src/share/vm/code/dependencies.hpp

Mon, 28 Feb 2011 06:07:12 -0800

author
twisti
date
Mon, 28 Feb 2011 06:07:12 -0800
changeset 2603
1b4e6a5d98e0
parent 2314
f95d63e2154a
child 3050
fdb992d83a87
permissions
-rw-r--r--

7012914: JSR 292 MethodHandlesTest C1: frame::verify_return_pc(return_address) failed: must be a return pc
Reviewed-by: never, bdelsart

     1 /*
     2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_CODE_DEPENDENCIES_HPP
    26 #define SHARE_VM_CODE_DEPENDENCIES_HPP
    28 #include "ci/ciKlass.hpp"
    29 #include "code/compressedStream.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "utilities/growableArray.hpp"
    33 //** Dependencies represent assertions (approximate invariants) within
    34 // the class hierarchy.  An example is an assertion that a given
    35 // method is not overridden; another example is that a type has only
    36 // one concrete subtype.  Compiled code which relies on such
    37 // assertions must be discarded if they are overturned by changes in
    38 // the class hierarchy.  We can think of these assertions as
    39 // approximate invariants, because we expect them to be overturned
    40 // very infrequently.  We are willing to perform expensive recovery
    41 // operations when they are overturned.  The benefit, of course, is
    42 // performing optimistic optimizations (!) on the object code.
    43 //
    44 // Changes in the class hierarchy due to dynamic linking or
    45 // class evolution can violate dependencies.  There is enough
    46 // indexing between classes and nmethods to make dependency
    47 // checking reasonably efficient.
    49 class ciEnv;
    50 class nmethod;
    51 class OopRecorder;
    52 class xmlStream;
    53 class CompileLog;
    54 class DepChange;
    55 class No_Safepoint_Verifier;
    57 class Dependencies: public ResourceObj {
    58  public:
    59   // Note: In the comments on dependency types, most uses of the terms
    60   // subtype and supertype are used in a "non-strict" or "inclusive"
    61   // sense, and are starred to remind the reader of this fact.
    62   // Strict uses of the terms use the word "proper".
    63   //
    64   // Specifically, every class is its own subtype* and supertype*.
    65   // (This trick is easier than continually saying things like "Y is a
    66   // subtype of X or X itself".)
    67   //
    68   // Sometimes we write X > Y to mean X is a proper supertype of Y.
    69   // The notation X > {Y, Z} means X has proper subtypes Y, Z.
    70   // The notation X.m > Y means that Y inherits m from X, while
    71   // X.m > Y.m means Y overrides X.m.  A star denotes abstractness,
    72   // as *I > A, meaning (abstract) interface I is a super type of A,
    73   // or A.*m > B.m, meaning B.m implements abstract method A.m.
    74   //
    75   // In this module, the terms "subtype" and "supertype" refer to
    76   // Java-level reference type conversions, as detected by
    77   // "instanceof" and performed by "checkcast" operations.  The method
    78   // Klass::is_subtype_of tests these relations.  Note that "subtype"
    79   // is richer than "subclass" (as tested by Klass::is_subclass_of),
    80   // since it takes account of relations involving interface and array
    81   // types.
    82   //
    83   // To avoid needless complexity, dependencies involving array types
    84   // are not accepted.  If you need to make an assertion about an
    85   // array type, make the assertion about its corresponding element
    86   // types.  Any assertion that might change about an array type can
    87   // be converted to an assertion about its element type.
    88   //
    89   // Most dependencies are evaluated over a "context type" CX, which
    90   // stands for the set Subtypes(CX) of every Java type that is a subtype*
    91   // of CX.  When the system loads a new class or interface N, it is
    92   // responsible for re-evaluating changed dependencies whose context
    93   // type now includes N, that is, all super types of N.
    94   //
    95   enum DepType {
    96     end_marker = 0,
    98     // An 'evol' dependency simply notes that the contents of the
    99     // method were used.  If it evolves (is replaced), the nmethod
   100     // must be recompiled.  No other dependencies are implied.
   101     evol_method,
   102     FIRST_TYPE = evol_method,
   104     // A context type CX is a leaf it if has no proper subtype.
   105     leaf_type,
   107     // An abstract class CX has exactly one concrete subtype CC.
   108     abstract_with_unique_concrete_subtype,
   110     // The type CX is purely abstract, with no concrete subtype* at all.
   111     abstract_with_no_concrete_subtype,
   113     // The concrete CX is free of concrete proper subtypes.
   114     concrete_with_no_concrete_subtype,
   116     // Given a method M1 and a context class CX, the set MM(CX, M1) of
   117     // "concrete matching methods" in CX of M1 is the set of every
   118     // concrete M2 for which it is possible to create an invokevirtual
   119     // or invokeinterface call site that can reach either M1 or M2.
   120     // That is, M1 and M2 share a name, signature, and vtable index.
   121     // We wish to notice when the set MM(CX, M1) is just {M1}, or
   122     // perhaps a set of two {M1,M2}, and issue dependencies on this.
   124     // The set MM(CX, M1) can be computed by starting with any matching
   125     // concrete M2 that is inherited into CX, and then walking the
   126     // subtypes* of CX looking for concrete definitions.
   128     // The parameters to this dependency are the method M1 and the
   129     // context class CX.  M1 must be either inherited in CX or defined
   130     // in a subtype* of CX.  It asserts that MM(CX, M1) is no greater
   131     // than {M1}.
   132     unique_concrete_method,       // one unique concrete method under CX
   134     // An "exclusive" assertion concerns two methods or subtypes, and
   135     // declares that there are at most two (or perhaps later N>2)
   136     // specific items that jointly satisfy the restriction.
   137     // We list all items explicitly rather than just giving their
   138     // count, for robustness in the face of complex schema changes.
   140     // A context class CX (which may be either abstract or concrete)
   141     // has two exclusive concrete subtypes* C1, C2 if every concrete
   142     // subtype* of CX is either C1 or C2.  Note that if neither C1 or C2
   143     // are equal to CX, then CX itself must be abstract.  But it is
   144     // also possible (for example) that C1 is CX (a concrete class)
   145     // and C2 is a proper subtype of C1.
   146     abstract_with_exclusive_concrete_subtypes_2,
   148     // This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
   149     exclusive_concrete_methods_2,
   151     // This dependency asserts that no instances of class or it's
   152     // subclasses require finalization registration.
   153     no_finalizable_subclasses,
   155     TYPE_LIMIT
   156   };
   157   enum {
   158     LG2_TYPE_LIMIT = 4,  // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
   160     // handy categorizations of dependency types:
   161     all_types      = ((1<<TYPE_LIMIT)-1) & ((-1)<<FIRST_TYPE),
   162     non_ctxk_types = (1<<evol_method),
   163     ctxk_types     = all_types & ~non_ctxk_types,
   165     max_arg_count = 3,   // current maximum number of arguments (incl. ctxk)
   167     // A "context type" is a class or interface that
   168     // provides context for evaluating a dependency.
   169     // When present, it is one of the arguments (dep_context_arg).
   170     //
   171     // If a dependency does not have a context type, there is a
   172     // default context, depending on the type of the dependency.
   173     // This bit signals that a default context has been compressed away.
   174     default_context_type_bit = (1<<LG2_TYPE_LIMIT)
   175   };
   177   static const char* dep_name(DepType dept);
   178   static int         dep_args(DepType dept);
   179   static int  dep_context_arg(DepType dept) {
   180     return dept_in_mask(dept, ctxk_types)? 0: -1;
   181   }
   183  private:
   184   // State for writing a new set of dependencies:
   185   GrowableArray<int>*       _dep_seen;  // (seen[h->ident] & (1<<dept))
   186   GrowableArray<ciObject*>* _deps[TYPE_LIMIT];
   188   static const char* _dep_name[TYPE_LIMIT];
   189   static int         _dep_args[TYPE_LIMIT];
   191   static bool dept_in_mask(DepType dept, int mask) {
   192     return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
   193   }
   195   bool note_dep_seen(int dept, ciObject* x) {
   196     assert(dept < BitsPerInt, "oob");
   197     int x_id = x->ident();
   198     assert(_dep_seen != NULL, "deps must be writable");
   199     int seen = _dep_seen->at_grow(x_id, 0);
   200     _dep_seen->at_put(x_id, seen | (1<<dept));
   201     // return true if we've already seen dept/x
   202     return (seen & (1<<dept)) != 0;
   203   }
   205   bool maybe_merge_ctxk(GrowableArray<ciObject*>* deps,
   206                         int ctxk_i, ciKlass* ctxk);
   208   void sort_all_deps();
   209   size_t estimate_size_in_bytes();
   211   // Initialize _deps, etc.
   212   void initialize(ciEnv* env);
   214   // State for making a new set of dependencies:
   215   OopRecorder* _oop_recorder;
   217   // Logging support
   218   CompileLog* _log;
   220   address  _content_bytes;  // everything but the oop references, encoded
   221   size_t   _size_in_bytes;
   223  public:
   224   // Make a new empty dependencies set.
   225   Dependencies(ciEnv* env) {
   226     initialize(env);
   227   }
   229  private:
   230   // Check for a valid context type.
   231   // Enforce the restriction against array types.
   232   static void check_ctxk(ciKlass* ctxk) {
   233     assert(ctxk->is_instance_klass(), "java types only");
   234   }
   235   static void check_ctxk_concrete(ciKlass* ctxk) {
   236     assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
   237   }
   238   static void check_ctxk_abstract(ciKlass* ctxk) {
   239     check_ctxk(ctxk);
   240     assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
   241   }
   243   void assert_common_1(DepType dept, ciObject* x);
   244   void assert_common_2(DepType dept, ciKlass* ctxk, ciObject* x);
   245   void assert_common_3(DepType dept, ciKlass* ctxk, ciObject* x, ciObject* x2);
   247  public:
   248   // Adding assertions to a new dependency set at compile time:
   249   void assert_evol_method(ciMethod* m);
   250   void assert_leaf_type(ciKlass* ctxk);
   251   void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
   252   void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk);
   253   void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk);
   254   void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
   255   void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2);
   256   void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2);
   257   void assert_has_no_finalizable_subclasses(ciKlass* ctxk);
   259   // Define whether a given method or type is concrete.
   260   // These methods define the term "concrete" as used in this module.
   261   // For this module, an "abstract" class is one which is non-concrete.
   262   //
   263   // Future optimizations may allow some classes to remain
   264   // non-concrete until their first instantiation, and allow some
   265   // methods to remain non-concrete until their first invocation.
   266   // In that case, there would be a middle ground between concrete
   267   // and abstract (as defined by the Java language and VM).
   268   static bool is_concrete_klass(klassOop k);    // k is instantiable
   269   static bool is_concrete_method(methodOop m);  // m is invocable
   270   static Klass* find_finalizable_subclass(Klass* k);
   272   // These versions of the concreteness queries work through the CI.
   273   // The CI versions are allowed to skew sometimes from the VM
   274   // (oop-based) versions.  The cost of such a difference is a
   275   // (safely) aborted compilation, or a deoptimization, or a missed
   276   // optimization opportunity.
   277   //
   278   // In order to prevent spurious assertions, query results must
   279   // remain stable within any single ciEnv instance.  (I.e., they must
   280   // not go back into the VM to get their value; they must cache the
   281   // bit in the CI, either eagerly or lazily.)
   282   static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
   283   static bool is_concrete_method(ciMethod* m);       // m appears invocable
   284   static bool has_finalizable_subclass(ciInstanceKlass* k);
   286   // As a general rule, it is OK to compile under the assumption that
   287   // a given type or method is concrete, even if it at some future
   288   // point becomes abstract.  So dependency checking is one-sided, in
   289   // that it permits supposedly concrete classes or methods to turn up
   290   // as really abstract.  (This shouldn't happen, except during class
   291   // evolution, but that's the logic of the checking.)  However, if a
   292   // supposedly abstract class or method suddenly becomes concrete, a
   293   // dependency on it must fail.
   295   // Checking old assertions at run-time (in the VM only):
   296   static klassOop check_evol_method(methodOop m);
   297   static klassOop check_leaf_type(klassOop ctxk);
   298   static klassOop check_abstract_with_unique_concrete_subtype(klassOop ctxk, klassOop conck,
   299                                                               DepChange* changes = NULL);
   300   static klassOop check_abstract_with_no_concrete_subtype(klassOop ctxk,
   301                                                           DepChange* changes = NULL);
   302   static klassOop check_concrete_with_no_concrete_subtype(klassOop ctxk,
   303                                                           DepChange* changes = NULL);
   304   static klassOop check_unique_concrete_method(klassOop ctxk, methodOop uniqm,
   305                                                DepChange* changes = NULL);
   306   static klassOop check_abstract_with_exclusive_concrete_subtypes(klassOop ctxk, klassOop k1, klassOop k2,
   307                                                                   DepChange* changes = NULL);
   308   static klassOop check_exclusive_concrete_methods(klassOop ctxk, methodOop m1, methodOop m2,
   309                                                    DepChange* changes = NULL);
   310   static klassOop check_has_no_finalizable_subclasses(klassOop ctxk,
   311                                                       DepChange* changes = NULL);
   312   // A returned klassOop is NULL if the dependency assertion is still
   313   // valid.  A non-NULL klassOop is a 'witness' to the assertion
   314   // failure, a point in the class hierarchy where the assertion has
   315   // been proven false.  For example, if check_leaf_type returns
   316   // non-NULL, the value is a subtype of the supposed leaf type.  This
   317   // witness value may be useful for logging the dependency failure.
   318   // Note that, when a dependency fails, there may be several possible
   319   // witnesses to the failure.  The value returned from the check_foo
   320   // method is chosen arbitrarily.
   322   // The 'changes' value, if non-null, requests a limited spot-check
   323   // near the indicated recent changes in the class hierarchy.
   324   // It is used by DepStream::spot_check_dependency_at.
   326   // Detecting possible new assertions:
   327   static klassOop  find_unique_concrete_subtype(klassOop ctxk);
   328   static methodOop find_unique_concrete_method(klassOop ctxk, methodOop m);
   329   static int       find_exclusive_concrete_subtypes(klassOop ctxk, int klen, klassOop k[]);
   330   static int       find_exclusive_concrete_methods(klassOop ctxk, int mlen, methodOop m[]);
   332   // Create the encoding which will be stored in an nmethod.
   333   void encode_content_bytes();
   335   address content_bytes() {
   336     assert(_content_bytes != NULL, "encode it first");
   337     return _content_bytes;
   338   }
   339   size_t size_in_bytes() {
   340     assert(_content_bytes != NULL, "encode it first");
   341     return _size_in_bytes;
   342   }
   344   OopRecorder* oop_recorder() { return _oop_recorder; }
   345   CompileLog*  log()          { return _log; }
   347   void copy_to(nmethod* nm);
   349   void log_all_dependencies();
   350   void log_dependency(DepType dept, int nargs, ciObject* args[]) {
   351     write_dependency_to(log(), dept, nargs, args);
   352   }
   353   void log_dependency(DepType dept,
   354                       ciObject* x0,
   355                       ciObject* x1 = NULL,
   356                       ciObject* x2 = NULL) {
   357     if (log() == NULL)  return;
   358     ciObject* args[max_arg_count];
   359     args[0] = x0;
   360     args[1] = x1;
   361     args[2] = x2;
   362     assert(2 < max_arg_count, "");
   363     log_dependency(dept, dep_args(dept), args);
   364   }
   366   static void write_dependency_to(CompileLog* log,
   367                                   DepType dept,
   368                                   int nargs, ciObject* args[],
   369                                   klassOop witness = NULL);
   370   static void write_dependency_to(CompileLog* log,
   371                                   DepType dept,
   372                                   int nargs, oop args[],
   373                                   klassOop witness = NULL);
   374   static void write_dependency_to(xmlStream* xtty,
   375                                   DepType dept,
   376                                   int nargs, oop args[],
   377                                   klassOop witness = NULL);
   378   static void print_dependency(DepType dept,
   379                                int nargs, oop args[],
   380                                klassOop witness = NULL);
   382  private:
   383   // helper for encoding common context types as zero:
   384   static ciKlass* ctxk_encoded_as_null(DepType dept, ciObject* x);
   386   static klassOop ctxk_encoded_as_null(DepType dept, oop x);
   388  public:
   389   // Use this to iterate over an nmethod's dependency set.
   390   // Works on new and old dependency sets.
   391   // Usage:
   392   //
   393   // ;
   394   // Dependencies::DepType dept;
   395   // for (Dependencies::DepStream deps(nm); deps.next(); ) {
   396   //   ...
   397   // }
   398   //
   399   // The caller must be in the VM, since oops are not wrapped in handles.
   400   class DepStream {
   401   private:
   402     nmethod*              _code;   // null if in a compiler thread
   403     Dependencies*         _deps;   // null if not in a compiler thread
   404     CompressedReadStream  _bytes;
   405 #ifdef ASSERT
   406     size_t                _byte_limit;
   407 #endif
   409     // iteration variables:
   410     DepType               _type;
   411     int                   _xi[max_arg_count+1];
   413     void initial_asserts(size_t byte_limit) NOT_DEBUG({});
   415     inline oop recorded_oop_at(int i);
   416         // => _code? _code->oop_at(i): *_deps->_oop_recorder->handle_at(i)
   418     klassOop check_dependency_impl(DepChange* changes);
   420   public:
   421     DepStream(Dependencies* deps)
   422       : _deps(deps),
   423         _code(NULL),
   424         _bytes(deps->content_bytes())
   425     {
   426       initial_asserts(deps->size_in_bytes());
   427     }
   428     DepStream(nmethod* code)
   429       : _deps(NULL),
   430         _code(code),
   431         _bytes(code->dependencies_begin())
   432     {
   433       initial_asserts(code->dependencies_size());
   434     }
   436     bool next();
   438     DepType type()               { return _type; }
   439     int argument_count()         { return dep_args(type()); }
   440     int argument_index(int i)    { assert(0 <= i && i < argument_count(), "oob");
   441                                    return _xi[i]; }
   442     oop argument(int i);         // => recorded_oop_at(argument_index(i))
   443     klassOop context_type();
   445     methodOop method_argument(int i) {
   446       oop x = argument(i);
   447       assert(x->is_method(), "type");
   448       return (methodOop) x;
   449     }
   450     klassOop type_argument(int i) {
   451       oop x = argument(i);
   452       assert(x->is_klass(), "type");
   453       return (klassOop) x;
   454     }
   456     // The point of the whole exercise:  Is this dep is still OK?
   457     klassOop check_dependency() {
   458       return check_dependency_impl(NULL);
   459     }
   460     // A lighter version:  Checks only around recent changes in a class
   461     // hierarchy.  (See Universe::flush_dependents_on.)
   462     klassOop spot_check_dependency_at(DepChange& changes);
   464     // Log the current dependency to xtty or compilation log.
   465     void log_dependency(klassOop witness = NULL);
   467     // Print the current dependency to tty.
   468     void print_dependency(klassOop witness = NULL, bool verbose = false);
   469   };
   470   friend class Dependencies::DepStream;
   472   static void print_statistics() PRODUCT_RETURN;
   473 };
   475 // A class hierarchy change coming through the VM (under the Compile_lock).
   476 // The change is structured as a single new type with any number of supers
   477 // and implemented interface types.  Other than the new type, any of the
   478 // super types can be context types for a relevant dependency, which the
   479 // new type could invalidate.
   480 class DepChange : public StackObj {
   481  public:
   482   enum ChangeType {
   483     NO_CHANGE = 0,              // an uninvolved klass
   484     Change_new_type,            // a newly loaded type
   485     Change_new_sub,             // a super with a new subtype
   486     Change_new_impl,            // an interface with a new implementation
   487     CHANGE_LIMIT,
   488     Start_Klass = CHANGE_LIMIT  // internal indicator for ContextStream
   489   };
   491  private:
   492   // each change set is rooted in exactly one new type (at present):
   493   KlassHandle _new_type;
   495   void initialize();
   497  public:
   498   // notes the new type, marks it and all its super-types
   499   DepChange(KlassHandle new_type)
   500     : _new_type(new_type)
   501   {
   502     initialize();
   503   }
   505   // cleans up the marks
   506   ~DepChange();
   508   klassOop new_type()                   { return _new_type(); }
   510   // involves_context(k) is true if k is new_type or any of the super types
   511   bool involves_context(klassOop k);
   513   // Usage:
   514   // for (DepChange::ContextStream str(changes); str.next(); ) {
   515   //   klassOop k = str.klass();
   516   //   switch (str.change_type()) {
   517   //     ...
   518   //   }
   519   // }
   520   class ContextStream : public StackObj {
   521    private:
   522     DepChange&  _changes;
   523     friend class DepChange;
   525     // iteration variables:
   526     ChangeType  _change_type;
   527     klassOop    _klass;
   528     objArrayOop _ti_base;    // i.e., transitive_interfaces
   529     int         _ti_index;
   530     int         _ti_limit;
   532     // start at the beginning:
   533     void start() {
   534       klassOop new_type = _changes.new_type();
   535       _change_type = (new_type == NULL ? NO_CHANGE: Start_Klass);
   536       _klass = new_type;
   537       _ti_base = NULL;
   538       _ti_index = 0;
   539       _ti_limit = 0;
   540     }
   542    public:
   543     ContextStream(DepChange& changes)
   544       : _changes(changes)
   545     { start(); }
   547     ContextStream(DepChange& changes, No_Safepoint_Verifier& nsv)
   548       : _changes(changes)
   549       // the nsv argument makes it safe to hold oops like _klass
   550     { start(); }
   552     bool next();
   554     ChangeType change_type()     { return _change_type; }
   555     klassOop   klass()           { return _klass; }
   556   };
   557   friend class DepChange::ContextStream;
   559   void print();
   560 };
   562 #endif // SHARE_VM_CODE_DEPENDENCIES_HPP

mercurial