src/share/vm/opto/buildOopMap.cpp

Tue, 05 Apr 2011 14:12:31 -0700

author
trims
date
Tue, 05 Apr 2011 14:12:31 -0700
changeset 2708
1d1603768966
parent 2508
b92c45f2bc75
child 5509
d1034bd8cefc
permissions
-rw-r--r--

7010070: Update all 2010 Oracle-changed OpenJDK files to have the proper copyright dates - second pass
Summary: Update the copyright to be 2010 on all changed files in OpenJDK
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/oopMap.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/compile.hpp"
    30 #include "opto/machnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/phase.hpp"
    33 #include "opto/regalloc.hpp"
    34 #include "opto/rootnode.hpp"
    35 #ifdef TARGET_ARCH_x86
    36 # include "vmreg_x86.inline.hpp"
    37 #endif
    38 #ifdef TARGET_ARCH_sparc
    39 # include "vmreg_sparc.inline.hpp"
    40 #endif
    41 #ifdef TARGET_ARCH_zero
    42 # include "vmreg_zero.inline.hpp"
    43 #endif
    44 #ifdef TARGET_ARCH_arm
    45 # include "vmreg_arm.inline.hpp"
    46 #endif
    47 #ifdef TARGET_ARCH_ppc
    48 # include "vmreg_ppc.inline.hpp"
    49 #endif
    51 // The functions in this file builds OopMaps after all scheduling is done.
    52 //
    53 // OopMaps contain a list of all registers and stack-slots containing oops (so
    54 // they can be updated by GC).  OopMaps also contain a list of derived-pointer
    55 // base-pointer pairs.  When the base is moved, the derived pointer moves to
    56 // follow it.  Finally, any registers holding callee-save values are also
    57 // recorded.  These might contain oops, but only the caller knows.
    58 //
    59 // BuildOopMaps implements a simple forward reaching-defs solution.  At each
    60 // GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
    61 // typed as pointers (no offset), then they are oops.  Pointers+offsets are
    62 // derived pointers, and bases can be found from them.  Finally, we'll also
    63 // track reaching callee-save values.  Note that a copy of a callee-save value
    64 // "kills" it's source, so that only 1 copy of a callee-save value is alive at
    65 // a time.
    66 //
    67 // We run a simple bitvector liveness pass to help trim out dead oops.  Due to
    68 // irreducible loops, we can have a reaching def of an oop that only reaches
    69 // along one path and no way to know if it's valid or not on the other path.
    70 // The bitvectors are quite dense and the liveness pass is fast.
    71 //
    72 // At GC points, we consult this information to build OopMaps.  All reaching
    73 // defs typed as oops are added to the OopMap.  Only 1 instance of a
    74 // callee-save register can be recorded.  For derived pointers, we'll have to
    75 // find and record the register holding the base.
    76 //
    77 // The reaching def's is a simple 1-pass worklist approach.  I tried a clever
    78 // breadth-first approach but it was worse (showed O(n^2) in the
    79 // pick-next-block code).
    80 //
    81 // The relevant data is kept in a struct of arrays (it could just as well be
    82 // an array of structs, but the struct-of-arrays is generally a little more
    83 // efficient).  The arrays are indexed by register number (including
    84 // stack-slots as registers) and so is bounded by 200 to 300 elements in
    85 // practice.  One array will map to a reaching def Node (or NULL for
    86 // conflict/dead).  The other array will map to a callee-saved register or
    87 // OptoReg::Bad for not-callee-saved.
    90 //------------------------------OopFlow----------------------------------------
    91 // Structure to pass around
    92 struct OopFlow : public ResourceObj {
    93   short *_callees;              // Array mapping register to callee-saved
    94   Node **_defs;                 // array mapping register to reaching def
    95                                 // or NULL if dead/conflict
    96   // OopFlow structs, when not being actively modified, describe the _end_ of
    97   // this block.
    98   Block *_b;                    // Block for this struct
    99   OopFlow *_next;               // Next free OopFlow
   100                                 // or NULL if dead/conflict
   101   Compile* C;
   103   OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs),
   104     _b(NULL), _next(NULL), C(c) { }
   106   // Given reaching-defs for this block start, compute it for this block end
   107   void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
   109   // Merge these two OopFlows into the 'this' pointer.
   110   void merge( OopFlow *flow, int max_reg );
   112   // Copy a 'flow' over an existing flow
   113   void clone( OopFlow *flow, int max_size);
   115   // Make a new OopFlow from scratch
   116   static OopFlow *make( Arena *A, int max_size, Compile* C );
   118   // Build an oopmap from the current flow info
   119   OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
   120 };
   122 //------------------------------compute_reach----------------------------------
   123 // Given reaching-defs for this block start, compute it for this block end
   124 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
   126   for( uint i=0; i<_b->_nodes.size(); i++ ) {
   127     Node *n = _b->_nodes[i];
   129     if( n->jvms() ) {           // Build an OopMap here?
   130       JVMState *jvms = n->jvms();
   131       // no map needed for leaf calls
   132       if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
   133         int *live = (int*) (*safehash)[n];
   134         assert( live, "must find live" );
   135         n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
   136       }
   137     }
   139     // Assign new reaching def's.
   140     // Note that I padded the _defs and _callees arrays so it's legal
   141     // to index at _defs[OptoReg::Bad].
   142     OptoReg::Name first = regalloc->get_reg_first(n);
   143     OptoReg::Name second = regalloc->get_reg_second(n);
   144     _defs[first] = n;
   145     _defs[second] = n;
   147     // Pass callee-save info around copies
   148     int idx = n->is_Copy();
   149     if( idx ) {                 // Copies move callee-save info
   150       OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
   151       OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
   152       int tmp_first = _callees[old_first];
   153       int tmp_second = _callees[old_second];
   154       _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
   155       _callees[old_second] = OptoReg::Bad;
   156       _callees[first] = tmp_first;
   157       _callees[second] = tmp_second;
   158     } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
   159       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
   160       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
   161       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
   162       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
   163     } else {
   164       _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
   165       _callees[second] = OptoReg::Bad;
   167       // Find base case for callee saves
   168       if( n->is_Proj() && n->in(0)->is_Start() ) {
   169         if( OptoReg::is_reg(first) &&
   170             regalloc->_matcher.is_save_on_entry(first) )
   171           _callees[first] = first;
   172         if( OptoReg::is_reg(second) &&
   173             regalloc->_matcher.is_save_on_entry(second) )
   174           _callees[second] = second;
   175       }
   176     }
   177   }
   178 }
   180 //------------------------------merge------------------------------------------
   181 // Merge the given flow into the 'this' flow
   182 void OopFlow::merge( OopFlow *flow, int max_reg ) {
   183   assert( _b == NULL, "merging into a happy flow" );
   184   assert( flow->_b, "this flow is still alive" );
   185   assert( flow != this, "no self flow" );
   187   // Do the merge.  If there are any differences, drop to 'bottom' which
   188   // is OptoReg::Bad or NULL depending.
   189   for( int i=0; i<max_reg; i++ ) {
   190     // Merge the callee-save's
   191     if( _callees[i] != flow->_callees[i] )
   192       _callees[i] = OptoReg::Bad;
   193     // Merge the reaching defs
   194     if( _defs[i] != flow->_defs[i] )
   195       _defs[i] = NULL;
   196   }
   198 }
   200 //------------------------------clone------------------------------------------
   201 void OopFlow::clone( OopFlow *flow, int max_size ) {
   202   _b = flow->_b;
   203   memcpy( _callees, flow->_callees, sizeof(short)*max_size);
   204   memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
   205 }
   207 //------------------------------make-------------------------------------------
   208 OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
   209   short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
   210   Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
   211   debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
   212   OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C);
   213   assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
   214   assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
   215   return flow;
   216 }
   218 //------------------------------bit twiddlers----------------------------------
   219 static int get_live_bit( int *live, int reg ) {
   220   return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
   221 static void set_live_bit( int *live, int reg ) {
   222          live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
   223 static void clr_live_bit( int *live, int reg ) {
   224          live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
   226 //------------------------------build_oop_map----------------------------------
   227 // Build an oopmap from the current flow info
   228 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
   229   int framesize = regalloc->_framesize;
   230   int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
   231   debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
   232               memset(dup_check,0,OptoReg::stack0()) );
   234   OopMap *omap = new OopMap( framesize,  max_inarg_slot );
   235   MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
   236   JVMState* jvms = n->jvms();
   238   // For all registers do...
   239   for( int reg=0; reg<max_reg; reg++ ) {
   240     if( get_live_bit(live,reg) == 0 )
   241       continue;                 // Ignore if not live
   243     // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
   244     // register in that case we'll get an non-concrete register for the second
   245     // half. We only need to tell the map the register once!
   246     //
   247     // However for the moment we disable this change and leave things as they
   248     // were.
   250     VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
   252     if (false && r->is_reg() && !r->is_concrete()) {
   253       continue;
   254     }
   256     // See if dead (no reaching def).
   257     Node *def = _defs[reg];     // Get reaching def
   258     assert( def, "since live better have reaching def" );
   260     // Classify the reaching def as oop, derived, callee-save, dead, or other
   261     const Type *t = def->bottom_type();
   262     if( t->isa_oop_ptr() ) {    // Oop or derived?
   263       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
   264 #ifdef _LP64
   265       // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
   266       // Make sure both are record from the same reaching def, but do not
   267       // put both into the oopmap.
   268       if( (reg&1) == 1 ) {      // High half of oop-pair?
   269         assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
   270         continue;               // Do not record high parts in oopmap
   271       }
   272 #endif
   274       // Check for a legal reg name in the oopMap and bailout if it is not.
   275       if (!omap->legal_vm_reg_name(r)) {
   276         regalloc->C->record_method_not_compilable("illegal oopMap register name");
   277         continue;
   278       }
   279       if( t->is_ptr()->_offset == 0 ) { // Not derived?
   280         if( mcall ) {
   281           // Outgoing argument GC mask responsibility belongs to the callee,
   282           // not the caller.  Inspect the inputs to the call, to see if
   283           // this live-range is one of them.
   284           uint cnt = mcall->tf()->domain()->cnt();
   285           uint j;
   286           for( j = TypeFunc::Parms; j < cnt; j++)
   287             if( mcall->in(j) == def )
   288               break;            // reaching def is an argument oop
   289           if( j < cnt )         // arg oops dont go in GC map
   290             continue;           // Continue on to the next register
   291         }
   292         omap->set_oop(r);
   293       } else {                  // Else it's derived.
   294         // Find the base of the derived value.
   295         uint i;
   296         // Fast, common case, scan
   297         for( i = jvms->oopoff(); i < n->req(); i+=2 )
   298           if( n->in(i) == def ) break; // Common case
   299         if( i == n->req() ) {   // Missed, try a more generous scan
   300           // Scan again, but this time peek through copies
   301           for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
   302             Node *m = n->in(i); // Get initial derived value
   303             while( 1 ) {
   304               Node *d = def;    // Get initial reaching def
   305               while( 1 ) {      // Follow copies of reaching def to end
   306                 if( m == d ) goto found; // breaks 3 loops
   307                 int idx = d->is_Copy();
   308                 if( !idx ) break;
   309                 d = d->in(idx);     // Link through copy
   310               }
   311               int idx = m->is_Copy();
   312               if( !idx ) break;
   313               m = m->in(idx);
   314             }
   315           }
   316           guarantee( 0, "must find derived/base pair" );
   317         }
   318       found: ;
   319         Node *base = n->in(i+1); // Base is other half of pair
   320         int breg = regalloc->get_reg_first(base);
   321         VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
   323         // I record liveness at safepoints BEFORE I make the inputs
   324         // live.  This is because argument oops are NOT live at a
   325         // safepoint (or at least they cannot appear in the oopmap).
   326         // Thus bases of base/derived pairs might not be in the
   327         // liveness data but they need to appear in the oopmap.
   328         if( get_live_bit(live,breg) == 0 ) {// Not live?
   329           // Flag it, so next derived pointer won't re-insert into oopmap
   330           set_live_bit(live,breg);
   331           // Already missed our turn?
   332           if( breg < reg ) {
   333             if (b->is_stack() || b->is_concrete() || true ) {
   334               omap->set_oop( b);
   335             }
   336           }
   337         }
   338         if (b->is_stack() || b->is_concrete() || true ) {
   339           omap->set_derived_oop( r, b);
   340         }
   341       }
   343     } else if( t->isa_narrowoop() ) {
   344       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
   345       // Check for a legal reg name in the oopMap and bailout if it is not.
   346       if (!omap->legal_vm_reg_name(r)) {
   347         regalloc->C->record_method_not_compilable("illegal oopMap register name");
   348         continue;
   349       }
   350       if( mcall ) {
   351           // Outgoing argument GC mask responsibility belongs to the callee,
   352           // not the caller.  Inspect the inputs to the call, to see if
   353           // this live-range is one of them.
   354         uint cnt = mcall->tf()->domain()->cnt();
   355         uint j;
   356         for( j = TypeFunc::Parms; j < cnt; j++)
   357           if( mcall->in(j) == def )
   358             break;            // reaching def is an argument oop
   359         if( j < cnt )         // arg oops dont go in GC map
   360           continue;           // Continue on to the next register
   361       }
   362       omap->set_narrowoop(r);
   363     } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
   364       // It's a callee-save value
   365       assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
   366       debug_only( dup_check[_callees[reg]]=1; )
   367       VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
   368       if ( callee->is_concrete() || true ) {
   369         omap->set_callee_saved( r, callee);
   370       }
   372     } else {
   373       // Other - some reaching non-oop value
   374       omap->set_value( r);
   375 #ifdef ASSERT
   376       if( t->isa_rawptr() && C->cfg()->_raw_oops.member(def) ) {
   377         def->dump();
   378         n->dump();
   379         assert(false, "there should be a oop in OopMap instead of a live raw oop at safepoint");
   380       }
   381 #endif
   382     }
   384   }
   386 #ifdef ASSERT
   387   /* Nice, Intel-only assert
   388   int cnt_callee_saves=0;
   389   int reg2 = 0;
   390   while (OptoReg::is_reg(reg2)) {
   391     if( dup_check[reg2] != 0) cnt_callee_saves++;
   392     assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
   393     reg2++;
   394   }
   395   */
   396 #endif
   398 #ifdef ASSERT
   399   for( OopMapStream oms1(omap, OopMapValue::derived_oop_value); !oms1.is_done(); oms1.next()) {
   400     OopMapValue omv1 = oms1.current();
   401     bool found = false;
   402     for( OopMapStream oms2(omap,OopMapValue::oop_value); !oms2.is_done(); oms2.next()) {
   403       if( omv1.content_reg() == oms2.current().reg() ) {
   404         found = true;
   405         break;
   406       }
   407     }
   408     assert( found, "derived with no base in oopmap" );
   409   }
   410 #endif
   412   return omap;
   413 }
   415 //------------------------------do_liveness------------------------------------
   416 // Compute backwards liveness on registers
   417 static void do_liveness( PhaseRegAlloc *regalloc, PhaseCFG *cfg, Block_List *worklist, int max_reg_ints, Arena *A, Dict *safehash ) {
   418   int *live = NEW_ARENA_ARRAY(A, int, (cfg->_num_blocks+1) * max_reg_ints);
   419   int *tmp_live = &live[cfg->_num_blocks * max_reg_ints];
   420   Node *root = cfg->C->root();
   421   // On CISC platforms, get the node representing the stack pointer  that regalloc
   422   // used for spills
   423   Node *fp = NodeSentinel;
   424   if (UseCISCSpill && root->req() > 1) {
   425     fp = root->in(1)->in(TypeFunc::FramePtr);
   426   }
   427   memset( live, 0, cfg->_num_blocks * (max_reg_ints<<LogBytesPerInt) );
   428   // Push preds onto worklist
   429   for( uint i=1; i<root->req(); i++ )
   430     worklist->push(cfg->_bbs[root->in(i)->_idx]);
   432   // ZKM.jar includes tiny infinite loops which are unreached from below.
   433   // If we missed any blocks, we'll retry here after pushing all missed
   434   // blocks on the worklist.  Normally this outer loop never trips more
   435   // than once.
   436   while( 1 ) {
   438     while( worklist->size() ) { // Standard worklist algorithm
   439       Block *b = worklist->rpop();
   441       // Copy first successor into my tmp_live space
   442       int s0num = b->_succs[0]->_pre_order;
   443       int *t = &live[s0num*max_reg_ints];
   444       for( int i=0; i<max_reg_ints; i++ )
   445         tmp_live[i] = t[i];
   447       // OR in the remaining live registers
   448       for( uint j=1; j<b->_num_succs; j++ ) {
   449         uint sjnum = b->_succs[j]->_pre_order;
   450         int *t = &live[sjnum*max_reg_ints];
   451         for( int i=0; i<max_reg_ints; i++ )
   452           tmp_live[i] |= t[i];
   453       }
   455       // Now walk tmp_live up the block backwards, computing live
   456       for( int k=b->_nodes.size()-1; k>=0; k-- ) {
   457         Node *n = b->_nodes[k];
   458         // KILL def'd bits
   459         int first = regalloc->get_reg_first(n);
   460         int second = regalloc->get_reg_second(n);
   461         if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
   462         if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
   464         MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
   466         // Check if m is potentially a CISC alternate instruction (i.e, possibly
   467         // synthesized by RegAlloc from a conventional instruction and a
   468         // spilled input)
   469         bool is_cisc_alternate = false;
   470         if (UseCISCSpill && m) {
   471           is_cisc_alternate = m->is_cisc_alternate();
   472         }
   474         // GEN use'd bits
   475         for( uint l=1; l<n->req(); l++ ) {
   476           Node *def = n->in(l);
   477           assert(def != 0, "input edge required");
   478           int first = regalloc->get_reg_first(def);
   479           int second = regalloc->get_reg_second(def);
   480           if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
   481           if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
   482           // If we use the stack pointer in a cisc-alternative instruction,
   483           // check for use as a memory operand.  Then reconstruct the RegName
   484           // for this stack location, and set the appropriate bit in the
   485           // live vector 4987749.
   486           if (is_cisc_alternate && def == fp) {
   487             const TypePtr *adr_type = NULL;
   488             intptr_t offset;
   489             const Node* base = m->get_base_and_disp(offset, adr_type);
   490             if (base == NodeSentinel) {
   491               // Machnode has multiple memory inputs. We are unable to reason
   492               // with these, but are presuming (with trepidation) that not any of
   493               // them are oops. This can be fixed by making get_base_and_disp()
   494               // look at a specific input instead of all inputs.
   495               assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
   496             } else if (base != fp || offset == Type::OffsetBot) {
   497               // Do nothing: the fp operand is either not from a memory use
   498               // (base == NULL) OR the fp is used in a non-memory context
   499               // (base is some other register) OR the offset is not constant,
   500               // so it is not a stack slot.
   501             } else {
   502               assert(offset >= 0, "unexpected negative offset");
   503               offset -= (offset % jintSize);  // count the whole word
   504               int stack_reg = regalloc->offset2reg(offset);
   505               if (OptoReg::is_stack(stack_reg)) {
   506                 set_live_bit(tmp_live, stack_reg);
   507               } else {
   508                 assert(false, "stack_reg not on stack?");
   509               }
   510             }
   511           }
   512         }
   514         if( n->jvms() ) {       // Record liveness at safepoint
   516           // This placement of this stanza means inputs to calls are
   517           // considered live at the callsite's OopMap.  Argument oops are
   518           // hence live, but NOT included in the oopmap.  See cutout in
   519           // build_oop_map.  Debug oops are live (and in OopMap).
   520           int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
   521           for( int l=0; l<max_reg_ints; l++ )
   522             n_live[l] = tmp_live[l];
   523           safehash->Insert(n,n_live);
   524         }
   526       }
   528       // Now at block top, see if we have any changes.  If so, propagate
   529       // to prior blocks.
   530       int *old_live = &live[b->_pre_order*max_reg_ints];
   531       int l;
   532       for( l=0; l<max_reg_ints; l++ )
   533         if( tmp_live[l] != old_live[l] )
   534           break;
   535       if( l<max_reg_ints ) {     // Change!
   536         // Copy in new value
   537         for( l=0; l<max_reg_ints; l++ )
   538           old_live[l] = tmp_live[l];
   539         // Push preds onto worklist
   540         for( l=1; l<(int)b->num_preds(); l++ )
   541           worklist->push(cfg->_bbs[b->pred(l)->_idx]);
   542       }
   543     }
   545     // Scan for any missing safepoints.  Happens to infinite loops
   546     // ala ZKM.jar
   547     uint i;
   548     for( i=1; i<cfg->_num_blocks; i++ ) {
   549       Block *b = cfg->_blocks[i];
   550       uint j;
   551       for( j=1; j<b->_nodes.size(); j++ )
   552         if( b->_nodes[j]->jvms() &&
   553             (*safehash)[b->_nodes[j]] == NULL )
   554            break;
   555       if( j<b->_nodes.size() ) break;
   556     }
   557     if( i == cfg->_num_blocks )
   558       break;                    // Got 'em all
   559 #ifndef PRODUCT
   560     if( PrintOpto && Verbose )
   561       tty->print_cr("retripping live calc");
   562 #endif
   563     // Force the issue (expensively): recheck everybody
   564     for( i=1; i<cfg->_num_blocks; i++ )
   565       worklist->push(cfg->_blocks[i]);
   566   }
   568 }
   570 //------------------------------BuildOopMaps-----------------------------------
   571 // Collect GC mask info - where are all the OOPs?
   572 void Compile::BuildOopMaps() {
   573   NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
   574   // Can't resource-mark because I need to leave all those OopMaps around,
   575   // or else I need to resource-mark some arena other than the default.
   576   // ResourceMark rm;              // Reclaim all OopFlows when done
   577   int max_reg = _regalloc->_max_reg; // Current array extent
   579   Arena *A = Thread::current()->resource_area();
   580   Block_List worklist;          // Worklist of pending blocks
   582   int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
   583   Dict *safehash = NULL;        // Used for assert only
   584   // Compute a backwards liveness per register.  Needs a bitarray of
   585   // #blocks x (#registers, rounded up to ints)
   586   safehash = new Dict(cmpkey,hashkey,A);
   587   do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
   588   OopFlow *free_list = NULL;    // Free, unused
   590   // Array mapping blocks to completed oopflows
   591   OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->_num_blocks);
   592   memset( flows, 0, _cfg->_num_blocks*sizeof(OopFlow*) );
   595   // Do the first block 'by hand' to prime the worklist
   596   Block *entry = _cfg->_blocks[1];
   597   OopFlow *rootflow = OopFlow::make(A,max_reg,this);
   598   // Initialize to 'bottom' (not 'top')
   599   memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
   600   memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
   601   flows[entry->_pre_order] = rootflow;
   603   // Do the first block 'by hand' to prime the worklist
   604   rootflow->_b = entry;
   605   rootflow->compute_reach( _regalloc, max_reg, safehash );
   606   for( uint i=0; i<entry->_num_succs; i++ )
   607     worklist.push(entry->_succs[i]);
   609   // Now worklist contains blocks which have some, but perhaps not all,
   610   // predecessors visited.
   611   while( worklist.size() ) {
   612     // Scan for a block with all predecessors visited, or any randoms slob
   613     // otherwise.  All-preds-visited order allows me to recycle OopFlow
   614     // structures rapidly and cut down on the memory footprint.
   615     // Note: not all predecessors might be visited yet (must happen for
   616     // irreducible loops).  This is OK, since every live value must have the
   617     // SAME reaching def for the block, so any reaching def is OK.
   618     uint i;
   620     Block *b = worklist.pop();
   621     // Ignore root block
   622     if( b == _cfg->_broot ) continue;
   623     // Block is already done?  Happens if block has several predecessors,
   624     // he can get on the worklist more than once.
   625     if( flows[b->_pre_order] ) continue;
   627     // If this block has a visited predecessor AND that predecessor has this
   628     // last block as his only undone child, we can move the OopFlow from the
   629     // pred to this block.  Otherwise we have to grab a new OopFlow.
   630     OopFlow *flow = NULL;       // Flag for finding optimized flow
   631     Block *pred = (Block*)0xdeadbeef;
   632     uint j;
   633     // Scan this block's preds to find a done predecessor
   634     for( j=1; j<b->num_preds(); j++ ) {
   635       Block *p = _cfg->_bbs[b->pred(j)->_idx];
   636       OopFlow *p_flow = flows[p->_pre_order];
   637       if( p_flow ) {            // Predecessor is done
   638         assert( p_flow->_b == p, "cross check" );
   639         pred = p;               // Record some predecessor
   640         // If all successors of p are done except for 'b', then we can carry
   641         // p_flow forward to 'b' without copying, otherwise we have to draw
   642         // from the free_list and clone data.
   643         uint k;
   644         for( k=0; k<p->_num_succs; k++ )
   645           if( !flows[p->_succs[k]->_pre_order] &&
   646               p->_succs[k] != b )
   647             break;
   649         // Either carry-forward the now-unused OopFlow for b's use
   650         // or draw a new one from the free list
   651         if( k==p->_num_succs ) {
   652           flow = p_flow;
   653           break;                // Found an ideal pred, use him
   654         }
   655       }
   656     }
   658     if( flow ) {
   659       // We have an OopFlow that's the last-use of a predecessor.
   660       // Carry it forward.
   661     } else {                    // Draw a new OopFlow from the freelist
   662       if( !free_list )
   663         free_list = OopFlow::make(A,max_reg,C);
   664       flow = free_list;
   665       assert( flow->_b == NULL, "oopFlow is not free" );
   666       free_list = flow->_next;
   667       flow->_next = NULL;
   669       // Copy/clone over the data
   670       flow->clone(flows[pred->_pre_order], max_reg);
   671     }
   673     // Mark flow for block.  Blocks can only be flowed over once,
   674     // because after the first time they are guarded from entering
   675     // this code again.
   676     assert( flow->_b == pred, "have some prior flow" );
   677     flow->_b = NULL;
   679     // Now push flow forward
   680     flows[b->_pre_order] = flow;// Mark flow for this block
   681     flow->_b = b;
   682     flow->compute_reach( _regalloc, max_reg, safehash );
   684     // Now push children onto worklist
   685     for( i=0; i<b->_num_succs; i++ )
   686       worklist.push(b->_succs[i]);
   688   }
   689 }

mercurial