src/share/vm/opto/ifg.cpp

Wed, 16 Nov 2011 09:13:57 -0800

author
kvn
date
Wed, 16 Nov 2011 09:13:57 -0800
changeset 3311
1bd45abaa507
parent 2314
f95d63e2154a
child 3882
8c92982cbbc4
permissions
-rw-r--r--

6890673: Eliminate allocations immediately after EA
Summary: Try to eliminate allocations and related locks immediately after escape analysis.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/oopMap.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/block.hpp"
    30 #include "opto/callnode.hpp"
    31 #include "opto/cfgnode.hpp"
    32 #include "opto/chaitin.hpp"
    33 #include "opto/coalesce.hpp"
    34 #include "opto/connode.hpp"
    35 #include "opto/indexSet.hpp"
    36 #include "opto/machnode.hpp"
    37 #include "opto/memnode.hpp"
    38 #include "opto/opcodes.hpp"
    40 #define EXACT_PRESSURE 1
    42 //=============================================================================
    43 //------------------------------IFG--------------------------------------------
    44 PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
    45 }
    47 //------------------------------init-------------------------------------------
    48 void PhaseIFG::init( uint maxlrg ) {
    49   _maxlrg = maxlrg;
    50   _yanked = new (_arena) VectorSet(_arena);
    51   _is_square = false;
    52   // Make uninitialized adjacency lists
    53   _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
    54   // Also make empty live range structures
    55   _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
    56   memset(_lrgs,0,sizeof(LRG)*maxlrg);
    57   // Init all to empty
    58   for( uint i = 0; i < maxlrg; i++ ) {
    59     _adjs[i].initialize(maxlrg);
    60     _lrgs[i].Set_All();
    61   }
    62 }
    64 //------------------------------add--------------------------------------------
    65 // Add edge between vertices a & b.  These are sorted (triangular matrix),
    66 // then the smaller number is inserted in the larger numbered array.
    67 int PhaseIFG::add_edge( uint a, uint b ) {
    68   lrgs(a).invalid_degree();
    69   lrgs(b).invalid_degree();
    70   // Sort a and b, so that a is bigger
    71   assert( !_is_square, "only on triangular" );
    72   if( a < b ) { uint tmp = a; a = b; b = tmp; }
    73   return _adjs[a].insert( b );
    74 }
    76 //------------------------------add_vector-------------------------------------
    77 // Add an edge between 'a' and everything in the vector.
    78 void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
    79   // IFG is triangular, so do the inserts where 'a' < 'b'.
    80   assert( !_is_square, "only on triangular" );
    81   IndexSet *adjs_a = &_adjs[a];
    82   if( !vec->count() ) return;
    84   IndexSetIterator elements(vec);
    85   uint neighbor;
    86   while ((neighbor = elements.next()) != 0) {
    87     add_edge( a, neighbor );
    88   }
    89 }
    91 //------------------------------test-------------------------------------------
    92 // Is there an edge between a and b?
    93 int PhaseIFG::test_edge( uint a, uint b ) const {
    94   // Sort a and b, so that a is larger
    95   assert( !_is_square, "only on triangular" );
    96   if( a < b ) { uint tmp = a; a = b; b = tmp; }
    97   return _adjs[a].member(b);
    98 }
   100 //------------------------------SquareUp---------------------------------------
   101 // Convert triangular matrix to square matrix
   102 void PhaseIFG::SquareUp() {
   103   assert( !_is_square, "only on triangular" );
   105   // Simple transpose
   106   for( uint i = 0; i < _maxlrg; i++ ) {
   107     IndexSetIterator elements(&_adjs[i]);
   108     uint datum;
   109     while ((datum = elements.next()) != 0) {
   110       _adjs[datum].insert( i );
   111     }
   112   }
   113   _is_square = true;
   114 }
   116 //------------------------------Compute_Effective_Degree-----------------------
   117 // Compute effective degree in bulk
   118 void PhaseIFG::Compute_Effective_Degree() {
   119   assert( _is_square, "only on square" );
   121   for( uint i = 0; i < _maxlrg; i++ )
   122     lrgs(i).set_degree(effective_degree(i));
   123 }
   125 //------------------------------test_edge_sq-----------------------------------
   126 int PhaseIFG::test_edge_sq( uint a, uint b ) const {
   127   assert( _is_square, "only on square" );
   128   // Swap, so that 'a' has the lesser count.  Then binary search is on
   129   // the smaller of a's list and b's list.
   130   if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
   131   //return _adjs[a].unordered_member(b);
   132   return _adjs[a].member(b);
   133 }
   135 //------------------------------Union------------------------------------------
   136 // Union edges of B into A
   137 void PhaseIFG::Union( uint a, uint b ) {
   138   assert( _is_square, "only on square" );
   139   IndexSet *A = &_adjs[a];
   140   IndexSetIterator b_elements(&_adjs[b]);
   141   uint datum;
   142   while ((datum = b_elements.next()) != 0) {
   143     if(A->insert(datum)) {
   144       _adjs[datum].insert(a);
   145       lrgs(a).invalid_degree();
   146       lrgs(datum).invalid_degree();
   147     }
   148   }
   149 }
   151 //------------------------------remove_node------------------------------------
   152 // Yank a Node and all connected edges from the IFG.  Return a
   153 // list of neighbors (edges) yanked.
   154 IndexSet *PhaseIFG::remove_node( uint a ) {
   155   assert( _is_square, "only on square" );
   156   assert( !_yanked->test(a), "" );
   157   _yanked->set(a);
   159   // I remove the LRG from all neighbors.
   160   IndexSetIterator elements(&_adjs[a]);
   161   LRG &lrg_a = lrgs(a);
   162   uint datum;
   163   while ((datum = elements.next()) != 0) {
   164     _adjs[datum].remove(a);
   165     lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
   166   }
   167   return neighbors(a);
   168 }
   170 //------------------------------re_insert--------------------------------------
   171 // Re-insert a yanked Node.
   172 void PhaseIFG::re_insert( uint a ) {
   173   assert( _is_square, "only on square" );
   174   assert( _yanked->test(a), "" );
   175   (*_yanked) >>= a;
   177   IndexSetIterator elements(&_adjs[a]);
   178   uint datum;
   179   while ((datum = elements.next()) != 0) {
   180     _adjs[datum].insert(a);
   181     lrgs(datum).invalid_degree();
   182   }
   183 }
   185 //------------------------------compute_degree---------------------------------
   186 // Compute the degree between 2 live ranges.  If both live ranges are
   187 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
   188 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
   189 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
   190 // this is so.
   191 int LRG::compute_degree( LRG &l ) const {
   192   int tmp;
   193   int num_regs = _num_regs;
   194   int nregs = l.num_regs();
   195   tmp =  (_fat_proj || l._fat_proj)     // either is a fat-proj?
   196     ? (num_regs * nregs)                // then use product
   197     : MAX2(num_regs,nregs);             // else use max
   198   return tmp;
   199 }
   201 //------------------------------effective_degree-------------------------------
   202 // Compute effective degree for this live range.  If both live ranges are
   203 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
   204 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
   205 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
   206 // this is so.
   207 int PhaseIFG::effective_degree( uint lidx ) const {
   208   int eff = 0;
   209   int num_regs = lrgs(lidx).num_regs();
   210   int fat_proj = lrgs(lidx)._fat_proj;
   211   IndexSet *s = neighbors(lidx);
   212   IndexSetIterator elements(s);
   213   uint nidx;
   214   while((nidx = elements.next()) != 0) {
   215     LRG &lrgn = lrgs(nidx);
   216     int nregs = lrgn.num_regs();
   217     eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
   218       ? (num_regs * nregs)              // then use product
   219       : MAX2(num_regs,nregs);           // else use max
   220   }
   221   return eff;
   222 }
   225 #ifndef PRODUCT
   226 //------------------------------dump-------------------------------------------
   227 void PhaseIFG::dump() const {
   228   tty->print_cr("-- Interference Graph --%s--",
   229                 _is_square ? "square" : "triangular" );
   230   if( _is_square ) {
   231     for( uint i = 0; i < _maxlrg; i++ ) {
   232       tty->print( (*_yanked)[i] ? "XX " : "  ");
   233       tty->print("L%d: { ",i);
   234       IndexSetIterator elements(&_adjs[i]);
   235       uint datum;
   236       while ((datum = elements.next()) != 0) {
   237         tty->print("L%d ", datum);
   238       }
   239       tty->print_cr("}");
   241     }
   242     return;
   243   }
   245   // Triangular
   246   for( uint i = 0; i < _maxlrg; i++ ) {
   247     uint j;
   248     tty->print( (*_yanked)[i] ? "XX " : "  ");
   249     tty->print("L%d: { ",i);
   250     for( j = _maxlrg; j > i; j-- )
   251       if( test_edge(j - 1,i) ) {
   252         tty->print("L%d ",j - 1);
   253       }
   254     tty->print("| ");
   255     IndexSetIterator elements(&_adjs[i]);
   256     uint datum;
   257     while ((datum = elements.next()) != 0) {
   258       tty->print("L%d ", datum);
   259     }
   260     tty->print("}\n");
   261   }
   262   tty->print("\n");
   263 }
   265 //------------------------------stats------------------------------------------
   266 void PhaseIFG::stats() const {
   267   ResourceMark rm;
   268   int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
   269   memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
   270   uint i;
   271   for( i = 0; i < _maxlrg; i++ ) {
   272     h_cnt[neighbor_cnt(i)]++;
   273   }
   274   tty->print_cr("--Histogram of counts--");
   275   for( i = 0; i < _maxlrg*2; i++ )
   276     if( h_cnt[i] )
   277       tty->print("%d/%d ",i,h_cnt[i]);
   278   tty->print_cr("");
   279 }
   281 //------------------------------verify-----------------------------------------
   282 void PhaseIFG::verify( const PhaseChaitin *pc ) const {
   283   // IFG is square, sorted and no need for Find
   284   for( uint i = 0; i < _maxlrg; i++ ) {
   285     assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
   286     IndexSet *set = &_adjs[i];
   287     IndexSetIterator elements(set);
   288     uint idx;
   289     uint last = 0;
   290     while ((idx = elements.next()) != 0) {
   291       assert( idx != i, "Must have empty diagonal");
   292       assert( pc->Find_const(idx) == idx, "Must not need Find" );
   293       assert( _adjs[idx].member(i), "IFG not square" );
   294       assert( !(*_yanked)[idx], "No yanked neighbors" );
   295       assert( last < idx, "not sorted increasing");
   296       last = idx;
   297     }
   298     assert( !lrgs(i)._degree_valid ||
   299             effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong" );
   300   }
   301 }
   302 #endif
   304 //------------------------------interfere_with_live----------------------------
   305 // Interfere this register with everything currently live.  Use the RegMasks
   306 // to trim the set of possible interferences. Return a count of register-only
   307 // interferences as an estimate of register pressure.
   308 void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
   309   uint retval = 0;
   310   // Interfere with everything live.
   311   const RegMask &rm = lrgs(r).mask();
   312   // Check for interference by checking overlap of regmasks.
   313   // Only interfere if acceptable register masks overlap.
   314   IndexSetIterator elements(liveout);
   315   uint l;
   316   while( (l = elements.next()) != 0 )
   317     if( rm.overlap( lrgs(l).mask() ) )
   318       _ifg->add_edge( r, l );
   319 }
   321 //------------------------------build_ifg_virtual------------------------------
   322 // Actually build the interference graph.  Uses virtual registers only, no
   323 // physical register masks.  This allows me to be very aggressive when
   324 // coalescing copies.  Some of this aggressiveness will have to be undone
   325 // later, but I'd rather get all the copies I can now (since unremoved copies
   326 // at this point can end up in bad places).  Copies I re-insert later I have
   327 // more opportunity to insert them in low-frequency locations.
   328 void PhaseChaitin::build_ifg_virtual( ) {
   330   // For all blocks (in any order) do...
   331   for( uint i=0; i<_cfg._num_blocks; i++ ) {
   332     Block *b = _cfg._blocks[i];
   333     IndexSet *liveout = _live->live(b);
   335     // The IFG is built by a single reverse pass over each basic block.
   336     // Starting with the known live-out set, we remove things that get
   337     // defined and add things that become live (essentially executing one
   338     // pass of a standard LIVE analysis). Just before a Node defines a value
   339     // (and removes it from the live-ness set) that value is certainly live.
   340     // The defined value interferes with everything currently live.  The
   341     // value is then removed from the live-ness set and it's inputs are
   342     // added to the live-ness set.
   343     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
   344       Node *n = b->_nodes[j-1];
   346       // Get value being defined
   347       uint r = n2lidx(n);
   349       // Some special values do not allocate
   350       if( r ) {
   352         // Remove from live-out set
   353         liveout->remove(r);
   355         // Copies do not define a new value and so do not interfere.
   356         // Remove the copies source from the liveout set before interfering.
   357         uint idx = n->is_Copy();
   358         if( idx ) liveout->remove( n2lidx(n->in(idx)) );
   360         // Interfere with everything live
   361         interfere_with_live( r, liveout );
   362       }
   364       // Make all inputs live
   365       if( !n->is_Phi() ) {      // Phi function uses come from prior block
   366         for( uint k = 1; k < n->req(); k++ )
   367           liveout->insert( n2lidx(n->in(k)) );
   368       }
   370       // 2-address instructions always have the defined value live
   371       // on entry to the instruction, even though it is being defined
   372       // by the instruction.  We pretend a virtual copy sits just prior
   373       // to the instruction and kills the src-def'd register.
   374       // In other words, for 2-address instructions the defined value
   375       // interferes with all inputs.
   376       uint idx;
   377       if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
   378         const MachNode *mach = n->as_Mach();
   379         // Sometimes my 2-address ADDs are commuted in a bad way.
   380         // We generally want the USE-DEF register to refer to the
   381         // loop-varying quantity, to avoid a copy.
   382         uint op = mach->ideal_Opcode();
   383         // Check that mach->num_opnds() == 3 to ensure instruction is
   384         // not subsuming constants, effectively excludes addI_cin_imm
   385         // Can NOT swap for instructions like addI_cin_imm since it
   386         // is adding zero to yhi + carry and the second ideal-input
   387         // points to the result of adding low-halves.
   388         // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
   389         if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
   390             n->in(1)->bottom_type()->base() == Type::Int &&
   391             // See if the ADD is involved in a tight data loop the wrong way
   392             n->in(2)->is_Phi() &&
   393             n->in(2)->in(2) == n ) {
   394           Node *tmp = n->in(1);
   395           n->set_req( 1, n->in(2) );
   396           n->set_req( 2, tmp );
   397         }
   398         // Defined value interferes with all inputs
   399         uint lidx = n2lidx(n->in(idx));
   400         for( uint k = 1; k < n->req(); k++ ) {
   401           uint kidx = n2lidx(n->in(k));
   402           if( kidx != lidx )
   403             _ifg->add_edge( r, kidx );
   404         }
   405       }
   406     } // End of forall instructions in block
   407   } // End of forall blocks
   408 }
   410 //------------------------------count_int_pressure-----------------------------
   411 uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
   412   IndexSetIterator elements(liveout);
   413   uint lidx;
   414   uint cnt = 0;
   415   while ((lidx = elements.next()) != 0) {
   416     if( lrgs(lidx).mask().is_UP() &&
   417         lrgs(lidx).mask_size() &&
   418         !lrgs(lidx)._is_float &&
   419         lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
   420       cnt += lrgs(lidx).reg_pressure();
   421   }
   422   return cnt;
   423 }
   425 //------------------------------count_float_pressure---------------------------
   426 uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
   427   IndexSetIterator elements(liveout);
   428   uint lidx;
   429   uint cnt = 0;
   430   while ((lidx = elements.next()) != 0) {
   431     if( lrgs(lidx).mask().is_UP() &&
   432         lrgs(lidx).mask_size() &&
   433         lrgs(lidx)._is_float )
   434       cnt += lrgs(lidx).reg_pressure();
   435   }
   436   return cnt;
   437 }
   439 //------------------------------lower_pressure---------------------------------
   440 // Adjust register pressure down by 1.  Capture last hi-to-low transition,
   441 static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
   442   if( lrg->mask().is_UP() && lrg->mask_size() ) {
   443     if( lrg->_is_float ) {
   444       pressure[1] -= lrg->reg_pressure();
   445       if( pressure[1] == (uint)FLOATPRESSURE ) {
   446         hrp_index[1] = where;
   447 #ifdef EXACT_PRESSURE
   448       if( pressure[1] > b->_freg_pressure )
   449         b->_freg_pressure = pressure[1]+1;
   450 #else
   451         b->_freg_pressure = (uint)FLOATPRESSURE+1;
   452 #endif
   453       }
   454     } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
   455       pressure[0] -= lrg->reg_pressure();
   456       if( pressure[0] == (uint)INTPRESSURE   ) {
   457         hrp_index[0] = where;
   458 #ifdef EXACT_PRESSURE
   459       if( pressure[0] > b->_reg_pressure )
   460         b->_reg_pressure = pressure[0]+1;
   461 #else
   462         b->_reg_pressure = (uint)INTPRESSURE+1;
   463 #endif
   464       }
   465     }
   466   }
   467 }
   469 //------------------------------build_ifg_physical-----------------------------
   470 // Build the interference graph using physical registers when available.
   471 // That is, if 2 live ranges are simultaneously alive but in their acceptable
   472 // register sets do not overlap, then they do not interfere.
   473 uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
   474   NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
   476   uint spill_reg = LRG::SPILL_REG;
   477   uint must_spill = 0;
   479   // For all blocks (in any order) do...
   480   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   481     Block *b = _cfg._blocks[i];
   482     // Clone (rather than smash in place) the liveout info, so it is alive
   483     // for the "collect_gc_info" phase later.
   484     IndexSet liveout(_live->live(b));
   485     uint last_inst = b->end_idx();
   486     // Compute first nonphi node index
   487     uint first_inst;
   488     for( first_inst = 1; first_inst < last_inst; first_inst++ )
   489       if( !b->_nodes[first_inst]->is_Phi() )
   490         break;
   492     // Spills could be inserted before CreateEx node which should be
   493     // first instruction in block after Phis. Move CreateEx up.
   494     for( uint insidx = first_inst; insidx < last_inst; insidx++ ) {
   495       Node *ex = b->_nodes[insidx];
   496       if( ex->is_SpillCopy() ) continue;
   497       if( insidx > first_inst && ex->is_Mach() &&
   498           ex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
   499         // If the CreateEx isn't above all the MachSpillCopies
   500         // then move it to the top.
   501         b->_nodes.remove(insidx);
   502         b->_nodes.insert(first_inst, ex);
   503       }
   504       // Stop once a CreateEx or any other node is found
   505       break;
   506     }
   508     // Reset block's register pressure values for each ifg construction
   509     uint pressure[2], hrp_index[2];
   510     pressure[0] = pressure[1] = 0;
   511     hrp_index[0] = hrp_index[1] = last_inst+1;
   512     b->_reg_pressure = b->_freg_pressure = 0;
   513     // Liveout things are presumed live for the whole block.  We accumulate
   514     // 'area' accordingly.  If they get killed in the block, we'll subtract
   515     // the unused part of the block from the area.
   516     int inst_count = last_inst - first_inst;
   517     double cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
   518     assert(!(cost < 0.0), "negative spill cost" );
   519     IndexSetIterator elements(&liveout);
   520     uint lidx;
   521     while ((lidx = elements.next()) != 0) {
   522       LRG &lrg = lrgs(lidx);
   523       lrg._area += cost;
   524       // Compute initial register pressure
   525       if( lrg.mask().is_UP() && lrg.mask_size() ) {
   526         if( lrg._is_float ) {   // Count float pressure
   527           pressure[1] += lrg.reg_pressure();
   528 #ifdef EXACT_PRESSURE
   529           if( pressure[1] > b->_freg_pressure )
   530             b->_freg_pressure = pressure[1];
   531 #endif
   532           // Count int pressure, but do not count the SP, flags
   533         } else if( lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
   534           pressure[0] += lrg.reg_pressure();
   535 #ifdef EXACT_PRESSURE
   536           if( pressure[0] > b->_reg_pressure )
   537             b->_reg_pressure = pressure[0];
   538 #endif
   539         }
   540       }
   541     }
   542     assert( pressure[0] == count_int_pressure  (&liveout), "" );
   543     assert( pressure[1] == count_float_pressure(&liveout), "" );
   545     // The IFG is built by a single reverse pass over each basic block.
   546     // Starting with the known live-out set, we remove things that get
   547     // defined and add things that become live (essentially executing one
   548     // pass of a standard LIVE analysis).  Just before a Node defines a value
   549     // (and removes it from the live-ness set) that value is certainly live.
   550     // The defined value interferes with everything currently live.  The
   551     // value is then removed from the live-ness set and it's inputs are added
   552     // to the live-ness set.
   553     uint j;
   554     for( j = last_inst + 1; j > 1; j-- ) {
   555       Node *n = b->_nodes[j - 1];
   557       // Get value being defined
   558       uint r = n2lidx(n);
   560       // Some special values do not allocate
   561       if( r ) {
   562         // A DEF normally costs block frequency; rematerialized values are
   563         // removed from the DEF sight, so LOWER costs here.
   564         lrgs(r)._cost += n->rematerialize() ? 0 : b->_freq;
   566         // If it is not live, then this instruction is dead.  Probably caused
   567         // by spilling and rematerialization.  Who cares why, yank this baby.
   568         if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
   569           Node *def = n->in(0);
   570           if( !n->is_Proj() ||
   571               // Could also be a flags-projection of a dead ADD or such.
   572               (n2lidx(def) && !liveout.member(n2lidx(def)) ) ) {
   573             b->_nodes.remove(j - 1);
   574             if( lrgs(r)._def == n ) lrgs(r)._def = 0;
   575             n->disconnect_inputs(NULL);
   576             _cfg._bbs.map(n->_idx,NULL);
   577             n->replace_by(C->top());
   578             // Since yanking a Node from block, high pressure moves up one
   579             hrp_index[0]--;
   580             hrp_index[1]--;
   581             continue;
   582           }
   584           // Fat-projections kill many registers which cannot be used to
   585           // hold live ranges.
   586           if( lrgs(r)._fat_proj ) {
   587             // Count the int-only registers
   588             RegMask itmp = lrgs(r).mask();
   589             itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
   590             int iregs = itmp.Size();
   591 #ifdef EXACT_PRESSURE
   592             if( pressure[0]+iregs > b->_reg_pressure )
   593               b->_reg_pressure = pressure[0]+iregs;
   594 #endif
   595             if( pressure[0]       <= (uint)INTPRESSURE &&
   596                 pressure[0]+iregs >  (uint)INTPRESSURE ) {
   597 #ifndef EXACT_PRESSURE
   598               b->_reg_pressure = (uint)INTPRESSURE+1;
   599 #endif
   600               hrp_index[0] = j-1;
   601             }
   602             // Count the float-only registers
   603             RegMask ftmp = lrgs(r).mask();
   604             ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
   605             int fregs = ftmp.Size();
   606 #ifdef EXACT_PRESSURE
   607             if( pressure[1]+fregs > b->_freg_pressure )
   608               b->_freg_pressure = pressure[1]+fregs;
   609 #endif
   610             if( pressure[1]       <= (uint)FLOATPRESSURE &&
   611                 pressure[1]+fregs >  (uint)FLOATPRESSURE ) {
   612 #ifndef EXACT_PRESSURE
   613               b->_freg_pressure = (uint)FLOATPRESSURE+1;
   614 #endif
   615               hrp_index[1] = j-1;
   616             }
   617           }
   619         } else {                // Else it is live
   620           // A DEF also ends 'area' partway through the block.
   621           lrgs(r)._area -= cost;
   622           assert(!(lrgs(r)._area < 0.0), "negative spill area" );
   624           // Insure high score for immediate-use spill copies so they get a color
   625           if( n->is_SpillCopy()
   626               && lrgs(r).is_singledef()        // MultiDef live range can still split
   627               && n->outcnt() == 1              // and use must be in this block
   628               && _cfg._bbs[n->unique_out()->_idx] == b ) {
   629             // All single-use MachSpillCopy(s) that immediately precede their
   630             // use must color early.  If a longer live range steals their
   631             // color, the spill copy will split and may push another spill copy
   632             // further away resulting in an infinite spill-split-retry cycle.
   633             // Assigning a zero area results in a high score() and a good
   634             // location in the simplify list.
   635             //
   637             Node *single_use = n->unique_out();
   638             assert( b->find_node(single_use) >= j, "Use must be later in block");
   639             // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
   641             // Find first non SpillCopy 'm' that follows the current instruction
   642             // (j - 1) is index for current instruction 'n'
   643             Node *m = n;
   644             for( uint i = j; i <= last_inst && m->is_SpillCopy(); ++i ) { m = b->_nodes[i]; }
   645             if( m == single_use ) {
   646               lrgs(r)._area = 0.0;
   647             }
   648           }
   650           // Remove from live-out set
   651           if( liveout.remove(r) ) {
   652             // Adjust register pressure.
   653             // Capture last hi-to-lo pressure transition
   654             lower_pressure( &lrgs(r), j-1, b, pressure, hrp_index );
   655             assert( pressure[0] == count_int_pressure  (&liveout), "" );
   656             assert( pressure[1] == count_float_pressure(&liveout), "" );
   657           }
   659           // Copies do not define a new value and so do not interfere.
   660           // Remove the copies source from the liveout set before interfering.
   661           uint idx = n->is_Copy();
   662           if( idx ) {
   663             uint x = n2lidx(n->in(idx));
   664             if( liveout.remove( x ) ) {
   665               lrgs(x)._area -= cost;
   666               // Adjust register pressure.
   667               lower_pressure( &lrgs(x), j-1, b, pressure, hrp_index );
   668               assert( pressure[0] == count_int_pressure  (&liveout), "" );
   669               assert( pressure[1] == count_float_pressure(&liveout), "" );
   670             }
   671           }
   672         } // End of if live or not
   674         // Interfere with everything live.  If the defined value must
   675         // go in a particular register, just remove that register from
   676         // all conflicting parties and avoid the interference.
   678         // Make exclusions for rematerializable defs.  Since rematerializable
   679         // DEFs are not bound but the live range is, some uses must be bound.
   680         // If we spill live range 'r', it can rematerialize at each use site
   681         // according to its bindings.
   682         const RegMask &rmask = lrgs(r).mask();
   683         if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
   684           // Smear odd bits; leave only aligned pairs of bits.
   685           RegMask r2mask = rmask;
   686           r2mask.SmearToPairs();
   687           // Check for common case
   688           int r_size = lrgs(r).num_regs();
   689           OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
   691           IndexSetIterator elements(&liveout);
   692           uint l;
   693           while ((l = elements.next()) != 0) {
   694             LRG &lrg = lrgs(l);
   695             // If 'l' must spill already, do not further hack his bits.
   696             // He'll get some interferences and be forced to spill later.
   697             if( lrg._must_spill ) continue;
   698             // Remove bound register(s) from 'l's choices
   699             RegMask old = lrg.mask();
   700             uint old_size = lrg.mask_size();
   701             // Remove the bits from LRG 'r' from LRG 'l' so 'l' no
   702             // longer interferes with 'r'.  If 'l' requires aligned
   703             // adjacent pairs, subtract out bit pairs.
   704             if( lrg.num_regs() == 2 && !lrg._fat_proj ) {
   705               lrg.SUBTRACT( r2mask );
   706               lrg.compute_set_mask_size();
   707             } else if( r_size != 1 ) {
   708               lrg.SUBTRACT( rmask );
   709               lrg.compute_set_mask_size();
   710             } else {            // Common case: size 1 bound removal
   711               if( lrg.mask().Member(r_reg) ) {
   712                 lrg.Remove(r_reg);
   713                 lrg.set_mask_size(lrg.mask().is_AllStack() ? 65535:old_size-1);
   714               }
   715             }
   716             // If 'l' goes completely dry, it must spill.
   717             if( lrg.not_free() ) {
   718               // Give 'l' some kind of reasonable mask, so he picks up
   719               // interferences (and will spill later).
   720               lrg.set_mask( old );
   721               lrg.set_mask_size(old_size);
   722               must_spill++;
   723               lrg._must_spill = 1;
   724               lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
   725             }
   726           }
   727         } // End of if bound
   729         // Now interference with everything that is live and has
   730         // compatible register sets.
   731         interfere_with_live(r,&liveout);
   733       } // End of if normal register-allocated value
   735       // Area remaining in the block
   736       inst_count--;
   737       cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
   739       // Make all inputs live
   740       if( !n->is_Phi() ) {      // Phi function uses come from prior block
   741         JVMState* jvms = n->jvms();
   742         uint debug_start = jvms ? jvms->debug_start() : 999999;
   743         // Start loop at 1 (skip control edge) for most Nodes.
   744         // SCMemProj's might be the sole use of a StoreLConditional.
   745         // While StoreLConditionals set memory (the SCMemProj use)
   746         // they also def flags; if that flag def is unused the
   747         // allocator sees a flag-setting instruction with no use of
   748         // the flags and assumes it's dead.  This keeps the (useless)
   749         // flag-setting behavior alive while also keeping the (useful)
   750         // memory update effect.
   751         for( uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++ ) {
   752           Node *def = n->in(k);
   753           uint x = n2lidx(def);
   754           if( !x ) continue;
   755           LRG &lrg = lrgs(x);
   756           // No use-side cost for spilling debug info
   757           if( k < debug_start )
   758             // A USE costs twice block frequency (once for the Load, once
   759             // for a Load-delay).  Rematerialized uses only cost once.
   760             lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq + b->_freq));
   761           // It is live now
   762           if( liveout.insert( x ) ) {
   763             // Newly live things assumed live from here to top of block
   764             lrg._area += cost;
   765             // Adjust register pressure
   766             if( lrg.mask().is_UP() && lrg.mask_size() ) {
   767               if( lrg._is_float ) {
   768                 pressure[1] += lrg.reg_pressure();
   769 #ifdef EXACT_PRESSURE
   770                 if( pressure[1] > b->_freg_pressure )
   771                   b->_freg_pressure = pressure[1];
   772 #endif
   773               } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
   774                 pressure[0] += lrg.reg_pressure();
   775 #ifdef EXACT_PRESSURE
   776                 if( pressure[0] > b->_reg_pressure )
   777                   b->_reg_pressure = pressure[0];
   778 #endif
   779               }
   780             }
   781             assert( pressure[0] == count_int_pressure  (&liveout), "" );
   782             assert( pressure[1] == count_float_pressure(&liveout), "" );
   783           }
   784           assert(!(lrg._area < 0.0), "negative spill area" );
   785         }
   786       }
   787     } // End of reverse pass over all instructions in block
   789     // If we run off the top of the block with high pressure and
   790     // never see a hi-to-low pressure transition, just record that
   791     // the whole block is high pressure.
   792     if( pressure[0] > (uint)INTPRESSURE   ) {
   793       hrp_index[0] = 0;
   794 #ifdef EXACT_PRESSURE
   795       if( pressure[0] > b->_reg_pressure )
   796         b->_reg_pressure = pressure[0];
   797 #else
   798       b->_reg_pressure = (uint)INTPRESSURE+1;
   799 #endif
   800     }
   801     if( pressure[1] > (uint)FLOATPRESSURE ) {
   802       hrp_index[1] = 0;
   803 #ifdef EXACT_PRESSURE
   804       if( pressure[1] > b->_freg_pressure )
   805         b->_freg_pressure = pressure[1];
   806 #else
   807       b->_freg_pressure = (uint)FLOATPRESSURE+1;
   808 #endif
   809     }
   811     // Compute high pressure indice; avoid landing in the middle of projnodes
   812     j = hrp_index[0];
   813     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
   814       Node *cur = b->_nodes[j];
   815       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
   816         j--;
   817         cur = b->_nodes[j];
   818       }
   819     }
   820     b->_ihrp_index = j;
   821     j = hrp_index[1];
   822     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
   823       Node *cur = b->_nodes[j];
   824       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
   825         j--;
   826         cur = b->_nodes[j];
   827       }
   828     }
   829     b->_fhrp_index = j;
   831 #ifndef PRODUCT
   832     // Gather Register Pressure Statistics
   833     if( PrintOptoStatistics ) {
   834       if( b->_reg_pressure > (uint)INTPRESSURE || b->_freg_pressure > (uint)FLOATPRESSURE )
   835         _high_pressure++;
   836       else
   837         _low_pressure++;
   838     }
   839 #endif
   840   } // End of for all blocks
   842   return must_spill;
   843 }

mercurial