src/share/vm/opto/node.hpp

Wed, 16 Nov 2011 09:13:57 -0800

author
kvn
date
Wed, 16 Nov 2011 09:13:57 -0800
changeset 3311
1bd45abaa507
parent 3138
f6f3bb0ee072
child 3316
f03a3c8bd5e5
permissions
-rw-r--r--

6890673: Eliminate allocations immediately after EA
Summary: Try to eliminate allocations and related locks immediately after escape analysis.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_NODE_HPP
    26 #define SHARE_VM_OPTO_NODE_HPP
    28 #include "libadt/port.hpp"
    29 #include "libadt/vectset.hpp"
    30 #include "opto/compile.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 // Optimization - Graph Style
    38 class AbstractLockNode;
    39 class AddNode;
    40 class AddPNode;
    41 class AliasInfo;
    42 class AllocateArrayNode;
    43 class AllocateNode;
    44 class Block;
    45 class Block_Array;
    46 class BoolNode;
    47 class BoxLockNode;
    48 class CMoveNode;
    49 class CallDynamicJavaNode;
    50 class CallJavaNode;
    51 class CallLeafNode;
    52 class CallNode;
    53 class CallRuntimeNode;
    54 class CallStaticJavaNode;
    55 class CatchNode;
    56 class CatchProjNode;
    57 class CheckCastPPNode;
    58 class ClearArrayNode;
    59 class CmpNode;
    60 class CodeBuffer;
    61 class ConstraintCastNode;
    62 class ConNode;
    63 class CountedLoopNode;
    64 class CountedLoopEndNode;
    65 class DecodeNNode;
    66 class EncodePNode;
    67 class FastLockNode;
    68 class FastUnlockNode;
    69 class IfNode;
    70 class IfFalseNode;
    71 class IfTrueNode;
    72 class InitializeNode;
    73 class JVMState;
    74 class JumpNode;
    75 class JumpProjNode;
    76 class LoadNode;
    77 class LoadStoreNode;
    78 class LockNode;
    79 class LoopNode;
    80 class MachBranchNode;
    81 class MachCallDynamicJavaNode;
    82 class MachCallJavaNode;
    83 class MachCallLeafNode;
    84 class MachCallNode;
    85 class MachCallRuntimeNode;
    86 class MachCallStaticJavaNode;
    87 class MachConstantBaseNode;
    88 class MachConstantNode;
    89 class MachGotoNode;
    90 class MachIfNode;
    91 class MachNode;
    92 class MachNullCheckNode;
    93 class MachProjNode;
    94 class MachReturnNode;
    95 class MachSafePointNode;
    96 class MachSpillCopyNode;
    97 class MachTempNode;
    98 class Matcher;
    99 class MemBarNode;
   100 class MemNode;
   101 class MergeMemNode;
   102 class MultiNode;
   103 class MultiBranchNode;
   104 class NeverBranchNode;
   105 class Node;
   106 class Node_Array;
   107 class Node_List;
   108 class Node_Stack;
   109 class NullCheckNode;
   110 class OopMap;
   111 class ParmNode;
   112 class PCTableNode;
   113 class PhaseCCP;
   114 class PhaseGVN;
   115 class PhaseIterGVN;
   116 class PhaseRegAlloc;
   117 class PhaseTransform;
   118 class PhaseValues;
   119 class PhiNode;
   120 class Pipeline;
   121 class ProjNode;
   122 class RegMask;
   123 class RegionNode;
   124 class RootNode;
   125 class SafePointNode;
   126 class SafePointScalarObjectNode;
   127 class StartNode;
   128 class State;
   129 class StoreNode;
   130 class SubNode;
   131 class Type;
   132 class TypeNode;
   133 class UnlockNode;
   134 class VectorNode;
   135 class VectorLoadNode;
   136 class VectorStoreNode;
   137 class VectorSet;
   138 typedef void (*NFunc)(Node&,void*);
   139 extern "C" {
   140   typedef int (*C_sort_func_t)(const void *, const void *);
   141 }
   143 // The type of all node counts and indexes.
   144 // It must hold at least 16 bits, but must also be fast to load and store.
   145 // This type, if less than 32 bits, could limit the number of possible nodes.
   146 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
   147 typedef unsigned int node_idx_t;
   150 #ifndef OPTO_DU_ITERATOR_ASSERT
   151 #ifdef ASSERT
   152 #define OPTO_DU_ITERATOR_ASSERT 1
   153 #else
   154 #define OPTO_DU_ITERATOR_ASSERT 0
   155 #endif
   156 #endif //OPTO_DU_ITERATOR_ASSERT
   158 #if OPTO_DU_ITERATOR_ASSERT
   159 class DUIterator;
   160 class DUIterator_Fast;
   161 class DUIterator_Last;
   162 #else
   163 typedef uint   DUIterator;
   164 typedef Node** DUIterator_Fast;
   165 typedef Node** DUIterator_Last;
   166 #endif
   168 // Node Sentinel
   169 #define NodeSentinel (Node*)-1
   171 // Unknown count frequency
   172 #define COUNT_UNKNOWN (-1.0f)
   174 //------------------------------Node-------------------------------------------
   175 // Nodes define actions in the program.  They create values, which have types.
   176 // They are both vertices in a directed graph and program primitives.  Nodes
   177 // are labeled; the label is the "opcode", the primitive function in the lambda
   178 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
   179 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
   180 // the Node's function.  These inputs also define a Type equation for the Node.
   181 // Solving these Type equations amounts to doing dataflow analysis.
   182 // Control and data are uniformly represented in the graph.  Finally, Nodes
   183 // have a unique dense integer index which is used to index into side arrays
   184 // whenever I have phase-specific information.
   186 class Node {
   187   friend class VMStructs;
   189   // Lots of restrictions on cloning Nodes
   190   Node(const Node&);            // not defined; linker error to use these
   191   Node &operator=(const Node &rhs);
   193 public:
   194   friend class Compile;
   195   #if OPTO_DU_ITERATOR_ASSERT
   196   friend class DUIterator_Common;
   197   friend class DUIterator;
   198   friend class DUIterator_Fast;
   199   friend class DUIterator_Last;
   200   #endif
   202   // Because Nodes come and go, I define an Arena of Node structures to pull
   203   // from.  This should allow fast access to node creation & deletion.  This
   204   // field is a local cache of a value defined in some "program fragment" for
   205   // which these Nodes are just a part of.
   207   // New Operator that takes a Compile pointer, this will eventually
   208   // be the "new" New operator.
   209   inline void* operator new( size_t x, Compile* C) {
   210     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
   211 #ifdef ASSERT
   212     n->_in = (Node**)n; // magic cookie for assertion check
   213 #endif
   214     n->_out = (Node**)C;
   215     return (void*)n;
   216   }
   218   // New Operator that takes a Compile pointer, this will eventually
   219   // be the "new" New operator.
   220   inline void* operator new( size_t x, Compile* C, int y) {
   221     Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
   222     n->_in = (Node**)(((char*)n) + x);
   223 #ifdef ASSERT
   224     n->_in[y-1] = n; // magic cookie for assertion check
   225 #endif
   226     n->_out = (Node**)C;
   227     return (void*)n;
   228   }
   230   // Delete is a NOP
   231   void operator delete( void *ptr ) {}
   232   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   233   void destruct();
   235   // Create a new Node.  Required is the number is of inputs required for
   236   // semantic correctness.
   237   Node( uint required );
   239   // Create a new Node with given input edges.
   240   // This version requires use of the "edge-count" new.
   241   // E.g.  new (C,3) FooNode( C, NULL, left, right );
   242   Node( Node *n0 );
   243   Node( Node *n0, Node *n1 );
   244   Node( Node *n0, Node *n1, Node *n2 );
   245   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
   246   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
   247   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
   248   Node( Node *n0, Node *n1, Node *n2, Node *n3,
   249             Node *n4, Node *n5, Node *n6 );
   251   // Clone an inherited Node given only the base Node type.
   252   Node* clone() const;
   254   // Clone a Node, immediately supplying one or two new edges.
   255   // The first and second arguments, if non-null, replace in(1) and in(2),
   256   // respectively.
   257   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
   258     Node* nn = clone();
   259     if (in1 != NULL)  nn->set_req(1, in1);
   260     if (in2 != NULL)  nn->set_req(2, in2);
   261     return nn;
   262   }
   264 private:
   265   // Shared setup for the above constructors.
   266   // Handles all interactions with Compile::current.
   267   // Puts initial values in all Node fields except _idx.
   268   // Returns the initial value for _idx, which cannot
   269   // be initialized by assignment.
   270   inline int Init(int req, Compile* C);
   272 //----------------- input edge handling
   273 protected:
   274   friend class PhaseCFG;        // Access to address of _in array elements
   275   Node **_in;                   // Array of use-def references to Nodes
   276   Node **_out;                  // Array of def-use references to Nodes
   278   // Input edges are split into two categories.  Required edges are required
   279   // for semantic correctness; order is important and NULLs are allowed.
   280   // Precedence edges are used to help determine execution order and are
   281   // added, e.g., for scheduling purposes.  They are unordered and not
   282   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
   283   // are required, from _cnt to _max-1 are precedence edges.
   284   node_idx_t _cnt;              // Total number of required Node inputs.
   286   node_idx_t _max;              // Actual length of input array.
   288   // Output edges are an unordered list of def-use edges which exactly
   289   // correspond to required input edges which point from other nodes
   290   // to this one.  Thus the count of the output edges is the number of
   291   // users of this node.
   292   node_idx_t _outcnt;           // Total number of Node outputs.
   294   node_idx_t _outmax;           // Actual length of output array.
   296   // Grow the actual input array to the next larger power-of-2 bigger than len.
   297   void grow( uint len );
   298   // Grow the output array to the next larger power-of-2 bigger than len.
   299   void out_grow( uint len );
   301  public:
   302   // Each Node is assigned a unique small/dense number.  This number is used
   303   // to index into auxiliary arrays of data and bitvectors.
   304   // It is declared const to defend against inadvertant assignment,
   305   // since it is used by clients as a naked field.
   306   const node_idx_t _idx;
   308   // Get the (read-only) number of input edges
   309   uint req() const { return _cnt; }
   310   uint len() const { return _max; }
   311   // Get the (read-only) number of output edges
   312   uint outcnt() const { return _outcnt; }
   314 #if OPTO_DU_ITERATOR_ASSERT
   315   // Iterate over the out-edges of this node.  Deletions are illegal.
   316   inline DUIterator outs() const;
   317   // Use this when the out array might have changed to suppress asserts.
   318   inline DUIterator& refresh_out_pos(DUIterator& i) const;
   319   // Does the node have an out at this position?  (Used for iteration.)
   320   inline bool has_out(DUIterator& i) const;
   321   inline Node*    out(DUIterator& i) const;
   322   // Iterate over the out-edges of this node.  All changes are illegal.
   323   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
   324   inline Node*    fast_out(DUIterator_Fast& i) const;
   325   // Iterate over the out-edges of this node, deleting one at a time.
   326   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
   327   inline Node*    last_out(DUIterator_Last& i) const;
   328   // The inline bodies of all these methods are after the iterator definitions.
   329 #else
   330   // Iterate over the out-edges of this node.  Deletions are illegal.
   331   // This iteration uses integral indexes, to decouple from array reallocations.
   332   DUIterator outs() const  { return 0; }
   333   // Use this when the out array might have changed to suppress asserts.
   334   DUIterator refresh_out_pos(DUIterator i) const { return i; }
   336   // Reference to the i'th output Node.  Error if out of bounds.
   337   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
   338   // Does the node have an out at this position?  (Used for iteration.)
   339   bool has_out(DUIterator i) const { return i < _outcnt; }
   341   // Iterate over the out-edges of this node.  All changes are illegal.
   342   // This iteration uses a pointer internal to the out array.
   343   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
   344     Node** out = _out;
   345     // Assign a limit pointer to the reference argument:
   346     max = out + (ptrdiff_t)_outcnt;
   347     // Return the base pointer:
   348     return out;
   349   }
   350   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
   351   // Iterate over the out-edges of this node, deleting one at a time.
   352   // This iteration uses a pointer internal to the out array.
   353   DUIterator_Last last_outs(DUIterator_Last& min) const {
   354     Node** out = _out;
   355     // Assign a limit pointer to the reference argument:
   356     min = out;
   357     // Return the pointer to the start of the iteration:
   358     return out + (ptrdiff_t)_outcnt - 1;
   359   }
   360   Node*    last_out(DUIterator_Last i) const  { return *i; }
   361 #endif
   363   // Reference to the i'th input Node.  Error if out of bounds.
   364   Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
   365   // Reference to the i'th output Node.  Error if out of bounds.
   366   // Use this accessor sparingly.  We are going trying to use iterators instead.
   367   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
   368   // Return the unique out edge.
   369   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
   370   // Delete out edge at position 'i' by moving last out edge to position 'i'
   371   void  raw_del_out(uint i) {
   372     assert(i < _outcnt,"oob");
   373     assert(_outcnt > 0,"oob");
   374     #if OPTO_DU_ITERATOR_ASSERT
   375     // Record that a change happened here.
   376     debug_only(_last_del = _out[i]; ++_del_tick);
   377     #endif
   378     _out[i] = _out[--_outcnt];
   379     // Smash the old edge so it can't be used accidentally.
   380     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   381   }
   383 #ifdef ASSERT
   384   bool is_dead() const;
   385 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
   386 #endif
   388   // Set a required input edge, also updates corresponding output edge
   389   void add_req( Node *n ); // Append a NEW required input
   390   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
   391   void del_req( uint idx ); // Delete required edge & compact
   392   void ins_req( uint i, Node *n ); // Insert a NEW required input
   393   void set_req( uint i, Node *n ) {
   394     assert( is_not_dead(n), "can not use dead node");
   395     assert( i < _cnt, "oob");
   396     assert( !VerifyHashTableKeys || _hash_lock == 0,
   397             "remove node from hash table before modifying it");
   398     Node** p = &_in[i];    // cache this._in, across the del_out call
   399     if (*p != NULL)  (*p)->del_out((Node *)this);
   400     (*p) = n;
   401     if (n != NULL)      n->add_out((Node *)this);
   402   }
   403   // Light version of set_req() to init inputs after node creation.
   404   void init_req( uint i, Node *n ) {
   405     assert( i == 0 && this == n ||
   406             is_not_dead(n), "can not use dead node");
   407     assert( i < _cnt, "oob");
   408     assert( !VerifyHashTableKeys || _hash_lock == 0,
   409             "remove node from hash table before modifying it");
   410     assert( _in[i] == NULL, "sanity");
   411     _in[i] = n;
   412     if (n != NULL)      n->add_out((Node *)this);
   413   }
   414   // Find first occurrence of n among my edges:
   415   int find_edge(Node* n);
   416   int replace_edge(Node* old, Node* neww);
   417   // NULL out all inputs to eliminate incoming Def-Use edges.
   418   // Return the number of edges between 'n' and 'this'
   419   int  disconnect_inputs(Node *n);
   421   // Quickly, return true if and only if I am Compile::current()->top().
   422   bool is_top() const {
   423     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
   424     return (_out == NULL);
   425   }
   426   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
   427   void setup_is_top();
   429   // Strip away casting.  (It is depth-limited.)
   430   Node* uncast() const;
   432 private:
   433   static Node* uncast_helper(const Node* n);
   435   // Add an output edge to the end of the list
   436   void add_out( Node *n ) {
   437     if (is_top())  return;
   438     if( _outcnt == _outmax ) out_grow(_outcnt);
   439     _out[_outcnt++] = n;
   440   }
   441   // Delete an output edge
   442   void del_out( Node *n ) {
   443     if (is_top())  return;
   444     Node** outp = &_out[_outcnt];
   445     // Find and remove n
   446     do {
   447       assert(outp > _out, "Missing Def-Use edge");
   448     } while (*--outp != n);
   449     *outp = _out[--_outcnt];
   450     // Smash the old edge so it can't be used accidentally.
   451     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   452     // Record that a change happened here.
   453     #if OPTO_DU_ITERATOR_ASSERT
   454     debug_only(_last_del = n; ++_del_tick);
   455     #endif
   456   }
   458 public:
   459   // Globally replace this node by a given new node, updating all uses.
   460   void replace_by(Node* new_node);
   461   // Globally replace this node by a given new node, updating all uses
   462   // and cutting input edges of old node.
   463   void subsume_by(Node* new_node) {
   464     replace_by(new_node);
   465     disconnect_inputs(NULL);
   466   }
   467   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
   468   // Find the one non-null required input.  RegionNode only
   469   Node *nonnull_req() const;
   470   // Add or remove precedence edges
   471   void add_prec( Node *n );
   472   void rm_prec( uint i );
   473   void set_prec( uint i, Node *n ) {
   474     assert( is_not_dead(n), "can not use dead node");
   475     assert( i >= _cnt, "not a precedence edge");
   476     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
   477     _in[i] = n;
   478     if (n != NULL) n->add_out((Node *)this);
   479   }
   480   // Set this node's index, used by cisc_version to replace current node
   481   void set_idx(uint new_idx) {
   482     const node_idx_t* ref = &_idx;
   483     *(node_idx_t*)ref = new_idx;
   484   }
   485   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
   486   void swap_edges(uint i1, uint i2) {
   487     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   488     // Def-Use info is unchanged
   489     Node* n1 = in(i1);
   490     Node* n2 = in(i2);
   491     _in[i1] = n2;
   492     _in[i2] = n1;
   493     // If this node is in the hash table, make sure it doesn't need a rehash.
   494     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
   495   }
   497   // Iterators over input Nodes for a Node X are written as:
   498   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
   499   // NOTE: Required edges can contain embedded NULL pointers.
   501 //----------------- Other Node Properties
   503   // Generate class id for some ideal nodes to avoid virtual query
   504   // methods is_<Node>().
   505   // Class id is the set of bits corresponded to the node class and all its
   506   // super classes so that queries for super classes are also valid.
   507   // Subclasses of the same super class have different assigned bit
   508   // (the third parameter in the macro DEFINE_CLASS_ID).
   509   // Classes with deeper hierarchy are declared first.
   510   // Classes with the same hierarchy depth are sorted by usage frequency.
   511   //
   512   // The query method masks the bits to cut off bits of subclasses
   513   // and then compare the result with the class id
   514   // (see the macro DEFINE_CLASS_QUERY below).
   515   //
   516   //  Class_MachCall=30, ClassMask_MachCall=31
   517   // 12               8               4               0
   518   //  0   0   0   0   0   0   0   0   1   1   1   1   0
   519   //                                  |   |   |   |
   520   //                                  |   |   |   Bit_Mach=2
   521   //                                  |   |   Bit_MachReturn=4
   522   //                                  |   Bit_MachSafePoint=8
   523   //                                  Bit_MachCall=16
   524   //
   525   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
   526   // 12               8               4               0
   527   //  0   0   0   0   0   0   0   1   1   1   0   0   0
   528   //                              |   |   |
   529   //                              |   |   Bit_Region=8
   530   //                              |   Bit_Loop=16
   531   //                              Bit_CountedLoop=32
   533   #define DEFINE_CLASS_ID(cl, supcl, subn) \
   534   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
   535   Class_##cl = Class_##supcl + Bit_##cl , \
   536   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
   538   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
   539   // so that it's values fits into 16 bits.
   540   enum NodeClasses {
   541     Bit_Node   = 0x0000,
   542     Class_Node = 0x0000,
   543     ClassMask_Node = 0xFFFF,
   545     DEFINE_CLASS_ID(Multi, Node, 0)
   546       DEFINE_CLASS_ID(SafePoint, Multi, 0)
   547         DEFINE_CLASS_ID(Call,      SafePoint, 0)
   548           DEFINE_CLASS_ID(CallJava,         Call, 0)
   549             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
   550             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
   551           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
   552             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
   553           DEFINE_CLASS_ID(Allocate,         Call, 2)
   554             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
   555           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
   556             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
   557             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
   558       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
   559         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
   560           DEFINE_CLASS_ID(Catch,       PCTable, 0)
   561           DEFINE_CLASS_ID(Jump,        PCTable, 1)
   562         DEFINE_CLASS_ID(If,          MultiBranch, 1)
   563           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
   564         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
   565       DEFINE_CLASS_ID(Start,       Multi, 2)
   566       DEFINE_CLASS_ID(MemBar,      Multi, 3)
   567         DEFINE_CLASS_ID(Initialize,    MemBar, 0)
   569     DEFINE_CLASS_ID(Mach,  Node, 1)
   570       DEFINE_CLASS_ID(MachReturn, Mach, 0)
   571         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
   572           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
   573             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
   574               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
   575               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
   576             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
   577               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
   578       DEFINE_CLASS_ID(MachBranch, Mach, 1)
   579         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
   580         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
   581         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
   582       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
   583       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
   584       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
   585       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
   587     DEFINE_CLASS_ID(Type,  Node, 2)
   588       DEFINE_CLASS_ID(Phi,   Type, 0)
   589       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
   590       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
   591       DEFINE_CLASS_ID(CMove, Type, 3)
   592       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
   593       DEFINE_CLASS_ID(DecodeN, Type, 5)
   594       DEFINE_CLASS_ID(EncodeP, Type, 6)
   596     DEFINE_CLASS_ID(Proj,  Node, 3)
   597       DEFINE_CLASS_ID(CatchProj, Proj, 0)
   598       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
   599       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
   600       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
   601       DEFINE_CLASS_ID(Parm,      Proj, 4)
   602       DEFINE_CLASS_ID(MachProj,  Proj, 5)
   604     DEFINE_CLASS_ID(Mem,   Node, 4)
   605       DEFINE_CLASS_ID(Load,  Mem, 0)
   606         DEFINE_CLASS_ID(VectorLoad,  Load, 0)
   607       DEFINE_CLASS_ID(Store, Mem, 1)
   608         DEFINE_CLASS_ID(VectorStore, Store, 0)
   609       DEFINE_CLASS_ID(LoadStore, Mem, 2)
   611     DEFINE_CLASS_ID(Region, Node, 5)
   612       DEFINE_CLASS_ID(Loop, Region, 0)
   613         DEFINE_CLASS_ID(Root,        Loop, 0)
   614         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
   616     DEFINE_CLASS_ID(Sub,   Node, 6)
   617       DEFINE_CLASS_ID(Cmp,   Sub, 0)
   618         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
   619         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
   621     DEFINE_CLASS_ID(MergeMem, Node, 7)
   622     DEFINE_CLASS_ID(Bool,     Node, 8)
   623     DEFINE_CLASS_ID(AddP,     Node, 9)
   624     DEFINE_CLASS_ID(BoxLock,  Node, 10)
   625     DEFINE_CLASS_ID(Add,      Node, 11)
   626     DEFINE_CLASS_ID(Vector,   Node, 12)
   627     DEFINE_CLASS_ID(ClearArray, Node, 13)
   629     _max_classes  = ClassMask_ClearArray
   630   };
   631   #undef DEFINE_CLASS_ID
   633   // Flags are sorted by usage frequency.
   634   enum NodeFlags {
   635     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
   636     Flag_rematerialize       = Flag_is_Copy << 1,
   637     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
   638     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
   639     Flag_is_Con              = Flag_is_macro << 1,
   640     Flag_is_cisc_alternate   = Flag_is_Con << 1,
   641     Flag_is_dead_loop_safe   = Flag_is_cisc_alternate << 1,
   642     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
   643     Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
   644     _max_flags = (Flag_avoid_back_to_back << 1) - 1 // allow flags combination
   645   };
   647 private:
   648   jushort _class_id;
   649   jushort _flags;
   651 protected:
   652   // These methods should be called from constructors only.
   653   void init_class_id(jushort c) {
   654     assert(c <= _max_classes, "invalid node class");
   655     _class_id = c; // cast out const
   656   }
   657   void init_flags(jushort fl) {
   658     assert(fl <= _max_flags, "invalid node flag");
   659     _flags |= fl;
   660   }
   661   void clear_flag(jushort fl) {
   662     assert(fl <= _max_flags, "invalid node flag");
   663     _flags &= ~fl;
   664   }
   666 public:
   667   const jushort class_id() const { return _class_id; }
   669   const jushort flags() const { return _flags; }
   671   // Return a dense integer opcode number
   672   virtual int Opcode() const;
   674   // Virtual inherited Node size
   675   virtual uint size_of() const;
   677   // Other interesting Node properties
   678   #define DEFINE_CLASS_QUERY(type)                           \
   679   bool is_##type() const {                                   \
   680     return ((_class_id & ClassMask_##type) == Class_##type); \
   681   }                                                          \
   682   type##Node *as_##type() const {                            \
   683     assert(is_##type(), "invalid node class");               \
   684     return (type##Node*)this;                                \
   685   }                                                          \
   686   type##Node* isa_##type() const {                           \
   687     return (is_##type()) ? as_##type() : NULL;               \
   688   }
   690   DEFINE_CLASS_QUERY(AbstractLock)
   691   DEFINE_CLASS_QUERY(Add)
   692   DEFINE_CLASS_QUERY(AddP)
   693   DEFINE_CLASS_QUERY(Allocate)
   694   DEFINE_CLASS_QUERY(AllocateArray)
   695   DEFINE_CLASS_QUERY(Bool)
   696   DEFINE_CLASS_QUERY(BoxLock)
   697   DEFINE_CLASS_QUERY(Call)
   698   DEFINE_CLASS_QUERY(CallDynamicJava)
   699   DEFINE_CLASS_QUERY(CallJava)
   700   DEFINE_CLASS_QUERY(CallLeaf)
   701   DEFINE_CLASS_QUERY(CallRuntime)
   702   DEFINE_CLASS_QUERY(CallStaticJava)
   703   DEFINE_CLASS_QUERY(Catch)
   704   DEFINE_CLASS_QUERY(CatchProj)
   705   DEFINE_CLASS_QUERY(CheckCastPP)
   706   DEFINE_CLASS_QUERY(ConstraintCast)
   707   DEFINE_CLASS_QUERY(ClearArray)
   708   DEFINE_CLASS_QUERY(CMove)
   709   DEFINE_CLASS_QUERY(Cmp)
   710   DEFINE_CLASS_QUERY(CountedLoop)
   711   DEFINE_CLASS_QUERY(CountedLoopEnd)
   712   DEFINE_CLASS_QUERY(DecodeN)
   713   DEFINE_CLASS_QUERY(EncodeP)
   714   DEFINE_CLASS_QUERY(FastLock)
   715   DEFINE_CLASS_QUERY(FastUnlock)
   716   DEFINE_CLASS_QUERY(If)
   717   DEFINE_CLASS_QUERY(IfFalse)
   718   DEFINE_CLASS_QUERY(IfTrue)
   719   DEFINE_CLASS_QUERY(Initialize)
   720   DEFINE_CLASS_QUERY(Jump)
   721   DEFINE_CLASS_QUERY(JumpProj)
   722   DEFINE_CLASS_QUERY(Load)
   723   DEFINE_CLASS_QUERY(LoadStore)
   724   DEFINE_CLASS_QUERY(Lock)
   725   DEFINE_CLASS_QUERY(Loop)
   726   DEFINE_CLASS_QUERY(Mach)
   727   DEFINE_CLASS_QUERY(MachBranch)
   728   DEFINE_CLASS_QUERY(MachCall)
   729   DEFINE_CLASS_QUERY(MachCallDynamicJava)
   730   DEFINE_CLASS_QUERY(MachCallJava)
   731   DEFINE_CLASS_QUERY(MachCallLeaf)
   732   DEFINE_CLASS_QUERY(MachCallRuntime)
   733   DEFINE_CLASS_QUERY(MachCallStaticJava)
   734   DEFINE_CLASS_QUERY(MachConstantBase)
   735   DEFINE_CLASS_QUERY(MachConstant)
   736   DEFINE_CLASS_QUERY(MachGoto)
   737   DEFINE_CLASS_QUERY(MachIf)
   738   DEFINE_CLASS_QUERY(MachNullCheck)
   739   DEFINE_CLASS_QUERY(MachProj)
   740   DEFINE_CLASS_QUERY(MachReturn)
   741   DEFINE_CLASS_QUERY(MachSafePoint)
   742   DEFINE_CLASS_QUERY(MachSpillCopy)
   743   DEFINE_CLASS_QUERY(MachTemp)
   744   DEFINE_CLASS_QUERY(Mem)
   745   DEFINE_CLASS_QUERY(MemBar)
   746   DEFINE_CLASS_QUERY(MergeMem)
   747   DEFINE_CLASS_QUERY(Multi)
   748   DEFINE_CLASS_QUERY(MultiBranch)
   749   DEFINE_CLASS_QUERY(Parm)
   750   DEFINE_CLASS_QUERY(PCTable)
   751   DEFINE_CLASS_QUERY(Phi)
   752   DEFINE_CLASS_QUERY(Proj)
   753   DEFINE_CLASS_QUERY(Region)
   754   DEFINE_CLASS_QUERY(Root)
   755   DEFINE_CLASS_QUERY(SafePoint)
   756   DEFINE_CLASS_QUERY(SafePointScalarObject)
   757   DEFINE_CLASS_QUERY(Start)
   758   DEFINE_CLASS_QUERY(Store)
   759   DEFINE_CLASS_QUERY(Sub)
   760   DEFINE_CLASS_QUERY(Type)
   761   DEFINE_CLASS_QUERY(Vector)
   762   DEFINE_CLASS_QUERY(VectorLoad)
   763   DEFINE_CLASS_QUERY(VectorStore)
   764   DEFINE_CLASS_QUERY(Unlock)
   766   #undef DEFINE_CLASS_QUERY
   768   // duplicate of is_MachSpillCopy()
   769   bool is_SpillCopy () const {
   770     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
   771   }
   773   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
   774   // The data node which is safe to leave in dead loop during IGVN optimization.
   775   bool is_dead_loop_safe() const {
   776     return is_Phi() || (is_Proj() && in(0) == NULL) ||
   777            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
   778             (!is_Proj() || !in(0)->is_Allocate()));
   779   }
   781   // is_Copy() returns copied edge index (0 or 1)
   782   uint is_Copy() const { return (_flags & Flag_is_Copy); }
   784   virtual bool is_CFG() const { return false; }
   786   // If this node is control-dependent on a test, can it be
   787   // rerouted to a dominating equivalent test?  This is usually
   788   // true of non-CFG nodes, but can be false for operations which
   789   // depend for their correct sequencing on more than one test.
   790   // (In that case, hoisting to a dominating test may silently
   791   // skip some other important test.)
   792   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
   794   // When building basic blocks, I need to have a notion of block beginning
   795   // Nodes, next block selector Nodes (block enders), and next block
   796   // projections.  These calls need to work on their machine equivalents.  The
   797   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
   798   bool is_block_start() const {
   799     if ( is_Region() )
   800       return this == (const Node*)in(0);
   801     else
   802       return is_Start();
   803   }
   805   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
   806   // Goto and Return.  This call also returns the block ending Node.
   807   virtual const Node *is_block_proj() const;
   809   // The node is a "macro" node which needs to be expanded before matching
   810   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
   812 //----------------- Optimization
   814   // Get the worst-case Type output for this Node.
   815   virtual const class Type *bottom_type() const;
   817   // If we find a better type for a node, try to record it permanently.
   818   // Return true if this node actually changed.
   819   // Be sure to do the hash_delete game in the "rehash" variant.
   820   void raise_bottom_type(const Type* new_type);
   822   // Get the address type with which this node uses and/or defs memory,
   823   // or NULL if none.  The address type is conservatively wide.
   824   // Returns non-null for calls, membars, loads, stores, etc.
   825   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
   826   virtual const class TypePtr *adr_type() const { return NULL; }
   828   // Return an existing node which computes the same function as this node.
   829   // The optimistic combined algorithm requires this to return a Node which
   830   // is a small number of steps away (e.g., one of my inputs).
   831   virtual Node *Identity( PhaseTransform *phase );
   833   // Return the set of values this Node can take on at runtime.
   834   virtual const Type *Value( PhaseTransform *phase ) const;
   836   // Return a node which is more "ideal" than the current node.
   837   // The invariants on this call are subtle.  If in doubt, read the
   838   // treatise in node.cpp above the default implemention AND TEST WITH
   839   // +VerifyIterativeGVN!
   840   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   842   // Some nodes have specific Ideal subgraph transformations only if they are
   843   // unique users of specific nodes. Such nodes should be put on IGVN worklist
   844   // for the transformations to happen.
   845   bool has_special_unique_user() const;
   847   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
   848   Node* find_exact_control(Node* ctrl);
   850   // Check if 'this' node dominates or equal to 'sub'.
   851   bool dominates(Node* sub, Node_List &nlist);
   853 protected:
   854   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
   855 public:
   857   // Idealize graph, using DU info.  Done after constant propagation
   858   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
   860   // See if there is valid pipeline info
   861   static  const Pipeline *pipeline_class();
   862   virtual const Pipeline *pipeline() const;
   864   // Compute the latency from the def to this instruction of the ith input node
   865   uint latency(uint i);
   867   // Hash & compare functions, for pessimistic value numbering
   869   // If the hash function returns the special sentinel value NO_HASH,
   870   // the node is guaranteed never to compare equal to any other node.
   871   // If we accidentally generate a hash with value NO_HASH the node
   872   // won't go into the table and we'll lose a little optimization.
   873   enum { NO_HASH = 0 };
   874   virtual uint hash() const;
   875   virtual uint cmp( const Node &n ) const;
   877   // Operation appears to be iteratively computed (such as an induction variable)
   878   // It is possible for this operation to return false for a loop-varying
   879   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
   880   bool is_iteratively_computed();
   882   // Determine if a node is Counted loop induction variable.
   883   // The method is defined in loopnode.cpp.
   884   const Node* is_loop_iv() const;
   886   // Return a node with opcode "opc" and same inputs as "this" if one can
   887   // be found; Otherwise return NULL;
   888   Node* find_similar(int opc);
   890   // Return the unique control out if only one. Null if none or more than one.
   891   Node* unique_ctrl_out();
   893 //----------------- Code Generation
   895   // Ideal register class for Matching.  Zero means unmatched instruction
   896   // (these are cloned instead of converted to machine nodes).
   897   virtual uint ideal_reg() const;
   899   static const uint NotAMachineReg;   // must be > max. machine register
   901   // Do we Match on this edge index or not?  Generally false for Control
   902   // and true for everything else.  Weird for calls & returns.
   903   virtual uint match_edge(uint idx) const;
   905   // Register class output is returned in
   906   virtual const RegMask &out_RegMask() const;
   907   // Register class input is expected in
   908   virtual const RegMask &in_RegMask(uint) const;
   909   // Should we clone rather than spill this instruction?
   910   bool rematerialize() const;
   912   // Return JVM State Object if this Node carries debug info, or NULL otherwise
   913   virtual JVMState* jvms() const;
   915   // Print as assembly
   916   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
   917   // Emit bytes starting at parameter 'ptr'
   918   // Bump 'ptr' by the number of output bytes
   919   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
   920   // Size of instruction in bytes
   921   virtual uint size(PhaseRegAlloc *ra_) const;
   923   // Convenience function to extract an integer constant from a node.
   924   // If it is not an integer constant (either Con, CastII, or Mach),
   925   // return value_if_unknown.
   926   jint find_int_con(jint value_if_unknown) const {
   927     const TypeInt* t = find_int_type();
   928     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   929   }
   930   // Return the constant, knowing it is an integer constant already
   931   jint get_int() const {
   932     const TypeInt* t = find_int_type();
   933     guarantee(t != NULL, "must be con");
   934     return t->get_con();
   935   }
   936   // Here's where the work is done.  Can produce non-constant int types too.
   937   const TypeInt* find_int_type() const;
   939   // Same thing for long (and intptr_t, via type.hpp):
   940   jlong get_long() const {
   941     const TypeLong* t = find_long_type();
   942     guarantee(t != NULL, "must be con");
   943     return t->get_con();
   944   }
   945   jlong find_long_con(jint value_if_unknown) const {
   946     const TypeLong* t = find_long_type();
   947     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   948   }
   949   const TypeLong* find_long_type() const;
   951   // These guys are called by code generated by ADLC:
   952   intptr_t get_ptr() const;
   953   intptr_t get_narrowcon() const;
   954   jdouble getd() const;
   955   jfloat getf() const;
   957   // Nodes which are pinned into basic blocks
   958   virtual bool pinned() const { return false; }
   960   // Nodes which use memory without consuming it, hence need antidependences
   961   // More specifically, needs_anti_dependence_check returns true iff the node
   962   // (a) does a load, and (b) does not perform a store (except perhaps to a
   963   // stack slot or some other unaliased location).
   964   bool needs_anti_dependence_check() const;
   966   // Return which operand this instruction may cisc-spill. In other words,
   967   // return operand position that can convert from reg to memory access
   968   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
   969   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
   971 //----------------- Graph walking
   972 public:
   973   // Walk and apply member functions recursively.
   974   // Supplied (this) pointer is root.
   975   void walk(NFunc pre, NFunc post, void *env);
   976   static void nop(Node &, void*); // Dummy empty function
   977   static void packregion( Node &n, void* );
   978 private:
   979   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
   981 //----------------- Printing, etc
   982 public:
   983 #ifndef PRODUCT
   984   Node* find(int idx) const;         // Search the graph for the given idx.
   985   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
   986   void dump() const;                 // Print this node,
   987   void dump(int depth) const;        // Print this node, recursively to depth d
   988   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
   989   virtual void dump_req() const;     // Print required-edge info
   990   virtual void dump_prec() const;    // Print precedence-edge info
   991   virtual void dump_out() const;     // Print the output edge info
   992   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
   993   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
   994   void verify() const;               // Check Def-Use info for my subgraph
   995   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
   997   // This call defines a class-unique string used to identify class instances
   998   virtual const char *Name() const;
  1000   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
  1001   // RegMask Print Functions
  1002   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
  1003   void dump_out_regmask() { out_RegMask().dump(); }
  1004   static int _in_dump_cnt;
  1005   static bool in_dump() { return _in_dump_cnt > 0; }
  1006   void fast_dump() const {
  1007     tty->print("%4d: %-17s", _idx, Name());
  1008     for (uint i = 0; i < len(); i++)
  1009       if (in(i))
  1010         tty->print(" %4d", in(i)->_idx);
  1011       else
  1012         tty->print(" NULL");
  1013     tty->print("\n");
  1015 #endif
  1016 #ifdef ASSERT
  1017   void verify_construction();
  1018   bool verify_jvms(const JVMState* jvms) const;
  1019   int  _debug_idx;                     // Unique value assigned to every node.
  1020   int   debug_idx() const              { return _debug_idx; }
  1021   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
  1023   Node* _debug_orig;                   // Original version of this, if any.
  1024   Node*  debug_orig() const            { return _debug_orig; }
  1025   void   set_debug_orig(Node* orig);   // _debug_orig = orig
  1027   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
  1028   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
  1029   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
  1031   static void init_NodeProperty();
  1033   #if OPTO_DU_ITERATOR_ASSERT
  1034   const Node* _last_del;               // The last deleted node.
  1035   uint        _del_tick;               // Bumped when a deletion happens..
  1036   #endif
  1037 #endif
  1038 };
  1040 //-----------------------------------------------------------------------------
  1041 // Iterators over DU info, and associated Node functions.
  1043 #if OPTO_DU_ITERATOR_ASSERT
  1045 // Common code for assertion checking on DU iterators.
  1046 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
  1047 #ifdef ASSERT
  1048  protected:
  1049   bool         _vdui;               // cached value of VerifyDUIterators
  1050   const Node*  _node;               // the node containing the _out array
  1051   uint         _outcnt;             // cached node->_outcnt
  1052   uint         _del_tick;           // cached node->_del_tick
  1053   Node*        _last;               // last value produced by the iterator
  1055   void sample(const Node* node);    // used by c'tor to set up for verifies
  1056   void verify(const Node* node, bool at_end_ok = false);
  1057   void verify_resync();
  1058   void reset(const DUIterator_Common& that);
  1060 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
  1061   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
  1062 #else
  1063   #define I_VDUI_ONLY(i,x) { }
  1064 #endif //ASSERT
  1065 };
  1067 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
  1069 // Default DU iterator.  Allows appends onto the out array.
  1070 // Allows deletion from the out array only at the current point.
  1071 // Usage:
  1072 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
  1073 //    Node* y = x->out(i);
  1074 //    ...
  1075 //  }
  1076 // Compiles in product mode to a unsigned integer index, which indexes
  1077 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
  1078 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
  1079 // before continuing the loop.  You must delete only the last-produced
  1080 // edge.  You must delete only a single copy of the last-produced edge,
  1081 // or else you must delete all copies at once (the first time the edge
  1082 // is produced by the iterator).
  1083 class DUIterator : public DUIterator_Common {
  1084   friend class Node;
  1086   // This is the index which provides the product-mode behavior.
  1087   // Whatever the product-mode version of the system does to the
  1088   // DUI index is done to this index.  All other fields in
  1089   // this class are used only for assertion checking.
  1090   uint         _idx;
  1092   #ifdef ASSERT
  1093   uint         _refresh_tick;    // Records the refresh activity.
  1095   void sample(const Node* node); // Initialize _refresh_tick etc.
  1096   void verify(const Node* node, bool at_end_ok = false);
  1097   void verify_increment();       // Verify an increment operation.
  1098   void verify_resync();          // Verify that we can back up over a deletion.
  1099   void verify_finish();          // Verify that the loop terminated properly.
  1100   void refresh();                // Resample verification info.
  1101   void reset(const DUIterator& that);  // Resample after assignment.
  1102   #endif
  1104   DUIterator(const Node* node, int dummy_to_avoid_conversion)
  1105     { _idx = 0;                         debug_only(sample(node)); }
  1107  public:
  1108   // initialize to garbage; clear _vdui to disable asserts
  1109   DUIterator()
  1110     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1112   void operator++(int dummy_to_specify_postfix_op)
  1113     { _idx++;                           VDUI_ONLY(verify_increment()); }
  1115   void operator--()
  1116     { VDUI_ONLY(verify_resync());       --_idx; }
  1118   ~DUIterator()
  1119     { VDUI_ONLY(verify_finish()); }
  1121   void operator=(const DUIterator& that)
  1122     { _idx = that._idx;                 debug_only(reset(that)); }
  1123 };
  1125 DUIterator Node::outs() const
  1126   { return DUIterator(this, 0); }
  1127 DUIterator& Node::refresh_out_pos(DUIterator& i) const
  1128   { I_VDUI_ONLY(i, i.refresh());        return i; }
  1129 bool Node::has_out(DUIterator& i) const
  1130   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
  1131 Node*    Node::out(DUIterator& i) const
  1132   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
  1135 // Faster DU iterator.  Disallows insertions into the out array.
  1136 // Allows deletion from the out array only at the current point.
  1137 // Usage:
  1138 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
  1139 //    Node* y = x->fast_out(i);
  1140 //    ...
  1141 //  }
  1142 // Compiles in product mode to raw Node** pointer arithmetic, with
  1143 // no reloading of pointers from the original node x.  If you delete,
  1144 // you must perform "--i; --imax" just before continuing the loop.
  1145 // If you delete multiple copies of the same edge, you must decrement
  1146 // imax, but not i, multiple times:  "--i, imax -= num_edges".
  1147 class DUIterator_Fast : public DUIterator_Common {
  1148   friend class Node;
  1149   friend class DUIterator_Last;
  1151   // This is the pointer which provides the product-mode behavior.
  1152   // Whatever the product-mode version of the system does to the
  1153   // DUI pointer is done to this pointer.  All other fields in
  1154   // this class are used only for assertion checking.
  1155   Node**       _outp;
  1157   #ifdef ASSERT
  1158   void verify(const Node* node, bool at_end_ok = false);
  1159   void verify_limit();
  1160   void verify_resync();
  1161   void verify_relimit(uint n);
  1162   void reset(const DUIterator_Fast& that);
  1163   #endif
  1165   // Note:  offset must be signed, since -1 is sometimes passed
  1166   DUIterator_Fast(const Node* node, ptrdiff_t offset)
  1167     { _outp = node->_out + offset;      debug_only(sample(node)); }
  1169  public:
  1170   // initialize to garbage; clear _vdui to disable asserts
  1171   DUIterator_Fast()
  1172     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1174   void operator++(int dummy_to_specify_postfix_op)
  1175     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
  1177   void operator--()
  1178     { VDUI_ONLY(verify_resync());       --_outp; }
  1180   void operator-=(uint n)   // applied to the limit only
  1181     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
  1183   bool operator<(DUIterator_Fast& limit) {
  1184     I_VDUI_ONLY(*this, this->verify(_node, true));
  1185     I_VDUI_ONLY(limit, limit.verify_limit());
  1186     return _outp < limit._outp;
  1189   void operator=(const DUIterator_Fast& that)
  1190     { _outp = that._outp;               debug_only(reset(that)); }
  1191 };
  1193 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
  1194   // Assign a limit pointer to the reference argument:
  1195   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
  1196   // Return the base pointer:
  1197   return DUIterator_Fast(this, 0);
  1199 Node* Node::fast_out(DUIterator_Fast& i) const {
  1200   I_VDUI_ONLY(i, i.verify(this));
  1201   return debug_only(i._last=) *i._outp;
  1205 // Faster DU iterator.  Requires each successive edge to be removed.
  1206 // Does not allow insertion of any edges.
  1207 // Usage:
  1208 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
  1209 //    Node* y = x->last_out(i);
  1210 //    ...
  1211 //  }
  1212 // Compiles in product mode to raw Node** pointer arithmetic, with
  1213 // no reloading of pointers from the original node x.
  1214 class DUIterator_Last : private DUIterator_Fast {
  1215   friend class Node;
  1217   #ifdef ASSERT
  1218   void verify(const Node* node, bool at_end_ok = false);
  1219   void verify_limit();
  1220   void verify_step(uint num_edges);
  1221   #endif
  1223   // Note:  offset must be signed, since -1 is sometimes passed
  1224   DUIterator_Last(const Node* node, ptrdiff_t offset)
  1225     : DUIterator_Fast(node, offset) { }
  1227   void operator++(int dummy_to_specify_postfix_op) {} // do not use
  1228   void operator<(int)                              {} // do not use
  1230  public:
  1231   DUIterator_Last() { }
  1232   // initialize to garbage
  1234   void operator--()
  1235     { _outp--;              VDUI_ONLY(verify_step(1));  }
  1237   void operator-=(uint n)
  1238     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
  1240   bool operator>=(DUIterator_Last& limit) {
  1241     I_VDUI_ONLY(*this, this->verify(_node, true));
  1242     I_VDUI_ONLY(limit, limit.verify_limit());
  1243     return _outp >= limit._outp;
  1246   void operator=(const DUIterator_Last& that)
  1247     { DUIterator_Fast::operator=(that); }
  1248 };
  1250 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
  1251   // Assign a limit pointer to the reference argument:
  1252   imin = DUIterator_Last(this, 0);
  1253   // Return the initial pointer:
  1254   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
  1256 Node* Node::last_out(DUIterator_Last& i) const {
  1257   I_VDUI_ONLY(i, i.verify(this));
  1258   return debug_only(i._last=) *i._outp;
  1261 #endif //OPTO_DU_ITERATOR_ASSERT
  1263 #undef I_VDUI_ONLY
  1264 #undef VDUI_ONLY
  1266 // An Iterator that truly follows the iterator pattern.  Doesn't
  1267 // support deletion but could be made to.
  1268 //
  1269 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
  1270 //     Node* m = i.get();
  1271 //
  1272 class SimpleDUIterator : public StackObj {
  1273  private:
  1274   Node* node;
  1275   DUIterator_Fast i;
  1276   DUIterator_Fast imax;
  1277  public:
  1278   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
  1279   bool has_next() { return i < imax; }
  1280   void next() { i++; }
  1281   Node* get() { return node->fast_out(i); }
  1282 };
  1285 //-----------------------------------------------------------------------------
  1286 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
  1287 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
  1288 // Note that the constructor just zeros things, and since I use Arena
  1289 // allocation I do not need a destructor to reclaim storage.
  1290 class Node_Array : public ResourceObj {
  1291   friend class VMStructs;
  1292 protected:
  1293   Arena *_a;                    // Arena to allocate in
  1294   uint   _max;
  1295   Node **_nodes;
  1296   void   grow( uint i );        // Grow array node to fit
  1297 public:
  1298   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
  1299     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
  1300     for( int i = 0; i < OptoNodeListSize; i++ ) {
  1301       _nodes[i] = NULL;
  1305   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
  1306   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  1307   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
  1308   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
  1309   Node **adr() { return _nodes; }
  1310   // Extend the mapping: index i maps to Node *n.
  1311   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
  1312   void insert( uint i, Node *n );
  1313   void remove( uint i );        // Remove, preserving order
  1314   void sort( C_sort_func_t func);
  1315   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
  1316   void clear();                 // Set all entries to NULL, keep storage
  1317   uint Size() const { return _max; }
  1318   void dump() const;
  1319 };
  1321 class Node_List : public Node_Array {
  1322   friend class VMStructs;
  1323   uint _cnt;
  1324 public:
  1325   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
  1326   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
  1327   bool contains(Node* n) {
  1328     for (uint e = 0; e < size(); e++) {
  1329       if (at(e) == n) return true;
  1331     return false;
  1333   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
  1334   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
  1335   void push( Node *b ) { map(_cnt++,b); }
  1336   void yank( Node *n );         // Find and remove
  1337   Node *pop() { return _nodes[--_cnt]; }
  1338   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
  1339   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
  1340   uint size() const { return _cnt; }
  1341   void dump() const;
  1342 };
  1344 //------------------------------Unique_Node_List-------------------------------
  1345 class Unique_Node_List : public Node_List {
  1346   friend class VMStructs;
  1347   VectorSet _in_worklist;
  1348   uint _clock_index;            // Index in list where to pop from next
  1349 public:
  1350   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
  1351   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
  1353   void remove( Node *n );
  1354   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
  1355   VectorSet &member_set(){ return _in_worklist; }
  1357   void push( Node *b ) {
  1358     if( !_in_worklist.test_set(b->_idx) )
  1359       Node_List::push(b);
  1361   Node *pop() {
  1362     if( _clock_index >= size() ) _clock_index = 0;
  1363     Node *b = at(_clock_index);
  1364     map( _clock_index, Node_List::pop());
  1365     if (size() != 0) _clock_index++; // Always start from 0
  1366     _in_worklist >>= b->_idx;
  1367     return b;
  1369   Node *remove( uint i ) {
  1370     Node *b = Node_List::at(i);
  1371     _in_worklist >>= b->_idx;
  1372     map(i,Node_List::pop());
  1373     return b;
  1375   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
  1376   void  clear() {
  1377     _in_worklist.Clear();        // Discards storage but grows automatically
  1378     Node_List::clear();
  1379     _clock_index = 0;
  1382   // Used after parsing to remove useless nodes before Iterative GVN
  1383   void remove_useless_nodes(VectorSet &useful);
  1385 #ifndef PRODUCT
  1386   void print_set() const { _in_worklist.print(); }
  1387 #endif
  1388 };
  1390 // Inline definition of Compile::record_for_igvn must be deferred to this point.
  1391 inline void Compile::record_for_igvn(Node* n) {
  1392   _for_igvn->push(n);
  1395 //------------------------------Node_Stack-------------------------------------
  1396 class Node_Stack {
  1397   friend class VMStructs;
  1398 protected:
  1399   struct INode {
  1400     Node *node; // Processed node
  1401     uint  indx; // Index of next node's child
  1402   };
  1403   INode *_inode_top; // tos, stack grows up
  1404   INode *_inode_max; // End of _inodes == _inodes + _max
  1405   INode *_inodes;    // Array storage for the stack
  1406   Arena *_a;         // Arena to allocate in
  1407   void grow();
  1408 public:
  1409   Node_Stack(int size) {
  1410     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1411     _a = Thread::current()->resource_area();
  1412     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1413     _inode_max = _inodes + max;
  1414     _inode_top = _inodes - 1; // stack is empty
  1417   Node_Stack(Arena *a, int size) : _a(a) {
  1418     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1419     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1420     _inode_max = _inodes + max;
  1421     _inode_top = _inodes - 1; // stack is empty
  1424   void pop() {
  1425     assert(_inode_top >= _inodes, "node stack underflow");
  1426     --_inode_top;
  1428   void push(Node *n, uint i) {
  1429     ++_inode_top;
  1430     if (_inode_top >= _inode_max) grow();
  1431     INode *top = _inode_top; // optimization
  1432     top->node = n;
  1433     top->indx = i;
  1435   Node *node() const {
  1436     return _inode_top->node;
  1438   Node* node_at(uint i) const {
  1439     assert(_inodes + i <= _inode_top, "in range");
  1440     return _inodes[i].node;
  1442   uint index() const {
  1443     return _inode_top->indx;
  1445   uint index_at(uint i) const {
  1446     assert(_inodes + i <= _inode_top, "in range");
  1447     return _inodes[i].indx;
  1449   void set_node(Node *n) {
  1450     _inode_top->node = n;
  1452   void set_index(uint i) {
  1453     _inode_top->indx = i;
  1455   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
  1456   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
  1457   bool is_nonempty() const { return (_inode_top >= _inodes); }
  1458   bool is_empty() const { return (_inode_top < _inodes); }
  1459   void clear() { _inode_top = _inodes - 1; } // retain storage
  1461   // Node_Stack is used to map nodes.
  1462   Node* find(uint idx) const;
  1463 };
  1466 //-----------------------------Node_Notes--------------------------------------
  1467 // Debugging or profiling annotations loosely and sparsely associated
  1468 // with some nodes.  See Compile::node_notes_at for the accessor.
  1469 class Node_Notes VALUE_OBJ_CLASS_SPEC {
  1470   friend class VMStructs;
  1471   JVMState* _jvms;
  1473 public:
  1474   Node_Notes(JVMState* jvms = NULL) {
  1475     _jvms = jvms;
  1478   JVMState* jvms()            { return _jvms; }
  1479   void  set_jvms(JVMState* x) {        _jvms = x; }
  1481   // True if there is nothing here.
  1482   bool is_clear() {
  1483     return (_jvms == NULL);
  1486   // Make there be nothing here.
  1487   void clear() {
  1488     _jvms = NULL;
  1491   // Make a new, clean node notes.
  1492   static Node_Notes* make(Compile* C) {
  1493     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1494     nn->clear();
  1495     return nn;
  1498   Node_Notes* clone(Compile* C) {
  1499     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1500     (*nn) = (*this);
  1501     return nn;
  1504   // Absorb any information from source.
  1505   bool update_from(Node_Notes* source) {
  1506     bool changed = false;
  1507     if (source != NULL) {
  1508       if (source->jvms() != NULL) {
  1509         set_jvms(source->jvms());
  1510         changed = true;
  1513     return changed;
  1515 };
  1517 // Inlined accessors for Compile::node_nodes that require the preceding class:
  1518 inline Node_Notes*
  1519 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
  1520                            int idx, bool can_grow) {
  1521   assert(idx >= 0, "oob");
  1522   int block_idx = (idx >> _log2_node_notes_block_size);
  1523   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
  1524   if (grow_by >= 0) {
  1525     if (!can_grow)  return NULL;
  1526     grow_node_notes(arr, grow_by + 1);
  1528   // (Every element of arr is a sub-array of length _node_notes_block_size.)
  1529   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
  1532 inline bool
  1533 Compile::set_node_notes_at(int idx, Node_Notes* value) {
  1534   if (value == NULL || value->is_clear())
  1535     return false;  // nothing to write => write nothing
  1536   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
  1537   assert(loc != NULL, "");
  1538   return loc->update_from(value);
  1542 //------------------------------TypeNode---------------------------------------
  1543 // Node with a Type constant.
  1544 class TypeNode : public Node {
  1545 protected:
  1546   virtual uint hash() const;    // Check the type
  1547   virtual uint cmp( const Node &n ) const;
  1548   virtual uint size_of() const; // Size is bigger
  1549   const Type* const _type;
  1550 public:
  1551   void set_type(const Type* t) {
  1552     assert(t != NULL, "sanity");
  1553     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
  1554     *(const Type**)&_type = t;   // cast away const-ness
  1555     // If this node is in the hash table, make sure it doesn't need a rehash.
  1556     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  1558   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
  1559   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
  1560     init_class_id(Class_Type);
  1562   virtual const Type *Value( PhaseTransform *phase ) const;
  1563   virtual const Type *bottom_type() const;
  1564   virtual       uint  ideal_reg() const;
  1565 #ifndef PRODUCT
  1566   virtual void dump_spec(outputStream *st) const;
  1567 #endif
  1568 };
  1570 #endif // SHARE_VM_OPTO_NODE_HPP

mercurial