);
  9373   match(Set dst (LShiftL dst cnt));
  9374   effect(KILL cr);
  9375   ins_cost(100);
  9376   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9377             "ADC    $dst.hi,$dst.hi\n\t" 
  9378             "ADD    $dst.lo,$dst.lo\n\t"
  9379             "ADC    $dst.hi,$dst.hi" %}
  9380   ins_encode %{
  9381     __ addl($dst$$Register,$dst$$Register);
  9382     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9383     __ addl($dst$$Register,$dst$$Register);
  9384     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9385   %}
  9386   ins_pipe( ialu_reg_long );
  9387 %}
  9389 // Shift Left Long by 3
  9390 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9391   predicate(UseNewLongLShift);
  9392   match(Set dst (LShiftL dst cnt));
  9393   effect(KILL cr);
  9394   ins_cost(100);
  9395   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9396             "ADC    $dst.hi,$dst.hi\n\t" 
  9397             "ADD    $dst.lo,$dst.lo\n\t"
  9398             "ADC    $dst.hi,$dst.hi\n\t" 
  9399             "ADD    $dst.lo,$dst.lo\n\t"
  9400             "ADC    $dst.hi,$dst.hi" %}
  9401   ins_encode %{
  9402     __ addl($dst$$Register,$dst$$Register);
  9403     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9404     __ addl($dst$$Register,$dst$$Register);
  9405     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9406     __ addl($dst$$Register,$dst$$Register);
  9407     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9408   %}
  9409   ins_pipe( ialu_reg_long );
  9410 %}
  9412 // Shift Left Long by 1-31
  9413 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9414   match(Set dst (LShiftL dst cnt));
  9415   effect(KILL cr);
  9416   ins_cost(200);
  9417   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9418             "SHL    $dst.lo,$cnt" %}
  9419   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9420   ins_encode( move_long_small_shift(dst,cnt) );
  9421   ins_pipe( ialu_reg_long );
  9422 %}
  9424 // Shift Left Long by 32-63
  9425 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9426   match(Set dst (LShiftL dst cnt));
  9427   effect(KILL cr);
  9428   ins_cost(300);
  9429   format %{ "MOV    $dst.hi,$dst.lo\n"
  9430           "\tSHL    $dst.hi,$cnt-32\n"
  9431           "\tXOR    $dst.lo,$dst.lo" %}
  9432   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9433   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9434   ins_pipe( ialu_reg_long );
  9435 %}
  9437 // Shift Left Long by variable
  9438 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9439   match(Set dst (LShiftL dst shift));
  9440   effect(KILL cr);
  9441   ins_cost(500+200);
  9442   size(17);
  9443   format %{ "TEST   $shift,32\n\t"
  9444             "JEQ,s  small\n\t"
  9445             "MOV    $dst.hi,$dst.lo\n\t"
  9446             "XOR    $dst.lo,$dst.lo\n"
  9447     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9448             "SHL    $dst.lo,$shift" %}
  9449   ins_encode( shift_left_long( dst, shift ) );
  9450   ins_pipe( pipe_slow );
  9451 %}
  9453 // Shift Right Long by 1-31
  9454 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9455   match(Set dst (URShiftL dst cnt));
  9456   effect(KILL cr);
  9457   ins_cost(200);
  9458   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9459             "SHR    $dst.hi,$cnt" %}
  9460   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9461   ins_encode( move_long_small_shift(dst,cnt) );
  9462   ins_pipe( ialu_reg_long );
  9463 %}
  9465 // Shift Right Long by 32-63
  9466 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9467   match(Set dst (URShiftL dst cnt));
  9468   effect(KILL cr);
  9469   ins_cost(300);
  9470   format %{ "MOV    $dst.lo,$dst.hi\n"
  9471           "\tSHR    $dst.lo,$cnt-32\n"
  9472           "\tXOR    $dst.hi,$dst.hi" %}
  9473   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9474   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9475   ins_pipe( ialu_reg_long );
  9476 %}
  9478 // Shift Right Long by variable
  9479 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9480   match(Set dst (URShiftL dst shift));
  9481   effect(KILL cr);
  9482   ins_cost(600);
  9483   size(17);
  9484   format %{ "TEST   $shift,32\n\t"
  9485             "JEQ,s  small\n\t"
  9486             "MOV    $dst.lo,$dst.hi\n\t"
  9487             "XOR    $dst.hi,$dst.hi\n"
  9488     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9489             "SHR    $dst.hi,$shift" %}
  9490   ins_encode( shift_right_long( dst, shift ) );
  9491   ins_pipe( pipe_slow );
  9492 %}
  9494 // Shift Right Long by 1-31
  9495 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9496   match(Set dst (RShiftL dst cnt));
  9497   effect(KILL cr);
  9498   ins_cost(200);
  9499   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9500             "SAR    $dst.hi,$cnt" %}
  9501   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9502   ins_encode( move_long_small_shift(dst,cnt) );
  9503   ins_pipe( ialu_reg_long );
  9504 %}
  9506 // Shift Right Long by 32-63
  9507 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9508   match(Set dst (RShiftL dst cnt));
  9509   effect(KILL cr);
  9510   ins_cost(300);
  9511   format %{ "MOV    $dst.lo,$dst.hi\n"
  9512           "\tSAR    $dst.lo,$cnt-32\n"
  9513           "\tSAR    $dst.hi,31" %}
  9514   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9515   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9516   ins_pipe( ialu_reg_long );
  9517 %}
  9519 // Shift Right arithmetic Long by variable
  9520 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9521   match(Set dst (RShiftL dst shift));
  9522   effect(KILL cr);
  9523   ins_cost(600);
  9524   size(18);
  9525   format %{ "TEST   $shift,32\n\t"
  9526             "JEQ,s  small\n\t"
  9527             "MOV    $dst.lo,$dst.hi\n\t"
  9528             "SAR    $dst.hi,31\n"
  9529     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9530             "SAR    $dst.hi,$shift" %}
  9531   ins_encode( shift_right_arith_long( dst, shift ) );
  9532   ins_pipe( pipe_slow );
  9533 %}
  9536 //----------Double Instructions------------------------------------------------
  9537 // Double Math
  9539 // Compare & branch
  9541 // P6 version of float compare, sets condition codes in EFLAGS
  9542 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9543   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9544   match(Set cr (CmpD src1 src2));
  9545   effect(KILL rax);
  9546   ins_cost(150);
  9547   format %{ "FLD    $src1\n\t"
  9548             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9549             "JNP    exit\n\t"
  9550             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9551             "SAHF\n"
  9552      "exit:\tNOP               // avoid branch to branch" %}
  9553   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9554   ins_encode( Push_Reg_DPR(src1),
  9555               OpcP, RegOpc(src2),
  9556               cmpF_P6_fixup );
  9557   ins_pipe( pipe_slow );
  9558 %}
  9560 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
  9561   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9562   match(Set cr (CmpD src1 src2));
  9563   ins_cost(150);
  9564   format %{ "FLD    $src1\n\t"
  9565             "FUCOMIP ST,$src2  // P6 instruction" %}
  9566   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9567   ins_encode( Push_Reg_DPR(src1),
  9568               OpcP, RegOpc(src2));
  9569   ins_pipe( pipe_slow );
  9570 %}
  9572 // Compare & branch
  9573 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9574   predicate(UseSSE<=1);
  9575   match(Set cr (CmpD src1 src2));
  9576   effect(KILL rax);
  9577   ins_cost(200);
  9578   format %{ "FLD    $src1\n\t"
  9579             "FCOMp  $src2\n\t"
  9580             "FNSTSW AX\n\t"
  9581             "TEST   AX,0x400\n\t"
  9582             "JZ,s   flags\n\t"
  9583             "MOV    AH,1\t# unordered treat as LT\n"
  9584     "flags:\tSAHF" %}
  9585   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9586   ins_encode( Push_Reg_DPR(src1),
  9587               OpcP, RegOpc(src2),
  9588               fpu_flags);
  9589   ins_pipe( pipe_slow );
  9590 %}
  9592 // Compare vs zero into -1,0,1
  9593 instruct cmpDPR_0(eRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
  9594   predicate(UseSSE<=1);
  9595   match(Set dst (CmpD3 src1 zero));
  9596   effect(KILL cr, KILL rax);
  9597   ins_cost(280);
  9598   format %{ "FTSTD  $dst,$src1" %}
  9599   opcode(0xE4, 0xD9);
  9600   ins_encode( Push_Reg_DPR(src1),
  9601               OpcS, OpcP, PopFPU,
  9602               CmpF_Result(dst));
  9603   ins_pipe( pipe_slow );
  9604 %}
  9606 // Compare into -1,0,1
  9607 instruct cmpDPR_reg(eRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
  9608   predicate(UseSSE<=1);
  9609   match(Set dst (CmpD3 src1 src2));
  9610   effect(KILL cr, KILL rax);
  9611   ins_cost(300);
  9612   format %{ "FCMPD  $dst,$src1,$src2" %}
  9613   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9614   ins_encode( Push_Reg_DPR(src1),
  9615               OpcP, RegOpc(src2),
  9616               CmpF_Result(dst));
  9617   ins_pipe( pipe_slow );
  9618 %}
  9620 // float compare and set condition codes in EFLAGS by XMM regs
  9621 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
  9622   predicate(UseSSE>=2);
  9623   match(Set cr (CmpD src1 src2));
  9624   ins_cost(145);
  9625   format %{ "UCOMISD $src1,$src2\n\t"
  9626             "JNP,s   exit\n\t"
  9627             "PUSHF\t# saw NaN, set CF\n\t"
  9628             "AND     [rsp], #0xffffff2b\n\t"
  9629             "POPF\n"
  9630     "exit:" %}
  9631   ins_encode %{
  9632     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9633     emit_cmpfp_fixup(_masm);
  9634   %}
  9635   ins_pipe( pipe_slow );
  9636 %}
  9638 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9639   predicate(UseSSE>=2);
  9640   match(Set cr (CmpD src1 src2));
  9641   ins_cost(100);
  9642   format %{ "UCOMISD $src1,$src2" %}
  9643   ins_encode %{
  9644     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9645   %}
  9646   ins_pipe( pipe_slow );
  9647 %}
  9649 // float compare and set condition codes in EFLAGS by XMM regs
  9650 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
  9651   predicate(UseSSE>=2);
  9652   match(Set cr (CmpD src1 (LoadD src2)));
  9653   ins_cost(145);
  9654   format %{ "UCOMISD $src1,$src2\n\t"
  9655             "JNP,s   exit\n\t"
  9656             "PUSHF\t# saw NaN, set CF\n\t"
  9657             "AND     [rsp], #0xffffff2b\n\t"
  9658             "POPF\n"
  9659     "exit:" %}
  9660   ins_encode %{
  9661     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9662     emit_cmpfp_fixup(_masm);
  9663   %}
  9664   ins_pipe( pipe_slow );
  9665 %}
  9667 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
  9668   predicate(UseSSE>=2);
  9669   match(Set cr (CmpD src1 (LoadD src2)));
  9670   ins_cost(100);
  9671   format %{ "UCOMISD $src1,$src2" %}
  9672   ins_encode %{
  9673     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9674   %}
  9675   ins_pipe( pipe_slow );
  9676 %}
  9678 // Compare into -1,0,1 in XMM
  9679 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
  9680   predicate(UseSSE>=2);
  9681   match(Set dst (CmpD3 src1 src2));
  9682   effect(KILL cr);
  9683   ins_cost(255);
  9684   format %{ "UCOMISD $src1, $src2\n\t"
  9685             "MOV     $dst, #-1\n\t"
  9686             "JP,s    done\n\t"
  9687             "JB,s    done\n\t"
  9688             "SETNE   $dst\n\t"
  9689             "MOVZB   $dst, $dst\n"
  9690     "done:" %}
  9691   ins_encode %{
  9692     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9693     emit_cmpfp3(_masm, $dst$$Register);
  9694   %}
  9695   ins_pipe( pipe_slow );
  9696 %}
  9698 // Compare into -1,0,1 in XMM and memory
  9699 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
  9700   predicate(UseSSE>=2);
  9701   match(Set dst (CmpD3 src1 (LoadD src2)));
  9702   effect(KILL cr);
  9703   ins_cost(275);
  9704   format %{ "UCOMISD $src1, $src2\n\t"
  9705             "MOV     $dst, #-1\n\t"
  9706             "JP,s    done\n\t"
  9707             "JB,s    done\n\t"
  9708             "SETNE   $dst\n\t"
  9709             "MOVZB   $dst, $dst\n"
  9710     "done:" %}
  9711   ins_encode %{
  9712     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9713     emit_cmpfp3(_masm, $dst$$Register);
  9714   %}
  9715   ins_pipe( pipe_slow );
  9716 %}
  9719 instruct subDPR_reg(regDPR dst, regDPR src) %{
  9720   predicate (UseSSE <=1);
  9721   match(Set dst (SubD dst src));
  9723   format %{ "FLD    $src\n\t"
  9724             "DSUBp  $dst,ST" %}
  9725   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9726   ins_cost(150);
  9727   ins_encode( Push_Reg_DPR(src),
  9728               OpcP, RegOpc(dst) );
  9729   ins_pipe( fpu_reg_reg );
  9730 %}
  9732 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9733   predicate (UseSSE <=1);
  9734   match(Set dst (RoundDouble (SubD src1 src2)));
  9735   ins_cost(250);
  9737   format %{ "FLD    $src2\n\t"
  9738             "DSUB   ST,$src1\n\t"
  9739             "FSTP_D $dst\t# D-round" %}
  9740   opcode(0xD8, 0x5);
  9741   ins_encode( Push_Reg_DPR(src2),
  9742               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9743   ins_pipe( fpu_mem_reg_reg );
  9744 %}
  9747 instruct subDPR_reg_mem(regDPR dst, memory src) %{
  9748   predicate (UseSSE <=1);
  9749   match(Set dst (SubD dst (LoadD src)));
  9750   ins_cost(150);
  9752   format %{ "FLD    $src\n\t"
  9753             "DSUBp  $dst,ST" %}
  9754   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9755   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9756               OpcP, RegOpc(dst) );
  9757   ins_pipe( fpu_reg_mem );
  9758 %}
  9760 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
  9761   predicate (UseSSE<=1);
  9762   match(Set dst (AbsD src));
  9763   ins_cost(100);
  9764   format %{ "FABS" %}
  9765   opcode(0xE1, 0xD9);
  9766   ins_encode( OpcS, OpcP );
  9767   ins_pipe( fpu_reg_reg );
  9768 %}
  9770 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
  9771   predicate(UseSSE<=1);
  9772   match(Set dst (NegD src));
  9773   ins_cost(100);
  9774   format %{ "FCHS" %}
  9775   opcode(0xE0, 0xD9);
  9776   ins_encode( OpcS, OpcP );
  9777   ins_pipe( fpu_reg_reg );
  9778 %}
  9780 instruct addDPR_reg(regDPR dst, regDPR src) %{
  9781   predicate(UseSSE<=1);
  9782   match(Set dst (AddD dst src));
  9783   format %{ "FLD    $src\n\t"
  9784             "DADD   $dst,ST" %}
  9785   size(4);
  9786   ins_cost(150);
  9787   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9788   ins_encode( Push_Reg_DPR(src),
  9789               OpcP, RegOpc(dst) );
  9790   ins_pipe( fpu_reg_reg );
  9791 %}
  9794 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9795   predicate(UseSSE<=1);
  9796   match(Set dst (RoundDouble (AddD src1 src2)));
  9797   ins_cost(250);
  9799   format %{ "FLD    $src2\n\t"
  9800             "DADD   ST,$src1\n\t"
  9801             "FSTP_D $dst\t# D-round" %}
  9802   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9803   ins_encode( Push_Reg_DPR(src2),
  9804               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9805   ins_pipe( fpu_mem_reg_reg );
  9806 %}
  9809 instruct addDPR_reg_mem(regDPR dst, memory src) %{
  9810   predicate(UseSSE<=1);
  9811   match(Set dst (AddD dst (LoadD src)));
  9812   ins_cost(150);
  9814   format %{ "FLD    $src\n\t"
  9815             "DADDp  $dst,ST" %}
  9816   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9817   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9818               OpcP, RegOpc(dst) );
  9819   ins_pipe( fpu_reg_mem );
  9820 %}
  9822 // add-to-memory
  9823 instruct addDPR_mem_reg(memory dst, regDPR src) %{
  9824   predicate(UseSSE<=1);
  9825   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9826   ins_cost(150);
  9828   format %{ "FLD_D  $dst\n\t"
  9829             "DADD   ST,$src\n\t"
  9830             "FST_D  $dst" %}
  9831   opcode(0xDD, 0x0);
  9832   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9833               Opcode(0xD8), RegOpc(src),
  9834               set_instruction_start,
  9835               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9836   ins_pipe( fpu_reg_mem );
  9837 %}
  9839 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
  9840   predicate(UseSSE<=1);
  9841   match(Set dst (AddD dst con));
  9842   ins_cost(125);
  9843   format %{ "FLD1\n\t"
  9844             "DADDp  $dst,ST" %}
  9845   ins_encode %{
  9846     __ fld1();
  9847     __ faddp($dst$$reg);
  9848   %}
  9849   ins_pipe(fpu_reg);
  9850 %}
  9852 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
  9853   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9854   match(Set dst (AddD dst con));
  9855   ins_cost(200);
  9856   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9857             "DADDp  $dst,ST" %}
  9858   ins_encode %{
  9859     __ fld_d($constantaddress($con));
  9860     __ faddp($dst$$reg);
  9861   %}
  9862   ins_pipe(fpu_reg_mem);
  9863 %}
  9865 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
  9866   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9867   match(Set dst (RoundDouble (AddD src con)));
  9868   ins_cost(200);
  9869   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9870             "DADD   ST,$src\n\t"
  9871             "FSTP_D $dst\t# D-round" %}
  9872   ins_encode %{
  9873     __ fld_d($constantaddress($con));
  9874     __ fadd($src$$reg);
  9875     __ fstp_d(Address(rsp, $dst$$disp));
  9876   %}
  9877   ins_pipe(fpu_mem_reg_con);
  9878 %}
  9880 instruct mulDPR_reg(regDPR dst, regDPR src) %{
  9881   predicate(UseSSE<=1);
  9882   match(Set dst (MulD dst src));
  9883   format %{ "FLD    $src\n\t"
  9884             "DMULp  $dst,ST" %}
  9885   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9886   ins_cost(150);
  9887   ins_encode( Push_Reg_DPR(src),
  9888               OpcP, RegOpc(dst) );
  9889   ins_pipe( fpu_reg_reg );
  9890 %}
  9892 // Strict FP instruction biases argument before multiply then
  9893 // biases result to avoid double rounding of subnormals.
  9894 //
  9895 // scale arg1 by multiplying arg1 by 2^(-15360)
  9896 // load arg2
  9897 // multiply scaled arg1 by arg2
  9898 // rescale product by 2^(15360)
  9899 //
  9900 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9901   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9902   match(Set dst (MulD dst src));
  9903   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9905   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9906             "DMULp  $dst,ST\n\t"
  9907             "FLD    $src\n\t"
  9908             "DMULp  $dst,ST\n\t"
  9909             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9910             "DMULp  $dst,ST\n\t" %}
  9911   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9912   ins_encode( strictfp_bias1(dst),
  9913               Push_Reg_DPR(src),
  9914               OpcP, RegOpc(dst),
  9915               strictfp_bias2(dst) );
  9916   ins_pipe( fpu_reg_reg );
  9917 %}
  9919 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
  9920   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9921   match(Set dst (MulD dst con));
  9922   ins_cost(200);
  9923   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9924             "DMULp  $dst,ST" %}
  9925   ins_encode %{
  9926     __ fld_d($constantaddress($con));
  9927     __ fmulp($dst$$reg);
  9928   %}
  9929   ins_pipe(fpu_reg_mem);
  9930 %}
  9933 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
  9934   predicate( UseSSE<=1 );
  9935   match(Set dst (MulD dst (LoadD src)));
  9936   ins_cost(200);
  9937   format %{ "FLD_D  $src\n\t"
  9938             "DMULp  $dst,ST" %}
  9939   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9940   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9941               OpcP, RegOpc(dst) );
  9942   ins_pipe( fpu_reg_mem );
  9943 %}
  9945 //
  9946 // Cisc-alternate to reg-reg multiply
  9947 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
  9948   predicate( UseSSE<=1 );
  9949   match(Set dst (MulD src (LoadD mem)));
  9950   ins_cost(250);
  9951   format %{ "FLD_D  $mem\n\t"
  9952             "DMUL   ST,$src\n\t"
  9953             "FSTP_D $dst" %}
  9954   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
  9955   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
  9956               OpcReg_FPR(src),
  9957               Pop_Reg_DPR(dst) );
  9958   ins_pipe( fpu_reg_reg_mem );
  9959 %}
  9962 // MACRO3 -- addDPR a mulDPR
  9963 // This instruction is a '2-address' instruction in that the result goes
  9964 // back to src2.  This eliminates a move from the macro; possibly the
  9965 // register allocator will have to add it back (and maybe not).
  9966 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9967   predicate( UseSSE<=1 );
  9968   match(Set src2 (AddD (MulD src0 src1) src2));
  9969   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9970             "DMUL   ST,$src1\n\t"
  9971             "DADDp  $src2,ST" %}
  9972   ins_cost(250);
  9973   opcode(0xDD); /* LoadD DD /0 */
  9974   ins_encode( Push_Reg_FPR(src0),
  9975               FMul_ST_reg(src1),
  9976               FAddP_reg_ST(src2) );
  9977   ins_pipe( fpu_reg_reg_reg );
  9978 %}
  9981 // MACRO3 -- subDPR a mulDPR
  9982 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9983   predicate( UseSSE<=1 );
  9984   match(Set src2 (SubD (MulD src0 src1) src2));
  9985   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9986             "DMUL   ST,$src1\n\t"
  9987             "DSUBRp $src2,ST" %}
  9988   ins_cost(250);
  9989   ins_encode( Push_Reg_FPR(src0),
  9990               FMul_ST_reg(src1),
  9991               Opcode(0xDE), Opc_plus(0xE0,src2));
  9992   ins_pipe( fpu_reg_reg_reg );
  9993 %}
  9996 instruct divDPR_reg(regDPR dst, regDPR src) %{
  9997   predicate( UseSSE<=1 );
  9998   match(Set dst (DivD dst src));
 10000   format %{ "FLD    $src\n\t"
 10001             "FDIVp  $dst,ST" %}
 10002   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10003   ins_cost(150);
 10004   ins_encode( Push_Reg_DPR(src),
 10005               OpcP, RegOpc(dst) );
 10006   ins_pipe( fpu_reg_reg );
 10007 %}
 10009 // Strict FP instruction biases argument before division then
 10010 // biases result, to avoid double rounding of subnormals.
 10011 //
 10012 // scale dividend by multiplying dividend by 2^(-15360)
 10013 // load divisor
 10014 // divide scaled dividend by divisor
 10015 // rescale quotient by 2^(15360)
 10016 //
 10017 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
 10018   predicate (UseSSE<=1);
 10019   match(Set dst (DivD dst src));
 10020   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10021   ins_cost(01);
 10023   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10024             "DMULp  $dst,ST\n\t"
 10025             "FLD    $src\n\t"
 10026             "FDIVp  $dst,ST\n\t"
 10027             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10028             "DMULp  $dst,ST\n\t" %}
 10029   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10030   ins_encode( strictfp_bias1(dst),
 10031               Push_Reg_DPR(src),
 10032               OpcP, RegOpc(dst),
 10033               strictfp_bias2(dst) );
 10034   ins_pipe( fpu_reg_reg );
 10035 %}
 10037 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
 10038   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
 10039   match(Set dst (RoundDouble (DivD src1 src2)));
 10041   format %{ "FLD    $src1\n\t"
 10042             "FDIV   ST,$src2\n\t"
 10043             "FSTP_D $dst\t# D-round" %}
 10044   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
 10045   ins_encode( Push_Reg_DPR(src1),
 10046               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
 10047   ins_pipe( fpu_mem_reg_reg );
 10048 %}
 10051 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
 10052   predicate(UseSSE<=1);
 10053   match(Set dst (ModD dst src));
 10054   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10056   format %{ "DMOD   $dst,$src" %}
 10057   ins_cost(250);
 10058   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10059               emitModDPR(),
 10060               Push_Result_Mod_DPR(src),
 10061               Pop_Reg_DPR(dst));
 10062   ins_pipe( pipe_slow );
 10063 %}
 10065 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
 10066   predicate(UseSSE>=2);
 10067   match(Set dst (ModD src0 src1));
 10068   effect(KILL rax, KILL cr);
 10070   format %{ "SUB    ESP,8\t # DMOD\n"
 10071           "\tMOVSD  [ESP+0],$src1\n"
 10072           "\tFLD_D  [ESP+0]\n"
 10073           "\tMOVSD  [ESP+0],$src0\n"
 10074           "\tFLD_D  [ESP+0]\n"
 10075      "loop:\tFPREM\n"
 10076           "\tFWAIT\n"
 10077           "\tFNSTSW AX\n"
 10078           "\tSAHF\n"
 10079           "\tJP     loop\n"
 10080           "\tFSTP_D [ESP+0]\n"
 10081           "\tMOVSD  $dst,[ESP+0]\n"
 10082           "\tADD    ESP,8\n"
 10083           "\tFSTP   ST0\t # Restore FPU Stack"
 10084     %}
 10085   ins_cost(250);
 10086   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
 10087   ins_pipe( pipe_slow );
 10088 %}
 10090 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
 10091   predicate (UseSSE<=1);
 10092   match(Set dst (SinD src));
 10093   ins_cost(1800);
 10094   format %{ "DSIN   $dst" %}
 10095   opcode(0xD9, 0xFE);
 10096   ins_encode( OpcP, OpcS );
 10097   ins_pipe( pipe_slow );
 10098 %}
 10100 instruct sinD_reg(regD dst, eFlagsReg cr) %{
 10101   predicate (UseSSE>=2);
 10102   match(Set dst (SinD dst));
 10103   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10104   ins_cost(1800);
 10105   format %{ "DSIN   $dst" %}
 10106   opcode(0xD9, 0xFE);
 10107   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
 10108   ins_pipe( pipe_slow );
 10109 %}
 10111 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
 10112   predicate (UseSSE<=1);
 10113   match(Set dst (CosD src));
 10114   ins_cost(1800);
 10115   format %{ "DCOS   $dst" %}
 10116   opcode(0xD9, 0xFF);
 10117   ins_encode( OpcP, OpcS );
 10118   ins_pipe( pipe_slow );
 10119 %}
 10121 instruct cosD_reg(regD dst, eFlagsReg cr) %{
 10122   predicate (UseSSE>=2);
 10123   match(Set dst (CosD dst));
 10124   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10125   ins_cost(1800);
 10126   format %{ "DCOS   $dst" %}
 10127   opcode(0xD9, 0xFF);
 10128   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
 10129   ins_pipe( pipe_slow );
 10130 %}
 10132 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
 10133   predicate (UseSSE<=1);
 10134   match(Set dst(TanD src));
 10135   format %{ "DTAN   $dst" %}
 10136   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10137               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10138   ins_pipe( pipe_slow );
 10139 %}
 10141 instruct tanD_reg(regD dst, eFlagsReg cr) %{
 10142   predicate (UseSSE>=2);
 10143   match(Set dst(TanD dst));
 10144   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10145   format %{ "DTAN   $dst" %}
 10146   ins_encode( Push_SrcD(dst),
 10147               Opcode(0xD9), Opcode(0xF2),    // fptan
 10148               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10149               Push_ResultD(dst) );
 10150   ins_pipe( pipe_slow );
 10151 %}
 10153 instruct atanDPR_reg(regDPR dst, regDPR src) %{
 10154   predicate (UseSSE<=1);
 10155   match(Set dst(AtanD dst src));
 10156   format %{ "DATA   $dst,$src" %}
 10157   opcode(0xD9, 0xF3);
 10158   ins_encode( Push_Reg_DPR(src),
 10159               OpcP, OpcS, RegOpc(dst) );
 10160   ins_pipe( pipe_slow );
 10161 %}
 10163 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
 10164   predicate (UseSSE>=2);
 10165   match(Set dst(AtanD dst src));
 10166   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10167   format %{ "DATA   $dst,$src" %}
 10168   opcode(0xD9, 0xF3);
 10169   ins_encode( Push_SrcD(src),
 10170               OpcP, OpcS, Push_ResultD(dst) );
 10171   ins_pipe( pipe_slow );
 10172 %}
 10174 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
 10175   predicate (UseSSE<=1);
 10176   match(Set dst (SqrtD src));
 10177   format %{ "DSQRT  $dst,$src" %}
 10178   opcode(0xFA, 0xD9);
 10179   ins_encode( Push_Reg_DPR(src),
 10180               OpcS, OpcP, Pop_Reg_DPR(dst) );
 10181   ins_pipe( pipe_slow );
 10182 %}
 10184 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10185   predicate (UseSSE<=1);
 10186   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10187   effect(KILL rax, KILL rbx, KILL rcx);
 10188   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10189             "FLD_D  $X\n\t"
 10190             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10192             "FDUP   \t\t\t# Q Q\n\t"
 10193             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10194             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10195             "FISTP  dword [ESP]\n\t"
 10196             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10197             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10198             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10199             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10200             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10201             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10202             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10203             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10204             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10205             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10206             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10207             "MOV    [ESP+0],0\n\t"
 10208             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10210             "ADD    ESP,8"
 10211              %}
 10212   ins_encode( push_stack_temp_qword,
 10213               Push_Reg_DPR(X),
 10214               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10215               pow_exp_core_encoding,
 10216               pop_stack_temp_qword);
 10217   ins_pipe( pipe_slow );
 10218 %}
 10220 instruct powD_reg(regD dst, regD src0, regD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
 10221   predicate (UseSSE>=2);
 10222   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10223   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
 10224   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10225             "MOVSD  [ESP],$src1\n\t"
 10226             "FLD    FPR1,$src1\n\t"
 10227             "MOVSD  [ESP],$src0\n\t"
 10228             "FLD    FPR1,$src0\n\t"
 10229             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10231             "FDUP   \t\t\t# Q Q\n\t"
 10232             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10233             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10234             "FISTP  dword [ESP]\n\t"
 10235             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10236             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10237             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10238             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10239             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10240             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10241             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10242             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10243             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10244             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10245             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10246             "MOV    [ESP+0],0\n\t"
 10247             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10249             "FST_D  [ESP]\n\t"
 10250             "MOVSD  $dst,[ESP]\n\t"
 10251             "ADD    ESP,8"
 10252              %}
 10253   ins_encode( push_stack_temp_qword,
 10254               push_xmm_to_fpr1(src1),
 10255               push_xmm_to_fpr1(src0),
 10256               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10257               pow_exp_core_encoding,
 10258               Push_ResultD(dst) );
 10259   ins_pipe( pipe_slow );
 10260 %}
 10263 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10264   predicate (UseSSE<=1);
 10265   match(Set dpr1 (ExpD dpr1));
 10266   effect(KILL rax, KILL rbx, KILL rcx);
 10267   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
 10268             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10269             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
 10271             "FDUP   \t\t\t# Q Q\n\t"
 10272             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10273             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10274             "FISTP  dword [ESP]\n\t"
 10275             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10276             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10277             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10278             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10279             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10280             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10281             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10282             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10283             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10284             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10285             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10286             "MOV    [ESP+0],0\n\t"
 10287             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10289             "ADD    ESP,8"
 10290              %}
 10291   ins_encode( push_stack_temp_qword,
 10292               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10293               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10294               pow_exp_core_encoding,
 10295               pop_stack_temp_qword);
 10296   ins_pipe( pipe_slow );
 10297 %}
 10299 instruct expD_reg(regD dst, regD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10300   predicate (UseSSE>=2);
 10301   match(Set dst (ExpD src));
 10302   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
 10303   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
 10304             "MOVSD  [ESP],$src\n\t"
 10305             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10306             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
 10308             "FDUP   \t\t\t# Q Q\n\t"
 10309             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10310             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10311             "FISTP  dword [ESP]\n\t"
 10312             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10313             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10314             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10315             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10316             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10317             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10318             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10319             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10320             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10321             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10322             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10323             "MOV    [ESP+0],0\n\t"
 10324             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10326             "FST_D  [ESP]\n\t"
 10327             "MOVSD  $dst,[ESP]\n\t"
 10328             "ADD    ESP,8"
 10329              %}
 10330   ins_encode( Push_SrcD(src),
 10331               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10332               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10333               pow_exp_core_encoding,
 10334               Push_ResultD(dst) );
 10335   ins_pipe( pipe_slow );
 10336 %}
 10340 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
 10341   predicate (UseSSE<=1);
 10342   // The source Double operand on FPU stack
 10343   match(Set dst (Log10D src));
 10344   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10345   // fxch         ; swap ST(0) with ST(1)
 10346   // fyl2x        ; compute log_10(2) * log_2(x)
 10347   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10348             "FXCH   \n\t"
 10349             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10350          %}
 10351   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10352               Opcode(0xD9), Opcode(0xC9),   // fxch
 10353               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10355   ins_pipe( pipe_slow );
 10356 %}
 10358 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
 10359   predicate (UseSSE>=2);
 10360   effect(KILL cr);
 10361   match(Set dst (Log10D src));
 10362   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10363   // fyl2x        ; compute log_10(2) * log_2(x)
 10364   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10365             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10366          %}
 10367   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10368               Push_SrcD(src),
 10369               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10370               Push_ResultD(dst));
 10372   ins_pipe( pipe_slow );
 10373 %}
 10375 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
 10376   predicate (UseSSE<=1);
 10377   // The source Double operand on FPU stack
 10378   match(Set dst (LogD src));
 10379   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10380   // fxch         ; swap ST(0) with ST(1)
 10381   // fyl2x        ; compute log_e(2) * log_2(x)
 10382   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10383             "FXCH   \n\t"
 10384             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10385          %}
 10386   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10387               Opcode(0xD9), Opcode(0xC9),   // fxch
 10388               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10390   ins_pipe( pipe_slow );
 10391 %}
 10393 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
 10394   predicate (UseSSE>=2);
 10395   effect(KILL cr);
 10396   // The source and result Double operands in XMM registers
 10397   match(Set dst (LogD src));
 10398   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10399   // fyl2x        ; compute log_e(2) * log_2(x)
 10400   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10401             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10402          %}
 10403   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10404               Push_SrcD(src),
 10405               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10406               Push_ResultD(dst));
 10407   ins_pipe( pipe_slow );
 10408 %}
 10410 //-------------Float Instructions-------------------------------
 10411 // Float Math
 10413 // Code for float compare:
 10414 //     fcompp();
 10415 //     fwait(); fnstsw_ax();
 10416 //     sahf();
 10417 //     movl(dst, unordered_result);
 10418 //     jcc(Assembler::parity, exit);
 10419 //     movl(dst, less_result);
 10420 //     jcc(Assembler::below, exit);
 10421 //     movl(dst, equal_result);
 10422 //     jcc(Assembler::equal, exit);
 10423 //     movl(dst, greater_result);
 10424 //   exit:
 10426 // P6 version of float compare, sets condition codes in EFLAGS
 10427 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10428   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10429   match(Set cr (CmpF src1 src2));
 10430   effect(KILL rax);
 10431   ins_cost(150);
 10432   format %{ "FLD    $src1\n\t"
 10433             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10434             "JNP    exit\n\t"
 10435             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10436             "SAHF\n"
 10437      "exit:\tNOP               // avoid branch to branch" %}
 10438   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10439   ins_encode( Push_Reg_DPR(src1),
 10440               OpcP, RegOpc(src2),
 10441               cmpF_P6_fixup );
 10442   ins_pipe( pipe_slow );
 10443 %}
 10445 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
 10446   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10447   match(Set cr (CmpF src1 src2));
 10448   ins_cost(100);
 10449   format %{ "FLD    $src1\n\t"
 10450             "FUCOMIP ST,$src2  // P6 instruction" %}
 10451   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10452   ins_encode( Push_Reg_DPR(src1),
 10453               OpcP, RegOpc(src2));
 10454   ins_pipe( pipe_slow );
 10455 %}
 10458 // Compare & branch
 10459 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10460   predicate(UseSSE == 0);
 10461   match(Set cr (CmpF src1 src2));
 10462   effect(KILL rax);
 10463   ins_cost(200);
 10464   format %{ "FLD    $src1\n\t"
 10465             "FCOMp  $src2\n\t"
 10466             "FNSTSW AX\n\t"
 10467             "TEST   AX,0x400\n\t"
 10468             "JZ,s   flags\n\t"
 10469             "MOV    AH,1\t# unordered treat as LT\n"
 10470     "flags:\tSAHF" %}
 10471   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10472   ins_encode( Push_Reg_DPR(src1),
 10473               OpcP, RegOpc(src2),
 10474               fpu_flags);
 10475   ins_pipe( pipe_slow );
 10476 %}
 10478 // Compare vs zero into -1,0,1
 10479 instruct cmpFPR_0(eRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
 10480   predicate(UseSSE == 0);
 10481   match(Set dst (CmpF3 src1 zero));
 10482   effect(KILL cr, KILL rax);
 10483   ins_cost(280);
 10484   format %{ "FTSTF  $dst,$src1" %}
 10485   opcode(0xE4, 0xD9);
 10486   ins_encode( Push_Reg_DPR(src1),
 10487               OpcS, OpcP, PopFPU,
 10488               CmpF_Result(dst));
 10489   ins_pipe( pipe_slow );
 10490 %}
 10492 // Compare into -1,0,1
 10493 instruct cmpFPR_reg(eRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10494   predicate(UseSSE == 0);
 10495   match(Set dst (CmpF3 src1 src2));
 10496   effect(KILL cr, KILL rax);
 10497   ins_cost(300);
 10498   format %{ "FCMPF  $dst,$src1,$src2" %}
 10499   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10500   ins_encode( Push_Reg_DPR(src1),
 10501               OpcP, RegOpc(src2),
 10502               CmpF_Result(dst));
 10503   ins_pipe( pipe_slow );
 10504 %}
 10506 // float compare and set condition codes in EFLAGS by XMM regs
 10507 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
 10508   predicate(UseSSE>=1);
 10509   match(Set cr (CmpF src1 src2));
 10510   ins_cost(145);
 10511   format %{ "UCOMISS $src1,$src2\n\t"
 10512             "JNP,s   exit\n\t"
 10513             "PUSHF\t# saw NaN, set CF\n\t"
 10514             "AND     [rsp], #0xffffff2b\n\t"
 10515             "POPF\n"
 10516     "exit:" %}
 10517   ins_encode %{
 10518     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10519     emit_cmpfp_fixup(_masm);
 10520   %}
 10521   ins_pipe( pipe_slow );
 10522 %}
 10524 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10525   predicate(UseSSE>=1);
 10526   match(Set cr (CmpF src1 src2));
 10527   ins_cost(100);
 10528   format %{ "UCOMISS $src1,$src2" %}
 10529   ins_encode %{
 10530     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10531   %}
 10532   ins_pipe( pipe_slow );
 10533 %}
 10535 // float compare and set condition codes in EFLAGS by XMM regs
 10536 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
 10537   predicate(UseSSE>=1);
 10538   match(Set cr (CmpF src1 (LoadF src2)));
 10539   ins_cost(165);
 10540   format %{ "UCOMISS $src1,$src2\n\t"
 10541             "JNP,s   exit\n\t"
 10542             "PUSHF\t# saw NaN, set CF\n\t"
 10543             "AND     [rsp], #0xffffff2b\n\t"
 10544             "POPF\n"
 10545     "exit:" %}
 10546   ins_encode %{
 10547     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10548     emit_cmpfp_fixup(_masm);
 10549   %}
 10550   ins_pipe( pipe_slow );
 10551 %}
 10553 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
 10554   predicate(UseSSE>=1);
 10555   match(Set cr (CmpF src1 (LoadF src2)));
 10556   ins_cost(100);
 10557   format %{ "UCOMISS $src1,$src2" %}
 10558   ins_encode %{
 10559     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10560   %}
 10561   ins_pipe( pipe_slow );
 10562 %}
 10564 // Compare into -1,0,1 in XMM
 10565 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
 10566   predicate(UseSSE>=1);
 10567   match(Set dst (CmpF3 src1 src2));
 10568   effect(KILL cr);
 10569   ins_cost(255);
 10570   format %{ "UCOMISS $src1, $src2\n\t"
 10571             "MOV     $dst, #-1\n\t"
 10572             "JP,s    done\n\t"
 10573             "JB,s    done\n\t"
 10574             "SETNE   $dst\n\t"
 10575             "MOVZB   $dst, $dst\n"
 10576     "done:" %}
 10577   ins_encode %{
 10578     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10579     emit_cmpfp3(_masm, $dst$$Register);
 10580   %}
 10581   ins_pipe( pipe_slow );
 10582 %}
 10584 // Compare into -1,0,1 in XMM and memory
 10585 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
 10586   predicate(UseSSE>=1);
 10587   match(Set dst (CmpF3 src1 (LoadF src2)));
 10588   effect(KILL cr);
 10589   ins_cost(275);
 10590   format %{ "UCOMISS $src1, $src2\n\t"
 10591             "MOV     $dst, #-1\n\t"
 10592             "JP,s    done\n\t"
 10593             "JB,s    done\n\t"
 10594             "SETNE   $dst\n\t"
 10595             "MOVZB   $dst, $dst\n"
 10596     "done:" %}
 10597   ins_encode %{
 10598     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10599     emit_cmpfp3(_masm, $dst$$Register);
 10600   %}
 10601   ins_pipe( pipe_slow );
 10602 %}
 10604 // Spill to obtain 24-bit precision
 10605 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10606   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10607   match(Set dst (SubF src1 src2));
 10609   format %{ "FSUB   $dst,$src1 - $src2" %}
 10610   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10611   ins_encode( Push_Reg_FPR(src1),
 10612               OpcReg_FPR(src2),
 10613               Pop_Mem_FPR(dst) );
 10614   ins_pipe( fpu_mem_reg_reg );
 10615 %}
 10616 //
 10617 // This instruction does not round to 24-bits
 10618 instruct subFPR_reg(regFPR dst, regFPR src) %{
 10619   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10620   match(Set dst (SubF dst src));
 10622   format %{ "FSUB   $dst,$src" %}
 10623   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10624   ins_encode( Push_Reg_FPR(src),
 10625               OpcP, RegOpc(dst) );
 10626   ins_pipe( fpu_reg_reg );
 10627 %}
 10629 // Spill to obtain 24-bit precision
 10630 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10631   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10632   match(Set dst (AddF src1 src2));
 10634   format %{ "FADD   $dst,$src1,$src2" %}
 10635   opcode(0xD8, 0x0); /* D8 C0+i */
 10636   ins_encode( Push_Reg_FPR(src2),
 10637               OpcReg_FPR(src1),
 10638               Pop_Mem_FPR(dst) );
 10639   ins_pipe( fpu_mem_reg_reg );
 10640 %}
 10641 //
 10642 // This instruction does not round to 24-bits
 10643 instruct addFPR_reg(regFPR dst, regFPR src) %{
 10644   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10645   match(Set dst (AddF dst src));
 10647   format %{ "FLD    $src\n\t"
 10648             "FADDp  $dst,ST" %}
 10649   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10650   ins_encode( Push_Reg_FPR(src),
 10651               OpcP, RegOpc(dst) );
 10652   ins_pipe( fpu_reg_reg );
 10653 %}
 10655 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
 10656   predicate(UseSSE==0);
 10657   match(Set dst (AbsF src));
 10658   ins_cost(100);
 10659   format %{ "FABS" %}
 10660   opcode(0xE1, 0xD9);
 10661   ins_encode( OpcS, OpcP );
 10662   ins_pipe( fpu_reg_reg );
 10663 %}
 10665 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
 10666   predicate(UseSSE==0);
 10667   match(Set dst (NegF src));
 10668   ins_cost(100);
 10669   format %{ "FCHS" %}
 10670   opcode(0xE0, 0xD9);
 10671   ins_encode( OpcS, OpcP );
 10672   ins_pipe( fpu_reg_reg );
 10673 %}
 10675 // Cisc-alternate to addFPR_reg
 10676 // Spill to obtain 24-bit precision
 10677 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10678   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10679   match(Set dst (AddF src1 (LoadF src2)));
 10681   format %{ "FLD    $src2\n\t"
 10682             "FADD   ST,$src1\n\t"
 10683             "FSTP_S $dst" %}
 10684   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10685   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10686               OpcReg_FPR(src1),
 10687               Pop_Mem_FPR(dst) );
 10688   ins_pipe( fpu_mem_reg_mem );
 10689 %}
 10690 //
 10691 // Cisc-alternate to addFPR_reg
 10692 // This instruction does not round to 24-bits
 10693 instruct addFPR_reg_mem(regFPR dst, memory src) %{
 10694   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10695   match(Set dst (AddF dst (LoadF src)));
 10697   format %{ "FADD   $dst,$src" %}
 10698   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10699   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10700               OpcP, RegOpc(dst) );
 10701   ins_pipe( fpu_reg_mem );
 10702 %}
 10704 // // Following two instructions for _222_mpegaudio
 10705 // Spill to obtain 24-bit precision
 10706 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
 10707   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10708   match(Set dst (AddF src1 src2));
 10710   format %{ "FADD   $dst,$src1,$src2" %}
 10711   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10712   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10713               OpcReg_FPR(src2),
 10714               Pop_Mem_FPR(dst) );
 10715   ins_pipe( fpu_mem_reg_mem );
 10716 %}
 10718 // Cisc-spill variant
 10719 // Spill to obtain 24-bit precision
 10720 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10721   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10722   match(Set dst (AddF src1 (LoadF src2)));
 10724   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10725   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10726   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10727               set_instruction_start,
 10728               OpcP, RMopc_Mem(secondary,src1),
 10729               Pop_Mem_FPR(dst) );
 10730   ins_pipe( fpu_mem_mem_mem );
 10731 %}
 10733 // Spill to obtain 24-bit precision
 10734 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10735   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10736   match(Set dst (AddF src1 src2));
 10738   format %{ "FADD   $dst,$src1,$src2" %}
 10739   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10740   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10741               set_instruction_start,
 10742               OpcP, RMopc_Mem(secondary,src1),
 10743               Pop_Mem_FPR(dst) );
 10744   ins_pipe( fpu_mem_mem_mem );
 10745 %}
 10748 // Spill to obtain 24-bit precision
 10749 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10750   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10751   match(Set dst (AddF src con));
 10752   format %{ "FLD    $src\n\t"
 10753             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10754             "FSTP_S $dst"  %}
 10755   ins_encode %{
 10756     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10757     __ fadd_s($constantaddress($con));
 10758     __ fstp_s(Address(rsp, $dst$$disp));
 10759   %}
 10760   ins_pipe(fpu_mem_reg_con);
 10761 %}
 10762 //
 10763 // This instruction does not round to 24-bits
 10764 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10765   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10766   match(Set dst (AddF src con));
 10767   format %{ "FLD    $src\n\t"
 10768             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10769             "FSTP   $dst"  %}
 10770   ins_encode %{
 10771     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10772     __ fadd_s($constantaddress($con));
 10773     __ fstp_d($dst$$reg);
 10774   %}
 10775   ins_pipe(fpu_reg_reg_con);
 10776 %}
 10778 // Spill to obtain 24-bit precision
 10779 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10780   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10781   match(Set dst (MulF src1 src2));
 10783   format %{ "FLD    $src1\n\t"
 10784             "FMUL   $src2\n\t"
 10785             "FSTP_S $dst"  %}
 10786   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10787   ins_encode( Push_Reg_FPR(src1),
 10788               OpcReg_FPR(src2),
 10789               Pop_Mem_FPR(dst) );
 10790   ins_pipe( fpu_mem_reg_reg );
 10791 %}
 10792 //
 10793 // This instruction does not round to 24-bits
 10794 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
 10795   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10796   match(Set dst (MulF src1 src2));
 10798   format %{ "FLD    $src1\n\t"
 10799             "FMUL   $src2\n\t"
 10800             "FSTP_S $dst"  %}
 10801   opcode(0xD8, 0x1); /* D8 C8+i */
 10802   ins_encode( Push_Reg_FPR(src2),
 10803               OpcReg_FPR(src1),
 10804               Pop_Reg_FPR(dst) );
 10805   ins_pipe( fpu_reg_reg_reg );
 10806 %}
 10809 // Spill to obtain 24-bit precision
 10810 // Cisc-alternate to reg-reg multiply
 10811 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10812   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10813   match(Set dst (MulF src1 (LoadF src2)));
 10815   format %{ "FLD_S  $src2\n\t"
 10816             "FMUL   $src1\n\t"
 10817             "FSTP_S $dst"  %}
 10818   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 10819   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10820               OpcReg_FPR(src1),
 10821               Pop_Mem_FPR(dst) );
 10822   ins_pipe( fpu_mem_reg_mem );
 10823 %}
 10824 //
 10825 // This instruction does not round to 24-bits
 10826 // Cisc-alternate to reg-reg multiply
 10827 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
 10828   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10829   match(Set dst (MulF src1 (LoadF src2)));
 10831   format %{ "FMUL   $dst,$src1,$src2" %}
 10832   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 10833   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10834               OpcReg_FPR(src1),
 10835               Pop_Reg_FPR(dst) );
 10836   ins_pipe( fpu_reg_reg_mem );
 10837 %}
 10839 // Spill to obtain 24-bit precision
 10840 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10841   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10842   match(Set dst (MulF src1 src2));
 10844   format %{ "FMUL   $dst,$src1,$src2" %}
 10845   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 10846   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10847               set_instruction_start,
 10848               OpcP, RMopc_Mem(secondary,src1),
 10849               Pop_Mem_FPR(dst) );
 10850   ins_pipe( fpu_mem_mem_mem );
 10851 %}
 10853 // Spill to obtain 24-bit precision
 10854 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10855   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10856   match(Set dst (MulF src con));
 10858   format %{ "FLD    $src\n\t"
 10859             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10860             "FSTP_S $dst"  %}
 10861   ins_encode %{
 10862     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10863     __ fmul_s($constantaddress($con));
 10864     __ fstp_s(Address(rsp, $dst$$disp));
 10865   %}
 10866   ins_pipe(fpu_mem_reg_con);
 10867 %}
 10868 //
 10869 // This instruction does not round to 24-bits
 10870 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10871   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10872   match(Set dst (MulF src con));
 10874   format %{ "FLD    $src\n\t"
 10875             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10876             "FSTP   $dst"  %}
 10877   ins_encode %{
 10878     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10879     __ fmul_s($constantaddress($con));
 10880     __ fstp_d($dst$$reg);
 10881   %}
 10882   ins_pipe(fpu_reg_reg_con);
 10883 %}
 10886 //
 10887 // MACRO1 -- subsume unshared load into mulFPR
 10888 // This instruction does not round to 24-bits
 10889 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
 10890   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10891   match(Set dst (MulF (LoadF mem1) src));
 10893   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 10894             "FMUL   ST,$src\n\t"
 10895             "FSTP   $dst" %}
 10896   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 10897   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 10898               OpcReg_FPR(src),
 10899               Pop_Reg_FPR(dst) );
 10900   ins_pipe( fpu_reg_reg_mem );
 10901 %}
 10902 //
 10903 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
 10904 // This instruction does not round to 24-bits
 10905 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
 10906   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10907   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 10908   ins_cost(95);
 10910   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 10911             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
 10912             "FADD   ST,$src2\n\t"
 10913             "FSTP   $dst" %}
 10914   opcode(0xD9); /* LoadF D9 /0 */
 10915   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 10916               FMul_ST_reg(src1),
 10917               FAdd_ST_reg(src2),
 10918               Pop_Reg_FPR(dst) );
 10919   ins_pipe( fpu_reg_mem_reg_reg );
 10920 %}
 10922 // MACRO3 -- addFPR a mulFPR
 10923 // This instruction does not round to 24-bits.  It is a '2-address'
 10924 // instruction in that the result goes back to src2.  This eliminates
 10925 // a move from the macro; possibly the register allocator will have
 10926 // to add it back (and maybe not).
 10927 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
 10928   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10929   match(Set src2 (AddF (MulF src0 src1) src2));
 10931   format %{ "FLD    $src0     ===MACRO3===\n\t"
 10932             "FMUL   ST,$src1\n\t"
 10933             "FADDP  $src2,ST" %}
 10934   opcode(0xD9); /* LoadF D9 /0 */
 10935   ins_encode( Push_Reg_FPR(src0),
 10936               FMul_ST_reg(src1),
 10937               FAddP_reg_ST(src2) );
 10938   ins_pipe( fpu_reg_reg_reg );
 10939 %}
 10941 // MACRO4 -- divFPR subFPR
 10942 // This instruction does not round to 24-bits
 10943 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
 10944   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10945   match(Set dst (DivF (SubF src2 src1) src3));
 10947   format %{ "FLD    $src2   ===MACRO4===\n\t"
 10948             "FSUB   ST,$src1\n\t"
 10949             "FDIV   ST,$src3\n\t"
 10950             "FSTP  $dst" %}
 10951   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10952   ins_encode( Push_Reg_FPR(src2),
 10953               subFPR_divFPR_encode(src1,src3),
 10954               Pop_Reg_FPR(dst) );
 10955   ins_pipe( fpu_reg_reg_reg_reg );
 10956 %}
 10958 // Spill to obtain 24-bit precision
 10959 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10960   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10961   match(Set dst (DivF src1 src2));
 10963   format %{ "FDIV   $dst,$src1,$src2" %}
 10964   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 10965   ins_encode( Push_Reg_FPR(src1),
 10966               OpcReg_FPR(src2),
 10967               Pop_Mem_FPR(dst) );
 10968   ins_pipe( fpu_mem_reg_reg );
 10969 %}
 10970 //
 10971 // This instruction does not round to 24-bits
 10972 instruct divFPR_reg(regFPR dst, regFPR src) %{
 10973   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10974   match(Set dst (DivF dst src));
 10976   format %{ "FDIV   $dst,$src" %}
 10977   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10978   ins_encode( Push_Reg_FPR(src),
 10979               OpcP, RegOpc(dst) );
 10980   ins_pipe( fpu_reg_reg );
 10981 %}
 10984 // Spill to obtain 24-bit precision
 10985 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10986   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 10987   match(Set dst (ModF src1 src2));
 10988   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10990   format %{ "FMOD   $dst,$src1,$src2" %}
 10991   ins_encode( Push_Reg_Mod_DPR(src1, src2),
 10992               emitModDPR(),
 10993               Push_Result_Mod_DPR(src2),
 10994               Pop_Mem_FPR(dst));
 10995   ins_pipe( pipe_slow );
 10996 %}
 10997 //
 10998 // This instruction does not round to 24-bits
 10999 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
 11000   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11001   match(Set dst (ModF dst src));
 11002   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 11004   format %{ "FMOD   $dst,$src" %}
 11005   ins_encode(Push_Reg_Mod_DPR(dst, src),
 11006               emitModDPR(),
 11007               Push_Result_Mod_DPR(src),
 11008               Pop_Reg_FPR(dst));
 11009   ins_pipe( pipe_slow );
 11010 %}
 11012 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
 11013   predicate(UseSSE>=1);
 11014   match(Set dst (ModF src0 src1));
 11015   effect(KILL rax, KILL cr);
 11016   format %{ "SUB    ESP,4\t # FMOD\n"
 11017           "\tMOVSS  [ESP+0],$src1\n"
 11018           "\tFLD_S  [ESP+0]\n"
 11019           "\tMOVSS  [ESP+0],$src0\n"
 11020           "\tFLD_S  [ESP+0]\n"
 11021      "loop:\tFPREM\n"
 11022           "\tFWAIT\n"
 11023           "\tFNSTSW AX\n"
 11024           "\tSAHF\n"
 11025           "\tJP     loop\n"
 11026           "\tFSTP_S [ESP+0]\n"
 11027           "\tMOVSS  $dst,[ESP+0]\n"
 11028           "\tADD    ESP,4\n"
 11029           "\tFSTP   ST0\t # Restore FPU Stack"
 11030     %}
 11031   ins_cost(250);
 11032   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
 11033   ins_pipe( pipe_slow );
 11034 %}
 11037 //----------Arithmetic Conversion Instructions---------------------------------
 11038 // The conversions operations are all Alpha sorted.  Please keep it that way!
 11040 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
 11041   predicate(UseSSE==0);
 11042   match(Set dst (RoundFloat src));
 11043   ins_cost(125);
 11044   format %{ "FST_S  $dst,$src\t# F-round" %}
 11045   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 11046   ins_pipe( fpu_mem_reg );
 11047 %}
 11049 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
 11050   predicate(UseSSE<=1);
 11051   match(Set dst (RoundDouble src));
 11052   ins_cost(125);
 11053   format %{ "FST_D  $dst,$src\t# D-round" %}
 11054   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11055   ins_pipe( fpu_mem_reg );
 11056 %}
 11058 // Force rounding to 24-bit precision and 6-bit exponent
 11059 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
 11060   predicate(UseSSE==0);
 11061   match(Set dst (ConvD2F src));
 11062   format %{ "FST_S  $dst,$src\t# F-round" %}
 11063   expand %{
 11064     roundFloat_mem_reg(dst,src);
 11065   %}
 11066 %}
 11068 // Force rounding to 24-bit precision and 6-bit exponent
 11069 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
 11070   predicate(UseSSE==1);
 11071   match(Set dst (ConvD2F src));
 11072   effect( KILL cr );
 11073   format %{ "SUB    ESP,4\n\t"
 11074             "FST_S  [ESP],$src\t# F-round\n\t"
 11075             "MOVSS  $dst,[ESP]\n\t"
 11076             "ADD ESP,4" %}
 11077   ins_encode %{
 11078     __ subptr(rsp, 4);
 11079     if ($src$$reg != FPR1L_enc) {
 11080       __ fld_s($src$$reg-1);
 11081       __ fstp_s(Address(rsp, 0));
 11082     } else {
 11083       __ fst_s(Address(rsp, 0));
 11085     __ movflt($dst$$XMMRegister, Address(rsp, 0));
 11086     __ addptr(rsp, 4);
 11087   %}
 11088   ins_pipe( pipe_slow );
 11089 %}
 11091 // Force rounding double precision to single precision
 11092 instruct convD2F_reg(regF dst, regD src) %{
 11093   predicate(UseSSE>=2);
 11094   match(Set dst (ConvD2F src));
 11095   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 11096   ins_encode %{
 11097     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
 11098   %}
 11099   ins_pipe( pipe_slow );
 11100 %}
 11102 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
 11103   predicate(UseSSE==0);
 11104   match(Set dst (ConvF2D src));
 11105   format %{ "FST_S  $dst,$src\t# D-round" %}
 11106   ins_encode( Pop_Reg_Reg_DPR(dst, src));
 11107   ins_pipe( fpu_reg_reg );
 11108 %}
 11110 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
 11111   predicate(UseSSE==1);
 11112   match(Set dst (ConvF2D src));
 11113   format %{ "FST_D  $dst,$src\t# D-round" %}
 11114   expand %{
 11115     roundDouble_mem_reg(dst,src);
 11116   %}
 11117 %}
 11119 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
 11120   predicate(UseSSE==1);
 11121   match(Set dst (ConvF2D src));
 11122   effect( KILL cr );
 11123   format %{ "SUB    ESP,4\n\t"
 11124             "MOVSS  [ESP] $src\n\t"
 11125             "FLD_S  [ESP]\n\t"
 11126             "ADD    ESP,4\n\t"
 11127             "FSTP   $dst\t# D-round" %}
 11128   ins_encode %{
 11129     __ subptr(rsp, 4);
 11130     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11131     __ fld_s(Address(rsp, 0));
 11132     __ addptr(rsp, 4);
 11133     __ fstp_d($dst$$reg);
 11134   %}
 11135   ins_pipe( pipe_slow );
 11136 %}
 11138 instruct convF2D_reg(regD dst, regF src) %{
 11139   predicate(UseSSE>=2);
 11140   match(Set dst (ConvF2D src));
 11141   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11142   ins_encode %{
 11143     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
 11144   %}
 11145   ins_pipe( pipe_slow );
 11146 %}
 11148 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11149 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
 11150   predicate(UseSSE<=1);
 11151   match(Set dst (ConvD2I src));
 11152   effect( KILL tmp, KILL cr );
 11153   format %{ "FLD    $src\t# Convert double to int \n\t"
 11154             "FLDCW  trunc mode\n\t"
 11155             "SUB    ESP,4\n\t"
 11156             "FISTp  [ESP + #0]\n\t"
 11157             "FLDCW  std/24-bit mode\n\t"
 11158             "POP    EAX\n\t"
 11159             "CMP    EAX,0x80000000\n\t"
 11160             "JNE,s  fast\n\t"
 11161             "FLD_D  $src\n\t"
 11162             "CALL   d2i_wrapper\n"
 11163       "fast:" %}
 11164   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
 11165   ins_pipe( pipe_slow );
 11166 %}
 11168 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11169 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11170   predicate(UseSSE>=2);
 11171   match(Set dst (ConvD2I src));
 11172   effect( KILL tmp, KILL cr );
 11173   format %{ "CVTTSD2SI $dst, $src\n\t"
 11174             "CMP    $dst,0x80000000\n\t"
 11175             "JNE,s  fast\n\t"
 11176             "SUB    ESP, 8\n\t"
 11177             "MOVSD  [ESP], $src\n\t"
 11178             "FLD_D  [ESP]\n\t"
 11179             "ADD    ESP, 8\n\t"
 11180             "CALL   d2i_wrapper\n"
 11181       "fast:" %}
 11182   ins_encode %{
 11183     Label fast;
 11184     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
 11185     __ cmpl($dst$$Register, 0x80000000);
 11186     __ jccb(Assembler::notEqual, fast);
 11187     __ subptr(rsp, 8);
 11188     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11189     __ fld_d(Address(rsp, 0));
 11190     __ addptr(rsp, 8);
 11191     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 11192     __ bind(fast);
 11193   %}
 11194   ins_pipe( pipe_slow );
 11195 %}
 11197 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
 11198   predicate(UseSSE<=1);
 11199   match(Set dst (ConvD2L src));
 11200   effect( KILL cr );
 11201   format %{ "FLD    $src\t# Convert double to long\n\t"
 11202             "FLDCW  trunc mode\n\t"
 11203             "SUB    ESP,8\n\t"
 11204             "FISTp  [ESP + #0]\n\t"
 11205             "FLDCW  std/24-bit mode\n\t"
 11206             "POP    EAX\n\t"
 11207             "POP    EDX\n\t"
 11208             "CMP    EDX,0x80000000\n\t"
 11209             "JNE,s  fast\n\t"
 11210             "TEST   EAX,EAX\n\t"
 11211             "JNE,s  fast\n\t"
 11212             "FLD    $src\n\t"
 11213             "CALL   d2l_wrapper\n"
 11214       "fast:" %}
 11215   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
 11216   ins_pipe( pipe_slow );
 11217 %}
 11219 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11220 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11221   predicate (UseSSE>=2);
 11222   match(Set dst (ConvD2L src));
 11223   effect( KILL cr );
 11224   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11225             "MOVSD  [ESP],$src\n\t"
 11226             "FLD_D  [ESP]\n\t"
 11227             "FLDCW  trunc mode\n\t"
 11228             "FISTp  [ESP + #0]\n\t"
 11229             "FLDCW  std/24-bit mode\n\t"
 11230             "POP    EAX\n\t"
 11231             "POP    EDX\n\t"
 11232             "CMP    EDX,0x80000000\n\t"
 11233             "JNE,s  fast\n\t"
 11234             "TEST   EAX,EAX\n\t"
 11235             "JNE,s  fast\n\t"
 11236             "SUB    ESP,8\n\t"
 11237             "MOVSD  [ESP],$src\n\t"
 11238             "FLD_D  [ESP]\n\t"
 11239             "ADD    ESP,8\n\t"
 11240             "CALL   d2l_wrapper\n"
 11241       "fast:" %}
 11242   ins_encode %{
 11243     Label fast;
 11244     __ subptr(rsp, 8);
 11245     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11246     __ fld_d(Address(rsp, 0));
 11247     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11248     __ fistp_d(Address(rsp, 0));
 11249     // Restore the rounding mode, mask the exception
 11250     if (Compile::current()->in_24_bit_fp_mode()) {
 11251       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11252     } else {
 11253       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11255     // Load the converted long, adjust CPU stack
 11256     __ pop(rax);
 11257     __ pop(rdx);
 11258     __ cmpl(rdx, 0x80000000);
 11259     __ jccb(Assembler::notEqual, fast);
 11260     __ testl(rax, rax);
 11261     __ jccb(Assembler::notEqual, fast);
 11262     __ subptr(rsp, 8);
 11263     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11264     __ fld_d(Address(rsp, 0));
 11265     __ addptr(rsp, 8);
 11266     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11267     __ bind(fast);
 11268   %}
 11269   ins_pipe( pipe_slow );
 11270 %}
 11272 // Convert a double to an int.  Java semantics require we do complex
 11273 // manglations in the corner cases.  So we set the rounding mode to
 11274 // 'zero', store the darned double down as an int, and reset the
 11275 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11276 // if we would overflow or converted a NAN; we check for this and
 11277 // and go the slow path if needed.
 11278 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
 11279   predicate(UseSSE==0);
 11280   match(Set dst (ConvF2I src));
 11281   effect( KILL tmp, KILL cr );
 11282   format %{ "FLD    $src\t# Convert float to int \n\t"
 11283             "FLDCW  trunc mode\n\t"
 11284             "SUB    ESP,4\n\t"
 11285             "FISTp  [ESP + #0]\n\t"
 11286             "FLDCW  std/24-bit mode\n\t"
 11287             "POP    EAX\n\t"
 11288             "CMP    EAX,0x80000000\n\t"
 11289             "JNE,s  fast\n\t"
 11290             "FLD    $src\n\t"
 11291             "CALL   d2i_wrapper\n"
 11292       "fast:" %}
 11293   // DPR2I_encoding works for FPR2I
 11294   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
 11295   ins_pipe( pipe_slow );
 11296 %}
 11298 // Convert a float in xmm to an int reg.
 11299 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11300   predicate(UseSSE>=1);
 11301   match(Set dst (ConvF2I src));
 11302   effect( KILL tmp, KILL cr );
 11303   format %{ "CVTTSS2SI $dst, $src\n\t"
 11304             "CMP    $dst,0x80000000\n\t"
 11305             "JNE,s  fast\n\t"
 11306             "SUB    ESP, 4\n\t"
 11307             "MOVSS  [ESP], $src\n\t"
 11308             "FLD    [ESP]\n\t"
 11309             "ADD    ESP, 4\n\t"
 11310             "CALL   d2i_wrapper\n"
 11311       "fast:" %}
 11312   ins_encode %{
 11313     Label fast;
 11314     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
 11315     __ cmpl($dst$$Register, 0x80000000);
 11316     __ jccb(Assembler::notEqual, fast);
 11317     __ subptr(rsp, 4);
 11318     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11319     __ fld_s(Address(rsp, 0));
 11320     __ addptr(rsp, 4);
 11321     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 11322     __ bind(fast);
 11323   %}
 11324   ins_pipe( pipe_slow );
 11325 %}
 11327 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
 11328   predicate(UseSSE==0);
 11329   match(Set dst (ConvF2L src));
 11330   effect( KILL cr );
 11331   format %{ "FLD    $src\t# Convert float to long\n\t"
 11332             "FLDCW  trunc mode\n\t"
 11333             "SUB    ESP,8\n\t"
 11334             "FISTp  [ESP + #0]\n\t"
 11335             "FLDCW  std/24-bit mode\n\t"
 11336             "POP    EAX\n\t"
 11337             "POP    EDX\n\t"
 11338             "CMP    EDX,0x80000000\n\t"
 11339             "JNE,s  fast\n\t"
 11340             "TEST   EAX,EAX\n\t"
 11341             "JNE,s  fast\n\t"
 11342             "FLD    $src\n\t"
 11343             "CALL   d2l_wrapper\n"
 11344       "fast:" %}
 11345   // DPR2L_encoding works for FPR2L
 11346   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
 11347   ins_pipe( pipe_slow );
 11348 %}
 11350 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11351 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11352   predicate (UseSSE>=1);
 11353   match(Set dst (ConvF2L src));
 11354   effect( KILL cr );
 11355   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11356             "MOVSS  [ESP],$src\n\t"
 11357             "FLD_S  [ESP]\n\t"
 11358             "FLDCW  trunc mode\n\t"
 11359             "FISTp  [ESP + #0]\n\t"
 11360             "FLDCW  std/24-bit mode\n\t"
 11361             "POP    EAX\n\t"
 11362             "POP    EDX\n\t"
 11363             "CMP    EDX,0x80000000\n\t"
 11364             "JNE,s  fast\n\t"
 11365             "TEST   EAX,EAX\n\t"
 11366             "JNE,s  fast\n\t"
 11367             "SUB    ESP,4\t# Convert float to long\n\t"
 11368             "MOVSS  [ESP],$src\n\t"
 11369             "FLD_S  [ESP]\n\t"
 11370             "ADD    ESP,4\n\t"
 11371             "CALL   d2l_wrapper\n"
 11372       "fast:" %}
 11373   ins_encode %{
 11374     Label fast;
 11375     __ subptr(rsp, 8);
 11376     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11377     __ fld_s(Address(rsp, 0));
 11378     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11379     __ fistp_d(Address(rsp, 0));
 11380     // Restore the rounding mode, mask the exception
 11381     if (Compile::current()->in_24_bit_fp_mode()) {
 11382       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11383     } else {
 11384       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11386     // Load the converted long, adjust CPU stack
 11387     __ pop(rax);
 11388     __ pop(rdx);
 11389     __ cmpl(rdx, 0x80000000);
 11390     __ jccb(Assembler::notEqual, fast);
 11391     __ testl(rax, rax);
 11392     __ jccb(Assembler::notEqual, fast);
 11393     __ subptr(rsp, 4);
 11394     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11395     __ fld_s(Address(rsp, 0));
 11396     __ addptr(rsp, 4);
 11397     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11398     __ bind(fast);
 11399   %}
 11400   ins_pipe( pipe_slow );
 11401 %}
 11403 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
 11404   predicate( UseSSE<=1 );
 11405   match(Set dst (ConvI2D src));
 11406   format %{ "FILD   $src\n\t"
 11407             "FSTP   $dst" %}
 11408   opcode(0xDB, 0x0);  /* DB /0 */
 11409   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
 11410   ins_pipe( fpu_reg_mem );
 11411 %}
 11413 instruct convI2D_reg(regD dst, eRegI src) %{
 11414   predicate( UseSSE>=2 && !UseXmmI2D );
 11415   match(Set dst (ConvI2D src));
 11416   format %{ "CVTSI2SD $dst,$src" %}
 11417   ins_encode %{
 11418     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
 11419   %}
 11420   ins_pipe( pipe_slow );
 11421 %}
 11423 instruct convI2D_mem(regD dst, memory mem) %{
 11424   predicate( UseSSE>=2 );
 11425   match(Set dst (ConvI2D (LoadI mem)));
 11426   format %{ "CVTSI2SD $dst,$mem" %}
 11427   ins_encode %{
 11428     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
 11429   %}
 11430   ins_pipe( pipe_slow );
 11431 %}
 11433 instruct convXI2D_reg(regD dst, eRegI src)
 11434 %{
 11435   predicate( UseSSE>=2 && UseXmmI2D );
 11436   match(Set dst (ConvI2D src));
 11438   format %{ "MOVD  $dst,$src\n\t"
 11439             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11440   ins_encode %{
 11441     __ movdl($dst$$XMMRegister, $src$$Register);
 11442     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11443   %}
 11444   ins_pipe(pipe_slow); // XXX
 11445 %}
 11447 instruct convI2DPR_mem(regDPR dst, memory mem) %{
 11448   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11449   match(Set dst (ConvI2D (LoadI mem)));
 11450   format %{ "FILD   $mem\n\t"
 11451             "FSTP   $dst" %}
 11452   opcode(0xDB);      /* DB /0 */
 11453   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11454               Pop_Reg_DPR(dst));
 11455   ins_pipe( fpu_reg_mem );
 11456 %}
 11458 // Convert a byte to a float; no rounding step needed.
 11459 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
 11460   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11461   match(Set dst (ConvI2F src));
 11462   format %{ "FILD   $src\n\t"
 11463             "FSTP   $dst" %}
 11465   opcode(0xDB, 0x0);  /* DB /0 */
 11466   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
 11467   ins_pipe( fpu_reg_mem );
 11468 %}
 11470 // In 24-bit mode, force exponent rounding by storing back out
 11471 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
 11472   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11473   match(Set dst (ConvI2F src));
 11474   ins_cost(200);
 11475   format %{ "FILD   $src\n\t"
 11476             "FSTP_S $dst" %}
 11477   opcode(0xDB, 0x0);  /* DB /0 */
 11478   ins_encode( Push_Mem_I(src),
 11479               Pop_Mem_FPR(dst));
 11480   ins_pipe( fpu_mem_mem );
 11481 %}
 11483 // In 24-bit mode, force exponent rounding by storing back out
 11484 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
 11485   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11486   match(Set dst (ConvI2F (LoadI mem)));
 11487   ins_cost(200);
 11488   format %{ "FILD   $mem\n\t"
 11489             "FSTP_S $dst" %}
 11490   opcode(0xDB);  /* DB /0 */
 11491   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11492               Pop_Mem_FPR(dst));
 11493   ins_pipe( fpu_mem_mem );
 11494 %}
 11496 // This instruction does not round to 24-bits
 11497 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
 11498   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11499   match(Set dst (ConvI2F src));
 11500   format %{ "FILD   $src\n\t"
 11501             "FSTP   $dst" %}
 11502   opcode(0xDB, 0x0);  /* DB /0 */
 11503   ins_encode( Push_Mem_I(src),
 11504               Pop_Reg_FPR(dst));
 11505   ins_pipe( fpu_reg_mem );
 11506 %}
 11508 // This instruction does not round to 24-bits
 11509 instruct convI2FPR_mem(regFPR dst, memory mem) %{
 11510   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11511   match(Set dst (ConvI2F (LoadI mem)));
 11512   format %{ "FILD   $mem\n\t"
 11513             "FSTP   $dst" %}
 11514   opcode(0xDB);      /* DB /0 */
 11515   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11516               Pop_Reg_FPR(dst));
 11517   ins_pipe( fpu_reg_mem );
 11518 %}
 11520 // Convert an int to a float in xmm; no rounding step needed.
 11521 instruct convI2F_reg(regF dst, eRegI src) %{
 11522   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11523   match(Set dst (ConvI2F src));
 11524   format %{ "CVTSI2SS $dst, $src" %}
 11525   ins_encode %{
 11526     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
 11527   %}
 11528   ins_pipe( pipe_slow );
 11529 %}
 11531  instruct convXI2F_reg(regF dst, eRegI src)
 11532 %{
 11533   predicate( UseSSE>=2 && UseXmmI2F );
 11534   match(Set dst (ConvI2F src));
 11536   format %{ "MOVD  $dst,$src\n\t"
 11537             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11538   ins_encode %{
 11539     __ movdl($dst$$XMMRegister, $src$$Register);
 11540     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11541   %}
 11542   ins_pipe(pipe_slow); // XXX
 11543 %}
 11545 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 11546   match(Set dst (ConvI2L src));
 11547   effect(KILL cr);
 11548   ins_cost(375);
 11549   format %{ "MOV    $dst.lo,$src\n\t"
 11550             "MOV    $dst.hi,$src\n\t"
 11551             "SAR    $dst.hi,31" %}
 11552   ins_encode(convert_int_long(dst,src));
 11553   ins_pipe( ialu_reg_reg_long );
 11554 %}
 11556 // Zero-extend convert int to long
 11557 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11558   match(Set dst (AndL (ConvI2L src) mask) );
 11559   effect( KILL flags );
 11560   ins_cost(250);
 11561   format %{ "MOV    $dst.lo,$src\n\t"
 11562             "XOR    $dst.hi,$dst.hi" %}
 11563   opcode(0x33); // XOR
 11564   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11565   ins_pipe( ialu_reg_reg_long );
 11566 %}
 11568 // Zero-extend long
 11569 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11570   match(Set dst (AndL src mask) );
 11571   effect( KILL flags );
 11572   ins_cost(250);
 11573   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11574             "XOR    $dst.hi,$dst.hi\n\t" %}
 11575   opcode(0x33); // XOR
 11576   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11577   ins_pipe( ialu_reg_reg_long );
 11578 %}
 11580 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11581   predicate (UseSSE<=1);
 11582   match(Set dst (ConvL2D src));
 11583   effect( KILL cr );
 11584   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11585             "PUSH   $src.lo\n\t"
 11586             "FILD   ST,[ESP + #0]\n\t"
 11587             "ADD    ESP,8\n\t"
 11588             "FSTP_D $dst\t# D-round" %}
 11589   opcode(0xDF, 0x5);  /* DF /5 */
 11590   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
 11591   ins_pipe( pipe_slow );
 11592 %}
 11594 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
 11595   predicate (UseSSE>=2);
 11596   match(Set dst (ConvL2D src));
 11597   effect( KILL cr );
 11598   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11599             "PUSH   $src.lo\n\t"
 11600             "FILD_D [ESP]\n\t"
 11601             "FSTP_D [ESP]\n\t"
 11602             "MOVSD  $dst,[ESP]\n\t"
 11603             "ADD    ESP,8" %}
 11604   opcode(0xDF, 0x5);  /* DF /5 */
 11605   ins_encode(convert_long_double2(src), Push_ResultD(dst));
 11606   ins_pipe( pipe_slow );
 11607 %}
 11609 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
 11610   predicate (UseSSE>=1);
 11611   match(Set dst (ConvL2F src));
 11612   effect( KILL cr );
 11613   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11614             "PUSH   $src.lo\n\t"
 11615             "FILD_D [ESP]\n\t"
 11616             "FSTP_S [ESP]\n\t"
 11617             "MOVSS  $dst,[ESP]\n\t"
 11618             "ADD    ESP,8" %}
 11619   opcode(0xDF, 0x5);  /* DF /5 */
 11620   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
 11621   ins_pipe( pipe_slow );
 11622 %}
 11624 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11625   match(Set dst (ConvL2F src));
 11626   effect( KILL cr );
 11627   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11628             "PUSH   $src.lo\n\t"
 11629             "FILD   ST,[ESP + #0]\n\t"
 11630             "ADD    ESP,8\n\t"
 11631             "FSTP_S $dst\t# F-round" %}
 11632   opcode(0xDF, 0x5);  /* DF /5 */
 11633   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
 11634   ins_pipe( pipe_slow );
 11635 %}
 11637 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 11638   match(Set dst (ConvL2I src));
 11639   effect( DEF dst, USE src );
 11640   format %{ "MOV    $dst,$src.lo" %}
 11641   ins_encode(enc_CopyL_Lo(dst,src));
 11642   ins_pipe( ialu_reg_reg );
 11643 %}
 11646 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 11647   match(Set dst (MoveF2I src));
 11648   effect( DEF dst, USE src );
 11649   ins_cost(100);
 11650   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11651   ins_encode %{
 11652     __ movl($dst$$Register, Address(rsp, $src$$disp));
 11653   %}
 11654   ins_pipe( ialu_reg_mem );
 11655 %}
 11657 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
 11658   predicate(UseSSE==0);
 11659   match(Set dst (MoveF2I src));
 11660   effect( DEF dst, USE src );
 11662   ins_cost(125);
 11663   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11664   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 11665   ins_pipe( fpu_mem_reg );
 11666 %}
 11668 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
 11669   predicate(UseSSE>=1);
 11670   match(Set dst (MoveF2I src));
 11671   effect( DEF dst, USE src );
 11673   ins_cost(95);
 11674   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11675   ins_encode %{
 11676     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11677   %}
 11678   ins_pipe( pipe_slow );
 11679 %}
 11681 instruct MoveF2I_reg_reg_sse(eRegI dst, regF src) %{
 11682   predicate(UseSSE>=2);
 11683   match(Set dst (MoveF2I src));
 11684   effect( DEF dst, USE src );
 11685   ins_cost(85);
 11686   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11687   ins_encode %{
 11688     __ movdl($dst$$Register, $src$$XMMRegister);
 11689   %}
 11690   ins_pipe( pipe_slow );
 11691 %}
 11693 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 11694   match(Set dst (MoveI2F src));
 11695   effect( DEF dst, USE src );
 11697   ins_cost(100);
 11698   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11699   ins_encode %{
 11700     __ movl(Address(rsp, $dst$$disp), $src$$Register);
 11701   %}
 11702   ins_pipe( ialu_mem_reg );
 11703 %}
 11706 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
 11707   predicate(UseSSE==0);
 11708   match(Set dst (MoveI2F src));
 11709   effect(DEF dst, USE src);
 11711   ins_cost(125);
 11712   format %{ "FLD_S  $src\n\t"
 11713             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11714   opcode(0xD9);               /* D9 /0, FLD m32real */
 11715   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11716               Pop_Reg_FPR(dst) );
 11717   ins_pipe( fpu_reg_mem );
 11718 %}
 11720 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
 11721   predicate(UseSSE>=1);
 11722   match(Set dst (MoveI2F src));
 11723   effect( DEF dst, USE src );
 11725   ins_cost(95);
 11726   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11727   ins_encode %{
 11728     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
 11729   %}
 11730   ins_pipe( pipe_slow );
 11731 %}
 11733 instruct MoveI2F_reg_reg_sse(regF dst, eRegI src) %{
 11734   predicate(UseSSE>=2);
 11735   match(Set dst (MoveI2F src));
 11736   effect( DEF dst, USE src );
 11738   ins_cost(85);
 11739   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11740   ins_encode %{
 11741     __ movdl($dst$$XMMRegister, $src$$Register);
 11742   %}
 11743   ins_pipe( pipe_slow );
 11744 %}
 11746 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11747   match(Set dst (MoveD2L src));
 11748   effect(DEF dst, USE src);
 11750   ins_cost(250);
 11751   format %{ "MOV    $dst.lo,$src\n\t"
 11752             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11753   opcode(0x8B, 0x8B);
 11754   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11755   ins_pipe( ialu_mem_long_reg );
 11756 %}
 11758 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
 11759   predicate(UseSSE<=1);
 11760   match(Set dst (MoveD2L src));
 11761   effect(DEF dst, USE src);
 11763   ins_cost(125);
 11764   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11765   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11766   ins_pipe( fpu_mem_reg );
 11767 %}
 11769 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
 11770   predicate(UseSSE>=2);
 11771   match(Set dst (MoveD2L src));
 11772   effect(DEF dst, USE src);
 11773   ins_cost(95);
 11774   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11775   ins_encode %{
 11776     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11777   %}
 11778   ins_pipe( pipe_slow );
 11779 %}
 11781 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
 11782   predicate(UseSSE>=2);
 11783   match(Set dst (MoveD2L src));
 11784   effect(DEF dst, USE src, TEMP tmp);
 11785   ins_cost(85);
 11786   format %{ "MOVD   $dst.lo,$src\n\t"
 11787             "PSHUFLW $tmp,$src,0x4E\n\t"
 11788             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11789   ins_encode %{
 11790     __ movdl($dst$$Register, $src$$XMMRegister);
 11791     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
 11792     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
 11793   %}
 11794   ins_pipe( pipe_slow );
 11795 %}
 11797 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11798   match(Set dst (MoveL2D src));
 11799   effect(DEF dst, USE src);
 11801   ins_cost(200);
 11802   format %{ "MOV    $dst,$src.lo\n\t"
 11803             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11804   opcode(0x89, 0x89);
 11805   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11806   ins_pipe( ialu_mem_long_reg );
 11807 %}
 11810 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
 11811   predicate(UseSSE<=1);
 11812   match(Set dst (MoveL2D src));
 11813   effect(DEF dst, USE src);
 11814   ins_cost(125);
 11816   format %{ "FLD_D  $src\n\t"
 11817             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11818   opcode(0xDD);               /* DD /0, FLD m64real */
 11819   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11820               Pop_Reg_DPR(dst) );
 11821   ins_pipe( fpu_reg_mem );
 11822 %}
 11825 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
 11826   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11827   match(Set dst (MoveL2D src));
 11828   effect(DEF dst, USE src);
 11830   ins_cost(95);
 11831   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11832   ins_encode %{
 11833     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11834   %}
 11835   ins_pipe( pipe_slow );
 11836 %}
 11838 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
 11839   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11840   match(Set dst (MoveL2D src));
 11841   effect(DEF dst, USE src);
 11843   ins_cost(95);
 11844   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11845   ins_encode %{
 11846     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11847   %}
 11848   ins_pipe( pipe_slow );
 11849 %}
 11851 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
 11852   predicate(UseSSE>=2);
 11853   match(Set dst (MoveL2D src));
 11854   effect(TEMP dst, USE src, TEMP tmp);
 11855   ins_cost(85);
 11856   format %{ "MOVD   $dst,$src.lo\n\t"
 11857             "MOVD   $tmp,$src.hi\n\t"
 11858             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11859   ins_encode %{
 11860     __ movdl($dst$$XMMRegister, $src$$Register);
 11861     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
 11862     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
 11863   %}
 11864   ins_pipe( pipe_slow );
 11865 %}
 11867 // Replicate scalar to packed byte (1 byte) values in xmm
 11868 instruct Repl8B_reg(regD dst, regD src) %{
 11869   predicate(UseSSE>=2);
 11870   match(Set dst (Replicate8B src));
 11871   format %{ "MOVDQA  $dst,$src\n\t"
 11872             "PUNPCKLBW $dst,$dst\n\t"
 11873             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11874   ins_encode %{
 11875     if ($dst$$reg != $src$$reg) {
 11876       __ movdqa($dst$$XMMRegister, $src$$XMMRegister);
 11878     __ punpcklbw($dst$$XMMRegister, $dst$$XMMRegister);
 11879     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11880   %}
 11881   ins_pipe( pipe_slow );
 11882 %}
 11884 // Replicate scalar to packed byte (1 byte) values in xmm
 11885 instruct Repl8B_eRegI(regD dst, eRegI src) %{
 11886   predicate(UseSSE>=2);
 11887   match(Set dst (Replicate8B src));
 11888   format %{ "MOVD    $dst,$src\n\t"
 11889             "PUNPCKLBW $dst,$dst\n\t"
 11890             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11891   ins_encode %{
 11892     __ movdl($dst$$XMMRegister, $src$$Register);
 11893     __ punpcklbw($dst$$XMMRegister, $dst$$XMMRegister);
 11894     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11895   %}
 11896   ins_pipe( pipe_slow );
 11897 %}
 11899 // Replicate scalar zero to packed byte (1 byte) values in xmm
 11900 instruct Repl8B_immI0(regD dst, immI0 zero) %{
 11901   predicate(UseSSE>=2);
 11902   match(Set dst (Replicate8B zero));
 11903   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 11904   ins_encode %{
 11905     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11906   %}
 11907   ins_pipe( fpu_reg_reg );
 11908 %}
 11910 // Replicate scalar to packed shore (2 byte) values in xmm
 11911 instruct Repl4S_reg(regD dst, regD src) %{
 11912   predicate(UseSSE>=2);
 11913   match(Set dst (Replicate4S src));
 11914   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 11915   ins_encode %{
 11916     __ pshuflw($dst$$XMMRegister, $src$$XMMRegister, 0x00);
 11917   %}
 11918   ins_pipe( fpu_reg_reg );
 11919 %}
 11921 // Replicate scalar to packed shore (2 byte) values in xmm
 11922 instruct Repl4S_eRegI(regD dst, eRegI src) %{
 11923   predicate(UseSSE>=2);
 11924   match(Set dst (Replicate4S src));
 11925   format %{ "MOVD    $dst,$src\n\t"
 11926             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 11927   ins_encode %{
 11928     __ movdl($dst$$XMMRegister, $src$$Register);
 11929     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11930   %}
 11931   ins_pipe( fpu_reg_reg );
 11932 %}
 11934 // Replicate scalar zero to packed short (2 byte) values in xmm
 11935 instruct Repl4S_immI0(regD dst, immI0 zero) %{
 11936   predicate(UseSSE>=2);
 11937   match(Set dst (Replicate4S zero));
 11938   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 11939   ins_encode %{
 11940     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11941   %}
 11942   ins_pipe( fpu_reg_reg );
 11943 %}
 11945 // Replicate scalar to packed char (2 byte) values in xmm
 11946 instruct Repl4C_reg(regD dst, regD src) %{
 11947   predicate(UseSSE>=2);
 11948   match(Set dst (Replicate4C src));
 11949   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 11950   ins_encode %{
 11951     __ pshuflw($dst$$XMMRegister, $src$$XMMRegister, 0x00);
 11952   %}
 11953   ins_pipe( fpu_reg_reg );
 11954 %}
 11956 // Replicate scalar to packed char (2 byte) values in xmm
 11957 instruct Repl4C_eRegI(regD dst, eRegI src) %{
 11958   predicate(UseSSE>=2);
 11959   match(Set dst (Replicate4C src));
 11960   format %{ "MOVD    $dst,$src\n\t"
 11961             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 11962   ins_encode %{
 11963     __ movdl($dst$$XMMRegister, $src$$Register);
 11964     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11965   %}
 11966   ins_pipe( fpu_reg_reg );
 11967 %}
 11969 // Replicate scalar zero to packed char (2 byte) values in xmm
 11970 instruct Repl4C_immI0(regD dst, immI0 zero) %{
 11971   predicate(UseSSE>=2);
 11972   match(Set dst (Replicate4C zero));
 11973   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 11974   ins_encode %{
 11975     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11976   %}
 11977   ins_pipe( fpu_reg_reg );
 11978 %}
 11980 // Replicate scalar to packed integer (4 byte) values in xmm
 11981 instruct Repl2I_reg(regD dst, regD src) %{
 11982   predicate(UseSSE>=2);
 11983   match(Set dst (Replicate2I src));
 11984   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 11985   ins_encode %{
 11986     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0x00);
 11987   %}
 11988   ins_pipe( fpu_reg_reg );
 11989 %}
 11991 // Replicate scalar to packed integer (4 byte) values in xmm
 11992 instruct Repl2I_eRegI(regD dst, eRegI src) %{
 11993   predicate(UseSSE>=2);
 11994   match(Set dst (Replicate2I src));
 11995   format %{ "MOVD   $dst,$src\n\t"
 11996             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 11997   ins_encode %{
 11998     __ movdl($dst$$XMMRegister, $src$$Register);
 11999     __ pshufd($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 12000   %}
 12001   ins_pipe( fpu_reg_reg );
 12002 %}
 12004 // Replicate scalar zero to packed integer (2 byte) values in xmm
 12005 instruct Repl2I_immI0(regD dst, immI0 zero) %{
 12006   predicate(UseSSE>=2);
 12007   match(Set dst (Replicate2I zero));
 12008   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 12009   ins_encode %{
 12010     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 12011   %}
 12012   ins_pipe( fpu_reg_reg );
 12013 %}
 12015 // Replicate scalar to packed single precision floating point values in xmm
 12016 instruct Repl2F_reg(regD dst, regD src) %{
 12017   predicate(UseSSE>=2);
 12018   match(Set dst (Replicate2F src));
 12019   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12020   ins_encode %{
 12021     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0xe0);
 12022   %}
 12023   ins_pipe( fpu_reg_reg );
 12024 %}
 12026 // Replicate scalar to packed single precision floating point values in xmm
 12027 instruct Repl2F_regF(regD dst, regF src) %{
 12028   predicate(UseSSE>=2);
 12029   match(Set dst (Replicate2F src));
 12030   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12031   ins_encode %{
 12032     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0xe0);
 12033   %}
 12034   ins_pipe( fpu_reg_reg );
 12035 %}
 12037 // Replicate scalar to packed single precision floating point values in xmm
 12038 instruct Repl2F_immF0(regD dst, immF0 zero) %{
 12039   predicate(UseSSE>=2);
 12040   match(Set dst (Replicate2F zero));
 12041   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 12042   ins_encode %{
 12043     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 12044   %}
 12045   ins_pipe( fpu_reg_reg );
 12046 %}
 12048 // =======================================================================
 12049 // fast clearing of an array
 12050 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 12051   match(Set dummy (ClearArray cnt base));
 12052   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 12053   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 12054             "XOR    EAX,EAX\n\t"
 12055             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 12056   opcode(0,0x4);
 12057   ins_encode( Opcode(0xD1), RegOpc(ECX),
 12058               OpcRegReg(0x33,EAX,EAX),
 12059               Opcode(0xF3), Opcode(0xAB) );
 12060   ins_pipe( pipe_slow );
 12061 %}
 12063 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
 12064                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
 12065   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 12066   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 12068   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
 12069   ins_encode %{
 12070     __ string_compare($str1$$Register, $str2$$Register,
 12071                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12072                       $tmp1$$XMMRegister);
 12073   %}
 12074   ins_pipe( pipe_slow );
 12075 %}
 12077 // fast string equals
 12078 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 12079                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 12080   match(Set result (StrEquals (Binary str1 str2) cnt));
 12081   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 12083   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 12084   ins_encode %{
 12085     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 12086                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 12087                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12088   %}
 12089   ins_pipe( pipe_slow );
 12090 %}
 12092 // fast search of substring with known size.
 12093 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
 12094                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
 12095   predicate(UseSSE42Intrinsics);
 12096   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
 12097   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
 12099   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
 12100   ins_encode %{
 12101     int icnt2 = (int)$int_cnt2$$constant;
 12102     if (icnt2 >= 8) {
 12103       // IndexOf for constant substrings with size >= 8 elements
 12104       // which don't need to be loaded through stack.
 12105       __ string_indexofC8($str1$$Register, $str2$$Register,
 12106                           $cnt1$$Register, $cnt2$$Register,
 12107                           icnt2, $result$$Register,
 12108                           $vec$$XMMRegister, $tmp$$Register);
 12109     } else {
 12110       // Small strings are loaded through stack if they cross page boundary.
 12111       __ string_indexof($str1$$Register, $str2$$Register,
 12112                         $cnt1$$Register, $cnt2$$Register,
 12113                         icnt2, $result$$Register,
 12114                         $vec$$XMMRegister, $tmp$$Register);
 12116   %}
 12117   ins_pipe( pipe_slow );
 12118 %}
 12120 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 12121                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
 12122   predicate(UseSSE42Intrinsics);
 12123   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 12124   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
 12126   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
 12127   ins_encode %{
 12128     __ string_indexof($str1$$Register, $str2$$Register,
 12129                       $cnt1$$Register, $cnt2$$Register,
 12130                       (-1), $result$$Register,
 12131                       $vec$$XMMRegister, $tmp$$Register);
 12132   %}
 12133   ins_pipe( pipe_slow );
 12134 %}
 12136 // fast array equals
 12137 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 12138                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 12139 %{
 12140   match(Set result (AryEq ary1 ary2));
 12141   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 12142   //ins_cost(300);
 12144   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 12145   ins_encode %{
 12146     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 12147                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 12148                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12149   %}
 12150   ins_pipe( pipe_slow );
 12151 %}
 12153 //----------Control Flow Instructions------------------------------------------
 12154 // Signed compare Instructions
 12155 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 12156   match(Set cr (CmpI op1 op2));
 12157   effect( DEF cr, USE op1, USE op2 );
 12158   format %{ "CMP    $op1,$op2" %}
 12159   opcode(0x3B);  /* Opcode 3B /r */
 12160   ins_encode( OpcP, RegReg( op1, op2) );
 12161   ins_pipe( ialu_cr_reg_reg );
 12162 %}
 12164 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 12165   match(Set cr (CmpI op1 op2));
 12166   effect( DEF cr, USE op1 );
 12167   format %{ "CMP    $op1,$op2" %}
 12168   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12169   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 12170   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12171   ins_pipe( ialu_cr_reg_imm );
 12172 %}
 12174 // Cisc-spilled version of cmpI_eReg
 12175 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 12176   match(Set cr (CmpI op1 (LoadI op2)));
 12178   format %{ "CMP    $op1,$op2" %}
 12179   ins_cost(500);
 12180   opcode(0x3B);  /* Opcode 3B /r */
 12181   ins_encode( OpcP, RegMem( op1, op2) );
 12182   ins_pipe( ialu_cr_reg_mem );
 12183 %}
 12185 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 12186   match(Set cr (CmpI src zero));
 12187   effect( DEF cr, USE src );
 12189   format %{ "TEST   $src,$src" %}
 12190   opcode(0x85);
 12191   ins_encode( OpcP, RegReg( src, src ) );
 12192   ins_pipe( ialu_cr_reg_imm );
 12193 %}
 12195 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 12196   match(Set cr (CmpI (AndI src con) zero));
 12198   format %{ "TEST   $src,$con" %}
 12199   opcode(0xF7,0x00);
 12200   ins_encode( OpcP, RegOpc(src), Con32(con) );
 12201   ins_pipe( ialu_cr_reg_imm );
 12202 %}
 12204 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 12205   match(Set cr (CmpI (AndI src mem) zero));
 12207   format %{ "TEST   $src,$mem" %}
 12208   opcode(0x85);
 12209   ins_encode( OpcP, RegMem( src, mem ) );
 12210   ins_pipe( ialu_cr_reg_mem );
 12211 %}
 12213 // Unsigned compare Instructions; really, same as signed except they
 12214 // produce an eFlagsRegU instead of eFlagsReg.
 12215 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12216   match(Set cr (CmpU op1 op2));
 12218   format %{ "CMPu   $op1,$op2" %}
 12219   opcode(0x3B);  /* Opcode 3B /r */
 12220   ins_encode( OpcP, RegReg( op1, op2) );
 12221   ins_pipe( ialu_cr_reg_reg );
 12222 %}
 12224 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12225   match(Set cr (CmpU op1 op2));
 12227   format %{ "CMPu   $op1,$op2" %}
 12228   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12229   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12230   ins_pipe( ialu_cr_reg_imm );
 12231 %}
 12233 // // Cisc-spilled version of cmpU_eReg
 12234 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12235   match(Set cr (CmpU op1 (LoadI op2)));
 12237   format %{ "CMPu   $op1,$op2" %}
 12238   ins_cost(500);
 12239   opcode(0x3B);  /* Opcode 3B /r */
 12240   ins_encode( OpcP, RegMem( op1, op2) );
 12241   ins_pipe( ialu_cr_reg_mem );
 12242 %}
 12244 // // Cisc-spilled version of cmpU_eReg
 12245 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12246 //  match(Set cr (CmpU (LoadI op1) op2));
 12247 //
 12248 //  format %{ "CMPu   $op1,$op2" %}
 12249 //  ins_cost(500);
 12250 //  opcode(0x39);  /* Opcode 39 /r */
 12251 //  ins_encode( OpcP, RegMem( op1, op2) );
 12252 //%}
 12254 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12255   match(Set cr (CmpU src zero));
 12257   format %{ "TESTu  $src,$src" %}
 12258   opcode(0x85);
 12259   ins_encode( OpcP, RegReg( src, src ) );
 12260   ins_pipe( ialu_cr_reg_imm );
 12261 %}
 12263 // Unsigned pointer compare Instructions
 12264 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12265   match(Set cr (CmpP op1 op2));
 12267   format %{ "CMPu   $op1,$op2" %}
 12268   opcode(0x3B);  /* Opcode 3B /r */
 12269   ins_encode( OpcP, RegReg( op1, op2) );
 12270   ins_pipe( ialu_cr_reg_reg );
 12271 %}
 12273 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12274   match(Set cr (CmpP op1 op2));
 12276   format %{ "CMPu   $op1,$op2" %}
 12277   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12278   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12279   ins_pipe( ialu_cr_reg_imm );
 12280 %}
 12282 // // Cisc-spilled version of cmpP_eReg
 12283 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12284   match(Set cr (CmpP op1 (LoadP op2)));
 12286   format %{ "CMPu   $op1,$op2" %}
 12287   ins_cost(500);
 12288   opcode(0x3B);  /* Opcode 3B /r */
 12289   ins_encode( OpcP, RegMem( op1, op2) );
 12290   ins_pipe( ialu_cr_reg_mem );
 12291 %}
 12293 // // Cisc-spilled version of cmpP_eReg
 12294 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12295 //  match(Set cr (CmpP (LoadP op1) op2));
 12296 //
 12297 //  format %{ "CMPu   $op1,$op2" %}
 12298 //  ins_cost(500);
 12299 //  opcode(0x39);  /* Opcode 39 /r */
 12300 //  ins_encode( OpcP, RegMem( op1, op2) );
 12301 //%}
 12303 // Compare raw pointer (used in out-of-heap check).
 12304 // Only works because non-oop pointers must be raw pointers
 12305 // and raw pointers have no anti-dependencies.
 12306 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12307   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12308   match(Set cr (CmpP op1 (LoadP op2)));
 12310   format %{ "CMPu   $op1,$op2" %}
 12311   opcode(0x3B);  /* Opcode 3B /r */
 12312   ins_encode( OpcP, RegMem( op1, op2) );
 12313   ins_pipe( ialu_cr_reg_mem );
 12314 %}
 12316 //
 12317 // This will generate a signed flags result. This should be ok
 12318 // since any compare to a zero should be eq/neq.
 12319 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12320   match(Set cr (CmpP src zero));
 12322   format %{ "TEST   $src,$src" %}
 12323   opcode(0x85);
 12324   ins_encode( OpcP, RegReg( src, src ) );
 12325   ins_pipe( ialu_cr_reg_imm );
 12326 %}
 12328 // Cisc-spilled version of testP_reg
 12329 // This will generate a signed flags result. This should be ok
 12330 // since any compare to a zero should be eq/neq.
 12331 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12332   match(Set cr (CmpP (LoadP op) zero));
 12334   format %{ "TEST   $op,0xFFFFFFFF" %}
 12335   ins_cost(500);
 12336   opcode(0xF7);               /* Opcode F7 /0 */
 12337   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12338   ins_pipe( ialu_cr_reg_imm );
 12339 %}
 12341 // Yanked all unsigned pointer compare operations.
 12342 // Pointer compares are done with CmpP which is already unsigned.
 12344 //----------Max and Min--------------------------------------------------------
 12345 // Min Instructions
 12346 ////
 12347 //   *** Min and Max using the conditional move are slower than the
 12348 //   *** branch version on a Pentium III.
 12349 // // Conditional move for min
 12350 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12351 //  effect( USE_DEF op2, USE op1, USE cr );
 12352 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12353 //  opcode(0x4C,0x0F);
 12354 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12355 //  ins_pipe( pipe_cmov_reg );
 12356 //%}
 12357 //
 12358 //// Min Register with Register (P6 version)
 12359 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12360 //  predicate(VM_Version::supports_cmov() );
 12361 //  match(Set op2 (MinI op1 op2));
 12362 //  ins_cost(200);
 12363 //  expand %{
 12364 //    eFlagsReg cr;
 12365 //    compI_eReg(cr,op1,op2);
 12366 //    cmovI_reg_lt(op2,op1,cr);
 12367 //  %}
 12368 //%}
 12370 // Min Register with Register (generic version)
 12371 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12372   match(Set dst (MinI dst src));
 12373   effect(KILL flags);
 12374   ins_cost(300);
 12376   format %{ "MIN    $dst,$src" %}
 12377   opcode(0xCC);
 12378   ins_encode( min_enc(dst,src) );
 12379   ins_pipe( pipe_slow );
 12380 %}
 12382 // Max Register with Register
 12383 //   *** Min and Max using the conditional move are slower than the
 12384 //   *** branch version on a Pentium III.
 12385 // // Conditional move for max
 12386 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12387 //  effect( USE_DEF op2, USE op1, USE cr );
 12388 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12389 //  opcode(0x4F,0x0F);
 12390 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12391 //  ins_pipe( pipe_cmov_reg );
 12392 //%}
 12393 //
 12394 // // Max Register with Register (P6 version)
 12395 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12396 //  predicate(VM_Version::supports_cmov() );
 12397 //  match(Set op2 (MaxI op1 op2));
 12398 //  ins_cost(200);
 12399 //  expand %{
 12400 //    eFlagsReg cr;
 12401 //    compI_eReg(cr,op1,op2);
 12402 //    cmovI_reg_gt(op2,op1,cr);
 12403 //  %}
 12404 //%}
 12406 // Max Register with Register (generic version)
 12407 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12408   match(Set dst (MaxI dst src));
 12409   effect(KILL flags);
 12410   ins_cost(300);
 12412   format %{ "MAX    $dst,$src" %}
 12413   opcode(0xCC);
 12414   ins_encode( max_enc(dst,src) );
 12415   ins_pipe( pipe_slow );
 12416 %}
 12418 // ============================================================================
 12419 // Counted Loop limit node which represents exact final iterator value.
 12420 // Note: the resulting value should fit into integer range since
 12421 // counted loops have limit check on overflow.
 12422 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
 12423   match(Set limit (LoopLimit (Binary init limit) stride));
 12424   effect(TEMP limit_hi, TEMP tmp, KILL flags);
 12425   ins_cost(300);
 12427   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
 12428   ins_encode %{
 12429     int strd = (int)$stride$$constant;
 12430     assert(strd != 1 && strd != -1, "sanity");
 12431     int m1 = (strd > 0) ? 1 : -1;
 12432     // Convert limit to long (EAX:EDX)
 12433     __ cdql();
 12434     // Convert init to long (init:tmp)
 12435     __ movl($tmp$$Register, $init$$Register);
 12436     __ sarl($tmp$$Register, 31);
 12437     // $limit - $init
 12438     __ subl($limit$$Register, $init$$Register);
 12439     __ sbbl($limit_hi$$Register, $tmp$$Register);
 12440     // + ($stride - 1)
 12441     if (strd > 0) {
 12442       __ addl($limit$$Register, (strd - 1));
 12443       __ adcl($limit_hi$$Register, 0);
 12444       __ movl($tmp$$Register, strd);
 12445     } else {
 12446       __ addl($limit$$Register, (strd + 1));
 12447       __ adcl($limit_hi$$Register, -1);
 12448       __ lneg($limit_hi$$Register, $limit$$Register);
 12449       __ movl($tmp$$Register, -strd);
 12451     // signed devision: (EAX:EDX) / pos_stride
 12452     __ idivl($tmp$$Register);
 12453     if (strd < 0) {
 12454       // restore sign
 12455       __ negl($tmp$$Register);
 12457     // (EAX) * stride
 12458     __ mull($tmp$$Register);
 12459     // + init (ignore upper bits)
 12460     __ addl($limit$$Register, $init$$Register);
 12461   %}
 12462   ins_pipe( pipe_slow );
 12463 %}
 12465 // ============================================================================
 12466 // Branch Instructions
 12467 // Jump Table
 12468 instruct jumpXtnd(eRegI switch_val) %{
 12469   match(Jump switch_val);
 12470   ins_cost(350);
 12471   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 12472   ins_encode %{
 12473     // Jump to Address(table_base + switch_reg)
 12474     Address index(noreg, $switch_val$$Register, Address::times_1);
 12475     __ jump(ArrayAddress($constantaddress, index));
 12476   %}
 12477   ins_pipe(pipe_jmp);
 12478 %}
 12480 // Jump Direct - Label defines a relative address from JMP+1
 12481 instruct jmpDir(label labl) %{
 12482   match(Goto);
 12483   effect(USE labl);
 12485   ins_cost(300);
 12486   format %{ "JMP    $labl" %}
 12487   size(5);
 12488   ins_encode %{
 12489     Label* L = $labl$$label;
 12490     __ jmp(*L, false); // Always long jump
 12491   %}
 12492   ins_pipe( pipe_jmp );
 12493 %}
 12495 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12496 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12497   match(If cop cr);
 12498   effect(USE labl);
 12500   ins_cost(300);
 12501   format %{ "J$cop    $labl" %}
 12502   size(6);
 12503   ins_encode %{
 12504     Label* L = $labl$$label;
 12505     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12506   %}
 12507   ins_pipe( pipe_jcc );
 12508 %}
 12510 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12511 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12512   match(CountedLoopEnd cop cr);
 12513   effect(USE labl);
 12515   ins_cost(300);
 12516   format %{ "J$cop    $labl\t# Loop end" %}
 12517   size(6);
 12518   ins_encode %{
 12519     Label* L = $labl$$label;
 12520     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12521   %}
 12522   ins_pipe( pipe_jcc );
 12523 %}
 12525 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12526 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12527   match(CountedLoopEnd cop cmp);
 12528   effect(USE labl);
 12530   ins_cost(300);
 12531   format %{ "J$cop,u  $labl\t# Loop end" %}
 12532   size(6);
 12533   ins_encode %{
 12534     Label* L = $labl$$label;
 12535     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12536   %}
 12537   ins_pipe( pipe_jcc );
 12538 %}
 12540 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12541   match(CountedLoopEnd cop cmp);
 12542   effect(USE labl);
 12544   ins_cost(200);
 12545   format %{ "J$cop,u  $labl\t# Loop end" %}
 12546   size(6);
 12547   ins_encode %{
 12548     Label* L = $labl$$label;
 12549     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12550   %}
 12551   ins_pipe( pipe_jcc );
 12552 %}
 12554 // Jump Direct Conditional - using unsigned comparison
 12555 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12556   match(If cop cmp);
 12557   effect(USE labl);
 12559   ins_cost(300);
 12560   format %{ "J$cop,u  $labl" %}
 12561   size(6);
 12562   ins_encode %{
 12563     Label* L = $labl$$label;
 12564     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12565   %}
 12566   ins_pipe(pipe_jcc);
 12567 %}
 12569 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12570   match(If cop cmp);
 12571   effect(USE labl);
 12573   ins_cost(200);
 12574   format %{ "J$cop,u  $labl" %}
 12575   size(6);
 12576   ins_encode %{
 12577     Label* L = $labl$$label;
 12578     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12579   %}
 12580   ins_pipe(pipe_jcc);
 12581 %}
 12583 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12584   match(If cop cmp);
 12585   effect(USE labl);
 12587   ins_cost(200);
 12588   format %{ $$template
 12589     if ($cop$$cmpcode == Assembler::notEqual) {
 12590       $$emit$$"JP,u   $labl\n\t"
 12591       $$emit$$"J$cop,u   $labl"
 12592     } else {
 12593       $$emit$$"JP,u   done\n\t"
 12594       $$emit$$"J$cop,u   $labl\n\t"
 12595       $$emit$$"done:"
 12597   %}
 12598   ins_encode %{
 12599     Label* l = $labl$$label;
 12600     if ($cop$$cmpcode == Assembler::notEqual) {
 12601       __ jcc(Assembler::parity, *l, false);
 12602       __ jcc(Assembler::notEqual, *l, false);
 12603     } else if ($cop$$cmpcode == Assembler::equal) {
 12604       Label done;
 12605       __ jccb(Assembler::parity, done);
 12606       __ jcc(Assembler::equal, *l, false);
 12607       __ bind(done);
 12608     } else {
 12609        ShouldNotReachHere();
 12611   %}
 12612   ins_pipe(pipe_jcc);
 12613 %}
 12615 // ============================================================================
 12616 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12617 // array for an instance of the superklass.  Set a hidden internal cache on a
 12618 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12619 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12620 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12621   match(Set result (PartialSubtypeCheck sub super));
 12622   effect( KILL rcx, KILL cr );
 12624   ins_cost(1100);  // slightly larger than the next version
 12625   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12626             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12627             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12628             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12629             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12630             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12631             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12632      "miss:\t" %}
 12634   opcode(0x1); // Force a XOR of EDI
 12635   ins_encode( enc_PartialSubtypeCheck() );
 12636   ins_pipe( pipe_slow );
 12637 %}
 12639 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12640   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12641   effect( KILL rcx, KILL result );
 12643   ins_cost(1000);
 12644   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12645             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12646             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12647             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12648             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12649             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12650      "miss:\t" %}
 12652   opcode(0x0);  // No need to XOR EDI
 12653   ins_encode( enc_PartialSubtypeCheck() );
 12654   ins_pipe( pipe_slow );
 12655 %}
 12657 // ============================================================================
 12658 // Branch Instructions -- short offset versions
 12659 //
 12660 // These instructions are used to replace jumps of a long offset (the default
 12661 // match) with jumps of a shorter offset.  These instructions are all tagged
 12662 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12663 // match rules in general matching.  Instead, the ADLC generates a conversion
 12664 // method in the MachNode which can be used to do in-place replacement of the
 12665 // long variant with the shorter variant.  The compiler will determine if a
 12666 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12667 // specific code section of the file.
 12669 // Jump Direct - Label defines a relative address from JMP+1
 12670 instruct jmpDir_short(label labl) %{
 12671   match(Goto);
 12672   effect(USE labl);
 12674   ins_cost(300);
 12675   format %{ "JMP,s  $labl" %}
 12676   size(2);
 12677   ins_encode %{
 12678     Label* L = $labl$$label;
 12679     __ jmpb(*L);
 12680   %}
 12681   ins_pipe( pipe_jmp );
 12682   ins_short_branch(1);
 12683 %}
 12685 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12686 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12687   match(If cop cr);
 12688   effect(USE labl);
 12690   ins_cost(300);
 12691   format %{ "J$cop,s  $labl" %}
 12692   size(2);
 12693   ins_encode %{
 12694     Label* L = $labl$$label;
 12695     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12696   %}
 12697   ins_pipe( pipe_jcc );
 12698   ins_short_branch(1);
 12699 %}
 12701 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12702 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12703   match(CountedLoopEnd cop cr);
 12704   effect(USE labl);
 12706   ins_cost(300);
 12707   format %{ "J$cop,s  $labl\t# Loop end" %}
 12708   size(2);
 12709   ins_encode %{
 12710     Label* L = $labl$$label;
 12711     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12712   %}
 12713   ins_pipe( pipe_jcc );
 12714   ins_short_branch(1);
 12715 %}
 12717 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12718 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12719   match(CountedLoopEnd cop cmp);
 12720   effect(USE labl);
 12722   ins_cost(300);
 12723   format %{ "J$cop,us $labl\t# Loop end" %}
 12724   size(2);
 12725   ins_encode %{
 12726     Label* L = $labl$$label;
 12727     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12728   %}
 12729   ins_pipe( pipe_jcc );
 12730   ins_short_branch(1);
 12731 %}
 12733 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12734   match(CountedLoopEnd cop cmp);
 12735   effect(USE labl);
 12737   ins_cost(300);
 12738   format %{ "J$cop,us $labl\t# Loop end" %}
 12739   size(2);
 12740   ins_encode %{
 12741     Label* L = $labl$$label;
 12742     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12743   %}
 12744   ins_pipe( pipe_jcc );
 12745   ins_short_branch(1);
 12746 %}
 12748 // Jump Direct Conditional - using unsigned comparison
 12749 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12750   match(If cop cmp);
 12751   effect(USE labl);
 12753   ins_cost(300);
 12754   format %{ "J$cop,us $labl" %}
 12755   size(2);
 12756   ins_encode %{
 12757     Label* L = $labl$$label;
 12758     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12759   %}
 12760   ins_pipe( pipe_jcc );
 12761   ins_short_branch(1);
 12762 %}
 12764 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12765   match(If cop cmp);
 12766   effect(USE labl);
 12768   ins_cost(300);
 12769   format %{ "J$cop,us $labl" %}
 12770   size(2);
 12771   ins_encode %{
 12772     Label* L = $labl$$label;
 12773     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12774   %}
 12775   ins_pipe( pipe_jcc );
 12776   ins_short_branch(1);
 12777 %}
 12779 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12780   match(If cop cmp);
 12781   effect(USE labl);
 12783   ins_cost(300);
 12784   format %{ $$template
 12785     if ($cop$$cmpcode == Assembler::notEqual) {
 12786       $$emit$$"JP,u,s   $labl\n\t"
 12787       $$emit$$"J$cop,u,s   $labl"
 12788     } else {
 12789       $$emit$$"JP,u,s   done\n\t"
 12790       $$emit$$"J$cop,u,s  $labl\n\t"
 12791       $$emit$$"done:"
 12793   %}
 12794   size(4);
 12795   ins_encode %{
 12796     Label* l = $labl$$label;
 12797     if ($cop$$cmpcode == Assembler::notEqual) {
 12798       __ jccb(Assembler::parity, *l);
 12799       __ jccb(Assembler::notEqual, *l);
 12800     } else if ($cop$$cmpcode == Assembler::equal) {
 12801       Label done;
 12802       __ jccb(Assembler::parity, done);
 12803       __ jccb(Assembler::equal, *l);
 12804       __ bind(done);
 12805     } else {
 12806        ShouldNotReachHere();
 12808   %}
 12809   ins_pipe(pipe_jcc);
 12810   ins_short_branch(1);
 12811 %}
 12813 // ============================================================================
 12814 // Long Compare
 12815 //
 12816 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12817 // is tricky.  The flavor of compare used depends on whether we are testing
 12818 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12819 // The GE test is the negated LT test.  The LE test can be had by commuting
 12820 // the operands (yielding a GE test) and then negating; negate again for the
 12821 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12822 // NE test is negated from that.
 12824 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12825 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12826 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12827 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12828 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12829 // foo match ends up with the wrong leaf.  One fix is to not match both
 12830 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12831 // both forms beat the trinary form of long-compare and both are very useful
 12832 // on Intel which has so few registers.
 12834 // Manifest a CmpL result in an integer register.  Very painful.
 12835 // This is the test to avoid.
 12836 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12837   match(Set dst (CmpL3 src1 src2));
 12838   effect( KILL flags );
 12839   ins_cost(1000);
 12840   format %{ "XOR    $dst,$dst\n\t"
 12841             "CMP    $src1.hi,$src2.hi\n\t"
 12842             "JLT,s  m_one\n\t"
 12843             "JGT,s  p_one\n\t"
 12844             "CMP    $src1.lo,$src2.lo\n\t"
 12845             "JB,s   m_one\n\t"
 12846             "JEQ,s  done\n"
 12847     "p_one:\tINC    $dst\n\t"
 12848             "JMP,s  done\n"
 12849     "m_one:\tDEC    $dst\n"
 12850      "done:" %}
 12851   ins_encode %{
 12852     Label p_one, m_one, done;
 12853     __ xorptr($dst$$Register, $dst$$Register);
 12854     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12855     __ jccb(Assembler::less,    m_one);
 12856     __ jccb(Assembler::greater, p_one);
 12857     __ cmpl($src1$$Register, $src2$$Register);
 12858     __ jccb(Assembler::below,   m_one);
 12859     __ jccb(Assembler::equal,   done);
 12860     __ bind(p_one);
 12861     __ incrementl($dst$$Register);
 12862     __ jmpb(done);
 12863     __ bind(m_one);
 12864     __ decrementl($dst$$Register);
 12865     __ bind(done);
 12866   %}
 12867   ins_pipe( pipe_slow );
 12868 %}
 12870 //======
 12871 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12872 // compares.  Can be used for LE or GT compares by reversing arguments.
 12873 // NOT GOOD FOR EQ/NE tests.
 12874 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12875   match( Set flags (CmpL src zero ));
 12876   ins_cost(100);
 12877   format %{ "TEST   $src.hi,$src.hi" %}
 12878   opcode(0x85);
 12879   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12880   ins_pipe( ialu_cr_reg_reg );
 12881 %}
 12883 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12884 // compares.  Can be used for LE or GT compares by reversing arguments.
 12885 // NOT GOOD FOR EQ/NE tests.
 12886 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 12887   match( Set flags (CmpL src1 src2 ));
 12888   effect( TEMP tmp );
 12889   ins_cost(300);
 12890   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12891             "MOV    $tmp,$src1.hi\n\t"
 12892             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12893   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12894   ins_pipe( ialu_cr_reg_reg );
 12895 %}
 12897 // Long compares reg < zero/req OR reg >= zero/req.
 12898 // Just a wrapper for a normal branch, plus the predicate test.
 12899 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12900   match(If cmp flags);
 12901   effect(USE labl);
 12902   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12903   expand %{
 12904     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12905   %}
 12906 %}
 12908 // Compare 2 longs and CMOVE longs.
 12909 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12910   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12911   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12912   ins_cost(400);
 12913   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12914             "CMOV$cmp $dst.hi,$src.hi" %}
 12915   opcode(0x0F,0x40);
 12916   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12917   ins_pipe( pipe_cmov_reg_long );
 12918 %}
 12920 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12921   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12922   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12923   ins_cost(500);
 12924   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12925             "CMOV$cmp $dst.hi,$src.hi" %}
 12926   opcode(0x0F,0x40);
 12927   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12928   ins_pipe( pipe_cmov_reg_long );
 12929 %}
 12931 // Compare 2 longs and CMOVE ints.
 12932 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 12933   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12934   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12935   ins_cost(200);
 12936   format %{ "CMOV$cmp $dst,$src" %}
 12937   opcode(0x0F,0x40);
 12938   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12939   ins_pipe( pipe_cmov_reg );
 12940 %}
 12942 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 12943   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12944   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12945   ins_cost(250);
 12946   format %{ "CMOV$cmp $dst,$src" %}
 12947   opcode(0x0F,0x40);
 12948   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12949   ins_pipe( pipe_cmov_mem );
 12950 %}
 12952 // Compare 2 longs and CMOVE ints.
 12953 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12954   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12955   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12956   ins_cost(200);
 12957   format %{ "CMOV$cmp $dst,$src" %}
 12958   opcode(0x0F,0x40);
 12959   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12960   ins_pipe( pipe_cmov_reg );
 12961 %}
 12963 // Compare 2 longs and CMOVE doubles
 12964 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
 12965   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12966   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12967   ins_cost(200);
 12968   expand %{
 12969     fcmovDPR_regS(cmp,flags,dst,src);
 12970   %}
 12971 %}
 12973 // Compare 2 longs and CMOVE doubles
 12974 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12975   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12976   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12977   ins_cost(200);
 12978   expand %{
 12979     fcmovD_regS(cmp,flags,dst,src);
 12980   %}
 12981 %}
 12983 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
 12984   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12985   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12986   ins_cost(200);
 12987   expand %{
 12988     fcmovFPR_regS(cmp,flags,dst,src);
 12989   %}
 12990 %}
 12992 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12993   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12994   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12995   ins_cost(200);
 12996   expand %{
 12997     fcmovF_regS(cmp,flags,dst,src);
 12998   %}
 12999 %}
 13001 //======
 13002 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13003 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13004   match( Set flags (CmpL src zero ));
 13005   effect(TEMP tmp);
 13006   ins_cost(200);
 13007   format %{ "MOV    $tmp,$src.lo\n\t"
 13008             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 13009   ins_encode( long_cmp_flags0( src, tmp ) );
 13010   ins_pipe( ialu_reg_reg_long );
 13011 %}
 13013 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13014 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 13015   match( Set flags (CmpL src1 src2 ));
 13016   ins_cost(200+300);
 13017   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13018             "JNE,s  skip\n\t"
 13019             "CMP    $src1.hi,$src2.hi\n\t"
 13020      "skip:\t" %}
 13021   ins_encode( long_cmp_flags1( src1, src2 ) );
 13022   ins_pipe( ialu_cr_reg_reg );
 13023 %}
 13025 // Long compare reg == zero/reg OR reg != zero/reg
 13026 // Just a wrapper for a normal branch, plus the predicate test.
 13027 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 13028   match(If cmp flags);
 13029   effect(USE labl);
 13030   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13031   expand %{
 13032     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 13033   %}
 13034 %}
 13036 // Compare 2 longs and CMOVE longs.
 13037 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 13038   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13039   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13040   ins_cost(400);
 13041   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13042             "CMOV$cmp $dst.hi,$src.hi" %}
 13043   opcode(0x0F,0x40);
 13044   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13045   ins_pipe( pipe_cmov_reg_long );
 13046 %}
 13048 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 13049   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13050   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13051   ins_cost(500);
 13052   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13053             "CMOV$cmp $dst.hi,$src.hi" %}
 13054   opcode(0x0F,0x40);
 13055   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13056   ins_pipe( pipe_cmov_reg_long );
 13057 %}
 13059 // Compare 2 longs and CMOVE ints.
 13060 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 13061   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13062   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13063   ins_cost(200);
 13064   format %{ "CMOV$cmp $dst,$src" %}
 13065   opcode(0x0F,0x40);
 13066   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13067   ins_pipe( pipe_cmov_reg );
 13068 %}
 13070 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 13071   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13072   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13073   ins_cost(250);
 13074   format %{ "CMOV$cmp $dst,$src" %}
 13075   opcode(0x0F,0x40);
 13076   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13077   ins_pipe( pipe_cmov_mem );
 13078 %}
 13080 // Compare 2 longs and CMOVE ints.
 13081 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 13082   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13083   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13084   ins_cost(200);
 13085   format %{ "CMOV$cmp $dst,$src" %}
 13086   opcode(0x0F,0x40);
 13087   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13088   ins_pipe( pipe_cmov_reg );
 13089 %}
 13091 // Compare 2 longs and CMOVE doubles
 13092 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
 13093   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13094   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13095   ins_cost(200);
 13096   expand %{
 13097     fcmovDPR_regS(cmp,flags,dst,src);
 13098   %}
 13099 %}
 13101 // Compare 2 longs and CMOVE doubles
 13102 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 13103   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13104   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13105   ins_cost(200);
 13106   expand %{
 13107     fcmovD_regS(cmp,flags,dst,src);
 13108   %}
 13109 %}
 13111 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
 13112   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13113   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13114   ins_cost(200);
 13115   expand %{
 13116     fcmovFPR_regS(cmp,flags,dst,src);
 13117   %}
 13118 %}
 13120 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 13121   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13122   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13123   ins_cost(200);
 13124   expand %{
 13125     fcmovF_regS(cmp,flags,dst,src);
 13126   %}
 13127 %}
 13129 //======
 13130 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13131 // Same as cmpL_reg_flags_LEGT except must negate src
 13132 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13133   match( Set flags (CmpL src zero ));
 13134   effect( TEMP tmp );
 13135   ins_cost(300);
 13136   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 13137             "CMP    $tmp,$src.lo\n\t"
 13138             "SBB    $tmp,$src.hi\n\t" %}
 13139   ins_encode( long_cmp_flags3(src, tmp) );
 13140   ins_pipe( ialu_reg_reg_long );
 13141 %}
 13143 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13144 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 13145 // requires a commuted test to get the same result.
 13146 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13147   match( Set flags (CmpL src1 src2 ));
 13148   effect( TEMP tmp );
 13149   ins_cost(300);
 13150   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 13151             "MOV    $tmp,$src2.hi\n\t"
 13152             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 13153   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 13154   ins_pipe( ialu_cr_reg_reg );
 13155 %}
 13157 // Long compares reg < zero/req OR reg >= zero/req.
 13158 // Just a wrapper for a normal branch, plus the predicate test
 13159 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 13160   match(If cmp flags);
 13161   effect(USE labl);
 13162   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 13163   ins_cost(300);
 13164   expand %{
 13165     jmpCon(cmp,flags,labl);    // JGT or JLE...
 13166   %}
 13167 %}
 13169 // Compare 2 longs and CMOVE longs.
 13170 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 13171   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13172   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13173   ins_cost(400);
 13174   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13175             "CMOV$cmp $dst.hi,$src.hi" %}
 13176   opcode(0x0F,0x40);
 13177   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13178   ins_pipe( pipe_cmov_reg_long );
 13179 %}
 13181 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 13182   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13183   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13184   ins_cost(500);
 13185   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13186             "CMOV$cmp $dst.hi,$src.hi+4" %}
 13187   opcode(0x0F,0x40);
 13188   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13189   ins_pipe( pipe_cmov_reg_long );
 13190 %}
 13192 // Compare 2 longs and CMOVE ints.
 13193 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 13194   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13195   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13196   ins_cost(200);
 13197   format %{ "CMOV$cmp $dst,$src" %}
 13198   opcode(0x0F,0x40);
 13199   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13200   ins_pipe( pipe_cmov_reg );
 13201 %}
 13203 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 13204   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13205   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13206   ins_cost(250);
 13207   format %{ "CMOV$cmp $dst,$src" %}
 13208   opcode(0x0F,0x40);
 13209   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13210   ins_pipe( pipe_cmov_mem );
 13211 %}
 13213 // Compare 2 longs and CMOVE ptrs.
 13214 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13215   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13216   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13217   ins_cost(200);
 13218   format %{ "CMOV$cmp $dst,$src" %}
 13219   opcode(0x0F,0x40);
 13220   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13221   ins_pipe( pipe_cmov_reg );
 13222 %}
 13224 // Compare 2 longs and CMOVE doubles
 13225 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
 13226   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13227   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13228   ins_cost(200);
 13229   expand %{
 13230     fcmovDPR_regS(cmp,flags,dst,src);
 13231   %}
 13232 %}
 13234 // Compare 2 longs and CMOVE doubles
 13235 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13236   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13237   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13238   ins_cost(200);
 13239   expand %{
 13240     fcmovD_regS(cmp,flags,dst,src);
 13241   %}
 13242 %}
 13244 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
 13245   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13246   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13247   ins_cost(200);
 13248   expand %{
 13249     fcmovFPR_regS(cmp,flags,dst,src);
 13250   %}
 13251 %}
 13254 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13255   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13256   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13257   ins_cost(200);
 13258   expand %{
 13259     fcmovF_regS(cmp,flags,dst,src);
 13260   %}
 13261 %}
 13264 // ============================================================================
 13265 // Procedure Call/Return Instructions
 13266 // Call Java Static Instruction
 13267 // Note: If this code changes, the corresponding ret_addr_offset() and
 13268 //       compute_padding() functions will have to be adjusted.
 13269 instruct CallStaticJavaDirect(method meth) %{
 13270   match(CallStaticJava);
 13271   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13272   effect(USE meth);
 13274   ins_cost(300);
 13275   format %{ "CALL,static " %}
 13276   opcode(0xE8); /* E8 cd */
 13277   ins_encode( pre_call_FPU,
 13278               Java_Static_Call( meth ),
 13279               call_epilog,
 13280               post_call_FPU );
 13281   ins_pipe( pipe_slow );
 13282   ins_alignment(4);
 13283 %}
 13285 // Call Java Static Instruction (method handle version)
 13286 // Note: If this code changes, the corresponding ret_addr_offset() and
 13287 //       compute_padding() functions will have to be adjusted.
 13288 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 13289   match(CallStaticJava);
 13290   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13291   effect(USE meth);
 13292   // EBP is saved by all callees (for interpreter stack correction).
 13293   // We use it here for a similar purpose, in {preserve,restore}_SP.
 13295   ins_cost(300);
 13296   format %{ "CALL,static/MethodHandle " %}
 13297   opcode(0xE8); /* E8 cd */
 13298   ins_encode( pre_call_FPU,
 13299               preserve_SP,
 13300               Java_Static_Call( meth ),
 13301               restore_SP,
 13302               call_epilog,
 13303               post_call_FPU );
 13304   ins_pipe( pipe_slow );
 13305   ins_alignment(4);
 13306 %}
 13308 // Call Java Dynamic Instruction
 13309 // Note: If this code changes, the corresponding ret_addr_offset() and
 13310 //       compute_padding() functions will have to be adjusted.
 13311 instruct CallDynamicJavaDirect(method meth) %{
 13312   match(CallDynamicJava);
 13313   effect(USE meth);
 13315   ins_cost(300);
 13316   format %{ "MOV    EAX,(oop)-1\n\t"
 13317             "CALL,dynamic" %}
 13318   opcode(0xE8); /* E8 cd */
 13319   ins_encode( pre_call_FPU,
 13320               Java_Dynamic_Call( meth ),
 13321               call_epilog,
 13322               post_call_FPU );
 13323   ins_pipe( pipe_slow );
 13324   ins_alignment(4);
 13325 %}
 13327 // Call Runtime Instruction
 13328 instruct CallRuntimeDirect(method meth) %{
 13329   match(CallRuntime );
 13330   effect(USE meth);
 13332   ins_cost(300);
 13333   format %{ "CALL,runtime " %}
 13334   opcode(0xE8); /* E8 cd */
 13335   // Use FFREEs to clear entries in float stack
 13336   ins_encode( pre_call_FPU,
 13337               FFree_Float_Stack_All,
 13338               Java_To_Runtime( meth ),
 13339               post_call_FPU );
 13340   ins_pipe( pipe_slow );
 13341 %}
 13343 // Call runtime without safepoint
 13344 instruct CallLeafDirect(method meth) %{
 13345   match(CallLeaf);
 13346   effect(USE meth);
 13348   ins_cost(300);
 13349   format %{ "CALL_LEAF,runtime " %}
 13350   opcode(0xE8); /* E8 cd */
 13351   ins_encode( pre_call_FPU,
 13352               FFree_Float_Stack_All,
 13353               Java_To_Runtime( meth ),
 13354               Verify_FPU_For_Leaf, post_call_FPU );
 13355   ins_pipe( pipe_slow );
 13356 %}
 13358 instruct CallLeafNoFPDirect(method meth) %{
 13359   match(CallLeafNoFP);
 13360   effect(USE meth);
 13362   ins_cost(300);
 13363   format %{ "CALL_LEAF_NOFP,runtime " %}
 13364   opcode(0xE8); /* E8 cd */
 13365   ins_encode(Java_To_Runtime(meth));
 13366   ins_pipe( pipe_slow );
 13367 %}
 13370 // Return Instruction
 13371 // Remove the return address & jump to it.
 13372 instruct Ret() %{
 13373   match(Return);
 13374   format %{ "RET" %}
 13375   opcode(0xC3);
 13376   ins_encode(OpcP);
 13377   ins_pipe( pipe_jmp );
 13378 %}
 13380 // Tail Call; Jump from runtime stub to Java code.
 13381 // Also known as an 'interprocedural jump'.
 13382 // Target of jump will eventually return to caller.
 13383 // TailJump below removes the return address.
 13384 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13385   match(TailCall jump_target method_oop );
 13386   ins_cost(300);
 13387   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13388   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13389   ins_encode( OpcP, RegOpc(jump_target) );
 13390   ins_pipe( pipe_jmp );
 13391 %}
 13394 // Tail Jump; remove the return address; jump to target.
 13395 // TailCall above leaves the return address around.
 13396 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13397   match( TailJump jump_target ex_oop );
 13398   ins_cost(300);
 13399   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13400             "JMP    $jump_target " %}
 13401   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13402   ins_encode( enc_pop_rdx,
 13403               OpcP, RegOpc(jump_target) );
 13404   ins_pipe( pipe_jmp );
 13405 %}
 13407 // Create exception oop: created by stack-crawling runtime code.
 13408 // Created exception is now available to this handler, and is setup
 13409 // just prior to jumping to this handler.  No code emitted.
 13410 instruct CreateException( eAXRegP ex_oop )
 13411 %{
 13412   match(Set ex_oop (CreateEx));
 13414   size(0);
 13415   // use the following format syntax
 13416   format %{ "# exception oop is in EAX; no code emitted" %}
 13417   ins_encode();
 13418   ins_pipe( empty );
 13419 %}
 13422 // Rethrow exception:
 13423 // The exception oop will come in the first argument position.
 13424 // Then JUMP (not call) to the rethrow stub code.
 13425 instruct RethrowException()
 13426 %{
 13427   match(Rethrow);
 13429   // use the following format syntax
 13430   format %{ "JMP    rethrow_stub" %}
 13431   ins_encode(enc_rethrow);
 13432   ins_pipe( pipe_jmp );
 13433 %}
 13435 // inlined locking and unlocking
 13438 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
 13439   match( Set cr (FastLock object box) );
 13440   effect( TEMP tmp, TEMP scr );
 13441   ins_cost(300);
 13442   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
 13443   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13444   ins_pipe( pipe_slow );
 13445 %}
 13447 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13448   match( Set cr (FastUnlock object box) );
 13449   effect( TEMP tmp );
 13450   ins_cost(300);
 13451   format %{ "FASTUNLOCK $object, $box, $tmp" %}
 13452   ins_encode( Fast_Unlock(object,box,tmp) );
 13453   ins_pipe( pipe_slow );
 13454 %}
 13458 // ============================================================================
 13459 // Safepoint Instruction
 13460 instruct safePoint_poll(eFlagsReg cr) %{
 13461   match(SafePoint);
 13462   effect(KILL cr);
 13464   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13465   // On SPARC that might be acceptable as we can generate the address with
 13466   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13467   // putting additional pressure on the index-0 in the D$.  Because of
 13468   // alignment (just like the situation at hand) the lower indices tend
 13469   // to see more traffic.  It'd be better to change the polling address
 13470   // to offset 0 of the last $line in the polling page.
 13472   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13473   ins_cost(125);
 13474   size(6) ;
 13475   ins_encode( Safepoint_Poll() );
 13476   ins_pipe( ialu_reg_mem );
 13477 %}
 13479 //----------PEEPHOLE RULES-----------------------------------------------------
 13480 // These must follow all instruction definitions as they use the names
 13481 // defined in the instructions definitions.
 13482 //
 13483 // peepmatch ( root_instr_name [preceding_instruction]* );
 13484 //
 13485 // peepconstraint %{
 13486 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13487 //  [, ...] );
 13488 // // instruction numbers are zero-based using left to right order in peepmatch
 13489 //
 13490 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13491 // // provide an instruction_number.operand_name for each operand that appears
 13492 // // in the replacement instruction's match rule
 13493 //
 13494 // ---------VM FLAGS---------------------------------------------------------
 13495 //
 13496 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13497 //
 13498 // Each peephole rule is given an identifying number starting with zero and
 13499 // increasing by one in the order seen by the parser.  An individual peephole
 13500 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13501 // on the command-line.
 13502 //
 13503 // ---------CURRENT LIMITATIONS----------------------------------------------
 13504 //
 13505 // Only match adjacent instructions in same basic block
 13506 // Only equality constraints
 13507 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13508 // Only one replacement instruction
 13509 //
 13510 // ---------EXAMPLE----------------------------------------------------------
 13511 //
 13512 // // pertinent parts of existing instructions in architecture description
 13513 // instruct movI(eRegI dst, eRegI src) %{
 13514 //   match(Set dst (CopyI src));
 13515 // %}
 13516 //
 13517 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13518 //   match(Set dst (AddI dst src));
 13519 //   effect(KILL cr);
 13520 // %}
 13521 //
 13522 // // Change (inc mov) to lea
 13523 // peephole %{
 13524 //   // increment preceeded by register-register move
 13525 //   peepmatch ( incI_eReg movI );
 13526 //   // require that the destination register of the increment
 13527 //   // match the destination register of the move
 13528 //   peepconstraint ( 0.dst == 1.dst );
 13529 //   // construct a replacement instruction that sets
 13530 //   // the destination to ( move's source register + one )
 13531 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13532 // %}
 13533 //
 13534 // Implementation no longer uses movX instructions since
 13535 // machine-independent system no longer uses CopyX nodes.
 13536 //
 13537 // peephole %{
 13538 //   peepmatch ( incI_eReg movI );
 13539 //   peepconstraint ( 0.dst == 1.dst );
 13540 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13541 // %}
 13542 //
 13543 // peephole %{
 13544 //   peepmatch ( decI_eReg movI );
 13545 //   peepconstraint ( 0.dst == 1.dst );
 13546 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13547 // %}
 13548 //
 13549 // peephole %{
 13550 //   peepmatch ( addI_eReg_imm movI );
 13551 //   peepconstraint ( 0.dst == 1.dst );
 13552 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13553 // %}
 13554 //
 13555 // peephole %{
 13556 //   peepmatch ( addP_eReg_imm movP );
 13557 //   peepconstraint ( 0.dst == 1.dst );
 13558 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13559 // %}
 13561 // // Change load of spilled value to only a spill
 13562 // instruct storeI(memory mem, eRegI src) %{
 13563 //   match(Set mem (StoreI mem src));
 13564 // %}
 13565 //
 13566 // instruct loadI(eRegI dst, memory mem) %{
 13567 //   match(Set dst (LoadI mem));
 13568 // %}
 13569 //
 13570 peephole %{
 13571   peepmatch ( loadI storeI );
 13572   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13573   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13574 %}
 13576 //----------SMARTSPILL RULES---------------------------------------------------
 13577 // These must follow all instruction definitions as they use the names
 13578 // defined in the instructions definitions.

mercurial