src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Tue, 24 Jul 2012 10:51:00 -0700

author
twisti
date
Tue, 24 Jul 2012 10:51:00 -0700
changeset 3969
1d7922586cf6
parent 3760
8f972594effc
child 4037
da91efe96a93
permissions
-rw-r--r--

7023639: JSR 292 method handle invocation needs a fast path for compiled code
6984705: JSR 292 method handle creation should not go through JNI
Summary: remove assembly code for JDK 7 chained method handles
Reviewed-by: jrose, twisti, kvn, mhaupt
Contributed-by: John Rose <john.r.rose@oracle.com>, Christian Thalinger <christian.thalinger@oracle.com>, Michael Haupt <michael.haupt@oracle.com>

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_LIRAssembler.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "c1/c1_ValueStack.hpp"
    31 #include "ci/ciArrayKlass.hpp"
    32 #include "ci/ciInstance.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "memory/barrierSet.hpp"
    35 #include "memory/cardTableModRefBS.hpp"
    36 #include "nativeInst_sparc.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    40 #define __ _masm->
    43 //------------------------------------------------------------
    46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    47   if (opr->is_constant()) {
    48     LIR_Const* constant = opr->as_constant_ptr();
    49     switch (constant->type()) {
    50       case T_INT: {
    51         jint value = constant->as_jint();
    52         return Assembler::is_simm13(value);
    53       }
    55       default:
    56         return false;
    57     }
    58   }
    59   return false;
    60 }
    63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    64   switch (op->code()) {
    65     case lir_null_check:
    66     return true;
    69     case lir_add:
    70     case lir_ushr:
    71     case lir_shr:
    72     case lir_shl:
    73       // integer shifts and adds are always one instruction
    74       return op->result_opr()->is_single_cpu();
    77     case lir_move: {
    78       LIR_Op1* op1 = op->as_Op1();
    79       LIR_Opr src = op1->in_opr();
    80       LIR_Opr dst = op1->result_opr();
    82       if (src == dst) {
    83         NEEDS_CLEANUP;
    84         // this works around a problem where moves with the same src and dst
    85         // end up in the delay slot and then the assembler swallows the mov
    86         // since it has no effect and then it complains because the delay slot
    87         // is empty.  returning false stops the optimizer from putting this in
    88         // the delay slot
    89         return false;
    90       }
    92       // don't put moves involving oops into the delay slot since the VerifyOops code
    93       // will make it much larger than a single instruction.
    94       if (VerifyOops) {
    95         return false;
    96       }
    98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
   100         return false;
   101       }
   103       if (UseCompressedOops) {
   104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
   105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
   106       }
   108       if (dst->is_register()) {
   109         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
   110           return !PatchALot;
   111         } else if (src->is_single_stack()) {
   112           return true;
   113         }
   114       }
   116       if (src->is_register()) {
   117         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   118           return !PatchALot;
   119         } else if (dst->is_single_stack()) {
   120           return true;
   121         }
   122       }
   124       if (dst->is_register() &&
   125           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   126            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   127         return true;
   128       }
   130       return false;
   131     }
   133     default:
   134       return false;
   135   }
   136   ShouldNotReachHere();
   137 }
   140 LIR_Opr LIR_Assembler::receiverOpr() {
   141   return FrameMap::O0_oop_opr;
   142 }
   145 LIR_Opr LIR_Assembler::osrBufferPointer() {
   146   return FrameMap::I0_opr;
   147 }
   150 int LIR_Assembler::initial_frame_size_in_bytes() {
   151   return in_bytes(frame_map()->framesize_in_bytes());
   152 }
   155 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   156 // we fetch the class of the receiver (O0) and compare it with the cached class.
   157 // If they do not match we jump to slow case.
   158 int LIR_Assembler::check_icache() {
   159   int offset = __ offset();
   160   __ inline_cache_check(O0, G5_inline_cache_reg);
   161   return offset;
   162 }
   165 void LIR_Assembler::osr_entry() {
   166   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   167   //
   168   //   1. Create a new compiled activation.
   169   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   170   //      at the osr_bci; it is not initialized.
   171   //   3. Jump to the continuation address in compiled code to resume execution.
   173   // OSR entry point
   174   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   175   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   176   ValueStack* entry_state = osr_entry->end()->state();
   177   int number_of_locks = entry_state->locks_size();
   179   // Create a frame for the compiled activation.
   180   __ build_frame(initial_frame_size_in_bytes());
   182   // OSR buffer is
   183   //
   184   // locals[nlocals-1..0]
   185   // monitors[number_of_locks-1..0]
   186   //
   187   // locals is a direct copy of the interpreter frame so in the osr buffer
   188   // so first slot in the local array is the last local from the interpreter
   189   // and last slot is local[0] (receiver) from the interpreter
   190   //
   191   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   192   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   193   // in the interpreter frame (the method lock if a sync method)
   195   // Initialize monitors in the compiled activation.
   196   //   I0: pointer to osr buffer
   197   //
   198   // All other registers are dead at this point and the locals will be
   199   // copied into place by code emitted in the IR.
   201   Register OSR_buf = osrBufferPointer()->as_register();
   202   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   203     int monitor_offset = BytesPerWord * method()->max_locals() +
   204       (2 * BytesPerWord) * (number_of_locks - 1);
   205     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   206     // the OSR buffer using 2 word entries: first the lock and then
   207     // the oop.
   208     for (int i = 0; i < number_of_locks; i++) {
   209       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   210 #ifdef ASSERT
   211       // verify the interpreter's monitor has a non-null object
   212       {
   213         Label L;
   214         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   215         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
   216         __ stop("locked object is NULL");
   217         __ bind(L);
   218       }
   219 #endif // ASSERT
   220       // Copy the lock field into the compiled activation.
   221       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   222       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   223       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   224       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   225     }
   226   }
   227 }
   230 // Optimized Library calls
   231 // This is the fast version of java.lang.String.compare; it has not
   232 // OSR-entry and therefore, we generate a slow version for OSR's
   233 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   234   Register str0 = left->as_register();
   235   Register str1 = right->as_register();
   237   Label Ldone;
   239   Register result = dst->as_register();
   240   {
   241     // Get a pointer to the first character of string0 in tmp0
   242     //   and get string0.length() in str0
   243     // Get a pointer to the first character of string1 in tmp1
   244     //   and get string1.length() in str1
   245     // Also, get string0.length()-string1.length() in
   246     //   o7 and get the condition code set
   247     // Note: some instructions have been hoisted for better instruction scheduling
   249     Register tmp0 = L0;
   250     Register tmp1 = L1;
   251     Register tmp2 = L2;
   253     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   254     if (java_lang_String::has_offset_field()) {
   255       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   256       int  count_offset = java_lang_String:: count_offset_in_bytes();
   257       __ load_heap_oop(str0, value_offset, tmp0);
   258       __ ld(str0, offset_offset, tmp2);
   259       __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   260       __ ld(str0, count_offset, str0);
   261       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   262     } else {
   263       __ load_heap_oop(str0, value_offset, tmp1);
   264       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   265       __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
   266     }
   268     // str1 may be null
   269     add_debug_info_for_null_check_here(info);
   271     if (java_lang_String::has_offset_field()) {
   272       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   273       int  count_offset = java_lang_String:: count_offset_in_bytes();
   274       __ load_heap_oop(str1, value_offset, tmp1);
   275       __ add(tmp0, tmp2, tmp0);
   277       __ ld(str1, offset_offset, tmp2);
   278       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   279       __ ld(str1, count_offset, str1);
   280       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   281       __ add(tmp1, tmp2, tmp1);
   282     } else {
   283       __ load_heap_oop(str1, value_offset, tmp2);
   284       __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   285       __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
   286     }
   287     __ subcc(str0, str1, O7);
   288   }
   290   {
   291     // Compute the minimum of the string lengths, scale it and store it in limit
   292     Register count0 = I0;
   293     Register count1 = I1;
   294     Register limit  = L3;
   296     Label Lskip;
   297     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   298     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   299     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   300     __ bind(Lskip);
   302     // If either string is empty (or both of them) the result is the difference in lengths
   303     __ cmp(limit, 0);
   304     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   305     __ delayed()->mov(O7, result);  // result is difference in lengths
   306   }
   308   {
   309     // Neither string is empty
   310     Label Lloop;
   312     Register base0 = L0;
   313     Register base1 = L1;
   314     Register chr0  = I0;
   315     Register chr1  = I1;
   316     Register limit = L3;
   318     // Shift base0 and base1 to the end of the arrays, negate limit
   319     __ add(base0, limit, base0);
   320     __ add(base1, limit, base1);
   321     __ neg(limit);  // limit = -min{string0.length(), string1.length()}
   323     __ lduh(base0, limit, chr0);
   324     __ bind(Lloop);
   325     __ lduh(base1, limit, chr1);
   326     __ subcc(chr0, chr1, chr0);
   327     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   328     assert(chr0 == result, "result must be pre-placed");
   329     __ delayed()->inccc(limit, sizeof(jchar));
   330     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   331     __ delayed()->lduh(base0, limit, chr0);
   332   }
   334   // If strings are equal up to min length, return the length difference.
   335   __ mov(O7, result);
   337   // Otherwise, return the difference between the first mismatched chars.
   338   __ bind(Ldone);
   339 }
   342 // --------------------------------------------------------------------------------------------
   344 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   345   if (!GenerateSynchronizationCode) return;
   347   Register obj_reg = obj_opr->as_register();
   348   Register lock_reg = lock_opr->as_register();
   350   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   351   Register reg = mon_addr.base();
   352   int offset = mon_addr.disp();
   353   // compute pointer to BasicLock
   354   if (mon_addr.is_simm13()) {
   355     __ add(reg, offset, lock_reg);
   356   }
   357   else {
   358     __ set(offset, lock_reg);
   359     __ add(reg, lock_reg, lock_reg);
   360   }
   361   // unlock object
   362   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   363   // _slow_case_stubs->append(slow_case);
   364   // temporary fix: must be created after exceptionhandler, therefore as call stub
   365   _slow_case_stubs->append(slow_case);
   366   if (UseFastLocking) {
   367     // try inlined fast unlocking first, revert to slow locking if it fails
   368     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   369     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   370     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   371   } else {
   372     // always do slow unlocking
   373     // note: the slow unlocking code could be inlined here, however if we use
   374     //       slow unlocking, speed doesn't matter anyway and this solution is
   375     //       simpler and requires less duplicated code - additionally, the
   376     //       slow unlocking code is the same in either case which simplifies
   377     //       debugging
   378     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   379     __ delayed()->nop();
   380   }
   381   // done
   382   __ bind(*slow_case->continuation());
   383 }
   386 int LIR_Assembler::emit_exception_handler() {
   387   // if the last instruction is a call (typically to do a throw which
   388   // is coming at the end after block reordering) the return address
   389   // must still point into the code area in order to avoid assertion
   390   // failures when searching for the corresponding bci => add a nop
   391   // (was bug 5/14/1999 - gri)
   392   __ nop();
   394   // generate code for exception handler
   395   ciMethod* method = compilation()->method();
   397   address handler_base = __ start_a_stub(exception_handler_size);
   399   if (handler_base == NULL) {
   400     // not enough space left for the handler
   401     bailout("exception handler overflow");
   402     return -1;
   403   }
   405   int offset = code_offset();
   407   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
   408   __ delayed()->nop();
   409   __ should_not_reach_here();
   410   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   411   __ end_a_stub();
   413   return offset;
   414 }
   417 // Emit the code to remove the frame from the stack in the exception
   418 // unwind path.
   419 int LIR_Assembler::emit_unwind_handler() {
   420 #ifndef PRODUCT
   421   if (CommentedAssembly) {
   422     _masm->block_comment("Unwind handler");
   423   }
   424 #endif
   426   int offset = code_offset();
   428   // Fetch the exception from TLS and clear out exception related thread state
   429   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   430   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   431   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   433   __ bind(_unwind_handler_entry);
   434   __ verify_not_null_oop(O0);
   435   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   436     __ mov(O0, I0);  // Preserve the exception
   437   }
   439   // Preform needed unlocking
   440   MonitorExitStub* stub = NULL;
   441   if (method()->is_synchronized()) {
   442     monitor_address(0, FrameMap::I1_opr);
   443     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   444     __ unlock_object(I3, I2, I1, *stub->entry());
   445     __ bind(*stub->continuation());
   446   }
   448   if (compilation()->env()->dtrace_method_probes()) {
   449     __ mov(G2_thread, O0);
   450     jobject2reg(method()->constant_encoding(), O1);
   451     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   452     __ delayed()->nop();
   453   }
   455   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   456     __ mov(I0, O0);  // Restore the exception
   457   }
   459   // dispatch to the unwind logic
   460   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   461   __ delayed()->nop();
   463   // Emit the slow path assembly
   464   if (stub != NULL) {
   465     stub->emit_code(this);
   466   }
   468   return offset;
   469 }
   472 int LIR_Assembler::emit_deopt_handler() {
   473   // if the last instruction is a call (typically to do a throw which
   474   // is coming at the end after block reordering) the return address
   475   // must still point into the code area in order to avoid assertion
   476   // failures when searching for the corresponding bci => add a nop
   477   // (was bug 5/14/1999 - gri)
   478   __ nop();
   480   // generate code for deopt handler
   481   ciMethod* method = compilation()->method();
   482   address handler_base = __ start_a_stub(deopt_handler_size);
   483   if (handler_base == NULL) {
   484     // not enough space left for the handler
   485     bailout("deopt handler overflow");
   486     return -1;
   487   }
   489   int offset = code_offset();
   490   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   491   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   492   __ delayed()->nop();
   493   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   494   __ end_a_stub();
   496   return offset;
   497 }
   500 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   501   if (o == NULL) {
   502     __ set(NULL_WORD, reg);
   503   } else {
   504     int oop_index = __ oop_recorder()->find_index(o);
   505     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   506     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   507   }
   508 }
   511 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   512   // Allocate a new index in oop table to hold the oop once it's been patched
   513   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
   514   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
   516   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   517   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   518   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   519   // NULL will be dynamically patched later and the patched value may be large.  We must
   520   // therefore generate the sethi/add as a placeholders
   521   __ patchable_set(addrlit, reg);
   523   patching_epilog(patch, lir_patch_normal, reg, info);
   524 }
   527 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   528   Register Rdividend = op->in_opr1()->as_register();
   529   Register Rdivisor  = noreg;
   530   Register Rscratch  = op->in_opr3()->as_register();
   531   Register Rresult   = op->result_opr()->as_register();
   532   int divisor = -1;
   534   if (op->in_opr2()->is_register()) {
   535     Rdivisor = op->in_opr2()->as_register();
   536   } else {
   537     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   538     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   539   }
   541   assert(Rdividend != Rscratch, "");
   542   assert(Rdivisor  != Rscratch, "");
   543   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   545   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   546     // convert division by a power of two into some shifts and logical operations
   547     if (op->code() == lir_idiv) {
   548       if (divisor == 2) {
   549         __ srl(Rdividend, 31, Rscratch);
   550       } else {
   551         __ sra(Rdividend, 31, Rscratch);
   552         __ and3(Rscratch, divisor - 1, Rscratch);
   553       }
   554       __ add(Rdividend, Rscratch, Rscratch);
   555       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   556       return;
   557     } else {
   558       if (divisor == 2) {
   559         __ srl(Rdividend, 31, Rscratch);
   560       } else {
   561         __ sra(Rdividend, 31, Rscratch);
   562         __ and3(Rscratch, divisor - 1,Rscratch);
   563       }
   564       __ add(Rdividend, Rscratch, Rscratch);
   565       __ andn(Rscratch, divisor - 1,Rscratch);
   566       __ sub(Rdividend, Rscratch, Rresult);
   567       return;
   568     }
   569   }
   571   __ sra(Rdividend, 31, Rscratch);
   572   __ wry(Rscratch);
   573   if (!VM_Version::v9_instructions_work()) {
   574     // v9 doesn't require these nops
   575     __ nop();
   576     __ nop();
   577     __ nop();
   578     __ nop();
   579   }
   581   add_debug_info_for_div0_here(op->info());
   583   if (Rdivisor != noreg) {
   584     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   585   } else {
   586     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   587     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   588   }
   590   Label skip;
   591   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   592   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   593   __ bind(skip);
   595   if (op->code() == lir_irem) {
   596     if (Rdivisor != noreg) {
   597       __ smul(Rscratch, Rdivisor, Rscratch);
   598     } else {
   599       __ smul(Rscratch, divisor, Rscratch);
   600     }
   601     __ sub(Rdividend, Rscratch, Rresult);
   602   }
   603 }
   606 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   607 #ifdef ASSERT
   608   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   609   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   610   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   611 #endif
   612   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   614   if (op->cond() == lir_cond_always) {
   615     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   616   } else if (op->code() == lir_cond_float_branch) {
   617     assert(op->ublock() != NULL, "must have unordered successor");
   618     bool is_unordered = (op->ublock() == op->block());
   619     Assembler::Condition acond;
   620     switch (op->cond()) {
   621       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   622       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   623       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   624       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   625       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   626       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   627       default :                         ShouldNotReachHere();
   628     };
   630     if (!VM_Version::v9_instructions_work()) {
   631       __ nop();
   632     }
   633     __ fb( acond, false, Assembler::pn, *(op->label()));
   634   } else {
   635     assert (op->code() == lir_branch, "just checking");
   637     Assembler::Condition acond;
   638     switch (op->cond()) {
   639       case lir_cond_equal:        acond = Assembler::equal;                break;
   640       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   641       case lir_cond_less:         acond = Assembler::less;                 break;
   642       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   643       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   644       case lir_cond_greater:      acond = Assembler::greater;              break;
   645       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   646       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   647       default:                         ShouldNotReachHere();
   648     };
   650     // sparc has different condition codes for testing 32-bit
   651     // vs. 64-bit values.  We could always test xcc is we could
   652     // guarantee that 32-bit loads always sign extended but that isn't
   653     // true and since sign extension isn't free, it would impose a
   654     // slight cost.
   655 #ifdef _LP64
   656     if  (op->type() == T_INT) {
   657       __ br(acond, false, Assembler::pn, *(op->label()));
   658     } else
   659 #endif
   660       __ brx(acond, false, Assembler::pn, *(op->label()));
   661   }
   662   // The peephole pass fills the delay slot
   663 }
   666 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   667   Bytecodes::Code code = op->bytecode();
   668   LIR_Opr dst = op->result_opr();
   670   switch(code) {
   671     case Bytecodes::_i2l: {
   672       Register rlo  = dst->as_register_lo();
   673       Register rhi  = dst->as_register_hi();
   674       Register rval = op->in_opr()->as_register();
   675 #ifdef _LP64
   676       __ sra(rval, 0, rlo);
   677 #else
   678       __ mov(rval, rlo);
   679       __ sra(rval, BitsPerInt-1, rhi);
   680 #endif
   681       break;
   682     }
   683     case Bytecodes::_i2d:
   684     case Bytecodes::_i2f: {
   685       bool is_double = (code == Bytecodes::_i2d);
   686       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   687       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   688       FloatRegister rsrc = op->in_opr()->as_float_reg();
   689       if (rsrc != rdst) {
   690         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   691       }
   692       __ fitof(w, rdst, rdst);
   693       break;
   694     }
   695     case Bytecodes::_f2i:{
   696       FloatRegister rsrc = op->in_opr()->as_float_reg();
   697       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   698       Label L;
   699       // result must be 0 if value is NaN; test by comparing value to itself
   700       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   701       if (!VM_Version::v9_instructions_work()) {
   702         __ nop();
   703       }
   704       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   705       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   706       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   707       // move integer result from float register to int register
   708       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   709       __ bind (L);
   710       break;
   711     }
   712     case Bytecodes::_l2i: {
   713       Register rlo  = op->in_opr()->as_register_lo();
   714       Register rhi  = op->in_opr()->as_register_hi();
   715       Register rdst = dst->as_register();
   716 #ifdef _LP64
   717       __ sra(rlo, 0, rdst);
   718 #else
   719       __ mov(rlo, rdst);
   720 #endif
   721       break;
   722     }
   723     case Bytecodes::_d2f:
   724     case Bytecodes::_f2d: {
   725       bool is_double = (code == Bytecodes::_f2d);
   726       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   727       LIR_Opr val = op->in_opr();
   728       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   729       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   730       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   731       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   732       __ ftof(vw, dw, rval, rdst);
   733       break;
   734     }
   735     case Bytecodes::_i2s:
   736     case Bytecodes::_i2b: {
   737       Register rval = op->in_opr()->as_register();
   738       Register rdst = dst->as_register();
   739       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   740       __ sll (rval, shift, rdst);
   741       __ sra (rdst, shift, rdst);
   742       break;
   743     }
   744     case Bytecodes::_i2c: {
   745       Register rval = op->in_opr()->as_register();
   746       Register rdst = dst->as_register();
   747       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   748       __ sll (rval, shift, rdst);
   749       __ srl (rdst, shift, rdst);
   750       break;
   751     }
   753     default: ShouldNotReachHere();
   754   }
   755 }
   758 void LIR_Assembler::align_call(LIR_Code) {
   759   // do nothing since all instructions are word aligned on sparc
   760 }
   763 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   764   __ call(op->addr(), rtype);
   765   // The peephole pass fills the delay slot, add_call_info is done in
   766   // LIR_Assembler::emit_delay.
   767 }
   770 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   771   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   772   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
   773   __ relocate(rspec);
   774   __ call(op->addr(), relocInfo::none);
   775   // The peephole pass fills the delay slot, add_call_info is done in
   776   // LIR_Assembler::emit_delay.
   777 }
   780 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   781   add_debug_info_for_null_check_here(op->info());
   782   __ load_klass(O0, G3_scratch);
   783   if (Assembler::is_simm13(op->vtable_offset())) {
   784     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   785   } else {
   786     // This will generate 2 instructions
   787     __ set(op->vtable_offset(), G5_method);
   788     // ld_ptr, set_hi, set
   789     __ ld_ptr(G3_scratch, G5_method, G5_method);
   790   }
   791   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
   792   __ callr(G3_scratch, G0);
   793   // the peephole pass fills the delay slot
   794 }
   796 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
   797   int store_offset;
   798   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   799     assert(!unaligned, "can't handle this");
   800     // for offsets larger than a simm13 we setup the offset in O7
   801     __ set(offset, O7);
   802     store_offset = store(from_reg, base, O7, type, wide);
   803   } else {
   804     if (type == T_ARRAY || type == T_OBJECT) {
   805       __ verify_oop(from_reg->as_register());
   806     }
   807     store_offset = code_offset();
   808     switch (type) {
   809       case T_BOOLEAN: // fall through
   810       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   811       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   812       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   813       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   814       case T_LONG  :
   815 #ifdef _LP64
   816         if (unaligned || PatchALot) {
   817           __ srax(from_reg->as_register_lo(), 32, O7);
   818           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   819           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   820         } else {
   821           __ stx(from_reg->as_register_lo(), base, offset);
   822         }
   823 #else
   824         assert(Assembler::is_simm13(offset + 4), "must be");
   825         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   826         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   827 #endif
   828         break;
   829       case T_ADDRESS:
   830         __ st_ptr(from_reg->as_register(), base, offset);
   831         break;
   832       case T_ARRAY : // fall through
   833       case T_OBJECT:
   834         {
   835           if (UseCompressedOops && !wide) {
   836             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   837             store_offset = code_offset();
   838             __ stw(G3_scratch, base, offset);
   839           } else {
   840             __ st_ptr(from_reg->as_register(), base, offset);
   841           }
   842           break;
   843         }
   845       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   846       case T_DOUBLE:
   847         {
   848           FloatRegister reg = from_reg->as_double_reg();
   849           // split unaligned stores
   850           if (unaligned || PatchALot) {
   851             assert(Assembler::is_simm13(offset + 4), "must be");
   852             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   853             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   854           } else {
   855             __ stf(FloatRegisterImpl::D, reg, base, offset);
   856           }
   857           break;
   858         }
   859       default      : ShouldNotReachHere();
   860     }
   861   }
   862   return store_offset;
   863 }
   866 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
   867   if (type == T_ARRAY || type == T_OBJECT) {
   868     __ verify_oop(from_reg->as_register());
   869   }
   870   int store_offset = code_offset();
   871   switch (type) {
   872     case T_BOOLEAN: // fall through
   873     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   874     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   875     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   876     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   877     case T_LONG  :
   878 #ifdef _LP64
   879       __ stx(from_reg->as_register_lo(), base, disp);
   880 #else
   881       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   882       __ std(from_reg->as_register_hi(), base, disp);
   883 #endif
   884       break;
   885     case T_ADDRESS:
   886       __ st_ptr(from_reg->as_register(), base, disp);
   887       break;
   888     case T_ARRAY : // fall through
   889     case T_OBJECT:
   890       {
   891         if (UseCompressedOops && !wide) {
   892           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   893           store_offset = code_offset();
   894           __ stw(G3_scratch, base, disp);
   895         } else {
   896           __ st_ptr(from_reg->as_register(), base, disp);
   897         }
   898         break;
   899       }
   900     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   901     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   902     default      : ShouldNotReachHere();
   903   }
   904   return store_offset;
   905 }
   908 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
   909   int load_offset;
   910   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   911     assert(base != O7, "destroying register");
   912     assert(!unaligned, "can't handle this");
   913     // for offsets larger than a simm13 we setup the offset in O7
   914     __ set(offset, O7);
   915     load_offset = load(base, O7, to_reg, type, wide);
   916   } else {
   917     load_offset = code_offset();
   918     switch(type) {
   919       case T_BOOLEAN: // fall through
   920       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   921       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   922       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   923       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   924       case T_LONG  :
   925         if (!unaligned) {
   926 #ifdef _LP64
   927           __ ldx(base, offset, to_reg->as_register_lo());
   928 #else
   929           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   930                  "must be sequential");
   931           __ ldd(base, offset, to_reg->as_register_hi());
   932 #endif
   933         } else {
   934 #ifdef _LP64
   935           assert(base != to_reg->as_register_lo(), "can't handle this");
   936           assert(O7 != to_reg->as_register_lo(), "can't handle this");
   937           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   938           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   939           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   940           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   941 #else
   942           if (base == to_reg->as_register_lo()) {
   943             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   944             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   945           } else {
   946             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   947             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   948           }
   949 #endif
   950         }
   951         break;
   952       case T_ADDRESS:  __ ld_ptr(base, offset, to_reg->as_register()); break;
   953       case T_ARRAY : // fall through
   954       case T_OBJECT:
   955         {
   956           if (UseCompressedOops && !wide) {
   957             __ lduw(base, offset, to_reg->as_register());
   958             __ decode_heap_oop(to_reg->as_register());
   959           } else {
   960             __ ld_ptr(base, offset, to_reg->as_register());
   961           }
   962           break;
   963         }
   964       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
   965       case T_DOUBLE:
   966         {
   967           FloatRegister reg = to_reg->as_double_reg();
   968           // split unaligned loads
   969           if (unaligned || PatchALot) {
   970             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
   971             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
   972           } else {
   973             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
   974           }
   975           break;
   976         }
   977       default      : ShouldNotReachHere();
   978     }
   979     if (type == T_ARRAY || type == T_OBJECT) {
   980       __ verify_oop(to_reg->as_register());
   981     }
   982   }
   983   return load_offset;
   984 }
   987 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
   988   int load_offset = code_offset();
   989   switch(type) {
   990     case T_BOOLEAN: // fall through
   991     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
   992     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
   993     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
   994     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
   995     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
   996     case T_ARRAY : // fall through
   997     case T_OBJECT:
   998       {
   999           if (UseCompressedOops && !wide) {
  1000             __ lduw(base, disp, to_reg->as_register());
  1001             __ decode_heap_oop(to_reg->as_register());
  1002           } else {
  1003             __ ld_ptr(base, disp, to_reg->as_register());
  1005           break;
  1007     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1008     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1009     case T_LONG  :
  1010 #ifdef _LP64
  1011       __ ldx(base, disp, to_reg->as_register_lo());
  1012 #else
  1013       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1014              "must be sequential");
  1015       __ ldd(base, disp, to_reg->as_register_hi());
  1016 #endif
  1017       break;
  1018     default      : ShouldNotReachHere();
  1020   if (type == T_ARRAY || type == T_OBJECT) {
  1021     __ verify_oop(to_reg->as_register());
  1023   return load_offset;
  1026 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1027   LIR_Const* c = src->as_constant_ptr();
  1028   switch (c->type()) {
  1029     case T_INT:
  1030     case T_FLOAT: {
  1031       Register src_reg = O7;
  1032       int value = c->as_jint_bits();
  1033       if (value == 0) {
  1034         src_reg = G0;
  1035       } else {
  1036         __ set(value, O7);
  1038       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1039       __ stw(src_reg, addr.base(), addr.disp());
  1040       break;
  1042     case T_ADDRESS: {
  1043       Register src_reg = O7;
  1044       int value = c->as_jint_bits();
  1045       if (value == 0) {
  1046         src_reg = G0;
  1047       } else {
  1048         __ set(value, O7);
  1050       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1051       __ st_ptr(src_reg, addr.base(), addr.disp());
  1052       break;
  1054     case T_OBJECT: {
  1055       Register src_reg = O7;
  1056       jobject2reg(c->as_jobject(), src_reg);
  1057       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1058       __ st_ptr(src_reg, addr.base(), addr.disp());
  1059       break;
  1061     case T_LONG:
  1062     case T_DOUBLE: {
  1063       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1065       Register tmp = O7;
  1066       int value_lo = c->as_jint_lo_bits();
  1067       if (value_lo == 0) {
  1068         tmp = G0;
  1069       } else {
  1070         __ set(value_lo, O7);
  1072       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1073       int value_hi = c->as_jint_hi_bits();
  1074       if (value_hi == 0) {
  1075         tmp = G0;
  1076       } else {
  1077         __ set(value_hi, O7);
  1079       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1080       break;
  1082     default:
  1083       Unimplemented();
  1088 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
  1089   LIR_Const* c = src->as_constant_ptr();
  1090   LIR_Address* addr     = dest->as_address_ptr();
  1091   Register base = addr->base()->as_pointer_register();
  1092   int offset = -1;
  1094   switch (c->type()) {
  1095     case T_INT:
  1096     case T_FLOAT:
  1097     case T_ADDRESS: {
  1098       LIR_Opr tmp = FrameMap::O7_opr;
  1099       int value = c->as_jint_bits();
  1100       if (value == 0) {
  1101         tmp = FrameMap::G0_opr;
  1102       } else if (Assembler::is_simm13(value)) {
  1103         __ set(value, O7);
  1105       if (addr->index()->is_valid()) {
  1106         assert(addr->disp() == 0, "must be zero");
  1107         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1108       } else {
  1109         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1110         offset = store(tmp, base, addr->disp(), type, wide, false);
  1112       break;
  1114     case T_LONG:
  1115     case T_DOUBLE: {
  1116       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1117       assert(Assembler::is_simm13(addr->disp()) &&
  1118              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1120       LIR_Opr tmp = FrameMap::O7_opr;
  1121       int value_lo = c->as_jint_lo_bits();
  1122       if (value_lo == 0) {
  1123         tmp = FrameMap::G0_opr;
  1124       } else {
  1125         __ set(value_lo, O7);
  1127       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
  1128       int value_hi = c->as_jint_hi_bits();
  1129       if (value_hi == 0) {
  1130         tmp = FrameMap::G0_opr;
  1131       } else {
  1132         __ set(value_hi, O7);
  1134       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
  1135       break;
  1137     case T_OBJECT: {
  1138       jobject obj = c->as_jobject();
  1139       LIR_Opr tmp;
  1140       if (obj == NULL) {
  1141         tmp = FrameMap::G0_opr;
  1142       } else {
  1143         tmp = FrameMap::O7_opr;
  1144         jobject2reg(c->as_jobject(), O7);
  1146       // handle either reg+reg or reg+disp address
  1147       if (addr->index()->is_valid()) {
  1148         assert(addr->disp() == 0, "must be zero");
  1149         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1150       } else {
  1151         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1152         offset = store(tmp, base, addr->disp(), type, wide, false);
  1155       break;
  1157     default:
  1158       Unimplemented();
  1160   if (info != NULL) {
  1161     assert(offset != -1, "offset should've been set");
  1162     add_debug_info_for_null_check(offset, info);
  1167 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1168   LIR_Const* c = src->as_constant_ptr();
  1169   LIR_Opr to_reg = dest;
  1171   switch (c->type()) {
  1172     case T_INT:
  1173     case T_ADDRESS:
  1175         jint con = c->as_jint();
  1176         if (to_reg->is_single_cpu()) {
  1177           assert(patch_code == lir_patch_none, "no patching handled here");
  1178           __ set(con, to_reg->as_register());
  1179         } else {
  1180           ShouldNotReachHere();
  1181           assert(to_reg->is_single_fpu(), "wrong register kind");
  1183           __ set(con, O7);
  1184           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1185           __ st(O7, temp_slot);
  1186           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1189       break;
  1191     case T_LONG:
  1193         jlong con = c->as_jlong();
  1195         if (to_reg->is_double_cpu()) {
  1196 #ifdef _LP64
  1197           __ set(con,  to_reg->as_register_lo());
  1198 #else
  1199           __ set(low(con),  to_reg->as_register_lo());
  1200           __ set(high(con), to_reg->as_register_hi());
  1201 #endif
  1202 #ifdef _LP64
  1203         } else if (to_reg->is_single_cpu()) {
  1204           __ set(con, to_reg->as_register());
  1205 #endif
  1206         } else {
  1207           ShouldNotReachHere();
  1208           assert(to_reg->is_double_fpu(), "wrong register kind");
  1209           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1210           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1211           __ set(low(con),  O7);
  1212           __ st(O7, temp_slot_lo);
  1213           __ set(high(con), O7);
  1214           __ st(O7, temp_slot_hi);
  1215           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1218       break;
  1220     case T_OBJECT:
  1222         if (patch_code == lir_patch_none) {
  1223           jobject2reg(c->as_jobject(), to_reg->as_register());
  1224         } else {
  1225           jobject2reg_with_patching(to_reg->as_register(), info);
  1228       break;
  1230     case T_FLOAT:
  1232         address const_addr = __ float_constant(c->as_jfloat());
  1233         if (const_addr == NULL) {
  1234           bailout("const section overflow");
  1235           break;
  1237         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1238         AddressLiteral const_addrlit(const_addr, rspec);
  1239         if (to_reg->is_single_fpu()) {
  1240           __ patchable_sethi(const_addrlit, O7);
  1241           __ relocate(rspec);
  1242           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1244         } else {
  1245           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1247           __ set(const_addrlit, O7);
  1248           __ ld(O7, 0, to_reg->as_register());
  1251       break;
  1253     case T_DOUBLE:
  1255         address const_addr = __ double_constant(c->as_jdouble());
  1256         if (const_addr == NULL) {
  1257           bailout("const section overflow");
  1258           break;
  1260         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1262         if (to_reg->is_double_fpu()) {
  1263           AddressLiteral const_addrlit(const_addr, rspec);
  1264           __ patchable_sethi(const_addrlit, O7);
  1265           __ relocate(rspec);
  1266           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1267         } else {
  1268           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1269 #ifdef _LP64
  1270           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1271 #else
  1272           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1273           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1274 #endif
  1278       break;
  1280     default:
  1281       ShouldNotReachHere();
  1285 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1286   Register reg = addr->base()->as_register();
  1287   return Address(reg, addr->disp());
  1291 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1292   switch (type) {
  1293     case T_INT:
  1294     case T_FLOAT: {
  1295       Register tmp = O7;
  1296       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1297       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1298       __ lduw(from.base(), from.disp(), tmp);
  1299       __ stw(tmp, to.base(), to.disp());
  1300       break;
  1302     case T_OBJECT: {
  1303       Register tmp = O7;
  1304       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1305       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1306       __ ld_ptr(from.base(), from.disp(), tmp);
  1307       __ st_ptr(tmp, to.base(), to.disp());
  1308       break;
  1310     case T_LONG:
  1311     case T_DOUBLE: {
  1312       Register tmp = O7;
  1313       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1314       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1315       __ lduw(from.base(), from.disp(), tmp);
  1316       __ stw(tmp, to.base(), to.disp());
  1317       __ lduw(from.base(), from.disp() + 4, tmp);
  1318       __ stw(tmp, to.base(), to.disp() + 4);
  1319       break;
  1322     default:
  1323       ShouldNotReachHere();
  1328 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1329   Address base = as_Address(addr);
  1330   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1334 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1335   Address base = as_Address(addr);
  1336   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1340 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1341                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
  1343   LIR_Address* addr = src_opr->as_address_ptr();
  1344   LIR_Opr to_reg = dest;
  1346   Register src = addr->base()->as_pointer_register();
  1347   Register disp_reg = noreg;
  1348   int disp_value = addr->disp();
  1349   bool needs_patching = (patch_code != lir_patch_none);
  1351   if (addr->base()->type() == T_OBJECT) {
  1352     __ verify_oop(src);
  1355   PatchingStub* patch = NULL;
  1356   if (needs_patching) {
  1357     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1358     assert(!to_reg->is_double_cpu() ||
  1359            patch_code == lir_patch_none ||
  1360            patch_code == lir_patch_normal, "patching doesn't match register");
  1363   if (addr->index()->is_illegal()) {
  1364     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1365       if (needs_patching) {
  1366         __ patchable_set(0, O7);
  1367       } else {
  1368         __ set(disp_value, O7);
  1370       disp_reg = O7;
  1372   } else if (unaligned || PatchALot) {
  1373     __ add(src, addr->index()->as_register(), O7);
  1374     src = O7;
  1375   } else {
  1376     disp_reg = addr->index()->as_pointer_register();
  1377     assert(disp_value == 0, "can't handle 3 operand addresses");
  1380   // remember the offset of the load.  The patching_epilog must be done
  1381   // before the call to add_debug_info, otherwise the PcDescs don't get
  1382   // entered in increasing order.
  1383   int offset = code_offset();
  1385   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1386   if (disp_reg == noreg) {
  1387     offset = load(src, disp_value, to_reg, type, wide, unaligned);
  1388   } else {
  1389     assert(!unaligned, "can't handle this");
  1390     offset = load(src, disp_reg, to_reg, type, wide);
  1393   if (patch != NULL) {
  1394     patching_epilog(patch, patch_code, src, info);
  1396   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1400 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1401   LIR_Address* addr = src->as_address_ptr();
  1402   Address from_addr = as_Address(addr);
  1404   if (VM_Version::has_v9()) {
  1405     __ prefetch(from_addr, Assembler::severalReads);
  1410 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1411   LIR_Address* addr = src->as_address_ptr();
  1412   Address from_addr = as_Address(addr);
  1414   if (VM_Version::has_v9()) {
  1415     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1420 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1421   Address addr;
  1422   if (src->is_single_word()) {
  1423     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1424   } else if (src->is_double_word())  {
  1425     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1428   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1429   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
  1433 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1434   Address addr;
  1435   if (dest->is_single_word()) {
  1436     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1437   } else if (dest->is_double_word())  {
  1438     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1440   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1441   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
  1445 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1446   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1447     if (from_reg->is_double_fpu()) {
  1448       // double to double moves
  1449       assert(to_reg->is_double_fpu(), "should match");
  1450       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1451     } else {
  1452       // float to float moves
  1453       assert(to_reg->is_single_fpu(), "should match");
  1454       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1456   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1457     if (from_reg->is_double_cpu()) {
  1458 #ifdef _LP64
  1459       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1460 #else
  1461       assert(to_reg->is_double_cpu() &&
  1462              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1463              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1464              "should both be long and not overlap");
  1465       // long to long moves
  1466       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1467       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1468 #endif
  1469 #ifdef _LP64
  1470     } else if (to_reg->is_double_cpu()) {
  1471       // int to int moves
  1472       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1473 #endif
  1474     } else {
  1475       // int to int moves
  1476       __ mov(from_reg->as_register(), to_reg->as_register());
  1478   } else {
  1479     ShouldNotReachHere();
  1481   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1482     __ verify_oop(to_reg->as_register());
  1487 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1488                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1489                             bool wide, bool unaligned) {
  1490   LIR_Address* addr = dest->as_address_ptr();
  1492   Register src = addr->base()->as_pointer_register();
  1493   Register disp_reg = noreg;
  1494   int disp_value = addr->disp();
  1495   bool needs_patching = (patch_code != lir_patch_none);
  1497   if (addr->base()->is_oop_register()) {
  1498     __ verify_oop(src);
  1501   PatchingStub* patch = NULL;
  1502   if (needs_patching) {
  1503     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1504     assert(!from_reg->is_double_cpu() ||
  1505            patch_code == lir_patch_none ||
  1506            patch_code == lir_patch_normal, "patching doesn't match register");
  1509   if (addr->index()->is_illegal()) {
  1510     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1511       if (needs_patching) {
  1512         __ patchable_set(0, O7);
  1513       } else {
  1514         __ set(disp_value, O7);
  1516       disp_reg = O7;
  1518   } else if (unaligned || PatchALot) {
  1519     __ add(src, addr->index()->as_register(), O7);
  1520     src = O7;
  1521   } else {
  1522     disp_reg = addr->index()->as_pointer_register();
  1523     assert(disp_value == 0, "can't handle 3 operand addresses");
  1526   // remember the offset of the store.  The patching_epilog must be done
  1527   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1528   // entered in increasing order.
  1529   int offset;
  1531   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1532   if (disp_reg == noreg) {
  1533     offset = store(from_reg, src, disp_value, type, wide, unaligned);
  1534   } else {
  1535     assert(!unaligned, "can't handle this");
  1536     offset = store(from_reg, src, disp_reg, type, wide);
  1539   if (patch != NULL) {
  1540     patching_epilog(patch, patch_code, src, info);
  1543   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1547 void LIR_Assembler::return_op(LIR_Opr result) {
  1548   // the poll may need a register so just pick one that isn't the return register
  1549 #if defined(TIERED) && !defined(_LP64)
  1550   if (result->type_field() == LIR_OprDesc::long_type) {
  1551     // Must move the result to G1
  1552     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1553     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1554     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1555     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1556 #ifdef ASSERT
  1557     // mangle it so any problems will show up
  1558     __ set(0xdeadbeef, I0);
  1559     __ set(0xdeadbeef, I1);
  1560 #endif
  1562 #endif // TIERED
  1563   __ set((intptr_t)os::get_polling_page(), L0);
  1564   __ relocate(relocInfo::poll_return_type);
  1565   __ ld_ptr(L0, 0, G0);
  1566   __ ret();
  1567   __ delayed()->restore();
  1571 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1572   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1573   if (info != NULL) {
  1574     add_debug_info_for_branch(info);
  1575   } else {
  1576     __ relocate(relocInfo::poll_type);
  1579   int offset = __ offset();
  1580   __ ld_ptr(tmp->as_register(), 0, G0);
  1582   return offset;
  1586 void LIR_Assembler::emit_static_call_stub() {
  1587   address call_pc = __ pc();
  1588   address stub = __ start_a_stub(call_stub_size);
  1589   if (stub == NULL) {
  1590     bailout("static call stub overflow");
  1591     return;
  1594   int start = __ offset();
  1595   __ relocate(static_stub_Relocation::spec(call_pc));
  1597   __ set_oop(NULL, G5);
  1598   // must be set to -1 at code generation time
  1599   AddressLiteral addrlit(-1);
  1600   __ jump_to(addrlit, G3);
  1601   __ delayed()->nop();
  1603   assert(__ offset() - start <= call_stub_size, "stub too big");
  1604   __ end_a_stub();
  1608 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1609   if (opr1->is_single_fpu()) {
  1610     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1611   } else if (opr1->is_double_fpu()) {
  1612     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1613   } else if (opr1->is_single_cpu()) {
  1614     if (opr2->is_constant()) {
  1615       switch (opr2->as_constant_ptr()->type()) {
  1616         case T_INT:
  1617           { jint con = opr2->as_constant_ptr()->as_jint();
  1618             if (Assembler::is_simm13(con)) {
  1619               __ cmp(opr1->as_register(), con);
  1620             } else {
  1621               __ set(con, O7);
  1622               __ cmp(opr1->as_register(), O7);
  1625           break;
  1627         case T_OBJECT:
  1628           // there are only equal/notequal comparisions on objects
  1629           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1630             if (con == NULL) {
  1631               __ cmp(opr1->as_register(), 0);
  1632             } else {
  1633               jobject2reg(con, O7);
  1634               __ cmp(opr1->as_register(), O7);
  1637           break;
  1639         default:
  1640           ShouldNotReachHere();
  1641           break;
  1643     } else {
  1644       if (opr2->is_address()) {
  1645         LIR_Address * addr = opr2->as_address_ptr();
  1646         BasicType type = addr->type();
  1647         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1648         else                    __ ld(as_Address(addr), O7);
  1649         __ cmp(opr1->as_register(), O7);
  1650       } else {
  1651         __ cmp(opr1->as_register(), opr2->as_register());
  1654   } else if (opr1->is_double_cpu()) {
  1655     Register xlo = opr1->as_register_lo();
  1656     Register xhi = opr1->as_register_hi();
  1657     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1658       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1659 #ifdef _LP64
  1660       __ orcc(xhi, G0, G0);
  1661 #else
  1662       __ orcc(xhi, xlo, G0);
  1663 #endif
  1664     } else if (opr2->is_register()) {
  1665       Register ylo = opr2->as_register_lo();
  1666       Register yhi = opr2->as_register_hi();
  1667 #ifdef _LP64
  1668       __ cmp(xlo, ylo);
  1669 #else
  1670       __ subcc(xlo, ylo, xlo);
  1671       __ subccc(xhi, yhi, xhi);
  1672       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1673         __ orcc(xhi, xlo, G0);
  1675 #endif
  1676     } else {
  1677       ShouldNotReachHere();
  1679   } else if (opr1->is_address()) {
  1680     LIR_Address * addr = opr1->as_address_ptr();
  1681     BasicType type = addr->type();
  1682     assert (opr2->is_constant(), "Checking");
  1683     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1684     else                    __ ld(as_Address(addr), O7);
  1685     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1686   } else {
  1687     ShouldNotReachHere();
  1692 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1693   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1694     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1695     if (left->is_single_fpu()) {
  1696       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1697     } else if (left->is_double_fpu()) {
  1698       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1699     } else {
  1700       ShouldNotReachHere();
  1702   } else if (code == lir_cmp_l2i) {
  1703 #ifdef _LP64
  1704     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1705 #else
  1706     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1707             right->as_register_hi(), right->as_register_lo(),
  1708             dst->as_register());
  1709 #endif
  1710   } else {
  1711     ShouldNotReachHere();
  1716 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  1717   Assembler::Condition acond;
  1718   switch (condition) {
  1719     case lir_cond_equal:        acond = Assembler::equal;        break;
  1720     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1721     case lir_cond_less:         acond = Assembler::less;         break;
  1722     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1723     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1724     case lir_cond_greater:      acond = Assembler::greater;      break;
  1725     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1726     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1727     default:                         ShouldNotReachHere();
  1728   };
  1730   if (opr1->is_constant() && opr1->type() == T_INT) {
  1731     Register dest = result->as_register();
  1732     // load up first part of constant before branch
  1733     // and do the rest in the delay slot.
  1734     if (!Assembler::is_simm13(opr1->as_jint())) {
  1735       __ sethi(opr1->as_jint(), dest);
  1737   } else if (opr1->is_constant()) {
  1738     const2reg(opr1, result, lir_patch_none, NULL);
  1739   } else if (opr1->is_register()) {
  1740     reg2reg(opr1, result);
  1741   } else if (opr1->is_stack()) {
  1742     stack2reg(opr1, result, result->type());
  1743   } else {
  1744     ShouldNotReachHere();
  1746   Label skip;
  1747 #ifdef _LP64
  1748     if  (type == T_INT) {
  1749       __ br(acond, false, Assembler::pt, skip);
  1750     } else
  1751 #endif
  1752       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
  1753   if (opr1->is_constant() && opr1->type() == T_INT) {
  1754     Register dest = result->as_register();
  1755     if (Assembler::is_simm13(opr1->as_jint())) {
  1756       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1757     } else {
  1758       // the sethi has been done above, so just put in the low 10 bits
  1759       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1761   } else {
  1762     // can't do anything useful in the delay slot
  1763     __ delayed()->nop();
  1765   if (opr2->is_constant()) {
  1766     const2reg(opr2, result, lir_patch_none, NULL);
  1767   } else if (opr2->is_register()) {
  1768     reg2reg(opr2, result);
  1769   } else if (opr2->is_stack()) {
  1770     stack2reg(opr2, result, result->type());
  1771   } else {
  1772     ShouldNotReachHere();
  1774   __ bind(skip);
  1778 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1779   assert(info == NULL, "unused on this code path");
  1780   assert(left->is_register(), "wrong items state");
  1781   assert(dest->is_register(), "wrong items state");
  1783   if (right->is_register()) {
  1784     if (dest->is_float_kind()) {
  1786       FloatRegister lreg, rreg, res;
  1787       FloatRegisterImpl::Width w;
  1788       if (right->is_single_fpu()) {
  1789         w = FloatRegisterImpl::S;
  1790         lreg = left->as_float_reg();
  1791         rreg = right->as_float_reg();
  1792         res  = dest->as_float_reg();
  1793       } else {
  1794         w = FloatRegisterImpl::D;
  1795         lreg = left->as_double_reg();
  1796         rreg = right->as_double_reg();
  1797         res  = dest->as_double_reg();
  1800       switch (code) {
  1801         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1802         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1803         case lir_mul: // fall through
  1804         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1805         case lir_div: // fall through
  1806         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1807         default: ShouldNotReachHere();
  1810     } else if (dest->is_double_cpu()) {
  1811 #ifdef _LP64
  1812       Register dst_lo = dest->as_register_lo();
  1813       Register op1_lo = left->as_pointer_register();
  1814       Register op2_lo = right->as_pointer_register();
  1816       switch (code) {
  1817         case lir_add:
  1818           __ add(op1_lo, op2_lo, dst_lo);
  1819           break;
  1821         case lir_sub:
  1822           __ sub(op1_lo, op2_lo, dst_lo);
  1823           break;
  1825         default: ShouldNotReachHere();
  1827 #else
  1828       Register op1_lo = left->as_register_lo();
  1829       Register op1_hi = left->as_register_hi();
  1830       Register op2_lo = right->as_register_lo();
  1831       Register op2_hi = right->as_register_hi();
  1832       Register dst_lo = dest->as_register_lo();
  1833       Register dst_hi = dest->as_register_hi();
  1835       switch (code) {
  1836         case lir_add:
  1837           __ addcc(op1_lo, op2_lo, dst_lo);
  1838           __ addc (op1_hi, op2_hi, dst_hi);
  1839           break;
  1841         case lir_sub:
  1842           __ subcc(op1_lo, op2_lo, dst_lo);
  1843           __ subc (op1_hi, op2_hi, dst_hi);
  1844           break;
  1846         default: ShouldNotReachHere();
  1848 #endif
  1849     } else {
  1850       assert (right->is_single_cpu(), "Just Checking");
  1852       Register lreg = left->as_register();
  1853       Register res  = dest->as_register();
  1854       Register rreg = right->as_register();
  1855       switch (code) {
  1856         case lir_add:  __ add  (lreg, rreg, res); break;
  1857         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1858         case lir_mul:  __ mult (lreg, rreg, res); break;
  1859         default: ShouldNotReachHere();
  1862   } else {
  1863     assert (right->is_constant(), "must be constant");
  1865     if (dest->is_single_cpu()) {
  1866       Register lreg = left->as_register();
  1867       Register res  = dest->as_register();
  1868       int    simm13 = right->as_constant_ptr()->as_jint();
  1870       switch (code) {
  1871         case lir_add:  __ add  (lreg, simm13, res); break;
  1872         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1873         case lir_mul:  __ mult (lreg, simm13, res); break;
  1874         default: ShouldNotReachHere();
  1876     } else {
  1877       Register lreg = left->as_pointer_register();
  1878       Register res  = dest->as_register_lo();
  1879       long con = right->as_constant_ptr()->as_jlong();
  1880       assert(Assembler::is_simm13(con), "must be simm13");
  1882       switch (code) {
  1883         case lir_add:  __ add  (lreg, (int)con, res); break;
  1884         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1885         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1886         default: ShouldNotReachHere();
  1893 void LIR_Assembler::fpop() {
  1894   // do nothing
  1898 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1899   switch (code) {
  1900     case lir_sin:
  1901     case lir_tan:
  1902     case lir_cos: {
  1903       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1904       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1905       break;
  1907     case lir_sqrt: {
  1908       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1909       FloatRegister src_reg = value->as_double_reg();
  1910       FloatRegister dst_reg = dest->as_double_reg();
  1911       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1912       break;
  1914     case lir_abs: {
  1915       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1916       FloatRegister src_reg = value->as_double_reg();
  1917       FloatRegister dst_reg = dest->as_double_reg();
  1918       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1919       break;
  1921     default: {
  1922       ShouldNotReachHere();
  1923       break;
  1929 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1930   if (right->is_constant()) {
  1931     if (dest->is_single_cpu()) {
  1932       int simm13 = right->as_constant_ptr()->as_jint();
  1933       switch (code) {
  1934         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1935         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1936         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1937         default: ShouldNotReachHere();
  1939     } else {
  1940       long c = right->as_constant_ptr()->as_jlong();
  1941       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1942       int simm13 = (int)c;
  1943       switch (code) {
  1944         case lir_logic_and:
  1945 #ifndef _LP64
  1946           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1947 #endif
  1948           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1949           break;
  1951         case lir_logic_or:
  1952 #ifndef _LP64
  1953           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1954 #endif
  1955           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1956           break;
  1958         case lir_logic_xor:
  1959 #ifndef _LP64
  1960           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1961 #endif
  1962           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1963           break;
  1965         default: ShouldNotReachHere();
  1968   } else {
  1969     assert(right->is_register(), "right should be in register");
  1971     if (dest->is_single_cpu()) {
  1972       switch (code) {
  1973         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1974         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  1975         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1976         default: ShouldNotReachHere();
  1978     } else {
  1979 #ifdef _LP64
  1980       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  1981                                                                         left->as_register_lo();
  1982       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  1983                                                                           right->as_register_lo();
  1985       switch (code) {
  1986         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  1987         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  1988         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  1989         default: ShouldNotReachHere();
  1991 #else
  1992       switch (code) {
  1993         case lir_logic_and:
  1994           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  1995           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  1996           break;
  1998         case lir_logic_or:
  1999           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2000           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2001           break;
  2003         case lir_logic_xor:
  2004           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2005           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2006           break;
  2008         default: ShouldNotReachHere();
  2010 #endif
  2016 int LIR_Assembler::shift_amount(BasicType t) {
  2017   int elem_size = type2aelembytes(t);
  2018   switch (elem_size) {
  2019     case 1 : return 0;
  2020     case 2 : return 1;
  2021     case 4 : return 2;
  2022     case 8 : return 3;
  2024   ShouldNotReachHere();
  2025   return -1;
  2029 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2030   assert(exceptionOop->as_register() == Oexception, "should match");
  2031   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  2033   info->add_register_oop(exceptionOop);
  2035   // reuse the debug info from the safepoint poll for the throw op itself
  2036   address pc_for_athrow  = __ pc();
  2037   int pc_for_athrow_offset = __ offset();
  2038   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2039   __ set(pc_for_athrow, Oissuing_pc, rspec);
  2040   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2042   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2043   __ delayed()->nop();
  2047 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2048   assert(exceptionOop->as_register() == Oexception, "should match");
  2050   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  2051   __ delayed()->nop();
  2055 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2056   Register src = op->src()->as_register();
  2057   Register dst = op->dst()->as_register();
  2058   Register src_pos = op->src_pos()->as_register();
  2059   Register dst_pos = op->dst_pos()->as_register();
  2060   Register length  = op->length()->as_register();
  2061   Register tmp = op->tmp()->as_register();
  2062   Register tmp2 = O7;
  2064   int flags = op->flags();
  2065   ciArrayKlass* default_type = op->expected_type();
  2066   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2067   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2069 #ifdef _LP64
  2070   // higher 32bits must be null
  2071   __ sra(dst_pos, 0, dst_pos);
  2072   __ sra(src_pos, 0, src_pos);
  2073   __ sra(length, 0, length);
  2074 #endif
  2076   // set up the arraycopy stub information
  2077   ArrayCopyStub* stub = op->stub();
  2079   // always do stub if no type information is available.  it's ok if
  2080   // the known type isn't loaded since the code sanity checks
  2081   // in debug mode and the type isn't required when we know the exact type
  2082   // also check that the type is an array type.
  2083   if (op->expected_type() == NULL) {
  2084     __ mov(src,     O0);
  2085     __ mov(src_pos, O1);
  2086     __ mov(dst,     O2);
  2087     __ mov(dst_pos, O3);
  2088     __ mov(length,  O4);
  2089     address copyfunc_addr = StubRoutines::generic_arraycopy();
  2091     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  2092       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2093     } else {
  2094 #ifndef PRODUCT
  2095       if (PrintC1Statistics) {
  2096         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
  2097         __ inc_counter(counter, G1, G3);
  2099 #endif
  2100       __ call_VM_leaf(tmp, copyfunc_addr);
  2103     if (copyfunc_addr != NULL) {
  2104       __ xor3(O0, -1, tmp);
  2105       __ sub(length, tmp, length);
  2106       __ add(src_pos, tmp, src_pos);
  2107       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2108       __ delayed()->add(dst_pos, tmp, dst_pos);
  2109     } else {
  2110       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2111       __ delayed()->nop();
  2113     __ bind(*stub->continuation());
  2114     return;
  2117   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2119   // make sure src and dst are non-null and load array length
  2120   if (flags & LIR_OpArrayCopy::src_null_check) {
  2121     __ tst(src);
  2122     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2123     __ delayed()->nop();
  2126   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2127     __ tst(dst);
  2128     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2129     __ delayed()->nop();
  2132   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2133     // test src_pos register
  2134     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
  2135     __ delayed()->nop();
  2138   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2139     // test dst_pos register
  2140     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
  2141     __ delayed()->nop();
  2144   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2145     // make sure length isn't negative
  2146     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
  2147     __ delayed()->nop();
  2150   if (flags & LIR_OpArrayCopy::src_range_check) {
  2151     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2152     __ add(length, src_pos, tmp);
  2153     __ cmp(tmp2, tmp);
  2154     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2155     __ delayed()->nop();
  2158   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2159     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2160     __ add(length, dst_pos, tmp);
  2161     __ cmp(tmp2, tmp);
  2162     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2163     __ delayed()->nop();
  2166   int shift = shift_amount(basic_type);
  2168   if (flags & LIR_OpArrayCopy::type_check) {
  2169     // We don't know the array types are compatible
  2170     if (basic_type != T_OBJECT) {
  2171       // Simple test for basic type arrays
  2172       if (UseCompressedOops) {
  2173         // We don't need decode because we just need to compare
  2174         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
  2175         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2176         __ cmp(tmp, tmp2);
  2177         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2178       } else {
  2179         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2180         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2181         __ cmp(tmp, tmp2);
  2182         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2184       __ delayed()->nop();
  2185     } else {
  2186       // For object arrays, if src is a sub class of dst then we can
  2187       // safely do the copy.
  2188       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  2190       Label cont, slow;
  2191       assert_different_registers(tmp, tmp2, G3, G1);
  2193       __ load_klass(src, G3);
  2194       __ load_klass(dst, G1);
  2196       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
  2198       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2199       __ delayed()->nop();
  2201       __ cmp(G3, 0);
  2202       if (copyfunc_addr != NULL) { // use stub if available
  2203         // src is not a sub class of dst so we have to do a
  2204         // per-element check.
  2205         __ br(Assembler::notEqual, false, Assembler::pt, cont);
  2206         __ delayed()->nop();
  2208         __ bind(slow);
  2210         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  2211         if ((flags & mask) != mask) {
  2212           // Check that at least both of them object arrays.
  2213           assert(flags & mask, "one of the two should be known to be an object array");
  2215           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  2216             __ load_klass(src, tmp);
  2217           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  2218             __ load_klass(dst, tmp);
  2220           int lh_offset = in_bytes(Klass::layout_helper_offset());
  2222           __ lduw(tmp, lh_offset, tmp2);
  2224           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2225           __ set(objArray_lh, tmp);
  2226           __ cmp(tmp, tmp2);
  2227           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
  2228           __ delayed()->nop();
  2231         Register src_ptr = O0;
  2232         Register dst_ptr = O1;
  2233         Register len     = O2;
  2234         Register chk_off = O3;
  2235         Register super_k = O4;
  2237         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2238         if (shift == 0) {
  2239           __ add(src_ptr, src_pos, src_ptr);
  2240         } else {
  2241           __ sll(src_pos, shift, tmp);
  2242           __ add(src_ptr, tmp, src_ptr);
  2245         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2246         if (shift == 0) {
  2247           __ add(dst_ptr, dst_pos, dst_ptr);
  2248         } else {
  2249           __ sll(dst_pos, shift, tmp);
  2250           __ add(dst_ptr, tmp, dst_ptr);
  2252         __ mov(length, len);
  2253         __ load_klass(dst, tmp);
  2255         int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
  2256         __ ld_ptr(tmp, ek_offset, super_k);
  2258         int sco_offset = in_bytes(Klass::super_check_offset_offset());
  2259         __ lduw(super_k, sco_offset, chk_off);
  2261         __ call_VM_leaf(tmp, copyfunc_addr);
  2263 #ifndef PRODUCT
  2264         if (PrintC1Statistics) {
  2265           Label failed;
  2266           __ br_notnull_short(O0, Assembler::pn, failed);
  2267           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
  2268           __ bind(failed);
  2270 #endif
  2272         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
  2273         __ delayed()->xor3(O0, -1, tmp);
  2275 #ifndef PRODUCT
  2276         if (PrintC1Statistics) {
  2277           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
  2279 #endif
  2281         __ sub(length, tmp, length);
  2282         __ add(src_pos, tmp, src_pos);
  2283         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
  2284         __ delayed()->add(dst_pos, tmp, dst_pos);
  2286         __ bind(cont);
  2287       } else {
  2288         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2289         __ delayed()->nop();
  2290         __ bind(cont);
  2295 #ifdef ASSERT
  2296   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2297     // Sanity check the known type with the incoming class.  For the
  2298     // primitive case the types must match exactly with src.klass and
  2299     // dst.klass each exactly matching the default type.  For the
  2300     // object array case, if no type check is needed then either the
  2301     // dst type is exactly the expected type and the src type is a
  2302     // subtype which we can't check or src is the same array as dst
  2303     // but not necessarily exactly of type default_type.
  2304     Label known_ok, halt;
  2305     jobject2reg(op->expected_type()->constant_encoding(), tmp);
  2306     if (UseCompressedOops) {
  2307       // tmp holds the default type. It currently comes uncompressed after the
  2308       // load of a constant, so encode it.
  2309       __ encode_heap_oop(tmp);
  2310       // load the raw value of the dst klass, since we will be comparing
  2311       // uncompressed values directly.
  2312       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2313       if (basic_type != T_OBJECT) {
  2314         __ cmp(tmp, tmp2);
  2315         __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2316         // load the raw value of the src klass.
  2317         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2318         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2319       } else {
  2320         __ cmp(tmp, tmp2);
  2321         __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2322         __ delayed()->cmp(src, dst);
  2323         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2324         __ delayed()->nop();
  2326     } else {
  2327       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2328       if (basic_type != T_OBJECT) {
  2329         __ cmp(tmp, tmp2);
  2330         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
  2331         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2332         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2333       } else {
  2334         __ cmp(tmp, tmp2);
  2335         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2336         __ delayed()->cmp(src, dst);
  2337         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2338         __ delayed()->nop();
  2341     __ bind(halt);
  2342     __ stop("incorrect type information in arraycopy");
  2343     __ bind(known_ok);
  2345 #endif
  2347 #ifndef PRODUCT
  2348   if (PrintC1Statistics) {
  2349     address counter = Runtime1::arraycopy_count_address(basic_type);
  2350     __ inc_counter(counter, G1, G3);
  2352 #endif
  2354   Register src_ptr = O0;
  2355   Register dst_ptr = O1;
  2356   Register len     = O2;
  2358   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2359   if (shift == 0) {
  2360     __ add(src_ptr, src_pos, src_ptr);
  2361   } else {
  2362     __ sll(src_pos, shift, tmp);
  2363     __ add(src_ptr, tmp, src_ptr);
  2366   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2367   if (shift == 0) {
  2368     __ add(dst_ptr, dst_pos, dst_ptr);
  2369   } else {
  2370     __ sll(dst_pos, shift, tmp);
  2371     __ add(dst_ptr, tmp, dst_ptr);
  2374   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  2375   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  2376   const char *name;
  2377   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  2379   // arraycopy stubs takes a length in number of elements, so don't scale it.
  2380   __ mov(length, len);
  2381   __ call_VM_leaf(tmp, entry);
  2383   __ bind(*stub->continuation());
  2387 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2388   if (dest->is_single_cpu()) {
  2389 #ifdef _LP64
  2390     if (left->type() == T_OBJECT) {
  2391       switch (code) {
  2392         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2393         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2394         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2395         default: ShouldNotReachHere();
  2397     } else
  2398 #endif
  2399       switch (code) {
  2400         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2401         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2402         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2403         default: ShouldNotReachHere();
  2405   } else {
  2406 #ifdef _LP64
  2407     switch (code) {
  2408       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2409       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2410       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2411       default: ShouldNotReachHere();
  2413 #else
  2414     switch (code) {
  2415       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2416       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2417       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2418       default: ShouldNotReachHere();
  2420 #endif
  2425 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2426 #ifdef _LP64
  2427   if (left->type() == T_OBJECT) {
  2428     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2429     Register l = left->as_register();
  2430     Register d = dest->as_register_lo();
  2431     switch (code) {
  2432       case lir_shl:  __ sllx  (l, count, d); break;
  2433       case lir_shr:  __ srax  (l, count, d); break;
  2434       case lir_ushr: __ srlx  (l, count, d); break;
  2435       default: ShouldNotReachHere();
  2437     return;
  2439 #endif
  2441   if (dest->is_single_cpu()) {
  2442     count = count & 0x1F; // Java spec
  2443     switch (code) {
  2444       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2445       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2446       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2447       default: ShouldNotReachHere();
  2449   } else if (dest->is_double_cpu()) {
  2450     count = count & 63; // Java spec
  2451     switch (code) {
  2452       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2453       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2454       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2455       default: ShouldNotReachHere();
  2457   } else {
  2458     ShouldNotReachHere();
  2463 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2464   assert(op->tmp1()->as_register()  == G1 &&
  2465          op->tmp2()->as_register()  == G3 &&
  2466          op->tmp3()->as_register()  == G4 &&
  2467          op->obj()->as_register()   == O0 &&
  2468          op->klass()->as_register() == G5, "must be");
  2469   if (op->init_check()) {
  2470     __ ldub(op->klass()->as_register(),
  2471           in_bytes(instanceKlass::init_state_offset()),
  2472           op->tmp1()->as_register());
  2473     add_debug_info_for_null_check_here(op->stub()->info());
  2474     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
  2475     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2476     __ delayed()->nop();
  2478   __ allocate_object(op->obj()->as_register(),
  2479                      op->tmp1()->as_register(),
  2480                      op->tmp2()->as_register(),
  2481                      op->tmp3()->as_register(),
  2482                      op->header_size(),
  2483                      op->object_size(),
  2484                      op->klass()->as_register(),
  2485                      *op->stub()->entry());
  2486   __ bind(*op->stub()->continuation());
  2487   __ verify_oop(op->obj()->as_register());
  2491 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2492   assert(op->tmp1()->as_register()  == G1 &&
  2493          op->tmp2()->as_register()  == G3 &&
  2494          op->tmp3()->as_register()  == G4 &&
  2495          op->tmp4()->as_register()  == O1 &&
  2496          op->klass()->as_register() == G5, "must be");
  2498   LP64_ONLY( __ signx(op->len()->as_register()); )
  2499   if (UseSlowPath ||
  2500       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2501       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2502     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2503     __ delayed()->nop();
  2504   } else {
  2505     __ allocate_array(op->obj()->as_register(),
  2506                       op->len()->as_register(),
  2507                       op->tmp1()->as_register(),
  2508                       op->tmp2()->as_register(),
  2509                       op->tmp3()->as_register(),
  2510                       arrayOopDesc::header_size(op->type()),
  2511                       type2aelembytes(op->type()),
  2512                       op->klass()->as_register(),
  2513                       *op->stub()->entry());
  2515   __ bind(*op->stub()->continuation());
  2519 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
  2520                                         ciMethodData *md, ciProfileData *data,
  2521                                         Register recv, Register tmp1, Label* update_done) {
  2522   uint i;
  2523   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2524     Label next_test;
  2525     // See if the receiver is receiver[n].
  2526     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2527                           mdo_offset_bias);
  2528     __ ld_ptr(receiver_addr, tmp1);
  2529     __ verify_oop(tmp1);
  2530     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
  2531     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2532                       mdo_offset_bias);
  2533     __ ld_ptr(data_addr, tmp1);
  2534     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2535     __ st_ptr(tmp1, data_addr);
  2536     __ ba(*update_done);
  2537     __ delayed()->nop();
  2538     __ bind(next_test);
  2541   // Didn't find receiver; find next empty slot and fill it in
  2542   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2543     Label next_test;
  2544     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2545                       mdo_offset_bias);
  2546     __ ld_ptr(recv_addr, tmp1);
  2547     __ br_notnull_short(tmp1, Assembler::pt, next_test);
  2548     __ st_ptr(recv, recv_addr);
  2549     __ set(DataLayout::counter_increment, tmp1);
  2550     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2551               mdo_offset_bias);
  2552     __ ba(*update_done);
  2553     __ delayed()->nop();
  2554     __ bind(next_test);
  2559 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
  2560                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
  2561   md = method->method_data_or_null();
  2562   assert(md != NULL, "Sanity");
  2563   data = md->bci_to_data(bci);
  2564   assert(data != NULL,       "need data for checkcast");
  2565   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  2566   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2567     // The offset is large so bias the mdo by the base of the slot so
  2568     // that the ld can use simm13s to reference the slots of the data
  2569     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2573 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  2574   // we always need a stub for the failure case.
  2575   CodeStub* stub = op->stub();
  2576   Register obj = op->object()->as_register();
  2577   Register k_RInfo = op->tmp1()->as_register();
  2578   Register klass_RInfo = op->tmp2()->as_register();
  2579   Register dst = op->result_opr()->as_register();
  2580   Register Rtmp1 = op->tmp3()->as_register();
  2581   ciKlass* k = op->klass();
  2584   if (obj == k_RInfo) {
  2585     k_RInfo = klass_RInfo;
  2586     klass_RInfo = obj;
  2589   ciMethodData* md;
  2590   ciProfileData* data;
  2591   int mdo_offset_bias = 0;
  2592   if (op->should_profile()) {
  2593     ciMethod* method = op->profiled_method();
  2594     assert(method != NULL, "Should have method");
  2595     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2597     Label not_null;
  2598     __ br_notnull_short(obj, Assembler::pn, not_null);
  2599     Register mdo      = k_RInfo;
  2600     Register data_val = Rtmp1;
  2601     jobject2reg(md->constant_encoding(), mdo);
  2602     if (mdo_offset_bias > 0) {
  2603       __ set(mdo_offset_bias, data_val);
  2604       __ add(mdo, data_val, mdo);
  2606     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2607     __ ldub(flags_addr, data_val);
  2608     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2609     __ stb(data_val, flags_addr);
  2610     __ ba(*obj_is_null);
  2611     __ delayed()->nop();
  2612     __ bind(not_null);
  2613   } else {
  2614     __ br_null(obj, false, Assembler::pn, *obj_is_null);
  2615     __ delayed()->nop();
  2618   Label profile_cast_failure, profile_cast_success;
  2619   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  2620   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  2622   // patching may screw with our temporaries on sparc,
  2623   // so let's do it before loading the class
  2624   if (k->is_loaded()) {
  2625     jobject2reg(k->constant_encoding(), k_RInfo);
  2626   } else {
  2627     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2629   assert(obj != k_RInfo, "must be different");
  2631   // get object class
  2632   // not a safepoint as obj null check happens earlier
  2633   __ load_klass(obj, klass_RInfo);
  2634   if (op->fast_check()) {
  2635     assert_different_registers(klass_RInfo, k_RInfo);
  2636     __ cmp(k_RInfo, klass_RInfo);
  2637     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
  2638     __ delayed()->nop();
  2639   } else {
  2640     bool need_slow_path = true;
  2641     if (k->is_loaded()) {
  2642       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
  2643         need_slow_path = false;
  2644       // perform the fast part of the checking logic
  2645       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2646                                        (need_slow_path ? success_target : NULL),
  2647                                        failure_target, NULL,
  2648                                        RegisterOrConstant(k->super_check_offset()));
  2649     } else {
  2650       // perform the fast part of the checking logic
  2651       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
  2652                                        failure_target, NULL);
  2654     if (need_slow_path) {
  2655       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2656       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2657       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2658       __ delayed()->nop();
  2659       __ cmp(G3, 0);
  2660       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2661       __ delayed()->nop();
  2662       // Fall through to success case
  2666   if (op->should_profile()) {
  2667     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2668     assert_different_registers(obj, mdo, recv, tmp1);
  2669     __ bind(profile_cast_success);
  2670     jobject2reg(md->constant_encoding(), mdo);
  2671     if (mdo_offset_bias > 0) {
  2672       __ set(mdo_offset_bias, tmp1);
  2673       __ add(mdo, tmp1, mdo);
  2675     __ load_klass(obj, recv);
  2676     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
  2677     // Jump over the failure case
  2678     __ ba(*success);
  2679     __ delayed()->nop();
  2680     // Cast failure case
  2681     __ bind(profile_cast_failure);
  2682     jobject2reg(md->constant_encoding(), mdo);
  2683     if (mdo_offset_bias > 0) {
  2684       __ set(mdo_offset_bias, tmp1);
  2685       __ add(mdo, tmp1, mdo);
  2687     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2688     __ ld_ptr(data_addr, tmp1);
  2689     __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2690     __ st_ptr(tmp1, data_addr);
  2691     __ ba(*failure);
  2692     __ delayed()->nop();
  2694   __ ba(*success);
  2695   __ delayed()->nop();
  2698 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2699   LIR_Code code = op->code();
  2700   if (code == lir_store_check) {
  2701     Register value = op->object()->as_register();
  2702     Register array = op->array()->as_register();
  2703     Register k_RInfo = op->tmp1()->as_register();
  2704     Register klass_RInfo = op->tmp2()->as_register();
  2705     Register Rtmp1 = op->tmp3()->as_register();
  2707     __ verify_oop(value);
  2708     CodeStub* stub = op->stub();
  2709     // check if it needs to be profiled
  2710     ciMethodData* md;
  2711     ciProfileData* data;
  2712     int mdo_offset_bias = 0;
  2713     if (op->should_profile()) {
  2714       ciMethod* method = op->profiled_method();
  2715       assert(method != NULL, "Should have method");
  2716       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2718     Label profile_cast_success, profile_cast_failure, done;
  2719     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  2720     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  2722     if (op->should_profile()) {
  2723       Label not_null;
  2724       __ br_notnull_short(value, Assembler::pn, not_null);
  2725       Register mdo      = k_RInfo;
  2726       Register data_val = Rtmp1;
  2727       jobject2reg(md->constant_encoding(), mdo);
  2728       if (mdo_offset_bias > 0) {
  2729         __ set(mdo_offset_bias, data_val);
  2730         __ add(mdo, data_val, mdo);
  2732       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2733       __ ldub(flags_addr, data_val);
  2734       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2735       __ stb(data_val, flags_addr);
  2736       __ ba_short(done);
  2737       __ bind(not_null);
  2738     } else {
  2739       __ br_null_short(value, Assembler::pn, done);
  2741     add_debug_info_for_null_check_here(op->info_for_exception());
  2742     __ load_klass(array, k_RInfo);
  2743     __ load_klass(value, klass_RInfo);
  2745     // get instance klass
  2746     __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset()), k_RInfo);
  2747     // perform the fast part of the checking logic
  2748     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
  2750     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2751     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2752     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2753     __ delayed()->nop();
  2754     __ cmp(G3, 0);
  2755     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2756     __ delayed()->nop();
  2757     // fall through to the success case
  2759     if (op->should_profile()) {
  2760       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2761       assert_different_registers(value, mdo, recv, tmp1);
  2762       __ bind(profile_cast_success);
  2763       jobject2reg(md->constant_encoding(), mdo);
  2764       if (mdo_offset_bias > 0) {
  2765         __ set(mdo_offset_bias, tmp1);
  2766         __ add(mdo, tmp1, mdo);
  2768       __ load_klass(value, recv);
  2769       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
  2770       __ ba_short(done);
  2771       // Cast failure case
  2772       __ bind(profile_cast_failure);
  2773       jobject2reg(md->constant_encoding(), mdo);
  2774       if (mdo_offset_bias > 0) {
  2775         __ set(mdo_offset_bias, tmp1);
  2776         __ add(mdo, tmp1, mdo);
  2778       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2779       __ ld_ptr(data_addr, tmp1);
  2780       __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2781       __ st_ptr(tmp1, data_addr);
  2782       __ ba(*stub->entry());
  2783       __ delayed()->nop();
  2785     __ bind(done);
  2786   } else if (code == lir_checkcast) {
  2787     Register obj = op->object()->as_register();
  2788     Register dst = op->result_opr()->as_register();
  2789     Label success;
  2790     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  2791     __ bind(success);
  2792     __ mov(obj, dst);
  2793   } else if (code == lir_instanceof) {
  2794     Register obj = op->object()->as_register();
  2795     Register dst = op->result_opr()->as_register();
  2796     Label success, failure, done;
  2797     emit_typecheck_helper(op, &success, &failure, &failure);
  2798     __ bind(failure);
  2799     __ set(0, dst);
  2800     __ ba_short(done);
  2801     __ bind(success);
  2802     __ set(1, dst);
  2803     __ bind(done);
  2804   } else {
  2805     ShouldNotReachHere();
  2811 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2812   if (op->code() == lir_cas_long) {
  2813     assert(VM_Version::supports_cx8(), "wrong machine");
  2814     Register addr = op->addr()->as_pointer_register();
  2815     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2816     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2817     Register new_value_lo = op->new_value()->as_register_lo();
  2818     Register new_value_hi = op->new_value()->as_register_hi();
  2819     Register t1 = op->tmp1()->as_register();
  2820     Register t2 = op->tmp2()->as_register();
  2821 #ifdef _LP64
  2822     __ mov(cmp_value_lo, t1);
  2823     __ mov(new_value_lo, t2);
  2824     // perform the compare and swap operation
  2825     __ casx(addr, t1, t2);
  2826     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2827     // overwritten with the original value in "addr" and will be equal to t1.
  2828     __ cmp(t1, t2);
  2829 #else
  2830     // move high and low halves of long values into single registers
  2831     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2832     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2833     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2834     __ sllx(new_value_hi, 32, t2);
  2835     __ srl(new_value_lo, 0, new_value_lo);
  2836     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2837     // perform the compare and swap operation
  2838     __ casx(addr, t1, t2);
  2839     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2840     // overwritten with the original value in "addr" and will be equal to t1.
  2841     // Produce icc flag for 32bit.
  2842     __ sub(t1, t2, t2);
  2843     __ srlx(t2, 32, t1);
  2844     __ orcc(t2, t1, G0);
  2845 #endif
  2846   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2847     Register addr = op->addr()->as_pointer_register();
  2848     Register cmp_value = op->cmp_value()->as_register();
  2849     Register new_value = op->new_value()->as_register();
  2850     Register t1 = op->tmp1()->as_register();
  2851     Register t2 = op->tmp2()->as_register();
  2852     __ mov(cmp_value, t1);
  2853     __ mov(new_value, t2);
  2854     if (op->code() == lir_cas_obj) {
  2855       if (UseCompressedOops) {
  2856         __ encode_heap_oop(t1);
  2857         __ encode_heap_oop(t2);
  2858         __ cas(addr, t1, t2);
  2859       } else {
  2860         __ cas_ptr(addr, t1, t2);
  2862     } else {
  2863       __ cas(addr, t1, t2);
  2865     __ cmp(t1, t2);
  2866   } else {
  2867     Unimplemented();
  2871 void LIR_Assembler::set_24bit_FPU() {
  2872   Unimplemented();
  2876 void LIR_Assembler::reset_FPU() {
  2877   Unimplemented();
  2881 void LIR_Assembler::breakpoint() {
  2882   __ breakpoint_trap();
  2886 void LIR_Assembler::push(LIR_Opr opr) {
  2887   Unimplemented();
  2891 void LIR_Assembler::pop(LIR_Opr opr) {
  2892   Unimplemented();
  2896 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2897   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2898   Register dst = dst_opr->as_register();
  2899   Register reg = mon_addr.base();
  2900   int offset = mon_addr.disp();
  2901   // compute pointer to BasicLock
  2902   if (mon_addr.is_simm13()) {
  2903     __ add(reg, offset, dst);
  2904   } else {
  2905     __ set(offset, dst);
  2906     __ add(dst, reg, dst);
  2911 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2912   Register obj = op->obj_opr()->as_register();
  2913   Register hdr = op->hdr_opr()->as_register();
  2914   Register lock = op->lock_opr()->as_register();
  2916   // obj may not be an oop
  2917   if (op->code() == lir_lock) {
  2918     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2919     if (UseFastLocking) {
  2920       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2921       // add debug info for NullPointerException only if one is possible
  2922       if (op->info() != NULL) {
  2923         add_debug_info_for_null_check_here(op->info());
  2925       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2926     } else {
  2927       // always do slow locking
  2928       // note: the slow locking code could be inlined here, however if we use
  2929       //       slow locking, speed doesn't matter anyway and this solution is
  2930       //       simpler and requires less duplicated code - additionally, the
  2931       //       slow locking code is the same in either case which simplifies
  2932       //       debugging
  2933       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2934       __ delayed()->nop();
  2936   } else {
  2937     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2938     if (UseFastLocking) {
  2939       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2940       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2941     } else {
  2942       // always do slow unlocking
  2943       // note: the slow unlocking code could be inlined here, however if we use
  2944       //       slow unlocking, speed doesn't matter anyway and this solution is
  2945       //       simpler and requires less duplicated code - additionally, the
  2946       //       slow unlocking code is the same in either case which simplifies
  2947       //       debugging
  2948       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2949       __ delayed()->nop();
  2952   __ bind(*op->stub()->continuation());
  2956 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2957   ciMethod* method = op->profiled_method();
  2958   int bci          = op->profiled_bci();
  2959   ciMethod* callee = op->profiled_callee();
  2961   // Update counter for all call types
  2962   ciMethodData* md = method->method_data_or_null();
  2963   assert(md != NULL, "Sanity");
  2964   ciProfileData* data = md->bci_to_data(bci);
  2965   assert(data->is_CounterData(), "need CounterData for calls");
  2966   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  2967   Register mdo  = op->mdo()->as_register();
  2968 #ifdef _LP64
  2969   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
  2970   Register tmp1 = op->tmp1()->as_register_lo();
  2971 #else
  2972   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  2973   Register tmp1 = op->tmp1()->as_register();
  2974 #endif
  2975   jobject2reg(md->constant_encoding(), mdo);
  2976   int mdo_offset_bias = 0;
  2977   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  2978                             data->size_in_bytes())) {
  2979     // The offset is large so bias the mdo by the base of the slot so
  2980     // that the ld can use simm13s to reference the slots of the data
  2981     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  2982     __ set(mdo_offset_bias, O7);
  2983     __ add(mdo, O7, mdo);
  2986   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2987   Bytecodes::Code bc = method->java_code_at_bci(bci);
  2988   const bool callee_is_static = callee->is_loaded() && callee->is_static();
  2989   // Perform additional virtual call profiling for invokevirtual and
  2990   // invokeinterface bytecodes
  2991   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  2992       !callee_is_static &&  // required for optimized MH invokes
  2993       C1ProfileVirtualCalls) {
  2994     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  2995     Register recv = op->recv()->as_register();
  2996     assert_different_registers(mdo, tmp1, recv);
  2997     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  2998     ciKlass* known_klass = op->known_holder();
  2999     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3000       // We know the type that will be seen at this call site; we can
  3001       // statically update the methodDataOop rather than needing to do
  3002       // dynamic tests on the receiver type
  3004       // NOTE: we should probably put a lock around this search to
  3005       // avoid collisions by concurrent compilations
  3006       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3007       uint i;
  3008       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3009         ciKlass* receiver = vc_data->receiver(i);
  3010         if (known_klass->equals(receiver)) {
  3011           Address data_addr(mdo, md->byte_offset_of_slot(data,
  3012                                                          VirtualCallData::receiver_count_offset(i)) -
  3013                             mdo_offset_bias);
  3014           __ ld_ptr(data_addr, tmp1);
  3015           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3016           __ st_ptr(tmp1, data_addr);
  3017           return;
  3021       // Receiver type not found in profile data; select an empty slot
  3023       // Note that this is less efficient than it should be because it
  3024       // always does a write to the receiver part of the
  3025       // VirtualCallData rather than just the first time
  3026       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3027         ciKlass* receiver = vc_data->receiver(i);
  3028         if (receiver == NULL) {
  3029           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  3030                             mdo_offset_bias);
  3031           jobject2reg(known_klass->constant_encoding(), tmp1);
  3032           __ st_ptr(tmp1, recv_addr);
  3033           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  3034                             mdo_offset_bias);
  3035           __ ld_ptr(data_addr, tmp1);
  3036           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3037           __ st_ptr(tmp1, data_addr);
  3038           return;
  3041     } else {
  3042       __ load_klass(recv, recv);
  3043       Label update_done;
  3044       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
  3045       // Receiver did not match any saved receiver and there is no empty row for it.
  3046       // Increment total counter to indicate polymorphic case.
  3047       __ ld_ptr(counter_addr, tmp1);
  3048       __ add(tmp1, DataLayout::counter_increment, tmp1);
  3049       __ st_ptr(tmp1, counter_addr);
  3051       __ bind(update_done);
  3053   } else {
  3054     // Static call
  3055     __ ld_ptr(counter_addr, tmp1);
  3056     __ add(tmp1, DataLayout::counter_increment, tmp1);
  3057     __ st_ptr(tmp1, counter_addr);
  3061 void LIR_Assembler::align_backward_branch_target() {
  3062   __ align(OptoLoopAlignment);
  3066 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  3067   // make sure we are expecting a delay
  3068   // this has the side effect of clearing the delay state
  3069   // so we can use _masm instead of _masm->delayed() to do the
  3070   // code generation.
  3071   __ delayed();
  3073   // make sure we only emit one instruction
  3074   int offset = code_offset();
  3075   op->delay_op()->emit_code(this);
  3076 #ifdef ASSERT
  3077   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  3078     op->delay_op()->print();
  3080   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  3081          "only one instruction can go in a delay slot");
  3082 #endif
  3084   // we may also be emitting the call info for the instruction
  3085   // which we are the delay slot of.
  3086   CodeEmitInfo* call_info = op->call_info();
  3087   if (call_info) {
  3088     add_call_info(code_offset(), call_info);
  3091   if (VerifyStackAtCalls) {
  3092     _masm->sub(FP, SP, O7);
  3093     _masm->cmp(O7, initial_frame_size_in_bytes());
  3094     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  3099 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3100   assert(left->is_register(), "can only handle registers");
  3102   if (left->is_single_cpu()) {
  3103     __ neg(left->as_register(), dest->as_register());
  3104   } else if (left->is_single_fpu()) {
  3105     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  3106   } else if (left->is_double_fpu()) {
  3107     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  3108   } else {
  3109     assert (left->is_double_cpu(), "Must be a long");
  3110     Register Rlow = left->as_register_lo();
  3111     Register Rhi = left->as_register_hi();
  3112 #ifdef _LP64
  3113     __ sub(G0, Rlow, dest->as_register_lo());
  3114 #else
  3115     __ subcc(G0, Rlow, dest->as_register_lo());
  3116     __ subc (G0, Rhi,  dest->as_register_hi());
  3117 #endif
  3122 void LIR_Assembler::fxch(int i) {
  3123   Unimplemented();
  3126 void LIR_Assembler::fld(int i) {
  3127   Unimplemented();
  3130 void LIR_Assembler::ffree(int i) {
  3131   Unimplemented();
  3134 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  3135                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3137   // if tmp is invalid, then the function being called doesn't destroy the thread
  3138   if (tmp->is_valid()) {
  3139     __ save_thread(tmp->as_register());
  3141   __ call(dest, relocInfo::runtime_call_type);
  3142   __ delayed()->nop();
  3143   if (info != NULL) {
  3144     add_call_info_here(info);
  3146   if (tmp->is_valid()) {
  3147     __ restore_thread(tmp->as_register());
  3150 #ifdef ASSERT
  3151   __ verify_thread();
  3152 #endif // ASSERT
  3156 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3157 #ifdef _LP64
  3158   ShouldNotReachHere();
  3159 #endif
  3161   NEEDS_CLEANUP;
  3162   if (type == T_LONG) {
  3163     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  3165     // (extended to allow indexed as well as constant displaced for JSR-166)
  3166     Register idx = noreg; // contains either constant offset or index
  3168     int disp = mem_addr->disp();
  3169     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  3170       if (!Assembler::is_simm13(disp)) {
  3171         idx = O7;
  3172         __ set(disp, idx);
  3174     } else {
  3175       assert(disp == 0, "not both indexed and disp");
  3176       idx = mem_addr->index()->as_register();
  3179     int null_check_offset = -1;
  3181     Register base = mem_addr->base()->as_register();
  3182     if (src->is_register() && dest->is_address()) {
  3183       // G4 is high half, G5 is low half
  3184       if (VM_Version::v9_instructions_work()) {
  3185         // clear the top bits of G5, and scale up G4
  3186         __ srl (src->as_register_lo(),  0, G5);
  3187         __ sllx(src->as_register_hi(), 32, G4);
  3188         // combine the two halves into the 64 bits of G4
  3189         __ or3(G4, G5, G4);
  3190         null_check_offset = __ offset();
  3191         if (idx == noreg) {
  3192           __ stx(G4, base, disp);
  3193         } else {
  3194           __ stx(G4, base, idx);
  3196       } else {
  3197         __ mov (src->as_register_hi(), G4);
  3198         __ mov (src->as_register_lo(), G5);
  3199         null_check_offset = __ offset();
  3200         if (idx == noreg) {
  3201           __ std(G4, base, disp);
  3202         } else {
  3203           __ std(G4, base, idx);
  3206     } else if (src->is_address() && dest->is_register()) {
  3207       null_check_offset = __ offset();
  3208       if (VM_Version::v9_instructions_work()) {
  3209         if (idx == noreg) {
  3210           __ ldx(base, disp, G5);
  3211         } else {
  3212           __ ldx(base, idx, G5);
  3214         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3215         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3216       } else {
  3217         if (idx == noreg) {
  3218           __ ldd(base, disp, G4);
  3219         } else {
  3220           __ ldd(base, idx, G4);
  3222         // G4 is high half, G5 is low half
  3223         __ mov (G4, dest->as_register_hi());
  3224         __ mov (G5, dest->as_register_lo());
  3226     } else {
  3227       Unimplemented();
  3229     if (info != NULL) {
  3230       add_debug_info_for_null_check(null_check_offset, info);
  3233   } else {
  3234     // use normal move for all other volatiles since they don't need
  3235     // special handling to remain atomic.
  3236     move_op(src, dest, type, lir_patch_none, info, false, false, false);
  3240 void LIR_Assembler::membar() {
  3241   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3242   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3245 void LIR_Assembler::membar_acquire() {
  3246   // no-op on TSO
  3249 void LIR_Assembler::membar_release() {
  3250   // no-op on TSO
  3253 void LIR_Assembler::membar_loadload() {
  3254   // no-op
  3255   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  3258 void LIR_Assembler::membar_storestore() {
  3259   // no-op
  3260   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  3263 void LIR_Assembler::membar_loadstore() {
  3264   // no-op
  3265   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  3268 void LIR_Assembler::membar_storeload() {
  3269   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3273 // Pack two sequential registers containing 32 bit values
  3274 // into a single 64 bit register.
  3275 // src and src->successor() are packed into dst
  3276 // src and dst may be the same register.
  3277 // Note: src is destroyed
  3278 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
  3279   Register rs = src->as_register();
  3280   Register rd = dst->as_register_lo();
  3281   __ sllx(rs, 32, rs);
  3282   __ srl(rs->successor(), 0, rs->successor());
  3283   __ or3(rs, rs->successor(), rd);
  3286 // Unpack a 64 bit value in a register into
  3287 // two sequential registers.
  3288 // src is unpacked into dst and dst->successor()
  3289 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
  3290   Register rs = src->as_register_lo();
  3291   Register rd = dst->as_register_hi();
  3292   assert_different_registers(rs, rd, rd->successor());
  3293   __ srlx(rs, 32, rd);
  3294   __ srl (rs,  0, rd->successor());
  3298 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3299   LIR_Address* addr = addr_opr->as_address_ptr();
  3300   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3302   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
  3306 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3307   assert(result_reg->is_register(), "check");
  3308   __ mov(G2_thread, result_reg->as_register());
  3312 void LIR_Assembler::peephole(LIR_List* lir) {
  3313   LIR_OpList* inst = lir->instructions_list();
  3314   for (int i = 0; i < inst->length(); i++) {
  3315     LIR_Op* op = inst->at(i);
  3316     switch (op->code()) {
  3317       case lir_cond_float_branch:
  3318       case lir_branch: {
  3319         LIR_OpBranch* branch = op->as_OpBranch();
  3320         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3321         LIR_Op* delay_op = NULL;
  3322         // we'd like to be able to pull following instructions into
  3323         // this slot but we don't know enough to do it safely yet so
  3324         // only optimize block to block control flow.
  3325         if (LIRFillDelaySlots && branch->block()) {
  3326           LIR_Op* prev = inst->at(i - 1);
  3327           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3328             // swap previous instruction into delay slot
  3329             inst->at_put(i - 1, op);
  3330             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3331 #ifndef PRODUCT
  3332             if (LIRTracePeephole) {
  3333               tty->print_cr("delayed");
  3334               inst->at(i - 1)->print();
  3335               inst->at(i)->print();
  3336               tty->cr();
  3338 #endif
  3339             continue;
  3343         if (!delay_op) {
  3344           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3346         inst->insert_before(i + 1, delay_op);
  3347         break;
  3349       case lir_static_call:
  3350       case lir_virtual_call:
  3351       case lir_icvirtual_call:
  3352       case lir_optvirtual_call:
  3353       case lir_dynamic_call: {
  3354         LIR_Op* prev = inst->at(i - 1);
  3355         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3356             (op->code() != lir_virtual_call ||
  3357              !prev->result_opr()->is_single_cpu() ||
  3358              prev->result_opr()->as_register() != O0) &&
  3359             LIR_Assembler::is_single_instruction(prev)) {
  3360           // Only moves without info can be put into the delay slot.
  3361           // Also don't allow the setup of the receiver in the delay
  3362           // slot for vtable calls.
  3363           inst->at_put(i - 1, op);
  3364           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3365 #ifndef PRODUCT
  3366           if (LIRTracePeephole) {
  3367             tty->print_cr("delayed");
  3368             inst->at(i - 1)->print();
  3369             inst->at(i)->print();
  3370             tty->cr();
  3372 #endif
  3373         } else {
  3374           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3375           inst->insert_before(i + 1, delay_op);
  3376           i++;
  3379 #if defined(TIERED) && !defined(_LP64)
  3380         // fixup the return value from G1 to O0/O1 for long returns.
  3381         // It's done here instead of in LIRGenerator because there's
  3382         // such a mismatch between the single reg and double reg
  3383         // calling convention.
  3384         LIR_OpJavaCall* callop = op->as_OpJavaCall();
  3385         if (callop->result_opr() == FrameMap::out_long_opr) {
  3386           LIR_OpJavaCall* call;
  3387           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
  3388           for (int a = 0; a < arguments->length(); a++) {
  3389             arguments[a] = callop->arguments()[a];
  3391           if (op->code() == lir_virtual_call) {
  3392             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3393                                       callop->vtable_offset(), arguments, callop->info());
  3394           } else {
  3395             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3396                                       callop->addr(), arguments, callop->info());
  3398           inst->at_put(i - 1, call);
  3399           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
  3400                                                  T_LONG, lir_patch_none, NULL));
  3402 #endif
  3403         break;
  3412 #undef __

mercurial