src/share/vm/asm/codeBuffer.cpp

Tue, 24 Jul 2012 10:51:00 -0700

author
twisti
date
Tue, 24 Jul 2012 10:51:00 -0700
changeset 3969
1d7922586cf6
parent 3900
d2a62e0f25eb
child 4037
da91efe96a93
permissions
-rw-r--r--

7023639: JSR 292 method handle invocation needs a fast path for compiled code
6984705: JSR 292 method handle creation should not go through JNI
Summary: remove assembly code for JDK 7 chained method handles
Reviewed-by: jrose, twisti, kvn, mhaupt
Contributed-by: John Rose <john.r.rose@oracle.com>, Christian Thalinger <christian.thalinger@oracle.com>, Michael Haupt <michael.haupt@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/codeBuffer.hpp"
    27 #include "compiler/disassembler.hpp"
    28 #include "utilities/copy.hpp"
    29 #include "utilities/xmlstream.hpp"
    31 // The structure of a CodeSection:
    32 //
    33 //    _start ->           +----------------+
    34 //                        | machine code...|
    35 //    _end ->             |----------------|
    36 //                        |                |
    37 //                        |    (empty)     |
    38 //                        |                |
    39 //                        |                |
    40 //                        +----------------+
    41 //    _limit ->           |                |
    42 //
    43 //    _locs_start ->      +----------------+
    44 //                        |reloc records...|
    45 //                        |----------------|
    46 //    _locs_end ->        |                |
    47 //                        |                |
    48 //                        |    (empty)     |
    49 //                        |                |
    50 //                        |                |
    51 //                        +----------------+
    52 //    _locs_limit ->      |                |
    53 // The _end (resp. _limit) pointer refers to the first
    54 // unused (resp. unallocated) byte.
    56 // The structure of the CodeBuffer while code is being accumulated:
    57 //
    58 //    _total_start ->    \
    59 //    _insts._start ->              +----------------+
    60 //                                  |                |
    61 //                                  |     Code       |
    62 //                                  |                |
    63 //    _stubs._start ->              |----------------|
    64 //                                  |                |
    65 //                                  |    Stubs       | (also handlers for deopt/exception)
    66 //                                  |                |
    67 //    _consts._start ->             |----------------|
    68 //                                  |                |
    69 //                                  |   Constants    |
    70 //                                  |                |
    71 //                                  +----------------+
    72 //    + _total_size ->              |                |
    73 //
    74 // When the code and relocations are copied to the code cache,
    75 // the empty parts of each section are removed, and everything
    76 // is copied into contiguous locations.
    78 typedef CodeBuffer::csize_t csize_t;  // file-local definition
    80 // External buffer, in a predefined CodeBlob.
    81 // Important: The code_start must be taken exactly, and not realigned.
    82 CodeBuffer::CodeBuffer(CodeBlob* blob) {
    83   initialize_misc("static buffer");
    84   initialize(blob->content_begin(), blob->content_size());
    85   verify_section_allocation();
    86 }
    88 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
    89   // Compute maximal alignment.
    90   int align = _insts.alignment();
    91   // Always allow for empty slop around each section.
    92   int slop = (int) CodeSection::end_slop();
    94   assert(blob() == NULL, "only once");
    95   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
    96   if (blob() == NULL) {
    97     // The assembler constructor will throw a fatal on an empty CodeBuffer.
    98     return;  // caller must test this
    99   }
   101   // Set up various pointers into the blob.
   102   initialize(_total_start, _total_size);
   104   assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
   106   pd_initialize();
   108   if (locs_size != 0) {
   109     _insts.initialize_locs(locs_size / sizeof(relocInfo));
   110   }
   112   verify_section_allocation();
   113 }
   116 CodeBuffer::~CodeBuffer() {
   117   verify_section_allocation();
   119   // If we allocate our code buffer from the CodeCache
   120   // via a BufferBlob, and it's not permanent, then
   121   // free the BufferBlob.
   122   // The rest of the memory will be freed when the ResourceObj
   123   // is released.
   124   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
   125     // Previous incarnations of this buffer are held live, so that internal
   126     // addresses constructed before expansions will not be confused.
   127     cb->free_blob();
   128   }
   130   // free any overflow storage
   131   delete _overflow_arena;
   133 #ifdef ASSERT
   134   // Save allocation type to execute assert in ~ResourceObj()
   135   // which is called after this destructor.
   136   assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
   137   ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
   138   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
   139   ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
   140 #endif
   141 }
   143 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
   144   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
   145   DEBUG_ONLY(_default_oop_recorder.oop_size());  // force unused OR to be frozen
   146   _oop_recorder = r;
   147 }
   149 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
   150   assert(cs != &_insts, "insts is the memory provider, not the consumer");
   151   csize_t slop = CodeSection::end_slop();  // margin between sections
   152   int align = cs->alignment();
   153   assert(is_power_of_2(align), "sanity");
   154   address start  = _insts._start;
   155   address limit  = _insts._limit;
   156   address middle = limit - size;
   157   middle -= (intptr_t)middle & (align-1);  // align the division point downward
   158   guarantee(middle - slop > start, "need enough space to divide up");
   159   _insts._limit = middle - slop;  // subtract desired space, plus slop
   160   cs->initialize(middle, limit - middle);
   161   assert(cs->start() == middle, "sanity");
   162   assert(cs->limit() == limit,  "sanity");
   163   // give it some relocations to start with, if the main section has them
   164   if (_insts.has_locs())  cs->initialize_locs(1);
   165 }
   167 void CodeBuffer::freeze_section(CodeSection* cs) {
   168   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
   169   csize_t frozen_size = cs->size();
   170   if (next_cs != NULL) {
   171     frozen_size = next_cs->align_at_start(frozen_size);
   172   }
   173   address old_limit = cs->limit();
   174   address new_limit = cs->start() + frozen_size;
   175   relocInfo* old_locs_limit = cs->locs_limit();
   176   relocInfo* new_locs_limit = cs->locs_end();
   177   // Patch the limits.
   178   cs->_limit = new_limit;
   179   cs->_locs_limit = new_locs_limit;
   180   cs->_frozen = true;
   181   if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
   182     // Give remaining buffer space to the following section.
   183     next_cs->initialize(new_limit, old_limit - new_limit);
   184     next_cs->initialize_shared_locs(new_locs_limit,
   185                                     old_locs_limit - new_locs_limit);
   186   }
   187 }
   189 void CodeBuffer::set_blob(BufferBlob* blob) {
   190   _blob = blob;
   191   if (blob != NULL) {
   192     address start = blob->content_begin();
   193     address end   = blob->content_end();
   194     // Round up the starting address.
   195     int align = _insts.alignment();
   196     start += (-(intptr_t)start) & (align-1);
   197     _total_start = start;
   198     _total_size  = end - start;
   199   } else {
   200 #ifdef ASSERT
   201     // Clean out dangling pointers.
   202     _total_start    = badAddress;
   203     _consts._start  = _consts._end  = badAddress;
   204     _insts._start   = _insts._end   = badAddress;
   205     _stubs._start   = _stubs._end   = badAddress;
   206 #endif //ASSERT
   207   }
   208 }
   210 void CodeBuffer::free_blob() {
   211   if (_blob != NULL) {
   212     BufferBlob::free(_blob);
   213     set_blob(NULL);
   214   }
   215 }
   217 const char* CodeBuffer::code_section_name(int n) {
   218 #ifdef PRODUCT
   219   return NULL;
   220 #else //PRODUCT
   221   switch (n) {
   222   case SECT_CONSTS:            return "consts";
   223   case SECT_INSTS:             return "insts";
   224   case SECT_STUBS:             return "stubs";
   225   default:                     return NULL;
   226   }
   227 #endif //PRODUCT
   228 }
   230 int CodeBuffer::section_index_of(address addr) const {
   231   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   232     const CodeSection* cs = code_section(n);
   233     if (cs->allocates(addr))  return n;
   234   }
   235   return SECT_NONE;
   236 }
   238 int CodeBuffer::locator(address addr) const {
   239   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   240     const CodeSection* cs = code_section(n);
   241     if (cs->allocates(addr)) {
   242       return locator(addr - cs->start(), n);
   243     }
   244   }
   245   return -1;
   246 }
   248 address CodeBuffer::locator_address(int locator) const {
   249   if (locator < 0)  return NULL;
   250   address start = code_section(locator_sect(locator))->start();
   251   return start + locator_pos(locator);
   252 }
   254 address CodeBuffer::decode_begin() {
   255   address begin = _insts.start();
   256   if (_decode_begin != NULL && _decode_begin > begin)
   257     begin = _decode_begin;
   258   return begin;
   259 }
   262 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
   263   if (_overflow_arena == NULL) {
   264     _overflow_arena = new (mtCode) Arena();
   265   }
   266   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
   267 }
   270 // Helper function for managing labels and their target addresses.
   271 // Returns a sensible address, and if it is not the label's final
   272 // address, notes the dependency (at 'branch_pc') on the label.
   273 address CodeSection::target(Label& L, address branch_pc) {
   274   if (L.is_bound()) {
   275     int loc = L.loc();
   276     if (index() == CodeBuffer::locator_sect(loc)) {
   277       return start() + CodeBuffer::locator_pos(loc);
   278     } else {
   279       return outer()->locator_address(loc);
   280     }
   281   } else {
   282     assert(allocates2(branch_pc), "sanity");
   283     address base = start();
   284     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
   285     L.add_patch_at(outer(), patch_loc);
   287     // Need to return a pc, doesn't matter what it is since it will be
   288     // replaced during resolution later.
   289     // Don't return NULL or badAddress, since branches shouldn't overflow.
   290     // Don't return base either because that could overflow displacements
   291     // for shorter branches.  It will get checked when bound.
   292     return branch_pc;
   293   }
   294 }
   296 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
   297   Relocation* reloc = spec.reloc();
   298   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
   299   if (rtype == relocInfo::none)  return;
   301   // The assertion below has been adjusted, to also work for
   302   // relocation for fixup.  Sometimes we want to put relocation
   303   // information for the next instruction, since it will be patched
   304   // with a call.
   305   assert(start() <= at && at <= end()+1,
   306          "cannot relocate data outside code boundaries");
   308   if (!has_locs()) {
   309     // no space for relocation information provided => code cannot be
   310     // relocated.  Make sure that relocate is only called with rtypes
   311     // that can be ignored for this kind of code.
   312     assert(rtype == relocInfo::none              ||
   313            rtype == relocInfo::runtime_call_type ||
   314            rtype == relocInfo::internal_word_type||
   315            rtype == relocInfo::section_word_type ||
   316            rtype == relocInfo::external_word_type,
   317            "code needs relocation information");
   318     // leave behind an indication that we attempted a relocation
   319     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
   320     return;
   321   }
   323   // Advance the point, noting the offset we'll have to record.
   324   csize_t offset = at - locs_point();
   325   set_locs_point(at);
   327   // Test for a couple of overflow conditions; maybe expand the buffer.
   328   relocInfo* end = locs_end();
   329   relocInfo* req = end + relocInfo::length_limit;
   330   // Check for (potential) overflow
   331   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
   332     req += (uint)offset / (uint)relocInfo::offset_limit();
   333     if (req >= locs_limit()) {
   334       // Allocate or reallocate.
   335       expand_locs(locs_count() + (req - end));
   336       // reload pointer
   337       end = locs_end();
   338     }
   339   }
   341   // If the offset is giant, emit filler relocs, of type 'none', but
   342   // each carrying the largest possible offset, to advance the locs_point.
   343   while (offset >= relocInfo::offset_limit()) {
   344     assert(end < locs_limit(), "adjust previous paragraph of code");
   345     *end++ = filler_relocInfo();
   346     offset -= filler_relocInfo().addr_offset();
   347   }
   349   // If it's a simple reloc with no data, we'll just write (rtype | offset).
   350   (*end) = relocInfo(rtype, offset, format);
   352   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
   353   end->initialize(this, reloc);
   354 }
   356 void CodeSection::initialize_locs(int locs_capacity) {
   357   assert(_locs_start == NULL, "only one locs init step, please");
   358   // Apply a priori lower limits to relocation size:
   359   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
   360   if (locs_capacity < min_locs)  locs_capacity = min_locs;
   361   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
   362   _locs_start    = locs_start;
   363   _locs_end      = locs_start;
   364   _locs_limit    = locs_start + locs_capacity;
   365   _locs_own      = true;
   366 }
   368 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
   369   assert(_locs_start == NULL, "do this before locs are allocated");
   370   // Internal invariant:  locs buf must be fully aligned.
   371   // See copy_relocations_to() below.
   372   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
   373     ++buf; --length;
   374   }
   375   if (length > 0) {
   376     _locs_start = buf;
   377     _locs_end   = buf;
   378     _locs_limit = buf + length;
   379     _locs_own   = false;
   380   }
   381 }
   383 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
   384   int lcount = source_cs->locs_count();
   385   if (lcount != 0) {
   386     initialize_shared_locs(source_cs->locs_start(), lcount);
   387     _locs_end = _locs_limit = _locs_start + lcount;
   388     assert(is_allocated(), "must have copied code already");
   389     set_locs_point(start() + source_cs->locs_point_off());
   390   }
   391   assert(this->locs_count() == source_cs->locs_count(), "sanity");
   392 }
   394 void CodeSection::expand_locs(int new_capacity) {
   395   if (_locs_start == NULL) {
   396     initialize_locs(new_capacity);
   397     return;
   398   } else {
   399     int old_count    = locs_count();
   400     int old_capacity = locs_capacity();
   401     if (new_capacity < old_capacity * 2)
   402       new_capacity = old_capacity * 2;
   403     relocInfo* locs_start;
   404     if (_locs_own) {
   405       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
   406     } else {
   407       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
   408       Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
   409       _locs_own = true;
   410     }
   411     _locs_start    = locs_start;
   412     _locs_end      = locs_start + old_count;
   413     _locs_limit    = locs_start + new_capacity;
   414   }
   415 }
   418 /// Support for emitting the code to its final location.
   419 /// The pattern is the same for all functions.
   420 /// We iterate over all the sections, padding each to alignment.
   422 csize_t CodeBuffer::total_content_size() const {
   423   csize_t size_so_far = 0;
   424   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   425     const CodeSection* cs = code_section(n);
   426     if (cs->is_empty())  continue;  // skip trivial section
   427     size_so_far = cs->align_at_start(size_so_far);
   428     size_so_far += cs->size();
   429   }
   430   return size_so_far;
   431 }
   433 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
   434   address buf = dest->_total_start;
   435   csize_t buf_offset = 0;
   436   assert(dest->_total_size >= total_content_size(), "must be big enough");
   438   {
   439     // not sure why this is here, but why not...
   440     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
   441     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
   442   }
   444   const CodeSection* prev_cs      = NULL;
   445   CodeSection*       prev_dest_cs = NULL;
   447   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
   448     // figure compact layout of each section
   449     const CodeSection* cs = code_section(n);
   450     csize_t csize = cs->size();
   452     CodeSection* dest_cs = dest->code_section(n);
   453     if (!cs->is_empty()) {
   454       // Compute initial padding; assign it to the previous non-empty guy.
   455       // Cf. figure_expanded_capacities.
   456       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
   457       if (padding != 0) {
   458         buf_offset += padding;
   459         assert(prev_dest_cs != NULL, "sanity");
   460         prev_dest_cs->_limit += padding;
   461       }
   462       #ifdef ASSERT
   463       if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
   464         // Make sure the ends still match up.
   465         // This is important because a branch in a frozen section
   466         // might target code in a following section, via a Label,
   467         // and without a relocation record.  See Label::patch_instructions.
   468         address dest_start = buf+buf_offset;
   469         csize_t start2start = cs->start() - prev_cs->start();
   470         csize_t dest_start2start = dest_start - prev_dest_cs->start();
   471         assert(start2start == dest_start2start, "cannot stretch frozen sect");
   472       }
   473       #endif //ASSERT
   474       prev_dest_cs = dest_cs;
   475       prev_cs      = cs;
   476     }
   478     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
   479     dest_cs->initialize(buf+buf_offset, csize);
   480     dest_cs->set_end(buf+buf_offset+csize);
   481     assert(dest_cs->is_allocated(), "must always be allocated");
   482     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
   484     buf_offset += csize;
   485   }
   487   // Done calculating sections; did it come out to the right end?
   488   assert(buf_offset == total_content_size(), "sanity");
   489   dest->verify_section_allocation();
   490 }
   492 csize_t CodeBuffer::total_offset_of(CodeSection* cs) const {
   493   csize_t size_so_far = 0;
   494   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
   495     const CodeSection* cur_cs = code_section(n);
   496     if (!cur_cs->is_empty()) {
   497       size_so_far = cur_cs->align_at_start(size_so_far);
   498     }
   499     if (cur_cs->index() == cs->index()) {
   500       return size_so_far;
   501     }
   502     size_so_far += cur_cs->size();
   503   }
   504   ShouldNotReachHere();
   505   return -1;
   506 }
   508 csize_t CodeBuffer::total_relocation_size() const {
   509   csize_t lsize = copy_relocations_to(NULL);  // dry run only
   510   csize_t csize = total_content_size();
   511   csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
   512   return (csize_t) align_size_up(total, HeapWordSize);
   513 }
   515 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
   516   address buf = NULL;
   517   csize_t buf_offset = 0;
   518   csize_t buf_limit = 0;
   519   if (dest != NULL) {
   520     buf = (address)dest->relocation_begin();
   521     buf_limit = (address)dest->relocation_end() - buf;
   522     assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
   523     assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
   524   }
   525   // if dest == NULL, this is just the sizing pass
   527   csize_t code_end_so_far = 0;
   528   csize_t code_point_so_far = 0;
   529   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
   530     // pull relocs out of each section
   531     const CodeSection* cs = code_section(n);
   532     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
   533     if (cs->is_empty())  continue;  // skip trivial section
   534     relocInfo* lstart = cs->locs_start();
   535     relocInfo* lend   = cs->locs_end();
   536     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
   537     csize_t    csize  = cs->size();
   538     code_end_so_far = cs->align_at_start(code_end_so_far);
   540     if (lsize > 0) {
   541       // Figure out how to advance the combined relocation point
   542       // first to the beginning of this section.
   543       // We'll insert one or more filler relocs to span that gap.
   544       // (Don't bother to improve this by editing the first reloc's offset.)
   545       csize_t new_code_point = code_end_so_far;
   546       for (csize_t jump;
   547            code_point_so_far < new_code_point;
   548            code_point_so_far += jump) {
   549         jump = new_code_point - code_point_so_far;
   550         relocInfo filler = filler_relocInfo();
   551         if (jump >= filler.addr_offset()) {
   552           jump = filler.addr_offset();
   553         } else {  // else shrink the filler to fit
   554           filler = relocInfo(relocInfo::none, jump);
   555         }
   556         if (buf != NULL) {
   557           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
   558           *(relocInfo*)(buf+buf_offset) = filler;
   559         }
   560         buf_offset += sizeof(filler);
   561       }
   563       // Update code point and end to skip past this section:
   564       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
   565       assert(code_point_so_far <= last_code_point, "sanity");
   566       code_point_so_far = last_code_point; // advance past this guy's relocs
   567     }
   568     code_end_so_far += csize;  // advance past this guy's instructions too
   570     // Done with filler; emit the real relocations:
   571     if (buf != NULL && lsize != 0) {
   572       assert(buf_offset + lsize <= buf_limit, "target in bounds");
   573       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
   574       if (buf_offset % HeapWordSize == 0) {
   575         // Use wordwise copies if possible:
   576         Copy::disjoint_words((HeapWord*)lstart,
   577                              (HeapWord*)(buf+buf_offset),
   578                              (lsize + HeapWordSize-1) / HeapWordSize);
   579       } else {
   580         Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
   581       }
   582     }
   583     buf_offset += lsize;
   584   }
   586   // Align end of relocation info in target.
   587   while (buf_offset % HeapWordSize != 0) {
   588     if (buf != NULL) {
   589       relocInfo padding = relocInfo(relocInfo::none, 0);
   590       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
   591       *(relocInfo*)(buf+buf_offset) = padding;
   592     }
   593     buf_offset += sizeof(relocInfo);
   594   }
   596   assert(code_end_so_far == total_content_size(), "sanity");
   598   // Account for index:
   599   if (buf != NULL) {
   600     RelocIterator::create_index(dest->relocation_begin(),
   601                                 buf_offset / sizeof(relocInfo),
   602                                 dest->relocation_end());
   603   }
   605   return buf_offset;
   606 }
   608 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
   609 #ifndef PRODUCT
   610   if (PrintNMethods && (WizardMode || Verbose)) {
   611     tty->print("done with CodeBuffer:");
   612     ((CodeBuffer*)this)->print();
   613   }
   614 #endif //PRODUCT
   616   CodeBuffer dest(dest_blob);
   617   assert(dest_blob->content_size() >= total_content_size(), "good sizing");
   618   this->compute_final_layout(&dest);
   619   relocate_code_to(&dest);
   621   // transfer comments from buffer to blob
   622   dest_blob->set_comments(_comments);
   624   // Done moving code bytes; were they the right size?
   625   assert(round_to(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
   627   // Flush generated code
   628   ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
   629 }
   631 // Move all my code into another code buffer.  Consult applicable
   632 // relocs to repair embedded addresses.  The layout in the destination
   633 // CodeBuffer is different to the source CodeBuffer: the destination
   634 // CodeBuffer gets the final layout (consts, insts, stubs in order of
   635 // ascending address).
   636 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
   637   address dest_end = dest->_total_start + dest->_total_size;
   638   address dest_filled = NULL;
   639   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
   640     // pull code out of each section
   641     const CodeSection* cs = code_section(n);
   642     if (cs->is_empty())  continue;  // skip trivial section
   643     CodeSection* dest_cs = dest->code_section(n);
   644     assert(cs->size() == dest_cs->size(), "sanity");
   645     csize_t usize = dest_cs->size();
   646     csize_t wsize = align_size_up(usize, HeapWordSize);
   647     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
   648     // Copy the code as aligned machine words.
   649     // This may also include an uninitialized partial word at the end.
   650     Copy::disjoint_words((HeapWord*)cs->start(),
   651                          (HeapWord*)dest_cs->start(),
   652                          wsize / HeapWordSize);
   654     if (dest->blob() == NULL) {
   655       // Destination is a final resting place, not just another buffer.
   656       // Normalize uninitialized bytes in the final padding.
   657       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
   658                           Assembler::code_fill_byte());
   659     }
   660     // Keep track of the highest filled address
   661     dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
   663     assert(cs->locs_start() != (relocInfo*)badAddress,
   664            "this section carries no reloc storage, but reloc was attempted");
   666     // Make the new code copy use the old copy's relocations:
   667     dest_cs->initialize_locs_from(cs);
   669     { // Repair the pc relative information in the code after the move
   670       RelocIterator iter(dest_cs);
   671       while (iter.next()) {
   672         iter.reloc()->fix_relocation_after_move(this, dest);
   673       }
   674     }
   675   }
   677   if (dest->blob() == NULL) {
   678     // Destination is a final resting place, not just another buffer.
   679     // Normalize uninitialized bytes in the final padding.
   680     Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
   681                         Assembler::code_fill_byte());
   683   }
   684 }
   686 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
   687                                                csize_t amount,
   688                                                csize_t* new_capacity) {
   689   csize_t new_total_cap = 0;
   691   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
   692     const CodeSection* sect = code_section(n);
   694     if (!sect->is_empty()) {
   695       // Compute initial padding; assign it to the previous section,
   696       // even if it's empty (e.g. consts section can be empty).
   697       // Cf. compute_final_layout
   698       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
   699       if (padding != 0) {
   700         new_total_cap += padding;
   701         assert(n - 1 >= SECT_FIRST, "sanity");
   702         new_capacity[n - 1] += padding;
   703       }
   704     }
   706     csize_t exp = sect->size();  // 100% increase
   707     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
   708     if (sect == which_cs) {
   709       if (exp < amount)  exp = amount;
   710       if (StressCodeBuffers)  exp = amount;  // expand only slightly
   711     } else if (n == SECT_INSTS) {
   712       // scale down inst increases to a more modest 25%
   713       exp = 4*K + ((exp - 4*K) >> 2);
   714       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
   715     } else if (sect->is_empty()) {
   716       // do not grow an empty secondary section
   717       exp = 0;
   718     }
   719     // Allow for inter-section slop:
   720     exp += CodeSection::end_slop();
   721     csize_t new_cap = sect->size() + exp;
   722     if (new_cap < sect->capacity()) {
   723       // No need to expand after all.
   724       new_cap = sect->capacity();
   725     }
   726     new_capacity[n] = new_cap;
   727     new_total_cap += new_cap;
   728   }
   730   return new_total_cap;
   731 }
   733 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
   734 #ifndef PRODUCT
   735   if (PrintNMethods && (WizardMode || Verbose)) {
   736     tty->print("expanding CodeBuffer:");
   737     this->print();
   738   }
   740   if (StressCodeBuffers && blob() != NULL) {
   741     static int expand_count = 0;
   742     if (expand_count >= 0)  expand_count += 1;
   743     if (expand_count > 100 && is_power_of_2(expand_count)) {
   744       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
   745       // simulate an occasional allocation failure:
   746       free_blob();
   747     }
   748   }
   749 #endif //PRODUCT
   751   // Resizing must be allowed
   752   {
   753     if (blob() == NULL)  return;  // caller must check for blob == NULL
   754     for (int n = 0; n < (int)SECT_LIMIT; n++) {
   755       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
   756     }
   757   }
   759   // Figure new capacity for each section.
   760   csize_t new_capacity[SECT_LIMIT];
   761   csize_t new_total_cap
   762     = figure_expanded_capacities(which_cs, amount, new_capacity);
   764   // Create a new (temporary) code buffer to hold all the new data
   765   CodeBuffer cb(name(), new_total_cap, 0);
   766   if (cb.blob() == NULL) {
   767     // Failed to allocate in code cache.
   768     free_blob();
   769     return;
   770   }
   772   // Create an old code buffer to remember which addresses used to go where.
   773   // This will be useful when we do final assembly into the code cache,
   774   // because we will need to know how to warp any internal address that
   775   // has been created at any time in this CodeBuffer's past.
   776   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
   777   bxp->take_over_code_from(this);  // remember the old undersized blob
   778   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
   779   bxp->_before_expand = this->_before_expand;
   780   this->_before_expand = bxp;
   782   // Give each section its required (expanded) capacity.
   783   for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
   784     CodeSection* cb_sect   = cb.code_section(n);
   785     CodeSection* this_sect = code_section(n);
   786     if (new_capacity[n] == 0)  continue;  // already nulled out
   787     if (n != SECT_INSTS) {
   788       cb.initialize_section_size(cb_sect, new_capacity[n]);
   789     }
   790     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
   791     address cb_start = cb_sect->start();
   792     cb_sect->set_end(cb_start + this_sect->size());
   793     if (this_sect->mark() == NULL) {
   794       cb_sect->clear_mark();
   795     } else {
   796       cb_sect->set_mark(cb_start + this_sect->mark_off());
   797     }
   798   }
   800   // Move all the code and relocations to the new blob:
   801   relocate_code_to(&cb);
   803   // Copy the temporary code buffer into the current code buffer.
   804   // Basically, do {*this = cb}, except for some control information.
   805   this->take_over_code_from(&cb);
   806   cb.set_blob(NULL);
   808   // Zap the old code buffer contents, to avoid mistakenly using them.
   809   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
   810                                  badCodeHeapFreeVal));
   812   _decode_begin = NULL;  // sanity
   814   // Make certain that the new sections are all snugly inside the new blob.
   815   verify_section_allocation();
   817 #ifndef PRODUCT
   818   if (PrintNMethods && (WizardMode || Verbose)) {
   819     tty->print("expanded CodeBuffer:");
   820     this->print();
   821   }
   822 #endif //PRODUCT
   823 }
   825 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
   826   // Must already have disposed of the old blob somehow.
   827   assert(blob() == NULL, "must be empty");
   828 #ifdef ASSERT
   830 #endif
   831   // Take the new blob away from cb.
   832   set_blob(cb->blob());
   833   // Take over all the section pointers.
   834   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   835     CodeSection* cb_sect   = cb->code_section(n);
   836     CodeSection* this_sect = code_section(n);
   837     this_sect->take_over_code_from(cb_sect);
   838   }
   839   _overflow_arena = cb->_overflow_arena;
   840   // Make sure the old cb won't try to use it or free it.
   841   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
   842 }
   844 void CodeBuffer::verify_section_allocation() {
   845   address tstart = _total_start;
   846   if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
   847   address tend   = tstart + _total_size;
   848   if (_blob != NULL) {
   850     guarantee(tstart >= _blob->content_begin(), "sanity");
   851     guarantee(tend   <= _blob->content_end(),   "sanity");
   852   }
   853   // Verify disjointness.
   854   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
   855     CodeSection* sect = code_section(n);
   856     if (!sect->is_allocated() || sect->is_empty())  continue;
   857     guarantee((intptr_t)sect->start() % sect->alignment() == 0
   858            || sect->is_empty() || _blob == NULL,
   859            "start is aligned");
   860     for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
   861       CodeSection* other = code_section(m);
   862       if (!other->is_allocated() || other == sect)  continue;
   863       guarantee(!other->contains(sect->start()    ), "sanity");
   864       // limit is an exclusive address and can be the start of another
   865       // section.
   866       guarantee(!other->contains(sect->limit() - 1), "sanity");
   867     }
   868     guarantee(sect->end() <= tend, "sanity");
   869     guarantee(sect->end() <= sect->limit(), "sanity");
   870   }
   871 }
   873 void CodeBuffer::log_section_sizes(const char* name) {
   874   if (xtty != NULL) {
   875     // log info about buffer usage
   876     xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
   877     for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
   878       CodeSection* sect = code_section(n);
   879       if (!sect->is_allocated() || sect->is_empty())  continue;
   880       xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
   881                      n, sect->limit() - sect->start(), sect->limit() - sect->end());
   882     }
   883     xtty->print_cr("</blob>");
   884   }
   885 }
   887 #ifndef PRODUCT
   889 void CodeSection::dump() {
   890   address ptr = start();
   891   for (csize_t step; ptr < end(); ptr += step) {
   892     step = end() - ptr;
   893     if (step > jintSize * 4)  step = jintSize * 4;
   894     tty->print(PTR_FORMAT ": ", ptr);
   895     while (step > 0) {
   896       tty->print(" " PTR32_FORMAT, *(jint*)ptr);
   897       ptr += jintSize;
   898     }
   899     tty->cr();
   900   }
   901 }
   904 void CodeSection::decode() {
   905   Disassembler::decode(start(), end());
   906 }
   909 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
   910   _comments.add_comment(offset, comment);
   911 }
   913 class CodeComment: public CHeapObj<mtCode> {
   914  private:
   915   friend class CodeComments;
   916   intptr_t     _offset;
   917   const char * _comment;
   918   CodeComment* _next;
   920   ~CodeComment() {
   921     assert(_next == NULL, "wrong interface for freeing list");
   922     os::free((void*)_comment, mtCode);
   923   }
   925  public:
   926   CodeComment(intptr_t offset, const char * comment) {
   927     _offset = offset;
   928     _comment = os::strdup(comment, mtCode);
   929     _next = NULL;
   930   }
   932   intptr_t     offset()  const { return _offset;  }
   933   const char * comment() const { return _comment; }
   934   CodeComment* next()          { return _next; }
   936   void set_next(CodeComment* next) { _next = next; }
   938   CodeComment* find(intptr_t offset) {
   939     CodeComment* a = this;
   940     while (a != NULL && a->_offset != offset) {
   941       a = a->_next;
   942     }
   943     return a;
   944   }
   945 };
   948 void CodeComments::add_comment(intptr_t offset, const char * comment) {
   949   CodeComment* c = new CodeComment(offset, comment);
   950   CodeComment* insert = NULL;
   951   if (_comments != NULL) {
   952     CodeComment* c = _comments->find(offset);
   953     insert = c;
   954     while (c && c->offset() == offset) {
   955       insert = c;
   956       c = c->next();
   957     }
   958   }
   959   if (insert) {
   960     // insert after comments with same offset
   961     c->set_next(insert->next());
   962     insert->set_next(c);
   963   } else {
   964     c->set_next(_comments);
   965     _comments = c;
   966   }
   967 }
   970 void CodeComments::assign(CodeComments& other) {
   971   assert(_comments == NULL, "don't overwrite old value");
   972   _comments = other._comments;
   973 }
   976 void CodeComments::print_block_comment(outputStream* stream, intptr_t offset) {
   977   if (_comments != NULL) {
   978     CodeComment* c = _comments->find(offset);
   979     while (c && c->offset() == offset) {
   980       stream->bol();
   981       stream->print("  ;; ");
   982       stream->print_cr(c->comment());
   983       c = c->next();
   984     }
   985   }
   986 }
   989 void CodeComments::free() {
   990   CodeComment* n = _comments;
   991   while (n) {
   992     // unlink the node from the list saving a pointer to the next
   993     CodeComment* p = n->_next;
   994     n->_next = NULL;
   995     delete n;
   996     n = p;
   997   }
   998   _comments = NULL;
   999 }
  1003 void CodeBuffer::decode() {
  1004   Disassembler::decode(decode_begin(), insts_end());
  1005   _decode_begin = insts_end();
  1009 void CodeBuffer::skip_decode() {
  1010   _decode_begin = insts_end();
  1014 void CodeBuffer::decode_all() {
  1015   for (int n = 0; n < (int)SECT_LIMIT; n++) {
  1016     // dump contents of each section
  1017     CodeSection* cs = code_section(n);
  1018     tty->print_cr("! %s:", code_section_name(n));
  1019     if (cs != consts())
  1020       cs->decode();
  1021     else
  1022       cs->dump();
  1027 void CodeSection::print(const char* name) {
  1028   csize_t locs_size = locs_end() - locs_start();
  1029   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
  1030                 name, start(), end(), limit(), size(), capacity(),
  1031                 is_frozen()? " [frozen]": "");
  1032   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
  1033                 name, locs_start(), locs_end(), locs_limit(), locs_size, locs_capacity(), locs_point_off());
  1034   if (PrintRelocations) {
  1035     RelocIterator iter(this);
  1036     iter.print();
  1040 void CodeBuffer::print() {
  1041   if (this == NULL) {
  1042     tty->print_cr("NULL CodeBuffer pointer");
  1043     return;
  1046   tty->print_cr("CodeBuffer:");
  1047   for (int n = 0; n < (int)SECT_LIMIT; n++) {
  1048     // print each section
  1049     CodeSection* cs = code_section(n);
  1050     cs->print(code_section_name(n));
  1054 #endif // PRODUCT

mercurial