src/share/vm/prims/jvmtiImpl.cpp

Wed, 23 Apr 2014 11:18:53 +0200

author
sjohanss
date
Wed, 23 Apr 2014 11:18:53 +0200
changeset 6641
1d01a7f3a336
parent 6063
910026b800b8
child 6680
78bbf4d43a14
permissions
-rw-r--r--

8033426: Scale initial NewSize using NewRatio if not set on command line
Summary: Now using NewRatio to size initial NewSize if not specified on commandline.
Reviewed-by: jmasa, jwilhelm

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "jvmtifiles/jvmtiEnv.hpp"
    29 #include "memory/resourceArea.hpp"
    30 #include "oops/instanceKlass.hpp"
    31 #include "prims/jvmtiAgentThread.hpp"
    32 #include "prims/jvmtiEventController.inline.hpp"
    33 #include "prims/jvmtiImpl.hpp"
    34 #include "prims/jvmtiRedefineClasses.hpp"
    35 #include "runtime/atomic.hpp"
    36 #include "runtime/deoptimization.hpp"
    37 #include "runtime/handles.hpp"
    38 #include "runtime/handles.inline.hpp"
    39 #include "runtime/interfaceSupport.hpp"
    40 #include "runtime/javaCalls.hpp"
    41 #include "runtime/os.hpp"
    42 #include "runtime/serviceThread.hpp"
    43 #include "runtime/signature.hpp"
    44 #include "runtime/thread.inline.hpp"
    45 #include "runtime/vframe.hpp"
    46 #include "runtime/vframe_hp.hpp"
    47 #include "runtime/vm_operations.hpp"
    48 #include "utilities/exceptions.hpp"
    50 //
    51 // class JvmtiAgentThread
    52 //
    53 // JavaThread used to wrap a thread started by an agent
    54 // using the JVMTI method RunAgentThread.
    55 //
    57 JvmtiAgentThread::JvmtiAgentThread(JvmtiEnv* env, jvmtiStartFunction start_fn, const void *start_arg)
    58     : JavaThread(start_function_wrapper) {
    59     _env = env;
    60     _start_fn = start_fn;
    61     _start_arg = start_arg;
    62 }
    64 void
    65 JvmtiAgentThread::start_function_wrapper(JavaThread *thread, TRAPS) {
    66     // It is expected that any Agent threads will be created as
    67     // Java Threads.  If this is the case, notification of the creation
    68     // of the thread is given in JavaThread::thread_main().
    69     assert(thread->is_Java_thread(), "debugger thread should be a Java Thread");
    70     assert(thread == JavaThread::current(), "sanity check");
    72     JvmtiAgentThread *dthread = (JvmtiAgentThread *)thread;
    73     dthread->call_start_function();
    74 }
    76 void
    77 JvmtiAgentThread::call_start_function() {
    78     ThreadToNativeFromVM transition(this);
    79     _start_fn(_env->jvmti_external(), jni_environment(), (void*)_start_arg);
    80 }
    83 //
    84 // class GrowableCache - private methods
    85 //
    87 void GrowableCache::recache() {
    88   int len = _elements->length();
    90   FREE_C_HEAP_ARRAY(address, _cache, mtInternal);
    91   _cache = NEW_C_HEAP_ARRAY(address,len+1, mtInternal);
    93   for (int i=0; i<len; i++) {
    94     _cache[i] = _elements->at(i)->getCacheValue();
    95     //
    96     // The cache entry has gone bad. Without a valid frame pointer
    97     // value, the entry is useless so we simply delete it in product
    98     // mode. The call to remove() will rebuild the cache again
    99     // without the bad entry.
   100     //
   101     if (_cache[i] == NULL) {
   102       assert(false, "cannot recache NULL elements");
   103       remove(i);
   104       return;
   105     }
   106   }
   107   _cache[len] = NULL;
   109   _listener_fun(_this_obj,_cache);
   110 }
   112 bool GrowableCache::equals(void* v, GrowableElement *e2) {
   113   GrowableElement *e1 = (GrowableElement *) v;
   114   assert(e1 != NULL, "e1 != NULL");
   115   assert(e2 != NULL, "e2 != NULL");
   117   return e1->equals(e2);
   118 }
   120 //
   121 // class GrowableCache - public methods
   122 //
   124 GrowableCache::GrowableCache() {
   125   _this_obj       = NULL;
   126   _listener_fun   = NULL;
   127   _elements       = NULL;
   128   _cache          = NULL;
   129 }
   131 GrowableCache::~GrowableCache() {
   132   clear();
   133   delete _elements;
   134   FREE_C_HEAP_ARRAY(address, _cache, mtInternal);
   135 }
   137 void GrowableCache::initialize(void *this_obj, void listener_fun(void *, address*) ) {
   138   _this_obj       = this_obj;
   139   _listener_fun   = listener_fun;
   140   _elements       = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<GrowableElement*>(5,true);
   141   recache();
   142 }
   144 // number of elements in the collection
   145 int GrowableCache::length() {
   146   return _elements->length();
   147 }
   149 // get the value of the index element in the collection
   150 GrowableElement* GrowableCache::at(int index) {
   151   GrowableElement *e = (GrowableElement *) _elements->at(index);
   152   assert(e != NULL, "e != NULL");
   153   return e;
   154 }
   156 int GrowableCache::find(GrowableElement* e) {
   157   return _elements->find(e, GrowableCache::equals);
   158 }
   160 // append a copy of the element to the end of the collection
   161 void GrowableCache::append(GrowableElement* e) {
   162   GrowableElement *new_e = e->clone();
   163   _elements->append(new_e);
   164   recache();
   165 }
   167 // insert a copy of the element using lessthan()
   168 void GrowableCache::insert(GrowableElement* e) {
   169   GrowableElement *new_e = e->clone();
   170   _elements->append(new_e);
   172   int n = length()-2;
   173   for (int i=n; i>=0; i--) {
   174     GrowableElement *e1 = _elements->at(i);
   175     GrowableElement *e2 = _elements->at(i+1);
   176     if (e2->lessThan(e1)) {
   177       _elements->at_put(i+1, e1);
   178       _elements->at_put(i,   e2);
   179     }
   180   }
   182   recache();
   183 }
   185 // remove the element at index
   186 void GrowableCache::remove (int index) {
   187   GrowableElement *e = _elements->at(index);
   188   assert(e != NULL, "e != NULL");
   189   _elements->remove(e);
   190   delete e;
   191   recache();
   192 }
   194 // clear out all elements, release all heap space and
   195 // let our listener know that things have changed.
   196 void GrowableCache::clear() {
   197   int len = _elements->length();
   198   for (int i=0; i<len; i++) {
   199     delete _elements->at(i);
   200   }
   201   _elements->clear();
   202   recache();
   203 }
   205 void GrowableCache::oops_do(OopClosure* f) {
   206   int len = _elements->length();
   207   for (int i=0; i<len; i++) {
   208     GrowableElement *e = _elements->at(i);
   209     e->oops_do(f);
   210   }
   211 }
   213 void GrowableCache::metadata_do(void f(Metadata*)) {
   214   int len = _elements->length();
   215   for (int i=0; i<len; i++) {
   216     GrowableElement *e = _elements->at(i);
   217     e->metadata_do(f);
   218   }
   219 }
   221 void GrowableCache::gc_epilogue() {
   222   int len = _elements->length();
   223   for (int i=0; i<len; i++) {
   224     _cache[i] = _elements->at(i)->getCacheValue();
   225   }
   226 }
   228 //
   229 // class JvmtiBreakpoint
   230 //
   232 JvmtiBreakpoint::JvmtiBreakpoint() {
   233   _method = NULL;
   234   _bci    = 0;
   235   _class_holder = NULL;
   236 }
   238 JvmtiBreakpoint::JvmtiBreakpoint(Method* m_method, jlocation location) {
   239   _method        = m_method;
   240   _class_holder  = _method->method_holder()->klass_holder();
   241 #ifdef CHECK_UNHANDLED_OOPS
   242   // _class_holder can't be wrapped in a Handle, because JvmtiBreakpoints are
   243   // sometimes allocated on the heap.
   244   //
   245   // The code handling JvmtiBreakpoints allocated on the stack can't be
   246   // interrupted by a GC until _class_holder is reachable by the GC via the
   247   // oops_do method.
   248   Thread::current()->allow_unhandled_oop(&_class_holder);
   249 #endif // CHECK_UNHANDLED_OOPS
   250   assert(_method != NULL, "_method != NULL");
   251   _bci           = (int) location;
   252   assert(_bci >= 0, "_bci >= 0");
   253 }
   255 void JvmtiBreakpoint::copy(JvmtiBreakpoint& bp) {
   256   _method   = bp._method;
   257   _bci      = bp._bci;
   258   _class_holder = bp._class_holder;
   259 }
   261 bool JvmtiBreakpoint::lessThan(JvmtiBreakpoint& bp) {
   262   Unimplemented();
   263   return false;
   264 }
   266 bool JvmtiBreakpoint::equals(JvmtiBreakpoint& bp) {
   267   return _method   == bp._method
   268     &&   _bci      == bp._bci;
   269 }
   271 bool JvmtiBreakpoint::is_valid() {
   272   // class loader can be NULL
   273   return _method != NULL &&
   274          _bci >= 0;
   275 }
   277 address JvmtiBreakpoint::getBcp() {
   278   return _method->bcp_from(_bci);
   279 }
   281 void JvmtiBreakpoint::each_method_version_do(method_action meth_act) {
   282   ((Method*)_method->*meth_act)(_bci);
   284   // add/remove breakpoint to/from versions of the method that
   285   // are EMCP. Directly or transitively obsolete methods are
   286   // not saved in the PreviousVersionNodes.
   287   Thread *thread = Thread::current();
   288   instanceKlassHandle ikh = instanceKlassHandle(thread, _method->method_holder());
   289   Symbol* m_name = _method->name();
   290   Symbol* m_signature = _method->signature();
   292   // search previous versions if they exist
   293   PreviousVersionWalker pvw(thread, (InstanceKlass *)ikh());
   294   for (PreviousVersionNode * pv_node = pvw.next_previous_version();
   295        pv_node != NULL; pv_node = pvw.next_previous_version()) {
   296     GrowableArray<Method*>* methods = pv_node->prev_EMCP_methods();
   298     if (methods == NULL) {
   299       // We have run into a PreviousVersion generation where
   300       // all methods were made obsolete during that generation's
   301       // RedefineClasses() operation. At the time of that
   302       // operation, all EMCP methods were flushed so we don't
   303       // have to go back any further.
   304       //
   305       // A NULL methods array is different than an empty methods
   306       // array. We cannot infer any optimizations about older
   307       // generations from an empty methods array for the current
   308       // generation.
   309       break;
   310     }
   312     for (int i = methods->length() - 1; i >= 0; i--) {
   313       Method* method = methods->at(i);
   314       // obsolete methods that are running are not deleted from
   315       // previous version array, but they are skipped here.
   316       if (!method->is_obsolete() &&
   317           method->name() == m_name &&
   318           method->signature() == m_signature) {
   319         RC_TRACE(0x00000800, ("%sing breakpoint in %s(%s)",
   320           meth_act == &Method::set_breakpoint ? "sett" : "clear",
   321           method->name()->as_C_string(),
   322           method->signature()->as_C_string()));
   324         (method->*meth_act)(_bci);
   325         break;
   326       }
   327     }
   328   }
   329 }
   331 void JvmtiBreakpoint::set() {
   332   each_method_version_do(&Method::set_breakpoint);
   333 }
   335 void JvmtiBreakpoint::clear() {
   336   each_method_version_do(&Method::clear_breakpoint);
   337 }
   339 void JvmtiBreakpoint::print() {
   340 #ifndef PRODUCT
   341   const char *class_name  = (_method == NULL) ? "NULL" : _method->klass_name()->as_C_string();
   342   const char *method_name = (_method == NULL) ? "NULL" : _method->name()->as_C_string();
   344   tty->print("Breakpoint(%s,%s,%d,%p)",class_name, method_name, _bci, getBcp());
   345 #endif
   346 }
   349 //
   350 // class VM_ChangeBreakpoints
   351 //
   352 // Modify the Breakpoints data structure at a safepoint
   353 //
   355 void VM_ChangeBreakpoints::doit() {
   356   switch (_operation) {
   357   case SET_BREAKPOINT:
   358     _breakpoints->set_at_safepoint(*_bp);
   359     break;
   360   case CLEAR_BREAKPOINT:
   361     _breakpoints->clear_at_safepoint(*_bp);
   362     break;
   363   default:
   364     assert(false, "Unknown operation");
   365   }
   366 }
   368 void VM_ChangeBreakpoints::oops_do(OopClosure* f) {
   369   // The JvmtiBreakpoints in _breakpoints will be visited via
   370   // JvmtiExport::oops_do.
   371   if (_bp != NULL) {
   372     _bp->oops_do(f);
   373   }
   374 }
   376 void VM_ChangeBreakpoints::metadata_do(void f(Metadata*)) {
   377   // Walk metadata in breakpoints to keep from being deallocated with RedefineClasses
   378   if (_bp != NULL) {
   379     _bp->metadata_do(f);
   380   }
   381 }
   383 //
   384 // class JvmtiBreakpoints
   385 //
   386 // a JVMTI internal collection of JvmtiBreakpoint
   387 //
   389 JvmtiBreakpoints::JvmtiBreakpoints(void listener_fun(void *,address *)) {
   390   _bps.initialize(this,listener_fun);
   391 }
   393 JvmtiBreakpoints:: ~JvmtiBreakpoints() {}
   395 void  JvmtiBreakpoints::oops_do(OopClosure* f) {
   396   _bps.oops_do(f);
   397 }
   399 void  JvmtiBreakpoints::metadata_do(void f(Metadata*)) {
   400   _bps.metadata_do(f);
   401 }
   403 void JvmtiBreakpoints::gc_epilogue() {
   404   _bps.gc_epilogue();
   405 }
   407 void  JvmtiBreakpoints::print() {
   408 #ifndef PRODUCT
   409   ResourceMark rm;
   411   int n = _bps.length();
   412   for (int i=0; i<n; i++) {
   413     JvmtiBreakpoint& bp = _bps.at(i);
   414     tty->print("%d: ", i);
   415     bp.print();
   416     tty->print_cr("");
   417   }
   418 #endif
   419 }
   422 void JvmtiBreakpoints::set_at_safepoint(JvmtiBreakpoint& bp) {
   423   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
   425   int i = _bps.find(bp);
   426   if (i == -1) {
   427     _bps.append(bp);
   428     bp.set();
   429   }
   430 }
   432 void JvmtiBreakpoints::clear_at_safepoint(JvmtiBreakpoint& bp) {
   433   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
   435   int i = _bps.find(bp);
   436   if (i != -1) {
   437     _bps.remove(i);
   438     bp.clear();
   439   }
   440 }
   442 int JvmtiBreakpoints::length() { return _bps.length(); }
   444 int JvmtiBreakpoints::set(JvmtiBreakpoint& bp) {
   445   if ( _bps.find(bp) != -1) {
   446      return JVMTI_ERROR_DUPLICATE;
   447   }
   448   VM_ChangeBreakpoints set_breakpoint(VM_ChangeBreakpoints::SET_BREAKPOINT, &bp);
   449   VMThread::execute(&set_breakpoint);
   450   return JVMTI_ERROR_NONE;
   451 }
   453 int JvmtiBreakpoints::clear(JvmtiBreakpoint& bp) {
   454   if ( _bps.find(bp) == -1) {
   455      return JVMTI_ERROR_NOT_FOUND;
   456   }
   458   VM_ChangeBreakpoints clear_breakpoint(VM_ChangeBreakpoints::CLEAR_BREAKPOINT, &bp);
   459   VMThread::execute(&clear_breakpoint);
   460   return JVMTI_ERROR_NONE;
   461 }
   463 void JvmtiBreakpoints::clearall_in_class_at_safepoint(Klass* klass) {
   464   bool changed = true;
   465   // We are going to run thru the list of bkpts
   466   // and delete some.  This deletion probably alters
   467   // the list in some implementation defined way such
   468   // that when we delete entry i, the next entry might
   469   // no longer be at i+1.  To be safe, each time we delete
   470   // an entry, we'll just start again from the beginning.
   471   // We'll stop when we make a pass thru the whole list without
   472   // deleting anything.
   473   while (changed) {
   474     int len = _bps.length();
   475     changed = false;
   476     for (int i = 0; i < len; i++) {
   477       JvmtiBreakpoint& bp = _bps.at(i);
   478       if (bp.method()->method_holder() == klass) {
   479         bp.clear();
   480         _bps.remove(i);
   481         // This changed 'i' so we have to start over.
   482         changed = true;
   483         break;
   484       }
   485     }
   486   }
   487 }
   489 //
   490 // class JvmtiCurrentBreakpoints
   491 //
   493 JvmtiBreakpoints *JvmtiCurrentBreakpoints::_jvmti_breakpoints  = NULL;
   494 address *         JvmtiCurrentBreakpoints::_breakpoint_list    = NULL;
   497 JvmtiBreakpoints& JvmtiCurrentBreakpoints::get_jvmti_breakpoints() {
   498   if (_jvmti_breakpoints != NULL) return (*_jvmti_breakpoints);
   499   _jvmti_breakpoints = new JvmtiBreakpoints(listener_fun);
   500   assert(_jvmti_breakpoints != NULL, "_jvmti_breakpoints != NULL");
   501   return (*_jvmti_breakpoints);
   502 }
   504 void  JvmtiCurrentBreakpoints::listener_fun(void *this_obj, address *cache) {
   505   JvmtiBreakpoints *this_jvmti = (JvmtiBreakpoints *) this_obj;
   506   assert(this_jvmti != NULL, "this_jvmti != NULL");
   508   debug_only(int n = this_jvmti->length(););
   509   assert(cache[n] == NULL, "cache must be NULL terminated");
   511   set_breakpoint_list(cache);
   512 }
   515 void JvmtiCurrentBreakpoints::oops_do(OopClosure* f) {
   516   if (_jvmti_breakpoints != NULL) {
   517     _jvmti_breakpoints->oops_do(f);
   518   }
   519 }
   521 void JvmtiCurrentBreakpoints::metadata_do(void f(Metadata*)) {
   522   if (_jvmti_breakpoints != NULL) {
   523     _jvmti_breakpoints->metadata_do(f);
   524   }
   525 }
   527 void JvmtiCurrentBreakpoints::gc_epilogue() {
   528   if (_jvmti_breakpoints != NULL) {
   529     _jvmti_breakpoints->gc_epilogue();
   530   }
   531 }
   533 ///////////////////////////////////////////////////////////////
   534 //
   535 // class VM_GetOrSetLocal
   536 //
   538 // Constructor for non-object getter
   539 VM_GetOrSetLocal::VM_GetOrSetLocal(JavaThread* thread, jint depth, int index, BasicType type)
   540   : _thread(thread)
   541   , _calling_thread(NULL)
   542   , _depth(depth)
   543   , _index(index)
   544   , _type(type)
   545   , _set(false)
   546   , _jvf(NULL)
   547   , _result(JVMTI_ERROR_NONE)
   548 {
   549 }
   551 // Constructor for object or non-object setter
   552 VM_GetOrSetLocal::VM_GetOrSetLocal(JavaThread* thread, jint depth, int index, BasicType type, jvalue value)
   553   : _thread(thread)
   554   , _calling_thread(NULL)
   555   , _depth(depth)
   556   , _index(index)
   557   , _type(type)
   558   , _value(value)
   559   , _set(true)
   560   , _jvf(NULL)
   561   , _result(JVMTI_ERROR_NONE)
   562 {
   563 }
   565 // Constructor for object getter
   566 VM_GetOrSetLocal::VM_GetOrSetLocal(JavaThread* thread, JavaThread* calling_thread, jint depth, int index)
   567   : _thread(thread)
   568   , _calling_thread(calling_thread)
   569   , _depth(depth)
   570   , _index(index)
   571   , _type(T_OBJECT)
   572   , _set(false)
   573   , _jvf(NULL)
   574   , _result(JVMTI_ERROR_NONE)
   575 {
   576 }
   578 vframe *VM_GetOrSetLocal::get_vframe() {
   579   if (!_thread->has_last_Java_frame()) {
   580     return NULL;
   581   }
   582   RegisterMap reg_map(_thread);
   583   vframe *vf = _thread->last_java_vframe(&reg_map);
   584   int d = 0;
   585   while ((vf != NULL) && (d < _depth)) {
   586     vf = vf->java_sender();
   587     d++;
   588   }
   589   return vf;
   590 }
   592 javaVFrame *VM_GetOrSetLocal::get_java_vframe() {
   593   vframe* vf = get_vframe();
   594   if (vf == NULL) {
   595     _result = JVMTI_ERROR_NO_MORE_FRAMES;
   596     return NULL;
   597   }
   598   javaVFrame *jvf = (javaVFrame*)vf;
   600   if (!vf->is_java_frame()) {
   601     _result = JVMTI_ERROR_OPAQUE_FRAME;
   602     return NULL;
   603   }
   604   return jvf;
   605 }
   607 // Check that the klass is assignable to a type with the given signature.
   608 // Another solution could be to use the function Klass::is_subtype_of(type).
   609 // But the type class can be forced to load/initialize eagerly in such a case.
   610 // This may cause unexpected consequences like CFLH or class-init JVMTI events.
   611 // It is better to avoid such a behavior.
   612 bool VM_GetOrSetLocal::is_assignable(const char* ty_sign, Klass* klass, Thread* thread) {
   613   assert(ty_sign != NULL, "type signature must not be NULL");
   614   assert(thread != NULL, "thread must not be NULL");
   615   assert(klass != NULL, "klass must not be NULL");
   617   int len = (int) strlen(ty_sign);
   618   if (ty_sign[0] == 'L' && ty_sign[len-1] == ';') { // Need pure class/interface name
   619     ty_sign++;
   620     len -= 2;
   621   }
   622   TempNewSymbol ty_sym = SymbolTable::new_symbol(ty_sign, len, thread);
   623   if (klass->name() == ty_sym) {
   624     return true;
   625   }
   626   // Compare primary supers
   627   int super_depth = klass->super_depth();
   628   int idx;
   629   for (idx = 0; idx < super_depth; idx++) {
   630     if (klass->primary_super_of_depth(idx)->name() == ty_sym) {
   631       return true;
   632     }
   633   }
   634   // Compare secondary supers
   635   Array<Klass*>* sec_supers = klass->secondary_supers();
   636   for (idx = 0; idx < sec_supers->length(); idx++) {
   637     if (((Klass*) sec_supers->at(idx))->name() == ty_sym) {
   638       return true;
   639     }
   640   }
   641   return false;
   642 }
   644 // Checks error conditions:
   645 //   JVMTI_ERROR_INVALID_SLOT
   646 //   JVMTI_ERROR_TYPE_MISMATCH
   647 // Returns: 'true' - everything is Ok, 'false' - error code
   649 bool VM_GetOrSetLocal::check_slot_type(javaVFrame* jvf) {
   650   Method* method_oop = jvf->method();
   651   if (!method_oop->has_localvariable_table()) {
   652     // Just to check index boundaries
   653     jint extra_slot = (_type == T_LONG || _type == T_DOUBLE) ? 1 : 0;
   654     if (_index < 0 || _index + extra_slot >= method_oop->max_locals()) {
   655       _result = JVMTI_ERROR_INVALID_SLOT;
   656       return false;
   657     }
   658     return true;
   659   }
   661   jint num_entries = method_oop->localvariable_table_length();
   662   if (num_entries == 0) {
   663     _result = JVMTI_ERROR_INVALID_SLOT;
   664     return false;       // There are no slots
   665   }
   666   int signature_idx = -1;
   667   int vf_bci = jvf->bci();
   668   LocalVariableTableElement* table = method_oop->localvariable_table_start();
   669   for (int i = 0; i < num_entries; i++) {
   670     int start_bci = table[i].start_bci;
   671     int end_bci = start_bci + table[i].length;
   673     // Here we assume that locations of LVT entries
   674     // with the same slot number cannot be overlapped
   675     if (_index == (jint) table[i].slot && start_bci <= vf_bci && vf_bci <= end_bci) {
   676       signature_idx = (int) table[i].descriptor_cp_index;
   677       break;
   678     }
   679   }
   680   if (signature_idx == -1) {
   681     _result = JVMTI_ERROR_INVALID_SLOT;
   682     return false;       // Incorrect slot index
   683   }
   684   Symbol*   sign_sym  = method_oop->constants()->symbol_at(signature_idx);
   685   const char* signature = (const char *) sign_sym->as_utf8();
   686   BasicType slot_type = char2type(signature[0]);
   688   switch (slot_type) {
   689   case T_BYTE:
   690   case T_SHORT:
   691   case T_CHAR:
   692   case T_BOOLEAN:
   693     slot_type = T_INT;
   694     break;
   695   case T_ARRAY:
   696     slot_type = T_OBJECT;
   697     break;
   698   };
   699   if (_type != slot_type) {
   700     _result = JVMTI_ERROR_TYPE_MISMATCH;
   701     return false;
   702   }
   704   jobject jobj = _value.l;
   705   if (_set && slot_type == T_OBJECT && jobj != NULL) { // NULL reference is allowed
   706     // Check that the jobject class matches the return type signature.
   707     JavaThread* cur_thread = JavaThread::current();
   708     HandleMark hm(cur_thread);
   710     Handle obj = Handle(cur_thread, JNIHandles::resolve_external_guard(jobj));
   711     NULL_CHECK(obj, (_result = JVMTI_ERROR_INVALID_OBJECT, false));
   712     KlassHandle ob_kh = KlassHandle(cur_thread, obj->klass());
   713     NULL_CHECK(ob_kh, (_result = JVMTI_ERROR_INVALID_OBJECT, false));
   715     if (!is_assignable(signature, ob_kh(), cur_thread)) {
   716       _result = JVMTI_ERROR_TYPE_MISMATCH;
   717       return false;
   718     }
   719   }
   720   return true;
   721 }
   723 static bool can_be_deoptimized(vframe* vf) {
   724   return (vf->is_compiled_frame() && vf->fr().can_be_deoptimized());
   725 }
   727 bool VM_GetOrSetLocal::doit_prologue() {
   728   _jvf = get_java_vframe();
   729   NULL_CHECK(_jvf, false);
   731   if (_jvf->method()->is_native()) {
   732     if (getting_receiver() && !_jvf->method()->is_static()) {
   733       return true;
   734     } else {
   735       _result = JVMTI_ERROR_OPAQUE_FRAME;
   736       return false;
   737     }
   738   }
   740   if (!check_slot_type(_jvf)) {
   741     return false;
   742   }
   743   return true;
   744 }
   746 void VM_GetOrSetLocal::doit() {
   747   if (_set) {
   748     // Force deoptimization of frame if compiled because it's
   749     // possible the compiler emitted some locals as constant values,
   750     // meaning they are not mutable.
   751     if (can_be_deoptimized(_jvf)) {
   753       // Schedule deoptimization so that eventually the local
   754       // update will be written to an interpreter frame.
   755       Deoptimization::deoptimize_frame(_jvf->thread(), _jvf->fr().id());
   757       // Now store a new value for the local which will be applied
   758       // once deoptimization occurs. Note however that while this
   759       // write is deferred until deoptimization actually happens
   760       // can vframe created after this point will have its locals
   761       // reflecting this update so as far as anyone can see the
   762       // write has already taken place.
   764       // If we are updating an oop then get the oop from the handle
   765       // since the handle will be long gone by the time the deopt
   766       // happens. The oop stored in the deferred local will be
   767       // gc'd on its own.
   768       if (_type == T_OBJECT) {
   769         _value.l = (jobject) (JNIHandles::resolve_external_guard(_value.l));
   770       }
   771       // Re-read the vframe so we can see that it is deoptimized
   772       // [ Only need because of assert in update_local() ]
   773       _jvf = get_java_vframe();
   774       ((compiledVFrame*)_jvf)->update_local(_type, _index, _value);
   775       return;
   776     }
   777     StackValueCollection *locals = _jvf->locals();
   778     HandleMark hm;
   780     switch (_type) {
   781       case T_INT:    locals->set_int_at   (_index, _value.i); break;
   782       case T_LONG:   locals->set_long_at  (_index, _value.j); break;
   783       case T_FLOAT:  locals->set_float_at (_index, _value.f); break;
   784       case T_DOUBLE: locals->set_double_at(_index, _value.d); break;
   785       case T_OBJECT: {
   786         Handle ob_h(JNIHandles::resolve_external_guard(_value.l));
   787         locals->set_obj_at (_index, ob_h);
   788         break;
   789       }
   790       default: ShouldNotReachHere();
   791     }
   792     _jvf->set_locals(locals);
   793   } else {
   794     if (_jvf->method()->is_native() && _jvf->is_compiled_frame()) {
   795       assert(getting_receiver(), "Can only get here when getting receiver");
   796       oop receiver = _jvf->fr().get_native_receiver();
   797       _value.l = JNIHandles::make_local(_calling_thread, receiver);
   798     } else {
   799       StackValueCollection *locals = _jvf->locals();
   801       if (locals->at(_index)->type() == T_CONFLICT) {
   802         memset(&_value, 0, sizeof(_value));
   803         _value.l = NULL;
   804         return;
   805       }
   807       switch (_type) {
   808         case T_INT:    _value.i = locals->int_at   (_index);   break;
   809         case T_LONG:   _value.j = locals->long_at  (_index);   break;
   810         case T_FLOAT:  _value.f = locals->float_at (_index);   break;
   811         case T_DOUBLE: _value.d = locals->double_at(_index);   break;
   812         case T_OBJECT: {
   813           // Wrap the oop to be returned in a local JNI handle since
   814           // oops_do() no longer applies after doit() is finished.
   815           oop obj = locals->obj_at(_index)();
   816           _value.l = JNIHandles::make_local(_calling_thread, obj);
   817           break;
   818         }
   819         default: ShouldNotReachHere();
   820       }
   821     }
   822   }
   823 }
   826 bool VM_GetOrSetLocal::allow_nested_vm_operations() const {
   827   return true; // May need to deoptimize
   828 }
   831 VM_GetReceiver::VM_GetReceiver(
   832     JavaThread* thread, JavaThread* caller_thread, jint depth)
   833     : VM_GetOrSetLocal(thread, caller_thread, depth, 0) {}
   835 /////////////////////////////////////////////////////////////////////////////////////////
   837 //
   838 // class JvmtiSuspendControl - see comments in jvmtiImpl.hpp
   839 //
   841 bool JvmtiSuspendControl::suspend(JavaThread *java_thread) {
   842   // external suspend should have caught suspending a thread twice
   844   // Immediate suspension required for JPDA back-end so JVMTI agent threads do
   845   // not deadlock due to later suspension on transitions while holding
   846   // raw monitors.  Passing true causes the immediate suspension.
   847   // java_suspend() will catch threads in the process of exiting
   848   // and will ignore them.
   849   java_thread->java_suspend();
   851   // It would be nice to have the following assertion in all the time,
   852   // but it is possible for a racing resume request to have resumed
   853   // this thread right after we suspended it. Temporarily enable this
   854   // assertion if you are chasing a different kind of bug.
   855   //
   856   // assert(java_lang_Thread::thread(java_thread->threadObj()) == NULL ||
   857   //   java_thread->is_being_ext_suspended(), "thread is not suspended");
   859   if (java_lang_Thread::thread(java_thread->threadObj()) == NULL) {
   860     // check again because we can get delayed in java_suspend():
   861     // the thread is in process of exiting.
   862     return false;
   863   }
   865   return true;
   866 }
   868 bool JvmtiSuspendControl::resume(JavaThread *java_thread) {
   869   // external suspend should have caught resuming a thread twice
   870   assert(java_thread->is_being_ext_suspended(), "thread should be suspended");
   872   // resume thread
   873   {
   874     // must always grab Threads_lock, see JVM_SuspendThread
   875     MutexLocker ml(Threads_lock);
   876     java_thread->java_resume();
   877   }
   879   return true;
   880 }
   883 void JvmtiSuspendControl::print() {
   884 #ifndef PRODUCT
   885   MutexLocker mu(Threads_lock);
   886   ResourceMark rm;
   888   tty->print("Suspended Threads: [");
   889   for (JavaThread *thread = Threads::first(); thread != NULL; thread = thread->next()) {
   890 #ifdef JVMTI_TRACE
   891     const char *name   = JvmtiTrace::safe_get_thread_name(thread);
   892 #else
   893     const char *name   = "";
   894 #endif /*JVMTI_TRACE */
   895     tty->print("%s(%c ", name, thread->is_being_ext_suspended() ? 'S' : '_');
   896     if (!thread->has_last_Java_frame()) {
   897       tty->print("no stack");
   898     }
   899     tty->print(") ");
   900   }
   901   tty->print_cr("]");
   902 #endif
   903 }
   905 JvmtiDeferredEvent JvmtiDeferredEvent::compiled_method_load_event(
   906     nmethod* nm) {
   907   JvmtiDeferredEvent event = JvmtiDeferredEvent(TYPE_COMPILED_METHOD_LOAD);
   908   event._event_data.compiled_method_load = nm;
   909   // Keep the nmethod alive until the ServiceThread can process
   910   // this deferred event.
   911   nmethodLocker::lock_nmethod(nm);
   912   return event;
   913 }
   915 JvmtiDeferredEvent JvmtiDeferredEvent::compiled_method_unload_event(
   916     nmethod* nm, jmethodID id, const void* code) {
   917   JvmtiDeferredEvent event = JvmtiDeferredEvent(TYPE_COMPILED_METHOD_UNLOAD);
   918   event._event_data.compiled_method_unload.nm = nm;
   919   event._event_data.compiled_method_unload.method_id = id;
   920   event._event_data.compiled_method_unload.code_begin = code;
   921   // Keep the nmethod alive until the ServiceThread can process
   922   // this deferred event. This will keep the memory for the
   923   // generated code from being reused too early. We pass
   924   // zombie_ok == true here so that our nmethod that was just
   925   // made into a zombie can be locked.
   926   nmethodLocker::lock_nmethod(nm, true /* zombie_ok */);
   927   return event;
   928 }
   930 JvmtiDeferredEvent JvmtiDeferredEvent::dynamic_code_generated_event(
   931       const char* name, const void* code_begin, const void* code_end) {
   932   JvmtiDeferredEvent event = JvmtiDeferredEvent(TYPE_DYNAMIC_CODE_GENERATED);
   933   // Need to make a copy of the name since we don't know how long
   934   // the event poster will keep it around after we enqueue the
   935   // deferred event and return. strdup() failure is handled in
   936   // the post() routine below.
   937   event._event_data.dynamic_code_generated.name = os::strdup(name);
   938   event._event_data.dynamic_code_generated.code_begin = code_begin;
   939   event._event_data.dynamic_code_generated.code_end = code_end;
   940   return event;
   941 }
   943 void JvmtiDeferredEvent::post() {
   944   assert(ServiceThread::is_service_thread(Thread::current()),
   945          "Service thread must post enqueued events");
   946   switch(_type) {
   947     case TYPE_COMPILED_METHOD_LOAD: {
   948       nmethod* nm = _event_data.compiled_method_load;
   949       JvmtiExport::post_compiled_method_load(nm);
   950       // done with the deferred event so unlock the nmethod
   951       nmethodLocker::unlock_nmethod(nm);
   952       break;
   953     }
   954     case TYPE_COMPILED_METHOD_UNLOAD: {
   955       nmethod* nm = _event_data.compiled_method_unload.nm;
   956       JvmtiExport::post_compiled_method_unload(
   957         _event_data.compiled_method_unload.method_id,
   958         _event_data.compiled_method_unload.code_begin);
   959       // done with the deferred event so unlock the nmethod
   960       nmethodLocker::unlock_nmethod(nm);
   961       break;
   962     }
   963     case TYPE_DYNAMIC_CODE_GENERATED: {
   964       JvmtiExport::post_dynamic_code_generated_internal(
   965         // if strdup failed give the event a default name
   966         (_event_data.dynamic_code_generated.name == NULL)
   967           ? "unknown_code" : _event_data.dynamic_code_generated.name,
   968         _event_data.dynamic_code_generated.code_begin,
   969         _event_data.dynamic_code_generated.code_end);
   970       if (_event_data.dynamic_code_generated.name != NULL) {
   971         // release our copy
   972         os::free((void *)_event_data.dynamic_code_generated.name);
   973       }
   974       break;
   975     }
   976     default:
   977       ShouldNotReachHere();
   978   }
   979 }
   981 JvmtiDeferredEventQueue::QueueNode* JvmtiDeferredEventQueue::_queue_tail = NULL;
   982 JvmtiDeferredEventQueue::QueueNode* JvmtiDeferredEventQueue::_queue_head = NULL;
   984 volatile JvmtiDeferredEventQueue::QueueNode*
   985     JvmtiDeferredEventQueue::_pending_list = NULL;
   987 bool JvmtiDeferredEventQueue::has_events() {
   988   assert(Service_lock->owned_by_self(), "Must own Service_lock");
   989   return _queue_head != NULL || _pending_list != NULL;
   990 }
   992 void JvmtiDeferredEventQueue::enqueue(const JvmtiDeferredEvent& event) {
   993   assert(Service_lock->owned_by_self(), "Must own Service_lock");
   995   process_pending_events();
   997   // Events get added to the end of the queue (and are pulled off the front).
   998   QueueNode* node = new QueueNode(event);
   999   if (_queue_tail == NULL) {
  1000     _queue_tail = _queue_head = node;
  1001   } else {
  1002     assert(_queue_tail->next() == NULL, "Must be the last element in the list");
  1003     _queue_tail->set_next(node);
  1004     _queue_tail = node;
  1007   Service_lock->notify_all();
  1008   assert((_queue_head == NULL) == (_queue_tail == NULL),
  1009          "Inconsistent queue markers");
  1012 JvmtiDeferredEvent JvmtiDeferredEventQueue::dequeue() {
  1013   assert(Service_lock->owned_by_self(), "Must own Service_lock");
  1015   process_pending_events();
  1017   assert(_queue_head != NULL, "Nothing to dequeue");
  1019   if (_queue_head == NULL) {
  1020     // Just in case this happens in product; it shouldn't but let's not crash
  1021     return JvmtiDeferredEvent();
  1024   QueueNode* node = _queue_head;
  1025   _queue_head = _queue_head->next();
  1026   if (_queue_head == NULL) {
  1027     _queue_tail = NULL;
  1030   assert((_queue_head == NULL) == (_queue_tail == NULL),
  1031          "Inconsistent queue markers");
  1033   JvmtiDeferredEvent event = node->event();
  1034   delete node;
  1035   return event;
  1038 void JvmtiDeferredEventQueue::add_pending_event(
  1039     const JvmtiDeferredEvent& event) {
  1041   QueueNode* node = new QueueNode(event);
  1043   bool success = false;
  1044   QueueNode* prev_value = (QueueNode*)_pending_list;
  1045   do {
  1046     node->set_next(prev_value);
  1047     prev_value = (QueueNode*)Atomic::cmpxchg_ptr(
  1048         (void*)node, (volatile void*)&_pending_list, (void*)node->next());
  1049   } while (prev_value != node->next());
  1052 // This method transfers any events that were added by someone NOT holding
  1053 // the lock into the mainline queue.
  1054 void JvmtiDeferredEventQueue::process_pending_events() {
  1055   assert(Service_lock->owned_by_self(), "Must own Service_lock");
  1057   if (_pending_list != NULL) {
  1058     QueueNode* head =
  1059         (QueueNode*)Atomic::xchg_ptr(NULL, (volatile void*)&_pending_list);
  1061     assert((_queue_head == NULL) == (_queue_tail == NULL),
  1062            "Inconsistent queue markers");
  1064     if (head != NULL) {
  1065       // Since we've treated the pending list as a stack (with newer
  1066       // events at the beginning), we need to join the bottom of the stack
  1067       // with the 'tail' of the queue in order to get the events in the
  1068       // right order.  We do this by reversing the pending list and appending
  1069       // it to the queue.
  1071       QueueNode* new_tail = head;
  1072       QueueNode* new_head = NULL;
  1074       // This reverses the list
  1075       QueueNode* prev = new_tail;
  1076       QueueNode* node = new_tail->next();
  1077       new_tail->set_next(NULL);
  1078       while (node != NULL) {
  1079         QueueNode* next = node->next();
  1080         node->set_next(prev);
  1081         prev = node;
  1082         node = next;
  1084       new_head = prev;
  1086       // Now append the new list to the queue
  1087       if (_queue_tail != NULL) {
  1088         _queue_tail->set_next(new_head);
  1089       } else { // _queue_head == NULL
  1090         _queue_head = new_head;
  1092       _queue_tail = new_tail;

mercurial