src/share/vm/c1/c1_LIRGenerator.cpp

Tue, 24 Jul 2012 10:51:00 -0700

author
twisti
date
Tue, 24 Jul 2012 10:51:00 -0700
changeset 3969
1d7922586cf6
parent 3848
e2fe93124108
child 4002
09aad8452938
permissions
-rw-r--r--

7023639: JSR 292 method handle invocation needs a fast path for compiled code
6984705: JSR 292 method handle creation should not go through JNI
Summary: remove assembly code for JDK 7 chained method handles
Reviewed-by: jrose, twisti, kvn, mhaupt
Contributed-by: John Rose <john.r.rose@oracle.com>, Christian Thalinger <christian.thalinger@oracle.com>, Michael Haupt <michael.haupt@oracle.com>

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciCPCache.hpp"
    34 #include "ci/ciInstance.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "utilities/bitMap.inline.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/heapRegion.hpp"
    40 #endif
    42 #ifdef ASSERT
    43 #define __ gen()->lir(__FILE__, __LINE__)->
    44 #else
    45 #define __ gen()->lir()->
    46 #endif
    48 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
    49 #ifdef ARM
    50 #define PATCHED_ADDR  (204)
    51 #else
    52 #define PATCHED_ADDR  (max_jint)
    53 #endif
    55 void PhiResolverState::reset(int max_vregs) {
    56   // Initialize array sizes
    57   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    58   _virtual_operands.trunc_to(0);
    59   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    60   _other_operands.trunc_to(0);
    61   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    62   _vreg_table.trunc_to(0);
    63 }
    67 //--------------------------------------------------------------
    68 // PhiResolver
    70 // Resolves cycles:
    71 //
    72 //  r1 := r2  becomes  temp := r1
    73 //  r2 := r1           r1 := r2
    74 //                     r2 := temp
    75 // and orders moves:
    76 //
    77 //  r2 := r3  becomes  r1 := r2
    78 //  r1 := r2           r2 := r3
    80 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    81  : _gen(gen)
    82  , _state(gen->resolver_state())
    83  , _temp(LIR_OprFact::illegalOpr)
    84 {
    85   // reinitialize the shared state arrays
    86   _state.reset(max_vregs);
    87 }
    90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    91   assert(src->is_valid(), "");
    92   assert(dest->is_valid(), "");
    93   __ move(src, dest);
    94 }
    97 void PhiResolver::move_temp_to(LIR_Opr dest) {
    98   assert(_temp->is_valid(), "");
    99   emit_move(_temp, dest);
   100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
   101 }
   104 void PhiResolver::move_to_temp(LIR_Opr src) {
   105   assert(_temp->is_illegal(), "");
   106   _temp = _gen->new_register(src->type());
   107   emit_move(src, _temp);
   108 }
   111 // Traverse assignment graph in depth first order and generate moves in post order
   112 // ie. two assignments: b := c, a := b start with node c:
   113 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
   114 // Generates moves in this order: move b to a and move c to b
   115 // ie. cycle a := b, b := a start with node a
   116 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
   117 // Generates moves in this order: move b to temp, move a to b, move temp to a
   118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
   119   if (!dest->visited()) {
   120     dest->set_visited();
   121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   122       move(dest, dest->destination_at(i));
   123     }
   124   } else if (!dest->start_node()) {
   125     // cylce in graph detected
   126     assert(_loop == NULL, "only one loop valid!");
   127     _loop = dest;
   128     move_to_temp(src->operand());
   129     return;
   130   } // else dest is a start node
   132   if (!dest->assigned()) {
   133     if (_loop == dest) {
   134       move_temp_to(dest->operand());
   135       dest->set_assigned();
   136     } else if (src != NULL) {
   137       emit_move(src->operand(), dest->operand());
   138       dest->set_assigned();
   139     }
   140   }
   141 }
   144 PhiResolver::~PhiResolver() {
   145   int i;
   146   // resolve any cycles in moves from and to virtual registers
   147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   148     ResolveNode* node = virtual_operands()[i];
   149     if (!node->visited()) {
   150       _loop = NULL;
   151       move(NULL, node);
   152       node->set_start_node();
   153       assert(_temp->is_illegal(), "move_temp_to() call missing");
   154     }
   155   }
   157   // generate move for move from non virtual register to abitrary destination
   158   for (i = other_operands().length() - 1; i >= 0; i --) {
   159     ResolveNode* node = other_operands()[i];
   160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   161       emit_move(node->operand(), node->destination_at(j)->operand());
   162     }
   163   }
   164 }
   167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   168   ResolveNode* node;
   169   if (opr->is_virtual()) {
   170     int vreg_num = opr->vreg_number();
   171     node = vreg_table().at_grow(vreg_num, NULL);
   172     assert(node == NULL || node->operand() == opr, "");
   173     if (node == NULL) {
   174       node = new ResolveNode(opr);
   175       vreg_table()[vreg_num] = node;
   176     }
   177     // Make sure that all virtual operands show up in the list when
   178     // they are used as the source of a move.
   179     if (source && !virtual_operands().contains(node)) {
   180       virtual_operands().append(node);
   181     }
   182   } else {
   183     assert(source, "");
   184     node = new ResolveNode(opr);
   185     other_operands().append(node);
   186   }
   187   return node;
   188 }
   191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   192   assert(dest->is_virtual(), "");
   193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   194   assert(src->is_valid(), "");
   195   assert(dest->is_valid(), "");
   196   ResolveNode* source = source_node(src);
   197   source->append(destination_node(dest));
   198 }
   201 //--------------------------------------------------------------
   202 // LIRItem
   204 void LIRItem::set_result(LIR_Opr opr) {
   205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   206   value()->set_operand(opr);
   208   if (opr->is_virtual()) {
   209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   210   }
   212   _result = opr;
   213 }
   215 void LIRItem::load_item() {
   216   if (result()->is_illegal()) {
   217     // update the items result
   218     _result = value()->operand();
   219   }
   220   if (!result()->is_register()) {
   221     LIR_Opr reg = _gen->new_register(value()->type());
   222     __ move(result(), reg);
   223     if (result()->is_constant()) {
   224       _result = reg;
   225     } else {
   226       set_result(reg);
   227     }
   228   }
   229 }
   232 void LIRItem::load_for_store(BasicType type) {
   233   if (_gen->can_store_as_constant(value(), type)) {
   234     _result = value()->operand();
   235     if (!_result->is_constant()) {
   236       _result = LIR_OprFact::value_type(value()->type());
   237     }
   238   } else if (type == T_BYTE || type == T_BOOLEAN) {
   239     load_byte_item();
   240   } else {
   241     load_item();
   242   }
   243 }
   245 void LIRItem::load_item_force(LIR_Opr reg) {
   246   LIR_Opr r = result();
   247   if (r != reg) {
   248 #if !defined(ARM) && !defined(E500V2)
   249     if (r->type() != reg->type()) {
   250       // moves between different types need an intervening spill slot
   251       r = _gen->force_to_spill(r, reg->type());
   252     }
   253 #endif
   254     __ move(r, reg);
   255     _result = reg;
   256   }
   257 }
   259 ciObject* LIRItem::get_jobject_constant() const {
   260   ObjectType* oc = type()->as_ObjectType();
   261   if (oc) {
   262     return oc->constant_value();
   263   }
   264   return NULL;
   265 }
   268 jint LIRItem::get_jint_constant() const {
   269   assert(is_constant() && value() != NULL, "");
   270   assert(type()->as_IntConstant() != NULL, "type check");
   271   return type()->as_IntConstant()->value();
   272 }
   275 jint LIRItem::get_address_constant() const {
   276   assert(is_constant() && value() != NULL, "");
   277   assert(type()->as_AddressConstant() != NULL, "type check");
   278   return type()->as_AddressConstant()->value();
   279 }
   282 jfloat LIRItem::get_jfloat_constant() const {
   283   assert(is_constant() && value() != NULL, "");
   284   assert(type()->as_FloatConstant() != NULL, "type check");
   285   return type()->as_FloatConstant()->value();
   286 }
   289 jdouble LIRItem::get_jdouble_constant() const {
   290   assert(is_constant() && value() != NULL, "");
   291   assert(type()->as_DoubleConstant() != NULL, "type check");
   292   return type()->as_DoubleConstant()->value();
   293 }
   296 jlong LIRItem::get_jlong_constant() const {
   297   assert(is_constant() && value() != NULL, "");
   298   assert(type()->as_LongConstant() != NULL, "type check");
   299   return type()->as_LongConstant()->value();
   300 }
   304 //--------------------------------------------------------------
   307 void LIRGenerator::init() {
   308   _bs = Universe::heap()->barrier_set();
   309 }
   312 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   313 #ifndef PRODUCT
   314   if (PrintIRWithLIR) {
   315     block->print();
   316   }
   317 #endif
   319   // set up the list of LIR instructions
   320   assert(block->lir() == NULL, "LIR list already computed for this block");
   321   _lir = new LIR_List(compilation(), block);
   322   block->set_lir(_lir);
   324   __ branch_destination(block->label());
   326   if (LIRTraceExecution &&
   327       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
   328       !block->is_set(BlockBegin::exception_entry_flag)) {
   329     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   330     trace_block_entry(block);
   331   }
   332 }
   335 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   336 #ifndef PRODUCT
   337   if (PrintIRWithLIR) {
   338     tty->cr();
   339   }
   340 #endif
   342   // LIR_Opr for unpinned constants shouldn't be referenced by other
   343   // blocks so clear them out after processing the block.
   344   for (int i = 0; i < _unpinned_constants.length(); i++) {
   345     _unpinned_constants.at(i)->clear_operand();
   346   }
   347   _unpinned_constants.trunc_to(0);
   349   // clear our any registers for other local constants
   350   _constants.trunc_to(0);
   351   _reg_for_constants.trunc_to(0);
   352 }
   355 void LIRGenerator::block_do(BlockBegin* block) {
   356   CHECK_BAILOUT();
   358   block_do_prolog(block);
   359   set_block(block);
   361   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   362     if (instr->is_pinned()) do_root(instr);
   363   }
   365   set_block(NULL);
   366   block_do_epilog(block);
   367 }
   370 //-------------------------LIRGenerator-----------------------------
   372 // This is where the tree-walk starts; instr must be root;
   373 void LIRGenerator::do_root(Value instr) {
   374   CHECK_BAILOUT();
   376   InstructionMark im(compilation(), instr);
   378   assert(instr->is_pinned(), "use only with roots");
   379   assert(instr->subst() == instr, "shouldn't have missed substitution");
   381   instr->visit(this);
   383   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   384          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   385 }
   388 // This is called for each node in tree; the walk stops if a root is reached
   389 void LIRGenerator::walk(Value instr) {
   390   InstructionMark im(compilation(), instr);
   391   //stop walk when encounter a root
   392   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   393     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   394   } else {
   395     assert(instr->subst() == instr, "shouldn't have missed substitution");
   396     instr->visit(this);
   397     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   398   }
   399 }
   402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   403   assert(state != NULL, "state must be defined");
   405   ValueStack* s = state;
   406   for_each_state(s) {
   407     if (s->kind() == ValueStack::EmptyExceptionState) {
   408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
   409       continue;
   410     }
   412     int index;
   413     Value value;
   414     for_each_stack_value(s, index, value) {
   415       assert(value->subst() == value, "missed substitution");
   416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   417         walk(value);
   418         assert(value->operand()->is_valid(), "must be evaluated now");
   419       }
   420     }
   422     int bci = s->bci();
   423     IRScope* scope = s->scope();
   424     ciMethod* method = scope->method();
   426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   427     if (bci == SynchronizationEntryBCI) {
   428       if (x->as_ExceptionObject() || x->as_Throw()) {
   429         // all locals are dead on exit from the synthetic unlocker
   430         liveness.clear();
   431       } else {
   432         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
   433       }
   434     }
   435     if (!liveness.is_valid()) {
   436       // Degenerate or breakpointed method.
   437       bailout("Degenerate or breakpointed method");
   438     } else {
   439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   440       for_each_local_value(s, index, value) {
   441         assert(value->subst() == value, "missed substition");
   442         if (liveness.at(index) && !value->type()->is_illegal()) {
   443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   444             walk(value);
   445             assert(value->operand()->is_valid(), "must be evaluated now");
   446           }
   447         } else {
   448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   449           s->invalidate_local(index);
   450         }
   451       }
   452     }
   453   }
   455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
   456 }
   459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   460   return state_for(x, x->exception_state());
   461 }
   464 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
   465   if (!obj->is_loaded() || PatchALot) {
   466     assert(info != NULL, "info must be set if class is not loaded");
   467     __ oop2reg_patch(NULL, r, info);
   468   } else {
   469     // no patching needed
   470     __ oop2reg(obj->constant_encoding(), r);
   471   }
   472 }
   475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   477   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   478   if (index->is_constant()) {
   479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   480                 index->as_jint(), null_check_info);
   481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   482   } else {
   483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   486   }
   487 }
   490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   491   CodeStub* stub = new RangeCheckStub(info, index, true);
   492   if (index->is_constant()) {
   493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   495   } else {
   496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   497                 java_nio_Buffer::limit_offset(), T_INT, info);
   498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   499   }
   500   __ move(index, result);
   501 }
   505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   506   LIR_Opr result_op = result;
   507   LIR_Opr left_op   = left;
   508   LIR_Opr right_op  = right;
   510   if (TwoOperandLIRForm && left_op != result_op) {
   511     assert(right_op != result_op, "malformed");
   512     __ move(left_op, result_op);
   513     left_op = result_op;
   514   }
   516   switch(code) {
   517     case Bytecodes::_dadd:
   518     case Bytecodes::_fadd:
   519     case Bytecodes::_ladd:
   520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   521     case Bytecodes::_fmul:
   522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   524     case Bytecodes::_dmul:
   525       {
   526         if (is_strictfp) {
   527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   528         } else {
   529           __ mul(left_op, right_op, result_op); break;
   530         }
   531       }
   532       break;
   534     case Bytecodes::_imul:
   535       {
   536         bool    did_strength_reduce = false;
   538         if (right->is_constant()) {
   539           int c = right->as_jint();
   540           if (is_power_of_2(c)) {
   541             // do not need tmp here
   542             __ shift_left(left_op, exact_log2(c), result_op);
   543             did_strength_reduce = true;
   544           } else {
   545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   546           }
   547         }
   548         // we couldn't strength reduce so just emit the multiply
   549         if (!did_strength_reduce) {
   550           __ mul(left_op, right_op, result_op);
   551         }
   552       }
   553       break;
   555     case Bytecodes::_dsub:
   556     case Bytecodes::_fsub:
   557     case Bytecodes::_lsub:
   558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   561     // ldiv and lrem are implemented with a direct runtime call
   563     case Bytecodes::_ddiv:
   564       {
   565         if (is_strictfp) {
   566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   567         } else {
   568           __ div (left_op, right_op, result_op); break;
   569         }
   570       }
   571       break;
   573     case Bytecodes::_drem:
   574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   576     default: ShouldNotReachHere();
   577   }
   578 }
   581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   582   arithmetic_op(code, result, left, right, false, tmp);
   583 }
   586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   588 }
   591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   593 }
   596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   597   if (TwoOperandLIRForm && value != result_op) {
   598     assert(count != result_op, "malformed");
   599     __ move(value, result_op);
   600     value = result_op;
   601   }
   603   assert(count->is_constant() || count->is_register(), "must be");
   604   switch(code) {
   605   case Bytecodes::_ishl:
   606   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   607   case Bytecodes::_ishr:
   608   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   609   case Bytecodes::_iushr:
   610   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   611   default: ShouldNotReachHere();
   612   }
   613 }
   616 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   617   if (TwoOperandLIRForm && left_op != result_op) {
   618     assert(right_op != result_op, "malformed");
   619     __ move(left_op, result_op);
   620     left_op = result_op;
   621   }
   623   switch(code) {
   624     case Bytecodes::_iand:
   625     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   627     case Bytecodes::_ior:
   628     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   630     case Bytecodes::_ixor:
   631     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   633     default: ShouldNotReachHere();
   634   }
   635 }
   638 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   639   if (!GenerateSynchronizationCode) return;
   640   // for slow path, use debug info for state after successful locking
   641   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   642   __ load_stack_address_monitor(monitor_no, lock);
   643   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   644   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   645 }
   648 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
   649   if (!GenerateSynchronizationCode) return;
   650   // setup registers
   651   LIR_Opr hdr = lock;
   652   lock = new_hdr;
   653   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   654   __ load_stack_address_monitor(monitor_no, lock);
   655   __ unlock_object(hdr, object, lock, scratch, slow_path);
   656 }
   659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   660   jobject2reg_with_patching(klass_reg, klass, info);
   661   // If klass is not loaded we do not know if the klass has finalizers:
   662   if (UseFastNewInstance && klass->is_loaded()
   663       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   665     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   667     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   669     assert(klass->is_loaded(), "must be loaded");
   670     // allocate space for instance
   671     assert(klass->size_helper() >= 0, "illegal instance size");
   672     const int instance_size = align_object_size(klass->size_helper());
   673     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   674                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   675   } else {
   676     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   677     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   678     __ branch_destination(slow_path->continuation());
   679   }
   680 }
   683 static bool is_constant_zero(Instruction* inst) {
   684   IntConstant* c = inst->type()->as_IntConstant();
   685   if (c) {
   686     return (c->value() == 0);
   687   }
   688   return false;
   689 }
   692 static bool positive_constant(Instruction* inst) {
   693   IntConstant* c = inst->type()->as_IntConstant();
   694   if (c) {
   695     return (c->value() >= 0);
   696   }
   697   return false;
   698 }
   701 static ciArrayKlass* as_array_klass(ciType* type) {
   702   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   703     return (ciArrayKlass*)type;
   704   } else {
   705     return NULL;
   706   }
   707 }
   709 static Value maxvalue(IfOp* ifop) {
   710   switch (ifop->cond()) {
   711     case If::eql: return NULL;
   712     case If::neq: return NULL;
   713     case If::lss: // x <  y ? x : y
   714     case If::leq: // x <= y ? x : y
   715       if (ifop->x() == ifop->tval() &&
   716           ifop->y() == ifop->fval()) return ifop->y();
   717       return NULL;
   719     case If::gtr: // x >  y ? y : x
   720     case If::geq: // x >= y ? y : x
   721       if (ifop->x() == ifop->tval() &&
   722           ifop->y() == ifop->fval()) return ifop->y();
   723       return NULL;
   725   }
   726 }
   728 static ciType* phi_declared_type(Phi* phi) {
   729   ciType* t = phi->operand_at(0)->declared_type();
   730   if (t == NULL) {
   731     return NULL;
   732   }
   733   for(int i = 1; i < phi->operand_count(); i++) {
   734     if (t != phi->operand_at(i)->declared_type()) {
   735       return NULL;
   736     }
   737   }
   738   return t;
   739 }
   741 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   742   Instruction* src     = x->argument_at(0);
   743   Instruction* src_pos = x->argument_at(1);
   744   Instruction* dst     = x->argument_at(2);
   745   Instruction* dst_pos = x->argument_at(3);
   746   Instruction* length  = x->argument_at(4);
   748   // first try to identify the likely type of the arrays involved
   749   ciArrayKlass* expected_type = NULL;
   750   bool is_exact = false, src_objarray = false, dst_objarray = false;
   751   {
   752     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   753     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   754     Phi* phi;
   755     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
   756       src_declared_type = as_array_klass(phi_declared_type(phi));
   757     }
   758     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   759     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   760     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
   761       dst_declared_type = as_array_klass(phi_declared_type(phi));
   762     }
   764     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   765       // the types exactly match so the type is fully known
   766       is_exact = true;
   767       expected_type = src_exact_type;
   768     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   769       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   770       ciArrayKlass* src_type = NULL;
   771       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   772         src_type = (ciArrayKlass*) src_exact_type;
   773       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   774         src_type = (ciArrayKlass*) src_declared_type;
   775       }
   776       if (src_type != NULL) {
   777         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   778           is_exact = true;
   779           expected_type = dst_type;
   780         }
   781       }
   782     }
   783     // at least pass along a good guess
   784     if (expected_type == NULL) expected_type = dst_exact_type;
   785     if (expected_type == NULL) expected_type = src_declared_type;
   786     if (expected_type == NULL) expected_type = dst_declared_type;
   788     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
   789     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
   790   }
   792   // if a probable array type has been identified, figure out if any
   793   // of the required checks for a fast case can be elided.
   794   int flags = LIR_OpArrayCopy::all_flags;
   796   if (!src_objarray)
   797     flags &= ~LIR_OpArrayCopy::src_objarray;
   798   if (!dst_objarray)
   799     flags &= ~LIR_OpArrayCopy::dst_objarray;
   801   if (!x->arg_needs_null_check(0))
   802     flags &= ~LIR_OpArrayCopy::src_null_check;
   803   if (!x->arg_needs_null_check(2))
   804     flags &= ~LIR_OpArrayCopy::dst_null_check;
   807   if (expected_type != NULL) {
   808     Value length_limit = NULL;
   810     IfOp* ifop = length->as_IfOp();
   811     if (ifop != NULL) {
   812       // look for expressions like min(v, a.length) which ends up as
   813       //   x > y ? y : x  or  x >= y ? y : x
   814       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
   815           ifop->x() == ifop->fval() &&
   816           ifop->y() == ifop->tval()) {
   817         length_limit = ifop->y();
   818       }
   819     }
   821     // try to skip null checks and range checks
   822     NewArray* src_array = src->as_NewArray();
   823     if (src_array != NULL) {
   824       flags &= ~LIR_OpArrayCopy::src_null_check;
   825       if (length_limit != NULL &&
   826           src_array->length() == length_limit &&
   827           is_constant_zero(src_pos)) {
   828         flags &= ~LIR_OpArrayCopy::src_range_check;
   829       }
   830     }
   832     NewArray* dst_array = dst->as_NewArray();
   833     if (dst_array != NULL) {
   834       flags &= ~LIR_OpArrayCopy::dst_null_check;
   835       if (length_limit != NULL &&
   836           dst_array->length() == length_limit &&
   837           is_constant_zero(dst_pos)) {
   838         flags &= ~LIR_OpArrayCopy::dst_range_check;
   839       }
   840     }
   842     // check from incoming constant values
   843     if (positive_constant(src_pos))
   844       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   845     if (positive_constant(dst_pos))
   846       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   847     if (positive_constant(length))
   848       flags &= ~LIR_OpArrayCopy::length_positive_check;
   850     // see if the range check can be elided, which might also imply
   851     // that src or dst is non-null.
   852     ArrayLength* al = length->as_ArrayLength();
   853     if (al != NULL) {
   854       if (al->array() == src) {
   855         // it's the length of the source array
   856         flags &= ~LIR_OpArrayCopy::length_positive_check;
   857         flags &= ~LIR_OpArrayCopy::src_null_check;
   858         if (is_constant_zero(src_pos))
   859           flags &= ~LIR_OpArrayCopy::src_range_check;
   860       }
   861       if (al->array() == dst) {
   862         // it's the length of the destination array
   863         flags &= ~LIR_OpArrayCopy::length_positive_check;
   864         flags &= ~LIR_OpArrayCopy::dst_null_check;
   865         if (is_constant_zero(dst_pos))
   866           flags &= ~LIR_OpArrayCopy::dst_range_check;
   867       }
   868     }
   869     if (is_exact) {
   870       flags &= ~LIR_OpArrayCopy::type_check;
   871     }
   872   }
   874   IntConstant* src_int = src_pos->type()->as_IntConstant();
   875   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
   876   if (src_int && dst_int) {
   877     int s_offs = src_int->value();
   878     int d_offs = dst_int->value();
   879     if (src_int->value() >= dst_int->value()) {
   880       flags &= ~LIR_OpArrayCopy::overlapping;
   881     }
   882     if (expected_type != NULL) {
   883       BasicType t = expected_type->element_type()->basic_type();
   884       int element_size = type2aelembytes(t);
   885       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
   886           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
   887         flags &= ~LIR_OpArrayCopy::unaligned;
   888       }
   889     }
   890   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
   891     // src and dest positions are the same, or dst is zero so assume
   892     // nonoverlapping copy.
   893     flags &= ~LIR_OpArrayCopy::overlapping;
   894   }
   896   if (src == dst) {
   897     // moving within a single array so no type checks are needed
   898     if (flags & LIR_OpArrayCopy::type_check) {
   899       flags &= ~LIR_OpArrayCopy::type_check;
   900     }
   901   }
   902   *flagsp = flags;
   903   *expected_typep = (ciArrayKlass*)expected_type;
   904 }
   907 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   908   assert(opr->is_register(), "why spill if item is not register?");
   910   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   911     LIR_Opr result = new_register(T_FLOAT);
   912     set_vreg_flag(result, must_start_in_memory);
   913     assert(opr->is_register(), "only a register can be spilled");
   914     assert(opr->value_type()->is_float(), "rounding only for floats available");
   915     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   916     return result;
   917   }
   918   return opr;
   919 }
   922 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   923   assert(type2size[t] == type2size[value->type()], "size mismatch");
   924   if (!value->is_register()) {
   925     // force into a register
   926     LIR_Opr r = new_register(value->type());
   927     __ move(value, r);
   928     value = r;
   929   }
   931   // create a spill location
   932   LIR_Opr tmp = new_register(t);
   933   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   935   // move from register to spill
   936   __ move(value, tmp);
   937   return tmp;
   938 }
   940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   941   if (if_instr->should_profile()) {
   942     ciMethod* method = if_instr->profiled_method();
   943     assert(method != NULL, "method should be set if branch is profiled");
   944     ciMethodData* md = method->method_data_or_null();
   945     assert(md != NULL, "Sanity");
   946     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
   947     assert(data != NULL, "must have profiling data");
   948     assert(data->is_BranchData(), "need BranchData for two-way branches");
   949     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
   950     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
   951     if (if_instr->is_swapped()) {
   952       int t = taken_count_offset;
   953       taken_count_offset = not_taken_count_offset;
   954       not_taken_count_offset = t;
   955     }
   957     LIR_Opr md_reg = new_register(T_OBJECT);
   958     __ oop2reg(md->constant_encoding(), md_reg);
   960     LIR_Opr data_offset_reg = new_pointer_register();
   961     __ cmove(lir_cond(cond),
   962              LIR_OprFact::intptrConst(taken_count_offset),
   963              LIR_OprFact::intptrConst(not_taken_count_offset),
   964              data_offset_reg, as_BasicType(if_instr->x()->type()));
   966     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
   967     LIR_Opr data_reg = new_pointer_register();
   968     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
   969     __ move(data_addr, data_reg);
   970     // Use leal instead of add to avoid destroying condition codes on x86
   971     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
   972     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
   973     __ move(data_reg, data_addr);
   974   }
   975 }
   977 // Phi technique:
   978 // This is about passing live values from one basic block to the other.
   979 // In code generated with Java it is rather rare that more than one
   980 // value is on the stack from one basic block to the other.
   981 // We optimize our technique for efficient passing of one value
   982 // (of type long, int, double..) but it can be extended.
   983 // When entering or leaving a basic block, all registers and all spill
   984 // slots are release and empty. We use the released registers
   985 // and spill slots to pass the live values from one block
   986 // to the other. The topmost value, i.e., the value on TOS of expression
   987 // stack is passed in registers. All other values are stored in spilling
   988 // area. Every Phi has an index which designates its spill slot
   989 // At exit of a basic block, we fill the register(s) and spill slots.
   990 // At entry of a basic block, the block_prolog sets up the content of phi nodes
   991 // and locks necessary registers and spilling slots.
   994 // move current value to referenced phi function
   995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
   996   Phi* phi = sux_val->as_Phi();
   997   // cur_val can be null without phi being null in conjunction with inlining
   998   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
   999     LIR_Opr operand = cur_val->operand();
  1000     if (cur_val->operand()->is_illegal()) {
  1001       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
  1002              "these can be produced lazily");
  1003       operand = operand_for_instruction(cur_val);
  1005     resolver->move(operand, operand_for_instruction(phi));
  1010 // Moves all stack values into their PHI position
  1011 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
  1012   BlockBegin* bb = block();
  1013   if (bb->number_of_sux() == 1) {
  1014     BlockBegin* sux = bb->sux_at(0);
  1015     assert(sux->number_of_preds() > 0, "invalid CFG");
  1017     // a block with only one predecessor never has phi functions
  1018     if (sux->number_of_preds() > 1) {
  1019       int max_phis = cur_state->stack_size() + cur_state->locals_size();
  1020       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
  1022       ValueStack* sux_state = sux->state();
  1023       Value sux_value;
  1024       int index;
  1026       assert(cur_state->scope() == sux_state->scope(), "not matching");
  1027       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
  1028       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
  1030       for_each_stack_value(sux_state, index, sux_value) {
  1031         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
  1034       for_each_local_value(sux_state, index, sux_value) {
  1035         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
  1038       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
  1044 LIR_Opr LIRGenerator::new_register(BasicType type) {
  1045   int vreg = _virtual_register_number;
  1046   // add a little fudge factor for the bailout, since the bailout is
  1047   // only checked periodically.  This gives a few extra registers to
  1048   // hand out before we really run out, which helps us keep from
  1049   // tripping over assertions.
  1050   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
  1051     bailout("out of virtual registers");
  1052     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
  1053       // wrap it around
  1054       _virtual_register_number = LIR_OprDesc::vreg_base;
  1057   _virtual_register_number += 1;
  1058   return LIR_OprFact::virtual_register(vreg, type);
  1062 // Try to lock using register in hint
  1063 LIR_Opr LIRGenerator::rlock(Value instr) {
  1064   return new_register(instr->type());
  1068 // does an rlock and sets result
  1069 LIR_Opr LIRGenerator::rlock_result(Value x) {
  1070   LIR_Opr reg = rlock(x);
  1071   set_result(x, reg);
  1072   return reg;
  1076 // does an rlock and sets result
  1077 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
  1078   LIR_Opr reg;
  1079   switch (type) {
  1080   case T_BYTE:
  1081   case T_BOOLEAN:
  1082     reg = rlock_byte(type);
  1083     break;
  1084   default:
  1085     reg = rlock(x);
  1086     break;
  1089   set_result(x, reg);
  1090   return reg;
  1094 //---------------------------------------------------------------------
  1095 ciObject* LIRGenerator::get_jobject_constant(Value value) {
  1096   ObjectType* oc = value->type()->as_ObjectType();
  1097   if (oc) {
  1098     return oc->constant_value();
  1100   return NULL;
  1104 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
  1105   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
  1106   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
  1108   // no moves are created for phi functions at the begin of exception
  1109   // handlers, so assign operands manually here
  1110   for_each_phi_fun(block(), phi,
  1111                    operand_for_instruction(phi));
  1113   LIR_Opr thread_reg = getThreadPointer();
  1114   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
  1115                exceptionOopOpr());
  1116   __ move_wide(LIR_OprFact::oopConst(NULL),
  1117                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  1118   __ move_wide(LIR_OprFact::oopConst(NULL),
  1119                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1121   LIR_Opr result = new_register(T_OBJECT);
  1122   __ move(exceptionOopOpr(), result);
  1123   set_result(x, result);
  1127 //----------------------------------------------------------------------
  1128 //----------------------------------------------------------------------
  1129 //----------------------------------------------------------------------
  1130 //----------------------------------------------------------------------
  1131 //                        visitor functions
  1132 //----------------------------------------------------------------------
  1133 //----------------------------------------------------------------------
  1134 //----------------------------------------------------------------------
  1135 //----------------------------------------------------------------------
  1137 void LIRGenerator::do_Phi(Phi* x) {
  1138   // phi functions are never visited directly
  1139   ShouldNotReachHere();
  1143 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1144 void LIRGenerator::do_Constant(Constant* x) {
  1145   if (x->state_before() != NULL) {
  1146     // Any constant with a ValueStack requires patching so emit the patch here
  1147     LIR_Opr reg = rlock_result(x);
  1148     CodeEmitInfo* info = state_for(x, x->state_before());
  1149     __ oop2reg_patch(NULL, reg, info);
  1150   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1151     if (!x->is_pinned()) {
  1152       // unpinned constants are handled specially so that they can be
  1153       // put into registers when they are used multiple times within a
  1154       // block.  After the block completes their operand will be
  1155       // cleared so that other blocks can't refer to that register.
  1156       set_result(x, load_constant(x));
  1157     } else {
  1158       LIR_Opr res = x->operand();
  1159       if (!res->is_valid()) {
  1160         res = LIR_OprFact::value_type(x->type());
  1162       if (res->is_constant()) {
  1163         LIR_Opr reg = rlock_result(x);
  1164         __ move(res, reg);
  1165       } else {
  1166         set_result(x, res);
  1169   } else {
  1170     set_result(x, LIR_OprFact::value_type(x->type()));
  1175 void LIRGenerator::do_Local(Local* x) {
  1176   // operand_for_instruction has the side effect of setting the result
  1177   // so there's no need to do it here.
  1178   operand_for_instruction(x);
  1182 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1183   Unimplemented();
  1187 void LIRGenerator::do_Return(Return* x) {
  1188   if (compilation()->env()->dtrace_method_probes()) {
  1189     BasicTypeList signature;
  1190     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  1191     signature.append(T_OBJECT); // methodOop
  1192     LIR_OprList* args = new LIR_OprList();
  1193     args->append(getThreadPointer());
  1194     LIR_Opr meth = new_register(T_OBJECT);
  1195     __ oop2reg(method()->constant_encoding(), meth);
  1196     args->append(meth);
  1197     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1200   if (x->type()->is_void()) {
  1201     __ return_op(LIR_OprFact::illegalOpr);
  1202   } else {
  1203     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1204     LIRItem result(x->result(), this);
  1206     result.load_item_force(reg);
  1207     __ return_op(result.result());
  1209   set_no_result(x);
  1212 // Examble: ref.get()
  1213 // Combination of LoadField and g1 pre-write barrier
  1214 void LIRGenerator::do_Reference_get(Intrinsic* x) {
  1216   const int referent_offset = java_lang_ref_Reference::referent_offset;
  1217   guarantee(referent_offset > 0, "referent offset not initialized");
  1219   assert(x->number_of_arguments() == 1, "wrong type");
  1221   LIRItem reference(x->argument_at(0), this);
  1222   reference.load_item();
  1224   // need to perform the null check on the reference objecy
  1225   CodeEmitInfo* info = NULL;
  1226   if (x->needs_null_check()) {
  1227     info = state_for(x);
  1230   LIR_Address* referent_field_adr =
  1231     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
  1233   LIR_Opr result = rlock_result(x);
  1235   __ load(referent_field_adr, result, info);
  1237   // Register the value in the referent field with the pre-barrier
  1238   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  1239               result /* pre_val */,
  1240               false  /* do_load */,
  1241               false  /* patch */,
  1242               NULL   /* info */);
  1245 // Example: clazz.isInstance(object)
  1246 void LIRGenerator::do_isInstance(Intrinsic* x) {
  1247   assert(x->number_of_arguments() == 2, "wrong type");
  1249   // TODO could try to substitute this node with an equivalent InstanceOf
  1250   // if clazz is known to be a constant Class. This will pick up newly found
  1251   // constants after HIR construction. I'll leave this to a future change.
  1253   // as a first cut, make a simple leaf call to runtime to stay platform independent.
  1254   // could follow the aastore example in a future change.
  1256   LIRItem clazz(x->argument_at(0), this);
  1257   LIRItem object(x->argument_at(1), this);
  1258   clazz.load_item();
  1259   object.load_item();
  1260   LIR_Opr result = rlock_result(x);
  1262   // need to perform null check on clazz
  1263   if (x->needs_null_check()) {
  1264     CodeEmitInfo* info = state_for(x);
  1265     __ null_check(clazz.result(), info);
  1268   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
  1269                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
  1270                                      x->type(),
  1271                                      NULL); // NULL CodeEmitInfo results in a leaf call
  1272   __ move(call_result, result);
  1275 // Example: object.getClass ()
  1276 void LIRGenerator::do_getClass(Intrinsic* x) {
  1277   assert(x->number_of_arguments() == 1, "wrong type");
  1279   LIRItem rcvr(x->argument_at(0), this);
  1280   rcvr.load_item();
  1281   LIR_Opr result = rlock_result(x);
  1283   // need to perform the null check on the rcvr
  1284   CodeEmitInfo* info = NULL;
  1285   if (x->needs_null_check()) {
  1286     info = state_for(x);
  1288   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
  1289   __ move_wide(new LIR_Address(result, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
  1293 // Example: Thread.currentThread()
  1294 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1295   assert(x->number_of_arguments() == 0, "wrong type");
  1296   LIR_Opr reg = rlock_result(x);
  1297   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1301 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1302   assert(x->number_of_arguments() == 1, "wrong type");
  1303   LIRItem receiver(x->argument_at(0), this);
  1305   receiver.load_item();
  1306   BasicTypeList signature;
  1307   signature.append(T_OBJECT); // receiver
  1308   LIR_OprList* args = new LIR_OprList();
  1309   args->append(receiver.result());
  1310   CodeEmitInfo* info = state_for(x, x->state());
  1311   call_runtime(&signature, args,
  1312                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1313                voidType, info);
  1315   set_no_result(x);
  1319 //------------------------local access--------------------------------------
  1321 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1322   if (x->operand()->is_illegal()) {
  1323     Constant* c = x->as_Constant();
  1324     if (c != NULL) {
  1325       x->set_operand(LIR_OprFact::value_type(c->type()));
  1326     } else {
  1327       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1328       // allocate a virtual register for this local or phi
  1329       x->set_operand(rlock(x));
  1330       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1333   return x->operand();
  1337 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1338   if (opr->is_virtual()) {
  1339     return instruction_for_vreg(opr->vreg_number());
  1341   return NULL;
  1345 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1346   if (reg_num < _instruction_for_operand.length()) {
  1347     return _instruction_for_operand.at(reg_num);
  1349   return NULL;
  1353 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1354   if (_vreg_flags.size_in_bits() == 0) {
  1355     BitMap2D temp(100, num_vreg_flags);
  1356     temp.clear();
  1357     _vreg_flags = temp;
  1359   _vreg_flags.at_put_grow(vreg_num, f, true);
  1362 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1363   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1364     return false;
  1366   return _vreg_flags.at(vreg_num, f);
  1370 // Block local constant handling.  This code is useful for keeping
  1371 // unpinned constants and constants which aren't exposed in the IR in
  1372 // registers.  Unpinned Constant instructions have their operands
  1373 // cleared when the block is finished so that other blocks can't end
  1374 // up referring to their registers.
  1376 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1377   assert(!x->is_pinned(), "only for unpinned constants");
  1378   _unpinned_constants.append(x);
  1379   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1383 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1384   BasicType t = c->type();
  1385   for (int i = 0; i < _constants.length(); i++) {
  1386     LIR_Const* other = _constants.at(i);
  1387     if (t == other->type()) {
  1388       switch (t) {
  1389       case T_INT:
  1390       case T_FLOAT:
  1391         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1392         break;
  1393       case T_LONG:
  1394       case T_DOUBLE:
  1395         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
  1396         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
  1397         break;
  1398       case T_OBJECT:
  1399         if (c->as_jobject() != other->as_jobject()) continue;
  1400         break;
  1402       return _reg_for_constants.at(i);
  1406   LIR_Opr result = new_register(t);
  1407   __ move((LIR_Opr)c, result);
  1408   _constants.append(c);
  1409   _reg_for_constants.append(result);
  1410   return result;
  1413 // Various barriers
  1415 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1416                                bool do_load, bool patch, CodeEmitInfo* info) {
  1417   // Do the pre-write barrier, if any.
  1418   switch (_bs->kind()) {
  1419 #ifndef SERIALGC
  1420     case BarrierSet::G1SATBCT:
  1421     case BarrierSet::G1SATBCTLogging:
  1422       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
  1423       break;
  1424 #endif // SERIALGC
  1425     case BarrierSet::CardTableModRef:
  1426     case BarrierSet::CardTableExtension:
  1427       // No pre barriers
  1428       break;
  1429     case BarrierSet::ModRef:
  1430     case BarrierSet::Other:
  1431       // No pre barriers
  1432       break;
  1433     default      :
  1434       ShouldNotReachHere();
  1439 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1440   switch (_bs->kind()) {
  1441 #ifndef SERIALGC
  1442     case BarrierSet::G1SATBCT:
  1443     case BarrierSet::G1SATBCTLogging:
  1444       G1SATBCardTableModRef_post_barrier(addr,  new_val);
  1445       break;
  1446 #endif // SERIALGC
  1447     case BarrierSet::CardTableModRef:
  1448     case BarrierSet::CardTableExtension:
  1449       CardTableModRef_post_barrier(addr,  new_val);
  1450       break;
  1451     case BarrierSet::ModRef:
  1452     case BarrierSet::Other:
  1453       // No post barriers
  1454       break;
  1455     default      :
  1456       ShouldNotReachHere();
  1460 ////////////////////////////////////////////////////////////////////////
  1461 #ifndef SERIALGC
  1463 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1464                                                      bool do_load, bool patch, CodeEmitInfo* info) {
  1465   // First we test whether marking is in progress.
  1466   BasicType flag_type;
  1467   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1468     flag_type = T_INT;
  1469   } else {
  1470     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  1471               "Assumption");
  1472     flag_type = T_BYTE;
  1474   LIR_Opr thrd = getThreadPointer();
  1475   LIR_Address* mark_active_flag_addr =
  1476     new LIR_Address(thrd,
  1477                     in_bytes(JavaThread::satb_mark_queue_offset() +
  1478                              PtrQueue::byte_offset_of_active()),
  1479                     flag_type);
  1480   // Read the marking-in-progress flag.
  1481   LIR_Opr flag_val = new_register(T_INT);
  1482   __ load(mark_active_flag_addr, flag_val);
  1483   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
  1485   LIR_PatchCode pre_val_patch_code = lir_patch_none;
  1487   CodeStub* slow;
  1489   if (do_load) {
  1490     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
  1491     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
  1493     if (patch)
  1494       pre_val_patch_code = lir_patch_normal;
  1496     pre_val = new_register(T_OBJECT);
  1498     if (!addr_opr->is_address()) {
  1499       assert(addr_opr->is_register(), "must be");
  1500       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
  1502     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
  1503   } else {
  1504     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
  1505     assert(pre_val->is_register(), "must be");
  1506     assert(pre_val->type() == T_OBJECT, "must be an object");
  1507     assert(info == NULL, "sanity");
  1509     slow = new G1PreBarrierStub(pre_val);
  1512   __ branch(lir_cond_notEqual, T_INT, slow);
  1513   __ branch_destination(slow->continuation());
  1516 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1517   // If the "new_val" is a constant NULL, no barrier is necessary.
  1518   if (new_val->is_constant() &&
  1519       new_val->as_constant_ptr()->as_jobject() == NULL) return;
  1521   if (!new_val->is_register()) {
  1522     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1523     if (new_val->is_constant()) {
  1524       __ move(new_val, new_val_reg);
  1525     } else {
  1526       __ leal(new_val, new_val_reg);
  1528     new_val = new_val_reg;
  1530   assert(new_val->is_register(), "must be a register at this point");
  1532   if (addr->is_address()) {
  1533     LIR_Address* address = addr->as_address_ptr();
  1534     LIR_Opr ptr = new_pointer_register();
  1535     if (!address->index()->is_valid() && address->disp() == 0) {
  1536       __ move(address->base(), ptr);
  1537     } else {
  1538       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1539       __ leal(addr, ptr);
  1541     addr = ptr;
  1543   assert(addr->is_register(), "must be a register at this point");
  1545   LIR_Opr xor_res = new_pointer_register();
  1546   LIR_Opr xor_shift_res = new_pointer_register();
  1547   if (TwoOperandLIRForm ) {
  1548     __ move(addr, xor_res);
  1549     __ logical_xor(xor_res, new_val, xor_res);
  1550     __ move(xor_res, xor_shift_res);
  1551     __ unsigned_shift_right(xor_shift_res,
  1552                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1553                             xor_shift_res,
  1554                             LIR_OprDesc::illegalOpr());
  1555   } else {
  1556     __ logical_xor(addr, new_val, xor_res);
  1557     __ unsigned_shift_right(xor_res,
  1558                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1559                             xor_shift_res,
  1560                             LIR_OprDesc::illegalOpr());
  1563   if (!new_val->is_register()) {
  1564     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1565     __ leal(new_val, new_val_reg);
  1566     new_val = new_val_reg;
  1568   assert(new_val->is_register(), "must be a register at this point");
  1570   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
  1572   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
  1573   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1574   __ branch_destination(slow->continuation());
  1577 #endif // SERIALGC
  1578 ////////////////////////////////////////////////////////////////////////
  1580 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1582   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1583   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
  1584   if (addr->is_address()) {
  1585     LIR_Address* address = addr->as_address_ptr();
  1586     // ptr cannot be an object because we use this barrier for array card marks
  1587     // and addr can point in the middle of an array.
  1588     LIR_Opr ptr = new_pointer_register();
  1589     if (!address->index()->is_valid() && address->disp() == 0) {
  1590       __ move(address->base(), ptr);
  1591     } else {
  1592       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1593       __ leal(addr, ptr);
  1595     addr = ptr;
  1597   assert(addr->is_register(), "must be a register at this point");
  1599 #ifdef ARM
  1600   // TODO: ARM - move to platform-dependent code
  1601   LIR_Opr tmp = FrameMap::R14_opr;
  1602   if (VM_Version::supports_movw()) {
  1603     __ move((LIR_Opr)card_table_base, tmp);
  1604   } else {
  1605     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
  1608   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
  1609   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
  1610   if(((int)ct->byte_map_base & 0xff) == 0) {
  1611     __ move(tmp, card_addr);
  1612   } else {
  1613     LIR_Opr tmp_zero = new_register(T_INT);
  1614     __ move(LIR_OprFact::intConst(0), tmp_zero);
  1615     __ move(tmp_zero, card_addr);
  1617 #else // ARM
  1618   LIR_Opr tmp = new_pointer_register();
  1619   if (TwoOperandLIRForm) {
  1620     __ move(addr, tmp);
  1621     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1622   } else {
  1623     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1625   if (can_inline_as_constant(card_table_base)) {
  1626     __ move(LIR_OprFact::intConst(0),
  1627               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1628   } else {
  1629     __ move(LIR_OprFact::intConst(0),
  1630               new LIR_Address(tmp, load_constant(card_table_base),
  1631                               T_BYTE));
  1633 #endif // ARM
  1637 //------------------------field access--------------------------------------
  1639 // Comment copied form templateTable_i486.cpp
  1640 // ----------------------------------------------------------------------------
  1641 // Volatile variables demand their effects be made known to all CPU's in
  1642 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1643 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1644 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1645 // reorder volatile references, the hardware also must not reorder them).
  1646 //
  1647 // According to the new Java Memory Model (JMM):
  1648 // (1) All volatiles are serialized wrt to each other.
  1649 // ALSO reads & writes act as aquire & release, so:
  1650 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1651 // the read float up to before the read.  It's OK for non-volatile memory refs
  1652 // that happen before the volatile read to float down below it.
  1653 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1654 // that happen BEFORE the write float down to after the write.  It's OK for
  1655 // non-volatile memory refs that happen after the volatile write to float up
  1656 // before it.
  1657 //
  1658 // We only put in barriers around volatile refs (they are expensive), not
  1659 // _between_ memory refs (that would require us to track the flavor of the
  1660 // previous memory refs).  Requirements (2) and (3) require some barriers
  1661 // before volatile stores and after volatile loads.  These nearly cover
  1662 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1663 // case is placed after volatile-stores although it could just as well go
  1664 // before volatile-loads.
  1667 void LIRGenerator::do_StoreField(StoreField* x) {
  1668   bool needs_patching = x->needs_patching();
  1669   bool is_volatile = x->field()->is_volatile();
  1670   BasicType field_type = x->field_type();
  1671   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1673   CodeEmitInfo* info = NULL;
  1674   if (needs_patching) {
  1675     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1676     info = state_for(x, x->state_before());
  1677   } else if (x->needs_null_check()) {
  1678     NullCheck* nc = x->explicit_null_check();
  1679     if (nc == NULL) {
  1680       info = state_for(x);
  1681     } else {
  1682       info = state_for(nc);
  1687   LIRItem object(x->obj(), this);
  1688   LIRItem value(x->value(),  this);
  1690   object.load_item();
  1692   if (is_volatile || needs_patching) {
  1693     // load item if field is volatile (fewer special cases for volatiles)
  1694     // load item if field not initialized
  1695     // load item if field not constant
  1696     // because of code patching we cannot inline constants
  1697     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1698       value.load_byte_item();
  1699     } else  {
  1700       value.load_item();
  1702   } else {
  1703     value.load_for_store(field_type);
  1706   set_no_result(x);
  1708 #ifndef PRODUCT
  1709   if (PrintNotLoaded && needs_patching) {
  1710     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1711                   x->is_static() ?  "static" : "field", x->printable_bci());
  1713 #endif
  1715   if (x->needs_null_check() &&
  1716       (needs_patching ||
  1717        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1718     // emit an explicit null check because the offset is too large
  1719     __ null_check(object.result(), new CodeEmitInfo(info));
  1722   LIR_Address* address;
  1723   if (needs_patching) {
  1724     // we need to patch the offset in the instruction so don't allow
  1725     // generate_address to try to be smart about emitting the -1.
  1726     // Otherwise the patching code won't know how to find the
  1727     // instruction to patch.
  1728     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1729   } else {
  1730     address = generate_address(object.result(), x->offset(), field_type);
  1733   if (is_volatile && os::is_MP()) {
  1734     __ membar_release();
  1737   if (is_oop) {
  1738     // Do the pre-write barrier, if any.
  1739     pre_barrier(LIR_OprFact::address(address),
  1740                 LIR_OprFact::illegalOpr /* pre_val */,
  1741                 true /* do_load*/,
  1742                 needs_patching,
  1743                 (info ? new CodeEmitInfo(info) : NULL));
  1746   if (is_volatile && !needs_patching) {
  1747     volatile_field_store(value.result(), address, info);
  1748   } else {
  1749     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1750     __ store(value.result(), address, info, patch_code);
  1753   if (is_oop) {
  1754     // Store to object so mark the card of the header
  1755     post_barrier(object.result(), value.result());
  1758   if (is_volatile && os::is_MP()) {
  1759     __ membar();
  1764 void LIRGenerator::do_LoadField(LoadField* x) {
  1765   bool needs_patching = x->needs_patching();
  1766   bool is_volatile = x->field()->is_volatile();
  1767   BasicType field_type = x->field_type();
  1769   CodeEmitInfo* info = NULL;
  1770   if (needs_patching) {
  1771     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1772     info = state_for(x, x->state_before());
  1773   } else if (x->needs_null_check()) {
  1774     NullCheck* nc = x->explicit_null_check();
  1775     if (nc == NULL) {
  1776       info = state_for(x);
  1777     } else {
  1778       info = state_for(nc);
  1782   LIRItem object(x->obj(), this);
  1784   object.load_item();
  1786 #ifndef PRODUCT
  1787   if (PrintNotLoaded && needs_patching) {
  1788     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1789                   x->is_static() ?  "static" : "field", x->printable_bci());
  1791 #endif
  1793   if (x->needs_null_check() &&
  1794       (needs_patching ||
  1795        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1796     // emit an explicit null check because the offset is too large
  1797     __ null_check(object.result(), new CodeEmitInfo(info));
  1800   LIR_Opr reg = rlock_result(x, field_type);
  1801   LIR_Address* address;
  1802   if (needs_patching) {
  1803     // we need to patch the offset in the instruction so don't allow
  1804     // generate_address to try to be smart about emitting the -1.
  1805     // Otherwise the patching code won't know how to find the
  1806     // instruction to patch.
  1807     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1808   } else {
  1809     address = generate_address(object.result(), x->offset(), field_type);
  1812   if (is_volatile && !needs_patching) {
  1813     volatile_field_load(address, reg, info);
  1814   } else {
  1815     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1816     __ load(address, reg, info, patch_code);
  1819   if (is_volatile && os::is_MP()) {
  1820     __ membar_acquire();
  1825 //------------------------java.nio.Buffer.checkIndex------------------------
  1827 // int java.nio.Buffer.checkIndex(int)
  1828 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1829   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1830   // the buffer is non-null (because checkIndex is package-private and
  1831   // only called from within other methods in the buffer).
  1832   assert(x->number_of_arguments() == 2, "wrong type");
  1833   LIRItem buf  (x->argument_at(0), this);
  1834   LIRItem index(x->argument_at(1), this);
  1835   buf.load_item();
  1836   index.load_item();
  1838   LIR_Opr result = rlock_result(x);
  1839   if (GenerateRangeChecks) {
  1840     CodeEmitInfo* info = state_for(x);
  1841     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1842     if (index.result()->is_constant()) {
  1843       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1844       __ branch(lir_cond_belowEqual, T_INT, stub);
  1845     } else {
  1846       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  1847                   java_nio_Buffer::limit_offset(), T_INT, info);
  1848       __ branch(lir_cond_aboveEqual, T_INT, stub);
  1850     __ move(index.result(), result);
  1851   } else {
  1852     // Just load the index into the result register
  1853     __ move(index.result(), result);
  1858 //------------------------array access--------------------------------------
  1861 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  1862   LIRItem array(x->array(), this);
  1863   array.load_item();
  1864   LIR_Opr reg = rlock_result(x);
  1866   CodeEmitInfo* info = NULL;
  1867   if (x->needs_null_check()) {
  1868     NullCheck* nc = x->explicit_null_check();
  1869     if (nc == NULL) {
  1870       info = state_for(x);
  1871     } else {
  1872       info = state_for(nc);
  1875   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  1879 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  1880   bool use_length = x->length() != NULL;
  1881   LIRItem array(x->array(), this);
  1882   LIRItem index(x->index(), this);
  1883   LIRItem length(this);
  1884   bool needs_range_check = true;
  1886   if (use_length) {
  1887     needs_range_check = x->compute_needs_range_check();
  1888     if (needs_range_check) {
  1889       length.set_instruction(x->length());
  1890       length.load_item();
  1894   array.load_item();
  1895   if (index.is_constant() && can_inline_as_constant(x->index())) {
  1896     // let it be a constant
  1897     index.dont_load_item();
  1898   } else {
  1899     index.load_item();
  1902   CodeEmitInfo* range_check_info = state_for(x);
  1903   CodeEmitInfo* null_check_info = NULL;
  1904   if (x->needs_null_check()) {
  1905     NullCheck* nc = x->explicit_null_check();
  1906     if (nc != NULL) {
  1907       null_check_info = state_for(nc);
  1908     } else {
  1909       null_check_info = range_check_info;
  1913   // emit array address setup early so it schedules better
  1914   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  1916   if (GenerateRangeChecks && needs_range_check) {
  1917     if (use_length) {
  1918       // TODO: use a (modified) version of array_range_check that does not require a
  1919       //       constant length to be loaded to a register
  1920       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  1921       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  1922     } else {
  1923       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  1924       // The range check performs the null check, so clear it out for the load
  1925       null_check_info = NULL;
  1929   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  1933 void LIRGenerator::do_NullCheck(NullCheck* x) {
  1934   if (x->can_trap()) {
  1935     LIRItem value(x->obj(), this);
  1936     value.load_item();
  1937     CodeEmitInfo* info = state_for(x);
  1938     __ null_check(value.result(), info);
  1943 void LIRGenerator::do_TypeCast(TypeCast* x) {
  1944   LIRItem value(x->obj(), this);
  1945   value.load_item();
  1946   // the result is the same as from the node we are casting
  1947   set_result(x, value.result());
  1951 void LIRGenerator::do_Throw(Throw* x) {
  1952   LIRItem exception(x->exception(), this);
  1953   exception.load_item();
  1954   set_no_result(x);
  1955   LIR_Opr exception_opr = exception.result();
  1956   CodeEmitInfo* info = state_for(x, x->state());
  1958 #ifndef PRODUCT
  1959   if (PrintC1Statistics) {
  1960     increment_counter(Runtime1::throw_count_address(), T_INT);
  1962 #endif
  1964   // check if the instruction has an xhandler in any of the nested scopes
  1965   bool unwind = false;
  1966   if (info->exception_handlers()->length() == 0) {
  1967     // this throw is not inside an xhandler
  1968     unwind = true;
  1969   } else {
  1970     // get some idea of the throw type
  1971     bool type_is_exact = true;
  1972     ciType* throw_type = x->exception()->exact_type();
  1973     if (throw_type == NULL) {
  1974       type_is_exact = false;
  1975       throw_type = x->exception()->declared_type();
  1977     if (throw_type != NULL && throw_type->is_instance_klass()) {
  1978       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  1979       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  1983   // do null check before moving exception oop into fixed register
  1984   // to avoid a fixed interval with an oop during the null check.
  1985   // Use a copy of the CodeEmitInfo because debug information is
  1986   // different for null_check and throw.
  1987   if (GenerateCompilerNullChecks &&
  1988       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  1989     // if the exception object wasn't created using new then it might be null.
  1990     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
  1993   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
  1994     // we need to go through the exception lookup path to get JVMTI
  1995     // notification done
  1996     unwind = false;
  1999   // move exception oop into fixed register
  2000   __ move(exception_opr, exceptionOopOpr());
  2002   if (unwind) {
  2003     __ unwind_exception(exceptionOopOpr());
  2004   } else {
  2005     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  2010 void LIRGenerator::do_RoundFP(RoundFP* x) {
  2011   LIRItem input(x->input(), this);
  2012   input.load_item();
  2013   LIR_Opr input_opr = input.result();
  2014   assert(input_opr->is_register(), "why round if value is not in a register?");
  2015   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  2016   if (input_opr->is_single_fpu()) {
  2017     set_result(x, round_item(input_opr)); // This code path not currently taken
  2018   } else {
  2019     LIR_Opr result = new_register(T_DOUBLE);
  2020     set_vreg_flag(result, must_start_in_memory);
  2021     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  2022     set_result(x, result);
  2026 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  2027   LIRItem base(x->base(), this);
  2028   LIRItem idx(this);
  2030   base.load_item();
  2031   if (x->has_index()) {
  2032     idx.set_instruction(x->index());
  2033     idx.load_nonconstant();
  2036   LIR_Opr reg = rlock_result(x, x->basic_type());
  2038   int   log2_scale = 0;
  2039   if (x->has_index()) {
  2040     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  2041     log2_scale = x->log2_scale();
  2044   assert(!x->has_index() || idx.value() == x->index(), "should match");
  2046   LIR_Opr base_op = base.result();
  2047 #ifndef _LP64
  2048   if (x->base()->type()->tag() == longTag) {
  2049     base_op = new_register(T_INT);
  2050     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2051   } else {
  2052     assert(x->base()->type()->tag() == intTag, "must be");
  2054 #endif
  2056   BasicType dst_type = x->basic_type();
  2057   LIR_Opr index_op = idx.result();
  2059   LIR_Address* addr;
  2060   if (index_op->is_constant()) {
  2061     assert(log2_scale == 0, "must not have a scale");
  2062     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  2063   } else {
  2064 #ifdef X86
  2065 #ifdef _LP64
  2066     if (!index_op->is_illegal() && index_op->type() == T_INT) {
  2067       LIR_Opr tmp = new_pointer_register();
  2068       __ convert(Bytecodes::_i2l, index_op, tmp);
  2069       index_op = tmp;
  2071 #endif
  2072     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  2073 #elif defined(ARM)
  2074     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
  2075 #else
  2076     if (index_op->is_illegal() || log2_scale == 0) {
  2077 #ifdef _LP64
  2078       if (!index_op->is_illegal() && index_op->type() == T_INT) {
  2079         LIR_Opr tmp = new_pointer_register();
  2080         __ convert(Bytecodes::_i2l, index_op, tmp);
  2081         index_op = tmp;
  2083 #endif
  2084       addr = new LIR_Address(base_op, index_op, dst_type);
  2085     } else {
  2086       LIR_Opr tmp = new_pointer_register();
  2087       __ shift_left(index_op, log2_scale, tmp);
  2088       addr = new LIR_Address(base_op, tmp, dst_type);
  2090 #endif
  2093   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  2094     __ unaligned_move(addr, reg);
  2095   } else {
  2096     if (dst_type == T_OBJECT && x->is_wide()) {
  2097       __ move_wide(addr, reg);
  2098     } else {
  2099       __ move(addr, reg);
  2105 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  2106   int  log2_scale = 0;
  2107   BasicType type = x->basic_type();
  2109   if (x->has_index()) {
  2110     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  2111     log2_scale = x->log2_scale();
  2114   LIRItem base(x->base(), this);
  2115   LIRItem value(x->value(), this);
  2116   LIRItem idx(this);
  2118   base.load_item();
  2119   if (x->has_index()) {
  2120     idx.set_instruction(x->index());
  2121     idx.load_item();
  2124   if (type == T_BYTE || type == T_BOOLEAN) {
  2125     value.load_byte_item();
  2126   } else {
  2127     value.load_item();
  2130   set_no_result(x);
  2132   LIR_Opr base_op = base.result();
  2133 #ifndef _LP64
  2134   if (x->base()->type()->tag() == longTag) {
  2135     base_op = new_register(T_INT);
  2136     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2137   } else {
  2138     assert(x->base()->type()->tag() == intTag, "must be");
  2140 #endif
  2142   LIR_Opr index_op = idx.result();
  2143   if (log2_scale != 0) {
  2144     // temporary fix (platform dependent code without shift on Intel would be better)
  2145     index_op = new_pointer_register();
  2146 #ifdef _LP64
  2147     if(idx.result()->type() == T_INT) {
  2148       __ convert(Bytecodes::_i2l, idx.result(), index_op);
  2149     } else {
  2150 #endif
  2151       // TODO: ARM also allows embedded shift in the address
  2152       __ move(idx.result(), index_op);
  2153 #ifdef _LP64
  2155 #endif
  2156     __ shift_left(index_op, log2_scale, index_op);
  2158 #ifdef _LP64
  2159   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
  2160     LIR_Opr tmp = new_pointer_register();
  2161     __ convert(Bytecodes::_i2l, index_op, tmp);
  2162     index_op = tmp;
  2164 #endif
  2166   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  2167   __ move(value.result(), addr);
  2171 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  2172   BasicType type = x->basic_type();
  2173   LIRItem src(x->object(), this);
  2174   LIRItem off(x->offset(), this);
  2176   off.load_item();
  2177   src.load_item();
  2179   LIR_Opr reg = rlock_result(x, x->basic_type());
  2181   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
  2183 #ifndef SERIALGC
  2184   // We might be reading the value of the referent field of a
  2185   // Reference object in order to attach it back to the live
  2186   // object graph. If G1 is enabled then we need to record
  2187   // the value that is being returned in an SATB log buffer.
  2188   //
  2189   // We need to generate code similar to the following...
  2190   //
  2191   // if (offset == java_lang_ref_Reference::referent_offset) {
  2192   //   if (src != NULL) {
  2193   //     if (klass(src)->reference_type() != REF_NONE) {
  2194   //       pre_barrier(..., reg, ...);
  2195   //     }
  2196   //   }
  2197   // }
  2198   //
  2199   // The first non-constant check of either the offset or
  2200   // the src operand will be done here; the remainder
  2201   // will take place in the generated code stub.
  2203   if (UseG1GC && type == T_OBJECT) {
  2204     bool gen_code_stub = true;       // Assume we need to generate the slow code stub.
  2205     bool gen_offset_check = true;       // Assume the code stub has to generate the offset guard.
  2206     bool gen_source_check = true;       // Assume the code stub has to check the src object for null.
  2208     if (off.is_constant()) {
  2209       jlong off_con = (off.type()->is_int() ?
  2210                         (jlong) off.get_jint_constant() :
  2211                         off.get_jlong_constant());
  2214       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
  2215         // The constant offset is something other than referent_offset.
  2216         // We can skip generating/checking the remaining guards and
  2217         // skip generation of the code stub.
  2218         gen_code_stub = false;
  2219       } else {
  2220         // The constant offset is the same as referent_offset -
  2221         // we do not need to generate a runtime offset check.
  2222         gen_offset_check = false;
  2226     // We don't need to generate stub if the source object is an array
  2227     if (gen_code_stub && src.type()->is_array()) {
  2228       gen_code_stub = false;
  2231     if (gen_code_stub) {
  2232       // We still need to continue with the checks.
  2233       if (src.is_constant()) {
  2234         ciObject* src_con = src.get_jobject_constant();
  2236         if (src_con->is_null_object()) {
  2237           // The constant src object is null - We can skip
  2238           // generating the code stub.
  2239           gen_code_stub = false;
  2240         } else {
  2241           // Non-null constant source object. We still have to generate
  2242           // the slow stub - but we don't need to generate the runtime
  2243           // null object check.
  2244           gen_source_check = false;
  2249     if (gen_code_stub) {
  2250       // Temoraries.
  2251       LIR_Opr src_klass = new_register(T_OBJECT);
  2253       // Get the thread pointer for the pre-barrier
  2254       LIR_Opr thread = getThreadPointer();
  2256       CodeStub* stub;
  2258       // We can have generate one runtime check here. Let's start with
  2259       // the offset check.
  2260       if (gen_offset_check) {
  2261         // if (offset == referent_offset) -> slow code stub
  2262         // If offset is an int then we can do the comparison with the
  2263         // referent_offset constant; otherwise we need to move
  2264         // referent_offset into a temporary register and generate
  2265         // a reg-reg compare.
  2267         LIR_Opr referent_off;
  2269         if (off.type()->is_int()) {
  2270           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
  2271         } else {
  2272           assert(off.type()->is_long(), "what else?");
  2273           referent_off = new_register(T_LONG);
  2274           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
  2277         __ cmp(lir_cond_equal, off.result(), referent_off);
  2279         // Optionally generate "src == null" check.
  2280         stub = new G1UnsafeGetObjSATBBarrierStub(reg, src.result(),
  2281                                                     src_klass, thread,
  2282                                                     gen_source_check);
  2284         __ branch(lir_cond_equal, as_BasicType(off.type()), stub);
  2285       } else {
  2286         if (gen_source_check) {
  2287           // offset is a const and equals referent offset
  2288           // if (source != null) -> slow code stub
  2289           __ cmp(lir_cond_notEqual, src.result(), LIR_OprFact::oopConst(NULL));
  2291           // Since we are generating the "if src == null" guard here,
  2292           // there is no need to generate the "src == null" check again.
  2293           stub = new G1UnsafeGetObjSATBBarrierStub(reg, src.result(),
  2294                                                     src_klass, thread,
  2295                                                     false);
  2297           __ branch(lir_cond_notEqual, T_OBJECT, stub);
  2298         } else {
  2299           // We have statically determined that offset == referent_offset
  2300           // && src != null so we unconditionally branch to code stub
  2301           // to perform the guards and record reg in the SATB log buffer.
  2303           stub = new G1UnsafeGetObjSATBBarrierStub(reg, src.result(),
  2304                                                     src_klass, thread,
  2305                                                     false);
  2307           __ branch(lir_cond_always, T_ILLEGAL, stub);
  2311       // Continuation point
  2312       __ branch_destination(stub->continuation());
  2315 #endif // SERIALGC
  2317   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  2321 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  2322   BasicType type = x->basic_type();
  2323   LIRItem src(x->object(), this);
  2324   LIRItem off(x->offset(), this);
  2325   LIRItem data(x->value(), this);
  2327   src.load_item();
  2328   if (type == T_BOOLEAN || type == T_BYTE) {
  2329     data.load_byte_item();
  2330   } else {
  2331     data.load_item();
  2333   off.load_item();
  2335   set_no_result(x);
  2337   if (x->is_volatile() && os::is_MP()) __ membar_release();
  2338   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  2339   if (x->is_volatile() && os::is_MP()) __ membar();
  2343 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  2344   LIRItem src(x->object(), this);
  2345   LIRItem off(x->offset(), this);
  2347   src.load_item();
  2348   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  2349     // let it be a constant
  2350     off.dont_load_item();
  2351   } else {
  2352     off.load_item();
  2355   set_no_result(x);
  2357   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  2358   __ prefetch(addr, is_store);
  2362 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  2363   do_UnsafePrefetch(x, false);
  2367 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  2368   do_UnsafePrefetch(x, true);
  2372 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  2373   int lng = x->length();
  2375   for (int i = 0; i < lng; i++) {
  2376     SwitchRange* one_range = x->at(i);
  2377     int low_key = one_range->low_key();
  2378     int high_key = one_range->high_key();
  2379     BlockBegin* dest = one_range->sux();
  2380     if (low_key == high_key) {
  2381       __ cmp(lir_cond_equal, value, low_key);
  2382       __ branch(lir_cond_equal, T_INT, dest);
  2383     } else if (high_key - low_key == 1) {
  2384       __ cmp(lir_cond_equal, value, low_key);
  2385       __ branch(lir_cond_equal, T_INT, dest);
  2386       __ cmp(lir_cond_equal, value, high_key);
  2387       __ branch(lir_cond_equal, T_INT, dest);
  2388     } else {
  2389       LabelObj* L = new LabelObj();
  2390       __ cmp(lir_cond_less, value, low_key);
  2391       __ branch(lir_cond_less, T_INT, L->label());
  2392       __ cmp(lir_cond_lessEqual, value, high_key);
  2393       __ branch(lir_cond_lessEqual, T_INT, dest);
  2394       __ branch_destination(L->label());
  2397   __ jump(default_sux);
  2401 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  2402   SwitchRangeList* res = new SwitchRangeList();
  2403   int len = x->length();
  2404   if (len > 0) {
  2405     BlockBegin* sux = x->sux_at(0);
  2406     int key = x->lo_key();
  2407     BlockBegin* default_sux = x->default_sux();
  2408     SwitchRange* range = new SwitchRange(key, sux);
  2409     for (int i = 0; i < len; i++, key++) {
  2410       BlockBegin* new_sux = x->sux_at(i);
  2411       if (sux == new_sux) {
  2412         // still in same range
  2413         range->set_high_key(key);
  2414       } else {
  2415         // skip tests which explicitly dispatch to the default
  2416         if (sux != default_sux) {
  2417           res->append(range);
  2419         range = new SwitchRange(key, new_sux);
  2421       sux = new_sux;
  2423     if (res->length() == 0 || res->last() != range)  res->append(range);
  2425   return res;
  2429 // we expect the keys to be sorted by increasing value
  2430 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  2431   SwitchRangeList* res = new SwitchRangeList();
  2432   int len = x->length();
  2433   if (len > 0) {
  2434     BlockBegin* default_sux = x->default_sux();
  2435     int key = x->key_at(0);
  2436     BlockBegin* sux = x->sux_at(0);
  2437     SwitchRange* range = new SwitchRange(key, sux);
  2438     for (int i = 1; i < len; i++) {
  2439       int new_key = x->key_at(i);
  2440       BlockBegin* new_sux = x->sux_at(i);
  2441       if (key+1 == new_key && sux == new_sux) {
  2442         // still in same range
  2443         range->set_high_key(new_key);
  2444       } else {
  2445         // skip tests which explicitly dispatch to the default
  2446         if (range->sux() != default_sux) {
  2447           res->append(range);
  2449         range = new SwitchRange(new_key, new_sux);
  2451       key = new_key;
  2452       sux = new_sux;
  2454     if (res->length() == 0 || res->last() != range)  res->append(range);
  2456   return res;
  2460 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  2461   LIRItem tag(x->tag(), this);
  2462   tag.load_item();
  2463   set_no_result(x);
  2465   if (x->is_safepoint()) {
  2466     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2469   // move values into phi locations
  2470   move_to_phi(x->state());
  2472   int lo_key = x->lo_key();
  2473   int hi_key = x->hi_key();
  2474   int len = x->length();
  2475   LIR_Opr value = tag.result();
  2476   if (UseTableRanges) {
  2477     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2478   } else {
  2479     for (int i = 0; i < len; i++) {
  2480       __ cmp(lir_cond_equal, value, i + lo_key);
  2481       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2483     __ jump(x->default_sux());
  2488 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  2489   LIRItem tag(x->tag(), this);
  2490   tag.load_item();
  2491   set_no_result(x);
  2493   if (x->is_safepoint()) {
  2494     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2497   // move values into phi locations
  2498   move_to_phi(x->state());
  2500   LIR_Opr value = tag.result();
  2501   if (UseTableRanges) {
  2502     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2503   } else {
  2504     int len = x->length();
  2505     for (int i = 0; i < len; i++) {
  2506       __ cmp(lir_cond_equal, value, x->key_at(i));
  2507       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2509     __ jump(x->default_sux());
  2514 void LIRGenerator::do_Goto(Goto* x) {
  2515   set_no_result(x);
  2517   if (block()->next()->as_OsrEntry()) {
  2518     // need to free up storage used for OSR entry point
  2519     LIR_Opr osrBuffer = block()->next()->operand();
  2520     BasicTypeList signature;
  2521     signature.append(T_INT);
  2522     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2523     __ move(osrBuffer, cc->args()->at(0));
  2524     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2525                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2528   if (x->is_safepoint()) {
  2529     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2531     // increment backedge counter if needed
  2532     CodeEmitInfo* info = state_for(x, state);
  2533     increment_backedge_counter(info, x->profiled_bci());
  2534     CodeEmitInfo* safepoint_info = state_for(x, state);
  2535     __ safepoint(safepoint_poll_register(), safepoint_info);
  2538   // Gotos can be folded Ifs, handle this case.
  2539   if (x->should_profile()) {
  2540     ciMethod* method = x->profiled_method();
  2541     assert(method != NULL, "method should be set if branch is profiled");
  2542     ciMethodData* md = method->method_data_or_null();
  2543     assert(md != NULL, "Sanity");
  2544     ciProfileData* data = md->bci_to_data(x->profiled_bci());
  2545     assert(data != NULL, "must have profiling data");
  2546     int offset;
  2547     if (x->direction() == Goto::taken) {
  2548       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2549       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
  2550     } else if (x->direction() == Goto::not_taken) {
  2551       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2552       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  2553     } else {
  2554       assert(data->is_JumpData(), "need JumpData for branches");
  2555       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
  2557     LIR_Opr md_reg = new_register(T_OBJECT);
  2558     __ oop2reg(md->constant_encoding(), md_reg);
  2560     increment_counter(new LIR_Address(md_reg, offset,
  2561                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
  2564   // emit phi-instruction move after safepoint since this simplifies
  2565   // describing the state as the safepoint.
  2566   move_to_phi(x->state());
  2568   __ jump(x->default_sux());
  2572 void LIRGenerator::do_Base(Base* x) {
  2573   __ std_entry(LIR_OprFact::illegalOpr);
  2574   // Emit moves from physical registers / stack slots to virtual registers
  2575   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2576   IRScope* irScope = compilation()->hir()->top_scope();
  2577   int java_index = 0;
  2578   for (int i = 0; i < args->length(); i++) {
  2579     LIR_Opr src = args->at(i);
  2580     assert(!src->is_illegal(), "check");
  2581     BasicType t = src->type();
  2583     // Types which are smaller than int are passed as int, so
  2584     // correct the type which passed.
  2585     switch (t) {
  2586     case T_BYTE:
  2587     case T_BOOLEAN:
  2588     case T_SHORT:
  2589     case T_CHAR:
  2590       t = T_INT;
  2591       break;
  2594     LIR_Opr dest = new_register(t);
  2595     __ move(src, dest);
  2597     // Assign new location to Local instruction for this local
  2598     Local* local = x->state()->local_at(java_index)->as_Local();
  2599     assert(local != NULL, "Locals for incoming arguments must have been created");
  2600 #ifndef __SOFTFP__
  2601     // The java calling convention passes double as long and float as int.
  2602     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  2603 #endif // __SOFTFP__
  2604     local->set_operand(dest);
  2605     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  2606     java_index += type2size[t];
  2609   if (compilation()->env()->dtrace_method_probes()) {
  2610     BasicTypeList signature;
  2611     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  2612     signature.append(T_OBJECT); // methodOop
  2613     LIR_OprList* args = new LIR_OprList();
  2614     args->append(getThreadPointer());
  2615     LIR_Opr meth = new_register(T_OBJECT);
  2616     __ oop2reg(method()->constant_encoding(), meth);
  2617     args->append(meth);
  2618     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  2621   if (method()->is_synchronized()) {
  2622     LIR_Opr obj;
  2623     if (method()->is_static()) {
  2624       obj = new_register(T_OBJECT);
  2625       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
  2626     } else {
  2627       Local* receiver = x->state()->local_at(0)->as_Local();
  2628       assert(receiver != NULL, "must already exist");
  2629       obj = receiver->operand();
  2631     assert(obj->is_valid(), "must be valid");
  2633     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2634       LIR_Opr lock = new_register(T_INT);
  2635       __ load_stack_address_monitor(0, lock);
  2637       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
  2638       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  2640       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  2641       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  2645   // increment invocation counters if needed
  2646   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
  2647     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
  2648     increment_invocation_counter(info);
  2651   // all blocks with a successor must end with an unconditional jump
  2652   // to the successor even if they are consecutive
  2653   __ jump(x->default_sux());
  2657 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  2658   // construct our frame and model the production of incoming pointer
  2659   // to the OSR buffer.
  2660   __ osr_entry(LIR_Assembler::osrBufferPointer());
  2661   LIR_Opr result = rlock_result(x);
  2662   __ move(LIR_Assembler::osrBufferPointer(), result);
  2666 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  2667   int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
  2668   for (; i < args->length(); i++) {
  2669     LIRItem* param = args->at(i);
  2670     LIR_Opr loc = arg_list->at(i);
  2671     if (loc->is_register()) {
  2672       param->load_item_force(loc);
  2673     } else {
  2674       LIR_Address* addr = loc->as_address_ptr();
  2675       param->load_for_store(addr->type());
  2676       if (addr->type() == T_OBJECT) {
  2677         __ move_wide(param->result(), addr);
  2678       } else
  2679         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2680           __ unaligned_move(param->result(), addr);
  2681         } else {
  2682           __ move(param->result(), addr);
  2687   if (x->has_receiver()) {
  2688     LIRItem* receiver = args->at(0);
  2689     LIR_Opr loc = arg_list->at(0);
  2690     if (loc->is_register()) {
  2691       receiver->load_item_force(loc);
  2692     } else {
  2693       assert(loc->is_address(), "just checking");
  2694       receiver->load_for_store(T_OBJECT);
  2695       __ move_wide(receiver->result(), loc->as_address_ptr());
  2701 // Visits all arguments, returns appropriate items without loading them
  2702 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  2703   LIRItemList* argument_items = new LIRItemList();
  2704   if (x->has_receiver()) {
  2705     LIRItem* receiver = new LIRItem(x->receiver(), this);
  2706     argument_items->append(receiver);
  2708   if (x->is_invokedynamic()) {
  2709     // Insert a dummy for the synthetic MethodHandle argument.
  2710     argument_items->append(NULL);
  2712   int idx = x->has_receiver() ? 1 : 0;
  2713   for (int i = 0; i < x->number_of_arguments(); i++) {
  2714     LIRItem* param = new LIRItem(x->argument_at(i), this);
  2715     argument_items->append(param);
  2716     idx += (param->type()->is_double_word() ? 2 : 1);
  2718   return argument_items;
  2722 // The invoke with receiver has following phases:
  2723 //   a) traverse and load/lock receiver;
  2724 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  2725 //   c) push receiver on stack
  2726 //   d) load each of the items and push on stack
  2727 //   e) unlock receiver
  2728 //   f) move receiver into receiver-register %o0
  2729 //   g) lock result registers and emit call operation
  2730 //
  2731 // Before issuing a call, we must spill-save all values on stack
  2732 // that are in caller-save register. "spill-save" moves thos registers
  2733 // either in a free callee-save register or spills them if no free
  2734 // callee save register is available.
  2735 //
  2736 // The problem is where to invoke spill-save.
  2737 // - if invoked between e) and f), we may lock callee save
  2738 //   register in "spill-save" that destroys the receiver register
  2739 //   before f) is executed
  2740 // - if we rearange the f) to be earlier, by loading %o0, it
  2741 //   may destroy a value on the stack that is currently in %o0
  2742 //   and is waiting to be spilled
  2743 // - if we keep the receiver locked while doing spill-save,
  2744 //   we cannot spill it as it is spill-locked
  2745 //
  2746 void LIRGenerator::do_Invoke(Invoke* x) {
  2747   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  2749   LIR_OprList* arg_list = cc->args();
  2750   LIRItemList* args = invoke_visit_arguments(x);
  2751   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  2753   // setup result register
  2754   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  2755   if (x->type() != voidType) {
  2756     result_register = result_register_for(x->type());
  2759   CodeEmitInfo* info = state_for(x, x->state());
  2761   // invokedynamics can deoptimize.
  2762   CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
  2764   invoke_load_arguments(x, args, arg_list);
  2766   if (x->has_receiver()) {
  2767     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  2768     receiver = args->at(0)->result();
  2771   // emit invoke code
  2772   bool optimized = x->target_is_loaded() && x->target_is_final();
  2773   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  2775   // JSR 292
  2776   // Preserve the SP over MethodHandle call sites.
  2777   ciMethod* target = x->target();
  2778   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
  2779                                   target->is_method_handle_intrinsic() ||
  2780                                   target->is_compiled_lambda_form());
  2781   if (is_method_handle_invoke) {
  2782     info->set_is_method_handle_invoke(true);
  2783     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
  2786   switch (x->code()) {
  2787     case Bytecodes::_invokestatic:
  2788       __ call_static(target, result_register,
  2789                      SharedRuntime::get_resolve_static_call_stub(),
  2790                      arg_list, info);
  2791       break;
  2792     case Bytecodes::_invokespecial:
  2793     case Bytecodes::_invokevirtual:
  2794     case Bytecodes::_invokeinterface:
  2795       // for final target we still produce an inline cache, in order
  2796       // to be able to call mixed mode
  2797       if (x->code() == Bytecodes::_invokespecial || optimized) {
  2798         __ call_opt_virtual(target, receiver, result_register,
  2799                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2800                             arg_list, info);
  2801       } else if (x->vtable_index() < 0) {
  2802         __ call_icvirtual(target, receiver, result_register,
  2803                           SharedRuntime::get_resolve_virtual_call_stub(),
  2804                           arg_list, info);
  2805       } else {
  2806         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  2807         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  2808         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
  2810       break;
  2811     case Bytecodes::_invokedynamic: {
  2812       ciBytecodeStream bcs(x->scope()->method());
  2813       bcs.force_bci(x->state()->bci());
  2814       assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
  2815       ciCPCache* cpcache = bcs.get_cpcache();
  2817       // Get CallSite offset from constant pool cache pointer.
  2818       int index = bcs.get_method_index();
  2819       size_t call_site_offset = cpcache->get_f1_offset(index);
  2821       // Load CallSite object from constant pool cache.
  2822       LIR_Opr call_site = new_register(objectType);
  2823       __ oop2reg(cpcache->constant_encoding(), call_site);
  2824       __ move_wide(new LIR_Address(call_site, call_site_offset, T_OBJECT), call_site);
  2826       // If this invokedynamic call site hasn't been executed yet in
  2827       // the interpreter, the CallSite object in the constant pool
  2828       // cache is still null and we need to deoptimize.
  2829       if (cpcache->is_f1_null_at(index)) {
  2830         // Only deoptimize if the CallSite object is still null; we don't
  2831         // recompile methods in C1 after deoptimization so this call site
  2832         // might be resolved the next time we execute it after OSR.
  2833         DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
  2834         __ cmp(lir_cond_equal, call_site, LIR_OprFact::oopConst(NULL));
  2835         __ branch(lir_cond_equal, T_OBJECT, deopt_stub);
  2838       // Use the receiver register for the synthetic MethodHandle
  2839       // argument.
  2840       receiver = LIR_Assembler::receiverOpr();
  2842       // Load target MethodHandle from CallSite object.
  2843       __ load(new LIR_Address(call_site, java_lang_invoke_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
  2845       __ call_dynamic(target, receiver, result_register,
  2846                       SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2847                       arg_list, info);
  2848       break;
  2850     default:
  2851       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
  2852       break;
  2855   // JSR 292
  2856   // Restore the SP after MethodHandle call sites.
  2857   if (is_method_handle_invoke) {
  2858     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
  2861   if (x->type()->is_float() || x->type()->is_double()) {
  2862     // Force rounding of results from non-strictfp when in strictfp
  2863     // scope (or when we don't know the strictness of the callee, to
  2864     // be safe.)
  2865     if (method()->is_strict()) {
  2866       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  2867         result_register = round_item(result_register);
  2872   if (result_register->is_valid()) {
  2873     LIR_Opr result = rlock_result(x);
  2874     __ move(result_register, result);
  2879 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  2880   assert(x->number_of_arguments() == 1, "wrong type");
  2881   LIRItem value       (x->argument_at(0), this);
  2882   LIR_Opr reg = rlock_result(x);
  2883   value.load_item();
  2884   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  2885   __ move(tmp, reg);
  2890 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  2891 void LIRGenerator::do_IfOp(IfOp* x) {
  2892 #ifdef ASSERT
  2894     ValueTag xtag = x->x()->type()->tag();
  2895     ValueTag ttag = x->tval()->type()->tag();
  2896     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  2897     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  2898     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  2900 #endif
  2902   LIRItem left(x->x(), this);
  2903   LIRItem right(x->y(), this);
  2904   left.load_item();
  2905   if (can_inline_as_constant(right.value())) {
  2906     right.dont_load_item();
  2907   } else {
  2908     right.load_item();
  2911   LIRItem t_val(x->tval(), this);
  2912   LIRItem f_val(x->fval(), this);
  2913   t_val.dont_load_item();
  2914   f_val.dont_load_item();
  2915   LIR_Opr reg = rlock_result(x);
  2917   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  2918   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
  2921 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
  2922     assert(x->number_of_arguments() == expected_arguments, "wrong type");
  2923     LIR_Opr reg = result_register_for(x->type());
  2924     __ call_runtime_leaf(routine, getThreadTemp(),
  2925                          reg, new LIR_OprList());
  2926     LIR_Opr result = rlock_result(x);
  2927     __ move(reg, result);
  2930 #ifdef TRACE_HAVE_INTRINSICS
  2931 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
  2932     LIR_Opr thread = getThreadPointer();
  2933     LIR_Opr osthread = new_pointer_register();
  2934     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
  2935     size_t thread_id_size = OSThread::thread_id_size();
  2936     if (thread_id_size == (size_t) BytesPerLong) {
  2937       LIR_Opr id = new_register(T_LONG);
  2938       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
  2939       __ convert(Bytecodes::_l2i, id, rlock_result(x));
  2940     } else if (thread_id_size == (size_t) BytesPerInt) {
  2941       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
  2942     } else {
  2943       ShouldNotReachHere();
  2947 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
  2948     CodeEmitInfo* info = state_for(x);
  2949     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
  2950     assert(info != NULL, "must have info");
  2951     LIRItem arg(x->argument_at(1), this);
  2952     arg.load_item();
  2953     LIR_Opr klass = new_register(T_OBJECT);
  2954     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_OBJECT), klass, info);
  2955     LIR_Opr id = new_register(T_LONG);
  2956     ByteSize offset = TRACE_ID_OFFSET;
  2957     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
  2958     __ move(trace_id_addr, id);
  2959     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
  2960     __ store(id, trace_id_addr);
  2961     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
  2962     __ move(id, rlock_result(x));
  2964 #endif
  2966 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  2967   switch (x->id()) {
  2968   case vmIntrinsics::_intBitsToFloat      :
  2969   case vmIntrinsics::_doubleToRawLongBits :
  2970   case vmIntrinsics::_longBitsToDouble    :
  2971   case vmIntrinsics::_floatToRawIntBits   : {
  2972     do_FPIntrinsics(x);
  2973     break;
  2976 #ifdef TRACE_HAVE_INTRINSICS
  2977   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
  2978   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
  2979   case vmIntrinsics::_counterTime:
  2980     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
  2981     break;
  2982 #endif
  2984   case vmIntrinsics::_currentTimeMillis:
  2985     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
  2986     break;
  2988   case vmIntrinsics::_nanoTime:
  2989     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
  2990     break;
  2992   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  2993   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
  2994   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  2995   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  2997   case vmIntrinsics::_dlog:           // fall through
  2998   case vmIntrinsics::_dlog10:         // fall through
  2999   case vmIntrinsics::_dabs:           // fall through
  3000   case vmIntrinsics::_dsqrt:          // fall through
  3001   case vmIntrinsics::_dtan:           // fall through
  3002   case vmIntrinsics::_dsin :          // fall through
  3003   case vmIntrinsics::_dcos :          // fall through
  3004   case vmIntrinsics::_dexp :          // fall through
  3005   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
  3006   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  3008   // java.nio.Buffer.checkIndex
  3009   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  3011   case vmIntrinsics::_compareAndSwapObject:
  3012     do_CompareAndSwap(x, objectType);
  3013     break;
  3014   case vmIntrinsics::_compareAndSwapInt:
  3015     do_CompareAndSwap(x, intType);
  3016     break;
  3017   case vmIntrinsics::_compareAndSwapLong:
  3018     do_CompareAndSwap(x, longType);
  3019     break;
  3021   case vmIntrinsics::_Reference_get:
  3022     do_Reference_get(x);
  3023     break;
  3025   default: ShouldNotReachHere(); break;
  3029 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  3030   // Need recv in a temporary register so it interferes with the other temporaries
  3031   LIR_Opr recv = LIR_OprFact::illegalOpr;
  3032   LIR_Opr mdo = new_register(T_OBJECT);
  3033   // tmp is used to hold the counters on SPARC
  3034   LIR_Opr tmp = new_pointer_register();
  3035   if (x->recv() != NULL) {
  3036     LIRItem value(x->recv(), this);
  3037     value.load_item();
  3038     recv = new_register(T_OBJECT);
  3039     __ move(value.result(), recv);
  3041   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
  3044 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
  3045   // We can safely ignore accessors here, since c2 will inline them anyway,
  3046   // accessors are also always mature.
  3047   if (!x->inlinee()->is_accessor()) {
  3048     CodeEmitInfo* info = state_for(x, x->state(), true);
  3049     // Notify the runtime very infrequently only to take care of counter overflows
  3050     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
  3054 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
  3055   int freq_log;
  3056   int level = compilation()->env()->comp_level();
  3057   if (level == CompLevel_limited_profile) {
  3058     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
  3059   } else if (level == CompLevel_full_profile) {
  3060     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
  3061   } else {
  3062     ShouldNotReachHere();
  3064   // Increment the appropriate invocation/backedge counter and notify the runtime.
  3065   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
  3068 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
  3069                                                 ciMethod *method, int frequency,
  3070                                                 int bci, bool backedge, bool notify) {
  3071   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
  3072   int level = _compilation->env()->comp_level();
  3073   assert(level > CompLevel_simple, "Shouldn't be here");
  3075   int offset = -1;
  3076   LIR_Opr counter_holder = new_register(T_OBJECT);
  3077   LIR_Opr meth;
  3078   if (level == CompLevel_limited_profile) {
  3079     offset = in_bytes(backedge ? methodOopDesc::backedge_counter_offset() :
  3080                                  methodOopDesc::invocation_counter_offset());
  3081     __ oop2reg(method->constant_encoding(), counter_holder);
  3082     meth = counter_holder;
  3083   } else if (level == CompLevel_full_profile) {
  3084     offset = in_bytes(backedge ? methodDataOopDesc::backedge_counter_offset() :
  3085                                  methodDataOopDesc::invocation_counter_offset());
  3086     ciMethodData* md = method->method_data_or_null();
  3087     assert(md != NULL, "Sanity");
  3088     __ oop2reg(md->constant_encoding(), counter_holder);
  3089     meth = new_register(T_OBJECT);
  3090     __ oop2reg(method->constant_encoding(), meth);
  3091   } else {
  3092     ShouldNotReachHere();
  3094   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
  3095   LIR_Opr result = new_register(T_INT);
  3096   __ load(counter, result);
  3097   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
  3098   __ store(result, counter);
  3099   if (notify) {
  3100     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
  3101     __ logical_and(result, mask, result);
  3102     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
  3103     // The bci for info can point to cmp for if's we want the if bci
  3104     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
  3105     __ branch(lir_cond_equal, T_INT, overflow);
  3106     __ branch_destination(overflow->continuation());
  3110 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
  3111   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
  3112   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
  3114   if (x->pass_thread()) {
  3115     signature->append(T_ADDRESS);
  3116     args->append(getThreadPointer());
  3119   for (int i = 0; i < x->number_of_arguments(); i++) {
  3120     Value a = x->argument_at(i);
  3121     LIRItem* item = new LIRItem(a, this);
  3122     item->load_item();
  3123     args->append(item->result());
  3124     signature->append(as_BasicType(a->type()));
  3127   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
  3128   if (x->type() == voidType) {
  3129     set_no_result(x);
  3130   } else {
  3131     __ move(result, rlock_result(x));
  3135 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3136   LIRItemList args(1);
  3137   LIRItem value(arg1, this);
  3138   args.append(&value);
  3139   BasicTypeList signature;
  3140   signature.append(as_BasicType(arg1->type()));
  3142   return call_runtime(&signature, &args, entry, result_type, info);
  3146 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3147   LIRItemList args(2);
  3148   LIRItem value1(arg1, this);
  3149   LIRItem value2(arg2, this);
  3150   args.append(&value1);
  3151   args.append(&value2);
  3152   BasicTypeList signature;
  3153   signature.append(as_BasicType(arg1->type()));
  3154   signature.append(as_BasicType(arg2->type()));
  3156   return call_runtime(&signature, &args, entry, result_type, info);
  3160 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  3161                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3162   // get a result register
  3163   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3164   LIR_Opr result = LIR_OprFact::illegalOpr;
  3165   if (result_type->tag() != voidTag) {
  3166     result = new_register(result_type);
  3167     phys_reg = result_register_for(result_type);
  3170   // move the arguments into the correct location
  3171   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3172   assert(cc->length() == args->length(), "argument mismatch");
  3173   for (int i = 0; i < args->length(); i++) {
  3174     LIR_Opr arg = args->at(i);
  3175     LIR_Opr loc = cc->at(i);
  3176     if (loc->is_register()) {
  3177       __ move(arg, loc);
  3178     } else {
  3179       LIR_Address* addr = loc->as_address_ptr();
  3180 //           if (!can_store_as_constant(arg)) {
  3181 //             LIR_Opr tmp = new_register(arg->type());
  3182 //             __ move(arg, tmp);
  3183 //             arg = tmp;
  3184 //           }
  3185       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3186         __ unaligned_move(arg, addr);
  3187       } else {
  3188         __ move(arg, addr);
  3193   if (info) {
  3194     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3195   } else {
  3196     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3198   if (result->is_valid()) {
  3199     __ move(phys_reg, result);
  3201   return result;
  3205 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  3206                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3207   // get a result register
  3208   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3209   LIR_Opr result = LIR_OprFact::illegalOpr;
  3210   if (result_type->tag() != voidTag) {
  3211     result = new_register(result_type);
  3212     phys_reg = result_register_for(result_type);
  3215   // move the arguments into the correct location
  3216   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3218   assert(cc->length() == args->length(), "argument mismatch");
  3219   for (int i = 0; i < args->length(); i++) {
  3220     LIRItem* arg = args->at(i);
  3221     LIR_Opr loc = cc->at(i);
  3222     if (loc->is_register()) {
  3223       arg->load_item_force(loc);
  3224     } else {
  3225       LIR_Address* addr = loc->as_address_ptr();
  3226       arg->load_for_store(addr->type());
  3227       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3228         __ unaligned_move(arg->result(), addr);
  3229       } else {
  3230         __ move(arg->result(), addr);
  3235   if (info) {
  3236     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3237   } else {
  3238     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3240   if (result->is_valid()) {
  3241     __ move(phys_reg, result);
  3243   return result;
  3246 void LIRGenerator::do_MemBar(MemBar* x) {
  3247   if (os::is_MP()) {
  3248     LIR_Code code = x->code();
  3249     switch(code) {
  3250       case lir_membar_acquire   : __ membar_acquire(); break;
  3251       case lir_membar_release   : __ membar_release(); break;
  3252       case lir_membar           : __ membar(); break;
  3253       case lir_membar_loadload  : __ membar_loadload(); break;
  3254       case lir_membar_storestore: __ membar_storestore(); break;
  3255       case lir_membar_loadstore : __ membar_loadstore(); break;
  3256       case lir_membar_storeload : __ membar_storeload(); break;
  3257       default                   : ShouldNotReachHere(); break;

mercurial