src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Tue, 03 Mar 2020 12:57:23 +0000

author
andrew
date
Tue, 03 Mar 2020 12:57:23 +0000
changeset 9896
1b8c45b8216a
parent 9787
9f28a4cac6d9
parent 9861
a248d0be1309
child 9931
fd44df5e3bc3
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #if !defined(__clang_major__) && defined(__GNUC__)
    26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
    27 #endif
    29 #include "precompiled.hpp"
    30 #include "classfile/metadataOnStackMark.hpp"
    31 #include "code/codeCache.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    34 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    35 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    36 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    37 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    38 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    39 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    40 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    41 #include "gc_implementation/g1/g1EvacFailure.hpp"
    42 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    43 #include "gc_implementation/g1/g1Log.hpp"
    44 #include "gc_implementation/g1/g1MarkSweep.hpp"
    45 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    46 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
    47 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
    48 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    49 #include "gc_implementation/g1/g1RootProcessor.hpp"
    50 #include "gc_implementation/g1/g1StringDedup.hpp"
    51 #include "gc_implementation/g1/g1YCTypes.hpp"
    52 #include "gc_implementation/g1/heapRegion.inline.hpp"
    53 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    54 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
    55 #include "gc_implementation/g1/vm_operations_g1.hpp"
    56 #include "gc_implementation/shared/gcHeapSummary.hpp"
    57 #include "gc_implementation/shared/gcTimer.hpp"
    58 #include "gc_implementation/shared/gcTrace.hpp"
    59 #include "gc_implementation/shared/gcTraceTime.hpp"
    60 #include "gc_implementation/shared/isGCActiveMark.hpp"
    61 #include "memory/allocation.hpp"
    62 #include "memory/gcLocker.inline.hpp"
    63 #include "memory/generationSpec.hpp"
    64 #include "memory/iterator.hpp"
    65 #include "memory/referenceProcessor.hpp"
    66 #include "oops/oop.inline.hpp"
    67 #include "oops/oop.pcgc.inline.hpp"
    68 #include "runtime/orderAccess.inline.hpp"
    69 #include "runtime/vmThread.hpp"
    71 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    73 // turn it on so that the contents of the young list (scan-only /
    74 // to-be-collected) are printed at "strategic" points before / during
    75 // / after the collection --- this is useful for debugging
    76 #define YOUNG_LIST_VERBOSE 0
    77 // CURRENT STATUS
    78 // This file is under construction.  Search for "FIXME".
    80 // INVARIANTS/NOTES
    81 //
    82 // All allocation activity covered by the G1CollectedHeap interface is
    83 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    84 // and allocate_new_tlab, which are the "entry" points to the
    85 // allocation code from the rest of the JVM.  (Note that this does not
    86 // apply to TLAB allocation, which is not part of this interface: it
    87 // is done by clients of this interface.)
    89 // Local to this file.
    91 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    92   bool _concurrent;
    93 public:
    94   RefineCardTableEntryClosure() : _concurrent(true) { }
    96   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
    97     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
    98     // This path is executed by the concurrent refine or mutator threads,
    99     // concurrently, and so we do not care if card_ptr contains references
   100     // that point into the collection set.
   101     assert(!oops_into_cset, "should be");
   103     if (_concurrent && SuspendibleThreadSet::should_yield()) {
   104       // Caller will actually yield.
   105       return false;
   106     }
   107     // Otherwise, we finished successfully; return true.
   108     return true;
   109   }
   111   void set_concurrent(bool b) { _concurrent = b; }
   112 };
   115 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   116   size_t _num_processed;
   117   CardTableModRefBS* _ctbs;
   118   int _histo[256];
   120  public:
   121   ClearLoggedCardTableEntryClosure() :
   122     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
   123   {
   124     for (int i = 0; i < 256; i++) _histo[i] = 0;
   125   }
   127   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   128     unsigned char* ujb = (unsigned char*)card_ptr;
   129     int ind = (int)(*ujb);
   130     _histo[ind]++;
   132     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
   133     _num_processed++;
   135     return true;
   136   }
   138   size_t num_processed() { return _num_processed; }
   140   void print_histo() {
   141     gclog_or_tty->print_cr("Card table value histogram:");
   142     for (int i = 0; i < 256; i++) {
   143       if (_histo[i] != 0) {
   144         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   145       }
   146     }
   147   }
   148 };
   150 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
   151  private:
   152   size_t _num_processed;
   154  public:
   155   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
   157   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   158     *card_ptr = CardTableModRefBS::dirty_card_val();
   159     _num_processed++;
   160     return true;
   161   }
   163   size_t num_processed() const { return _num_processed; }
   164 };
   166 YoungList::YoungList(G1CollectedHeap* g1h) :
   167     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   168     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   169   guarantee(check_list_empty(false), "just making sure...");
   170 }
   172 void YoungList::push_region(HeapRegion *hr) {
   173   assert(!hr->is_young(), "should not already be young");
   174   assert(hr->get_next_young_region() == NULL, "cause it should!");
   176   hr->set_next_young_region(_head);
   177   _head = hr;
   179   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   180   ++_length;
   181 }
   183 void YoungList::add_survivor_region(HeapRegion* hr) {
   184   assert(hr->is_survivor(), "should be flagged as survivor region");
   185   assert(hr->get_next_young_region() == NULL, "cause it should!");
   187   hr->set_next_young_region(_survivor_head);
   188   if (_survivor_head == NULL) {
   189     _survivor_tail = hr;
   190   }
   191   _survivor_head = hr;
   192   ++_survivor_length;
   193 }
   195 void YoungList::empty_list(HeapRegion* list) {
   196   while (list != NULL) {
   197     HeapRegion* next = list->get_next_young_region();
   198     list->set_next_young_region(NULL);
   199     list->uninstall_surv_rate_group();
   200     // This is called before a Full GC and all the non-empty /
   201     // non-humongous regions at the end of the Full GC will end up as
   202     // old anyway.
   203     list->set_old();
   204     list = next;
   205   }
   206 }
   208 void YoungList::empty_list() {
   209   assert(check_list_well_formed(), "young list should be well formed");
   211   empty_list(_head);
   212   _head = NULL;
   213   _length = 0;
   215   empty_list(_survivor_head);
   216   _survivor_head = NULL;
   217   _survivor_tail = NULL;
   218   _survivor_length = 0;
   220   _last_sampled_rs_lengths = 0;
   222   assert(check_list_empty(false), "just making sure...");
   223 }
   225 bool YoungList::check_list_well_formed() {
   226   bool ret = true;
   228   uint length = 0;
   229   HeapRegion* curr = _head;
   230   HeapRegion* last = NULL;
   231   while (curr != NULL) {
   232     if (!curr->is_young()) {
   233       gclog_or_tty->print_cr("### YOUNG REGION " PTR_FORMAT "-" PTR_FORMAT " "
   234                              "incorrectly tagged (y: %d, surv: %d)",
   235                              curr->bottom(), curr->end(),
   236                              curr->is_young(), curr->is_survivor());
   237       ret = false;
   238     }
   239     ++length;
   240     last = curr;
   241     curr = curr->get_next_young_region();
   242   }
   243   ret = ret && (length == _length);
   245   if (!ret) {
   246     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   247     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   248                            length, _length);
   249   }
   251   return ret;
   252 }
   254 bool YoungList::check_list_empty(bool check_sample) {
   255   bool ret = true;
   257   if (_length != 0) {
   258     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   259                   _length);
   260     ret = false;
   261   }
   262   if (check_sample && _last_sampled_rs_lengths != 0) {
   263     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   264     ret = false;
   265   }
   266   if (_head != NULL) {
   267     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   268     ret = false;
   269   }
   270   if (!ret) {
   271     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   272   }
   274   return ret;
   275 }
   277 void
   278 YoungList::rs_length_sampling_init() {
   279   _sampled_rs_lengths = 0;
   280   _curr               = _head;
   281 }
   283 bool
   284 YoungList::rs_length_sampling_more() {
   285   return _curr != NULL;
   286 }
   288 void
   289 YoungList::rs_length_sampling_next() {
   290   assert( _curr != NULL, "invariant" );
   291   size_t rs_length = _curr->rem_set()->occupied();
   293   _sampled_rs_lengths += rs_length;
   295   // The current region may not yet have been added to the
   296   // incremental collection set (it gets added when it is
   297   // retired as the current allocation region).
   298   if (_curr->in_collection_set()) {
   299     // Update the collection set policy information for this region
   300     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   301   }
   303   _curr = _curr->get_next_young_region();
   304   if (_curr == NULL) {
   305     _last_sampled_rs_lengths = _sampled_rs_lengths;
   306     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   307   }
   308 }
   310 void
   311 YoungList::reset_auxilary_lists() {
   312   guarantee( is_empty(), "young list should be empty" );
   313   assert(check_list_well_formed(), "young list should be well formed");
   315   // Add survivor regions to SurvRateGroup.
   316   _g1h->g1_policy()->note_start_adding_survivor_regions();
   317   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   319   int young_index_in_cset = 0;
   320   for (HeapRegion* curr = _survivor_head;
   321        curr != NULL;
   322        curr = curr->get_next_young_region()) {
   323     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   325     // The region is a non-empty survivor so let's add it to
   326     // the incremental collection set for the next evacuation
   327     // pause.
   328     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   329     young_index_in_cset += 1;
   330   }
   331   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   332   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   334   _head   = _survivor_head;
   335   _length = _survivor_length;
   336   if (_survivor_head != NULL) {
   337     assert(_survivor_tail != NULL, "cause it shouldn't be");
   338     assert(_survivor_length > 0, "invariant");
   339     _survivor_tail->set_next_young_region(NULL);
   340   }
   342   // Don't clear the survivor list handles until the start of
   343   // the next evacuation pause - we need it in order to re-tag
   344   // the survivor regions from this evacuation pause as 'young'
   345   // at the start of the next.
   347   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   349   assert(check_list_well_formed(), "young list should be well formed");
   350 }
   352 void YoungList::print() {
   353   HeapRegion* lists[] = {_head,   _survivor_head};
   354   const char* names[] = {"YOUNG", "SURVIVOR"};
   356   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
   357     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   358     HeapRegion *curr = lists[list];
   359     if (curr == NULL)
   360       gclog_or_tty->print_cr("  empty");
   361     while (curr != NULL) {
   362       gclog_or_tty->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT ", N: " PTR_FORMAT ", age: %4d",
   363                              HR_FORMAT_PARAMS(curr),
   364                              curr->prev_top_at_mark_start(),
   365                              curr->next_top_at_mark_start(),
   366                              curr->age_in_surv_rate_group_cond());
   367       curr = curr->get_next_young_region();
   368     }
   369   }
   371   gclog_or_tty->cr();
   372 }
   374 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
   375   OtherRegionsTable::invalidate(start_idx, num_regions);
   376 }
   378 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
   379   // The from card cache is not the memory that is actually committed. So we cannot
   380   // take advantage of the zero_filled parameter.
   381   reset_from_card_cache(start_idx, num_regions);
   382 }
   384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   385 {
   386   // Claim the right to put the region on the dirty cards region list
   387   // by installing a self pointer.
   388   HeapRegion* next = hr->get_next_dirty_cards_region();
   389   if (next == NULL) {
   390     HeapRegion* res = (HeapRegion*)
   391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   392                           NULL);
   393     if (res == NULL) {
   394       HeapRegion* head;
   395       do {
   396         // Put the region to the dirty cards region list.
   397         head = _dirty_cards_region_list;
   398         next = (HeapRegion*)
   399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   400         if (next == head) {
   401           assert(hr->get_next_dirty_cards_region() == hr,
   402                  "hr->get_next_dirty_cards_region() != hr");
   403           if (next == NULL) {
   404             // The last region in the list points to itself.
   405             hr->set_next_dirty_cards_region(hr);
   406           } else {
   407             hr->set_next_dirty_cards_region(next);
   408           }
   409         }
   410       } while (next != head);
   411     }
   412   }
   413 }
   415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   416 {
   417   HeapRegion* head;
   418   HeapRegion* hr;
   419   do {
   420     head = _dirty_cards_region_list;
   421     if (head == NULL) {
   422       return NULL;
   423     }
   424     HeapRegion* new_head = head->get_next_dirty_cards_region();
   425     if (head == new_head) {
   426       // The last region.
   427       new_head = NULL;
   428     }
   429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   430                                           head);
   431   } while (hr != head);
   432   assert(hr != NULL, "invariant");
   433   hr->set_next_dirty_cards_region(NULL);
   434   return hr;
   435 }
   437 #ifdef ASSERT
   438 // A region is added to the collection set as it is retired
   439 // so an address p can point to a region which will be in the
   440 // collection set but has not yet been retired.  This method
   441 // therefore is only accurate during a GC pause after all
   442 // regions have been retired.  It is used for debugging
   443 // to check if an nmethod has references to objects that can
   444 // be move during a partial collection.  Though it can be
   445 // inaccurate, it is sufficient for G1 because the conservative
   446 // implementation of is_scavengable() for G1 will indicate that
   447 // all nmethods must be scanned during a partial collection.
   448 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   449   if (p == NULL) {
   450     return false;
   451   }
   452   return heap_region_containing(p)->in_collection_set();
   453 }
   454 #endif
   456 // Returns true if the reference points to an object that
   457 // can move in an incremental collection.
   458 bool G1CollectedHeap::is_scavengable(const void* p) {
   459   HeapRegion* hr = heap_region_containing(p);
   460   return !hr->isHumongous();
   461 }
   463 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   464   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   465   CardTableModRefBS* ct_bs = g1_barrier_set();
   467   // Count the dirty cards at the start.
   468   CountNonCleanMemRegionClosure count1(this);
   469   ct_bs->mod_card_iterate(&count1);
   470   int orig_count = count1.n();
   472   // First clear the logged cards.
   473   ClearLoggedCardTableEntryClosure clear;
   474   dcqs.apply_closure_to_all_completed_buffers(&clear);
   475   dcqs.iterate_closure_all_threads(&clear, false);
   476   clear.print_histo();
   478   // Now ensure that there's no dirty cards.
   479   CountNonCleanMemRegionClosure count2(this);
   480   ct_bs->mod_card_iterate(&count2);
   481   if (count2.n() != 0) {
   482     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   483                            count2.n(), orig_count);
   484   }
   485   guarantee(count2.n() == 0, "Card table should be clean.");
   487   RedirtyLoggedCardTableEntryClosure redirty;
   488   dcqs.apply_closure_to_all_completed_buffers(&redirty);
   489   dcqs.iterate_closure_all_threads(&redirty, false);
   490   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   491                          clear.num_processed(), orig_count);
   492   guarantee(redirty.num_processed() == clear.num_processed(),
   493             err_msg("Redirtied " SIZE_FORMAT " cards, bug cleared " SIZE_FORMAT,
   494                     redirty.num_processed(), clear.num_processed()));
   496   CountNonCleanMemRegionClosure count3(this);
   497   ct_bs->mod_card_iterate(&count3);
   498   if (count3.n() != orig_count) {
   499     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   500                            orig_count, count3.n());
   501     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   502   }
   503 }
   505 // Private class members.
   507 G1CollectedHeap* G1CollectedHeap::_g1h;
   509 // Private methods.
   511 HeapRegion*
   512 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
   513   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   514   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   515     if (!_secondary_free_list.is_empty()) {
   516       if (G1ConcRegionFreeingVerbose) {
   517         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   518                                "secondary_free_list has %u entries",
   519                                _secondary_free_list.length());
   520       }
   521       // It looks as if there are free regions available on the
   522       // secondary_free_list. Let's move them to the free_list and try
   523       // again to allocate from it.
   524       append_secondary_free_list();
   526       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
   527              "empty we should have moved at least one entry to the free_list");
   528       HeapRegion* res = _hrm.allocate_free_region(is_old);
   529       if (G1ConcRegionFreeingVerbose) {
   530         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   531                                "allocated " HR_FORMAT " from secondary_free_list",
   532                                HR_FORMAT_PARAMS(res));
   533       }
   534       return res;
   535     }
   537     // Wait here until we get notified either when (a) there are no
   538     // more free regions coming or (b) some regions have been moved on
   539     // the secondary_free_list.
   540     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   541   }
   543   if (G1ConcRegionFreeingVerbose) {
   544     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   545                            "could not allocate from secondary_free_list");
   546   }
   547   return NULL;
   548 }
   550 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
   551   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   552          "the only time we use this to allocate a humongous region is "
   553          "when we are allocating a single humongous region");
   555   HeapRegion* res;
   556   if (G1StressConcRegionFreeing) {
   557     if (!_secondary_free_list.is_empty()) {
   558       if (G1ConcRegionFreeingVerbose) {
   559         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   560                                "forced to look at the secondary_free_list");
   561       }
   562       res = new_region_try_secondary_free_list(is_old);
   563       if (res != NULL) {
   564         return res;
   565       }
   566     }
   567   }
   569   res = _hrm.allocate_free_region(is_old);
   571   if (res == NULL) {
   572     if (G1ConcRegionFreeingVerbose) {
   573       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   574                              "res == NULL, trying the secondary_free_list");
   575     }
   576     res = new_region_try_secondary_free_list(is_old);
   577   }
   578   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   579     // Currently, only attempts to allocate GC alloc regions set
   580     // do_expand to true. So, we should only reach here during a
   581     // safepoint. If this assumption changes we might have to
   582     // reconsider the use of _expand_heap_after_alloc_failure.
   583     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   585     ergo_verbose1(ErgoHeapSizing,
   586                   "attempt heap expansion",
   587                   ergo_format_reason("region allocation request failed")
   588                   ergo_format_byte("allocation request"),
   589                   word_size * HeapWordSize);
   590     if (expand(word_size * HeapWordSize)) {
   591       // Given that expand() succeeded in expanding the heap, and we
   592       // always expand the heap by an amount aligned to the heap
   593       // region size, the free list should in theory not be empty.
   594       // In either case allocate_free_region() will check for NULL.
   595       res = _hrm.allocate_free_region(is_old);
   596     } else {
   597       _expand_heap_after_alloc_failure = false;
   598     }
   599   }
   600   return res;
   601 }
   603 HeapWord*
   604 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   605                                                            uint num_regions,
   606                                                            size_t word_size,
   607                                                            AllocationContext_t context) {
   608   assert(first != G1_NO_HRM_INDEX, "pre-condition");
   609   assert(isHumongous(word_size), "word_size should be humongous");
   610   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   612   // Index of last region in the series + 1.
   613   uint last = first + num_regions;
   615   // We need to initialize the region(s) we just discovered. This is
   616   // a bit tricky given that it can happen concurrently with
   617   // refinement threads refining cards on these regions and
   618   // potentially wanting to refine the BOT as they are scanning
   619   // those cards (this can happen shortly after a cleanup; see CR
   620   // 6991377). So we have to set up the region(s) carefully and in
   621   // a specific order.
   623   // The word size sum of all the regions we will allocate.
   624   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   625   assert(word_size <= word_size_sum, "sanity");
   627   // This will be the "starts humongous" region.
   628   HeapRegion* first_hr = region_at(first);
   629   // The header of the new object will be placed at the bottom of
   630   // the first region.
   631   HeapWord* new_obj = first_hr->bottom();
   632   // This will be the new end of the first region in the series that
   633   // should also match the end of the last region in the series.
   634   HeapWord* new_end = new_obj + word_size_sum;
   635   // This will be the new top of the first region that will reflect
   636   // this allocation.
   637   HeapWord* new_top = new_obj + word_size;
   639   // First, we need to zero the header of the space that we will be
   640   // allocating. When we update top further down, some refinement
   641   // threads might try to scan the region. By zeroing the header we
   642   // ensure that any thread that will try to scan the region will
   643   // come across the zero klass word and bail out.
   644   //
   645   // NOTE: It would not have been correct to have used
   646   // CollectedHeap::fill_with_object() and make the space look like
   647   // an int array. The thread that is doing the allocation will
   648   // later update the object header to a potentially different array
   649   // type and, for a very short period of time, the klass and length
   650   // fields will be inconsistent. This could cause a refinement
   651   // thread to calculate the object size incorrectly.
   652   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   654   // We will set up the first region as "starts humongous". This
   655   // will also update the BOT covering all the regions to reflect
   656   // that there is a single object that starts at the bottom of the
   657   // first region.
   658   first_hr->set_startsHumongous(new_top, new_end);
   659   first_hr->set_allocation_context(context);
   660   // Then, if there are any, we will set up the "continues
   661   // humongous" regions.
   662   HeapRegion* hr = NULL;
   663   for (uint i = first + 1; i < last; ++i) {
   664     hr = region_at(i);
   665     hr->set_continuesHumongous(first_hr);
   666     hr->set_allocation_context(context);
   667   }
   668   // If we have "continues humongous" regions (hr != NULL), then the
   669   // end of the last one should match new_end.
   670   assert(hr == NULL || hr->end() == new_end, "sanity");
   672   // Up to this point no concurrent thread would have been able to
   673   // do any scanning on any region in this series. All the top
   674   // fields still point to bottom, so the intersection between
   675   // [bottom,top] and [card_start,card_end] will be empty. Before we
   676   // update the top fields, we'll do a storestore to make sure that
   677   // no thread sees the update to top before the zeroing of the
   678   // object header and the BOT initialization.
   679   OrderAccess::storestore();
   681   // Now that the BOT and the object header have been initialized,
   682   // we can update top of the "starts humongous" region.
   683   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   684          "new_top should be in this region");
   685   first_hr->set_top(new_top);
   686   if (_hr_printer.is_active()) {
   687     HeapWord* bottom = first_hr->bottom();
   688     HeapWord* end = first_hr->orig_end();
   689     if ((first + 1) == last) {
   690       // the series has a single humongous region
   691       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   692     } else {
   693       // the series has more than one humongous regions
   694       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   695     }
   696   }
   698   // Now, we will update the top fields of the "continues humongous"
   699   // regions. The reason we need to do this is that, otherwise,
   700   // these regions would look empty and this will confuse parts of
   701   // G1. For example, the code that looks for a consecutive number
   702   // of empty regions will consider them empty and try to
   703   // re-allocate them. We can extend is_empty() to also include
   704   // !continuesHumongous(), but it is easier to just update the top
   705   // fields here. The way we set top for all regions (i.e., top ==
   706   // end for all regions but the last one, top == new_top for the
   707   // last one) is actually used when we will free up the humongous
   708   // region in free_humongous_region().
   709   hr = NULL;
   710   for (uint i = first + 1; i < last; ++i) {
   711     hr = region_at(i);
   712     if ((i + 1) == last) {
   713       // last continues humongous region
   714       assert(hr->bottom() < new_top && new_top <= hr->end(),
   715              "new_top should fall on this region");
   716       hr->set_top(new_top);
   717       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   718     } else {
   719       // not last one
   720       assert(new_top > hr->end(), "new_top should be above this region");
   721       hr->set_top(hr->end());
   722       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   723     }
   724   }
   725   // If we have continues humongous regions (hr != NULL), then the
   726   // end of the last one should match new_end and its top should
   727   // match new_top.
   728   assert(hr == NULL ||
   729          (hr->end() == new_end && hr->top() == new_top), "sanity");
   730   check_bitmaps("Humongous Region Allocation", first_hr);
   732   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   733   _allocator->increase_used(first_hr->used());
   734   _humongous_set.add(first_hr);
   736   return new_obj;
   737 }
   739 // If could fit into free regions w/o expansion, try.
   740 // Otherwise, if can expand, do so.
   741 // Otherwise, if using ex regions might help, try with ex given back.
   742 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
   743   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   745   verify_region_sets_optional();
   747   uint first = G1_NO_HRM_INDEX;
   748   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
   750   if (obj_regions == 1) {
   751     // Only one region to allocate, try to use a fast path by directly allocating
   752     // from the free lists. Do not try to expand here, we will potentially do that
   753     // later.
   754     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
   755     if (hr != NULL) {
   756       first = hr->hrm_index();
   757     }
   758   } else {
   759     // We can't allocate humongous regions spanning more than one region while
   760     // cleanupComplete() is running, since some of the regions we find to be
   761     // empty might not yet be added to the free list. It is not straightforward
   762     // to know in which list they are on so that we can remove them. We only
   763     // need to do this if we need to allocate more than one region to satisfy the
   764     // current humongous allocation request. If we are only allocating one region
   765     // we use the one-region region allocation code (see above), that already
   766     // potentially waits for regions from the secondary free list.
   767     wait_while_free_regions_coming();
   768     append_secondary_free_list_if_not_empty_with_lock();
   770     // Policy: Try only empty regions (i.e. already committed first). Maybe we
   771     // are lucky enough to find some.
   772     first = _hrm.find_contiguous_only_empty(obj_regions);
   773     if (first != G1_NO_HRM_INDEX) {
   774       _hrm.allocate_free_regions_starting_at(first, obj_regions);
   775     }
   776   }
   778   if (first == G1_NO_HRM_INDEX) {
   779     // Policy: We could not find enough regions for the humongous object in the
   780     // free list. Look through the heap to find a mix of free and uncommitted regions.
   781     // If so, try expansion.
   782     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
   783     if (first != G1_NO_HRM_INDEX) {
   784       // We found something. Make sure these regions are committed, i.e. expand
   785       // the heap. Alternatively we could do a defragmentation GC.
   786       ergo_verbose1(ErgoHeapSizing,
   787                     "attempt heap expansion",
   788                     ergo_format_reason("humongous allocation request failed")
   789                     ergo_format_byte("allocation request"),
   790                     word_size * HeapWordSize);
   792       _hrm.expand_at(first, obj_regions);
   793       g1_policy()->record_new_heap_size(num_regions());
   795 #ifdef ASSERT
   796       for (uint i = first; i < first + obj_regions; ++i) {
   797         HeapRegion* hr = region_at(i);
   798         assert(hr->is_free(), "sanity");
   799         assert(hr->is_empty(), "sanity");
   800         assert(is_on_master_free_list(hr), "sanity");
   801       }
   802 #endif
   803       _hrm.allocate_free_regions_starting_at(first, obj_regions);
   804     } else {
   805       // Policy: Potentially trigger a defragmentation GC.
   806     }
   807   }
   809   HeapWord* result = NULL;
   810   if (first != G1_NO_HRM_INDEX) {
   811     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
   812                                                        word_size, context);
   813     assert(result != NULL, "it should always return a valid result");
   815     // A successful humongous object allocation changes the used space
   816     // information of the old generation so we need to recalculate the
   817     // sizes and update the jstat counters here.
   818     g1mm()->update_sizes();
   819   }
   821   verify_region_sets_optional();
   823   return result;
   824 }
   826 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   827   assert_heap_not_locked_and_not_at_safepoint();
   828   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   830   uint dummy_gc_count_before;
   831   uint dummy_gclocker_retry_count = 0;
   832   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   833 }
   835 HeapWord*
   836 G1CollectedHeap::mem_allocate(size_t word_size,
   837                               bool*  gc_overhead_limit_was_exceeded) {
   838   assert_heap_not_locked_and_not_at_safepoint();
   840   // Loop until the allocation is satisfied, or unsatisfied after GC.
   841   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   842     uint gc_count_before;
   844     HeapWord* result = NULL;
   845     if (!isHumongous(word_size)) {
   846       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   847     } else {
   848       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   849     }
   850     if (result != NULL) {
   851       return result;
   852     }
   854     // Create the garbage collection operation...
   855     VM_G1CollectForAllocation op(gc_count_before, word_size);
   856     op.set_allocation_context(AllocationContext::current());
   858     // ...and get the VM thread to execute it.
   859     VMThread::execute(&op);
   861     if (op.prologue_succeeded() && op.pause_succeeded()) {
   862       // If the operation was successful we'll return the result even
   863       // if it is NULL. If the allocation attempt failed immediately
   864       // after a Full GC, it's unlikely we'll be able to allocate now.
   865       HeapWord* result = op.result();
   866       if (result != NULL && !isHumongous(word_size)) {
   867         // Allocations that take place on VM operations do not do any
   868         // card dirtying and we have to do it here. We only have to do
   869         // this for non-humongous allocations, though.
   870         dirty_young_block(result, word_size);
   871       }
   872       return result;
   873     } else {
   874       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   875         return NULL;
   876       }
   877       assert(op.result() == NULL,
   878              "the result should be NULL if the VM op did not succeed");
   879     }
   881     // Give a warning if we seem to be looping forever.
   882     if ((QueuedAllocationWarningCount > 0) &&
   883         (try_count % QueuedAllocationWarningCount == 0)) {
   884       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   885     }
   886   }
   888   ShouldNotReachHere();
   889   return NULL;
   890 }
   892 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   893                                                    AllocationContext_t context,
   894                                                    uint* gc_count_before_ret,
   895                                                    uint* gclocker_retry_count_ret) {
   896   // Make sure you read the note in attempt_allocation_humongous().
   898   assert_heap_not_locked_and_not_at_safepoint();
   899   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   900          "be called for humongous allocation requests");
   902   // We should only get here after the first-level allocation attempt
   903   // (attempt_allocation()) failed to allocate.
   905   // We will loop until a) we manage to successfully perform the
   906   // allocation or b) we successfully schedule a collection which
   907   // fails to perform the allocation. b) is the only case when we'll
   908   // return NULL.
   909   HeapWord* result = NULL;
   910   for (int try_count = 1; /* we'll return */; try_count += 1) {
   911     bool should_try_gc;
   912     uint gc_count_before;
   914     {
   915       MutexLockerEx x(Heap_lock);
   916       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
   917                                                                                     false /* bot_updates */);
   918       if (result != NULL) {
   919         return result;
   920       }
   922       // If we reach here, attempt_allocation_locked() above failed to
   923       // allocate a new region. So the mutator alloc region should be NULL.
   924       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
   926       if (GC_locker::is_active_and_needs_gc()) {
   927         if (g1_policy()->can_expand_young_list()) {
   928           // No need for an ergo verbose message here,
   929           // can_expand_young_list() does this when it returns true.
   930           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
   931                                                                                        false /* bot_updates */);
   932           if (result != NULL) {
   933             return result;
   934           }
   935         }
   936         should_try_gc = false;
   937       } else {
   938         // The GCLocker may not be active but the GCLocker initiated
   939         // GC may not yet have been performed (GCLocker::needs_gc()
   940         // returns true). In this case we do not try this GC and
   941         // wait until the GCLocker initiated GC is performed, and
   942         // then retry the allocation.
   943         if (GC_locker::needs_gc()) {
   944           should_try_gc = false;
   945         } else {
   946           // Read the GC count while still holding the Heap_lock.
   947           gc_count_before = total_collections();
   948           should_try_gc = true;
   949         }
   950       }
   951     }
   953     if (should_try_gc) {
   954       bool succeeded;
   955       result = do_collection_pause(word_size, gc_count_before, &succeeded,
   956                                    GCCause::_g1_inc_collection_pause);
   957       if (result != NULL) {
   958         assert(succeeded, "only way to get back a non-NULL result");
   959         return result;
   960       }
   962       if (succeeded) {
   963         // If we get here we successfully scheduled a collection which
   964         // failed to allocate. No point in trying to allocate
   965         // further. We'll just return NULL.
   966         MutexLockerEx x(Heap_lock);
   967         *gc_count_before_ret = total_collections();
   968         return NULL;
   969       }
   970     } else {
   971       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
   972         MutexLockerEx x(Heap_lock);
   973         *gc_count_before_ret = total_collections();
   974         return NULL;
   975       }
   976       // The GCLocker is either active or the GCLocker initiated
   977       // GC has not yet been performed. Stall until it is and
   978       // then retry the allocation.
   979       GC_locker::stall_until_clear();
   980       (*gclocker_retry_count_ret) += 1;
   981     }
   983     // We can reach here if we were unsuccessful in scheduling a
   984     // collection (because another thread beat us to it) or if we were
   985     // stalled due to the GC locker. In either can we should retry the
   986     // allocation attempt in case another thread successfully
   987     // performed a collection and reclaimed enough space. We do the
   988     // first attempt (without holding the Heap_lock) here and the
   989     // follow-on attempt will be at the start of the next loop
   990     // iteration (after taking the Heap_lock).
   991     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
   992                                                                            false /* bot_updates */);
   993     if (result != NULL) {
   994       return result;
   995     }
   997     // Give a warning if we seem to be looping forever.
   998     if ((QueuedAllocationWarningCount > 0) &&
   999         (try_count % QueuedAllocationWarningCount == 0)) {
  1000       warning("G1CollectedHeap::attempt_allocation_slow() "
  1001               "retries %d times", try_count);
  1005   ShouldNotReachHere();
  1006   return NULL;
  1009 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1010                                                         uint* gc_count_before_ret,
  1011                                                         uint* gclocker_retry_count_ret) {
  1012   // The structure of this method has a lot of similarities to
  1013   // attempt_allocation_slow(). The reason these two were not merged
  1014   // into a single one is that such a method would require several "if
  1015   // allocation is not humongous do this, otherwise do that"
  1016   // conditional paths which would obscure its flow. In fact, an early
  1017   // version of this code did use a unified method which was harder to
  1018   // follow and, as a result, it had subtle bugs that were hard to
  1019   // track down. So keeping these two methods separate allows each to
  1020   // be more readable. It will be good to keep these two in sync as
  1021   // much as possible.
  1023   assert_heap_not_locked_and_not_at_safepoint();
  1024   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1025          "should only be called for humongous allocations");
  1027   // Humongous objects can exhaust the heap quickly, so we should check if we
  1028   // need to start a marking cycle at each humongous object allocation. We do
  1029   // the check before we do the actual allocation. The reason for doing it
  1030   // before the allocation is that we avoid having to keep track of the newly
  1031   // allocated memory while we do a GC.
  1032   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1033                                            word_size)) {
  1034     collect(GCCause::_g1_humongous_allocation);
  1037   // We will loop until a) we manage to successfully perform the
  1038   // allocation or b) we successfully schedule a collection which
  1039   // fails to perform the allocation. b) is the only case when we'll
  1040   // return NULL.
  1041   HeapWord* result = NULL;
  1042   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1043     bool should_try_gc;
  1044     uint gc_count_before;
  1047       MutexLockerEx x(Heap_lock);
  1049       // Given that humongous objects are not allocated in young
  1050       // regions, we'll first try to do the allocation without doing a
  1051       // collection hoping that there's enough space in the heap.
  1052       result = humongous_obj_allocate(word_size, AllocationContext::current());
  1053       if (result != NULL) {
  1054         return result;
  1057       if (GC_locker::is_active_and_needs_gc()) {
  1058         should_try_gc = false;
  1059       } else {
  1060          // The GCLocker may not be active but the GCLocker initiated
  1061         // GC may not yet have been performed (GCLocker::needs_gc()
  1062         // returns true). In this case we do not try this GC and
  1063         // wait until the GCLocker initiated GC is performed, and
  1064         // then retry the allocation.
  1065         if (GC_locker::needs_gc()) {
  1066           should_try_gc = false;
  1067         } else {
  1068           // Read the GC count while still holding the Heap_lock.
  1069           gc_count_before = total_collections();
  1070           should_try_gc = true;
  1075     if (should_try_gc) {
  1076       // If we failed to allocate the humongous object, we should try to
  1077       // do a collection pause (if we're allowed) in case it reclaims
  1078       // enough space for the allocation to succeed after the pause.
  1080       bool succeeded;
  1081       result = do_collection_pause(word_size, gc_count_before, &succeeded,
  1082                                    GCCause::_g1_humongous_allocation);
  1083       if (result != NULL) {
  1084         assert(succeeded, "only way to get back a non-NULL result");
  1085         return result;
  1088       if (succeeded) {
  1089         // If we get here we successfully scheduled a collection which
  1090         // failed to allocate. No point in trying to allocate
  1091         // further. We'll just return NULL.
  1092         MutexLockerEx x(Heap_lock);
  1093         *gc_count_before_ret = total_collections();
  1094         return NULL;
  1096     } else {
  1097       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1098         MutexLockerEx x(Heap_lock);
  1099         *gc_count_before_ret = total_collections();
  1100         return NULL;
  1102       // The GCLocker is either active or the GCLocker initiated
  1103       // GC has not yet been performed. Stall until it is and
  1104       // then retry the allocation.
  1105       GC_locker::stall_until_clear();
  1106       (*gclocker_retry_count_ret) += 1;
  1109     // We can reach here if we were unsuccessful in scheduling a
  1110     // collection (because another thread beat us to it) or if we were
  1111     // stalled due to the GC locker. In either can we should retry the
  1112     // allocation attempt in case another thread successfully
  1113     // performed a collection and reclaimed enough space.  Give a
  1114     // warning if we seem to be looping forever.
  1116     if ((QueuedAllocationWarningCount > 0) &&
  1117         (try_count % QueuedAllocationWarningCount == 0)) {
  1118       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1119               "retries %d times", try_count);
  1123   ShouldNotReachHere();
  1124   return NULL;
  1127 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1128                                                            AllocationContext_t context,
  1129                                                            bool expect_null_mutator_alloc_region) {
  1130   assert_at_safepoint(true /* should_be_vm_thread */);
  1131   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
  1132                                              !expect_null_mutator_alloc_region,
  1133          "the current alloc region was unexpectedly found to be non-NULL");
  1135   if (!isHumongous(word_size)) {
  1136     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
  1137                                                       false /* bot_updates */);
  1138   } else {
  1139     HeapWord* result = humongous_obj_allocate(word_size, context);
  1140     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1141       g1_policy()->set_initiate_conc_mark_if_possible();
  1143     return result;
  1146   ShouldNotReachHere();
  1149 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1150   G1CollectedHeap* _g1h;
  1151   ModRefBarrierSet* _mr_bs;
  1152 public:
  1153   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1154     _g1h(g1h), _mr_bs(mr_bs) {}
  1156   bool doHeapRegion(HeapRegion* r) {
  1157     HeapRegionRemSet* hrrs = r->rem_set();
  1159     if (r->continuesHumongous()) {
  1160       // We'll assert that the strong code root list and RSet is empty
  1161       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
  1162       assert(hrrs->occupied() == 0, "RSet should be empty");
  1163       return false;
  1166     _g1h->reset_gc_time_stamps(r);
  1167     hrrs->clear();
  1168     // You might think here that we could clear just the cards
  1169     // corresponding to the used region.  But no: if we leave a dirty card
  1170     // in a region we might allocate into, then it would prevent that card
  1171     // from being enqueued, and cause it to be missed.
  1172     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1173     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1175     return false;
  1177 };
  1179 void G1CollectedHeap::clear_rsets_post_compaction() {
  1180   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
  1181   heap_region_iterate(&rs_clear);
  1184 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1185   G1CollectedHeap*   _g1h;
  1186   UpdateRSOopClosure _cl;
  1187   int                _worker_i;
  1188 public:
  1189   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1190     _cl(g1->g1_rem_set(), worker_i),
  1191     _worker_i(worker_i),
  1192     _g1h(g1)
  1193   { }
  1195   bool doHeapRegion(HeapRegion* r) {
  1196     if (!r->continuesHumongous()) {
  1197       _cl.set_from(r);
  1198       r->oop_iterate(&_cl);
  1200     return false;
  1202 };
  1204 class ParRebuildRSTask: public AbstractGangTask {
  1205   G1CollectedHeap* _g1;
  1206 public:
  1207   ParRebuildRSTask(G1CollectedHeap* g1)
  1208     : AbstractGangTask("ParRebuildRSTask"),
  1209       _g1(g1)
  1210   { }
  1212   void work(uint worker_id) {
  1213     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1214     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1215                                           _g1->workers()->active_workers(),
  1216                                          HeapRegion::RebuildRSClaimValue);
  1218 };
  1220 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1221 private:
  1222   G1HRPrinter* _hr_printer;
  1223 public:
  1224   bool doHeapRegion(HeapRegion* hr) {
  1225     assert(!hr->is_young(), "not expecting to find young regions");
  1226     if (hr->is_free()) {
  1227       // We only generate output for non-empty regions.
  1228     } else if (hr->startsHumongous()) {
  1229       if (hr->region_num() == 1) {
  1230         // single humongous region
  1231         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1232       } else {
  1233         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1235     } else if (hr->continuesHumongous()) {
  1236       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1237     } else if (hr->is_old()) {
  1238       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1239     } else {
  1240       ShouldNotReachHere();
  1242     return false;
  1245   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1246     : _hr_printer(hr_printer) { }
  1247 };
  1249 void G1CollectedHeap::print_hrm_post_compaction() {
  1250   PostCompactionPrinterClosure cl(hr_printer());
  1251   heap_region_iterate(&cl);
  1254 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1255                                     bool clear_all_soft_refs,
  1256                                     size_t word_size) {
  1257   assert_at_safepoint(true /* should_be_vm_thread */);
  1259   if (GC_locker::check_active_before_gc()) {
  1260     return false;
  1263   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
  1264   gc_timer->register_gc_start();
  1266   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  1267   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
  1269   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1270   ResourceMark rm;
  1272   print_heap_before_gc();
  1273   trace_heap_before_gc(gc_tracer);
  1275   size_t metadata_prev_used = MetaspaceAux::used_bytes();
  1277   verify_region_sets_optional();
  1279   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1280                            collector_policy()->should_clear_all_soft_refs();
  1282   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1285     IsGCActiveMark x;
  1287     // Timing
  1288     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1289     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1292       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
  1293       TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1294       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1296       double start = os::elapsedTime();
  1297       g1_policy()->record_full_collection_start();
  1299       // Note: When we have a more flexible GC logging framework that
  1300       // allows us to add optional attributes to a GC log record we
  1301       // could consider timing and reporting how long we wait in the
  1302       // following two methods.
  1303       wait_while_free_regions_coming();
  1304       // If we start the compaction before the CM threads finish
  1305       // scanning the root regions we might trip them over as we'll
  1306       // be moving objects / updating references. So let's wait until
  1307       // they are done. By telling them to abort, they should complete
  1308       // early.
  1309       _cm->root_regions()->abort();
  1310       _cm->root_regions()->wait_until_scan_finished();
  1311       append_secondary_free_list_if_not_empty_with_lock();
  1313       gc_prologue(true);
  1314       increment_total_collections(true /* full gc */);
  1315       increment_old_marking_cycles_started();
  1317       assert(used() == recalculate_used(), "Should be equal");
  1319       verify_before_gc();
  1321       check_bitmaps("Full GC Start");
  1322       pre_full_gc_dump(gc_timer);
  1324       COMPILER2_PRESENT(DerivedPointerTable::clear());
  1326       // Disable discovery and empty the discovered lists
  1327       // for the CM ref processor.
  1328       ref_processor_cm()->disable_discovery();
  1329       ref_processor_cm()->abandon_partial_discovery();
  1330       ref_processor_cm()->verify_no_references_recorded();
  1332       // Abandon current iterations of concurrent marking and concurrent
  1333       // refinement, if any are in progress. We have to do this before
  1334       // wait_until_scan_finished() below.
  1335       concurrent_mark()->abort();
  1337       // Make sure we'll choose a new allocation region afterwards.
  1338       _allocator->release_mutator_alloc_region();
  1339       _allocator->abandon_gc_alloc_regions();
  1340       g1_rem_set()->cleanupHRRS();
  1342       // We should call this after we retire any currently active alloc
  1343       // regions so that all the ALLOC / RETIRE events are generated
  1344       // before the start GC event.
  1345       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1347       // We may have added regions to the current incremental collection
  1348       // set between the last GC or pause and now. We need to clear the
  1349       // incremental collection set and then start rebuilding it afresh
  1350       // after this full GC.
  1351       abandon_collection_set(g1_policy()->inc_cset_head());
  1352       g1_policy()->clear_incremental_cset();
  1353       g1_policy()->stop_incremental_cset_building();
  1355       tear_down_region_sets(false /* free_list_only */);
  1356       g1_policy()->set_gcs_are_young(true);
  1358       // See the comments in g1CollectedHeap.hpp and
  1359       // G1CollectedHeap::ref_processing_init() about
  1360       // how reference processing currently works in G1.
  1362       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1363       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1365       // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1366       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1368       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1369       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1371       // Do collection work
  1373         HandleMark hm;  // Discard invalid handles created during gc
  1374         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1377       assert(num_free_regions() == 0, "we should not have added any free regions");
  1378       rebuild_region_sets(false /* free_list_only */);
  1380       // Enqueue any discovered reference objects that have
  1381       // not been removed from the discovered lists.
  1382       ref_processor_stw()->enqueue_discovered_references();
  1384       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1386       MemoryService::track_memory_usage();
  1388       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1389       ref_processor_stw()->verify_no_references_recorded();
  1391       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1392       ClassLoaderDataGraph::purge();
  1393       MetaspaceAux::verify_metrics();
  1395       // Note: since we've just done a full GC, concurrent
  1396       // marking is no longer active. Therefore we need not
  1397       // re-enable reference discovery for the CM ref processor.
  1398       // That will be done at the start of the next marking cycle.
  1399       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1400       ref_processor_cm()->verify_no_references_recorded();
  1402       reset_gc_time_stamp();
  1403       // Since everything potentially moved, we will clear all remembered
  1404       // sets, and clear all cards.  Later we will rebuild remembered
  1405       // sets. We will also reset the GC time stamps of the regions.
  1406       clear_rsets_post_compaction();
  1407       check_gc_time_stamps();
  1409       // Resize the heap if necessary.
  1410       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1412       if (_hr_printer.is_active()) {
  1413         // We should do this after we potentially resize the heap so
  1414         // that all the COMMIT / UNCOMMIT events are generated before
  1415         // the end GC event.
  1417         print_hrm_post_compaction();
  1418         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1421       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  1422       if (hot_card_cache->use_cache()) {
  1423         hot_card_cache->reset_card_counts();
  1424         hot_card_cache->reset_hot_cache();
  1427       // Rebuild remembered sets of all regions.
  1428       if (G1CollectedHeap::use_parallel_gc_threads()) {
  1429         uint n_workers =
  1430           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1431                                                   workers()->active_workers(),
  1432                                                   Threads::number_of_non_daemon_threads());
  1433         assert(UseDynamicNumberOfGCThreads ||
  1434                n_workers == workers()->total_workers(),
  1435                "If not dynamic should be using all the  workers");
  1436         workers()->set_active_workers(n_workers);
  1437         // Set parallel threads in the heap (_n_par_threads) only
  1438         // before a parallel phase and always reset it to 0 after
  1439         // the phase so that the number of parallel threads does
  1440         // no get carried forward to a serial phase where there
  1441         // may be code that is "possibly_parallel".
  1442         set_par_threads(n_workers);
  1444         ParRebuildRSTask rebuild_rs_task(this);
  1445         assert(check_heap_region_claim_values(
  1446                HeapRegion::InitialClaimValue), "sanity check");
  1447         assert(UseDynamicNumberOfGCThreads ||
  1448                workers()->active_workers() == workers()->total_workers(),
  1449                "Unless dynamic should use total workers");
  1450         // Use the most recent number of  active workers
  1451         assert(workers()->active_workers() > 0,
  1452                "Active workers not properly set");
  1453         set_par_threads(workers()->active_workers());
  1454         workers()->run_task(&rebuild_rs_task);
  1455         set_par_threads(0);
  1456         assert(check_heap_region_claim_values(
  1457                HeapRegion::RebuildRSClaimValue), "sanity check");
  1458         reset_heap_region_claim_values();
  1459       } else {
  1460         RebuildRSOutOfRegionClosure rebuild_rs(this);
  1461         heap_region_iterate(&rebuild_rs);
  1464       // Rebuild the strong code root lists for each region
  1465       rebuild_strong_code_roots();
  1467       // Purge code root memory
  1468       purge_code_root_memory();
  1470       if (true) { // FIXME
  1471         MetaspaceGC::compute_new_size();
  1474 #ifdef TRACESPINNING
  1475       ParallelTaskTerminator::print_termination_counts();
  1476 #endif
  1478       // Discard all rset updates
  1479       JavaThread::dirty_card_queue_set().abandon_logs();
  1480       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
  1482       _young_list->reset_sampled_info();
  1483       // At this point there should be no regions in the
  1484       // entire heap tagged as young.
  1485       assert(check_young_list_empty(true /* check_heap */),
  1486              "young list should be empty at this point");
  1488       // Update the number of full collections that have been completed.
  1489       increment_old_marking_cycles_completed(false /* concurrent */);
  1491       _hrm.verify_optional();
  1492       verify_region_sets_optional();
  1494       verify_after_gc();
  1496       // Clear the previous marking bitmap, if needed for bitmap verification.
  1497       // Note we cannot do this when we clear the next marking bitmap in
  1498       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
  1499       // objects marked during a full GC against the previous bitmap.
  1500       // But we need to clear it before calling check_bitmaps below since
  1501       // the full GC has compacted objects and updated TAMS but not updated
  1502       // the prev bitmap.
  1503       if (G1VerifyBitmaps) {
  1504         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
  1506       check_bitmaps("Full GC End");
  1508       // Start a new incremental collection set for the next pause
  1509       assert(g1_policy()->collection_set() == NULL, "must be");
  1510       g1_policy()->start_incremental_cset_building();
  1512       clear_cset_fast_test();
  1514       _allocator->init_mutator_alloc_region();
  1516       double end = os::elapsedTime();
  1517       g1_policy()->record_full_collection_end();
  1519       if (G1Log::fine()) {
  1520         g1_policy()->print_heap_transition();
  1523       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1524       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1525       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1526       // before any GC notifications are raised.
  1527       g1mm()->update_sizes();
  1529       gc_epilogue(true);
  1532     if (G1Log::finer()) {
  1533       g1_policy()->print_detailed_heap_transition(true /* full */);
  1536     print_heap_after_gc();
  1537     trace_heap_after_gc(gc_tracer);
  1539     post_full_gc_dump(gc_timer);
  1541     gc_timer->register_gc_end();
  1542     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  1545   return true;
  1548 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1549   // do_collection() will return whether it succeeded in performing
  1550   // the GC. Currently, there is no facility on the
  1551   // do_full_collection() API to notify the caller than the collection
  1552   // did not succeed (e.g., because it was locked out by the GC
  1553   // locker). So, right now, we'll ignore the return value.
  1554   bool dummy = do_collection(true,                /* explicit_gc */
  1555                              clear_all_soft_refs,
  1556                              0                    /* word_size */);
  1559 // This code is mostly copied from TenuredGeneration.
  1560 void
  1561 G1CollectedHeap::
  1562 resize_if_necessary_after_full_collection(size_t word_size) {
  1563   // Include the current allocation, if any, and bytes that will be
  1564   // pre-allocated to support collections, as "used".
  1565   const size_t used_after_gc = used();
  1566   const size_t capacity_after_gc = capacity();
  1567   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1569   // This is enforced in arguments.cpp.
  1570   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1571          "otherwise the code below doesn't make sense");
  1573   // We don't have floating point command-line arguments
  1574   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1575   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1576   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1577   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1579   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1580   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1582   // We have to be careful here as these two calculations can overflow
  1583   // 32-bit size_t's.
  1584   double used_after_gc_d = (double) used_after_gc;
  1585   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1586   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1588   // Let's make sure that they are both under the max heap size, which
  1589   // by default will make them fit into a size_t.
  1590   double desired_capacity_upper_bound = (double) max_heap_size;
  1591   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1592                                     desired_capacity_upper_bound);
  1593   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1594                                     desired_capacity_upper_bound);
  1596   // We can now safely turn them into size_t's.
  1597   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1598   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1600   // This assert only makes sense here, before we adjust them
  1601   // with respect to the min and max heap size.
  1602   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1603          err_msg("minimum_desired_capacity = " SIZE_FORMAT ", "
  1604                  "maximum_desired_capacity = " SIZE_FORMAT,
  1605                  minimum_desired_capacity, maximum_desired_capacity));
  1607   // Should not be greater than the heap max size. No need to adjust
  1608   // it with respect to the heap min size as it's a lower bound (i.e.,
  1609   // we'll try to make the capacity larger than it, not smaller).
  1610   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1611   // Should not be less than the heap min size. No need to adjust it
  1612   // with respect to the heap max size as it's an upper bound (i.e.,
  1613   // we'll try to make the capacity smaller than it, not greater).
  1614   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1616   if (capacity_after_gc < minimum_desired_capacity) {
  1617     // Don't expand unless it's significant
  1618     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1619     ergo_verbose4(ErgoHeapSizing,
  1620                   "attempt heap expansion",
  1621                   ergo_format_reason("capacity lower than "
  1622                                      "min desired capacity after Full GC")
  1623                   ergo_format_byte("capacity")
  1624                   ergo_format_byte("occupancy")
  1625                   ergo_format_byte_perc("min desired capacity"),
  1626                   capacity_after_gc, used_after_gc,
  1627                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1628     expand(expand_bytes);
  1630     // No expansion, now see if we want to shrink
  1631   } else if (capacity_after_gc > maximum_desired_capacity) {
  1632     // Capacity too large, compute shrinking size
  1633     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1634     ergo_verbose4(ErgoHeapSizing,
  1635                   "attempt heap shrinking",
  1636                   ergo_format_reason("capacity higher than "
  1637                                      "max desired capacity after Full GC")
  1638                   ergo_format_byte("capacity")
  1639                   ergo_format_byte("occupancy")
  1640                   ergo_format_byte_perc("max desired capacity"),
  1641                   capacity_after_gc, used_after_gc,
  1642                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1643     shrink(shrink_bytes);
  1648 HeapWord*
  1649 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1650                                            AllocationContext_t context,
  1651                                            bool* succeeded) {
  1652   assert_at_safepoint(true /* should_be_vm_thread */);
  1654   *succeeded = true;
  1655   // Let's attempt the allocation first.
  1656   HeapWord* result =
  1657     attempt_allocation_at_safepoint(word_size,
  1658                                     context,
  1659                                     false /* expect_null_mutator_alloc_region */);
  1660   if (result != NULL) {
  1661     assert(*succeeded, "sanity");
  1662     return result;
  1665   // In a G1 heap, we're supposed to keep allocation from failing by
  1666   // incremental pauses.  Therefore, at least for now, we'll favor
  1667   // expansion over collection.  (This might change in the future if we can
  1668   // do something smarter than full collection to satisfy a failed alloc.)
  1669   result = expand_and_allocate(word_size, context);
  1670   if (result != NULL) {
  1671     assert(*succeeded, "sanity");
  1672     return result;
  1675   // Expansion didn't work, we'll try to do a Full GC.
  1676   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1677                                     false, /* clear_all_soft_refs */
  1678                                     word_size);
  1679   if (!gc_succeeded) {
  1680     *succeeded = false;
  1681     return NULL;
  1684   // Retry the allocation
  1685   result = attempt_allocation_at_safepoint(word_size,
  1686                                            context,
  1687                                            true /* expect_null_mutator_alloc_region */);
  1688   if (result != NULL) {
  1689     assert(*succeeded, "sanity");
  1690     return result;
  1693   // Then, try a Full GC that will collect all soft references.
  1694   gc_succeeded = do_collection(false, /* explicit_gc */
  1695                                true,  /* clear_all_soft_refs */
  1696                                word_size);
  1697   if (!gc_succeeded) {
  1698     *succeeded = false;
  1699     return NULL;
  1702   // Retry the allocation once more
  1703   result = attempt_allocation_at_safepoint(word_size,
  1704                                            context,
  1705                                            true /* expect_null_mutator_alloc_region */);
  1706   if (result != NULL) {
  1707     assert(*succeeded, "sanity");
  1708     return result;
  1711   assert(!collector_policy()->should_clear_all_soft_refs(),
  1712          "Flag should have been handled and cleared prior to this point");
  1714   // What else?  We might try synchronous finalization later.  If the total
  1715   // space available is large enough for the allocation, then a more
  1716   // complete compaction phase than we've tried so far might be
  1717   // appropriate.
  1718   assert(*succeeded, "sanity");
  1719   return NULL;
  1722 // Attempting to expand the heap sufficiently
  1723 // to support an allocation of the given "word_size".  If
  1724 // successful, perform the allocation and return the address of the
  1725 // allocated block, or else "NULL".
  1727 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
  1728   assert_at_safepoint(true /* should_be_vm_thread */);
  1730   verify_region_sets_optional();
  1732   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1733   ergo_verbose1(ErgoHeapSizing,
  1734                 "attempt heap expansion",
  1735                 ergo_format_reason("allocation request failed")
  1736                 ergo_format_byte("allocation request"),
  1737                 word_size * HeapWordSize);
  1738   if (expand(expand_bytes)) {
  1739     _hrm.verify_optional();
  1740     verify_region_sets_optional();
  1741     return attempt_allocation_at_safepoint(word_size,
  1742                                            context,
  1743                                            false /* expect_null_mutator_alloc_region */);
  1745   return NULL;
  1748 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1749   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1750   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1751                                        HeapRegion::GrainBytes);
  1752   ergo_verbose2(ErgoHeapSizing,
  1753                 "expand the heap",
  1754                 ergo_format_byte("requested expansion amount")
  1755                 ergo_format_byte("attempted expansion amount"),
  1756                 expand_bytes, aligned_expand_bytes);
  1758   if (is_maximal_no_gc()) {
  1759     ergo_verbose0(ErgoHeapSizing,
  1760                       "did not expand the heap",
  1761                       ergo_format_reason("heap already fully expanded"));
  1762     return false;
  1765   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
  1766   assert(regions_to_expand > 0, "Must expand by at least one region");
  1768   uint expanded_by = _hrm.expand_by(regions_to_expand);
  1770   if (expanded_by > 0) {
  1771     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
  1772     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1773     g1_policy()->record_new_heap_size(num_regions());
  1774   } else {
  1775     ergo_verbose0(ErgoHeapSizing,
  1776                   "did not expand the heap",
  1777                   ergo_format_reason("heap expansion operation failed"));
  1778     // The expansion of the virtual storage space was unsuccessful.
  1779     // Let's see if it was because we ran out of swap.
  1780     if (G1ExitOnExpansionFailure &&
  1781         _hrm.available() >= regions_to_expand) {
  1782       // We had head room...
  1783       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
  1786   return regions_to_expand > 0;
  1789 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1790   size_t aligned_shrink_bytes =
  1791     ReservedSpace::page_align_size_down(shrink_bytes);
  1792   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1793                                          HeapRegion::GrainBytes);
  1794   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
  1796   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
  1797   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
  1799   ergo_verbose3(ErgoHeapSizing,
  1800                 "shrink the heap",
  1801                 ergo_format_byte("requested shrinking amount")
  1802                 ergo_format_byte("aligned shrinking amount")
  1803                 ergo_format_byte("attempted shrinking amount"),
  1804                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  1805   if (num_regions_removed > 0) {
  1806     g1_policy()->record_new_heap_size(num_regions());
  1807   } else {
  1808     ergo_verbose0(ErgoHeapSizing,
  1809                   "did not shrink the heap",
  1810                   ergo_format_reason("heap shrinking operation failed"));
  1814 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1815   verify_region_sets_optional();
  1817   // We should only reach here at the end of a Full GC which means we
  1818   // should not not be holding to any GC alloc regions. The method
  1819   // below will make sure of that and do any remaining clean up.
  1820   _allocator->abandon_gc_alloc_regions();
  1822   // Instead of tearing down / rebuilding the free lists here, we
  1823   // could instead use the remove_all_pending() method on free_list to
  1824   // remove only the ones that we need to remove.
  1825   tear_down_region_sets(true /* free_list_only */);
  1826   shrink_helper(shrink_bytes);
  1827   rebuild_region_sets(true /* free_list_only */);
  1829   _hrm.verify_optional();
  1830   verify_region_sets_optional();
  1833 // Public methods.
  1835 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1836 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1837 #endif // _MSC_VER
  1840 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1841   SharedHeap(policy_),
  1842   _g1_policy(policy_),
  1843   _dirty_card_queue_set(false),
  1844   _into_cset_dirty_card_queue_set(false),
  1845   _is_alive_closure_cm(this),
  1846   _is_alive_closure_stw(this),
  1847   _ref_processor_cm(NULL),
  1848   _ref_processor_stw(NULL),
  1849   _bot_shared(NULL),
  1850   _evac_failure_scan_stack(NULL),
  1851   _mark_in_progress(false),
  1852   _cg1r(NULL),
  1853   _g1mm(NULL),
  1854   _refine_cte_cl(NULL),
  1855   _full_collection(false),
  1856   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  1857   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  1858   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
  1859   _humongous_reclaim_candidates(),
  1860   _has_humongous_reclaim_candidates(false),
  1861   _free_regions_coming(false),
  1862   _young_list(new YoungList(this)),
  1863   _gc_time_stamp(0),
  1864   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1865   _old_plab_stats(OldPLABSize, PLABWeight),
  1866   _expand_heap_after_alloc_failure(true),
  1867   _surviving_young_words(NULL),
  1868   _old_marking_cycles_started(0),
  1869   _old_marking_cycles_completed(0),
  1870   _concurrent_cycle_started(false),
  1871   _heap_summary_sent(false),
  1872   _in_cset_fast_test(),
  1873   _dirty_cards_region_list(NULL),
  1874   _worker_cset_start_region(NULL),
  1875   _worker_cset_start_region_time_stamp(NULL),
  1876   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  1877   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  1878   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  1879   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
  1881   _g1h = this;
  1883   _allocator = G1Allocator::create_allocator(_g1h);
  1884   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1886   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1887   _task_queues = new RefToScanQueueSet(n_queues);
  1889   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1890   assert(n_rem_sets > 0, "Invariant.");
  1892   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1893   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
  1894   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
  1896   for (int i = 0; i < n_queues; i++) {
  1897     RefToScanQueue* q = new RefToScanQueue();
  1898     q->initialize();
  1899     _task_queues->register_queue(i, q);
  1900     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
  1902   clear_cset_start_regions();
  1904   // Initialize the G1EvacuationFailureALot counters and flags.
  1905   NOT_PRODUCT(reset_evacuation_should_fail();)
  1907   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1910 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
  1911                                                                  size_t size,
  1912                                                                  size_t translation_factor) {
  1913   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
  1914   // Allocate a new reserved space, preferring to use large pages.
  1915   ReservedSpace rs(size, preferred_page_size);
  1916   G1RegionToSpaceMapper* result  =
  1917     G1RegionToSpaceMapper::create_mapper(rs,
  1918                                          size,
  1919                                          rs.alignment(),
  1920                                          HeapRegion::GrainBytes,
  1921                                          translation_factor,
  1922                                          mtGC);
  1923   if (TracePageSizes) {
  1924     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
  1925                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
  1927   return result;
  1930 jint G1CollectedHeap::initialize() {
  1931   CollectedHeap::pre_initialize();
  1932   os::enable_vtime();
  1934   G1Log::init();
  1936   // Necessary to satisfy locking discipline assertions.
  1938   MutexLocker x(Heap_lock);
  1940   // We have to initialize the printer before committing the heap, as
  1941   // it will be used then.
  1942   _hr_printer.set_active(G1PrintHeapRegions);
  1944   // While there are no constraints in the GC code that HeapWordSize
  1945   // be any particular value, there are multiple other areas in the
  1946   // system which believe this to be true (e.g. oop->object_size in some
  1947   // cases incorrectly returns the size in wordSize units rather than
  1948   // HeapWordSize).
  1949   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1951   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1952   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1953   size_t heap_alignment = collector_policy()->heap_alignment();
  1955   // Ensure that the sizes are properly aligned.
  1956   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1957   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1958   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
  1960   _refine_cte_cl = new RefineCardTableEntryClosure();
  1962   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
  1964   // Reserve the maximum.
  1966   // When compressed oops are enabled, the preferred heap base
  1967   // is calculated by subtracting the requested size from the
  1968   // 32Gb boundary and using the result as the base address for
  1969   // heap reservation. If the requested size is not aligned to
  1970   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1971   // into the ReservedHeapSpace constructor) then the actual
  1972   // base of the reserved heap may end up differing from the
  1973   // address that was requested (i.e. the preferred heap base).
  1974   // If this happens then we could end up using a non-optimal
  1975   // compressed oops mode.
  1977   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  1978                                                  heap_alignment);
  1980   // It is important to do this in a way such that concurrent readers can't
  1981   // temporarily think something is in the heap.  (I've actually seen this
  1982   // happen in asserts: DLD.)
  1983   _reserved.set_word_size(0);
  1984   _reserved.set_start((HeapWord*)heap_rs.base());
  1985   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1987   // Create the gen rem set (and barrier set) for the entire reserved region.
  1988   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1989   set_barrier_set(rem_set()->bs());
  1990   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
  1991     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
  1992     return JNI_ENOMEM;
  1995   // Also create a G1 rem set.
  1996   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
  1998   // Carve out the G1 part of the heap.
  2000   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
  2001   G1RegionToSpaceMapper* heap_storage =
  2002     G1RegionToSpaceMapper::create_mapper(g1_rs,
  2003                                          g1_rs.size(),
  2004                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
  2005                                          HeapRegion::GrainBytes,
  2006                                          1,
  2007                                          mtJavaHeap);
  2008   heap_storage->set_mapping_changed_listener(&_listener);
  2010   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
  2011   G1RegionToSpaceMapper* bot_storage =
  2012     create_aux_memory_mapper("Block offset table",
  2013                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
  2014                              G1BlockOffsetSharedArray::N_bytes);
  2016   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
  2017   G1RegionToSpaceMapper* cardtable_storage =
  2018     create_aux_memory_mapper("Card table",
  2019                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
  2020                              G1BlockOffsetSharedArray::N_bytes);
  2022   G1RegionToSpaceMapper* card_counts_storage =
  2023     create_aux_memory_mapper("Card counts table",
  2024                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
  2025                              G1BlockOffsetSharedArray::N_bytes);
  2027   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
  2028   G1RegionToSpaceMapper* prev_bitmap_storage =
  2029     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::mark_distance());
  2030   G1RegionToSpaceMapper* next_bitmap_storage =
  2031     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::mark_distance());
  2033   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
  2034   g1_barrier_set()->initialize(cardtable_storage);
  2035    // Do later initialization work for concurrent refinement.
  2036   _cg1r->init(card_counts_storage);
  2038   // 6843694 - ensure that the maximum region index can fit
  2039   // in the remembered set structures.
  2040   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2041   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2043   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2044   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2045   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2046             "too many cards per region");
  2048   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
  2050   _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
  2052   _g1h = this;
  2055     HeapWord* start = _hrm.reserved().start();
  2056     HeapWord* end = _hrm.reserved().end();
  2057     size_t granularity = HeapRegion::GrainBytes;
  2059     _in_cset_fast_test.initialize(start, end, granularity);
  2060     _humongous_reclaim_candidates.initialize(start, end, granularity);
  2063   // Create the ConcurrentMark data structure and thread.
  2064   // (Must do this late, so that "max_regions" is defined.)
  2065   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
  2066   if (_cm == NULL || !_cm->completed_initialization()) {
  2067     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2068     return JNI_ENOMEM;
  2070   _cmThread = _cm->cmThread();
  2072   // Initialize the from_card cache structure of HeapRegionRemSet.
  2073   HeapRegionRemSet::init_heap(max_regions());
  2075   // Now expand into the initial heap size.
  2076   if (!expand(init_byte_size)) {
  2077     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2078     return JNI_ENOMEM;
  2081   // Perform any initialization actions delegated to the policy.
  2082   g1_policy()->init();
  2084   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2085                                                SATB_Q_FL_lock,
  2086                                                G1SATBProcessCompletedThreshold,
  2087                                                Shared_SATB_Q_lock);
  2089   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
  2090                                                 DirtyCardQ_CBL_mon,
  2091                                                 DirtyCardQ_FL_lock,
  2092                                                 concurrent_g1_refine()->yellow_zone(),
  2093                                                 concurrent_g1_refine()->red_zone(),
  2094                                                 Shared_DirtyCardQ_lock);
  2096   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
  2097                                     DirtyCardQ_CBL_mon,
  2098                                     DirtyCardQ_FL_lock,
  2099                                     -1, // never trigger processing
  2100                                     -1, // no limit on length
  2101                                     Shared_DirtyCardQ_lock,
  2102                                     &JavaThread::dirty_card_queue_set());
  2104   // Initialize the card queue set used to hold cards containing
  2105   // references into the collection set.
  2106   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
  2107                                              DirtyCardQ_CBL_mon,
  2108                                              DirtyCardQ_FL_lock,
  2109                                              -1, // never trigger processing
  2110                                              -1, // no limit on length
  2111                                              Shared_DirtyCardQ_lock,
  2112                                              &JavaThread::dirty_card_queue_set());
  2114   // In case we're keeping closure specialization stats, initialize those
  2115   // counts and that mechanism.
  2116   SpecializationStats::clear();
  2118   // Here we allocate the dummy HeapRegion that is required by the
  2119   // G1AllocRegion class.
  2120   HeapRegion* dummy_region = _hrm.get_dummy_region();
  2122   // We'll re-use the same region whether the alloc region will
  2123   // require BOT updates or not and, if it doesn't, then a non-young
  2124   // region will complain that it cannot support allocations without
  2125   // BOT updates. So we'll tag the dummy region as eden to avoid that.
  2126   dummy_region->set_eden();
  2127   // Make sure it's full.
  2128   dummy_region->set_top(dummy_region->end());
  2129   G1AllocRegion::setup(this, dummy_region);
  2131   _allocator->init_mutator_alloc_region();
  2133   // Do create of the monitoring and management support so that
  2134   // values in the heap have been properly initialized.
  2135   _g1mm = new G1MonitoringSupport(this);
  2137   G1StringDedup::initialize();
  2139   return JNI_OK;
  2142 void G1CollectedHeap::stop() {
  2143   // Stop all concurrent threads. We do this to make sure these threads
  2144   // do not continue to execute and access resources (e.g. gclog_or_tty)
  2145   // that are destroyed during shutdown.
  2146   _cg1r->stop();
  2147   _cmThread->stop();
  2148   if (G1StringDedup::is_enabled()) {
  2149     G1StringDedup::stop();
  2153 size_t G1CollectedHeap::conservative_max_heap_alignment() {
  2154   return HeapRegion::max_region_size();
  2157 void G1CollectedHeap::ref_processing_init() {
  2158   // Reference processing in G1 currently works as follows:
  2159   //
  2160   // * There are two reference processor instances. One is
  2161   //   used to record and process discovered references
  2162   //   during concurrent marking; the other is used to
  2163   //   record and process references during STW pauses
  2164   //   (both full and incremental).
  2165   // * Both ref processors need to 'span' the entire heap as
  2166   //   the regions in the collection set may be dotted around.
  2167   //
  2168   // * For the concurrent marking ref processor:
  2169   //   * Reference discovery is enabled at initial marking.
  2170   //   * Reference discovery is disabled and the discovered
  2171   //     references processed etc during remarking.
  2172   //   * Reference discovery is MT (see below).
  2173   //   * Reference discovery requires a barrier (see below).
  2174   //   * Reference processing may or may not be MT
  2175   //     (depending on the value of ParallelRefProcEnabled
  2176   //     and ParallelGCThreads).
  2177   //   * A full GC disables reference discovery by the CM
  2178   //     ref processor and abandons any entries on it's
  2179   //     discovered lists.
  2180   //
  2181   // * For the STW processor:
  2182   //   * Non MT discovery is enabled at the start of a full GC.
  2183   //   * Processing and enqueueing during a full GC is non-MT.
  2184   //   * During a full GC, references are processed after marking.
  2185   //
  2186   //   * Discovery (may or may not be MT) is enabled at the start
  2187   //     of an incremental evacuation pause.
  2188   //   * References are processed near the end of a STW evacuation pause.
  2189   //   * For both types of GC:
  2190   //     * Discovery is atomic - i.e. not concurrent.
  2191   //     * Reference discovery will not need a barrier.
  2193   SharedHeap::ref_processing_init();
  2194   MemRegion mr = reserved_region();
  2196   // Concurrent Mark ref processor
  2197   _ref_processor_cm =
  2198     new ReferenceProcessor(mr,    // span
  2199                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2200                                 // mt processing
  2201                            (int) ParallelGCThreads,
  2202                                 // degree of mt processing
  2203                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2204                                 // mt discovery
  2205                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2206                                 // degree of mt discovery
  2207                            false,
  2208                                 // Reference discovery is not atomic
  2209                            &_is_alive_closure_cm);
  2210                                 // is alive closure
  2211                                 // (for efficiency/performance)
  2213   // STW ref processor
  2214   _ref_processor_stw =
  2215     new ReferenceProcessor(mr,    // span
  2216                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2217                                 // mt processing
  2218                            MAX2((int)ParallelGCThreads, 1),
  2219                                 // degree of mt processing
  2220                            (ParallelGCThreads > 1),
  2221                                 // mt discovery
  2222                            MAX2((int)ParallelGCThreads, 1),
  2223                                 // degree of mt discovery
  2224                            true,
  2225                                 // Reference discovery is atomic
  2226                            &_is_alive_closure_stw);
  2227                                 // is alive closure
  2228                                 // (for efficiency/performance)
  2231 size_t G1CollectedHeap::capacity() const {
  2232   return _hrm.length() * HeapRegion::GrainBytes;
  2235 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2236   assert(!hr->continuesHumongous(), "pre-condition");
  2237   hr->reset_gc_time_stamp();
  2238   if (hr->startsHumongous()) {
  2239     uint first_index = hr->hrm_index() + 1;
  2240     uint last_index = hr->last_hc_index();
  2241     for (uint i = first_index; i < last_index; i += 1) {
  2242       HeapRegion* chr = region_at(i);
  2243       assert(chr->continuesHumongous(), "sanity");
  2244       chr->reset_gc_time_stamp();
  2249 #ifndef PRODUCT
  2250 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2251 private:
  2252   unsigned _gc_time_stamp;
  2253   bool _failures;
  2255 public:
  2256   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2257     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2259   virtual bool doHeapRegion(HeapRegion* hr) {
  2260     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2261     if (_gc_time_stamp != region_gc_time_stamp) {
  2262       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
  2263                              "expected %d", HR_FORMAT_PARAMS(hr),
  2264                              region_gc_time_stamp, _gc_time_stamp);
  2265       _failures = true;
  2267     return false;
  2270   bool failures() { return _failures; }
  2271 };
  2273 void G1CollectedHeap::check_gc_time_stamps() {
  2274   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2275   heap_region_iterate(&cl);
  2276   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2278 #endif // PRODUCT
  2280 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2281                                                  DirtyCardQueue* into_cset_dcq,
  2282                                                  bool concurrent,
  2283                                                  uint worker_i) {
  2284   // Clean cards in the hot card cache
  2285   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  2286   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
  2288   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2289   size_t n_completed_buffers = 0;
  2290   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2291     n_completed_buffers++;
  2293   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
  2294   dcqs.clear_n_completed_buffers();
  2295   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2299 // Computes the sum of the storage used by the various regions.
  2300 size_t G1CollectedHeap::used() const {
  2301   return _allocator->used();
  2304 size_t G1CollectedHeap::used_unlocked() const {
  2305   return _allocator->used_unlocked();
  2308 class SumUsedClosure: public HeapRegionClosure {
  2309   size_t _used;
  2310 public:
  2311   SumUsedClosure() : _used(0) {}
  2312   bool doHeapRegion(HeapRegion* r) {
  2313     if (!r->continuesHumongous()) {
  2314       _used += r->used();
  2316     return false;
  2318   size_t result() { return _used; }
  2319 };
  2321 size_t G1CollectedHeap::recalculate_used() const {
  2322   double recalculate_used_start = os::elapsedTime();
  2324   SumUsedClosure blk;
  2325   heap_region_iterate(&blk);
  2327   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
  2328   return blk.result();
  2331 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2332   switch (cause) {
  2333     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2334     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2335     case GCCause::_g1_humongous_allocation: return true;
  2336     case GCCause::_update_allocation_context_stats_inc: return true;
  2337     case GCCause::_wb_conc_mark:            return true;
  2338     default:                                return false;
  2342 #ifndef PRODUCT
  2343 void G1CollectedHeap::allocate_dummy_regions() {
  2344   // Let's fill up most of the region
  2345   size_t word_size = HeapRegion::GrainWords - 1024;
  2346   // And as a result the region we'll allocate will be humongous.
  2347   guarantee(isHumongous(word_size), "sanity");
  2349   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2350     // Let's use the existing mechanism for the allocation
  2351     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
  2352                                                  AllocationContext::system());
  2353     if (dummy_obj != NULL) {
  2354       MemRegion mr(dummy_obj, word_size);
  2355       CollectedHeap::fill_with_object(mr);
  2356     } else {
  2357       // If we can't allocate once, we probably cannot allocate
  2358       // again. Let's get out of the loop.
  2359       break;
  2363 #endif // !PRODUCT
  2365 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2366   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2367     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2368     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2369     _old_marking_cycles_started, _old_marking_cycles_completed));
  2371   _old_marking_cycles_started++;
  2374 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2375   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2377   // We assume that if concurrent == true, then the caller is a
  2378   // concurrent thread that was joined the Suspendible Thread
  2379   // Set. If there's ever a cheap way to check this, we should add an
  2380   // assert here.
  2382   // Given that this method is called at the end of a Full GC or of a
  2383   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2384   // interrupt a concurrent cycle), the number of full collections
  2385   // completed should be either one (in the case where there was no
  2386   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2387   // behind the number of full collections started.
  2389   // This is the case for the inner caller, i.e. a Full GC.
  2390   assert(concurrent ||
  2391          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2392          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2393          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2394                  "is inconsistent with _old_marking_cycles_completed = %u",
  2395                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2397   // This is the case for the outer caller, i.e. the concurrent cycle.
  2398   assert(!concurrent ||
  2399          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2400          err_msg("for outer caller (concurrent cycle): "
  2401                  "_old_marking_cycles_started = %u "
  2402                  "is inconsistent with _old_marking_cycles_completed = %u",
  2403                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2405   _old_marking_cycles_completed += 1;
  2407   // We need to clear the "in_progress" flag in the CM thread before
  2408   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2409   // is set) so that if a waiter requests another System.gc() it doesn't
  2410   // incorrectly see that a marking cycle is still in progress.
  2411   if (concurrent) {
  2412     _cmThread->clear_in_progress();
  2415   // This notify_all() will ensure that a thread that called
  2416   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2417   // and it's waiting for a full GC to finish will be woken up. It is
  2418   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2419   FullGCCount_lock->notify_all();
  2422 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
  2423   _concurrent_cycle_started = true;
  2424   _gc_timer_cm->register_gc_start(start_time);
  2426   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  2427   trace_heap_before_gc(_gc_tracer_cm);
  2430 void G1CollectedHeap::register_concurrent_cycle_end() {
  2431   if (_concurrent_cycle_started) {
  2432     if (_cm->has_aborted()) {
  2433       _gc_tracer_cm->report_concurrent_mode_failure();
  2436     _gc_timer_cm->register_gc_end();
  2437     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2439     // Clear state variables to prepare for the next concurrent cycle.
  2440     _concurrent_cycle_started = false;
  2441     _heap_summary_sent = false;
  2445 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  2446   if (_concurrent_cycle_started) {
  2447     // This function can be called when:
  2448     //  the cleanup pause is run
  2449     //  the concurrent cycle is aborted before the cleanup pause.
  2450     //  the concurrent cycle is aborted after the cleanup pause,
  2451     //   but before the concurrent cycle end has been registered.
  2452     // Make sure that we only send the heap information once.
  2453     if (!_heap_summary_sent) {
  2454       trace_heap_after_gc(_gc_tracer_cm);
  2455       _heap_summary_sent = true;
  2460 G1YCType G1CollectedHeap::yc_type() {
  2461   bool is_young = g1_policy()->gcs_are_young();
  2462   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  2463   bool is_during_mark = mark_in_progress();
  2465   if (is_initial_mark) {
  2466     return InitialMark;
  2467   } else if (is_during_mark) {
  2468     return DuringMark;
  2469   } else if (is_young) {
  2470     return Normal;
  2471   } else {
  2472     return Mixed;
  2476 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2477   assert_heap_not_locked();
  2479   uint gc_count_before;
  2480   uint old_marking_count_before;
  2481   uint full_gc_count_before;
  2482   bool retry_gc;
  2484   do {
  2485     retry_gc = false;
  2488       MutexLocker ml(Heap_lock);
  2490       // Read the GC count while holding the Heap_lock
  2491       gc_count_before = total_collections();
  2492       full_gc_count_before = total_full_collections();
  2493       old_marking_count_before = _old_marking_cycles_started;
  2496     if (should_do_concurrent_full_gc(cause)) {
  2497       // Schedule an initial-mark evacuation pause that will start a
  2498       // concurrent cycle. We're setting word_size to 0 which means that
  2499       // we are not requesting a post-GC allocation.
  2500       VM_G1IncCollectionPause op(gc_count_before,
  2501                                  0,     /* word_size */
  2502                                  true,  /* should_initiate_conc_mark */
  2503                                  g1_policy()->max_pause_time_ms(),
  2504                                  cause);
  2505       op.set_allocation_context(AllocationContext::current());
  2507       VMThread::execute(&op);
  2508       if (!op.pause_succeeded()) {
  2509         if (old_marking_count_before == _old_marking_cycles_started) {
  2510           retry_gc = op.should_retry_gc();
  2511         } else {
  2512           // A Full GC happened while we were trying to schedule the
  2513           // initial-mark GC. No point in starting a new cycle given
  2514           // that the whole heap was collected anyway.
  2517         if (retry_gc) {
  2518           if (GC_locker::is_active_and_needs_gc()) {
  2519             GC_locker::stall_until_clear();
  2523     } else if (GC_locker::should_discard(cause, gc_count_before)) {
  2524       // Return to be consistent with VMOp failure due to another
  2525       // collection slipping in after our gc_count but before our
  2526       // request is processed.  _gc_locker collections upgraded by
  2527       // GCLockerInvokesConcurrent are handled above and never discarded.
  2528       return;
  2529     } else {
  2530       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
  2531           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2533         // Schedule a standard evacuation pause. We're setting word_size
  2534         // to 0 which means that we are not requesting a post-GC allocation.
  2535         VM_G1IncCollectionPause op(gc_count_before,
  2536                                    0,     /* word_size */
  2537                                    false, /* should_initiate_conc_mark */
  2538                                    g1_policy()->max_pause_time_ms(),
  2539                                    cause);
  2540         VMThread::execute(&op);
  2541       } else {
  2542         // Schedule a Full GC.
  2543         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2544         VMThread::execute(&op);
  2547   } while (retry_gc);
  2550 bool G1CollectedHeap::is_in(const void* p) const {
  2551   if (_hrm.reserved().contains(p)) {
  2552     // Given that we know that p is in the reserved space,
  2553     // heap_region_containing_raw() should successfully
  2554     // return the containing region.
  2555     HeapRegion* hr = heap_region_containing_raw(p);
  2556     return hr->is_in(p);
  2557   } else {
  2558     return false;
  2562 #ifdef ASSERT
  2563 bool G1CollectedHeap::is_in_exact(const void* p) const {
  2564   bool contains = reserved_region().contains(p);
  2565   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
  2566   if (contains && available) {
  2567     return true;
  2568   } else {
  2569     return false;
  2572 #endif
  2574 // Iteration functions.
  2576 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
  2578 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2579   ExtendedOopClosure* _cl;
  2580 public:
  2581   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
  2582   bool doHeapRegion(HeapRegion* r) {
  2583     if (!r->continuesHumongous()) {
  2584       r->oop_iterate(_cl);
  2586     return false;
  2588 };
  2590 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2591   IterateOopClosureRegionClosure blk(cl);
  2592   heap_region_iterate(&blk);
  2595 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2597 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2598   ObjectClosure* _cl;
  2599 public:
  2600   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2601   bool doHeapRegion(HeapRegion* r) {
  2602     if (! r->continuesHumongous()) {
  2603       r->object_iterate(_cl);
  2605     return false;
  2607 };
  2609 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2610   IterateObjectClosureRegionClosure blk(cl);
  2611   heap_region_iterate(&blk);
  2614 // Calls a SpaceClosure on a HeapRegion.
  2616 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2617   SpaceClosure* _cl;
  2618 public:
  2619   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2620   bool doHeapRegion(HeapRegion* r) {
  2621     _cl->do_space(r);
  2622     return false;
  2624 };
  2626 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2627   SpaceClosureRegionClosure blk(cl);
  2628   heap_region_iterate(&blk);
  2631 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2632   _hrm.iterate(cl);
  2635 void
  2636 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2637                                                  uint worker_id,
  2638                                                  uint num_workers,
  2639                                                  jint claim_value) const {
  2640   _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
  2643 class ResetClaimValuesClosure: public HeapRegionClosure {
  2644 public:
  2645   bool doHeapRegion(HeapRegion* r) {
  2646     r->set_claim_value(HeapRegion::InitialClaimValue);
  2647     return false;
  2649 };
  2651 void G1CollectedHeap::reset_heap_region_claim_values() {
  2652   ResetClaimValuesClosure blk;
  2653   heap_region_iterate(&blk);
  2656 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2657   ResetClaimValuesClosure blk;
  2658   collection_set_iterate(&blk);
  2661 #ifdef ASSERT
  2662 // This checks whether all regions in the heap have the correct claim
  2663 // value. I also piggy-backed on this a check to ensure that the
  2664 // humongous_start_region() information on "continues humongous"
  2665 // regions is correct.
  2667 class CheckClaimValuesClosure : public HeapRegionClosure {
  2668 private:
  2669   jint _claim_value;
  2670   uint _failures;
  2671   HeapRegion* _sh_region;
  2673 public:
  2674   CheckClaimValuesClosure(jint claim_value) :
  2675     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2676   bool doHeapRegion(HeapRegion* r) {
  2677     if (r->claim_value() != _claim_value) {
  2678       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2679                              "claim value = %d, should be %d",
  2680                              HR_FORMAT_PARAMS(r),
  2681                              r->claim_value(), _claim_value);
  2682       ++_failures;
  2684     if (!r->isHumongous()) {
  2685       _sh_region = NULL;
  2686     } else if (r->startsHumongous()) {
  2687       _sh_region = r;
  2688     } else if (r->continuesHumongous()) {
  2689       if (r->humongous_start_region() != _sh_region) {
  2690         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2691                                "HS = " PTR_FORMAT ", should be " PTR_FORMAT,
  2692                                HR_FORMAT_PARAMS(r),
  2693                                r->humongous_start_region(),
  2694                                _sh_region);
  2695         ++_failures;
  2698     return false;
  2700   uint failures() { return _failures; }
  2701 };
  2703 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2704   CheckClaimValuesClosure cl(claim_value);
  2705   heap_region_iterate(&cl);
  2706   return cl.failures() == 0;
  2709 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2710 private:
  2711   jint _claim_value;
  2712   uint _failures;
  2714 public:
  2715   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2716     _claim_value(claim_value), _failures(0) { }
  2718   uint failures() { return _failures; }
  2720   bool doHeapRegion(HeapRegion* hr) {
  2721     assert(hr->in_collection_set(), "how?");
  2722     assert(!hr->isHumongous(), "H-region in CSet");
  2723     if (hr->claim_value() != _claim_value) {
  2724       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2725                              "claim value = %d, should be %d",
  2726                              HR_FORMAT_PARAMS(hr),
  2727                              hr->claim_value(), _claim_value);
  2728       _failures += 1;
  2730     return false;
  2732 };
  2734 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2735   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2736   collection_set_iterate(&cl);
  2737   return cl.failures() == 0;
  2739 #endif // ASSERT
  2741 // Clear the cached CSet starting regions and (more importantly)
  2742 // the time stamps. Called when we reset the GC time stamp.
  2743 void G1CollectedHeap::clear_cset_start_regions() {
  2744   assert(_worker_cset_start_region != NULL, "sanity");
  2745   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2747   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2748   for (int i = 0; i < n_queues; i++) {
  2749     _worker_cset_start_region[i] = NULL;
  2750     _worker_cset_start_region_time_stamp[i] = 0;
  2754 // Given the id of a worker, obtain or calculate a suitable
  2755 // starting region for iterating over the current collection set.
  2756 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
  2757   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2759   HeapRegion* result = NULL;
  2760   unsigned gc_time_stamp = get_gc_time_stamp();
  2762   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2763     // Cached starting region for current worker was set
  2764     // during the current pause - so it's valid.
  2765     // Note: the cached starting heap region may be NULL
  2766     // (when the collection set is empty).
  2767     result = _worker_cset_start_region[worker_i];
  2768     assert(result == NULL || result->in_collection_set(), "sanity");
  2769     return result;
  2772   // The cached entry was not valid so let's calculate
  2773   // a suitable starting heap region for this worker.
  2775   // We want the parallel threads to start their collection
  2776   // set iteration at different collection set regions to
  2777   // avoid contention.
  2778   // If we have:
  2779   //          n collection set regions
  2780   //          p threads
  2781   // Then thread t will start at region floor ((t * n) / p)
  2783   result = g1_policy()->collection_set();
  2784   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2785     uint cs_size = g1_policy()->cset_region_length();
  2786     uint active_workers = workers()->active_workers();
  2787     assert(UseDynamicNumberOfGCThreads ||
  2788              active_workers == workers()->total_workers(),
  2789              "Unless dynamic should use total workers");
  2791     uint end_ind   = (cs_size * worker_i) / active_workers;
  2792     uint start_ind = 0;
  2794     if (worker_i > 0 &&
  2795         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2796       // Previous workers starting region is valid
  2797       // so let's iterate from there
  2798       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2799       OrderAccess::loadload();
  2800       result = _worker_cset_start_region[worker_i - 1];
  2803     for (uint i = start_ind; i < end_ind; i++) {
  2804       result = result->next_in_collection_set();
  2808   // Note: the calculated starting heap region may be NULL
  2809   // (when the collection set is empty).
  2810   assert(result == NULL || result->in_collection_set(), "sanity");
  2811   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2812          "should be updated only once per pause");
  2813   _worker_cset_start_region[worker_i] = result;
  2814   OrderAccess::storestore();
  2815   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2816   return result;
  2819 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2820   HeapRegion* r = g1_policy()->collection_set();
  2821   while (r != NULL) {
  2822     HeapRegion* next = r->next_in_collection_set();
  2823     if (cl->doHeapRegion(r)) {
  2824       cl->incomplete();
  2825       return;
  2827     r = next;
  2831 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2832                                                   HeapRegionClosure *cl) {
  2833   if (r == NULL) {
  2834     // The CSet is empty so there's nothing to do.
  2835     return;
  2838   assert(r->in_collection_set(),
  2839          "Start region must be a member of the collection set.");
  2840   HeapRegion* cur = r;
  2841   while (cur != NULL) {
  2842     HeapRegion* next = cur->next_in_collection_set();
  2843     if (cl->doHeapRegion(cur) && false) {
  2844       cl->incomplete();
  2845       return;
  2847     cur = next;
  2849   cur = g1_policy()->collection_set();
  2850   while (cur != r) {
  2851     HeapRegion* next = cur->next_in_collection_set();
  2852     if (cl->doHeapRegion(cur) && false) {
  2853       cl->incomplete();
  2854       return;
  2856     cur = next;
  2860 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
  2861   HeapRegion* result = _hrm.next_region_in_heap(from);
  2862   while (result != NULL && result->isHumongous()) {
  2863     result = _hrm.next_region_in_heap(result);
  2865   return result;
  2868 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2869   return heap_region_containing(addr);
  2872 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2873   Space* sp = space_containing(addr);
  2874   return sp->block_start(addr);
  2877 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2878   Space* sp = space_containing(addr);
  2879   return sp->block_size(addr);
  2882 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2883   Space* sp = space_containing(addr);
  2884   return sp->block_is_obj(addr);
  2887 bool G1CollectedHeap::supports_tlab_allocation() const {
  2888   return true;
  2891 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2892   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
  2895 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  2896   return young_list()->eden_used_bytes();
  2899 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
  2900 // must be smaller than the humongous object limit.
  2901 size_t G1CollectedHeap::max_tlab_size() const {
  2902   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
  2905 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2906   // Return the remaining space in the cur alloc region, but not less than
  2907   // the min TLAB size.
  2909   // Also, this value can be at most the humongous object threshold,
  2910   // since we can't allow tlabs to grow big enough to accommodate
  2911   // humongous objects.
  2913   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
  2914   size_t max_tlab = max_tlab_size() * wordSize;
  2915   if (hr == NULL) {
  2916     return max_tlab;
  2917   } else {
  2918     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
  2922 size_t G1CollectedHeap::max_capacity() const {
  2923   return _hrm.reserved().byte_size();
  2926 jlong G1CollectedHeap::millis_since_last_gc() {
  2927   // assert(false, "NYI");
  2928   return 0;
  2931 void G1CollectedHeap::prepare_for_verify() {
  2932   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2933     ensure_parsability(false);
  2935   g1_rem_set()->prepare_for_verify();
  2938 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  2939                                               VerifyOption vo) {
  2940   switch (vo) {
  2941   case VerifyOption_G1UsePrevMarking:
  2942     return hr->obj_allocated_since_prev_marking(obj);
  2943   case VerifyOption_G1UseNextMarking:
  2944     return hr->obj_allocated_since_next_marking(obj);
  2945   case VerifyOption_G1UseMarkWord:
  2946     return false;
  2947   default:
  2948     ShouldNotReachHere();
  2950   return false; // keep some compilers happy
  2953 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  2954   switch (vo) {
  2955   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  2956   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  2957   case VerifyOption_G1UseMarkWord:    return NULL;
  2958   default:                            ShouldNotReachHere();
  2960   return NULL; // keep some compilers happy
  2963 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  2964   switch (vo) {
  2965   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  2966   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  2967   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  2968   default:                            ShouldNotReachHere();
  2970   return false; // keep some compilers happy
  2973 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  2974   switch (vo) {
  2975   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  2976   case VerifyOption_G1UseNextMarking: return "NTAMS";
  2977   case VerifyOption_G1UseMarkWord:    return "NONE";
  2978   default:                            ShouldNotReachHere();
  2980   return NULL; // keep some compilers happy
  2983 class VerifyRootsClosure: public OopClosure {
  2984 private:
  2985   G1CollectedHeap* _g1h;
  2986   VerifyOption     _vo;
  2987   bool             _failures;
  2988 public:
  2989   // _vo == UsePrevMarking -> use "prev" marking information,
  2990   // _vo == UseNextMarking -> use "next" marking information,
  2991   // _vo == UseMarkWord    -> use mark word from object header.
  2992   VerifyRootsClosure(VerifyOption vo) :
  2993     _g1h(G1CollectedHeap::heap()),
  2994     _vo(vo),
  2995     _failures(false) { }
  2997   bool failures() { return _failures; }
  2999   template <class T> void do_oop_nv(T* p) {
  3000     T heap_oop = oopDesc::load_heap_oop(p);
  3001     if (!oopDesc::is_null(heap_oop)) {
  3002       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3003       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3004         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
  3005                               "points to dead obj " PTR_FORMAT, p, (void*) obj);
  3006         if (_vo == VerifyOption_G1UseMarkWord) {
  3007           gclog_or_tty->print_cr("  Mark word: " PTR_FORMAT, (void*)(obj->mark()));
  3009         obj->print_on(gclog_or_tty);
  3010         _failures = true;
  3015   void do_oop(oop* p)       { do_oop_nv(p); }
  3016   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3017 };
  3019 class G1VerifyCodeRootOopClosure: public OopClosure {
  3020   G1CollectedHeap* _g1h;
  3021   OopClosure* _root_cl;
  3022   nmethod* _nm;
  3023   VerifyOption _vo;
  3024   bool _failures;
  3026   template <class T> void do_oop_work(T* p) {
  3027     // First verify that this root is live
  3028     _root_cl->do_oop(p);
  3030     if (!G1VerifyHeapRegionCodeRoots) {
  3031       // We're not verifying the code roots attached to heap region.
  3032       return;
  3035     // Don't check the code roots during marking verification in a full GC
  3036     if (_vo == VerifyOption_G1UseMarkWord) {
  3037       return;
  3040     // Now verify that the current nmethod (which contains p) is
  3041     // in the code root list of the heap region containing the
  3042     // object referenced by p.
  3044     T heap_oop = oopDesc::load_heap_oop(p);
  3045     if (!oopDesc::is_null(heap_oop)) {
  3046       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3048       // Now fetch the region containing the object
  3049       HeapRegion* hr = _g1h->heap_region_containing(obj);
  3050       HeapRegionRemSet* hrrs = hr->rem_set();
  3051       // Verify that the strong code root list for this region
  3052       // contains the nmethod
  3053       if (!hrrs->strong_code_roots_list_contains(_nm)) {
  3054         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
  3055                               "from nmethod " PTR_FORMAT " not in strong "
  3056                               "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
  3057                               p, _nm, hr->bottom(), hr->end());
  3058         _failures = true;
  3063 public:
  3064   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
  3065     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
  3067   void do_oop(oop* p) { do_oop_work(p); }
  3068   void do_oop(narrowOop* p) { do_oop_work(p); }
  3070   void set_nmethod(nmethod* nm) { _nm = nm; }
  3071   bool failures() { return _failures; }
  3072 };
  3074 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  3075   G1VerifyCodeRootOopClosure* _oop_cl;
  3077 public:
  3078   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
  3079     _oop_cl(oop_cl) {}
  3081   void do_code_blob(CodeBlob* cb) {
  3082     nmethod* nm = cb->as_nmethod_or_null();
  3083     if (nm != NULL) {
  3084       _oop_cl->set_nmethod(nm);
  3085       nm->oops_do(_oop_cl);
  3088 };
  3090 class YoungRefCounterClosure : public OopClosure {
  3091   G1CollectedHeap* _g1h;
  3092   int              _count;
  3093  public:
  3094   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3095   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3096   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3098   int count() { return _count; }
  3099   void reset_count() { _count = 0; };
  3100 };
  3102 class VerifyKlassClosure: public KlassClosure {
  3103   YoungRefCounterClosure _young_ref_counter_closure;
  3104   OopClosure *_oop_closure;
  3105  public:
  3106   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3107   void do_klass(Klass* k) {
  3108     k->oops_do(_oop_closure);
  3110     _young_ref_counter_closure.reset_count();
  3111     k->oops_do(&_young_ref_counter_closure);
  3112     if (_young_ref_counter_closure.count() > 0) {
  3113       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3116 };
  3118 class VerifyLivenessOopClosure: public OopClosure {
  3119   G1CollectedHeap* _g1h;
  3120   VerifyOption _vo;
  3121 public:
  3122   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3123     _g1h(g1h), _vo(vo)
  3124   { }
  3125   void do_oop(narrowOop *p) { do_oop_work(p); }
  3126   void do_oop(      oop *p) { do_oop_work(p); }
  3128   template <class T> void do_oop_work(T *p) {
  3129     oop obj = oopDesc::load_decode_heap_oop(p);
  3130     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3131               "Dead object referenced by a not dead object");
  3133 };
  3135 class VerifyObjsInRegionClosure: public ObjectClosure {
  3136 private:
  3137   G1CollectedHeap* _g1h;
  3138   size_t _live_bytes;
  3139   HeapRegion *_hr;
  3140   VerifyOption _vo;
  3141 public:
  3142   // _vo == UsePrevMarking -> use "prev" marking information,
  3143   // _vo == UseNextMarking -> use "next" marking information,
  3144   // _vo == UseMarkWord    -> use mark word from object header.
  3145   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3146     : _live_bytes(0), _hr(hr), _vo(vo) {
  3147     _g1h = G1CollectedHeap::heap();
  3149   void do_object(oop o) {
  3150     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3151     assert(o != NULL, "Huh?");
  3152     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3153       // If the object is alive according to the mark word,
  3154       // then verify that the marking information agrees.
  3155       // Note we can't verify the contra-positive of the
  3156       // above: if the object is dead (according to the mark
  3157       // word), it may not be marked, or may have been marked
  3158       // but has since became dead, or may have been allocated
  3159       // since the last marking.
  3160       if (_vo == VerifyOption_G1UseMarkWord) {
  3161         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3164       o->oop_iterate_no_header(&isLive);
  3165       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3166         size_t obj_size = o->size();    // Make sure we don't overflow
  3167         _live_bytes += (obj_size * HeapWordSize);
  3171   size_t live_bytes() { return _live_bytes; }
  3172 };
  3174 class PrintObjsInRegionClosure : public ObjectClosure {
  3175   HeapRegion *_hr;
  3176   G1CollectedHeap *_g1;
  3177 public:
  3178   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3179     _g1 = G1CollectedHeap::heap();
  3180   };
  3182   void do_object(oop o) {
  3183     if (o != NULL) {
  3184       HeapWord *start = (HeapWord *) o;
  3185       size_t word_sz = o->size();
  3186       gclog_or_tty->print("\nPrinting obj " PTR_FORMAT " of size " SIZE_FORMAT
  3187                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3188                           (void*) o, word_sz,
  3189                           _g1->isMarkedPrev(o),
  3190                           _g1->isMarkedNext(o),
  3191                           _hr->obj_allocated_since_prev_marking(o));
  3192       HeapWord *end = start + word_sz;
  3193       HeapWord *cur;
  3194       int *val;
  3195       for (cur = start; cur < end; cur++) {
  3196         val = (int *) cur;
  3197         gclog_or_tty->print("\t " PTR_FORMAT ":" PTR_FORMAT "\n", val, *val);
  3201 };
  3203 class VerifyRegionClosure: public HeapRegionClosure {
  3204 private:
  3205   bool             _par;
  3206   VerifyOption     _vo;
  3207   bool             _failures;
  3208 public:
  3209   // _vo == UsePrevMarking -> use "prev" marking information,
  3210   // _vo == UseNextMarking -> use "next" marking information,
  3211   // _vo == UseMarkWord    -> use mark word from object header.
  3212   VerifyRegionClosure(bool par, VerifyOption vo)
  3213     : _par(par),
  3214       _vo(vo),
  3215       _failures(false) {}
  3217   bool failures() {
  3218     return _failures;
  3221   bool doHeapRegion(HeapRegion* r) {
  3222     if (!r->continuesHumongous()) {
  3223       bool failures = false;
  3224       r->verify(_vo, &failures);
  3225       if (failures) {
  3226         _failures = true;
  3227       } else {
  3228         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3229         r->object_iterate(&not_dead_yet_cl);
  3230         if (_vo != VerifyOption_G1UseNextMarking) {
  3231           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3232             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
  3233                                    "max_live_bytes " SIZE_FORMAT " "
  3234                                    "< calculated " SIZE_FORMAT,
  3235                                    r->bottom(), r->end(),
  3236                                    r->max_live_bytes(),
  3237                                  not_dead_yet_cl.live_bytes());
  3238             _failures = true;
  3240         } else {
  3241           // When vo == UseNextMarking we cannot currently do a sanity
  3242           // check on the live bytes as the calculation has not been
  3243           // finalized yet.
  3247     return false; // stop the region iteration if we hit a failure
  3249 };
  3251 // This is the task used for parallel verification of the heap regions
  3253 class G1ParVerifyTask: public AbstractGangTask {
  3254 private:
  3255   G1CollectedHeap* _g1h;
  3256   VerifyOption     _vo;
  3257   bool             _failures;
  3259 public:
  3260   // _vo == UsePrevMarking -> use "prev" marking information,
  3261   // _vo == UseNextMarking -> use "next" marking information,
  3262   // _vo == UseMarkWord    -> use mark word from object header.
  3263   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3264     AbstractGangTask("Parallel verify task"),
  3265     _g1h(g1h),
  3266     _vo(vo),
  3267     _failures(false) { }
  3269   bool failures() {
  3270     return _failures;
  3273   void work(uint worker_id) {
  3274     HandleMark hm;
  3275     VerifyRegionClosure blk(true, _vo);
  3276     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3277                                           _g1h->workers()->active_workers(),
  3278                                           HeapRegion::ParVerifyClaimValue);
  3279     if (blk.failures()) {
  3280       _failures = true;
  3283 };
  3285 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
  3286   if (SafepointSynchronize::is_at_safepoint()) {
  3287     assert(Thread::current()->is_VM_thread(),
  3288            "Expected to be executed serially by the VM thread at this point");
  3290     if (!silent) { gclog_or_tty->print("Roots "); }
  3291     VerifyRootsClosure rootsCl(vo);
  3292     VerifyKlassClosure klassCl(this, &rootsCl);
  3293     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
  3295     // We apply the relevant closures to all the oops in the
  3296     // system dictionary, class loader data graph, the string table
  3297     // and the nmethods in the code cache.
  3298     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
  3299     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
  3302       G1RootProcessor root_processor(this);
  3303       root_processor.process_all_roots(&rootsCl,
  3304                                        &cldCl,
  3305                                        &blobsCl);
  3308     bool failures = rootsCl.failures() || codeRootsCl.failures();
  3310     if (vo != VerifyOption_G1UseMarkWord) {
  3311       // If we're verifying during a full GC then the region sets
  3312       // will have been torn down at the start of the GC. Therefore
  3313       // verifying the region sets will fail. So we only verify
  3314       // the region sets when not in a full GC.
  3315       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3316       verify_region_sets();
  3319     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3320     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3321       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3322              "sanity check");
  3324       G1ParVerifyTask task(this, vo);
  3325       assert(UseDynamicNumberOfGCThreads ||
  3326         workers()->active_workers() == workers()->total_workers(),
  3327         "If not dynamic should be using all the workers");
  3328       int n_workers = workers()->active_workers();
  3329       set_par_threads(n_workers);
  3330       workers()->run_task(&task);
  3331       set_par_threads(0);
  3332       if (task.failures()) {
  3333         failures = true;
  3336       // Checks that the expected amount of parallel work was done.
  3337       // The implication is that n_workers is > 0.
  3338       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3339              "sanity check");
  3341       reset_heap_region_claim_values();
  3343       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3344              "sanity check");
  3345     } else {
  3346       VerifyRegionClosure blk(false, vo);
  3347       heap_region_iterate(&blk);
  3348       if (blk.failures()) {
  3349         failures = true;
  3352     if (!silent) gclog_or_tty->print("RemSet ");
  3353     rem_set()->verify();
  3355     if (G1StringDedup::is_enabled()) {
  3356       if (!silent) gclog_or_tty->print("StrDedup ");
  3357       G1StringDedup::verify();
  3360     if (failures) {
  3361       gclog_or_tty->print_cr("Heap:");
  3362       // It helps to have the per-region information in the output to
  3363       // help us track down what went wrong. This is why we call
  3364       // print_extended_on() instead of print_on().
  3365       print_extended_on(gclog_or_tty);
  3366       gclog_or_tty->cr();
  3367 #ifndef PRODUCT
  3368       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3369         concurrent_mark()->print_reachable("at-verification-failure",
  3370                                            vo, false /* all */);
  3372 #endif
  3373       gclog_or_tty->flush();
  3375     guarantee(!failures, "there should not have been any failures");
  3376   } else {
  3377     if (!silent) {
  3378       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
  3379       if (G1StringDedup::is_enabled()) {
  3380         gclog_or_tty->print(", StrDedup");
  3382       gclog_or_tty->print(") ");
  3387 void G1CollectedHeap::verify(bool silent) {
  3388   verify(silent, VerifyOption_G1UsePrevMarking);
  3391 double G1CollectedHeap::verify(bool guard, const char* msg) {
  3392   double verify_time_ms = 0.0;
  3394   if (guard && total_collections() >= VerifyGCStartAt) {
  3395     double verify_start = os::elapsedTime();
  3396     HandleMark hm;  // Discard invalid handles created during verification
  3397     prepare_for_verify();
  3398     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
  3399     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  3402   return verify_time_ms;
  3405 void G1CollectedHeap::verify_before_gc() {
  3406   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  3407   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  3410 void G1CollectedHeap::verify_after_gc() {
  3411   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  3412   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  3415 class PrintRegionClosure: public HeapRegionClosure {
  3416   outputStream* _st;
  3417 public:
  3418   PrintRegionClosure(outputStream* st) : _st(st) {}
  3419   bool doHeapRegion(HeapRegion* r) {
  3420     r->print_on(_st);
  3421     return false;
  3423 };
  3425 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3426                                        const HeapRegion* hr,
  3427                                        const VerifyOption vo) const {
  3428   switch (vo) {
  3429   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  3430   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  3431   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3432   default:                            ShouldNotReachHere();
  3434   return false; // keep some compilers happy
  3437 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3438                                        const VerifyOption vo) const {
  3439   switch (vo) {
  3440   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  3441   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  3442   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3443   default:                            ShouldNotReachHere();
  3445   return false; // keep some compilers happy
  3448 void G1CollectedHeap::print_on(outputStream* st) const {
  3449   st->print(" %-20s", "garbage-first heap");
  3450   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3451             capacity()/K, used_unlocked()/K);
  3452   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3453             _hrm.reserved().start(),
  3454             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
  3455             _hrm.reserved().end());
  3456   st->cr();
  3457   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3458   uint young_regions = _young_list->length();
  3459   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3460             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3461   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3462   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3463             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3464   st->cr();
  3465   MetaspaceAux::print_on(st);
  3468 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3469   print_on(st);
  3471   // Print the per-region information.
  3472   st->cr();
  3473   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3474                "HS=humongous(starts), HC=humongous(continues), "
  3475                "CS=collection set, F=free, TS=gc time stamp, "
  3476                "PTAMS=previous top-at-mark-start, "
  3477                "NTAMS=next top-at-mark-start)");
  3478   PrintRegionClosure blk(st);
  3479   heap_region_iterate(&blk);
  3482 void G1CollectedHeap::print_on_error(outputStream* st) const {
  3483   this->CollectedHeap::print_on_error(st);
  3485   if (_cm != NULL) {
  3486     st->cr();
  3487     _cm->print_on_error(st);
  3491 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3492   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3493     workers()->print_worker_threads_on(st);
  3495   _cmThread->print_on(st);
  3496   st->cr();
  3497   _cm->print_worker_threads_on(st);
  3498   _cg1r->print_worker_threads_on(st);
  3499   if (G1StringDedup::is_enabled()) {
  3500     G1StringDedup::print_worker_threads_on(st);
  3504 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3505   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3506     workers()->threads_do(tc);
  3508   tc->do_thread(_cmThread);
  3509   _cg1r->threads_do(tc);
  3510   if (G1StringDedup::is_enabled()) {
  3511     G1StringDedup::threads_do(tc);
  3515 void G1CollectedHeap::print_tracing_info() const {
  3516   // We'll overload this to mean "trace GC pause statistics."
  3517   if (TraceGen0Time || TraceGen1Time) {
  3518     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3519     // to that.
  3520     g1_policy()->print_tracing_info();
  3522   if (G1SummarizeRSetStats) {
  3523     g1_rem_set()->print_summary_info();
  3525   if (G1SummarizeConcMark) {
  3526     concurrent_mark()->print_summary_info();
  3528   g1_policy()->print_yg_surv_rate_info();
  3529   SpecializationStats::print();
  3532 #ifndef PRODUCT
  3533 // Helpful for debugging RSet issues.
  3535 class PrintRSetsClosure : public HeapRegionClosure {
  3536 private:
  3537   const char* _msg;
  3538   size_t _occupied_sum;
  3540 public:
  3541   bool doHeapRegion(HeapRegion* r) {
  3542     HeapRegionRemSet* hrrs = r->rem_set();
  3543     size_t occupied = hrrs->occupied();
  3544     _occupied_sum += occupied;
  3546     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
  3547                            HR_FORMAT_PARAMS(r));
  3548     if (occupied == 0) {
  3549       gclog_or_tty->print_cr("  RSet is empty");
  3550     } else {
  3551       hrrs->print();
  3553     gclog_or_tty->print_cr("----------");
  3554     return false;
  3557   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3558     gclog_or_tty->cr();
  3559     gclog_or_tty->print_cr("========================================");
  3560     gclog_or_tty->print_cr("%s", msg);
  3561     gclog_or_tty->cr();
  3564   ~PrintRSetsClosure() {
  3565     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
  3566     gclog_or_tty->print_cr("========================================");
  3567     gclog_or_tty->cr();
  3569 };
  3571 void G1CollectedHeap::print_cset_rsets() {
  3572   PrintRSetsClosure cl("Printing CSet RSets");
  3573   collection_set_iterate(&cl);
  3576 void G1CollectedHeap::print_all_rsets() {
  3577   PrintRSetsClosure cl("Printing All RSets");;
  3578   heap_region_iterate(&cl);
  3580 #endif // PRODUCT
  3582 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
  3584   size_t eden_used_bytes = _young_list->eden_used_bytes();
  3585   size_t survivor_used_bytes = _young_list->survivor_used_bytes();
  3586   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
  3588   size_t eden_capacity_bytes =
  3589     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
  3591   VirtualSpaceSummary heap_summary = create_heap_space_summary();
  3592   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
  3593                        eden_capacity_bytes, survivor_used_bytes, num_regions());
  3596 void G1CollectedHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
  3597   const G1HeapSummary& heap_summary = create_g1_heap_summary();
  3598   gc_tracer->report_gc_heap_summary(when, heap_summary);
  3600   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
  3601   gc_tracer->report_metaspace_summary(when, metaspace_summary);
  3604 G1CollectedHeap* G1CollectedHeap::heap() {
  3605   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3606          "not a garbage-first heap");
  3607   return _g1h;
  3610 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3611   // always_do_update_barrier = false;
  3612   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3613   // Fill TLAB's and such
  3614   accumulate_statistics_all_tlabs();
  3615   ensure_parsability(true);
  3617   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
  3618       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3619     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  3623 void G1CollectedHeap::gc_epilogue(bool full) {
  3625   if (G1SummarizeRSetStats &&
  3626       (G1SummarizeRSetStatsPeriod > 0) &&
  3627       // we are at the end of the GC. Total collections has already been increased.
  3628       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
  3629     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
  3632   // FIXME: what is this about?
  3633   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3634   // is set.
  3635   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3636                         "derived pointer present"));
  3637   // always_do_update_barrier = true;
  3639   resize_all_tlabs();
  3640   allocation_context_stats().update(full);
  3642   // We have just completed a GC. Update the soft reference
  3643   // policy with the new heap occupancy
  3644   Universe::update_heap_info_at_gc();
  3647 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3648                                                uint gc_count_before,
  3649                                                bool* succeeded,
  3650                                                GCCause::Cause gc_cause) {
  3651   assert_heap_not_locked_and_not_at_safepoint();
  3652   g1_policy()->record_stop_world_start();
  3653   VM_G1IncCollectionPause op(gc_count_before,
  3654                              word_size,
  3655                              false, /* should_initiate_conc_mark */
  3656                              g1_policy()->max_pause_time_ms(),
  3657                              gc_cause);
  3659   op.set_allocation_context(AllocationContext::current());
  3660   VMThread::execute(&op);
  3662   HeapWord* result = op.result();
  3663   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3664   assert(result == NULL || ret_succeeded,
  3665          "the result should be NULL if the VM did not succeed");
  3666   *succeeded = ret_succeeded;
  3668   assert_heap_not_locked();
  3669   return result;
  3672 void
  3673 G1CollectedHeap::doConcurrentMark() {
  3674   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3675   if (!_cmThread->in_progress()) {
  3676     _cmThread->set_started();
  3677     CGC_lock->notify();
  3681 size_t G1CollectedHeap::pending_card_num() {
  3682   size_t extra_cards = 0;
  3683   JavaThread *curr = Threads::first();
  3684   while (curr != NULL) {
  3685     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3686     extra_cards += dcq.size();
  3687     curr = curr->next();
  3689   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3690   size_t buffer_size = dcqs.buffer_size();
  3691   size_t buffer_num = dcqs.completed_buffers_num();
  3693   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3694   // in bytes - not the number of 'entries'. We need to convert
  3695   // into a number of cards.
  3696   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3699 size_t G1CollectedHeap::cards_scanned() {
  3700   return g1_rem_set()->cardsScanned();
  3703 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
  3704  private:
  3705   size_t _total_humongous;
  3706   size_t _candidate_humongous;
  3708   DirtyCardQueue _dcq;
  3710   // We don't nominate objects with many remembered set entries, on
  3711   // the assumption that such objects are likely still live.
  3712   bool is_remset_small(HeapRegion* region) const {
  3713     HeapRegionRemSet* const rset = region->rem_set();
  3714     return G1EagerReclaimHumongousObjectsWithStaleRefs
  3715       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
  3716       : rset->is_empty();
  3719   bool is_typeArray_region(HeapRegion* region) const {
  3720     return oop(region->bottom())->is_typeArray();
  3723   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
  3724     assert(region->startsHumongous(), "Must start a humongous object");
  3726     // Candidate selection must satisfy the following constraints
  3727     // while concurrent marking is in progress:
  3728     //
  3729     // * In order to maintain SATB invariants, an object must not be
  3730     // reclaimed if it was allocated before the start of marking and
  3731     // has not had its references scanned.  Such an object must have
  3732     // its references (including type metadata) scanned to ensure no
  3733     // live objects are missed by the marking process.  Objects
  3734     // allocated after the start of concurrent marking don't need to
  3735     // be scanned.
  3736     //
  3737     // * An object must not be reclaimed if it is on the concurrent
  3738     // mark stack.  Objects allocated after the start of concurrent
  3739     // marking are never pushed on the mark stack.
  3740     //
  3741     // Nominating only objects allocated after the start of concurrent
  3742     // marking is sufficient to meet both constraints.  This may miss
  3743     // some objects that satisfy the constraints, but the marking data
  3744     // structures don't support efficiently performing the needed
  3745     // additional tests or scrubbing of the mark stack.
  3746     //
  3747     // However, we presently only nominate is_typeArray() objects.
  3748     // A humongous object containing references induces remembered
  3749     // set entries on other regions.  In order to reclaim such an
  3750     // object, those remembered sets would need to be cleaned up.
  3751     //
  3752     // We also treat is_typeArray() objects specially, allowing them
  3753     // to be reclaimed even if allocated before the start of
  3754     // concurrent mark.  For this we rely on mark stack insertion to
  3755     // exclude is_typeArray() objects, preventing reclaiming an object
  3756     // that is in the mark stack.  We also rely on the metadata for
  3757     // such objects to be built-in and so ensured to be kept live.
  3758     // Frequent allocation and drop of large binary blobs is an
  3759     // important use case for eager reclaim, and this special handling
  3760     // may reduce needed headroom.
  3762     return is_typeArray_region(region) && is_remset_small(region);
  3765  public:
  3766   RegisterHumongousWithInCSetFastTestClosure()
  3767   : _total_humongous(0),
  3768     _candidate_humongous(0),
  3769     _dcq(&JavaThread::dirty_card_queue_set()) {
  3772   virtual bool doHeapRegion(HeapRegion* r) {
  3773     if (!r->startsHumongous()) {
  3774       return false;
  3776     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  3778     bool is_candidate = humongous_region_is_candidate(g1h, r);
  3779     uint rindex = r->hrm_index();
  3780     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
  3781     if (is_candidate) {
  3782       _candidate_humongous++;
  3783       g1h->register_humongous_region_with_in_cset_fast_test(rindex);
  3784       // Is_candidate already filters out humongous object with large remembered sets.
  3785       // If we have a humongous object with a few remembered sets, we simply flush these
  3786       // remembered set entries into the DCQS. That will result in automatic
  3787       // re-evaluation of their remembered set entries during the following evacuation
  3788       // phase.
  3789       if (!r->rem_set()->is_empty()) {
  3790         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
  3791                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
  3792         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
  3793         HeapRegionRemSetIterator hrrs(r->rem_set());
  3794         size_t card_index;
  3795         while (hrrs.has_next(card_index)) {
  3796           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
  3797           if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
  3798             *card_ptr = CardTableModRefBS::dirty_card_val();
  3799             _dcq.enqueue(card_ptr);
  3802         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
  3803                err_msg("Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
  3804                hrrs.n_yielded(), r->rem_set()->occupied()));
  3805         r->rem_set()->clear_locked();
  3807       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
  3809     _total_humongous++;
  3811     return false;
  3814   size_t total_humongous() const { return _total_humongous; }
  3815   size_t candidate_humongous() const { return _candidate_humongous; }
  3817   void flush_rem_set_entries() { _dcq.flush(); }
  3818 };
  3820 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
  3821   if (!G1EagerReclaimHumongousObjects) {
  3822     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
  3823     return;
  3825   double time = os::elapsed_counter();
  3827   // Collect reclaim candidate information and register candidates with cset.
  3828   RegisterHumongousWithInCSetFastTestClosure cl;
  3829   heap_region_iterate(&cl);
  3831   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
  3832   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
  3833                                                                   cl.total_humongous(),
  3834                                                                   cl.candidate_humongous());
  3835   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
  3837   // Finally flush all remembered set entries to re-check into the global DCQS.
  3838   cl.flush_rem_set_entries();
  3841 void
  3842 G1CollectedHeap::setup_surviving_young_words() {
  3843   assert(_surviving_young_words == NULL, "pre-condition");
  3844   uint array_length = g1_policy()->young_cset_region_length();
  3845   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3846   if (_surviving_young_words == NULL) {
  3847     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
  3848                           "Not enough space for young surv words summary.");
  3850   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3851 #ifdef ASSERT
  3852   for (uint i = 0;  i < array_length; ++i) {
  3853     assert( _surviving_young_words[i] == 0, "memset above" );
  3855 #endif // !ASSERT
  3858 void
  3859 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3860   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3861   uint array_length = g1_policy()->young_cset_region_length();
  3862   for (uint i = 0; i < array_length; ++i) {
  3863     _surviving_young_words[i] += surv_young_words[i];
  3867 void
  3868 G1CollectedHeap::cleanup_surviving_young_words() {
  3869   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3870   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3871   _surviving_young_words = NULL;
  3874 class VerifyRegionRemSetClosure : public HeapRegionClosure {
  3875   public:
  3876     bool doHeapRegion(HeapRegion* hr) {
  3877       if (!hr->continuesHumongous()) {
  3878         hr->verify_rem_set();
  3880       return false;
  3882 };
  3884 #ifdef ASSERT
  3885 class VerifyCSetClosure: public HeapRegionClosure {
  3886 public:
  3887   bool doHeapRegion(HeapRegion* hr) {
  3888     // Here we check that the CSet region's RSet is ready for parallel
  3889     // iteration. The fields that we'll verify are only manipulated
  3890     // when the region is part of a CSet and is collected. Afterwards,
  3891     // we reset these fields when we clear the region's RSet (when the
  3892     // region is freed) so they are ready when the region is
  3893     // re-allocated. The only exception to this is if there's an
  3894     // evacuation failure and instead of freeing the region we leave
  3895     // it in the heap. In that case, we reset these fields during
  3896     // evacuation failure handling.
  3897     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3899     // Here's a good place to add any other checks we'd like to
  3900     // perform on CSet regions.
  3901     return false;
  3903 };
  3904 #endif // ASSERT
  3906 #if TASKQUEUE_STATS
  3907 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3908   st->print_raw_cr("GC Task Stats");
  3909   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3910   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3913 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3914   print_taskqueue_stats_hdr(st);
  3916   TaskQueueStats totals;
  3917   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3918   for (int i = 0; i < n; ++i) {
  3919     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3920     totals += task_queue(i)->stats;
  3922   st->print_raw("tot "); totals.print(st); st->cr();
  3924   DEBUG_ONLY(totals.verify());
  3927 void G1CollectedHeap::reset_taskqueue_stats() {
  3928   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3929   for (int i = 0; i < n; ++i) {
  3930     task_queue(i)->stats.reset();
  3933 #endif // TASKQUEUE_STATS
  3935 void G1CollectedHeap::log_gc_header() {
  3936   if (!G1Log::fine()) {
  3937     return;
  3940   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
  3942   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3943     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3944     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3946   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3949 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3950   if (!G1Log::fine()) {
  3951     return;
  3954   if (G1Log::finer()) {
  3955     if (evacuation_failed()) {
  3956       gclog_or_tty->print(" (to-space exhausted)");
  3958     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3959     g1_policy()->phase_times()->note_gc_end();
  3960     g1_policy()->phase_times()->print(pause_time_sec);
  3961     g1_policy()->print_detailed_heap_transition();
  3962   } else {
  3963     if (evacuation_failed()) {
  3964       gclog_or_tty->print("--");
  3966     g1_policy()->print_heap_transition();
  3967     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3969   gclog_or_tty->flush();
  3972 bool
  3973 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3974   assert_at_safepoint(true /* should_be_vm_thread */);
  3975   guarantee(!is_gc_active(), "collection is not reentrant");
  3977   if (GC_locker::check_active_before_gc()) {
  3978     return false;
  3981   _gc_timer_stw->register_gc_start();
  3983   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
  3985   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3986   ResourceMark rm;
  3988   print_heap_before_gc();
  3989   trace_heap_before_gc(_gc_tracer_stw);
  3991   verify_region_sets_optional();
  3992   verify_dirty_young_regions();
  3994   // This call will decide whether this pause is an initial-mark
  3995   // pause. If it is, during_initial_mark_pause() will return true
  3996   // for the duration of this pause.
  3997   g1_policy()->decide_on_conc_mark_initiation();
  3999   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  4000   assert(!g1_policy()->during_initial_mark_pause() ||
  4001           g1_policy()->gcs_are_young(), "sanity");
  4003   // We also do not allow mixed GCs during marking.
  4004   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  4006   // Record whether this pause is an initial mark. When the current
  4007   // thread has completed its logging output and it's safe to signal
  4008   // the CM thread, the flag's value in the policy has been reset.
  4009   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  4011   // Inner scope for scope based logging, timers, and stats collection
  4013     EvacuationInfo evacuation_info;
  4015     if (g1_policy()->during_initial_mark_pause()) {
  4016       // We are about to start a marking cycle, so we increment the
  4017       // full collection counter.
  4018       increment_old_marking_cycles_started();
  4019       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
  4022     _gc_tracer_stw->report_yc_type(yc_type());
  4024     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  4026     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  4027                                                                   workers()->active_workers(),
  4028                                                                   Threads::number_of_non_daemon_threads());
  4029     assert(UseDynamicNumberOfGCThreads ||
  4030            active_workers == workers()->total_workers(),
  4031            "If not dynamic should be using all the  workers");
  4032     workers()->set_active_workers(active_workers);
  4035     double pause_start_sec = os::elapsedTime();
  4036     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
  4037     log_gc_header();
  4039     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  4040     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause(),
  4041                                 yc_type() == Mixed /* allMemoryPoolsAffected */);
  4043     // If the secondary_free_list is not empty, append it to the
  4044     // free_list. No need to wait for the cleanup operation to finish;
  4045     // the region allocation code will check the secondary_free_list
  4046     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  4047     // set, skip this step so that the region allocation code has to
  4048     // get entries from the secondary_free_list.
  4049     if (!G1StressConcRegionFreeing) {
  4050       append_secondary_free_list_if_not_empty_with_lock();
  4053     assert(check_young_list_well_formed(), "young list should be well formed");
  4054     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  4055            "sanity check");
  4057     // Don't dynamically change the number of GC threads this early.  A value of
  4058     // 0 is used to indicate serial work.  When parallel work is done,
  4059     // it will be set.
  4061     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  4062       IsGCActiveMark x;
  4064       gc_prologue(false);
  4065       increment_total_collections(false /* full gc */);
  4066       increment_gc_time_stamp();
  4068       if (VerifyRememberedSets) {
  4069         if (!VerifySilently) {
  4070           gclog_or_tty->print_cr("[Verifying RemSets before GC]");
  4072         VerifyRegionRemSetClosure v_cl;
  4073         heap_region_iterate(&v_cl);
  4076       verify_before_gc();
  4077       check_bitmaps("GC Start");
  4079       COMPILER2_PRESENT(DerivedPointerTable::clear());
  4081       // Please see comment in g1CollectedHeap.hpp and
  4082       // G1CollectedHeap::ref_processing_init() to see how
  4083       // reference processing currently works in G1.
  4085       // Enable discovery in the STW reference processor
  4086       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  4087                                             true /*verify_no_refs*/);
  4090         // We want to temporarily turn off discovery by the
  4091         // CM ref processor, if necessary, and turn it back on
  4092         // on again later if we do. Using a scoped
  4093         // NoRefDiscovery object will do this.
  4094         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  4096         // Forget the current alloc region (we might even choose it to be part
  4097         // of the collection set!).
  4098         _allocator->release_mutator_alloc_region();
  4100         // We should call this after we retire the mutator alloc
  4101         // region(s) so that all the ALLOC / RETIRE events are generated
  4102         // before the start GC event.
  4103         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  4105         // This timing is only used by the ergonomics to handle our pause target.
  4106         // It is unclear why this should not include the full pause. We will
  4107         // investigate this in CR 7178365.
  4108         //
  4109         // Preserving the old comment here if that helps the investigation:
  4110         //
  4111         // The elapsed time induced by the start time below deliberately elides
  4112         // the possible verification above.
  4113         double sample_start_time_sec = os::elapsedTime();
  4115 #if YOUNG_LIST_VERBOSE
  4116         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  4117         _young_list->print();
  4118         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4119 #endif // YOUNG_LIST_VERBOSE
  4121         g1_policy()->record_collection_pause_start(sample_start_time_sec, *_gc_tracer_stw);
  4123         double scan_wait_start = os::elapsedTime();
  4124         // We have to wait until the CM threads finish scanning the
  4125         // root regions as it's the only way to ensure that all the
  4126         // objects on them have been correctly scanned before we start
  4127         // moving them during the GC.
  4128         bool waited = _cm->root_regions()->wait_until_scan_finished();
  4129         double wait_time_ms = 0.0;
  4130         if (waited) {
  4131           double scan_wait_end = os::elapsedTime();
  4132           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  4134         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  4136 #if YOUNG_LIST_VERBOSE
  4137         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  4138         _young_list->print();
  4139 #endif // YOUNG_LIST_VERBOSE
  4141         if (g1_policy()->during_initial_mark_pause()) {
  4142           concurrent_mark()->checkpointRootsInitialPre();
  4145 #if YOUNG_LIST_VERBOSE
  4146         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  4147         _young_list->print();
  4148         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4149 #endif // YOUNG_LIST_VERBOSE
  4151         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
  4153         // Make sure the remembered sets are up to date. This needs to be
  4154         // done before register_humongous_regions_with_cset(), because the
  4155         // remembered sets are used there to choose eager reclaim candidates.
  4156         // If the remembered sets are not up to date we might miss some
  4157         // entries that need to be handled.
  4158         g1_rem_set()->cleanupHRRS();
  4160         register_humongous_regions_with_in_cset_fast_test();
  4162         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
  4164         _cm->note_start_of_gc();
  4165         // We call this after finalize_cset() to
  4166         // ensure that the CSet has been finalized.
  4167         _cm->verify_no_cset_oops();
  4169         if (_hr_printer.is_active()) {
  4170           HeapRegion* hr = g1_policy()->collection_set();
  4171           while (hr != NULL) {
  4172             _hr_printer.cset(hr);
  4173             hr = hr->next_in_collection_set();
  4177 #ifdef ASSERT
  4178         VerifyCSetClosure cl;
  4179         collection_set_iterate(&cl);
  4180 #endif // ASSERT
  4182         setup_surviving_young_words();
  4184         // Initialize the GC alloc regions.
  4185         _allocator->init_gc_alloc_regions(evacuation_info);
  4187         // Actually do the work...
  4188         evacuate_collection_set(evacuation_info);
  4190         free_collection_set(g1_policy()->collection_set(), evacuation_info);
  4192         eagerly_reclaim_humongous_regions();
  4194         g1_policy()->clear_collection_set();
  4196         cleanup_surviving_young_words();
  4198         // Start a new incremental collection set for the next pause.
  4199         g1_policy()->start_incremental_cset_building();
  4201         clear_cset_fast_test();
  4203         _young_list->reset_sampled_info();
  4205         // Don't check the whole heap at this point as the
  4206         // GC alloc regions from this pause have been tagged
  4207         // as survivors and moved on to the survivor list.
  4208         // Survivor regions will fail the !is_young() check.
  4209         assert(check_young_list_empty(false /* check_heap */),
  4210           "young list should be empty");
  4212 #if YOUNG_LIST_VERBOSE
  4213         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  4214         _young_list->print();
  4215 #endif // YOUNG_LIST_VERBOSE
  4217         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  4218                                              _young_list->first_survivor_region(),
  4219                                              _young_list->last_survivor_region());
  4221         _young_list->reset_auxilary_lists();
  4223         if (evacuation_failed()) {
  4224           _allocator->set_used(recalculate_used());
  4225           uint n_queues = MAX2((int)ParallelGCThreads, 1);
  4226           for (uint i = 0; i < n_queues; i++) {
  4227             if (_evacuation_failed_info_array[i].has_failed()) {
  4228               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
  4231         } else {
  4232           // The "used" of the the collection set have already been subtracted
  4233           // when they were freed.  Add in the bytes evacuated.
  4234           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
  4237         if (g1_policy()->during_initial_mark_pause()) {
  4238           // We have to do this before we notify the CM threads that
  4239           // they can start working to make sure that all the
  4240           // appropriate initialization is done on the CM object.
  4241           concurrent_mark()->checkpointRootsInitialPost();
  4242           set_marking_started();
  4243           // Note that we don't actually trigger the CM thread at
  4244           // this point. We do that later when we're sure that
  4245           // the current thread has completed its logging output.
  4248         allocate_dummy_regions();
  4250 #if YOUNG_LIST_VERBOSE
  4251         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  4252         _young_list->print();
  4253         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4254 #endif // YOUNG_LIST_VERBOSE
  4256         _allocator->init_mutator_alloc_region();
  4259           size_t expand_bytes = g1_policy()->expansion_amount();
  4260           if (expand_bytes > 0) {
  4261             size_t bytes_before = capacity();
  4262             // No need for an ergo verbose message here,
  4263             // expansion_amount() does this when it returns a value > 0.
  4264             if (!expand(expand_bytes)) {
  4265               // We failed to expand the heap. Cannot do anything about it.
  4270         // We redo the verification but now wrt to the new CSet which
  4271         // has just got initialized after the previous CSet was freed.
  4272         _cm->verify_no_cset_oops();
  4273         _cm->note_end_of_gc();
  4275         // This timing is only used by the ergonomics to handle our pause target.
  4276         // It is unclear why this should not include the full pause. We will
  4277         // investigate this in CR 7178365.
  4278         double sample_end_time_sec = os::elapsedTime();
  4279         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4280         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
  4282         MemoryService::track_memory_usage();
  4284         // In prepare_for_verify() below we'll need to scan the deferred
  4285         // update buffers to bring the RSets up-to-date if
  4286         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4287         // the update buffers we'll probably need to scan cards on the
  4288         // regions we just allocated to (i.e., the GC alloc
  4289         // regions). However, during the last GC we called
  4290         // set_saved_mark() on all the GC alloc regions, so card
  4291         // scanning might skip the [saved_mark_word()...top()] area of
  4292         // those regions (i.e., the area we allocated objects into
  4293         // during the last GC). But it shouldn't. Given that
  4294         // saved_mark_word() is conditional on whether the GC time stamp
  4295         // on the region is current or not, by incrementing the GC time
  4296         // stamp here we invalidate all the GC time stamps on all the
  4297         // regions and saved_mark_word() will simply return top() for
  4298         // all the regions. This is a nicer way of ensuring this rather
  4299         // than iterating over the regions and fixing them. In fact, the
  4300         // GC time stamp increment here also ensures that
  4301         // saved_mark_word() will return top() between pauses, i.e.,
  4302         // during concurrent refinement. So we don't need the
  4303         // is_gc_active() check to decided which top to use when
  4304         // scanning cards (see CR 7039627).
  4305         increment_gc_time_stamp();
  4307         if (VerifyRememberedSets) {
  4308           if (!VerifySilently) {
  4309             gclog_or_tty->print_cr("[Verifying RemSets after GC]");
  4311           VerifyRegionRemSetClosure v_cl;
  4312           heap_region_iterate(&v_cl);
  4315         verify_after_gc();
  4316         check_bitmaps("GC End");
  4318         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4319         ref_processor_stw()->verify_no_references_recorded();
  4321         // CM reference discovery will be re-enabled if necessary.
  4324       // We should do this after we potentially expand the heap so
  4325       // that all the COMMIT events are generated before the end GC
  4326       // event, and after we retire the GC alloc regions so that all
  4327       // RETIRE events are generated before the end GC event.
  4328       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4330 #ifdef TRACESPINNING
  4331       ParallelTaskTerminator::print_termination_counts();
  4332 #endif
  4334       gc_epilogue(false);
  4337     // Print the remainder of the GC log output.
  4338     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4340     // It is not yet to safe to tell the concurrent mark to
  4341     // start as we have some optional output below. We don't want the
  4342     // output from the concurrent mark thread interfering with this
  4343     // logging output either.
  4345     _hrm.verify_optional();
  4346     verify_region_sets_optional();
  4348     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4349     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4351     print_heap_after_gc();
  4352     trace_heap_after_gc(_gc_tracer_stw);
  4354     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4355     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4356     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4357     // before any GC notifications are raised.
  4358     g1mm()->update_sizes();
  4360     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
  4361     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
  4362     _gc_timer_stw->register_gc_end();
  4363     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  4365   // It should now be safe to tell the concurrent mark thread to start
  4366   // without its logging output interfering with the logging output
  4367   // that came from the pause.
  4369   if (should_start_conc_mark) {
  4370     // CAUTION: after the doConcurrentMark() call below,
  4371     // the concurrent marking thread(s) could be running
  4372     // concurrently with us. Make sure that anything after
  4373     // this point does not assume that we are the only GC thread
  4374     // running. Note: of course, the actual marking work will
  4375     // not start until the safepoint itself is released in
  4376     // SuspendibleThreadSet::desynchronize().
  4377     doConcurrentMark();
  4380   return true;
  4383 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4384   _drain_in_progress = false;
  4385   set_evac_failure_closure(cl);
  4386   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4389 void G1CollectedHeap::finalize_for_evac_failure() {
  4390   assert(_evac_failure_scan_stack != NULL &&
  4391          _evac_failure_scan_stack->length() == 0,
  4392          "Postcondition");
  4393   assert(!_drain_in_progress, "Postcondition");
  4394   delete _evac_failure_scan_stack;
  4395   _evac_failure_scan_stack = NULL;
  4398 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4399   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4401   double remove_self_forwards_start = os::elapsedTime();
  4403   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4405   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4406     set_par_threads();
  4407     workers()->run_task(&rsfp_task);
  4408     set_par_threads(0);
  4409   } else {
  4410     rsfp_task.work(0);
  4413   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4415   // Reset the claim values in the regions in the collection set.
  4416   reset_cset_heap_region_claim_values();
  4418   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4420   // Now restore saved marks, if any.
  4421   assert(_objs_with_preserved_marks.size() ==
  4422             _preserved_marks_of_objs.size(), "Both or none.");
  4423   while (!_objs_with_preserved_marks.is_empty()) {
  4424     oop obj = _objs_with_preserved_marks.pop();
  4425     markOop m = _preserved_marks_of_objs.pop();
  4426     obj->set_mark(m);
  4428   _objs_with_preserved_marks.clear(true);
  4429   _preserved_marks_of_objs.clear(true);
  4431   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
  4434 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4435   _evac_failure_scan_stack->push(obj);
  4438 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4439   assert(_evac_failure_scan_stack != NULL, "precondition");
  4441   while (_evac_failure_scan_stack->length() > 0) {
  4442      oop obj = _evac_failure_scan_stack->pop();
  4443      _evac_failure_closure->set_region(heap_region_containing(obj));
  4444      obj->oop_iterate_backwards(_evac_failure_closure);
  4448 oop
  4449 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
  4450                                                oop old) {
  4451   assert(obj_in_cs(old),
  4452          err_msg("obj: " PTR_FORMAT " should still be in the CSet",
  4453                  (HeapWord*) old));
  4454   markOop m = old->mark();
  4455   oop forward_ptr = old->forward_to_atomic(old);
  4456   if (forward_ptr == NULL) {
  4457     // Forward-to-self succeeded.
  4458     assert(_par_scan_state != NULL, "par scan state");
  4459     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4460     uint queue_num = _par_scan_state->queue_num();
  4462     _evacuation_failed = true;
  4463     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
  4464     if (_evac_failure_closure != cl) {
  4465       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4466       assert(!_drain_in_progress,
  4467              "Should only be true while someone holds the lock.");
  4468       // Set the global evac-failure closure to the current thread's.
  4469       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4470       set_evac_failure_closure(cl);
  4471       // Now do the common part.
  4472       handle_evacuation_failure_common(old, m);
  4473       // Reset to NULL.
  4474       set_evac_failure_closure(NULL);
  4475     } else {
  4476       // The lock is already held, and this is recursive.
  4477       assert(_drain_in_progress, "This should only be the recursive case.");
  4478       handle_evacuation_failure_common(old, m);
  4480     return old;
  4481   } else {
  4482     // Forward-to-self failed. Either someone else managed to allocate
  4483     // space for this object (old != forward_ptr) or they beat us in
  4484     // self-forwarding it (old == forward_ptr).
  4485     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4486            err_msg("obj: " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
  4487                    "should not be in the CSet",
  4488                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4489     return forward_ptr;
  4493 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4494   preserve_mark_if_necessary(old, m);
  4496   HeapRegion* r = heap_region_containing(old);
  4497   if (!r->evacuation_failed()) {
  4498     r->set_evacuation_failed(true);
  4499     _hr_printer.evac_failure(r);
  4502   push_on_evac_failure_scan_stack(old);
  4504   if (!_drain_in_progress) {
  4505     // prevent recursion in copy_to_survivor_space()
  4506     _drain_in_progress = true;
  4507     drain_evac_failure_scan_stack();
  4508     _drain_in_progress = false;
  4512 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4513   assert(evacuation_failed(), "Oversaving!");
  4514   // We want to call the "for_promotion_failure" version only in the
  4515   // case of a promotion failure.
  4516   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4517     _objs_with_preserved_marks.push(obj);
  4518     _preserved_marks_of_objs.push(m);
  4522 void G1ParCopyHelper::mark_object(oop obj) {
  4523   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
  4525   // We know that the object is not moving so it's safe to read its size.
  4526   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4529 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
  4530   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4531   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4532   assert(from_obj != to_obj, "should not be self-forwarded");
  4534   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
  4535   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
  4537   // The object might be in the process of being copied by another
  4538   // worker so we cannot trust that its to-space image is
  4539   // well-formed. So we have to read its size from its from-space
  4540   // image which we know should not be changing.
  4541   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4544 template <class T>
  4545 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4546   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4547     _scanned_klass->record_modified_oops();
  4551 template <G1Barrier barrier, G1Mark do_mark_object>
  4552 template <class T>
  4553 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
  4554   T heap_oop = oopDesc::load_heap_oop(p);
  4556   if (oopDesc::is_null(heap_oop)) {
  4557     return;
  4560   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  4562   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4564   const InCSetState state = _g1->in_cset_state(obj);
  4565   if (state.is_in_cset()) {
  4566     oop forwardee;
  4567     markOop m = obj->mark();
  4568     if (m->is_marked()) {
  4569       forwardee = (oop) m->decode_pointer();
  4570     } else {
  4571       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
  4573     assert(forwardee != NULL, "forwardee should not be NULL");
  4574     oopDesc::encode_store_heap_oop(p, forwardee);
  4575     if (do_mark_object != G1MarkNone && forwardee != obj) {
  4576       // If the object is self-forwarded we don't need to explicitly
  4577       // mark it, the evacuation failure protocol will do so.
  4578       mark_forwarded_object(obj, forwardee);
  4581     if (barrier == G1BarrierKlass) {
  4582       do_klass_barrier(p, forwardee);
  4584   } else {
  4585     if (state.is_humongous()) {
  4586       _g1->set_humongous_is_live(obj);
  4588     // The object is not in collection set. If we're a root scanning
  4589     // closure during an initial mark pause then attempt to mark the object.
  4590     if (do_mark_object == G1MarkFromRoot) {
  4591       mark_object(obj);
  4595   if (barrier == G1BarrierEvac) {
  4596     _par_scan_state->update_rs(_from, p, _worker_id);
  4600 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
  4601 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
  4603 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4604 protected:
  4605   G1CollectedHeap*              _g1h;
  4606   G1ParScanThreadState*         _par_scan_state;
  4607   RefToScanQueueSet*            _queues;
  4608   ParallelTaskTerminator*       _terminator;
  4610   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4611   RefToScanQueueSet*      queues()         { return _queues; }
  4612   ParallelTaskTerminator* terminator()     { return _terminator; }
  4614 public:
  4615   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4616                                 G1ParScanThreadState* par_scan_state,
  4617                                 RefToScanQueueSet* queues,
  4618                                 ParallelTaskTerminator* terminator)
  4619     : _g1h(g1h), _par_scan_state(par_scan_state),
  4620       _queues(queues), _terminator(terminator) {}
  4622   void do_void();
  4624 private:
  4625   inline bool offer_termination();
  4626 };
  4628 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4629   G1ParScanThreadState* const pss = par_scan_state();
  4630   pss->start_term_time();
  4631   const bool res = terminator()->offer_termination();
  4632   pss->end_term_time();
  4633   return res;
  4636 void G1ParEvacuateFollowersClosure::do_void() {
  4637   G1ParScanThreadState* const pss = par_scan_state();
  4638   pss->trim_queue();
  4639   do {
  4640     pss->steal_and_trim_queue(queues());
  4641   } while (!offer_termination());
  4644 class G1KlassScanClosure : public KlassClosure {
  4645  G1ParCopyHelper* _closure;
  4646  bool             _process_only_dirty;
  4647  int              _count;
  4648  public:
  4649   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4650       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4651   void do_klass(Klass* klass) {
  4652     // If the klass has not been dirtied we know that there's
  4653     // no references into  the young gen and we can skip it.
  4654    if (!_process_only_dirty || klass->has_modified_oops()) {
  4655       // Clean the klass since we're going to scavenge all the metadata.
  4656       klass->clear_modified_oops();
  4658       // Tell the closure that this klass is the Klass to scavenge
  4659       // and is the one to dirty if oops are left pointing into the young gen.
  4660       _closure->set_scanned_klass(klass);
  4662       klass->oops_do(_closure);
  4664       _closure->set_scanned_klass(NULL);
  4666     _count++;
  4668 };
  4670 class G1ParTask : public AbstractGangTask {
  4671 protected:
  4672   G1CollectedHeap*       _g1h;
  4673   RefToScanQueueSet      *_queues;
  4674   G1RootProcessor*       _root_processor;
  4675   ParallelTaskTerminator _terminator;
  4676   uint _n_workers;
  4678   Mutex _stats_lock;
  4679   Mutex* stats_lock() { return &_stats_lock; }
  4681 public:
  4682   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
  4683     : AbstractGangTask("G1 collection"),
  4684       _g1h(g1h),
  4685       _queues(task_queues),
  4686       _root_processor(root_processor),
  4687       _terminator(0, _queues),
  4688       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4689   {}
  4691   RefToScanQueueSet* queues() { return _queues; }
  4693   RefToScanQueue *work_queue(int i) {
  4694     return queues()->queue(i);
  4697   ParallelTaskTerminator* terminator() { return &_terminator; }
  4699   virtual void set_for_termination(int active_workers) {
  4700     _root_processor->set_num_workers(active_workers);
  4701     terminator()->reset_for_reuse(active_workers);
  4702     _n_workers = active_workers;
  4705   // Helps out with CLD processing.
  4706   //
  4707   // During InitialMark we need to:
  4708   // 1) Scavenge all CLDs for the young GC.
  4709   // 2) Mark all objects directly reachable from strong CLDs.
  4710   template <G1Mark do_mark_object>
  4711   class G1CLDClosure : public CLDClosure {
  4712     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
  4713     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
  4714     G1KlassScanClosure                                _klass_in_cld_closure;
  4715     bool                                              _claim;
  4717    public:
  4718     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
  4719                  bool only_young, bool claim)
  4720         : _oop_closure(oop_closure),
  4721           _oop_in_klass_closure(oop_closure->g1(),
  4722                                 oop_closure->pss(),
  4723                                 oop_closure->rp()),
  4724           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
  4725           _claim(claim) {
  4729     void do_cld(ClassLoaderData* cld) {
  4730       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
  4732   };
  4734   void work(uint worker_id) {
  4735     if (worker_id >= _n_workers) return;  // no work needed this round
  4737     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
  4740       ResourceMark rm;
  4741       HandleMark   hm;
  4743       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4745       G1ParScanThreadState            pss(_g1h, worker_id, rp);
  4746       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4748       pss.set_evac_failure_closure(&evac_failure_cl);
  4750       bool only_young = _g1h->g1_policy()->gcs_are_young();
  4752       // Non-IM young GC.
  4753       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
  4754       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
  4755                                                                                only_young, // Only process dirty klasses.
  4756                                                                                false);     // No need to claim CLDs.
  4757       // IM young GC.
  4758       //    Strong roots closures.
  4759       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
  4760       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
  4761                                                                                false, // Process all klasses.
  4762                                                                                true); // Need to claim CLDs.
  4763       //    Weak roots closures.
  4764       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
  4765       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
  4766                                                                                     false, // Process all klasses.
  4767                                                                                     true); // Need to claim CLDs.
  4769       OopClosure* strong_root_cl;
  4770       OopClosure* weak_root_cl;
  4771       CLDClosure* strong_cld_cl;
  4772       CLDClosure* weak_cld_cl;
  4774       bool trace_metadata = false;
  4776       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4777         // We also need to mark copied objects.
  4778         strong_root_cl = &scan_mark_root_cl;
  4779         strong_cld_cl  = &scan_mark_cld_cl;
  4780         if (ClassUnloadingWithConcurrentMark) {
  4781           weak_root_cl = &scan_mark_weak_root_cl;
  4782           weak_cld_cl  = &scan_mark_weak_cld_cl;
  4783           trace_metadata = true;
  4784         } else {
  4785           weak_root_cl = &scan_mark_root_cl;
  4786           weak_cld_cl  = &scan_mark_cld_cl;
  4788       } else {
  4789         strong_root_cl = &scan_only_root_cl;
  4790         weak_root_cl   = &scan_only_root_cl;
  4791         strong_cld_cl  = &scan_only_cld_cl;
  4792         weak_cld_cl    = &scan_only_cld_cl;
  4795       pss.start_strong_roots();
  4797       _root_processor->evacuate_roots(strong_root_cl,
  4798                                       weak_root_cl,
  4799                                       strong_cld_cl,
  4800                                       weak_cld_cl,
  4801                                       trace_metadata,
  4802                                       worker_id);
  4804       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
  4805       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
  4806                                             weak_root_cl,
  4807                                             worker_id);
  4808       pss.end_strong_roots();
  4811         double start = os::elapsedTime();
  4812         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4813         evac.do_void();
  4814         double elapsed_sec = os::elapsedTime() - start;
  4815         double term_sec = pss.term_time();
  4816         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
  4817         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
  4818         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
  4820       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4821       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4823       if (ParallelGCVerbose) {
  4824         MutexLocker x(stats_lock());
  4825         pss.print_termination_stats(worker_id);
  4828       assert(pss.queue_is_empty(), "should be empty");
  4830       // Close the inner scope so that the ResourceMark and HandleMark
  4831       // destructors are executed here and are included as part of the
  4832       // "GC Worker Time".
  4834     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
  4836 };
  4838 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
  4839 private:
  4840   BoolObjectClosure* _is_alive;
  4841   int _initial_string_table_size;
  4842   int _initial_symbol_table_size;
  4844   bool  _process_strings;
  4845   int _strings_processed;
  4846   int _strings_removed;
  4848   bool  _process_symbols;
  4849   int _symbols_processed;
  4850   int _symbols_removed;
  4852   bool _do_in_parallel;
  4853 public:
  4854   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
  4855     AbstractGangTask("String/Symbol Unlinking"),
  4856     _is_alive(is_alive),
  4857     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
  4858     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
  4859     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
  4861     _initial_string_table_size = StringTable::the_table()->table_size();
  4862     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
  4863     if (process_strings) {
  4864       StringTable::clear_parallel_claimed_index();
  4866     if (process_symbols) {
  4867       SymbolTable::clear_parallel_claimed_index();
  4871   ~G1StringSymbolTableUnlinkTask() {
  4872     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
  4873               err_msg("claim value " INT32_FORMAT " after unlink less than initial string table size " INT32_FORMAT,
  4874                       StringTable::parallel_claimed_index(), _initial_string_table_size));
  4875     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
  4876               err_msg("claim value " INT32_FORMAT " after unlink less than initial symbol table size " INT32_FORMAT,
  4877                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  4879     if (G1TraceStringSymbolTableScrubbing) {
  4880       gclog_or_tty->print_cr("Cleaned string and symbol table, "
  4881                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
  4882                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
  4883                              strings_processed(), strings_removed(),
  4884                              symbols_processed(), symbols_removed());
  4888   void work(uint worker_id) {
  4889     if (_do_in_parallel) {
  4890       int strings_processed = 0;
  4891       int strings_removed = 0;
  4892       int symbols_processed = 0;
  4893       int symbols_removed = 0;
  4894       if (_process_strings) {
  4895         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
  4896         Atomic::add(strings_processed, &_strings_processed);
  4897         Atomic::add(strings_removed, &_strings_removed);
  4899       if (_process_symbols) {
  4900         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
  4901         Atomic::add(symbols_processed, &_symbols_processed);
  4902         Atomic::add(symbols_removed, &_symbols_removed);
  4904     } else {
  4905       if (_process_strings) {
  4906         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
  4908       if (_process_symbols) {
  4909         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
  4914   size_t strings_processed() const { return (size_t)_strings_processed; }
  4915   size_t strings_removed()   const { return (size_t)_strings_removed; }
  4917   size_t symbols_processed() const { return (size_t)_symbols_processed; }
  4918   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
  4919 };
  4921 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
  4922 private:
  4923   static Monitor* _lock;
  4925   BoolObjectClosure* const _is_alive;
  4926   const bool               _unloading_occurred;
  4927   const uint               _num_workers;
  4929   // Variables used to claim nmethods.
  4930   nmethod* _first_nmethod;
  4931   volatile nmethod* _claimed_nmethod;
  4933   // The list of nmethods that need to be processed by the second pass.
  4934   volatile nmethod* _postponed_list;
  4935   volatile uint     _num_entered_barrier;
  4937  public:
  4938   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
  4939       _is_alive(is_alive),
  4940       _unloading_occurred(unloading_occurred),
  4941       _num_workers(num_workers),
  4942       _first_nmethod(NULL),
  4943       _claimed_nmethod(NULL),
  4944       _postponed_list(NULL),
  4945       _num_entered_barrier(0)
  4947     nmethod::increase_unloading_clock();
  4948     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
  4949     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  4952   ~G1CodeCacheUnloadingTask() {
  4953     CodeCache::verify_clean_inline_caches();
  4955     CodeCache::set_needs_cache_clean(false);
  4956     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
  4958     CodeCache::verify_icholder_relocations();
  4961  private:
  4962   void add_to_postponed_list(nmethod* nm) {
  4963       nmethod* old;
  4964       do {
  4965         old = (nmethod*)_postponed_list;
  4966         nm->set_unloading_next(old);
  4967       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  4970   void clean_nmethod(nmethod* nm) {
  4971     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
  4973     if (postponed) {
  4974       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
  4975       add_to_postponed_list(nm);
  4978     // Mark that this thread has been cleaned/unloaded.
  4979     // After this call, it will be safe to ask if this nmethod was unloaded or not.
  4980     nm->set_unloading_clock(nmethod::global_unloading_clock());
  4983   void clean_nmethod_postponed(nmethod* nm) {
  4984     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  4987   static const int MaxClaimNmethods = 16;
  4989   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
  4990     nmethod* first;
  4991     nmethod* last;
  4993     do {
  4994       *num_claimed_nmethods = 0;
  4996       first = last = (nmethod*)_claimed_nmethod;
  4998       if (first != NULL) {
  4999         for (int i = 0; i < MaxClaimNmethods; i++) {
  5000           last = CodeCache::alive_nmethod(CodeCache::next(last));
  5002           if (last == NULL) {
  5003             break;
  5006           claimed_nmethods[i] = last;
  5007           (*num_claimed_nmethods)++;
  5011     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  5014   nmethod* claim_postponed_nmethod() {
  5015     nmethod* claim;
  5016     nmethod* next;
  5018     do {
  5019       claim = (nmethod*)_postponed_list;
  5020       if (claim == NULL) {
  5021         return NULL;
  5024       next = claim->unloading_next();
  5026     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
  5028     return claim;
  5031  public:
  5032   // Mark that we're done with the first pass of nmethod cleaning.
  5033   void barrier_mark(uint worker_id) {
  5034     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5035     _num_entered_barrier++;
  5036     if (_num_entered_barrier == _num_workers) {
  5037       ml.notify_all();
  5041   // See if we have to wait for the other workers to
  5042   // finish their first-pass nmethod cleaning work.
  5043   void barrier_wait(uint worker_id) {
  5044     if (_num_entered_barrier < _num_workers) {
  5045       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5046       while (_num_entered_barrier < _num_workers) {
  5047           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
  5052   // Cleaning and unloading of nmethods. Some work has to be postponed
  5053   // to the second pass, when we know which nmethods survive.
  5054   void work_first_pass(uint worker_id) {
  5055     // The first nmethods is claimed by the first worker.
  5056     if (worker_id == 0 && _first_nmethod != NULL) {
  5057       clean_nmethod(_first_nmethod);
  5058       _first_nmethod = NULL;
  5061     int num_claimed_nmethods;
  5062     nmethod* claimed_nmethods[MaxClaimNmethods];
  5064     while (true) {
  5065       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
  5067       if (num_claimed_nmethods == 0) {
  5068         break;
  5071       for (int i = 0; i < num_claimed_nmethods; i++) {
  5072         clean_nmethod(claimed_nmethods[i]);
  5076     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
  5077     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
  5078     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
  5081   void work_second_pass(uint worker_id) {
  5082     nmethod* nm;
  5083     // Take care of postponed nmethods.
  5084     while ((nm = claim_postponed_nmethod()) != NULL) {
  5085       clean_nmethod_postponed(nm);
  5088 };
  5090 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
  5092 class G1KlassCleaningTask : public StackObj {
  5093   BoolObjectClosure*                      _is_alive;
  5094   volatile jint                           _clean_klass_tree_claimed;
  5095   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
  5097  public:
  5098   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
  5099       _is_alive(is_alive),
  5100       _clean_klass_tree_claimed(0),
  5101       _klass_iterator() {
  5104  private:
  5105   bool claim_clean_klass_tree_task() {
  5106     if (_clean_klass_tree_claimed) {
  5107       return false;
  5110     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  5113   InstanceKlass* claim_next_klass() {
  5114     Klass* klass;
  5115     do {
  5116       klass =_klass_iterator.next_klass();
  5117     } while (klass != NULL && !klass->oop_is_instance());
  5119     return (InstanceKlass*)klass;
  5122 public:
  5124   void clean_klass(InstanceKlass* ik) {
  5125     ik->clean_weak_instanceklass_links(_is_alive);
  5127     if (JvmtiExport::has_redefined_a_class()) {
  5128       InstanceKlass::purge_previous_versions(ik);
  5132   void work() {
  5133     ResourceMark rm;
  5135     // One worker will clean the subklass/sibling klass tree.
  5136     if (claim_clean_klass_tree_task()) {
  5137       Klass::clean_subklass_tree(_is_alive);
  5140     // All workers will help cleaning the classes,
  5141     InstanceKlass* klass;
  5142     while ((klass = claim_next_klass()) != NULL) {
  5143       clean_klass(klass);
  5146 };
  5148 // To minimize the remark pause times, the tasks below are done in parallel.
  5149 class G1ParallelCleaningTask : public AbstractGangTask {
  5150 private:
  5151   G1StringSymbolTableUnlinkTask _string_symbol_task;
  5152   G1CodeCacheUnloadingTask      _code_cache_task;
  5153   G1KlassCleaningTask           _klass_cleaning_task;
  5155 public:
  5156   // The constructor is run in the VMThread.
  5157   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
  5158       AbstractGangTask("Parallel Cleaning"),
  5159       _string_symbol_task(is_alive, process_strings, process_symbols),
  5160       _code_cache_task(num_workers, is_alive, unloading_occurred),
  5161       _klass_cleaning_task(is_alive) {
  5164   void pre_work_verification() {
  5165     // The VM Thread will have registered Metadata during the single-threaded phase of MetadataStackOnMark.
  5166     assert(Thread::current()->is_VM_thread()
  5167            || !MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
  5170   void post_work_verification() {
  5171     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
  5174   // The parallel work done by all worker threads.
  5175   void work(uint worker_id) {
  5176     pre_work_verification();
  5178     // Do first pass of code cache cleaning.
  5179     _code_cache_task.work_first_pass(worker_id);
  5181     // Let the threads mark that the first pass is done.
  5182     _code_cache_task.barrier_mark(worker_id);
  5184     // Clean the Strings and Symbols.
  5185     _string_symbol_task.work(worker_id);
  5187     // Wait for all workers to finish the first code cache cleaning pass.
  5188     _code_cache_task.barrier_wait(worker_id);
  5190     // Do the second code cache cleaning work, which realize on
  5191     // the liveness information gathered during the first pass.
  5192     _code_cache_task.work_second_pass(worker_id);
  5194     // Clean all klasses that were not unloaded.
  5195     _klass_cleaning_task.work();
  5197     post_work_verification();
  5199 };
  5202 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
  5203                                         bool process_strings,
  5204                                         bool process_symbols,
  5205                                         bool class_unloading_occurred) {
  5206   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5207                     workers()->active_workers() : 1);
  5209   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
  5210                                         n_workers, class_unloading_occurred);
  5211   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5212     set_par_threads(n_workers);
  5213     workers()->run_task(&g1_unlink_task);
  5214     set_par_threads(0);
  5215   } else {
  5216     g1_unlink_task.work(0);
  5220 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
  5221                                                      bool process_strings, bool process_symbols) {
  5223     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5224                      _g1h->workers()->active_workers() : 1);
  5225     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  5226     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5227       set_par_threads(n_workers);
  5228       workers()->run_task(&g1_unlink_task);
  5229       set_par_threads(0);
  5230     } else {
  5231       g1_unlink_task.work(0);
  5235   if (G1StringDedup::is_enabled()) {
  5236     G1StringDedup::unlink(is_alive);
  5240 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
  5241  private:
  5242   DirtyCardQueueSet* _queue;
  5243  public:
  5244   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
  5246   virtual void work(uint worker_id) {
  5247     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
  5248     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
  5250     RedirtyLoggedCardTableEntryClosure cl;
  5251     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
  5252       _queue->par_apply_closure_to_all_completed_buffers(&cl);
  5253     } else {
  5254       _queue->apply_closure_to_all_completed_buffers(&cl);
  5257     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
  5259 };
  5261 void G1CollectedHeap::redirty_logged_cards() {
  5262   double redirty_logged_cards_start = os::elapsedTime();
  5264   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5265                    _g1h->workers()->active_workers() : 1);
  5267   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  5268   dirty_card_queue_set().reset_for_par_iteration();
  5269   if (use_parallel_gc_threads()) {
  5270     set_par_threads(n_workers);
  5271     workers()->run_task(&redirty_task);
  5272     set_par_threads(0);
  5273   } else {
  5274     redirty_task.work(0);
  5277   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5278   dcq.merge_bufferlists(&dirty_card_queue_set());
  5279   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5281   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
  5284 // Weak Reference Processing support
  5286 // An always "is_alive" closure that is used to preserve referents.
  5287 // If the object is non-null then it's alive.  Used in the preservation
  5288 // of referent objects that are pointed to by reference objects
  5289 // discovered by the CM ref processor.
  5290 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5291   G1CollectedHeap* _g1;
  5292 public:
  5293   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5294   bool do_object_b(oop p) {
  5295     if (p != NULL) {
  5296       return true;
  5298     return false;
  5300 };
  5302 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5303   // An object is reachable if it is outside the collection set,
  5304   // or is inside and copied.
  5305   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5308 // Non Copying Keep Alive closure
  5309 class G1KeepAliveClosure: public OopClosure {
  5310   G1CollectedHeap* _g1;
  5311 public:
  5312   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5313   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5314   void do_oop(oop* p) {
  5315     oop obj = *p;
  5316     assert(obj != NULL, "the caller should have filtered out NULL values");
  5318     const InCSetState cset_state = _g1->in_cset_state(obj);
  5319     if (!cset_state.is_in_cset_or_humongous()) {
  5320       return;
  5322     if (cset_state.is_in_cset()) {
  5323       assert( obj->is_forwarded(), "invariant" );
  5324       *p = obj->forwardee();
  5325     } else {
  5326       assert(!obj->is_forwarded(), "invariant" );
  5327       assert(cset_state.is_humongous(),
  5328              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
  5329       _g1->set_humongous_is_live(obj);
  5332 };
  5334 // Copying Keep Alive closure - can be called from both
  5335 // serial and parallel code as long as different worker
  5336 // threads utilize different G1ParScanThreadState instances
  5337 // and different queues.
  5339 class G1CopyingKeepAliveClosure: public OopClosure {
  5340   G1CollectedHeap*         _g1h;
  5341   OopClosure*              _copy_non_heap_obj_cl;
  5342   G1ParScanThreadState*    _par_scan_state;
  5344 public:
  5345   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5346                             OopClosure* non_heap_obj_cl,
  5347                             G1ParScanThreadState* pss):
  5348     _g1h(g1h),
  5349     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5350     _par_scan_state(pss)
  5351   {}
  5353   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5354   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5356   template <class T> void do_oop_work(T* p) {
  5357     oop obj = oopDesc::load_decode_heap_oop(p);
  5359     if (_g1h->is_in_cset_or_humongous(obj)) {
  5360       // If the referent object has been forwarded (either copied
  5361       // to a new location or to itself in the event of an
  5362       // evacuation failure) then we need to update the reference
  5363       // field and, if both reference and referent are in the G1
  5364       // heap, update the RSet for the referent.
  5365       //
  5366       // If the referent has not been forwarded then we have to keep
  5367       // it alive by policy. Therefore we have copy the referent.
  5368       //
  5369       // If the reference field is in the G1 heap then we can push
  5370       // on the PSS queue. When the queue is drained (after each
  5371       // phase of reference processing) the object and it's followers
  5372       // will be copied, the reference field set to point to the
  5373       // new location, and the RSet updated. Otherwise we need to
  5374       // use the the non-heap or metadata closures directly to copy
  5375       // the referent object and update the pointer, while avoiding
  5376       // updating the RSet.
  5378       if (_g1h->is_in_g1_reserved(p)) {
  5379         _par_scan_state->push_on_queue(p);
  5380       } else {
  5381         assert(!Metaspace::contains((const void*)p),
  5382                err_msg("Unexpectedly found a pointer from metadata: "
  5383                               PTR_FORMAT, p));
  5384         _copy_non_heap_obj_cl->do_oop(p);
  5388 };
  5390 // Serial drain queue closure. Called as the 'complete_gc'
  5391 // closure for each discovered list in some of the
  5392 // reference processing phases.
  5394 class G1STWDrainQueueClosure: public VoidClosure {
  5395 protected:
  5396   G1CollectedHeap* _g1h;
  5397   G1ParScanThreadState* _par_scan_state;
  5399   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5401 public:
  5402   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5403     _g1h(g1h),
  5404     _par_scan_state(pss)
  5405   { }
  5407   void do_void() {
  5408     G1ParScanThreadState* const pss = par_scan_state();
  5409     pss->trim_queue();
  5411 };
  5413 // Parallel Reference Processing closures
  5415 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5416 // processing during G1 evacuation pauses.
  5418 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5419 private:
  5420   G1CollectedHeap*   _g1h;
  5421   RefToScanQueueSet* _queues;
  5422   FlexibleWorkGang*  _workers;
  5423   int                _active_workers;
  5425 public:
  5426   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5427                         FlexibleWorkGang* workers,
  5428                         RefToScanQueueSet *task_queues,
  5429                         int n_workers) :
  5430     _g1h(g1h),
  5431     _queues(task_queues),
  5432     _workers(workers),
  5433     _active_workers(n_workers)
  5435     assert(n_workers > 0, "shouldn't call this otherwise");
  5438   // Executes the given task using concurrent marking worker threads.
  5439   virtual void execute(ProcessTask& task);
  5440   virtual void execute(EnqueueTask& task);
  5441 };
  5443 // Gang task for possibly parallel reference processing
  5445 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5446   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5447   ProcessTask&     _proc_task;
  5448   G1CollectedHeap* _g1h;
  5449   RefToScanQueueSet *_task_queues;
  5450   ParallelTaskTerminator* _terminator;
  5452 public:
  5453   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5454                      G1CollectedHeap* g1h,
  5455                      RefToScanQueueSet *task_queues,
  5456                      ParallelTaskTerminator* terminator) :
  5457     AbstractGangTask("Process reference objects in parallel"),
  5458     _proc_task(proc_task),
  5459     _g1h(g1h),
  5460     _task_queues(task_queues),
  5461     _terminator(terminator)
  5462   {}
  5464   virtual void work(uint worker_id) {
  5465     // The reference processing task executed by a single worker.
  5466     ResourceMark rm;
  5467     HandleMark   hm;
  5469     G1STWIsAliveClosure is_alive(_g1h);
  5471     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5472     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5474     pss.set_evac_failure_closure(&evac_failure_cl);
  5476     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5478     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5480     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5482     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5483       // We also need to mark copied objects.
  5484       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5487     // Keep alive closure.
  5488     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5490     // Complete GC closure
  5491     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5493     // Call the reference processing task's work routine.
  5494     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5496     // Note we cannot assert that the refs array is empty here as not all
  5497     // of the processing tasks (specifically phase2 - pp2_work) execute
  5498     // the complete_gc closure (which ordinarily would drain the queue) so
  5499     // the queue may not be empty.
  5501 };
  5503 // Driver routine for parallel reference processing.
  5504 // Creates an instance of the ref processing gang
  5505 // task and has the worker threads execute it.
  5506 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5507   assert(_workers != NULL, "Need parallel worker threads.");
  5509   ParallelTaskTerminator terminator(_active_workers, _queues);
  5510   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5512   _g1h->set_par_threads(_active_workers);
  5513   _workers->run_task(&proc_task_proxy);
  5514   _g1h->set_par_threads(0);
  5517 // Gang task for parallel reference enqueueing.
  5519 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5520   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5521   EnqueueTask& _enq_task;
  5523 public:
  5524   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5525     AbstractGangTask("Enqueue reference objects in parallel"),
  5526     _enq_task(enq_task)
  5527   { }
  5529   virtual void work(uint worker_id) {
  5530     _enq_task.work(worker_id);
  5532 };
  5534 // Driver routine for parallel reference enqueueing.
  5535 // Creates an instance of the ref enqueueing gang
  5536 // task and has the worker threads execute it.
  5538 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5539   assert(_workers != NULL, "Need parallel worker threads.");
  5541   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5543   _g1h->set_par_threads(_active_workers);
  5544   _workers->run_task(&enq_task_proxy);
  5545   _g1h->set_par_threads(0);
  5548 // End of weak reference support closures
  5550 // Abstract task used to preserve (i.e. copy) any referent objects
  5551 // that are in the collection set and are pointed to by reference
  5552 // objects discovered by the CM ref processor.
  5554 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5555 protected:
  5556   G1CollectedHeap* _g1h;
  5557   RefToScanQueueSet      *_queues;
  5558   ParallelTaskTerminator _terminator;
  5559   uint _n_workers;
  5561 public:
  5562   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5563     AbstractGangTask("ParPreserveCMReferents"),
  5564     _g1h(g1h),
  5565     _queues(task_queues),
  5566     _terminator(workers, _queues),
  5567     _n_workers(workers)
  5568   { }
  5570   void work(uint worker_id) {
  5571     ResourceMark rm;
  5572     HandleMark   hm;
  5574     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5575     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5577     pss.set_evac_failure_closure(&evac_failure_cl);
  5579     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5581     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5583     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5585     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5587     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5588       // We also need to mark copied objects.
  5589       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5592     // Is alive closure
  5593     G1AlwaysAliveClosure always_alive(_g1h);
  5595     // Copying keep alive closure. Applied to referent objects that need
  5596     // to be copied.
  5597     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5599     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5601     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5602     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5604     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5605     // So this must be true - but assert just in case someone decides to
  5606     // change the worker ids.
  5607     assert(0 <= worker_id && worker_id < limit, "sanity");
  5608     assert(!rp->discovery_is_atomic(), "check this code");
  5610     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5611     for (uint idx = worker_id; idx < limit; idx += stride) {
  5612       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5614       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5615       while (iter.has_next()) {
  5616         // Since discovery is not atomic for the CM ref processor, we
  5617         // can see some null referent objects.
  5618         iter.load_ptrs(DEBUG_ONLY(true));
  5619         oop ref = iter.obj();
  5621         // This will filter nulls.
  5622         if (iter.is_referent_alive()) {
  5623           iter.make_referent_alive();
  5625         iter.move_to_next();
  5629     // Drain the queue - which may cause stealing
  5630     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5631     drain_queue.do_void();
  5632     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5633     assert(pss.queue_is_empty(), "should be");
  5635 };
  5637 // Weak Reference processing during an evacuation pause (part 1).
  5638 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5639   double ref_proc_start = os::elapsedTime();
  5641   ReferenceProcessor* rp = _ref_processor_stw;
  5642   assert(rp->discovery_enabled(), "should have been enabled");
  5644   // Any reference objects, in the collection set, that were 'discovered'
  5645   // by the CM ref processor should have already been copied (either by
  5646   // applying the external root copy closure to the discovered lists, or
  5647   // by following an RSet entry).
  5648   //
  5649   // But some of the referents, that are in the collection set, that these
  5650   // reference objects point to may not have been copied: the STW ref
  5651   // processor would have seen that the reference object had already
  5652   // been 'discovered' and would have skipped discovering the reference,
  5653   // but would not have treated the reference object as a regular oop.
  5654   // As a result the copy closure would not have been applied to the
  5655   // referent object.
  5656   //
  5657   // We need to explicitly copy these referent objects - the references
  5658   // will be processed at the end of remarking.
  5659   //
  5660   // We also need to do this copying before we process the reference
  5661   // objects discovered by the STW ref processor in case one of these
  5662   // referents points to another object which is also referenced by an
  5663   // object discovered by the STW ref processor.
  5665   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5666            no_of_gc_workers == workers()->active_workers(),
  5667            "Need to reset active GC workers");
  5669   set_par_threads(no_of_gc_workers);
  5670   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5671                                                  no_of_gc_workers,
  5672                                                  _task_queues);
  5674   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5675     workers()->run_task(&keep_cm_referents);
  5676   } else {
  5677     keep_cm_referents.work(0);
  5680   set_par_threads(0);
  5682   // Closure to test whether a referent is alive.
  5683   G1STWIsAliveClosure is_alive(this);
  5685   // Even when parallel reference processing is enabled, the processing
  5686   // of JNI refs is serial and performed serially by the current thread
  5687   // rather than by a worker. The following PSS will be used for processing
  5688   // JNI refs.
  5690   // Use only a single queue for this PSS.
  5691   G1ParScanThreadState            pss(this, 0, NULL);
  5693   // We do not embed a reference processor in the copying/scanning
  5694   // closures while we're actually processing the discovered
  5695   // reference objects.
  5696   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5698   pss.set_evac_failure_closure(&evac_failure_cl);
  5700   assert(pss.queue_is_empty(), "pre-condition");
  5702   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5704   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5706   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5708   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5709     // We also need to mark copied objects.
  5710     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5713   // Keep alive closure.
  5714   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
  5716   // Serial Complete GC closure
  5717   G1STWDrainQueueClosure drain_queue(this, &pss);
  5719   // Setup the soft refs policy...
  5720   rp->setup_policy(false);
  5722   ReferenceProcessorStats stats;
  5723   if (!rp->processing_is_mt()) {
  5724     // Serial reference processing...
  5725     stats = rp->process_discovered_references(&is_alive,
  5726                                               &keep_alive,
  5727                                               &drain_queue,
  5728                                               NULL,
  5729                                               _gc_timer_stw,
  5730                                               _gc_tracer_stw->gc_id());
  5731   } else {
  5732     // Parallel reference processing
  5733     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5734     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5736     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5737     stats = rp->process_discovered_references(&is_alive,
  5738                                               &keep_alive,
  5739                                               &drain_queue,
  5740                                               &par_task_executor,
  5741                                               _gc_timer_stw,
  5742                                               _gc_tracer_stw->gc_id());
  5745   _gc_tracer_stw->report_gc_reference_stats(stats);
  5747   // We have completed copying any necessary live referent objects.
  5748   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5750   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5751   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5754 // Weak Reference processing during an evacuation pause (part 2).
  5755 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5756   double ref_enq_start = os::elapsedTime();
  5758   ReferenceProcessor* rp = _ref_processor_stw;
  5759   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5761   // Now enqueue any remaining on the discovered lists on to
  5762   // the pending list.
  5763   if (!rp->processing_is_mt()) {
  5764     // Serial reference processing...
  5765     rp->enqueue_discovered_references();
  5766   } else {
  5767     // Parallel reference enqueueing
  5769     assert(no_of_gc_workers == workers()->active_workers(),
  5770            "Need to reset active workers");
  5771     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5772     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5774     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5775     rp->enqueue_discovered_references(&par_task_executor);
  5778   rp->verify_no_references_recorded();
  5779   assert(!rp->discovery_enabled(), "should have been disabled");
  5781   // FIXME
  5782   // CM's reference processing also cleans up the string and symbol tables.
  5783   // Should we do that here also? We could, but it is a serial operation
  5784   // and could significantly increase the pause time.
  5786   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5787   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5790 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
  5791   _expand_heap_after_alloc_failure = true;
  5792   _evacuation_failed = false;
  5794   // Should G1EvacuationFailureALot be in effect for this GC?
  5795   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5797   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5799   // Disable the hot card cache.
  5800   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  5801   hot_card_cache->reset_hot_cache_claimed_index();
  5802   hot_card_cache->set_use_cache(false);
  5804   const uint n_workers = workers()->active_workers();
  5805     assert(UseDynamicNumberOfGCThreads ||
  5806            n_workers == workers()->total_workers(),
  5807            "If not dynamic should be using all the  workers");
  5808     set_par_threads(n_workers);
  5810   init_for_evac_failure(NULL);
  5812   rem_set()->prepare_for_younger_refs_iterate(true);
  5814   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5815   double start_par_time_sec = os::elapsedTime();
  5816   double end_par_time_sec;
  5819     G1RootProcessor root_processor(this);
  5820     G1ParTask g1_par_task(this, _task_queues, &root_processor);
  5821     // InitialMark needs claim bits to keep track of the marked-through CLDs.
  5822     if (g1_policy()->during_initial_mark_pause()) {
  5823       ClassLoaderDataGraph::clear_claimed_marks();
  5826     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5827       // The individual threads will set their evac-failure closures.
  5828       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5829       // These tasks use ShareHeap::_process_strong_tasks
  5830       assert(UseDynamicNumberOfGCThreads ||
  5831              workers()->active_workers() == workers()->total_workers(),
  5832              "If not dynamic should be using all the  workers");
  5833       workers()->run_task(&g1_par_task);
  5834     } else {
  5835       g1_par_task.set_for_termination(n_workers);
  5836       g1_par_task.work(0);
  5838     end_par_time_sec = os::elapsedTime();
  5840     // Closing the inner scope will execute the destructor
  5841     // for the G1RootProcessor object. We record the current
  5842     // elapsed time before closing the scope so that time
  5843     // taken for the destructor is NOT included in the
  5844     // reported parallel time.
  5847   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
  5849   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5850   phase_times->record_par_time(par_time_ms);
  5852   double code_root_fixup_time_ms =
  5853         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5854   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
  5856   set_par_threads(0);
  5858   // Process any discovered reference objects - we have
  5859   // to do this _before_ we retire the GC alloc regions
  5860   // as we may have to copy some 'reachable' referent
  5861   // objects (and their reachable sub-graphs) that were
  5862   // not copied during the pause.
  5863   process_discovered_references(n_workers);
  5865   if (G1StringDedup::is_enabled()) {
  5866     double fixup_start = os::elapsedTime();
  5868     G1STWIsAliveClosure is_alive(this);
  5869     G1KeepAliveClosure keep_alive(this);
  5870     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
  5872     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
  5873     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
  5876   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
  5877   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5879   // Reset and re-enable the hot card cache.
  5880   // Note the counts for the cards in the regions in the
  5881   // collection set are reset when the collection set is freed.
  5882   hot_card_cache->reset_hot_cache();
  5883   hot_card_cache->set_use_cache(true);
  5885   purge_code_root_memory();
  5887   if (g1_policy()->during_initial_mark_pause()) {
  5888     // Reset the claim values set during marking the strong code roots
  5889     reset_heap_region_claim_values();
  5892   finalize_for_evac_failure();
  5894   if (evacuation_failed()) {
  5895     remove_self_forwarding_pointers();
  5897     // Reset the G1EvacuationFailureALot counters and flags
  5898     // Note: the values are reset only when an actual
  5899     // evacuation failure occurs.
  5900     NOT_PRODUCT(reset_evacuation_should_fail();)
  5903   // Enqueue any remaining references remaining on the STW
  5904   // reference processor's discovered lists. We need to do
  5905   // this after the card table is cleaned (and verified) as
  5906   // the act of enqueueing entries on to the pending list
  5907   // will log these updates (and dirty their associated
  5908   // cards). We need these updates logged to update any
  5909   // RSets.
  5910   enqueue_discovered_references(n_workers);
  5912   redirty_logged_cards();
  5913   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5916 void G1CollectedHeap::free_region(HeapRegion* hr,
  5917                                   FreeRegionList* free_list,
  5918                                   bool par,
  5919                                   bool locked) {
  5920   assert(!hr->is_free(), "the region should not be free");
  5921   assert(!hr->is_empty(), "the region should not be empty");
  5922   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
  5923   assert(free_list != NULL, "pre-condition");
  5925   if (G1VerifyBitmaps) {
  5926     MemRegion mr(hr->bottom(), hr->end());
  5927     concurrent_mark()->clearRangePrevBitmap(mr);
  5930   // Clear the card counts for this region.
  5931   // Note: we only need to do this if the region is not young
  5932   // (since we don't refine cards in young regions).
  5933   if (!hr->is_young()) {
  5934     _cg1r->hot_card_cache()->reset_card_counts(hr);
  5936   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
  5937   free_list->add_ordered(hr);
  5940 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5941                                      FreeRegionList* free_list,
  5942                                      bool par) {
  5943   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5944   assert(free_list != NULL, "pre-condition");
  5946   size_t hr_capacity = hr->capacity();
  5947   // We need to read this before we make the region non-humongous,
  5948   // otherwise the information will be gone.
  5949   uint last_index = hr->last_hc_index();
  5950   hr->clear_humongous();
  5951   free_region(hr, free_list, par);
  5953   uint i = hr->hrm_index() + 1;
  5954   while (i < last_index) {
  5955     HeapRegion* curr_hr = region_at(i);
  5956     assert(curr_hr->continuesHumongous(), "invariant");
  5957     curr_hr->clear_humongous();
  5958     free_region(curr_hr, free_list, par);
  5959     i += 1;
  5963 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
  5964                                        const HeapRegionSetCount& humongous_regions_removed) {
  5965   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
  5966     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5967     _old_set.bulk_remove(old_regions_removed);
  5968     _humongous_set.bulk_remove(humongous_regions_removed);
  5973 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  5974   assert(list != NULL, "list can't be null");
  5975   if (!list->is_empty()) {
  5976     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5977     _hrm.insert_list_into_free_list(list);
  5981 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  5982   _allocator->decrease_used(bytes);
  5985 class G1ParCleanupCTTask : public AbstractGangTask {
  5986   G1SATBCardTableModRefBS* _ct_bs;
  5987   G1CollectedHeap* _g1h;
  5988   HeapRegion* volatile _su_head;
  5989 public:
  5990   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
  5991                      G1CollectedHeap* g1h) :
  5992     AbstractGangTask("G1 Par Cleanup CT Task"),
  5993     _ct_bs(ct_bs), _g1h(g1h) { }
  5995   void work(uint worker_id) {
  5996     HeapRegion* r;
  5997     while (r = _g1h->pop_dirty_cards_region()) {
  5998       clear_cards(r);
  6002   void clear_cards(HeapRegion* r) {
  6003     // Cards of the survivors should have already been dirtied.
  6004     if (!r->is_survivor()) {
  6005       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  6008 };
  6010 #ifndef PRODUCT
  6011 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  6012   G1CollectedHeap* _g1h;
  6013   G1SATBCardTableModRefBS* _ct_bs;
  6014 public:
  6015   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
  6016     : _g1h(g1h), _ct_bs(ct_bs) { }
  6017   virtual bool doHeapRegion(HeapRegion* r) {
  6018     if (r->is_survivor()) {
  6019       _g1h->verify_dirty_region(r);
  6020     } else {
  6021       _g1h->verify_not_dirty_region(r);
  6023     return false;
  6025 };
  6027 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  6028   // All of the region should be clean.
  6029   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6030   MemRegion mr(hr->bottom(), hr->end());
  6031   ct_bs->verify_not_dirty_region(mr);
  6034 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  6035   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  6036   // dirty allocated blocks as they allocate them. The thread that
  6037   // retires each region and replaces it with a new one will do a
  6038   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  6039   // not dirty that area (one less thing to have to do while holding
  6040   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  6041   // is dirty.
  6042   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6043   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  6044   if (hr->is_young()) {
  6045     ct_bs->verify_g1_young_region(mr);
  6046   } else {
  6047     ct_bs->verify_dirty_region(mr);
  6051 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  6052   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6053   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  6054     verify_dirty_region(hr);
  6058 void G1CollectedHeap::verify_dirty_young_regions() {
  6059   verify_dirty_young_list(_young_list->first_region());
  6062 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
  6063                                                HeapWord* tams, HeapWord* end) {
  6064   guarantee(tams <= end,
  6065             err_msg("tams: " PTR_FORMAT " end: " PTR_FORMAT, tams, end));
  6066   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  6067   if (result < end) {
  6068     gclog_or_tty->cr();
  6069     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
  6070                            bitmap_name, result);
  6071     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
  6072                            bitmap_name, tams, end);
  6073     return false;
  6075   return true;
  6078 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  6079   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  6080   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
  6082   HeapWord* bottom = hr->bottom();
  6083   HeapWord* ptams  = hr->prev_top_at_mark_start();
  6084   HeapWord* ntams  = hr->next_top_at_mark_start();
  6085   HeapWord* end    = hr->end();
  6087   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
  6089   bool res_n = true;
  6090   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  6091   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  6092   // if we happen to be in that state.
  6093   if (mark_in_progress() || !_cmThread->in_progress()) {
  6094     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  6096   if (!res_p || !res_n) {
  6097     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
  6098                            HR_FORMAT_PARAMS(hr));
  6099     gclog_or_tty->print_cr("#### Caller: %s", caller);
  6100     return false;
  6102   return true;
  6105 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  6106   if (!G1VerifyBitmaps) return;
  6108   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
  6111 class G1VerifyBitmapClosure : public HeapRegionClosure {
  6112 private:
  6113   const char* _caller;
  6114   G1CollectedHeap* _g1h;
  6115   bool _failures;
  6117 public:
  6118   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
  6119     _caller(caller), _g1h(g1h), _failures(false) { }
  6121   bool failures() { return _failures; }
  6123   virtual bool doHeapRegion(HeapRegion* hr) {
  6124     if (hr->continuesHumongous()) return false;
  6126     bool result = _g1h->verify_bitmaps(_caller, hr);
  6127     if (!result) {
  6128       _failures = true;
  6130     return false;
  6132 };
  6134 void G1CollectedHeap::check_bitmaps(const char* caller) {
  6135   if (!G1VerifyBitmaps) return;
  6137   G1VerifyBitmapClosure cl(caller, this);
  6138   heap_region_iterate(&cl);
  6139   guarantee(!cl.failures(), "bitmap verification");
  6142 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
  6143  private:
  6144   bool _failures;
  6145  public:
  6146   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
  6148   virtual bool doHeapRegion(HeapRegion* hr) {
  6149     uint i = hr->hrm_index();
  6150     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
  6151     if (hr->isHumongous()) {
  6152       if (hr->in_collection_set()) {
  6153         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
  6154         _failures = true;
  6155         return true;
  6157       if (cset_state.is_in_cset()) {
  6158         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
  6159         _failures = true;
  6160         return true;
  6162       if (hr->continuesHumongous() && cset_state.is_humongous()) {
  6163         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
  6164         _failures = true;
  6165         return true;
  6167     } else {
  6168       if (cset_state.is_humongous()) {
  6169         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
  6170         _failures = true;
  6171         return true;
  6173       if (hr->in_collection_set() != cset_state.is_in_cset()) {
  6174         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
  6175                                hr->in_collection_set(), cset_state.value(), i);
  6176        _failures = true;
  6177        return true;
  6179       if (cset_state.is_in_cset()) {
  6180         if (hr->is_young() != (cset_state.is_young())) {
  6181           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
  6182                                  hr->is_young(), cset_state.value(), i);
  6183           _failures = true;
  6184           return true;
  6186         if (hr->is_old() != (cset_state.is_old())) {
  6187           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
  6188                                  hr->is_old(), cset_state.value(), i);
  6189           _failures = true;
  6190           return true;
  6194     return false;
  6197   bool failures() const { return _failures; }
  6198 };
  6200 bool G1CollectedHeap::check_cset_fast_test() {
  6201   G1CheckCSetFastTableClosure cl;
  6202   _hrm.iterate(&cl);
  6203   return !cl.failures();
  6205 #endif // PRODUCT
  6207 void G1CollectedHeap::cleanUpCardTable() {
  6208   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6209   double start = os::elapsedTime();
  6212     // Iterate over the dirty cards region list.
  6213     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  6215     if (G1CollectedHeap::use_parallel_gc_threads()) {
  6216       set_par_threads();
  6217       workers()->run_task(&cleanup_task);
  6218       set_par_threads(0);
  6219     } else {
  6220       while (_dirty_cards_region_list) {
  6221         HeapRegion* r = _dirty_cards_region_list;
  6222         cleanup_task.clear_cards(r);
  6223         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  6224         if (_dirty_cards_region_list == r) {
  6225           // The last region.
  6226           _dirty_cards_region_list = NULL;
  6228         r->set_next_dirty_cards_region(NULL);
  6231 #ifndef PRODUCT
  6232     if (G1VerifyCTCleanup || VerifyAfterGC) {
  6233       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  6234       heap_region_iterate(&cleanup_verifier);
  6236 #endif
  6239   double elapsed = os::elapsedTime() - start;
  6240   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  6243 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
  6244   size_t pre_used = 0;
  6245   FreeRegionList local_free_list("Local List for CSet Freeing");
  6247   double young_time_ms     = 0.0;
  6248   double non_young_time_ms = 0.0;
  6250   // Since the collection set is a superset of the the young list,
  6251   // all we need to do to clear the young list is clear its
  6252   // head and length, and unlink any young regions in the code below
  6253   _young_list->clear();
  6255   G1CollectorPolicy* policy = g1_policy();
  6257   double start_sec = os::elapsedTime();
  6258   bool non_young = true;
  6260   HeapRegion* cur = cs_head;
  6261   int age_bound = -1;
  6262   size_t rs_lengths = 0;
  6264   while (cur != NULL) {
  6265     assert(!is_on_master_free_list(cur), "sanity");
  6266     if (non_young) {
  6267       if (cur->is_young()) {
  6268         double end_sec = os::elapsedTime();
  6269         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6270         non_young_time_ms += elapsed_ms;
  6272         start_sec = os::elapsedTime();
  6273         non_young = false;
  6275     } else {
  6276       if (!cur->is_young()) {
  6277         double end_sec = os::elapsedTime();
  6278         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6279         young_time_ms += elapsed_ms;
  6281         start_sec = os::elapsedTime();
  6282         non_young = true;
  6286     rs_lengths += cur->rem_set()->occupied_locked();
  6288     HeapRegion* next = cur->next_in_collection_set();
  6289     assert(cur->in_collection_set(), "bad CS");
  6290     cur->set_next_in_collection_set(NULL);
  6291     cur->set_in_collection_set(false);
  6293     if (cur->is_young()) {
  6294       int index = cur->young_index_in_cset();
  6295       assert(index != -1, "invariant");
  6296       assert((uint) index < policy->young_cset_region_length(), "invariant");
  6297       size_t words_survived = _surviving_young_words[index];
  6298       cur->record_surv_words_in_group(words_survived);
  6300       // At this point the we have 'popped' cur from the collection set
  6301       // (linked via next_in_collection_set()) but it is still in the
  6302       // young list (linked via next_young_region()). Clear the
  6303       // _next_young_region field.
  6304       cur->set_next_young_region(NULL);
  6305     } else {
  6306       int index = cur->young_index_in_cset();
  6307       assert(index == -1, "invariant");
  6310     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  6311             (!cur->is_young() && cur->young_index_in_cset() == -1),
  6312             "invariant" );
  6314     if (!cur->evacuation_failed()) {
  6315       MemRegion used_mr = cur->used_region();
  6317       // And the region is empty.
  6318       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  6319       pre_used += cur->used();
  6320       free_region(cur, &local_free_list, false /* par */, true /* locked */);
  6321     } else {
  6322       cur->uninstall_surv_rate_group();
  6323       if (cur->is_young()) {
  6324         cur->set_young_index_in_cset(-1);
  6326       cur->set_evacuation_failed(false);
  6327       // The region is now considered to be old.
  6328       cur->set_old();
  6329       _old_set.add(cur);
  6330       evacuation_info.increment_collectionset_used_after(cur->used());
  6332     cur = next;
  6335   evacuation_info.set_regions_freed(local_free_list.length());
  6336   policy->record_max_rs_lengths(rs_lengths);
  6337   policy->cset_regions_freed();
  6339   double end_sec = os::elapsedTime();
  6340   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6342   if (non_young) {
  6343     non_young_time_ms += elapsed_ms;
  6344   } else {
  6345     young_time_ms += elapsed_ms;
  6348   prepend_to_freelist(&local_free_list);
  6349   decrement_summary_bytes(pre_used);
  6350   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6351   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6354 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
  6355  private:
  6356   FreeRegionList* _free_region_list;
  6357   HeapRegionSet* _proxy_set;
  6358   HeapRegionSetCount _humongous_regions_removed;
  6359   size_t _freed_bytes;
  6360  public:
  6362   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
  6363     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
  6366   virtual bool doHeapRegion(HeapRegion* r) {
  6367     if (!r->startsHumongous()) {
  6368       return false;
  6371     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  6373     oop obj = (oop)r->bottom();
  6374     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
  6376     // The following checks whether the humongous object is live are sufficient.
  6377     // The main additional check (in addition to having a reference from the roots
  6378     // or the young gen) is whether the humongous object has a remembered set entry.
  6379     //
  6380     // A humongous object cannot be live if there is no remembered set for it
  6381     // because:
  6382     // - there can be no references from within humongous starts regions referencing
  6383     // the object because we never allocate other objects into them.
  6384     // (I.e. there are no intra-region references that may be missed by the
  6385     // remembered set)
  6386     // - as soon there is a remembered set entry to the humongous starts region
  6387     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
  6388     // until the end of a concurrent mark.
  6389     //
  6390     // It is not required to check whether the object has been found dead by marking
  6391     // or not, in fact it would prevent reclamation within a concurrent cycle, as
  6392     // all objects allocated during that time are considered live.
  6393     // SATB marking is even more conservative than the remembered set.
  6394     // So if at this point in the collection there is no remembered set entry,
  6395     // nobody has a reference to it.
  6396     // At the start of collection we flush all refinement logs, and remembered sets
  6397     // are completely up-to-date wrt to references to the humongous object.
  6398     //
  6399     // Other implementation considerations:
  6400     // - never consider object arrays at this time because they would pose
  6401     // considerable effort for cleaning up the the remembered sets. This is
  6402     // required because stale remembered sets might reference locations that
  6403     // are currently allocated into.
  6404     uint region_idx = r->hrm_index();
  6405     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
  6406         !r->rem_set()->is_empty()) {
  6408       if (G1TraceEagerReclaimHumongousObjects) {
  6409         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length " UINT32_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
  6410                                region_idx,
  6411                                obj->size()*HeapWordSize,
  6412                                r->bottom(),
  6413                                r->region_num(),
  6414                                r->rem_set()->occupied(),
  6415                                r->rem_set()->strong_code_roots_list_length(),
  6416                                next_bitmap->isMarked(r->bottom()),
  6417                                g1h->is_humongous_reclaim_candidate(region_idx),
  6418                                obj->is_typeArray()
  6419                               );
  6422       return false;
  6425     guarantee(obj->is_typeArray(),
  6426               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
  6427                       PTR_FORMAT " is not.",
  6428                       r->bottom()));
  6430     if (G1TraceEagerReclaimHumongousObjects) {
  6431       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length " UINT32_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
  6432                              region_idx,
  6433                              obj->size()*HeapWordSize,
  6434                              r->bottom(),
  6435                              r->region_num(),
  6436                              r->rem_set()->occupied(),
  6437                              r->rem_set()->strong_code_roots_list_length(),
  6438                              next_bitmap->isMarked(r->bottom()),
  6439                              g1h->is_humongous_reclaim_candidate(region_idx),
  6440                              obj->is_typeArray()
  6441                             );
  6443     // Need to clear mark bit of the humongous object if already set.
  6444     if (next_bitmap->isMarked(r->bottom())) {
  6445       next_bitmap->clear(r->bottom());
  6447     _freed_bytes += r->used();
  6448     r->set_containing_set(NULL);
  6449     _humongous_regions_removed.increment(1u, r->capacity());
  6450     g1h->free_humongous_region(r, _free_region_list, false);
  6452     return false;
  6455   HeapRegionSetCount& humongous_free_count() {
  6456     return _humongous_regions_removed;
  6459   size_t bytes_freed() const {
  6460     return _freed_bytes;
  6463   size_t humongous_reclaimed() const {
  6464     return _humongous_regions_removed.length();
  6466 };
  6468 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
  6469   assert_at_safepoint(true);
  6471   if (!G1EagerReclaimHumongousObjects ||
  6472       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
  6473     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
  6474     return;
  6477   double start_time = os::elapsedTime();
  6479   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
  6481   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
  6482   heap_region_iterate(&cl);
  6484   HeapRegionSetCount empty_set;
  6485   remove_from_old_sets(empty_set, cl.humongous_free_count());
  6487   G1HRPrinter* hr_printer = _g1h->hr_printer();
  6488   if (hr_printer->is_active()) {
  6489     FreeRegionListIterator iter(&local_cleanup_list);
  6490     while (iter.more_available()) {
  6491       HeapRegion* hr = iter.get_next();
  6492       hr_printer->cleanup(hr);
  6496   prepend_to_freelist(&local_cleanup_list);
  6497   decrement_summary_bytes(cl.bytes_freed());
  6499   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
  6500                                                                     cl.humongous_reclaimed());
  6503 // This routine is similar to the above but does not record
  6504 // any policy statistics or update free lists; we are abandoning
  6505 // the current incremental collection set in preparation of a
  6506 // full collection. After the full GC we will start to build up
  6507 // the incremental collection set again.
  6508 // This is only called when we're doing a full collection
  6509 // and is immediately followed by the tearing down of the young list.
  6511 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6512   HeapRegion* cur = cs_head;
  6514   while (cur != NULL) {
  6515     HeapRegion* next = cur->next_in_collection_set();
  6516     assert(cur->in_collection_set(), "bad CS");
  6517     cur->set_next_in_collection_set(NULL);
  6518     cur->set_in_collection_set(false);
  6519     cur->set_young_index_in_cset(-1);
  6520     cur = next;
  6524 void G1CollectedHeap::set_free_regions_coming() {
  6525   if (G1ConcRegionFreeingVerbose) {
  6526     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6527                            "setting free regions coming");
  6530   assert(!free_regions_coming(), "pre-condition");
  6531   _free_regions_coming = true;
  6534 void G1CollectedHeap::reset_free_regions_coming() {
  6535   assert(free_regions_coming(), "pre-condition");
  6538     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6539     _free_regions_coming = false;
  6540     SecondaryFreeList_lock->notify_all();
  6543   if (G1ConcRegionFreeingVerbose) {
  6544     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6545                            "reset free regions coming");
  6549 void G1CollectedHeap::wait_while_free_regions_coming() {
  6550   // Most of the time we won't have to wait, so let's do a quick test
  6551   // first before we take the lock.
  6552   if (!free_regions_coming()) {
  6553     return;
  6556   if (G1ConcRegionFreeingVerbose) {
  6557     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6558                            "waiting for free regions");
  6562     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6563     while (free_regions_coming()) {
  6564       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6568   if (G1ConcRegionFreeingVerbose) {
  6569     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6570                            "done waiting for free regions");
  6574 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6575   assert(heap_lock_held_for_gc(),
  6576               "the heap lock should already be held by or for this thread");
  6577   _young_list->push_region(hr);
  6580 class NoYoungRegionsClosure: public HeapRegionClosure {
  6581 private:
  6582   bool _success;
  6583 public:
  6584   NoYoungRegionsClosure() : _success(true) { }
  6585   bool doHeapRegion(HeapRegion* r) {
  6586     if (r->is_young()) {
  6587       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
  6588                              r->bottom(), r->end());
  6589       _success = false;
  6591     return false;
  6593   bool success() { return _success; }
  6594 };
  6596 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6597   bool ret = _young_list->check_list_empty(check_sample);
  6599   if (check_heap) {
  6600     NoYoungRegionsClosure closure;
  6601     heap_region_iterate(&closure);
  6602     ret = ret && closure.success();
  6605   return ret;
  6608 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6609 private:
  6610   HeapRegionSet *_old_set;
  6612 public:
  6613   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
  6615   bool doHeapRegion(HeapRegion* r) {
  6616     if (r->is_old()) {
  6617       _old_set->remove(r);
  6618     } else {
  6619       // We ignore free regions, we'll empty the free list afterwards.
  6620       // We ignore young regions, we'll empty the young list afterwards.
  6621       // We ignore humongous regions, we're not tearing down the
  6622       // humongous regions set.
  6623       assert(r->is_free() || r->is_young() || r->isHumongous(),
  6624              "it cannot be another type");
  6626     return false;
  6629   ~TearDownRegionSetsClosure() {
  6630     assert(_old_set->is_empty(), "post-condition");
  6632 };
  6634 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6635   assert_at_safepoint(true /* should_be_vm_thread */);
  6637   if (!free_list_only) {
  6638     TearDownRegionSetsClosure cl(&_old_set);
  6639     heap_region_iterate(&cl);
  6641     // Note that emptying the _young_list is postponed and instead done as
  6642     // the first step when rebuilding the regions sets again. The reason for
  6643     // this is that during a full GC string deduplication needs to know if
  6644     // a collected region was young or old when the full GC was initiated.
  6646   _hrm.remove_all_free_regions();
  6649 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6650 private:
  6651   bool            _free_list_only;
  6652   HeapRegionSet*   _old_set;
  6653   HeapRegionManager*   _hrm;
  6654   size_t          _total_used;
  6656 public:
  6657   RebuildRegionSetsClosure(bool free_list_only,
  6658                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
  6659     _free_list_only(free_list_only),
  6660     _old_set(old_set), _hrm(hrm), _total_used(0) {
  6661     assert(_hrm->num_free_regions() == 0, "pre-condition");
  6662     if (!free_list_only) {
  6663       assert(_old_set->is_empty(), "pre-condition");
  6667   bool doHeapRegion(HeapRegion* r) {
  6668     if (r->continuesHumongous()) {
  6669       return false;
  6672     if (r->is_empty()) {
  6673       // Add free regions to the free list
  6674       r->set_free();
  6675       r->set_allocation_context(AllocationContext::system());
  6676       _hrm->insert_into_free_list(r);
  6677     } else if (!_free_list_only) {
  6678       assert(!r->is_young(), "we should not come across young regions");
  6680       if (r->isHumongous()) {
  6681         // We ignore humongous regions, we left the humongous set unchanged
  6682       } else {
  6683         // Objects that were compacted would have ended up on regions
  6684         // that were previously old or free.
  6685         assert(r->is_free() || r->is_old(), "invariant");
  6686         // We now consider them old, so register as such.
  6687         r->set_old();
  6688         _old_set->add(r);
  6690       _total_used += r->used();
  6693     return false;
  6696   size_t total_used() {
  6697     return _total_used;
  6699 };
  6701 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6702   assert_at_safepoint(true /* should_be_vm_thread */);
  6704   if (!free_list_only) {
  6705     _young_list->empty_list();
  6708   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
  6709   heap_region_iterate(&cl);
  6711   if (!free_list_only) {
  6712     _allocator->set_used(cl.total_used());
  6714   assert(_allocator->used_unlocked() == recalculate_used(),
  6715          err_msg("inconsistent _allocator->used_unlocked(), "
  6716                  "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
  6717                  _allocator->used_unlocked(), recalculate_used()));
  6720 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6721   _refine_cte_cl->set_concurrent(concurrent);
  6724 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6725   HeapRegion* hr = heap_region_containing(p);
  6726   return hr->is_in(p);
  6729 // Methods for the mutator alloc region
  6731 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6732                                                       bool force) {
  6733   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6734   assert(!force || g1_policy()->can_expand_young_list(),
  6735          "if force is true we should be able to expand the young list");
  6736   bool young_list_full = g1_policy()->is_young_list_full();
  6737   if (force || !young_list_full) {
  6738     HeapRegion* new_alloc_region = new_region(word_size,
  6739                                               false /* is_old */,
  6740                                               false /* do_expand */);
  6741     if (new_alloc_region != NULL) {
  6742       set_region_short_lived_locked(new_alloc_region);
  6743       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6744       check_bitmaps("Mutator Region Allocation", new_alloc_region);
  6745       return new_alloc_region;
  6748   return NULL;
  6751 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6752                                                   size_t allocated_bytes) {
  6753   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6754   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
  6756   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6757   _allocator->increase_used(allocated_bytes);
  6758   _hr_printer.retire(alloc_region);
  6759   // We update the eden sizes here, when the region is retired,
  6760   // instead of when it's allocated, since this is the point that its
  6761   // used space has been recored in _summary_bytes_used.
  6762   g1mm()->update_eden_size();
  6765 void G1CollectedHeap::set_par_threads() {
  6766   // Don't change the number of workers.  Use the value previously set
  6767   // in the workgroup.
  6768   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6769   uint n_workers = workers()->active_workers();
  6770   assert(UseDynamicNumberOfGCThreads ||
  6771            n_workers == workers()->total_workers(),
  6772       "Otherwise should be using the total number of workers");
  6773   if (n_workers == 0) {
  6774     assert(false, "Should have been set in prior evacuation pause.");
  6775     n_workers = ParallelGCThreads;
  6776     workers()->set_active_workers(n_workers);
  6778   set_par_threads(n_workers);
  6781 // Methods for the GC alloc regions
  6783 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6784                                                  uint count,
  6785                                                  InCSetState dest) {
  6786   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6788   if (count < g1_policy()->max_regions(dest)) {
  6789     const bool is_survivor = (dest.is_young());
  6790     HeapRegion* new_alloc_region = new_region(word_size,
  6791                                               !is_survivor,
  6792                                               true /* do_expand */);
  6793     if (new_alloc_region != NULL) {
  6794       // We really only need to do this for old regions given that we
  6795       // should never scan survivors. But it doesn't hurt to do it
  6796       // for survivors too.
  6797       new_alloc_region->record_timestamp();
  6798       if (is_survivor) {
  6799         new_alloc_region->set_survivor();
  6800         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6801         check_bitmaps("Survivor Region Allocation", new_alloc_region);
  6802       } else {
  6803         new_alloc_region->set_old();
  6804         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6805         check_bitmaps("Old Region Allocation", new_alloc_region);
  6807       bool during_im = g1_policy()->during_initial_mark_pause();
  6808       new_alloc_region->note_start_of_copying(during_im);
  6809       return new_alloc_region;
  6812   return NULL;
  6815 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6816                                              size_t allocated_bytes,
  6817                                              InCSetState dest) {
  6818   bool during_im = g1_policy()->during_initial_mark_pause();
  6819   alloc_region->note_end_of_copying(during_im);
  6820   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6821   if (dest.is_young()) {
  6822     young_list()->add_survivor_region(alloc_region);
  6823   } else {
  6824     _old_set.add(alloc_region);
  6826   _hr_printer.retire(alloc_region);
  6829 // Heap region set verification
  6831 class VerifyRegionListsClosure : public HeapRegionClosure {
  6832 private:
  6833   HeapRegionSet*   _old_set;
  6834   HeapRegionSet*   _humongous_set;
  6835   HeapRegionManager*   _hrm;
  6837 public:
  6838   HeapRegionSetCount _old_count;
  6839   HeapRegionSetCount _humongous_count;
  6840   HeapRegionSetCount _free_count;
  6842   VerifyRegionListsClosure(HeapRegionSet* old_set,
  6843                            HeapRegionSet* humongous_set,
  6844                            HeapRegionManager* hrm) :
  6845     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
  6846     _old_count(), _humongous_count(), _free_count(){ }
  6848   bool doHeapRegion(HeapRegion* hr) {
  6849     if (hr->continuesHumongous()) {
  6850       return false;
  6853     if (hr->is_young()) {
  6854       // TODO
  6855     } else if (hr->startsHumongous()) {
  6856       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
  6857       _humongous_count.increment(1u, hr->capacity());
  6858     } else if (hr->is_empty()) {
  6859       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
  6860       _free_count.increment(1u, hr->capacity());
  6861     } else if (hr->is_old()) {
  6862       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
  6863       _old_count.increment(1u, hr->capacity());
  6864     } else {
  6865       ShouldNotReachHere();
  6867     return false;
  6870   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
  6871     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
  6872     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6873         old_set->total_capacity_bytes(), _old_count.capacity()));
  6875     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
  6876     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6877         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
  6879     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
  6880     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6881         free_list->total_capacity_bytes(), _free_count.capacity()));
  6883 };
  6885 void G1CollectedHeap::verify_region_sets() {
  6886   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6888   // First, check the explicit lists.
  6889   _hrm.verify();
  6891     // Given that a concurrent operation might be adding regions to
  6892     // the secondary free list we have to take the lock before
  6893     // verifying it.
  6894     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6895     _secondary_free_list.verify_list();
  6898   // If a concurrent region freeing operation is in progress it will
  6899   // be difficult to correctly attributed any free regions we come
  6900   // across to the correct free list given that they might belong to
  6901   // one of several (free_list, secondary_free_list, any local lists,
  6902   // etc.). So, if that's the case we will skip the rest of the
  6903   // verification operation. Alternatively, waiting for the concurrent
  6904   // operation to complete will have a non-trivial effect on the GC's
  6905   // operation (no concurrent operation will last longer than the
  6906   // interval between two calls to verification) and it might hide
  6907   // any issues that we would like to catch during testing.
  6908   if (free_regions_coming()) {
  6909     return;
  6912   // Make sure we append the secondary_free_list on the free_list so
  6913   // that all free regions we will come across can be safely
  6914   // attributed to the free_list.
  6915   append_secondary_free_list_if_not_empty_with_lock();
  6917   // Finally, make sure that the region accounting in the lists is
  6918   // consistent with what we see in the heap.
  6920   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
  6921   heap_region_iterate(&cl);
  6922   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
  6925 // Optimized nmethod scanning
  6927 class RegisterNMethodOopClosure: public OopClosure {
  6928   G1CollectedHeap* _g1h;
  6929   nmethod* _nm;
  6931   template <class T> void do_oop_work(T* p) {
  6932     T heap_oop = oopDesc::load_heap_oop(p);
  6933     if (!oopDesc::is_null(heap_oop)) {
  6934       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6935       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6936       assert(!hr->continuesHumongous(),
  6937              err_msg("trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
  6938                      " starting at " HR_FORMAT,
  6939                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6941       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
  6942       hr->add_strong_code_root_locked(_nm);
  6946 public:
  6947   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6948     _g1h(g1h), _nm(nm) {}
  6950   void do_oop(oop* p)       { do_oop_work(p); }
  6951   void do_oop(narrowOop* p) { do_oop_work(p); }
  6952 };
  6954 class UnregisterNMethodOopClosure: public OopClosure {
  6955   G1CollectedHeap* _g1h;
  6956   nmethod* _nm;
  6958   template <class T> void do_oop_work(T* p) {
  6959     T heap_oop = oopDesc::load_heap_oop(p);
  6960     if (!oopDesc::is_null(heap_oop)) {
  6961       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6962       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6963       assert(!hr->continuesHumongous(),
  6964              err_msg("trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
  6965                      " starting at " HR_FORMAT,
  6966                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6968       hr->remove_strong_code_root(_nm);
  6972 public:
  6973   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6974     _g1h(g1h), _nm(nm) {}
  6976   void do_oop(oop* p)       { do_oop_work(p); }
  6977   void do_oop(narrowOop* p) { do_oop_work(p); }
  6978 };
  6980 void G1CollectedHeap::register_nmethod(nmethod* nm) {
  6981   CollectedHeap::register_nmethod(nm);
  6983   guarantee(nm != NULL, "sanity");
  6984   RegisterNMethodOopClosure reg_cl(this, nm);
  6985   nm->oops_do(&reg_cl);
  6988 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  6989   CollectedHeap::unregister_nmethod(nm);
  6991   guarantee(nm != NULL, "sanity");
  6992   UnregisterNMethodOopClosure reg_cl(this, nm);
  6993   nm->oops_do(&reg_cl, true);
  6996 void G1CollectedHeap::purge_code_root_memory() {
  6997   double purge_start = os::elapsedTime();
  6998   G1CodeRootSet::purge();
  6999   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  7000   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
  7003 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  7004   G1CollectedHeap* _g1h;
  7006 public:
  7007   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
  7008     _g1h(g1h) {}
  7010   void do_code_blob(CodeBlob* cb) {
  7011     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
  7012     if (nm == NULL) {
  7013       return;
  7016     if (ScavengeRootsInCode) {
  7017       _g1h->register_nmethod(nm);
  7020 };
  7022 void G1CollectedHeap::rebuild_strong_code_roots() {
  7023   RebuildStrongCodeRootClosure blob_cl(this);
  7024   CodeCache::blobs_do(&blob_cl);

mercurial