src/share/vm/runtime/safepoint.cpp

Tue, 24 Jul 2012 10:51:00 -0700

author
twisti
date
Tue, 24 Jul 2012 10:51:00 -0700
changeset 3969
1d7922586cf6
parent 3900
d2a62e0f25eb
child 4299
f34d701e952e
permissions
-rw-r--r--

7023639: JSR 292 method handle invocation needs a fast path for compiled code
6984705: JSR 292 method handle creation should not go through JNI
Summary: remove assembly code for JDK 7 chained method handles
Reviewed-by: jrose, twisti, kvn, mhaupt
Contributed-by: John Rose <john.r.rose@oracle.com>, Christian Thalinger <christian.thalinger@oracle.com>, Michael Haupt <michael.haupt@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "memory/resourceArea.hpp"
    36 #include "memory/universe.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/symbol.hpp"
    39 #include "runtime/compilationPolicy.hpp"
    40 #include "runtime/deoptimization.hpp"
    41 #include "runtime/frame.inline.hpp"
    42 #include "runtime/interfaceSupport.hpp"
    43 #include "runtime/mutexLocker.hpp"
    44 #include "runtime/osThread.hpp"
    45 #include "runtime/safepoint.hpp"
    46 #include "runtime/signature.hpp"
    47 #include "runtime/stubCodeGenerator.hpp"
    48 #include "runtime/stubRoutines.hpp"
    49 #include "runtime/sweeper.hpp"
    50 #include "runtime/synchronizer.hpp"
    51 #include "services/memTracker.hpp"
    52 #include "services/runtimeService.hpp"
    53 #include "utilities/events.hpp"
    54 #ifdef TARGET_ARCH_x86
    55 # include "nativeInst_x86.hpp"
    56 # include "vmreg_x86.inline.hpp"
    57 #endif
    58 #ifdef TARGET_ARCH_sparc
    59 # include "nativeInst_sparc.hpp"
    60 # include "vmreg_sparc.inline.hpp"
    61 #endif
    62 #ifdef TARGET_ARCH_zero
    63 # include "nativeInst_zero.hpp"
    64 # include "vmreg_zero.inline.hpp"
    65 #endif
    66 #ifdef TARGET_ARCH_arm
    67 # include "nativeInst_arm.hpp"
    68 # include "vmreg_arm.inline.hpp"
    69 #endif
    70 #ifdef TARGET_ARCH_ppc
    71 # include "nativeInst_ppc.hpp"
    72 # include "vmreg_ppc.inline.hpp"
    73 #endif
    74 #ifdef TARGET_OS_FAMILY_linux
    75 # include "thread_linux.inline.hpp"
    76 #endif
    77 #ifdef TARGET_OS_FAMILY_solaris
    78 # include "thread_solaris.inline.hpp"
    79 #endif
    80 #ifdef TARGET_OS_FAMILY_windows
    81 # include "thread_windows.inline.hpp"
    82 #endif
    83 #ifdef TARGET_OS_FAMILY_bsd
    84 # include "thread_bsd.inline.hpp"
    85 #endif
    86 #ifndef SERIALGC
    87 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    88 #include "gc_implementation/shared/concurrentGCThread.hpp"
    89 #endif
    90 #ifdef COMPILER1
    91 #include "c1/c1_globals.hpp"
    92 #endif
    94 // --------------------------------------------------------------------------------------------------
    95 // Implementation of Safepoint begin/end
    97 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
    98 volatile int  SafepointSynchronize::_waiting_to_block = 0;
    99 volatile int SafepointSynchronize::_safepoint_counter = 0;
   100 int SafepointSynchronize::_current_jni_active_count = 0;
   101 long  SafepointSynchronize::_end_of_last_safepoint = 0;
   102 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
   103 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
   104 static bool timeout_error_printed = false;
   106 // Roll all threads forward to a safepoint and suspend them all
   107 void SafepointSynchronize::begin() {
   109   Thread* myThread = Thread::current();
   110   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
   112   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   113     _safepoint_begin_time = os::javaTimeNanos();
   114     _ts_of_current_safepoint = tty->time_stamp().seconds();
   115   }
   117 #ifndef SERIALGC
   118   if (UseConcMarkSweepGC) {
   119     // In the future we should investigate whether CMS can use the
   120     // more-general mechanism below.  DLD (01/05).
   121     ConcurrentMarkSweepThread::synchronize(false);
   122   } else if (UseG1GC) {
   123     ConcurrentGCThread::safepoint_synchronize();
   124   }
   125 #endif // SERIALGC
   127   // By getting the Threads_lock, we assure that no threads are about to start or
   128   // exit. It is released again in SafepointSynchronize::end().
   129   Threads_lock->lock();
   131   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
   133   int nof_threads = Threads::number_of_threads();
   135   if (TraceSafepoint) {
   136     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
   137   }
   139   RuntimeService::record_safepoint_begin();
   141   MutexLocker mu(Safepoint_lock);
   143   // Reset the count of active JNI critical threads
   144   _current_jni_active_count = 0;
   146   // Set number of threads to wait for, before we initiate the callbacks
   147   _waiting_to_block = nof_threads;
   148   TryingToBlock     = 0 ;
   149   int still_running = nof_threads;
   151   // Save the starting time, so that it can be compared to see if this has taken
   152   // too long to complete.
   153   jlong safepoint_limit_time;
   154   timeout_error_printed = false;
   156   // PrintSafepointStatisticsTimeout can be specified separately. When
   157   // specified, PrintSafepointStatistics will be set to true in
   158   // deferred_initialize_stat method. The initialization has to be done
   159   // early enough to avoid any races. See bug 6880029 for details.
   160   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   161     deferred_initialize_stat();
   162   }
   164   // Begin the process of bringing the system to a safepoint.
   165   // Java threads can be in several different states and are
   166   // stopped by different mechanisms:
   167   //
   168   //  1. Running interpreted
   169   //     The interpeter dispatch table is changed to force it to
   170   //     check for a safepoint condition between bytecodes.
   171   //  2. Running in native code
   172   //     When returning from the native code, a Java thread must check
   173   //     the safepoint _state to see if we must block.  If the
   174   //     VM thread sees a Java thread in native, it does
   175   //     not wait for this thread to block.  The order of the memory
   176   //     writes and reads of both the safepoint state and the Java
   177   //     threads state is critical.  In order to guarantee that the
   178   //     memory writes are serialized with respect to each other,
   179   //     the VM thread issues a memory barrier instruction
   180   //     (on MP systems).  In order to avoid the overhead of issuing
   181   //     a memory barrier for each Java thread making native calls, each Java
   182   //     thread performs a write to a single memory page after changing
   183   //     the thread state.  The VM thread performs a sequence of
   184   //     mprotect OS calls which forces all previous writes from all
   185   //     Java threads to be serialized.  This is done in the
   186   //     os::serialize_thread_states() call.  This has proven to be
   187   //     much more efficient than executing a membar instruction
   188   //     on every call to native code.
   189   //  3. Running compiled Code
   190   //     Compiled code reads a global (Safepoint Polling) page that
   191   //     is set to fault if we are trying to get to a safepoint.
   192   //  4. Blocked
   193   //     A thread which is blocked will not be allowed to return from the
   194   //     block condition until the safepoint operation is complete.
   195   //  5. In VM or Transitioning between states
   196   //     If a Java thread is currently running in the VM or transitioning
   197   //     between states, the safepointing code will wait for the thread to
   198   //     block itself when it attempts transitions to a new state.
   199   //
   200   _state            = _synchronizing;
   201   OrderAccess::fence();
   203   // Flush all thread states to memory
   204   if (!UseMembar) {
   205     os::serialize_thread_states();
   206   }
   208   // Make interpreter safepoint aware
   209   Interpreter::notice_safepoints();
   211   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
   212     // Make polling safepoint aware
   213     guarantee (PageArmed == 0, "invariant") ;
   214     PageArmed = 1 ;
   215     os::make_polling_page_unreadable();
   216   }
   218   // Consider using active_processor_count() ... but that call is expensive.
   219   int ncpus = os::processor_count() ;
   221 #ifdef ASSERT
   222   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   223     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
   224     // Clear the visited flag to ensure that the critical counts are collected properly.
   225     cur->set_visited_for_critical_count(false);
   226   }
   227 #endif // ASSERT
   229   if (SafepointTimeout)
   230     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
   232   // Iterate through all threads until it have been determined how to stop them all at a safepoint
   233   unsigned int iterations = 0;
   234   int steps = 0 ;
   235   while(still_running > 0) {
   236     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   237       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
   238       ThreadSafepointState *cur_state = cur->safepoint_state();
   239       if (cur_state->is_running()) {
   240         cur_state->examine_state_of_thread();
   241         if (!cur_state->is_running()) {
   242            still_running--;
   243            // consider adjusting steps downward:
   244            //   steps = 0
   245            //   steps -= NNN
   246            //   steps >>= 1
   247            //   steps = MIN(steps, 2000-100)
   248            //   if (iterations != 0) steps -= NNN
   249         }
   250         if (TraceSafepoint && Verbose) cur_state->print();
   251       }
   252     }
   254     if (PrintSafepointStatistics && iterations == 0) {
   255       begin_statistics(nof_threads, still_running);
   256     }
   258     if (still_running > 0) {
   259       // Check for if it takes to long
   260       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
   261         print_safepoint_timeout(_spinning_timeout);
   262       }
   264       // Spin to avoid context switching.
   265       // There's a tension between allowing the mutators to run (and rendezvous)
   266       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
   267       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
   268       // spinning by the VM thread on a saturated system can increase rendezvous latency.
   269       // Blocking or yielding incur their own penalties in the form of context switching
   270       // and the resultant loss of $ residency.
   271       //
   272       // Further complicating matters is that yield() does not work as naively expected
   273       // on many platforms -- yield() does not guarantee that any other ready threads
   274       // will run.   As such we revert yield_all() after some number of iterations.
   275       // Yield_all() is implemented as a short unconditional sleep on some platforms.
   276       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
   277       // can actually increase the time it takes the VM thread to detect that a system-wide
   278       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
   279       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
   280       // In that case the mutators will be stalled waiting for the safepoint to complete and the
   281       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
   282       // will eventually wake up and detect that all mutators are safe, at which point
   283       // we'll again make progress.
   284       //
   285       // Beware too that that the VMThread typically runs at elevated priority.
   286       // Its default priority is higher than the default mutator priority.
   287       // Obviously, this complicates spinning.
   288       //
   289       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
   290       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
   291       //
   292       // See the comments in synchronizer.cpp for additional remarks on spinning.
   293       //
   294       // In the future we might:
   295       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
   296       //    This is tricky as the path used by a thread exiting the JVM (say on
   297       //    on JNI call-out) simply stores into its state field.  The burden
   298       //    is placed on the VM thread, which must poll (spin).
   299       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
   300       //    we might aggressively scan the stacks of threads that are already safe.
   301       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
   302       //    If all the mutators are ONPROC there's no reason to sleep or yield.
   303       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
   304       // 5. Check system saturation.  If the system is not fully saturated then
   305       //    simply spin and avoid sleep/yield.
   306       // 6. As still-running mutators rendezvous they could unpark the sleeping
   307       //    VMthread.  This works well for still-running mutators that become
   308       //    safe.  The VMthread must still poll for mutators that call-out.
   309       // 7. Drive the policy on time-since-begin instead of iterations.
   310       // 8. Consider making the spin duration a function of the # of CPUs:
   311       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
   312       //    Alternately, instead of counting iterations of the outer loop
   313       //    we could count the # of threads visited in the inner loop, above.
   314       // 9. On windows consider using the return value from SwitchThreadTo()
   315       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
   317       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
   318          guarantee (PageArmed == 0, "invariant") ;
   319          PageArmed = 1 ;
   320          os::make_polling_page_unreadable();
   321       }
   323       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
   324       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
   325       ++steps ;
   326       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
   327         SpinPause() ;     // MP-Polite spin
   328       } else
   329       if (steps < DeferThrSuspendLoopCount) {
   330         os::NakedYield() ;
   331       } else {
   332         os::yield_all(steps) ;
   333         // Alternately, the VM thread could transiently depress its scheduling priority or
   334         // transiently increase the priority of the tardy mutator(s).
   335       }
   337       iterations ++ ;
   338     }
   339     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
   340   }
   341   assert(still_running == 0, "sanity check");
   343   if (PrintSafepointStatistics) {
   344     update_statistics_on_spin_end();
   345   }
   347   // wait until all threads are stopped
   348   while (_waiting_to_block > 0) {
   349     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
   350     if (!SafepointTimeout || timeout_error_printed) {
   351       Safepoint_lock->wait(true);  // true, means with no safepoint checks
   352     } else {
   353       // Compute remaining time
   354       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
   356       // If there is no remaining time, then there is an error
   357       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
   358         print_safepoint_timeout(_blocking_timeout);
   359       }
   360     }
   361   }
   362   assert(_waiting_to_block == 0, "sanity check");
   364 #ifndef PRODUCT
   365   if (SafepointTimeout) {
   366     jlong current_time = os::javaTimeNanos();
   367     if (safepoint_limit_time < current_time) {
   368       tty->print_cr("# SafepointSynchronize: Finished after "
   369                     INT64_FORMAT_W(6) " ms",
   370                     ((current_time - safepoint_limit_time) / MICROUNITS +
   371                      SafepointTimeoutDelay));
   372     }
   373   }
   374 #endif
   376   assert((_safepoint_counter & 0x1) == 0, "must be even");
   377   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   378   _safepoint_counter ++;
   380   // Record state
   381   _state = _synchronized;
   383   OrderAccess::fence();
   385 #ifdef ASSERT
   386   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   387     // make sure all the threads were visited
   388     assert(cur->was_visited_for_critical_count(), "missed a thread");
   389   }
   390 #endif // ASSERT
   392   // Update the count of active JNI critical regions
   393   GC_locker::set_jni_lock_count(_current_jni_active_count);
   395   if (TraceSafepoint) {
   396     VM_Operation *op = VMThread::vm_operation();
   397     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
   398   }
   400   RuntimeService::record_safepoint_synchronized();
   401   if (PrintSafepointStatistics) {
   402     update_statistics_on_sync_end(os::javaTimeNanos());
   403   }
   405   // Call stuff that needs to be run when a safepoint is just about to be completed
   406   do_cleanup_tasks();
   408   if (PrintSafepointStatistics) {
   409     // Record how much time spend on the above cleanup tasks
   410     update_statistics_on_cleanup_end(os::javaTimeNanos());
   411   }
   412 }
   414 // Wake up all threads, so they are ready to resume execution after the safepoint
   415 // operation has been carried out
   416 void SafepointSynchronize::end() {
   418   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   419   assert((_safepoint_counter & 0x1) == 1, "must be odd");
   420   _safepoint_counter ++;
   421   // memory fence isn't required here since an odd _safepoint_counter
   422   // value can do no harm and a fence is issued below anyway.
   424   DEBUG_ONLY(Thread* myThread = Thread::current();)
   425   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
   427   if (PrintSafepointStatistics) {
   428     end_statistics(os::javaTimeNanos());
   429   }
   431 #ifdef ASSERT
   432   // A pending_exception cannot be installed during a safepoint.  The threads
   433   // may install an async exception after they come back from a safepoint into
   434   // pending_exception after they unblock.  But that should happen later.
   435   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
   436     assert (!(cur->has_pending_exception() &&
   437               cur->safepoint_state()->is_at_poll_safepoint()),
   438             "safepoint installed a pending exception");
   439   }
   440 #endif // ASSERT
   442   if (PageArmed) {
   443     // Make polling safepoint aware
   444     os::make_polling_page_readable();
   445     PageArmed = 0 ;
   446   }
   448   // Remove safepoint check from interpreter
   449   Interpreter::ignore_safepoints();
   451   {
   452     MutexLocker mu(Safepoint_lock);
   454     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
   456     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
   457     // when they get restarted.
   458     _state = _not_synchronized;
   459     OrderAccess::fence();
   461     if (TraceSafepoint) {
   462        tty->print_cr("Leaving safepoint region");
   463     }
   465     // Start suspended threads
   466     for(JavaThread *current = Threads::first(); current; current = current->next()) {
   467       // A problem occurring on Solaris is when attempting to restart threads
   468       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
   469       // to the next one (since it has been running the longest).  We then have
   470       // to wait for a cpu to become available before we can continue restarting
   471       // threads.
   472       // FIXME: This causes the performance of the VM to degrade when active and with
   473       // large numbers of threads.  Apparently this is due to the synchronous nature
   474       // of suspending threads.
   475       //
   476       // TODO-FIXME: the comments above are vestigial and no longer apply.
   477       // Furthermore, using solaris' schedctl in this particular context confers no benefit
   478       if (VMThreadHintNoPreempt) {
   479         os::hint_no_preempt();
   480       }
   481       ThreadSafepointState* cur_state = current->safepoint_state();
   482       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
   483       cur_state->restart();
   484       assert(cur_state->is_running(), "safepoint state has not been reset");
   485     }
   487     RuntimeService::record_safepoint_end();
   489     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
   490     // blocked in signal_thread_blocked
   491     Threads_lock->unlock();
   493   }
   494 #ifndef SERIALGC
   495   // If there are any concurrent GC threads resume them.
   496   if (UseConcMarkSweepGC) {
   497     ConcurrentMarkSweepThread::desynchronize(false);
   498   } else if (UseG1GC) {
   499     ConcurrentGCThread::safepoint_desynchronize();
   500   }
   501 #endif // SERIALGC
   502   // record this time so VMThread can keep track how much time has elasped
   503   // since last safepoint.
   504   _end_of_last_safepoint = os::javaTimeMillis();
   505 }
   507 bool SafepointSynchronize::is_cleanup_needed() {
   508   // Need a safepoint if some inline cache buffers is non-empty
   509   if (!InlineCacheBuffer::is_empty()) return true;
   510   return false;
   511 }
   515 // Various cleaning tasks that should be done periodically at safepoints
   516 void SafepointSynchronize::do_cleanup_tasks() {
   517   {
   518     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
   519     ObjectSynchronizer::deflate_idle_monitors();
   520   }
   522   {
   523     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
   524     InlineCacheBuffer::update_inline_caches();
   525   }
   526   {
   527     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
   528     CompilationPolicy::policy()->do_safepoint_work();
   529   }
   531   {
   532     TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
   533     NMethodSweeper::scan_stacks();
   534   }
   536   if (SymbolTable::needs_rehashing()) {
   537     TraceTime t5("rehashing symbol table", TraceSafepointCleanupTime);
   538     SymbolTable::rehash_table();
   539   }
   541   if (StringTable::needs_rehashing()) {
   542     TraceTime t6("rehashing string table", TraceSafepointCleanupTime);
   543     StringTable::rehash_table();
   544   }
   546   // rotate log files?
   547   if (UseGCLogFileRotation) {
   548     gclog_or_tty->rotate_log();
   549   }
   551   if (MemTracker::is_on()) {
   552     MemTracker::sync();
   553   }
   554 }
   557 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
   558   switch(state) {
   559   case _thread_in_native:
   560     // native threads are safe if they have no java stack or have walkable stack
   561     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
   563    // blocked threads should have already have walkable stack
   564   case _thread_blocked:
   565     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
   566     return true;
   568   default:
   569     return false;
   570   }
   571 }
   574 // See if the thread is running inside a lazy critical native and
   575 // update the thread critical count if so.  Also set a suspend flag to
   576 // cause the native wrapper to return into the JVM to do the unlock
   577 // once the native finishes.
   578 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
   579   if (state == _thread_in_native &&
   580       thread->has_last_Java_frame() &&
   581       thread->frame_anchor()->walkable()) {
   582     // This thread might be in a critical native nmethod so look at
   583     // the top of the stack and increment the critical count if it
   584     // is.
   585     frame wrapper_frame = thread->last_frame();
   586     CodeBlob* stub_cb = wrapper_frame.cb();
   587     if (stub_cb != NULL &&
   588         stub_cb->is_nmethod() &&
   589         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
   590       // A thread could potentially be in a critical native across
   591       // more than one safepoint, so only update the critical state on
   592       // the first one.  When it returns it will perform the unlock.
   593       if (!thread->do_critical_native_unlock()) {
   594 #ifdef ASSERT
   595         if (!thread->in_critical()) {
   596           GC_locker::increment_debug_jni_lock_count();
   597         }
   598 #endif
   599         thread->enter_critical();
   600         // Make sure the native wrapper calls back on return to
   601         // perform the needed critical unlock.
   602         thread->set_critical_native_unlock();
   603       }
   604     }
   605   }
   606 }
   610 // -------------------------------------------------------------------------------------------------------
   611 // Implementation of Safepoint callback point
   613 void SafepointSynchronize::block(JavaThread *thread) {
   614   assert(thread != NULL, "thread must be set");
   615   assert(thread->is_Java_thread(), "not a Java thread");
   617   // Threads shouldn't block if they are in the middle of printing, but...
   618   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
   620   // Only bail from the block() call if the thread is gone from the
   621   // thread list; starting to exit should still block.
   622   if (thread->is_terminated()) {
   623      // block current thread if we come here from native code when VM is gone
   624      thread->block_if_vm_exited();
   626      // otherwise do nothing
   627      return;
   628   }
   630   JavaThreadState state = thread->thread_state();
   631   thread->frame_anchor()->make_walkable(thread);
   633   // Check that we have a valid thread_state at this point
   634   switch(state) {
   635     case _thread_in_vm_trans:
   636     case _thread_in_Java:        // From compiled code
   638       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
   639       // we pretend we are still in the VM.
   640       thread->set_thread_state(_thread_in_vm);
   642       if (is_synchronizing()) {
   643          Atomic::inc (&TryingToBlock) ;
   644       }
   646       // We will always be holding the Safepoint_lock when we are examine the state
   647       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
   648       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
   649       Safepoint_lock->lock_without_safepoint_check();
   650       if (is_synchronizing()) {
   651         // Decrement the number of threads to wait for and signal vm thread
   652         assert(_waiting_to_block > 0, "sanity check");
   653         _waiting_to_block--;
   654         thread->safepoint_state()->set_has_called_back(true);
   656         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
   657         if (thread->in_critical()) {
   658           // Notice that this thread is in a critical section
   659           increment_jni_active_count();
   660         }
   662         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
   663         if (_waiting_to_block == 0) {
   664           Safepoint_lock->notify_all();
   665         }
   666       }
   668       // We transition the thread to state _thread_blocked here, but
   669       // we can't do our usual check for external suspension and then
   670       // self-suspend after the lock_without_safepoint_check() call
   671       // below because we are often called during transitions while
   672       // we hold different locks. That would leave us suspended while
   673       // holding a resource which results in deadlocks.
   674       thread->set_thread_state(_thread_blocked);
   675       Safepoint_lock->unlock();
   677       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
   678       // the entire safepoint, the threads will all line up here during the safepoint.
   679       Threads_lock->lock_without_safepoint_check();
   680       // restore original state. This is important if the thread comes from compiled code, so it
   681       // will continue to execute with the _thread_in_Java state.
   682       thread->set_thread_state(state);
   683       Threads_lock->unlock();
   684       break;
   686     case _thread_in_native_trans:
   687     case _thread_blocked_trans:
   688     case _thread_new_trans:
   689       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
   690         thread->print_thread_state();
   691         fatal("Deadlock in safepoint code.  "
   692               "Should have called back to the VM before blocking.");
   693       }
   695       // We transition the thread to state _thread_blocked here, but
   696       // we can't do our usual check for external suspension and then
   697       // self-suspend after the lock_without_safepoint_check() call
   698       // below because we are often called during transitions while
   699       // we hold different locks. That would leave us suspended while
   700       // holding a resource which results in deadlocks.
   701       thread->set_thread_state(_thread_blocked);
   703       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
   704       // the safepoint code might still be waiting for it to block. We need to change the state here,
   705       // so it can see that it is at a safepoint.
   707       // Block until the safepoint operation is completed.
   708       Threads_lock->lock_without_safepoint_check();
   710       // Restore state
   711       thread->set_thread_state(state);
   713       Threads_lock->unlock();
   714       break;
   716     default:
   717      fatal(err_msg("Illegal threadstate encountered: %d", state));
   718   }
   720   // Check for pending. async. exceptions or suspends - except if the
   721   // thread was blocked inside the VM. has_special_runtime_exit_condition()
   722   // is called last since it grabs a lock and we only want to do that when
   723   // we must.
   724   //
   725   // Note: we never deliver an async exception at a polling point as the
   726   // compiler may not have an exception handler for it. The polling
   727   // code will notice the async and deoptimize and the exception will
   728   // be delivered. (Polling at a return point is ok though). Sure is
   729   // a lot of bother for a deprecated feature...
   730   //
   731   // We don't deliver an async exception if the thread state is
   732   // _thread_in_native_trans so JNI functions won't be called with
   733   // a surprising pending exception. If the thread state is going back to java,
   734   // async exception is checked in check_special_condition_for_native_trans().
   736   if (state != _thread_blocked_trans &&
   737       state != _thread_in_vm_trans &&
   738       thread->has_special_runtime_exit_condition()) {
   739     thread->handle_special_runtime_exit_condition(
   740       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
   741   }
   742 }
   744 // ------------------------------------------------------------------------------------------------------
   745 // Exception handlers
   747 #ifndef PRODUCT
   748 #ifdef _LP64
   749 #define PTR_PAD ""
   750 #else
   751 #define PTR_PAD "        "
   752 #endif
   754 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
   755   bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
   756   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
   757                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   758                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   759 }
   761 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
   762   bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
   763   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
   764                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   765                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   766 }
   768 #ifdef SPARC
   769 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
   770 #ifdef _LP64
   771   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
   772   const int incr = 1;           // Increment to skip a long, in units of intptr_t
   773 #else
   774   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
   775   const int incr = 2;           // Increment to skip a long, in units of intptr_t
   776 #endif
   777   tty->print_cr("---SP---|");
   778   for( int i=0; i<16; i++ ) {
   779     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   780   tty->print_cr("--------|");
   781   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
   782     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   783   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
   784   tty->print_cr("--------|");
   785   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   786   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   787   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   788   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   789   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
   790   old_sp += incr; new_sp += incr; was_oops += incr;
   791   // Skip the floats
   792   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
   793   tty->print_cr("---FP---|");
   794   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
   795   for( int i2=0; i2<16; i2++ ) {
   796     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   797   tty->print_cr("");
   798 }
   799 #endif  // SPARC
   800 #endif  // PRODUCT
   803 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
   804   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
   805   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
   806   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
   808   // Uncomment this to get some serious before/after printing of the
   809   // Sparc safepoint-blob frame structure.
   810   /*
   811   intptr_t* sp = thread->last_Java_sp();
   812   intptr_t stack_copy[150];
   813   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
   814   bool was_oops[150];
   815   for( int i=0; i<150; i++ )
   816     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
   817   */
   819   if (ShowSafepointMsgs) {
   820     tty->print("handle_polling_page_exception: ");
   821   }
   823   if (PrintSafepointStatistics) {
   824     inc_page_trap_count();
   825   }
   827   ThreadSafepointState* state = thread->safepoint_state();
   829   state->handle_polling_page_exception();
   830   // print_me(sp,stack_copy,was_oops);
   831 }
   834 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
   835   if (!timeout_error_printed) {
   836     timeout_error_printed = true;
   837     // Print out the thread infor which didn't reach the safepoint for debugging
   838     // purposes (useful when there are lots of threads in the debugger).
   839     tty->print_cr("");
   840     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
   841     if (reason ==  _spinning_timeout) {
   842       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
   843     } else if (reason == _blocking_timeout) {
   844       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
   845     }
   847     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
   848     ThreadSafepointState *cur_state;
   849     ResourceMark rm;
   850     for(JavaThread *cur_thread = Threads::first(); cur_thread;
   851         cur_thread = cur_thread->next()) {
   852       cur_state = cur_thread->safepoint_state();
   854       if (cur_thread->thread_state() != _thread_blocked &&
   855           ((reason == _spinning_timeout && cur_state->is_running()) ||
   856            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
   857         tty->print("# ");
   858         cur_thread->print();
   859         tty->print_cr("");
   860       }
   861     }
   862     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
   863   }
   865   // To debug the long safepoint, specify both DieOnSafepointTimeout &
   866   // ShowMessageBoxOnError.
   867   if (DieOnSafepointTimeout) {
   868     char msg[1024];
   869     VM_Operation *op = VMThread::vm_operation();
   870     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
   871             SafepointTimeoutDelay,
   872             op != NULL ? op->name() : "no vm operation");
   873     fatal(msg);
   874   }
   875 }
   878 // -------------------------------------------------------------------------------------------------------
   879 // Implementation of ThreadSafepointState
   881 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
   882   _thread = thread;
   883   _type   = _running;
   884   _has_called_back = false;
   885   _at_poll_safepoint = false;
   886 }
   888 void ThreadSafepointState::create(JavaThread *thread) {
   889   ThreadSafepointState *state = new ThreadSafepointState(thread);
   890   thread->set_safepoint_state(state);
   891 }
   893 void ThreadSafepointState::destroy(JavaThread *thread) {
   894   if (thread->safepoint_state()) {
   895     delete(thread->safepoint_state());
   896     thread->set_safepoint_state(NULL);
   897   }
   898 }
   900 void ThreadSafepointState::examine_state_of_thread() {
   901   assert(is_running(), "better be running or just have hit safepoint poll");
   903   JavaThreadState state = _thread->thread_state();
   905   // Save the state at the start of safepoint processing.
   906   _orig_thread_state = state;
   908   // Check for a thread that is suspended. Note that thread resume tries
   909   // to grab the Threads_lock which we own here, so a thread cannot be
   910   // resumed during safepoint synchronization.
   912   // We check to see if this thread is suspended without locking to
   913   // avoid deadlocking with a third thread that is waiting for this
   914   // thread to be suspended. The third thread can notice the safepoint
   915   // that we're trying to start at the beginning of its SR_lock->wait()
   916   // call. If that happens, then the third thread will block on the
   917   // safepoint while still holding the underlying SR_lock. We won't be
   918   // able to get the SR_lock and we'll deadlock.
   919   //
   920   // We don't need to grab the SR_lock here for two reasons:
   921   // 1) The suspend flags are both volatile and are set with an
   922   //    Atomic::cmpxchg() call so we should see the suspended
   923   //    state right away.
   924   // 2) We're being called from the safepoint polling loop; if
   925   //    we don't see the suspended state on this iteration, then
   926   //    we'll come around again.
   927   //
   928   bool is_suspended = _thread->is_ext_suspended();
   929   if (is_suspended) {
   930     roll_forward(_at_safepoint);
   931     return;
   932   }
   934   // Some JavaThread states have an initial safepoint state of
   935   // running, but are actually at a safepoint. We will happily
   936   // agree and update the safepoint state here.
   937   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
   938     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
   939     roll_forward(_at_safepoint);
   940     return;
   941   }
   943   if (state == _thread_in_vm) {
   944     roll_forward(_call_back);
   945     return;
   946   }
   948   // All other thread states will continue to run until they
   949   // transition and self-block in state _blocked
   950   // Safepoint polling in compiled code causes the Java threads to do the same.
   951   // Note: new threads may require a malloc so they must be allowed to finish
   953   assert(is_running(), "examine_state_of_thread on non-running thread");
   954   return;
   955 }
   957 // Returns true is thread could not be rolled forward at present position.
   958 void ThreadSafepointState::roll_forward(suspend_type type) {
   959   _type = type;
   961   switch(_type) {
   962     case _at_safepoint:
   963       SafepointSynchronize::signal_thread_at_safepoint();
   964       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
   965       if (_thread->in_critical()) {
   966         // Notice that this thread is in a critical section
   967         SafepointSynchronize::increment_jni_active_count();
   968       }
   969       break;
   971     case _call_back:
   972       set_has_called_back(false);
   973       break;
   975     case _running:
   976     default:
   977       ShouldNotReachHere();
   978   }
   979 }
   981 void ThreadSafepointState::restart() {
   982   switch(type()) {
   983     case _at_safepoint:
   984     case _call_back:
   985       break;
   987     case _running:
   988     default:
   989        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
   990                       _thread, _type);
   991        _thread->print();
   992       ShouldNotReachHere();
   993   }
   994   _type = _running;
   995   set_has_called_back(false);
   996 }
   999 void ThreadSafepointState::print_on(outputStream *st) const {
  1000   const char *s;
  1002   switch(_type) {
  1003     case _running                : s = "_running";              break;
  1004     case _at_safepoint           : s = "_at_safepoint";         break;
  1005     case _call_back              : s = "_call_back";            break;
  1006     default:
  1007       ShouldNotReachHere();
  1010   st->print_cr("Thread: " INTPTR_FORMAT
  1011               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
  1012                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
  1013                _at_poll_safepoint);
  1015   _thread->print_thread_state_on(st);
  1019 // ---------------------------------------------------------------------------------------------------------------------
  1021 // Block the thread at the safepoint poll or poll return.
  1022 void ThreadSafepointState::handle_polling_page_exception() {
  1024   // Check state.  block() will set thread state to thread_in_vm which will
  1025   // cause the safepoint state _type to become _call_back.
  1026   assert(type() == ThreadSafepointState::_running,
  1027          "polling page exception on thread not running state");
  1029   // Step 1: Find the nmethod from the return address
  1030   if (ShowSafepointMsgs && Verbose) {
  1031     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
  1033   address real_return_addr = thread()->saved_exception_pc();
  1035   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
  1036   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
  1037   nmethod* nm = (nmethod*)cb;
  1039   // Find frame of caller
  1040   frame stub_fr = thread()->last_frame();
  1041   CodeBlob* stub_cb = stub_fr.cb();
  1042   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
  1043   RegisterMap map(thread(), true);
  1044   frame caller_fr = stub_fr.sender(&map);
  1046   // Should only be poll_return or poll
  1047   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
  1049   // This is a poll immediately before a return. The exception handling code
  1050   // has already had the effect of causing the return to occur, so the execution
  1051   // will continue immediately after the call. In addition, the oopmap at the
  1052   // return point does not mark the return value as an oop (if it is), so
  1053   // it needs a handle here to be updated.
  1054   if( nm->is_at_poll_return(real_return_addr) ) {
  1055     // See if return type is an oop.
  1056     bool return_oop = nm->method()->is_returning_oop();
  1057     Handle return_value;
  1058     if (return_oop) {
  1059       // The oop result has been saved on the stack together with all
  1060       // the other registers. In order to preserve it over GCs we need
  1061       // to keep it in a handle.
  1062       oop result = caller_fr.saved_oop_result(&map);
  1063       assert(result == NULL || result->is_oop(), "must be oop");
  1064       return_value = Handle(thread(), result);
  1065       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
  1068     // Block the thread
  1069     SafepointSynchronize::block(thread());
  1071     // restore oop result, if any
  1072     if (return_oop) {
  1073       caller_fr.set_saved_oop_result(&map, return_value());
  1077   // This is a safepoint poll. Verify the return address and block.
  1078   else {
  1079     set_at_poll_safepoint(true);
  1081     // verify the blob built the "return address" correctly
  1082     assert(real_return_addr == caller_fr.pc(), "must match");
  1084     // Block the thread
  1085     SafepointSynchronize::block(thread());
  1086     set_at_poll_safepoint(false);
  1088     // If we have a pending async exception deoptimize the frame
  1089     // as otherwise we may never deliver it.
  1090     if (thread()->has_async_condition()) {
  1091       ThreadInVMfromJavaNoAsyncException __tiv(thread());
  1092       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
  1095     // If an exception has been installed we must check for a pending deoptimization
  1096     // Deoptimize frame if exception has been thrown.
  1098     if (thread()->has_pending_exception() ) {
  1099       RegisterMap map(thread(), true);
  1100       frame caller_fr = stub_fr.sender(&map);
  1101       if (caller_fr.is_deoptimized_frame()) {
  1102         // The exception patch will destroy registers that are still
  1103         // live and will be needed during deoptimization. Defer the
  1104         // Async exception should have defered the exception until the
  1105         // next safepoint which will be detected when we get into
  1106         // the interpreter so if we have an exception now things
  1107         // are messed up.
  1109         fatal("Exception installed and deoptimization is pending");
  1116 //
  1117 //                     Statistics & Instrumentations
  1118 //
  1119 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
  1120 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
  1121 int    SafepointSynchronize::_cur_stat_index = 0;
  1122 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
  1123 julong SafepointSynchronize::_coalesced_vmop_count = 0;
  1124 jlong  SafepointSynchronize::_max_sync_time = 0;
  1125 jlong  SafepointSynchronize::_max_vmop_time = 0;
  1126 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
  1128 static jlong  cleanup_end_time = 0;
  1129 static bool   need_to_track_page_armed_status = false;
  1130 static bool   init_done = false;
  1132 // Helper method to print the header.
  1133 static void print_header() {
  1134   tty->print("         vmop                    "
  1135              "[threads: total initially_running wait_to_block]    ");
  1136   tty->print("[time: spin block sync cleanup vmop] ");
  1138   // no page armed status printed out if it is always armed.
  1139   if (need_to_track_page_armed_status) {
  1140     tty->print("page_armed ");
  1143   tty->print_cr("page_trap_count");
  1146 void SafepointSynchronize::deferred_initialize_stat() {
  1147   if (init_done) return;
  1149   if (PrintSafepointStatisticsCount <= 0) {
  1150     fatal("Wrong PrintSafepointStatisticsCount");
  1153   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
  1154   // be printed right away, in which case, _safepoint_stats will regress to
  1155   // a single element array. Otherwise, it is a circular ring buffer with default
  1156   // size of PrintSafepointStatisticsCount.
  1157   int stats_array_size;
  1158   if (PrintSafepointStatisticsTimeout > 0) {
  1159     stats_array_size = 1;
  1160     PrintSafepointStatistics = true;
  1161   } else {
  1162     stats_array_size = PrintSafepointStatisticsCount;
  1164   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
  1165                                                  * sizeof(SafepointStats), mtInternal);
  1166   guarantee(_safepoint_stats != NULL,
  1167             "not enough memory for safepoint instrumentation data");
  1169   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
  1170     need_to_track_page_armed_status = true;
  1172   init_done = true;
  1175 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
  1176   assert(init_done, "safepoint statistics array hasn't been initialized");
  1177   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1179   spstat->_time_stamp = _ts_of_current_safepoint;
  1181   VM_Operation *op = VMThread::vm_operation();
  1182   spstat->_vmop_type = (op != NULL ? op->type() : -1);
  1183   if (op != NULL) {
  1184     _safepoint_reasons[spstat->_vmop_type]++;
  1187   spstat->_nof_total_threads = nof_threads;
  1188   spstat->_nof_initial_running_threads = nof_running;
  1189   spstat->_nof_threads_hit_page_trap = 0;
  1191   // Records the start time of spinning. The real time spent on spinning
  1192   // will be adjusted when spin is done. Same trick is applied for time
  1193   // spent on waiting for threads to block.
  1194   if (nof_running != 0) {
  1195     spstat->_time_to_spin = os::javaTimeNanos();
  1196   }  else {
  1197     spstat->_time_to_spin = 0;
  1201 void SafepointSynchronize::update_statistics_on_spin_end() {
  1202   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1204   jlong cur_time = os::javaTimeNanos();
  1206   spstat->_nof_threads_wait_to_block = _waiting_to_block;
  1207   if (spstat->_nof_initial_running_threads != 0) {
  1208     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
  1211   if (need_to_track_page_armed_status) {
  1212     spstat->_page_armed = (PageArmed == 1);
  1215   // Records the start time of waiting for to block. Updated when block is done.
  1216   if (_waiting_to_block != 0) {
  1217     spstat->_time_to_wait_to_block = cur_time;
  1218   } else {
  1219     spstat->_time_to_wait_to_block = 0;
  1223 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
  1224   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1226   if (spstat->_nof_threads_wait_to_block != 0) {
  1227     spstat->_time_to_wait_to_block = end_time -
  1228       spstat->_time_to_wait_to_block;
  1231   // Records the end time of sync which will be used to calculate the total
  1232   // vm operation time. Again, the real time spending in syncing will be deducted
  1233   // from the start of the sync time later when end_statistics is called.
  1234   spstat->_time_to_sync = end_time - _safepoint_begin_time;
  1235   if (spstat->_time_to_sync > _max_sync_time) {
  1236     _max_sync_time = spstat->_time_to_sync;
  1239   spstat->_time_to_do_cleanups = end_time;
  1242 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
  1243   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1245   // Record how long spent in cleanup tasks.
  1246   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
  1248   cleanup_end_time = end_time;
  1251 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
  1252   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1254   // Update the vm operation time.
  1255   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
  1256   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
  1257     _max_vmop_time = spstat->_time_to_exec_vmop;
  1259   // Only the sync time longer than the specified
  1260   // PrintSafepointStatisticsTimeout will be printed out right away.
  1261   // By default, it is -1 meaning all samples will be put into the list.
  1262   if ( PrintSafepointStatisticsTimeout > 0) {
  1263     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1264       print_statistics();
  1266   } else {
  1267     // The safepoint statistics will be printed out when the _safepoin_stats
  1268     // array fills up.
  1269     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
  1270       print_statistics();
  1271       _cur_stat_index = 0;
  1272     } else {
  1273       _cur_stat_index++;
  1278 void SafepointSynchronize::print_statistics() {
  1279   SafepointStats* sstats = _safepoint_stats;
  1281   for (int index = 0; index <= _cur_stat_index; index++) {
  1282     if (index % 30 == 0) {
  1283       print_header();
  1285     sstats = &_safepoint_stats[index];
  1286     tty->print("%.3f: ", sstats->_time_stamp);
  1287     tty->print("%-26s       ["
  1288                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
  1289                "    ]    ",
  1290                sstats->_vmop_type == -1 ? "no vm operation" :
  1291                VM_Operation::name(sstats->_vmop_type),
  1292                sstats->_nof_total_threads,
  1293                sstats->_nof_initial_running_threads,
  1294                sstats->_nof_threads_wait_to_block);
  1295     // "/ MICROUNITS " is to convert the unit from nanos to millis.
  1296     tty->print("  ["
  1297                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1298                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1299                INT64_FORMAT_W(6)"    ]  ",
  1300                sstats->_time_to_spin / MICROUNITS,
  1301                sstats->_time_to_wait_to_block / MICROUNITS,
  1302                sstats->_time_to_sync / MICROUNITS,
  1303                sstats->_time_to_do_cleanups / MICROUNITS,
  1304                sstats->_time_to_exec_vmop / MICROUNITS);
  1306     if (need_to_track_page_armed_status) {
  1307       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
  1309     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
  1313 // This method will be called when VM exits. It will first call
  1314 // print_statistics to print out the rest of the sampling.  Then
  1315 // it tries to summarize the sampling.
  1316 void SafepointSynchronize::print_stat_on_exit() {
  1317   if (_safepoint_stats == NULL) return;
  1319   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1321   // During VM exit, end_statistics may not get called and in that
  1322   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
  1323   // don't print it out.
  1324   // Approximate the vm op time.
  1325   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
  1326     os::javaTimeNanos() - cleanup_end_time;
  1328   if ( PrintSafepointStatisticsTimeout < 0 ||
  1329        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1330     print_statistics();
  1332   tty->print_cr("");
  1334   // Print out polling page sampling status.
  1335   if (!need_to_track_page_armed_status) {
  1336     if (UseCompilerSafepoints) {
  1337       tty->print_cr("Polling page always armed");
  1339   } else {
  1340     tty->print_cr("Defer polling page loop count = %d\n",
  1341                  DeferPollingPageLoopCount);
  1344   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
  1345     if (_safepoint_reasons[index] != 0) {
  1346       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
  1347                     _safepoint_reasons[index]);
  1351   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
  1352                 _coalesced_vmop_count);
  1353   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
  1354                 _max_sync_time / MICROUNITS);
  1355   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
  1356                 INT64_FORMAT_W(5)" ms",
  1357                 _max_vmop_time / MICROUNITS);
  1360 // ------------------------------------------------------------------------------------------------
  1361 // Non-product code
  1363 #ifndef PRODUCT
  1365 void SafepointSynchronize::print_state() {
  1366   if (_state == _not_synchronized) {
  1367     tty->print_cr("not synchronized");
  1368   } else if (_state == _synchronizing || _state == _synchronized) {
  1369     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
  1370                   "synchronized");
  1372     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
  1373        cur->safepoint_state()->print();
  1378 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
  1379   if (ShowSafepointMsgs) {
  1380     va_list ap;
  1381     va_start(ap, format);
  1382     tty->vprint_cr(format, ap);
  1383     va_end(ap);
  1387 #endif // !PRODUCT

mercurial